WO2022151737A1 - 量子比特的串扰分析方法、装置、计算机设备和存储介质 - Google Patents

量子比特的串扰分析方法、装置、计算机设备和存储介质 Download PDF

Info

Publication number
WO2022151737A1
WO2022151737A1 PCT/CN2021/114409 CN2021114409W WO2022151737A1 WO 2022151737 A1 WO2022151737 A1 WO 2022151737A1 CN 2021114409 W CN2021114409 W CN 2021114409W WO 2022151737 A1 WO2022151737 A1 WO 2022151737A1
Authority
WO
WIPO (PCT)
Prior art keywords
qubit
quantum
eigenspectrum
tomography
crosstalk
Prior art date
Application number
PCT/CN2021/114409
Other languages
English (en)
French (fr)
Inventor
陈玉琴
张胜誉
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to EP21839812.1A priority Critical patent/EP4053755B1/en
Priority to JP2022513589A priority patent/JP7274666B2/ja
Priority to KR1020227007878A priority patent/KR20220105155A/ko
Priority to US17/674,793 priority patent/US11960973B2/en
Publication of WO2022151737A1 publication Critical patent/WO2022151737A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena

Definitions

  • the present application relates to the technical field of quantum computing, and in particular to a method, device, computer equipment and storage medium for crosstalk analysis of qubits.
  • Quantum computing is becoming more and more popular among users due to its advantages of rapidly and efficiently processing massive data.
  • the quantum state corresponding to the qubit is a linear superposition state of 0 and 1. After the qubit is operated, the quantum state corresponding to the qubit changes.
  • the quantum state described by the bit is the execution result of the quantum product.
  • a method, apparatus, computer device and storage medium for crosstalk analysis of qubits are provided.
  • a method for analyzing crosstalk of quantum bits, executed by a terminal comprising:
  • a crosstalk strength between the first qubit and the second qubit is determined.
  • a device for analyzing crosstalk of quantum bits comprises:
  • a determination module for determining the first qubit and the second qubit to be analyzed
  • a first tomography module configured to sequentially perform spectral quantum process tomography on the quantum states corresponding to the first qubit and the second qubit respectively, to obtain a first copy of the signal function corresponding to the first qubit eigenspectrum, and the second eigenspectrum of the signal function corresponding to the second quantum bit;
  • the second tomography module is configured to perform spectral quantum process tomography on the quantum state synchronization corresponding to the first qubit and the second qubit respectively, and obtain a common result of the first qubit and the second qubit.
  • a computing module configured to determine the crosstalk strength between the first qubit and the second qubit based on the first eigenspectrum, the second eigenspectrum and the third eigenspectrum.
  • a computer device includes a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
  • a crosstalk strength between the first qubit and the second qubit is determined.
  • a crosstalk strength between the first qubit and the second qubit is determined.
  • a computer program product or computer program comprising computer instructions stored in a computer-readable storage medium; from which a processor of a computer device reads and writes When the computer instructions are executed, the computer device is caused to execute the steps of the method for analyzing the crosstalk of qubits.
  • a method for analyzing crosstalk of quantum bits, executed by a terminal comprising:
  • a transmission line crosstalk strength between the first qubit and the second qubit is determined according to the first eigenspectrum and the second eigenspectrum.
  • a device for analyzing crosstalk of quantum bits comprises:
  • a determination module for determining the first qubit and the second qubit to be analyzed
  • the first tomography module is used to perform spectral quantum process tomography on the quantum state of the first qubit, and analyze the signal function corresponding to the first qubit obtained by the tomography to obtain a first eigenspectrum ; Wherein, when the quantum state of the first quantum bit is performing spectral quantum process tomography, the second quantum bit is in a waiting state;
  • the second tomography module is used to perform spectral quantum process tomography on the quantum state of the second qubit, and analyze the signal function corresponding to the second qubit obtained by the tomography to obtain a second eigenspectrum ; wherein, when the quantum state of the second quantum bit is subjected to spectral quantum process tomography, the first quantum bit is in a processing state based on target gating;
  • a calculation module configured to determine the transmission line crosstalk strength between the first qubit and the second qubit according to the first eigenspectrum and the second eigenspectrum.
  • a computer device includes a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
  • a transmission line crosstalk strength between the first qubit and the second qubit is determined according to the first eigenspectrum and the second eigenspectrum.
  • a transmission line crosstalk strength between the first qubit and the second qubit is determined according to the first eigenspectrum and the second eigenspectrum.
  • a computer program product or computer program comprising computer instructions stored in a computer-readable storage medium; from which a processor of a computer device reads and writes When the computer instructions are executed, the computer device is caused to execute the steps of the method for analyzing the crosstalk of qubits.
  • 1a is an application environment diagram of a method for analyzing crosstalk of qubits in one embodiment
  • 1b is a schematic flowchart of a method for analyzing crosstalk of qubits in one embodiment
  • Fig. 2 is the schematic diagram of the spectral quantum process tomography based on identity gate in one embodiment
  • FIG. 3 is a schematic diagram of a curve of coupling crosstalk strength changing with time in one embodiment
  • FIG. 4 is a schematic diagram of a curve of the associated crosstalk strength changing with time in one embodiment
  • FIG. 5 is a schematic flowchart of a step of calculating the crosstalk strength of a transmission line in one embodiment
  • Fig. 6 is the schematic diagram of the spectral quantum process tomography based on identity gate in another embodiment
  • FIG. 7 is a schematic diagram of a curve of the crosstalk intensity of a transmission line changing with time in one embodiment
  • FIG. 8 is a schematic flowchart of a method for analyzing crosstalk of qubits in another embodiment
  • FIG. 9 is a schematic diagram of obtaining coupled crosstalk intensity by spectral quantum process tomography based on identity gate in another embodiment
  • FIG. 10 is a schematic diagram of a curve of the variation of the coupling crosstalk intensity with time in an experimental test in one embodiment
  • 11 is a schematic diagram of five qubits in a superconducting quantum chip in one embodiment
  • FIG. 12 is a schematic diagram of the time-dependent variation of coupling crosstalk intensity obtained by performing quantum process tomography on five qubits in one embodiment
  • FIG. 13 is a schematic diagram of the time-dependent change of the crosstalk intensity of the transmission line obtained by performing quantum process tomography on five qubits in one embodiment
  • FIG. 14 is a structural block diagram of an apparatus for analyzing crosstalk of qubits in one embodiment
  • 15 is a structural block diagram of an apparatus for analyzing crosstalk of qubits in another embodiment
  • 16 is a structural block diagram of an apparatus for analyzing crosstalk of qubits in another embodiment
  • Figure 17 is a diagram of the internal structure of a computer device in one embodiment.
  • Quantum computing A way of computing based on quantum logic.
  • Qubit A unit used to record quantum information and is the basic unit of quantum computing. Quantum computing can calculate 0 and 1 at the same time, and the system can be in a linear superposition state of 0 and 1:
  • ⁇ >
  • Quantum noise process The process of contamination of quantum information due to the interaction of quantum products with the environment, or the imperfection of the control itself.
  • Crosstalk noise of quantum bits The bit information on quantum products interferes with each other and is not completely independent of interference noise. For example, crosstalk between microwave control lines, associated noise due to qubits being in the same environment, and direct coupling between qubits. Qubit crosstalk noise largely limits the scale of quantum products such as quantum chips.
  • TPCP dynamic mapping refers to the dynamic mapping of preservation and all positive. Specifically, preservation means that the trace of the quantum density of states operator remains unchanged in the process of dynamic evolution; all means that if the density operator is non-negative , any part of the dynamic mapping applied to the density operator will remain non-negative.
  • Dynamic decoupling It is an effective means to suppress decoherence, mainly by applying continuously flipped pulses at specific time points (such as at a certain frequency) to effectively suppress the mutual coupling between qubits and the environment, thereby suppressing decoherence.
  • the crosstalk analysis method for qubits provided in this application can be applied to the application environment shown in FIG. 1a.
  • the communication between the terminal 102 and the server 104 is performed through the network.
  • the method for analyzing the crosstalk of qubits can be applied to the terminal 102.
  • the terminal 102 determines the first qubit and the second qubit to be analyzed; Quantum process tomography to obtain the first eigenspectrum of the signal function corresponding to the first qubit, and the second eigenspectrum of the signal function corresponding to the second qubit; Spectral quantum process tomography is performed synchronously in the quantum state to obtain the third eigenspectrum of the signal function common to the first qubit and the second qubit; based on the first eigenspectrum, the second eigenspectrum and the third eigenspectrum, Determine the strength of the crosstalk between the first qubit and the second qubit, and then display the strength of the crosstalk.
  • the method for analyzing crosstalk of qubits can be applied to the server 104, and the details are as follows: the server 104 determines the first qubit and the second qubit to be analyzed; Quantum process tomography to obtain the first eigenspectrum of the signal function corresponding to the first qubit, and the second eigenspectrum of the signal function corresponding to the second qubit; Spectral quantum process tomography is performed synchronously in the quantum state to obtain the third eigenspectrum of the signal function common to the first qubit and the second qubit; based on the first eigenspectrum, the second eigenspectrum and the third eigenspectrum, The strength of the crosstalk between the first qubit and the second qubit is determined and then displayed on the terminal 102 .
  • the terminal 102 may be various computers and notebook computers installed with the qiskit simulator.
  • the server 104 can be implemented by an independent server or a server cluster composed of multiple servers, and the server 104 can also be installed with a qiskit simulator.
  • a method for analyzing crosstalk of qubits is provided, and the method can be applied to the terminal or server in FIG. 1.
  • the application of the method to the terminal is taken as an example to illustrate, including the following steps :
  • the terminal may be an electronic device integrating quantum circuits or quantum chips, such as a quantum computer, or the terminal may be an independent quantum chip, such as a superconducting quantum chip.
  • the first qubit and the second qubit may be two qubits to be analyzed that contain different quantum information.
  • the number of qubits can be n, where n is greater than 2, such as 72 qubits.
  • n is greater than 2, such as 72 qubits.
  • the terminal may determine the first qubit and the second qubit to be analyzed among the plurality of qubits.
  • S104 Perform spectral quantum process tomography on the quantum states corresponding to the first qubit and the second qubit in turn, to obtain a first eigenspectrum of the signal function corresponding to the first qubit and a signal function corresponding to the second qubit The second eigenspectrum of .
  • the eigenspectrum can refer to the dynamic mapping eigenspectrum formed by the quantum in the evolution process.
  • Spectral quantum process tomography can use the quantum states of various qubits to input an unknown quantum process, such as a quantum channel or quantum gate, and then measure the output quantum state after interacting with it, and then determine the relationship between the input and output. This quantum process is estimated.
  • the above quantum state can refer to the state of the quantum, for example, it can be 0, 1 and a linear superposition state of 0 and 1,
  • ⁇ >
  • 2 represent the probability of being at 0 and 1.
  • the quantum states respectively corresponding to the first qubit and the second qubit are subjected to spectral quantum process tomography based on an identity gate; the identity gate is a quantum circuit on which the first qubit and the second qubit are located.
  • a free evolution gate that does not do real operations on it.
  • the terminal can perform spectral quantum process tomography on the quantum states corresponding to the first qubit and the second qubit respectively at the same time, or it can sequentially analyze the first qubit and the second qubit at different times.
  • the quantum states corresponding to the two qubits are subjected to spectral quantum process tomography.
  • the second qubit keeps waiting;
  • the first qubit keeps waiting.
  • the step of spectral quantum process tomography of the first qubit may specifically include: the terminal performs spectral quantum process tomography on the quantum state of the first qubit based on the identity gate, and analyzes the first quantum process obtained by the tomography. The signal function corresponding to the bit is analyzed to obtain the first eigenspectrum; wherein, when the quantum state of the first qubit is subjected to spectral quantum process tomography, the second qubit is in a waiting state.
  • P ⁇ represents the Pauli matrix
  • N meas represents the measurement error
  • N prep represents the preparation error
  • represents the eigenspectrum of the kinetic mapping, which is formed by k times of the identity gate
  • represents the super operator operation.
  • the step of spectral quantum process tomography of the second qubit may specifically include: the terminal performs spectral quantum process tomography on the quantum state of the second qubit, and analyzes the signal corresponding to the second qubit obtained by the tomography The function is analyzed to obtain a second eigenspectrum; wherein, when the quantum state of the second qubit is subjected to spectral quantum process tomography, the first qubit is in a waiting state.
  • reference may be made to the spectral quantum process tomography corresponding to the above-mentioned first qubit.
  • (a) in FIG. 2 is based on the identity gate to perform spectral quantum process tomography on the quantum state of the first qubit q0, and performing spectral quantum process on the quantum state of the first qubit q0 During the tomography process, the second qubit q1 keeps waiting.
  • Figure (b) in FIG. 2 is based on the identity gate to perform spectral quantum process tomography on the quantum state of the second qubit q1. In the process of performing spectral quantum process tomography on the quantum state of the second qubit q1, the first Qubit q0 keeps waiting.
  • X represents the preparation process
  • I represents the free evolution process, that is, the free evolution process through the identity gate
  • H and M represent the measurement in different directions
  • c represents the measurement line.
  • S106 perform spectral quantum process tomography on the quantum states corresponding to the first qubit and the second qubit respectively, to obtain a third eigenspectrum of the signal function common to the first qubit and the second qubit.
  • the quantum states combined between the first qubit and the second qubit are subjected to spectral quantum process tomography based on the identity gate;
  • the identity gate is a quantum circuit where the first qubit and the second qubit are located.
  • a free evolution gate that does not do real operations on it.
  • the terminal performs spectral quantum process tomography on the quantum states corresponding to the first qubit and the second qubit respectively, to obtain a common signal function of the first qubit and the second qubit; wherein, the common signal function includes The parameters representing the quantum preparation error and quantum measurement error; the common signal function is analyzed to obtain the third eigenspectrum.
  • the respective preparation errors and measurement errors of the first qubit and the second qubit are obtained, and based on the obtained preparation errors
  • the common signal function of the first qubit and the second qubit is constructed with the measurement error, quantum gate evolution and Pauli matrix, and then the common signal function is analyzed to obtain the third eigenspectrum.
  • (c) in FIG. 2 is based on the identity gate to perform spectral quantum process tomography on the quantum states of the first quantum bit q0 and the quantum bit q1 .
  • the terminal performs spectral quantum process tomography on the quantum states corresponding to the first quantum bit q0 and the second quantum bit q1 synchronously based on the identity gate, so that the common signal function g 01 of the first quantum bit q0 and the second quantum bit q1 can be obtained ( 0),...,g 01 (K),
  • N' meas and N' prep represent the measurement error and preparation error, respectively, and ⁇ ' represents the eigenspectrum formed by the first qubit q0 and the second qubit q1 when the identity gate is applied.
  • the crosstalk may refer to coupled crosstalk and associated crosstalk, etc.
  • the corresponding crosstalk strength may refer to the strength of coupled crosstalk and/or the strength of associated crosstalk.
  • the inseparability degree ⁇ is closely related to the strength of the crosstalk between the first quantum bit q0 and the second quantum bit q1.
  • the terminal can calculate the tensor product between the first eigenspectrum and the second eigenspectrum; based on the difference between the third eigenspectrum and the tensor product, determine the inseparability of the eigenspectrum; The degree of inseparability is determined as the strength of the crosstalk between the first qubit and the second qubit, so that the strength of the crosstalk is
  • the crosstalk intensity Among them n is a positive integer greater than 2, and ii is used to represent the diagonal element of the matrix.
  • the second eigenspectrum of the corresponding signal function and then perform spectral quantum process tomography on the quantum states corresponding to the first qubit and the second qubit, respectively, to obtain the third eigenspectrum of the signal function corresponding to the combination.
  • the degree of inseparability among the first eigenspectrum, the second eigenspectrum and the third eigenspectrum is closely related to the crosstalk strength between qubits, so according to the first eigenspectrum, the second eigenspectrum and the third eigenspectrum
  • the eigenspectrum can obtain the crosstalk intensity between qubits, and the crosstalk intensity is not the average result of all types of gate noise and various environmental noises. Optimization for detailed guidance.
  • the eigenspectrum has information loss for the general quantum noise channel, relative to the random benchmark only for the depolarized channel, so according to the first eigenspectrum, the second eigenspectrum and the third eigenspectrum
  • the crosstalk strength is more universal, and it is more conducive to provide detailed guidance for the production and optimization of quantum products based on the crosstalk strength.
  • the steps may specifically include: when both the first qubit and the second qubit are in a pure dephased noise environment, the terminal determines that the first qubit and the second qubit are in a noise environment of pure dephase.
  • the intensity is oscillating and decaying with time, and is free of preparation and measurement errors.
  • the first environmental noise model of the first qubit and the second qubit can be obtained.
  • f 1 (t) and f 2 (t) represent the noise functions corresponding to the noise environments where the first qubit and the second qubit are located, respectively, and denote the Pauli matrices corresponding to the first qubit and the second qubit, respectively.
  • the coupling mode of qubits between the first qubit and the second qubit can be determined where ⁇ ZZ is the coupling strength.
  • the coupling crosstalk intensity can be used to guide the production and optimization of quantum products, In order to avoid the influence of coupling crosstalk on the manufactured or optimized quantum product, and improve the performance of the quantum product.
  • the steps may specifically include: when both the first qubit and the second qubit are in a purely dephased noise environment, the terminal determines the first qubit and the second qubit.
  • the first environmental noise model of the qubit obtains the noise correlation mode between qubits, and determines the correlation crosstalk strength between the first qubit and the second qubit according to the noise correlation method, the first environmental noise model and the crosstalk strength; correlation; Crosstalk strength decays over time and is free of fabrication and measurement errors.
  • the first environmental noise model of the first qubit and the second qubit can be obtained.
  • f 1 (t) and f 2 (t) represent the noise functions corresponding to the noise environments where the first qubit and the second qubit are located, respectively, and denote the Pauli matrices corresponding to the first qubit and the second qubit, respectively.
  • the associated crosstalk intensity can be used to guide the production and optimization of quantum products, In order to avoid the influence of correlated crosstalk on the manufactured or optimized quantum products, and improve the performance of the quantum products.
  • S104 may specifically include:
  • the second qubit when the quantum state of the first qubit is subjected to spectral quantum process tomography, the second qubit is in a waiting state.
  • the terminal performs spectral quantum process tomography based on the identity gate on the quantum state of the first qubit, wherein the identity gate is a free evolution gate that does not perform real operations on the quantum circuit where the first qubit is located, and , when the quantum state of the first qubit is subjected to spectral quantum process tomography, the second qubit is in a waiting state, so as to obtain the signal function corresponding to the first qubit, analyze the signal function corresponding to the first qubit, and obtain the first qubit.
  • Eigenspectrum For the spectral quantum process tomography step of the quantum state corresponding to the first qubit, reference may be made to S104 in the above embodiment.
  • the first qubit when the quantum state of the second qubit is subjected to spectral quantum process tomography, the first qubit is in a target-gated processing state.
  • the terminal performs spectral quantum process tomography based on the identity gate on the quantum state of the second qubit, wherein the identity gate is a free evolution gate that does not perform real operations on the quantum circuit where the second qubit is located, and , when the quantum state of the second qubit is subjected to spectral quantum process tomography, the first qubit is in the target gated processing state, thereby obtaining the signal function corresponding to the second qubit, and analyzing the signal function corresponding to the second qubit , to obtain the second eigenspectrum.
  • the second eigenspectrum carries the transmission line crosstalk generated by the target gating.
  • the transmission line crosstalk intensity obtained according to the first eigenspectrum and the second eigenspectrum is more targeted, which is beneficial to the production and optimization of quantum products. for detailed guidance.
  • S104 for the spectral quantum process tomography step of the quantum state corresponding to the second qubit, reference may be made to S104 in the foregoing embodiment.
  • the above-mentioned target gate can be Hadamard gate, Pauli-X gate, Pauli-Y gate, Pauli-Z gate gate), Phase shift gates, Swap gates, Controlled gates, Universal quantum gates and Toffoli gates.
  • FIG. 6 (a) in Fig. 6 is to perform spectral quantum process tomography based on the identity gate for the first quantum bit q0 to obtain a series of signal functions g 0 (0),...,g 0 ( K), calculate its kinetic mapping eigenspectrum as ⁇ 1, ⁇ x , ⁇ y , ⁇ z ⁇ .
  • Figure (b) in Figure 6 shows the spectral quantum process tomography of the identity-based gate for the second quantum bit q1 to obtain a series of signal functions g 1 (0),...,g 1 (K), and calculate its dynamics
  • the mapped eigenspectrum is ⁇ 1, ⁇ x' , ⁇ y' , ⁇ z' ⁇ .
  • the transmission line crosstalk intensity can be defined as:
  • n is a positive integer greater than 2
  • ii is used to represent the diagonal element of the matrix.
  • the terminal determines a second ambient noise model of the first qubit; and determines the first qubit and the first qubit according to the second ambient noise model and the crosstalk strength. The amount of variation in the strength of transmission line crosstalk between two qubits in a noisy environment.
  • spectral quantum process tomography is performed on the quantum state of the first qubit, and during the tomography process, the second qubit is in a waiting state, and the first eigenvalue of the signal function corresponding to the first qubit is obtained.
  • spectrum; the quantum state of the second qubit is subjected to spectral quantum process tomography, and during the tomography process, the first qubit is in a processing state based on target gate control, so as to obtain the signal function corresponding to the second qubit.
  • the second eigenspectrum therefore, the transmission line crosstalk intensity obtained according to the first eigenspectrum and the second eigenspectrum is more targeted, which is beneficial to provide detailed guidance in the production and optimization of quantum products.
  • the eigenspectrum has information loss for the general quantum noise channel, which is only for the depolarized channel relative to the random benchmark, so the crosstalk intensity obtained according to the first eigenspectrum and the second eigenspectrum is more Universality is more conducive to detailed guidance on the fabrication and optimization of quantum products based on the transmission crosstalk strength.
  • FIG. 8 another method for analyzing crosstalk of qubits is provided, and the method is applied to a terminal as an example to illustrate, including the following steps:
  • the terminal may be an electronic device integrating quantum circuits or quantum chips, such as a quantum computer, or the terminal may be an independent quantum chip, such as a superconducting quantum chip.
  • the first qubit and the second qubit may be two qubits to be analyzed that contain different quantum information.
  • the number of qubits can be n, where n is greater than 2, such as 72 qubits.
  • n is greater than 2, such as 72 qubits.
  • the terminal may determine the first qubit and the second qubit to be analyzed among the plurality of qubits.
  • S804 perform spectral quantum process tomography on the quantum state of the first qubit, and analyze the signal function corresponding to the first qubit obtained by the tomography to obtain a first eigenspectrum.
  • the second qubit when the quantum state of the first qubit is subjected to spectral quantum process tomography, the second qubit is in a waiting state.
  • the eigenspectrum can refer to the dynamic mapping eigenspectrum formed by the quantum in the process of evolution.
  • Spectral quantum process tomography can use the quantum states of various qubits to input an unknown quantum process, such as a quantum channel or quantum gate, and then measure the output quantum state after interacting with it, and then determine the relationship between the input and output. This quantum process is estimated.
  • the above quantum state can refer to the state of the quantum, for example, it can be 0, 1 and a linear superposition state of 0 and 1,
  • ⁇ >
  • 2 represent the probability of being at 0 and 1.
  • the quantum state of the first quantum bit is based on the identity gate to perform spectral quantum process tomography.
  • the identity gate is a free evolution gate that does not perform real operations on the quantum circuit where the first qubit and the second qubit are located.
  • P ⁇ represents the Pauli matrix
  • N meas represents the measurement error
  • N prep represents the preparation error
  • represents the eigenspectrum of the kinetic mapping, which is formed by k times of the identity gate
  • represents the super operator operation.
  • the first qubit when the quantum state of the second qubit is subjected to spectral quantum process tomography, the first qubit is in a processing state based on target gating.
  • the quantum state of the second qubit is based on the identity gate for spectral quantum process tomography.
  • the terminal performs spectral quantum process tomography based on the identity gate on the quantum state of the second qubit, wherein the identity gate is a free evolution gate that does not perform real operations on the quantum circuit where the second qubit is located, and , when the quantum state of the second qubit is subjected to spectral quantum process tomography, the first qubit is in the target gated processing state, thereby obtaining the signal function corresponding to the second qubit, and analyzing the signal function corresponding to the second qubit , to obtain the second eigenspectrum.
  • the spectral quantum process tomography step of the quantum state corresponding to the second qubit reference may be made to S104 in the foregoing embodiment.
  • the above-mentioned target gate can be Hadamard gate, Pauli-X gate, Pauli-Y gate, Pauli-Z gate gate), Phase shift gates, Swap gates, Controlled gates, Universal quantum gates and Toffoli gates.
  • the terminal determines a second ambient noise model of the first qubit; and determines the first qubit and the first qubit according to the second ambient noise model and the crosstalk strength. The amount of variation in the strength of transmission line crosstalk between two qubits in a noisy environment.
  • (a) in Figure 6 is based on the identity gate to perform spectral quantum process tomography on the quantum state of the first qubit q0 to obtain a series of signal functions g 0 (0),...,g 0 (K), calculate its dynamic mapping eigenspectrum as ⁇ 1, ⁇ x , ⁇ y , ⁇ z ⁇ , wherein, in the process of spectral quantum process tomography on the quantum state of the first qubit q0, the The two-qubit q1 keeps waiting.
  • Figure (b) in Figure 6 is based on the identity gate to perform spectral quantum process tomography on the quantum state of the second qubit q1 to obtain a series of signal functions g 1 (0),...,g 1 (K), and calculate its power
  • the eigenspectrum of scientific mapping is ⁇ 1, ⁇ x' , ⁇ y' , ⁇ z' ⁇ , wherein, in the process of spectral quantum process tomography on the quantum state of the second qubit q1, the first qubit q0 is in The processing state of the target gate remains waiting.
  • X in the figure represents the preparation process;
  • I represents the free evolution process, that is, the free evolution process through the identity gate;
  • H and M represent the measurement in different directions, and
  • c represents the measurement line.
  • spectral quantum process tomography is performed on the quantum state of the first qubit, and during the tomography process, the second qubit is in a waiting state, and the first eigenvalue of the signal function corresponding to the first qubit is obtained.
  • spectrum; the quantum state of the second qubit is subjected to spectral quantum process tomography, and during the tomography process, the first qubit is in a processing state based on target gate control, so as to obtain the signal function corresponding to the second qubit.
  • the second eigenspectrum the second eigenspectrum carries the transmission line crosstalk generated by the target gating, so the transmission line crosstalk intensity obtained according to the first eigenspectrum and the second eigenspectrum is more targeted, which is beneficial to the quantum Detailed guidance during the production and optimization of the product.
  • the eigenspectrum has information loss for the general quantum noise channel, which is only for the depolarized channel relative to the random benchmark, so the crosstalk intensity obtained according to the first eigenspectrum and the second eigenspectrum is more Universality is more conducive to detailed guidance on the fabrication and optimization of quantum products based on the transmission crosstalk strength.
  • the above-mentioned qubit crosstalk analysis method can be applied to promote the development of quantum products and technologies, such as quantum computers, quantum secure communications, quantum Internet, quantum meters and other technologies/products that are susceptible to quantum noise interference , the impact on product performance is very serious, and it is the biggest obstacle to its practical use. Understanding the nature of quantum noise is critical to the development of these technologies/products, and as quantum chip technology continues to evolve, noise crosstalk analysis between qubits is critical in addition to single-bit noise analysis. Next, the analysis of noise crosstalk between qubits is described, as follows:
  • Synchronous spectral quantum process tomography is proposed in this example to study the direct coupled crosstalk and correlated noise crosstalk of qubits, using identity gate-based spectral quantum process tomography:
  • mapping formed by its dynamic mapping eigenspectrum satisfies:
  • n is the dimension of the matrix of kinetic mapping eigenspectrum ⁇ AB
  • ii is the diagonal element of the matrix
  • i is a positive integer less than or equal to n.
  • mapping formed by its dynamic mapping eigenspectrum satisfies:
  • the strength of the transmission line crosstalk can be defined:
  • the direct coupling between qubits is simulated and analyzed by the qiskit simulator, using the quantum circuit shown in Figure 9.
  • the ZZ gate corresponds to the direct coupling between qubits; the I gate represents free evolution and contains pure dephase noise.
  • the superconducting quantum chip contains 5 (0-4) qubits.
  • Synchronized spectral quantum analysis between 0-1, 0-2, 0-3, 0-4, 1-2, 1-3, 1-4, 2-3, 2-4 and 3-4 qubits respectively Process tomography, taking 0-1, 1-2, 1-3 and 3-4 as examples, found that there are different degrees of direct coupling of qubits, while there is no obvious qubit coupling between 1-4.
  • the figure shows the dynamic eigenspectrum change of qubit q1 before and after the continuous application of the X gate to qubit q0.
  • the circle is the free evolution of q1
  • the black block is the evolution result after q0 is continuously applied with X gate.
  • "0-4" means applying the gate on qubit 4 to the effect of qubit 0. It can be seen from Figure 13 that the crosstalk of the transmission lines between qubits is relatively large.
  • the following crosstalk noises can be analyzed:
  • steps in the flowcharts of FIGS. 1 , 5 and 8 are sequentially displayed according to the arrows, these steps are not necessarily executed in the order indicated by the arrows. Unless explicitly stated herein, the execution of these steps is not strictly limited to the order, and these steps may be performed in other orders. Moreover, at least a part of the steps in FIGS. 1, 5, and 8 may include multiple steps or multiple stages. These steps or stages are not necessarily executed at the same time, but may be executed at different times. These steps or stages The order of execution of the steps is not necessarily sequential, but may be performed alternately or alternately with other steps or at least a portion of the steps or stages in the other steps.
  • a device for analyzing crosstalk of qubits is provided.
  • the device can adopt software modules or hardware modules, or a combination of the two to become a part of computer equipment.
  • the device specifically includes: A determination module 1402, a first chromatography module 1404, a second chromatography module 1406 and a calculation module 1408, wherein:
  • a determining module 1402 configured to determine the first qubit and the second qubit to be analyzed
  • the first tomography module 1404 is configured to sequentially perform spectral quantum process tomography on the quantum states corresponding to the first qubit and the second qubit respectively, to obtain the first eigenspectrum of the signal function corresponding to the first qubit, and the first eigenspectrum of the signal function corresponding to the first qubit.
  • the second tomography module 1406 is configured to perform spectral quantum process tomography on the quantum states corresponding to the first qubit and the second qubit respectively, to obtain a third copy of the signal function common to the first qubit and the second qubit spectrum;
  • the computing module 1408 is configured to determine the crosstalk strength between the first qubit and the second qubit based on the first eigenspectrum, the second eigenspectrum and the third eigenspectrum.
  • the first chromatography module 1404 is further used for:
  • the second chromatography module 1406 is further used for:
  • Spectral quantum process tomography is performed on the quantum states corresponding to the first qubit and the second qubit respectively, and the common signal function of the first qubit and the second qubit is obtained; the common signal function includes the quantum preparation error and the quantum parameters of measurement error;
  • the common signal function is analyzed to obtain the third eigenspectrum.
  • the computing module 1408 is further configured to:
  • the degree of inseparability is determined as the strength of crosstalk between the first qubit and the second qubit.
  • the quantum states corresponding to the first qubit and the second qubit respectively, and the combined quantum state between the first qubit and the second qubit are all subjected to spectral quantum process tomography based on the identity gate;
  • the identity gate is a free evolution gate that does not perform real operations on the quantum circuit where the first qubit and the second qubit are located.
  • the second eigenspectrum of the corresponding signal function and then perform spectral quantum process tomography on the quantum states corresponding to the first qubit and the second qubit, respectively, to obtain the third eigenspectrum of the signal function corresponding to the combination.
  • the degree of inseparability among the first eigenspectrum, the second eigenspectrum and the third eigenspectrum is closely related to the crosstalk strength between qubits, so according to the first eigenspectrum, the second eigenspectrum and the third eigenspectrum
  • the eigenspectrum can obtain the crosstalk intensity between qubits, and the crosstalk intensity is not the average result of all types of gate noise and various environmental noises. Optimization for detailed guidance.
  • the eigenspectrum has information loss for the general quantum noise channel, relative to the random benchmark only for the depolarized channel, so according to the first eigenspectrum, the second eigenspectrum and the third eigenspectrum
  • the crosstalk strength is more universal, and it is more conducive to provide detailed guidance for the production and optimization of quantum products based on the crosstalk strength.
  • the device further includes:
  • the determining module 1402 is further configured to determine the first environmental noise model of the first qubit and the second qubit when both the first qubit and the second qubit are in a purely dephased noise environment;
  • the first acquisition module 1410 is used to acquire the qubit coupling mode
  • the determining module 1402 is further configured to determine the coupling crosstalk strength between the first qubit and the second qubit according to the qubit coupling mode, the first environmental noise model and the crosstalk strength; the coupling crosstalk strength oscillates and decays with time, and Free of preparation and measurement errors.
  • the coupling crosstalk intensity can be used to guide the production and optimization of quantum products, In order to avoid the influence of coupling crosstalk on the manufactured or optimized quantum product, and improve the performance of the quantum product.
  • the device further includes:
  • the determining module 1402 is further configured to determine the first environmental noise model of the first qubit and the second qubit when both the first qubit and the second qubit are in a purely dephased noise environment;
  • the second acquisition module 1412 is used to acquire the noise correlation mode between qubits
  • the determining module 1402 is further configured to determine the correlation crosstalk strength between the first qubit and the second qubit according to the noise correlation mode, the first environmental noise model and the crosstalk strength; the correlation crosstalk strength decays with time, and does not include Preparation error and measurement error.
  • the associated crosstalk strength can be used to guide the production and optimization of quantum products, In order to avoid the influence of correlated crosstalk on the manufactured or optimized quantum products, and improve the performance of the quantum products.
  • the first tomography module 1404 is further configured to perform spectral quantum process tomography on the quantum state of the first qubit, and analyze the signal function corresponding to the first qubit obtained by the tomography, Obtain the first eigenspectrum; wherein, when the quantum state of the first qubit is subjected to spectral quantum process tomography, the second qubit is in a waiting state; the quantum state of the second qubit is subjected to spectral quantum process tomography, and the The signal function corresponding to the second qubit obtained by the tomography is analyzed to obtain the second eigenspectrum; wherein, when the quantum state of the second qubit is subjected to spectral quantum process tomography, the first qubit is in the process of target gate control state;
  • the calculation module 1408 is further configured to determine the transmission line crosstalk strength between the first qubit and the second qubit according to the first eigenspectrum and the second eigenspectrum.
  • spectral quantum process tomography is performed on the quantum state of the first qubit, and during the tomography process, the second qubit is in a waiting state, and the first eigenvalue of the signal function corresponding to the first qubit is obtained.
  • spectrum; the quantum state of the second qubit is subjected to spectral quantum process tomography, and during the tomography process, the first qubit is in a processing state based on target gate control, so as to obtain the signal function corresponding to the second qubit.
  • the second eigenspectrum therefore, the transmission line crosstalk intensity obtained according to the first eigenspectrum and the second eigenspectrum is more targeted, which is beneficial to provide detailed guidance in the production and optimization of quantum products.
  • the eigenspectrum has information loss for the general quantum noise channel, which is only for the depolarized channel relative to the random benchmark, so the crosstalk intensity obtained according to the first eigenspectrum and the second eigenspectrum is more Universality is more conducive to detailed guidance on the fabrication and optimization of quantum products based on the transmission crosstalk strength.
  • a device for analyzing qubit crosstalk is provided.
  • the device can adopt software modules or hardware modules, or a combination of the two to become a part of computer equipment.
  • the device specifically includes: A determination module 1602, a first chromatography module 1604, a second chromatography module 1606, and a calculation module 1608, wherein:
  • a determining module 1602 configured to determine the first qubit and the second qubit to be analyzed
  • the first tomography module 1604 is configured to perform spectral quantum process tomography on the quantum state of the first qubit, and analyze the signal function corresponding to the first qubit obtained by the tomography to obtain a first eigenspectrum; wherein, When the quantum state of the first qubit is subjected to spectral quantum process tomography, the second qubit is in a waiting state;
  • the second tomography module 1606 is configured to perform spectral quantum process tomography on the quantum state of the second qubit, and analyze the signal function corresponding to the second qubit obtained by the tomography to obtain a second eigenspectrum; wherein, When the quantum state of the second qubit is subjected to spectral quantum process tomography, the first qubit is in a processing state based on target gating;
  • the calculation module 1608 is configured to determine the transmission line crosstalk strength between the first qubit and the second qubit according to the first eigenspectrum and the second eigenspectrum.
  • the determining module 1602 is further configured to determine a second environmental noise model of the first qubit if the first qubit is in a purely dephased noise environment;
  • the calculation module 1608 is further configured to determine, according to the second environmental noise model and the crosstalk intensity, the amount of variation of the transmission line crosstalk intensity between the first qubit and the second qubit in the noise environment.
  • the quantum states respectively corresponding to the first qubit and the second qubit are subjected to spectral quantum process tomography based on the identity gate;
  • the identity gate is a A free-evolving gate that does not do real operations on the line.
  • spectral quantum process tomography is performed on the quantum state of the first qubit, and during the tomography process, the second qubit is in a waiting state, and the first eigenvalue of the signal function corresponding to the first qubit is obtained.
  • spectrum; the quantum state of the second qubit is subjected to spectral quantum process tomography, and during the tomography process, the first qubit is in a processing state based on target gate control, so as to obtain the signal function corresponding to the second qubit.
  • the second eigenspectrum the second eigenspectrum carries the transmission line crosstalk generated by the target gating, so the transmission line crosstalk intensity obtained according to the first eigenspectrum and the second eigenspectrum is more targeted, which is beneficial to the quantum Detailed guidance during the production and optimization of the product.
  • the eigenspectrum has information loss for the general quantum noise channel, which is only for the depolarized channel relative to the random benchmark, so the crosstalk intensity obtained according to the first eigenspectrum and the second eigenspectrum is more Universality is more conducive to detailed guidance on the fabrication and optimization of quantum products based on the transmission crosstalk strength.
  • All or part of the modules in the device for analyzing the crosstalk of qubits can be implemented by software, hardware and combinations thereof.
  • the above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • a computer device is provided, and the computer device may be a terminal or a server. Taking the computer device as a terminal as an example, the internal structure diagram of the terminal may be as shown in FIG. 17 .
  • the computer equipment includes a processor, memory, a communication interface, a display screen, and an input device connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium, an internal memory.
  • the nonvolatile storage medium stores an operating system and a computer program.
  • the internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium.
  • the communication interface of the computer device is used for wired or wireless communication with an external terminal, and the wireless communication can be realized by WIFI, operator network, NFC (Near Field Communication) or other technologies.
  • the computer program when executed by the processor, implements a quantum bit crosstalk analysis method.
  • the display screen of the computer equipment may be a liquid crystal display screen or an electronic ink display screen, and the input device of the computer equipment may be a touch layer covered on the display screen, or a button, a trackball or a touchpad set on the shell of the computer equipment , or an external keyboard, trackpad, or mouse.
  • FIG. 17 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied. Include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
  • a computer device including a memory and a processor, where a computer program is stored in the memory, and the processor implements the steps in the foregoing method embodiments when the processor executes the computer program.
  • a computer-readable storage medium which stores a computer program, and when the computer program is executed by a processor, implements the steps in the foregoing method embodiments.
  • a computer program product or computer program comprising computer instructions stored in a computer readable storage medium.
  • the processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the steps in the foregoing method embodiments.
  • Non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory, or optical memory, and the like.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • the RAM may be in various forms, such as Static Random Access Memory (SRAM) or Dynamic Random Access Memory (DRAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Complex Calculations (AREA)

Abstract

本申请涉及一种量子比特的串扰分析方法、装置、计算机设备和存储介质。所述方法包括:确定待分析的第一量子比特和第二量子比特(S102);依次对第一量子比特和第二量子比特分别对应的量子态进行谱量子过程层析,得到第一量子比特对应的信号函数的第一本征谱,以及第二量子比特对应的信号函数的第二本征谱(S104);对第一量子比特和第二量子比特分别对应的量子态同步进行谱量子过程层析,得到第一量子比特和第二量子比特共同的信号函数的第三本征谱(S106);基于第一本征谱、第二本征谱和第三本征谱,确定第一量子比特和第二量子比特之间的串扰强度(S108)。

Description

量子比特的串扰分析方法、装置、计算机设备和存储介质
本申请要求于2021年01月18日提交中国专利局,申请号为2021100615932,发明名称为“量子比特的串扰分析方法、装置、计算机设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及量子计算技术领域,特别是涉及一种量子比特的串扰分析方法、装置、计算机设备和存储介质。
背景技术
由于量子计算具有迅速高效地处理海量数据的优势,使得量子计算越来越受广大用户的欢迎。量子比特对应的量子态为0和1的线性叠加态,量子比特被操作之后,量子比特对应的量子态发生改变,在量子产品(如量子芯片)上,则体现为量子产品被执行后,量子比特所述的量子态即量子产品的执行结果。
然而,量子产品容易受量子噪声的干扰,严重影响量子产品的性能,因此对量子比特间的噪声串扰进行分析至关重要。传统的量子比特串扰分析方案中,通过对量子比特施加带有噪声过程的各种克里夫德(Clifford)门以分析出两个子系统之间的错误率,该错误率刻画了量子比特的串扰。由于随机化基准测试体现的是所有类型门噪声和各种环境噪声的平均结果,因此分析的串扰无法应用在量子产品的制作和优化。
发明内容
根据本申请的各种实施例,提供了一种量子比特的串扰分析方法、装置、计算机设备和存储介质。
一种量子比特的串扰分析方法,由终端执行,所述方法包括:
确定待分析的第一量子比特和第二量子比特;
依次对所述第一量子比特和所述第二量子比特分别对应的量子态进行谱量子过程层析,得到所述第一量子比特对应的信号函数的第一本征谱,以及所述第二量子比特对应的信号函数的第二本征谱;
对所述第一量子比特和所述第二量子比特分别对应的量子态同步进行谱量子过程层析,得到所述第一量子比特和所述第二量子比特共同的信号函数的第三本征谱;
基于所述第一本征谱、所述第二本征谱和所述第三本征谱,确定所述第一量子比特和所述第二量子比特之间的串扰强度。
一种量子比特的串扰分析装置,所述装置包括:
确定模块,用于确定待分析的第一量子比特和第二量子比特;
第一层析模块,用于依次对所述第一量子比特和所述第二量子比特分别对应的量子态进行谱量子过程层析,得到所述第一量子比特对应的信号函数的第一本征谱,以及所述第二量子比特对应的信号函数的第二本征谱;
第二层析模块,用于对所述第一量子比特和所述第二量子比特分别对应的量子态同步进行谱量子过程层析,得到所述第一量子比特和所述第二量子比特共同的信号函数的第三本征谱;
计算模块,用于基于所述第一本征谱、所述第二本征谱和所述第三本征谱,确定所述第一量子比特和所述第二量子比特之间的串扰强度。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
确定待分析的第一量子比特和第二量子比特;
依次对所述第一量子比特和所述第二量子比特分别对应的量子态进行谱量子过程层析,得到所述第一量子比特对应的信号函数的第一本征谱,以及所述第二量子比特对应的信号函数的第二本征谱;
对所述第一量子比特和所述第二量子比特分别对应的量子态同步进行谱量子过程层析,得到所述第一量子比特和所述第二量子比特共同的信号函数的第三本征谱;
基于所述第一本征谱、所述第二本征谱和所述第三本征谱,确定所述第一量 子比特和所述第二量子比特之间的串扰强度。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
确定待分析的第一量子比特和第二量子比特;
依次对所述第一量子比特和所述第二量子比特分别对应的量子态进行谱量子过程层析,得到所述第一量子比特对应的信号函数的第一本征谱,以及所述第二量子比特对应的信号函数的第二本征谱;
对所述第一量子比特和所述第二量子比特分别对应的量子态同步进行谱量子过程层析,得到所述第一量子比特和所述第二量子比特共同的信号函数的第三本征谱;
基于所述第一本征谱、所述第二本征谱和所述第三本征谱,确定所述第一量子比特和所述第二量子比特之间的串扰强度。
一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中;计算机设备的处理器从所述计算机可读存储介质读取并执行所述计算机指令时,使得所述计算机设备执行上述量子比特的串扰分析方法的步骤。
一种量子比特的串扰分析方法,由终端执行,所述方法包括:
确定待分析的第一量子比特和第二量子比特;
对所述第一量子比特的量子态进行谱量子过程层析,并对层析所得的所述第一量子比特对应的信号函数进行解析,得到第一本征谱;其中,所述第一量子比特的量子态在进行谱量子过程层析时,所述第二量子比特处于等待状态;
对所述第二量子比特的量子态进行谱量子过程层析,并对层析所得的所述第二量子比特对应的信号函数进行解析,得到第二本征谱;其中,所述第二量子比特的量子态在进行谱量子过程层析时,所述第一量子比特处于基于目标门控的处理状态;
根据所述第一本征谱和所述第二本征谱,确定所述第一量子比特和所述第二量子比特之间的传输线串扰强度。
一种量子比特的串扰分析装置,所述装置包括:
确定模块,用于确定待分析的第一量子比特和第二量子比特;
第一层析模块,用于对所述第一量子比特的量子态进行谱量子过程层析,并对层析所得的所述第一量子比特对应的信号函数进行解析,得到第一本征谱;其中,所述第一量子比特的量子态在进行谱量子过程层析时,所述第二量子比特处于等待状态;
第二层析模块,用于对所述第二量子比特的量子态进行谱量子过程层析,并对层析所得的所述第二量子比特对应的信号函数进行解析,得到第二本征谱;其中,所述第二量子比特的量子态在进行谱量子过程层析时,所述第一量子比特处于基于目标门控的处理状态;
计算模块,用于根据所述第一本征谱和所述第二本征谱,确定所述第一量子比特和所述第二量子比特之间的传输线串扰强度。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
确定待分析的第一量子比特和第二量子比特;
对所述第一量子比特的量子态进行谱量子过程层析,并对层析所得的所述第一量子比特对应的信号函数进行解析,得到第一本征谱;其中,所述第一量子比特的量子态在进行谱量子过程层析时,所述第二量子比特处于等待状态;
对所述第二量子比特的量子态进行谱量子过程层析,并对层析所得的所述第二量子比特对应的信号函数进行解析,得到第二本征谱;其中,所述第二量子比特的量子态在进行谱量子过程层析时,所述第一量子比特处于基于目标门控的处理状态;
根据所述第一本征谱和所述第二本征谱,确定所述第一量子比特和所述第二量子比特之间的传输线串扰强度。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
确定待分析的第一量子比特和第二量子比特;
对所述第一量子比特的量子态进行谱量子过程层析,并对层析所得的所述 第一量子比特对应的信号函数进行解析,得到第一本征谱;其中,所述第一量子比特的量子态在进行谱量子过程层析时,所述第二量子比特处于等待状态;
对所述第二量子比特的量子态进行谱量子过程层析,并对层析所得的所述第二量子比特对应的信号函数进行解析,得到第二本征谱;其中,所述第二量子比特的量子态在进行谱量子过程层析时,所述第一量子比特处于基于目标门控的处理状态;
根据所述第一本征谱和所述第二本征谱,确定所述第一量子比特和所述第二量子比特之间的传输线串扰强度。
一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中;计算机设备的处理器从所述计算机可读存储介质读取并执行所述计算机指令时,使得所述计算机设备执行上述量子比特的串扰分析方法的步骤。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1a为一个实施例中量子比特的串扰分析方法的应用环境图;
图1b为一个实施例中量子比特的串扰分析方法的流程示意图;
图2为一个实施例中基于identity门的谱量子过程层析的示意图;
图3为一个实施例中耦合串扰强度随时间变化的曲线示意图;
图4为一个实施例中关联串扰强度随时间变化的曲线示意图;
图5为一个实施例中计算传输线串扰强度步骤的流程示意图;
图6为另一个实施例中基于identity门的谱量子过程层析的示意图;
图7为一个实施例中传输线串扰强度随时间变化的曲线示意图;
图8为另一个实施例中量子比特的串扰分析方法的流程示意图;
图9为另一个实施例中基于identity门的谱量子过程层析以得到耦合串扰强度的示意图;
图10为一个实施例中实验测试耦合串扰强度随时间变化的曲线示意图;
图11为一个实施例中超导量子芯片中五个量子比特的示意图;
图12为一个实施例中对五个量子比特进行量子过程层析所得耦合串扰强度随时间变化的示意图;
图13为一个实施例中对五个量子比特进行量子过程层析所得传输线串扰强度随时间变化的示意图;
图14为一个实施例中量子比特的串扰分析装置的结构框图;
图15为另一个实施例中量子比特的串扰分析装置的结构框图;
图16为另一个实施例中量子比特的串扰分析装置的结构框图;
图17为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
在对本申请进行详细阐述之前,先对缩略语和关键术语进行说明:
量子计算:基于量子逻辑进行计算的计算方式。
量子比特:用来记录量子信息的单元,是量子计算的基本单元。量子计算可以同时计算0和1,系统可以处于0和1的线性叠加态:|ψ>=α|0>+β|1>,这边α,β代表系统在0和1上的概率幅,是一个复数,其模的平方代表处于0和1的概率。
量子噪声过程:由于量子产品与环境相互作用,或者控制本身的不完美导致 量子信息的污染过程。
量子比特的串扰噪声:量子产品上的比特信息相互干扰,不完全独立所形成的干扰噪声。例如,微波控制线之间的串扰、量子比特由于处在同一个环境所产生的关联噪声以及量子比特间的直接耦合。量子比特串扰噪声很大程度上限制了量子产品(如量子芯片)的规模。
TPCP动力学映射:是指保迹和全正的动力学映射,具体来说保迹是指动力学演化的过程中量子态密度算符的迹不变;全正是指如果密度算符是非负的,动力学映射作用于密度算符的任意部分将会保持非负。
动力学解耦:是抑制退相干的一种有效手段,主要是通过在特定时间点(如按一定的频率)施加不断翻转的脉冲来有效抑制量子比特与环境的相互耦合,从而抑制退相干。
本申请提供的量子比特的串扰分析方法,可以应用于如图1a所示的应用环境中。其中,终端102和服务器104之间通过网络进行通信。该量子比特的串扰分析方法可应用于终端102,具体如下:终端102确定待分析的第一量子比特和第二量子比特;依次对第一量子比特和第二量子比特分别对应的量子态进行谱量子过程层析,得到第一量子比特对应的信号函数的第一本征谱,以及第二量子比特对应的信号函数的第二本征谱;对第一量子比特和第二量子比特分别对应的量子态同步进行谱量子过程层析,得到第一量子比特和第二量子比特共同的信号函数的第三本征谱;基于第一本征谱、第二本征谱和第三本征谱,确定第一量子比特和第二量子比特之间的串扰强度,然后显示串扰强度。
该量子比特的串扰分析方法可应用于服务器104,具体如下:服务器104确定待分析的第一量子比特和第二量子比特;依次对第一量子比特和第二量子比特分别对应的量子态进行谱量子过程层析,得到第一量子比特对应的信号函数的第一本征谱,以及第二量子比特对应的信号函数的第二本征谱;对第一量子比特和第二量子比特分别对应的量子态同步进行谱量子过程层析,得到第一量子比特和第二量子比特共同的信号函数的第三本征谱;基于第一本征谱、第二本征谱和第三本征谱,确定第一量子比特和第二量子比特之间的串扰强度,然后将串扰强度显示于终端102。
其中,终端102可以是各种安装了qiskit模拟器的计算机和笔记本电脑等。服务器104可以用独立的服务器或者是多个服务器组成的服务器集群来实现,该服务器104也可以安装qiskit模拟器。
在一个实施例中,如图1b所示,提供了一种量子比特的串扰分析方法,该方法可应用于图1中的终端或服务器,以该方法应用于终端为例进行说明,包括以下步骤:
S102,确定待分析的第一量子比特和第二量子比特。
其中,终端可以是集成了量子电路或量子芯片的电子设备,如量子计算机,或者该终端可以是独立的量子芯片,如超导量子芯片。第一量子比特和第二量子比特可以是待分析的、包含不同量子信息的两个量子比特。
对于量子芯片,量子比特的数量可以是n,其中n大于2,如72量子比特,量子比特数越多,其计算能力越强。在一个实施例中,终端可以在多个量子比特中确定待分析的第一量子比特和第二量子比特。
S104,依次对第一量子比特和第二量子比特分别对应的量子态进行谱量子过程层析,得到第一量子比特对应的信号函数的第一本征谱,以及第二量子比特对应的信号函数的第二本征谱。
其中,本征谱可以指量子在演化过程中所形成的动力学映射本征谱。谱量子过程层析可以是利用多种不同量子比特的量子态输入某一未知量子过程,如量子通道或量子门,与之相互作用后测量输出的量子态再由输入和输出之间的关系来估计出该量子过程。
上述的量子态可以指量子所处的状态,例如可以是0、1以及0和1的线性叠加态,|ψ>=α|0>+β|1>,其中,α,β代表量子比特为0和1时的概率幅,α,β分别为复数,其模的平方|α| 2、|β| 2代表处于0和1的概率。
在一个实施例中,第一量子比特和第二量子比特分别对应的量子态均基于identity门进行谱量子过程层析;该identity门是对第一量子比特和第二量子比特所处的量子线路上不做真实操作的自由演化门。
对于S104,具体地:终端可以基于identity门,在同时刻对第一量子比特和 第二量子比特分别对应的量子态进行谱量子过程层析,也可以在不同时刻依次对第一量子比特和第二量子比特分别对应的量子态进行谱量子过程层析。其中,在不同时刻进行谱量子过程层析的过程中,当对第一量子比特对应的量子态进行谱量子过程层析时,则第二量子比特保持等待;当对第二量子比特对应的量子态进行谱量子过程层析时,则第一量子比特保持等待。
在一个实施例中,第一量子比特的谱量子过程层析步骤具体可以包括:终端基于identity门,对第一量子比特的量子态进行谱量子过程层析,并对层析所得的第一量子比特对应的信号函数进行解析,得到第一本征谱;其中,第一量子比特的量子态在进行谱量子过程层析时,第二量子比特处于等待状态。
举例来说,针对第一量子比特q0在进行基于identity门谱量子过程层析中,考虑量子态制备时经历一个制备错误N prepTPCP动力学映射,经过identity门作用k次。量子态测量的时候经历一个测量误差N measTPCP动力学映射。首先,构造一系列信号函数{g 0(0),…g 0(k)}:
Figure PCTCN2021114409-appb-000001
其中,P μ表示泡利矩阵,N meas表示测量误差,N prep表示制备误差,Λ表示动力学映射的本征谱,是identity门作用k次所形成;◇表示超算符运算。
首先,以泡利矩阵的某一本征基制备量子比特的初始态;然后,经历k次量子门演化,即identity门自由演化,接着在选择的泡利算符下做测量,对于不用的泡利矩阵和本征基,重复前面的步骤;最后,针对上述信号函数的特殊形式,可以引入矩阵束法解析这组信号函数,从而得到没有制备误差和测量误差的动力学映射本征谱Λ={1,λ 0,x0,y0,z}。
在一个实施例中,第二量子比特的谱量子过程层析步骤具体可以包括:终端对第二量子比特的量子态进行谱量子过程层析,并对层析所得的第二量子比特对应的信号函数进行解析,得到第二本征谱;其中,第二量子比特的量子态在进行谱量子过程层析时,第一量子比特处于等待状态。其中,对于第二量子比特对应的谱量子过程层析的具体步骤,可参考上述第一量子比特对应的谱量子过程 层析。
例如,如图2所示,图2中的(a)图为基于identity门对第一量子比特q0的量子态进行谱量子过程层析,在对第一量子比特q0的量子态进行谱量子过程层析的过程中,第二量子比特q1保持等待。图2中的(b)图为基于identity门对第二量子比特q1的量子态进行谱量子过程层析,在对第二量子比特q1的量子态进行谱量子过程层析的过程中,第一量子比特q0保持等待。其中,X表示制备的过程;I表示自由演化过程,即通过identity门进行自由演化过程;而H和M表示各不同方向上的测量,c表示测量线。
S106,对第一量子比特和第二量子比特分别对应的量子态同步进行谱量子过程层析,得到第一量子比特和第二量子比特共同的信号函数的第三本征谱。
在一个实施例中,第一量子比特和第二量子比特之间组合的量子态均基于identity门进行谱量子过程层析;identity门是对第一量子比特和第二量子比特所处的量子线路上不做真实操作的自由演化门。
具体地,终端对第一量子比特和第二量子比特分别对应的量子态同步进行谱量子过程层析,得到第一量子比特和第二量子比特共同的信号函数;其中,共同的信号函数中包括表示量子制备误差和量子测量误差的参数;对共同的信号函数进行解析,得到第三本征谱。
在对第一量子比特和第二量子比特分别对应的量子态同步进行谱量子过程层析的过程中,获取第一量子比特和第二量子比特各自的制备误差和测量误差,基于获取的制备误差和测量误差、以及量子门演化和泡利矩阵构造第一量子比特和第二量子比特共同的信号函数,然后对共同的信号函数进行解析,得到第三本征谱。
例如,如图2中的(c)图所示,图2中的(c)图为基于identity门对第一量子比特q0和量子比特q1的量子态进行谱量子过程层析。终端基于identity门对第一量子比特q0和第二量子比特q1分别对应的量子态同步进行谱量子过程层析,从而可以得到第一量子比特q0和第二量子比特q1共同的信号函数g 01(0),…,g 01(K),
Figure PCTCN2021114409-appb-000002
其中,N′ meas和N′ prep分别表示测量误差和制备误差,Λ′表示第一量子比特q0和第二量子比特q1在施加identity门时所形成的本征谱。
首先,以泡利矩阵的某一本征基制备量子比特的初始态;然后,经历k次量子门演化,即identity门自由演化,接着在选择的泡利算符下做测量,对于不用的泡利矩阵和本征基,重复前面的步骤;最后,针对上述信号函数的特殊形式,可以引入矩阵束法解析这组信号函数,从而得到没有制备误差和测量误差的动力学映射本征谱Λ={1,λ ixiyiz,…,λ zxzyzz}。
S108,基于第一本征谱、第二本征谱和第三本征谱,确定第一量子比特和第二量子比特之间的串扰强度。
其中,串扰可以指耦合串扰和关联串扰等,对应的串扰强度可以指耦合串扰的强度和/或关联串扰的强度。
假设第一量子比特q0和第二量子比特q1没有直接耦合或关联噪声类型的串扰时,则第一量子比特q0和第二量子比特q1的动力学映射ε AB与各自的单比特动力学映射ε AB满足
Figure PCTCN2021114409-appb-000003
其中,
Figure PCTCN2021114409-appb-000004
表示张量积运算。因此,第一量子比特q0和第二量子比特q1的本征谱Λ AB与各自的本征谱Λ AB之间满足如下关系:
Figure PCTCN2021114409-appb-000005
由于第一量子比特q0和第二量子比特q1存在直接耦合和关联噪声类型的串扰,因此可以计算出第一量子比特q0和第二量子比特q1的本征谱的不可拆分程度为
Figure PCTCN2021114409-appb-000006
而该不可拆分程度ΔΛ与第一量子比特q0和第二量子比特q1之间串扰的强度密切相关。
因此,终端可以计算第一本征谱和第二本征谱之间的张量积;基于第三本征谱和张量积之间的差值,确定本征谱的不可拆分度;将不可拆分度确定为第一量子比特和第二量子比特之间的串扰强度,从而串扰强度为
Figure PCTCN2021114409-appb-000007
例如,若第一本征谱、第二本征谱和第三本征谱是n×n的矩阵时,则串扰强度
Figure PCTCN2021114409-appb-000008
其中,n为大于2的正整 数,ii用于表示矩阵的对角元。
上述实施例中,首先依次对第一量子比特和第二量子比特分别对应的量子态进行谱量子过程层析,得到第一量子比特对应的信号函数的第一本征谱,以及第二量子比特对应的信号函数的第二本征谱,然后对第一量子比特和第二量子比特分别对应的量子态同步进行谱量子过程层析,得到该组合对应的信号函数的第三本征谱,由于第一本征谱、第二本征谱和第三本征谱之间的不可拆分程度与量子比特间的串扰强度密切相关,因此根据第一本征谱、第二本征谱和第三本征谱可以得到量子比特间的串扰强度,而且该串扰强度并不是所有类型门噪声和各种环境噪声的平均结果,可应用于量子产品的制作和优化过程中,能够为量子产品的制作和优化进行详细指导。此外,本征谱对于普遍的量子噪声通道有信息损失,相对于随机基准测试仅针对退极化通道有信息损失,因此根据第一本征谱、第二本征谱和第三本征谱所得的串扰强度,更具普适性,更有利于基于该串扰强度对量子产品的制作和优化进行详细指导。
在一个实施例中,对于量子比特间的直接耦合串扰分析,其步骤具体可以包括:当第一量子比特和第二量子比特均处于纯退相位的噪声环境时,终端确定第一量子比特和第二量子比特的第一环境噪声模型;获取量子比特耦合方式,根据量子比特耦合方式、第一环境噪声模型和串扰强度,确定第一量子比特和第二量子比特之间的耦合串扰强度;耦合串扰强度随时间变化而震荡衰减,且不含制备误差和测量误差。
对于独立的第一量子比特和第二量子比特
Figure PCTCN2021114409-appb-000009
假设第一量子比特和第二量子比特均处于独立的纯退相位的噪声环境,因此可以得出第一量子比特和第二量子比特的第一环境噪声模型
Figure PCTCN2021114409-appb-000010
其中,f 1(t)和f 2(t)分别表示第一量子比特和第二量子比特各自所处噪声环境所对应的噪声函数,
Figure PCTCN2021114409-appb-000011
Figure PCTCN2021114409-appb-000012
分别表示与第一量子比特和第二量子比特对应的泡利矩阵。考虑超导量子芯片上量子比特的耦合具有一定的形式,因此可以确定出第一量子比特和第二量子比特之间的量子比特耦合方式
Figure PCTCN2021114409-appb-000013
其中,ω ZZ为耦合强度。
对于上述的环境噪声模型,可以通过解析获得耦合串扰强度随着时间的变化,其变化有如下关系:
Figure PCTCN2021114409-appb-000014
其中,上述的ΔΛ(t)为耦合串扰强度,假设马科夫的纯退相位量子通道
Figure PCTCN2021114409-appb-000015
Figure PCTCN2021114409-appb-000016
p=<f(t)f(t)>,图3展示ω 1=ω 2=0,ω=0.1,p=0.02时的结果,可以看出耦合串扰强度随着时间振荡衰减,其中,2ωt 1=2π。
上述实施例中,通过刻画出特定串扰类型的串扰强度即耦合串扰强度,由于该耦合串扰强度是不含制备误差和测量误差的,从而可以利用该耦合串扰强度来指导量子产品的制作和优化,以避免制作或优化出的量子产品受到耦合串扰的影响,提高量子产品的性能。
在一个实施例中,对于量子比特间的关联串扰分析,其步骤具体可以包括:当第一量子比特和第二量子比特均处于纯退相位的噪声环境时,终端确定第一量子比特和第二量子比特的第一环境噪声模型,获取量子比特间的噪声关联方式,根据噪声关联方式、第一环境噪声模型和串扰强度,确定第一量子比特和第二量子比特之间的关联串扰强度;关联串扰强度随时间变化而衰减,且不含制备误差和测量误差。
对于独立的第一量子比特和第二量子比特
Figure PCTCN2021114409-appb-000017
假设第一量子比特和第二量子比特均处于独立的纯退相位的噪声环境,因此可以得出第一量子比特和第二量子比特的第一环境噪声模型
Figure PCTCN2021114409-appb-000018
其中,f 1(t)和f 2(t)分别表示第一量子比特和第二量子比特各自所处噪声环境所对应的 噪声函数,
Figure PCTCN2021114409-appb-000019
Figure PCTCN2021114409-appb-000020
分别表示与第一量子比特和第二量子比特对应的泡利矩阵。考虑超导量子芯片上量子比特之间存在噪声关联,从而可以得到量子比特间的噪声关联方式,即C 12(t)=<f 1(t)f 2(t)>。
对于以上的环境噪声模型,可以通过解析获得关联串扰强度随着时间的变化,其变化有如下关系:
Figure PCTCN2021114409-appb-000021
其中,上述的ΔΛ(t)为关联串扰强度,假设马科夫的纯退相干量子通道
Figure PCTCN2021114409-appb-000022
Figure PCTCN2021114409-appb-000023
p 1=<f 1(t)f 1(t)>,p c=<f 1(t)f 2(t)>关联噪声。如图4所示,图4展示ω 1=0.3,ω 2=0.1,p 1=p 2=p=0.01,p c=0.01时的结果,可以看出关联串扰强度随着时间衰减。
上述实施例中,通过刻画出特定串扰类型的串扰强度即关联串扰强度,由于该关联串扰强度是不含制备误差和测量误差的,从而可以利用该关联串扰强度来指导量子产品的制作和优化,以避免制作或优化出的量子产品受到关联串扰的影响,提高量子产品的性能。
在一个实施例中,如图5所示,S104具体可以包括:
S502,对第一量子比特的量子态进行谱量子过程层析,并对层析所得的第一量子比特对应的信号函数进行解析,得到第一本征谱。
其中,第一量子比特的量子态在进行谱量子过程层析时,第二量子比特处于等待状态。
具体地,终端对第一量子比特的量子态进行基于identity门的谱量子过程层析,其中,该identity门是对第一量子比特所处的量子线路上不做真实操作的自由演化门,而且,第一量子比特的量子态在进行谱量子过程层析时,第二量子比特处于等待状态,从而得到第一量子比特对应的信号函数,解析该第一量子比特对应的信号函数,得到第一本征谱。对于第一量子比特对应量子态的谱量子过程 层析步骤,可以参考上述实施例中的S104。
S504,对第二量子比特的量子态进行谱量子过程层析,并对层析所得的第二量子比特对应的信号函数进行解析,得到第二本征谱。
其中,第二量子比特的量子态在进行谱量子过程层析时,第一量子比特处于目标门控的处理状态。
具体地,终端对第二量子比特的量子态进行基于identity门的谱量子过程层析,其中,该identity门是对第二量子比特所处的量子线路上不做真实操作的自由演化门,而且,第二量子比特的量子态在进行谱量子过程层析时,第一量子比特处于目标门控的处理状态,从而得到第二量子比特对应的信号函数,解析该第二量子比特对应的信号函数,得到第二本征谱。该第二本征谱携带目标门控所产生的传输线路串扰,因此根据第一本征谱和第二本征谱所得的传输线串扰强度更具有针对性,有利于在量子产品的制作和优化过程中进行详细指导。对于第二量子比特对应量子态的谱量子过程层析步骤,可以参考上述实施例中的S104。
其中,上述的目标门控可以是阿达马门(Hadamard gate)、泡利-X门(Pauli-X gate)、泡利-Y门(Pauli-Y gate)、泡利-Z门(Pauli-Z gate)、相位偏移门(Phase shift gates)、互换门(Swap gate)、受控门(Controlled gates)、万能量子门和Toffoli门(Toffoli gate)中的任一种。
S506,根据第一本征谱和第二本征谱,确定第一量子比特和第二量子比特之间的传输线串扰强度。
当目标门控的施加相对于量子比特间耦合频率足够快时,量子比特间耦合所引起的量子比特q0的改变可以忽略不计,故而可以较为清楚的反映出传输线的直接串扰强度。
例如,如图6所示,图6中的(a)图为针对第一量子比特q0做基于identity门的谱量子过程层析,得到系列的信号函数g 0(0),…,g 0(K),计算其动力学映射本征谱为{1,λ xyz}。图6中的(b)图为针对第二量子比特q1做基于identity的门的谱量子过程层析,得到系列的信号函数g 1(0),…,g 1(K),计算其动力学映射本征谱为{1,λ x‘y’z‘}。
当第一量子比特q 0与第二量子比特q1没有传输线的串扰,则所获得的两组 单比特动力学映射ε AB满足ε A=ε B,因此,动力学映射本征谱所构成的映射满足Λ A=Λ B,由此,若第一本征谱和第二本征谱均为n×n的矩阵时,可以定义传输线串扰强度为:
Figure PCTCN2021114409-appb-000024
其中,n为大于2的正整数,ii用于表示矩阵的对角元。
在一个实施例中,若第一量子比特处于纯退相位的噪声环境,终端则确定第一量子比特的第二环境噪声模型;根据第二环境噪声模型和串扰强度,确定第一量子比特和第二量子比特之间传输线串扰强度在噪声环境中的变化量。
考虑第一量子比特q0处于纯退相干的噪声环境:
Figure PCTCN2021114409-appb-000025
当对第二量子比特q1同步施加目标门控(令该目标门控为X门)的时候,由于传输线串扰,第一量子比特q0感受到X方向较小的转动,随着转动角度的增加
Figure PCTCN2021114409-appb-000026
传输线串扰强度如图7所示。
上述实施例中,对第一量子比特的量子态在进行谱量子过程层析,并在层析过程中,第二量子比特处于等待状态,得到第一量子比特对应的信号函数的第一本征谱;对第二量子比特的量子态在进行谱量子过程层析,并在进行层析过程中,第一量子比特处于基于目标门控的处理状态,从而得到第二量子比特对应的信号函数的第二本征谱,因此根据第一本征谱和第二本征谱所得的传输线串扰强度更具有针对性,有利于在量子产品的制作和优化过程中进行详细指导。此外,本征谱对于普遍的量子噪声通道有信息损失,相对于随机基准测试仅针对退极化通道有信息损失,因此根据第一本征谱和第二本征谱所得的串扰强度,更具普适性,更有利于基于该传输串扰强度对量子产品的制作和优化进行详细指导。
在一个实施例中,如图8所示,提供了另一种量子比特的串扰分析方法,以该方法应用于终端为例进行说明,包括以下步骤:
S802,确定待分析的第一量子比特和第二量子比特。
其中,终端可以是集成了量子电路或量子芯片的电子设备,如量子计算机,或者该终端可以是独立的量子芯片,如超导量子芯片。第一量子比特和第二量子比特可以是待分析的、包含不同量子信息的两个量子比特。
对于量子芯片,量子比特的数量可以是n,其中n大于2,如72量子比特,量子比特数越多,其计算能力越强。在一个实施例中,终端可以在多个量子比特中确定待分析的第一量子比特和第二量子比特。
S804,对第一量子比特的量子态进行谱量子过程层析,并对层析所得的第一量子比特对应的信号函数进行解析,得到第一本征谱。
其中,第一量子比特的量子态在进行谱量子过程层析时,第二量子比特处于等待状态。本征谱可以指量子在演化过程中所形成的动力学映射本征谱。谱量子过程层析可以是利用多种不同量子比特的量子态输入某一未知量子过程,如量子通道或量子门,与之相互作用后测量输出的量子态再由输入和输出之间的关系来估计出该量子过程。
上述的量子态可以指量子所处的状态,例如可以是0、1以及0和1的线性叠加态,|ψ>=α|0>+β|1>,其中,α,β代表量子比特为0和1时的概率幅,α,β分别为复数,其模的平方|α| 2、|β| 2代表处于0和1的概率。
上述第一量子比特的量子态是基于identity门进行谱量子过程层析。该identity门是对第一量子比特和第二量子比特所处的量子线路上不做真实操作的自由演化门。
举例来说,针对第一量子比特q0在进行基于identity门谱量子过程层析中,考虑量子态制备时经历一个制备错误N prepTPCP动力学映射。经过identity门作用k次。量子态测量的时候经历一个测量误差N measTPCP动力学映射。首先,构造一系列信号函数{g 0(0),…g 0(k)}:
Figure PCTCN2021114409-appb-000027
其中,P μ表示泡利矩阵,N meas表示测量误差,N prep表示制备误差,Λ表示动力学映射的本征谱,是identity门作用k次所形成;◇表示超算符运算。
首先,以泡利矩阵的某一本征基制备量子比特的初始态;然后,经历k次量子门演化,即identity门自由演化,接着在选择的泡利算符下做测量,对于不用的泡利矩阵和本征基,重复前面的步骤;最后,针对上述信号函数的特殊形式,可以引入矩阵束法解析这组信号函数,从而得到没有制备误差和测量误差的动力学映射本征谱Λ={1,λ 0,x0,y0,z}。
S806,对第二量子比特的量子态进行谱量子过程层析,并对层析所得的第二量子比特对应的信号函数进行解析,得到第二本征谱。
其中,第二量子比特的量子态在进行谱量子过程层析时,第一量子比特处于基于目标门控的处理状态。第二量子比特的量子态是基于identity门进行谱量子过程层析。
具体地,终端对第二量子比特的量子态进行基于identity门的谱量子过程层析,其中,该identity门是对第二量子比特所处的量子线路上不做真实操作的自由演化门,而且,第二量子比特的量子态在进行谱量子过程层析时,第一量子比特处于目标门控的处理状态,从而得到第二量子比特对应的信号函数,解析该第二量子比特对应的信号函数,得到第二本征谱。对于第二量子比特对应量子态的谱量子过程层析步骤,可以参考上述实施例中的S104。其中,上述的目标门控可以是阿达马门(Hadamard gate)、泡利-X门(Pauli-X gate)、泡利-Y门(Pauli-Y gate)、泡利-Z门(Pauli-Z gate)、相位偏移门(Phase shift gates)、互换门(Swap gate)、受控门(Controlled gates)、万能量子门和Toffoli门(Toffoli gate)中的任一种。
S808,根据第一本征谱和第二本征谱,确定第一量子比特和第二量子比特之间的传输线串扰强度。
当目标门控的施加相对于量子比特间耦合频率足够快时,量子比特间耦合所引起的量子比特q0的改变可以忽略不计,故而可以较为清楚的反映出传输线的直接串扰强度。对于传输线串扰强度的具体计算过程可参考上述实施例中的S506。
在一个实施例中,若第一量子比特处于纯退相位的噪声环境,终端则确定第一量子比特的第二环境噪声模型;根据第二环境噪声模型和串扰强度,确定第一 量子比特和第二量子比特之间传输线串扰强度在噪声环境中的变化量。
例如,如图6所示,图6中的(a)图为基于identity门对第一量子比特q0的量子态进行谱量子过程层析,得到系列的信号函数g 0(0),…,g 0(K),计算其动力学映射本征谱为{1,λ xyz},其中,在对第一量子比特q0的量子态进行谱量子过程层析的过程中,第二量子比特q1保持等待。图6中的(b)图为基于identity门对第二量子比特q1的量子态进行谱量子过程层析,得到系列的信号函数g 1(0),…,g 1(K),计算其动力学映射本征谱为{1,λ x‘y’z‘},其中,在对第二量子比特q1的量子态进行谱量子过程层析的过程中,第一量子比特q0处于目标门控的处理状态保持等待。图中的X表示制备的过程;I表示自由演化过程,即通过identity门进行自由演化过程;而H和M表示各不同方向上的测量,c表示测量线。
上述实施例中,对第一量子比特的量子态在进行谱量子过程层析,并在层析过程中,第二量子比特处于等待状态,得到第一量子比特对应的信号函数的第一本征谱;对第二量子比特的量子态在进行谱量子过程层析,并在进行层析过程中,第一量子比特处于基于目标门控的处理状态,从而得到第二量子比特对应的信号函数的第二本征谱,该第二本征谱携带目标门控所产生的传输线路串扰,因此根据第一本征谱和第二本征谱所得的传输线串扰强度更具有针对性,有利于在量子产品的制作和优化过程中进行详细指导。此外,本征谱对于普遍的量子噪声通道有信息损失,相对于随机基准测试仅针对退极化通道有信息损失,因此根据第一本征谱和第二本征谱所得的串扰强度,更具普适性,更有利于基于该传输串扰强度对量子产品的制作和优化进行详细指导。
作为一个示例,上述量子比特的串扰分析方法可以应用于对量子产品和技术的发展起到促进作用,例如量子计算机、量子保密通信、量子互联网he量子计量器等技术/产品容易受到量子噪声的干扰,对产品性能的影响非常严重,是阻碍其实用化的最大障碍。通过了解量子噪声的性质对这些技术/产品的发展至关重要,而且随着量子芯片技术不断发展,除了单个比特的噪声分析,量子比特间的噪声串扰分析至关重要。接下来,对量子比特间的噪声串扰分析进行阐述, 具体如下:
(一)同步谱量子过程层析
(1)实验方案
在本实施例中提出了同步谱量子过程层析来研究量子比特的直接耦合串扰和关联噪声串扰,使用基于identity门的谱量子过程层析:
1)identity门在量子线路上相当于“等待”而非任何真实门操作,从而相对于传统随机基准测试所使用的Clifford门,大大的简化了量子线路的操控复杂度;
2)由于不引入多余的门操作,此时刻画芯片中的串扰噪声单是环境噪声和量子比特间的固有耦合,排除了门操作引起的误差,使得串扰噪声的来源分析更加明晰;
3)基于谱量子过程层析,一方面相对于量子过程层析需要的量子态制备和测量复杂度下降,另一方面可以自动的去除量子态制备误差和测量误差,使得结果更准确。
其中,对于同步谱量子过程层析的实验方案,具体如下所述:
第一,确定要研究的两个量子比特(即量子比特q0和量子比特q1);
第二,针对量子比特q0做基于identity门的谱量子过程层析,同时量子比特q1保持等待,如图2中的(a)图所示;
第三,针对量子比特q1做基于identity门的谱量子过程层析,同时量子比特q0保持等待,如图2中的(b)图所示;
第四,针对量子比特q0和量子比特q1做基于identity门的谱量子过程层析,如图2中的(c)图所示。
(2)数据处理
对于如图2中的(a)图针对量子比特q0做基于identity门的谱量子过程层析,得到系列信号函数g 0(0),…,g 0(K),计算其动力学映射本征谱{1,λ 0,x0,y0,z}。对于图2中的(b)图针对量子比特q1做基于identity门的谱量子过程层析,得到系列信号函数g 1(0),…,g 1(K),计算其动力学映射本征谱{1,λ 1,x1,y1,z}。对于图2中的(c)图针对量子比特q0和量子比特q1做基于identity门的谱量子过程层析,得到系列信号函数g 01(0),…,g 01(K),计算其动力 学映射本征谱{1,λ 1xiyiz,…,λ zxzyzz}。
若量子比特q0和量子比特q1之间没有直接耦合或者关联噪声类型的串扰,该两个量子比特的动力学映射ε AB与各自的单比特动力学映射ε AB满足:
Figure PCTCN2021114409-appb-000028
同时,其动力学映射本征谱所构成的映射满足:
Figure PCTCN2021114409-appb-000029
由此可见,动力学映射本征谱的不可拆分程度
Figure PCTCN2021114409-appb-000030
与两量子比特之间串扰的强度密切相关。需要指出的是,虽然动力学映射本征谱仅对于泡利通道是完整的描述,对于普遍的量子噪声通道有信息的损失,但是相对于随机基准测试仅针对退极化通道(泡利通道的一种)使用范围更广。因此,定义串扰强度如下所示:
Figure PCTCN2021114409-appb-000031
其中,n为动力学映射本征谱Λ AB这个矩阵的维数,ii表示该矩阵的对角元,其中,i为小于或等于n的正整数。
(3)基于同步谱量子过程层析的耦合串扰分析
对于两个独立的量子比特
Figure PCTCN2021114409-appb-000032
假设量子比特处于独立的纯退相位的噪声环境,该量子比特q0和量子比特q1的环境噪声模型为:
Figure PCTCN2021114409-appb-000033
根据以往的研究,考虑超导量子芯片上量子比特的耦合具有如下形式:
Figure PCTCN2021114409-appb-000034
其中,ω ZZ是耦合强度。对于以上的环境噪声模型,可以解析获得其串扰强度随着时间的变化,该变化具有如下关系:
Figure PCTCN2021114409-appb-000035
Figure PCTCN2021114409-appb-000036
其中,上述的ΔΛ(t)为耦合串扰强度,假设马科夫的纯退相位量子通道
Figure PCTCN2021114409-appb-000037
Figure PCTCN2021114409-appb-000038
p=<f(t)f(t)>,图3展示ω 1=ω 2=0,ω=0.1,p=0.02时的结果,可以看出耦合串扰强度随着时间振荡衰减,其中,2ωt 1=2π。
(4)基于同步谱量子过程层析的量子比特之间关联噪声分析
对于两个独立的量子比特
Figure PCTCN2021114409-appb-000039
假设量子比特处于纯退相位的噪声环境,该量子比特q0和量子比特q1的环境噪声模型为:
Figure PCTCN2021114409-appb-000040
考虑超导量子芯片上量子比特间的存在噪声关联:
C 12(t)=<f 1(t)f 2(t)>
对于以上的噪声模型,可以解析获得其串扰强度随着时间满足:
Figure PCTCN2021114409-appb-000041
其中,上述的ΔΛ(t)为关联串扰强度,假设马科夫的纯退相位量子通道
Figure PCTCN2021114409-appb-000042
Figure PCTCN2021114409-appb-000043
p 1=<f 1(t)f 1(t)>,p c=<f 1(t)f 2(t)>关联噪声。如图4所示,图4展示ω 1=0.3,ω 2=0.1,p 1=p 2=p=0.01,p c=0.01时的结果,可以看出关联串扰强度随着时间衰减。
需要指出的是,在目前的超导量子芯片中,由于量子比特相距较远,处于同一噪声源(有噪声关联)的可能性较小,预计动力学映射本征谱的不可拆分程度可以反映量子比特间的直接耦合。而对于广泛的量子芯片,当量子比特间传输线的串扰可以忽略不计时,可以采用动力学解耦合,进一步去掉噪声关联的信息,使得动力学映射本征谱的不可拆分程度集中体现量子比特间的直接耦合。
(二)基于谱量子过程层析刻画量子比特间传输线串扰
(1)实验方案
本实施例中提出了用谱量子过程层析来研究量子比特间传输线的串扰,以基于identity门的谱量子过程层析所获得的动力学映射本征谱为参照,分析特定的门所产生的传输线串扰:
1)对于特定门的串扰分析使得结果更有针对性;
2)使用谱量子过程层析,一方面相对于量子过程层析需要的量子态制备和测量复杂度下降,另一方面可以自动的去除量子态制备误差和测量误差,使得结果更准确。
其中,对于谱量子过程层析分析传输线串扰的实验方案,具体如下所述:
首先,确定要研究的两个量子比特q0和量子比特q1,其中,量子比特q0为目标比特,量子比特q1为操作比特;
其次,针对量子比特q0做基于identity门的谱量子过程层析,同时量子比特q1保持等待(identity门),如图6中的(a)图所示;
最后,针对量子比特q1做基于identity门的谱量子过程层析,同时量子比特q0同步施加所研究的门控(如X门),如图6中的(b)图所示。
(2)数据处理
对于如图6中的(a)图针对量子比特q0做基于identity门的谱量子过程层析,得到系列信号函数g 0(0),…,g 0(K),计算其动力学映射本征谱{1,λ xyz}。对于如图6中的(b)图针对量子比特q1做基于identity门的谱量子过程层析,得到系列信号函数g 1(0),…,g 1(K),计算其动力学映射本征谱{1,λ x‘y’z‘}。
若量子比特q0和量子比特q1没有传输线串扰,则所获得的两组单比特动力学映射ε AB满足:
ε A=ε B
同时,其动力学映射本征谱所构成的映射满足:
Λ A=Λ B
由此可以定义传输线串扰强度:
Figure PCTCN2021114409-appb-000044
(3)基于谱量子过程层析刻画量子比特间的传输线串扰分析
考虑量子比特q0处于纯退相干的噪声环境:
Figure PCTCN2021114409-appb-000045
当对量子比特q1同步施加X门的时候,由于传输线串扰,量子比特q0感受到X方向较小的转动。随着转动角度的增加
Figure PCTCN2021114409-appb-000046
串扰强度如图7所示。
进一步指出,当门的施加相对于量子比特间耦合频率足够快时,量子比特间耦合所引起的量子比特q0的改变可以忽略不计,故而可以较为清楚的反映出传输线的直接串扰强度。
(三)结果分析
(1)理论模拟同步谱量子过程层析分析量子比特直接耦合
通过qiskit模拟器模拟分析量子比特之间的直接耦合,采用如图9所示的量子电路。ZZ门对应量子比特间直接耦合;I门代表自由演化,包含纯退相位噪声。先针对量子比特q0做基于identity门的谱量子过程层析,同时量子比特q1保持等待;再针对量子比特q1做基于identity门的谱量子过程层析,同时量子比特q0保持等待;最后针对量子比特q0和量子比特q1做基于identity门的同步谱量子过程层析。
通过上述方式获得各自去除量子态制备误差和测量误差的动力学映射本征谱以后,根据
Figure PCTCN2021114409-appb-000047
求得的串扰强度随时间变化与之前理论预期一致,可参考图3和图10,其中,图3为理论预期的耦合串扰强度,图10为实际的串扰强度。
(2)对于量子芯片的同步谱量子过程层析分析
对于超导量子芯片“ibmq_vigo”,如图11所示,该超导量子芯片包含5(0-4)个量子比特。分别对0-1、0-2、0-3、0-4、1-2、1-3、1-4、2-3、2-4和3-4两两量子比特间进行同步谱量子过程层析,以0-1、1-2、1-3和3-4为例,发现存在不同程度的量子比特直接耦合,而1-4间没有明显的量子比特耦合。
(3)对于量子芯片的基于动力学映射本征谱的传输线串扰分析
针对IBM超导量子芯片“ibmq_vigo”,假设
研究对量子比特q0连续施加X门对量子比特q1的影响。
如图13所示,该图展示了量子比特q0连续施加X门前后,量子比特q1的动力学本征谱变化。圆圈是q1自由演化,黑色块是q0连续施加X门后的演化结果。例如“0-4”表示施加量子比特4上的门对量子比特0的影响。从图13可以看出,量子比特间传输线的串扰较大。
通过上述实施例中基于谱量子过程层析的量子比特间串扰噪声的刻画,能够分析出以下串扰噪声:不含量子态的制备误差和测量误差的微波控制线之间的串扰、不含量子态的制备误差和测量误差的量子比特由于处在同一个环境所产生的关联噪声,以及不含量子态的制备误差和测量误差的量子比特间的直接耦合。因此,可以具有以下技术效果:
(1)分析清楚量子比特串扰的具体模式很大程度上有助于人们在量子硬件的制作中进一步有针对性的提升芯片性能;
(2)可衔接到已有的基于同步随机基准测试和关联随机基准测试的量子比特串扰噪声标定方法;
(3)在同步谱量子过程层析的方法中仅使用自由演化门,不额外施加复杂的操作,使得实验简单易行。
应该理解的是,虽然图1、5、8的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1、5、8中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图14所示,提供了一种量子比特的串扰分析装置,该装置可以采用软件模块或硬件模块,或者是二者的结合成为计算机设备的一部分,该装置具体包括:确定模块1402、第一层析模块1404、第二层析模块1406和计算模块1408,其中:
确定模块1402,用于确定待分析的第一量子比特和第二量子比特;
第一层析模块1404,用于依次对第一量子比特和第二量子比特分别对应的量子态进行谱量子过程层析,得到第一量子比特对应的信号函数的第一本征谱,以及第二量子比特对应的信号函数的第二本征谱;
第二层析模块1406,用于对第一量子比特和第二量子比特分别对应的量子态同步进行谱量子过程层析,得到第一量子比特和第二量子比特共同的信号函数的第三本征谱;
计算模块1408,用于基于第一本征谱、第二本征谱和第三本征谱,确定第一量子比特和第二量子比特之间的串扰强度。
在其中的一个实施例中,第一层析模块1404,还用于:
对第一量子比特的量子态进行谱量子过程层析,并对层析所得的第一量子比特对应的信号函数进行解析,得到第一本征谱;其中,第一量子比特的量子态在进行谱量子过程层析时,第二量子比特处于等待状态;
对第二量子比特的量子态进行谱量子过程层析,并对层析所得的第二量子比特对应的信号函数进行解析,得到第二本征谱;其中,第二量子比特的量子态在进行谱量子过程层析时,第一量子比特处于等待状态。
在其中的一个实施例中,第二层析模块1406,还用于:
对第一量子比特和第二量子比特分别对应的量子态同步进行谱量子过程层析,得到第一量子比特和第二量子比特共同的信号函数;共同的信号函数中包括表示量子制备误差和量子测量误差的参数;
对共同的信号函数进行解析,得到第三本征谱。
在其中的一个实施例中,计算模块1408,还用于:
计算第一本征谱和第二本征谱之间的张量积;
基于第三本征谱和张量积之间的差值,确定本征谱的不可拆分度;
将不可拆分度确定为第一量子比特和第二量子比特之间的串扰强度。
在其中的一个实施例中,第一量子比特和第二量子比特分别对应的量子态,以及第一量子比特和第二量子比特之间组合的量子态均基于identity门进行谱量子过程层析;identity门是对第一量子比特和第二量子比特所处的量子线路上不 做真实操作的自由演化门。
上述实施例中,首先依次对第一量子比特和第二量子比特分别对应的量子态进行谱量子过程层析,得到第一量子比特对应的信号函数的第一本征谱,以及第二量子比特对应的信号函数的第二本征谱,然后对第一量子比特和第二量子比特分别对应的量子态同步进行谱量子过程层析,得到该组合对应的信号函数的第三本征谱,由于第一本征谱、第二本征谱和第三本征谱之间的不可拆分程度与量子比特间的串扰强度密切相关,因此根据第一本征谱、第二本征谱和第三本征谱可以得到量子比特间的串扰强度,而且该串扰强度并不是所有类型门噪声和各种环境噪声的平均结果,可应用于量子产品的制作和优化过程中,能够为量子产品的制作和优化进行详细指导。此外,本征谱对于普遍的量子噪声通道有信息损失,相对于随机基准测试仅针对退极化通道有信息损失,因此根据第一本征谱、第二本征谱和第三本征谱所得的串扰强度,更具普适性,更有利于基于该串扰强度对量子产品的制作和优化进行详细指导。
在其中的一个实施例中,如图15所示,装置还包括:
确定模块1402,还用于当第一量子比特和第二量子比特均处于纯退相位的噪声环境时,确定第一量子比特和第二量子比特的第一环境噪声模型;
第一获取模块1410,用于获取量子比特耦合方式;
确定模块1402,还用于根据量子比特耦合方式、第一环境噪声模型和串扰强度,确定第一量子比特和第二量子比特之间的耦合串扰强度;耦合串扰强度随时间变化而震荡衰减,且不含制备误差和测量误差。
上述实施例中,通过刻画出特定串扰类型的串扰强度即耦合串扰强度,由于该耦合串扰强度是不含制备误差和测量误差的,从而可以利用该耦合串扰强度来指导量子产品的制作和优化,以避免制作或优化出的量子产品受到耦合串扰的影响,提高量子产品的性能。
在其中的一个实施例中,如图15所示,装置还包括:
确定模块1402,还用于当第一量子比特和第二量子比特均处于纯退相位的噪声环境时,确定第一量子比特和第二量子比特的第一环境噪声模型;
第二获取模块1412,用于获取量子比特间的噪声关联方式;
确定模块1402,还用于根据噪声关联方式、第一环境噪声模型和串扰强度,确定第一量子比特和第二量子比特之间的关联串扰强度;关联串扰强度随时间变化而衰减,且不含制备误差和测量误差。
上述实施例中,通过刻画出特定串扰类型的串扰强度即关联串扰强度,由于该关联串扰强度是不含制备误差和测量误差的,从而可以利用该关联串扰强度来指导量子产品的制作和优化,以避免制作或优化出的量子产品受到关联串扰的影响,提高量子产品的性能。
在其中的一个实施例中,第一层析模块1404,还用于对第一量子比特的量子态进行谱量子过程层析,并对层析所得的第一量子比特对应的信号函数进行解析,得到第一本征谱;其中,第一量子比特的量子态在进行谱量子过程层析时,第二量子比特处于等待状态;对第二量子比特的量子态进行谱量子过程层析,并对层析所得的第二量子比特对应的信号函数进行解析,得到第二本征谱;其中,第二量子比特的量子态在进行谱量子过程层析时,第一量子比特处于目标门控的处理状态;
计算模块1408,还用于根据第一本征谱和第二本征谱,确定第一量子比特和第二量子比特之间的传输线串扰强度。
上述实施例中,对第一量子比特的量子态在进行谱量子过程层析,并在层析过程中,第二量子比特处于等待状态,得到第一量子比特对应的信号函数的第一本征谱;对第二量子比特的量子态在进行谱量子过程层析,并在进行层析过程中,第一量子比特处于基于目标门控的处理状态,从而得到第二量子比特对应的信号函数的第二本征谱,因此根据第一本征谱和第二本征谱所得的传输线串扰强度更具有针对性,有利于在量子产品的制作和优化过程中进行详细指导。此外,本征谱对于普遍的量子噪声通道有信息损失,相对于随机基准测试仅针对退极化通道有信息损失,因此根据第一本征谱和第二本征谱所得的串扰强度,更具普适性,更有利于基于该传输串扰强度对量子产品的制作和优化进行详细指导。
在一个实施例中,如图16所示,提供了一种量子比特的串扰分析装置,该装置可以采用软件模块或硬件模块,或者是二者的结合成为计算机设备的一部 分,该装置具体包括:确定模块1602、第一层析模块1604、第二层析模块1606和计算模块1608,其中:
确定模块1602,用于确定待分析的第一量子比特和第二量子比特;
第一层析模块1604,用于对第一量子比特的量子态进行谱量子过程层析,并对层析所得的第一量子比特对应的信号函数进行解析,得到第一本征谱;其中,第一量子比特的量子态在进行谱量子过程层析时,第二量子比特处于等待状态;
第二层析模块1606,用于对第二量子比特的量子态进行谱量子过程层析,并对层析所得的第二量子比特对应的信号函数进行解析,得到第二本征谱;其中,第二量子比特的量子态在进行谱量子过程层析时,第一量子比特处于基于目标门控的处理状态;
计算模块1608,用于根据第一本征谱和第二本征谱,确定第一量子比特和第二量子比特之间的传输线串扰强度。
在其中的一个实施例中,确定模块1602,还用于若第一量子比特处于纯退相位的噪声环境,则确定第一量子比特的第二环境噪声模型;
计算模块1608,还用于根据第二环境噪声模型和串扰强度,确定第一量子比特和第二量子比特之间传输线串扰强度在噪声环境中的变化量。
在其中的一个实施例中,第一量子比特和第二量子比特分别对应的量子态均基于identity门进行谱量子过程层析;identity门是对第一量子比特和第二量子比特所处的量子线路上不做真实操作的自由演化门。
上述实施例中,对第一量子比特的量子态在进行谱量子过程层析,并在层析过程中,第二量子比特处于等待状态,得到第一量子比特对应的信号函数的第一本征谱;对第二量子比特的量子态在进行谱量子过程层析,并在进行层析过程中,第一量子比特处于基于目标门控的处理状态,从而得到第二量子比特对应的信号函数的第二本征谱,该第二本征谱携带目标门控所产生的传输线路串扰,因此根据第一本征谱和第二本征谱所得的传输线串扰强度更具有针对性,有利于在量子产品的制作和优化过程中进行详细指导。此外,本征谱对于普遍的量子噪声通道有信息损失,相对于随机基准测试仅针对退极化通道有信息损失,因此根据第一本征谱和第二本征谱所得的串扰强度,更具普适性,更有利于基于该传输串 扰强度对量子产品的制作和优化进行详细指导。
关于量子比特的串扰分析装置的具体限定可以参见上文中对于量子比特的串扰分析方法的限定,在此不再赘述。上述量子比特的串扰分析装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端或服务器,以计算机设备是终端为例进行说明,该终端内部结构图可以如图17所示。该计算机设备包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、运营商网络、NFC(近场通信)或其他技术实现。该计算机程序被处理器执行时以实现一种量子比特的串扰分析方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图17中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,还提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述各方法实施例中的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种量子比特的串扰分析方法,由终端执行,其特征在于,所述方法包括:
    确定待分析的第一量子比特和第二量子比特;
    依次对所述第一量子比特和所述第二量子比特分别对应的量子态进行谱量子过程层析,得到所述第一量子比特对应的信号函数的第一本征谱,以及所述第二量子比特对应的信号函数的第二本征谱;
    对所述第一量子比特和所述第二量子比特分别对应的量子态同步进行谱量子过程层析,得到所述第一量子比特和所述第二量子比特共同的信号函数的第三本征谱;
    基于所述第一本征谱、所述第二本征谱和所述第三本征谱,确定所述第一量子比特和所述第二量子比特之间的串扰强度。
  2. 根据权利要求1所述的方法,其特征在于,所述依次对所述第一量子比特和所述第二量子比特分别对应的量子态进行谱量子过程层析,得到所述第一量子比特对应的信号函数的第一本征谱,以及所述第二量子比特对应的信号函数的第二本征谱包括:
    对所述第一量子比特的量子态进行谱量子过程层析,并对层析所得的所述第一量子比特对应的信号函数进行解析,得到第一本征谱;其中,所述第一量子比特的量子态在进行谱量子过程层析时,所述第二量子比特处于等待状态;
    对所述第二量子比特的量子态进行谱量子过程层析,并对层析所得的所述第二量子比特对应的信号函数进行解析,得到第二本征谱;其中,所述第二量子比特的量子态在进行谱量子过程层析时,所述第一量子比特处于等待状态。
  3. 根据权利要求1所述的方法,其特征在于,所述对所述第一量子比特和所述第二量子比特分别对应的量子态同步进行谱量子过程层析,得到所述第一量子比特和所述第二量子比特共同的信号函数的第三本征谱包括:
    对所述第一量子比特和所述第二量子比特分别对应的量子态同步进行谱量子过程层析,得到所述第一量子比特和所述第二量子比特共同的信号函数;所述 共同的信号函数中包括表示量子制备误差和量子测量误差的参数;
    对所述共同的信号函数进行解析,得到第三本征谱。
  4. 根据权利要求1所述的方法,其特征在于,所述基于所述第一本征谱、所述第二本征谱和所述第三本征谱,确定所述第一量子比特和所述第二量子比特之间的串扰强度包括:
    计算所述第一本征谱和所述第二本征谱之间的张量积;
    基于所述第三本征谱和所述张量积之间的差值,确定本征谱的不可拆分度;
    将所述不可拆分度确定为所述第一量子比特和所述第二量子比特之间的串扰强度。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一量子比特和所述第二量子比特均处于纯退相位的噪声环境时,确定所述第一量子比特和所述第二量子比特的第一环境噪声模型;
    获取量子比特耦合方式;
    根据所述量子比特耦合方式、所述第一环境噪声模型和所述串扰强度,确定所述第一量子比特和所述第二量子比特之间的耦合串扰强度;所述耦合串扰强度随时间变化而震荡衰减,且不含制备误差和测量误差。
  6. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一量子比特和所述第二量子比特均处于纯退相位的噪声环境时,确定所述第一量子比特和所述第二量子比特的第一环境噪声模型;
    获取量子比特间的噪声关联方式;
    根据所述噪声关联方式、所述第一环境噪声模型和所述串扰强度,确定所述第一量子比特和所述第二量子比特之间的关联串扰强度;所述关联串扰强度随时间变化而衰减,且不含制备误差和测量误差。
  7. 根据权利要求1所述的方法,其特征在于,所述依次对所述第一量子比特和所述第二量子比特分别对应的量子态进行谱量子过程层析,得到所述第一量子比特对应的信号函数的第一本征谱,以及所述第二量子比特对应的信号函数的第二本征谱包括:
    对所述第一量子比特的量子态进行谱量子过程层析,并对层析所得的所述 第一量子比特对应的信号函数进行解析,得到第一本征谱;其中,所述第一量子比特的量子态在进行谱量子过程层析时,所述第二量子比特处于等待状态;
    对所述第二量子比特的量子态进行谱量子过程层析,并对层析所得的所述第二量子比特对应的信号函数进行解析,得到第二本征谱;其中,所述第二量子比特的量子态在进行谱量子过程层析时,所述第一量子比特处于目标门控的处理状态;
    所述方法还包括:根据所述第一本征谱和所述第二本征谱,确定所述第一量子比特和所述第二量子比特之间的传输线串扰强度。
  8. 根据权利要求1至4、7中任一项所述的方法,其特征在于,所述第一量子比特和第二量子比特分别对应的量子态,以及所述第一量子比特和第二量子比特之间组合的量子态均基于identity门进行谱量子过程层析;所述identity门是对所述第一量子比特和所述第二量子比特所处的量子线路上不做真实操作的自由演化门。
  9. 一种量子比特的串扰分析方法,由终端执行,其特征在于,所述方法包括:
    确定待分析的第一量子比特和第二量子比特;
    对所述第一量子比特的量子态进行谱量子过程层析,并对层析所得的所述第一量子比特对应的信号函数进行解析,得到第一本征谱;其中,所述第一量子比特的量子态在进行谱量子过程层析时,所述第二量子比特处于等待状态;
    对所述第二量子比特的量子态进行谱量子过程层析,并对层析所得的所述第二量子比特对应的信号函数进行解析,得到第二本征谱;其中,所述第二量子比特的量子态在进行谱量子过程层析时,所述第一量子比特处于基于目标门控的处理状态;
    根据所述第一本征谱和所述第二本征谱,确定所述第一量子比特和所述第二量子比特之间的传输线串扰强度。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    若所述第一量子比特处于纯退相位的噪声环境,则确定所述第一量子比特 的第二环境噪声模型;
    根据所述第二环境噪声模型和所述串扰强度,确定所述第一量子比特和所述第二量子比特之间传输线串扰强度在所述噪声环境中的变化量。
  11. 根据权利要求9至10任一项所述的方法,其特征在于,所述第一量子比特和第二量子比特分别对应的量子态均基于identity门进行谱量子过程层析;所述identity门是对所述第一量子比特和所述第二量子比特所处的量子线路上不做真实操作的自由演化门。
  12. 一种量子比特的串扰分析装置,其特征在于,所述装置包括:
    确定模块,用于确定待分析的第一量子比特和第二量子比特;
    第一层析模块,用于依次对所述第一量子比特和所述第二量子比特分别对应的量子态进行谱量子过程层析,得到所述第一量子比特对应的信号函数的第一本征谱,以及所述第二量子比特对应的信号函数的第二本征谱;
    第二层析模块,用于对所述第一量子比特和所述第二量子比特分别对应的量子态同步进行谱量子过程层析,得到所述第一量子比特和所述第二量子比特共同的信号函数的第三本征谱;
    计算模块,用于基于所述第一本征谱、所述第二本征谱和所述第三本征谱,确定所述第一量子比特和所述第二量子比特之间的串扰强度。
  13. 根据权利要求12所述的装置,其特征在于,所述第一层析模块,还用于:
    对所述第一量子比特的量子态进行谱量子过程层析,并对层析所得的所述第一量子比特对应的信号函数进行解析,得到第一本征谱;其中,所述第一量子比特的量子态在进行谱量子过程层析时,所述第二量子比特处于等待状态;
    对所述第二量子比特的量子态进行谱量子过程层析,并对层析所得的所述第二量子比特对应的信号函数进行解析,得到第二本征谱;其中,所述第二量子比特的量子态在进行谱量子过程层析时,所述第一量子比特处于等待状态。
  14. 根据权利要求12所述的装置,其特征在于,所述第二层析模块,还用于:
    对所述第一量子比特和所述第二量子比特分别对应的量子态同步进行谱量子过程层析,得到所述第一量子比特和所述第二量子比特共同的信号函数;所述共同的信号函数中包括表示量子制备误差和量子测量误差的参数;
    对所述共同的信号函数进行解析,得到第三本征谱。
  15. 根据权利要求12所述的装置,其特征在于,所述计算模块,还用于:
    计算所述第一本征谱和所述第二本征谱之间的张量积;
    基于所述第三本征谱和所述张量积之间的差值,确定本征谱的不可拆分度;
    将所述不可拆分度确定为所述第一量子比特和所述第二量子比特之间的串扰强度。
  16. 一种量子比特的串扰分析装置,其特征在于,所述装置包括:
    确定模块,用于确定待分析的第一量子比特和第二量子比特;
    第一层析模块,用于对所述第一量子比特的量子态进行谱量子过程层析,并对层析所得的所述第一量子比特对应的信号函数进行解析,得到第一本征谱;其中,所述第一量子比特的量子态在进行谱量子过程层析时,所述第二量子比特处于等待状态;
    第二层析模块,用于对所述第二量子比特的量子态进行谱量子过程层析,并对层析所得的所述第二量子比特对应的信号函数进行解析,得到第二本征谱;其中,所述第二量子比特的量子态在进行谱量子过程层析时,所述第一量子比特处于基于目标门控的处理状态;
    计算模块,用于根据所述第一本征谱和所述第二本征谱,确定所述第一量子比特和所述第二量子比特之间的传输线串扰强度。
  17. 根据权利要求16所述的装置,其特征在于,所述确定模块,还用于若所述第一量子比特处于纯退相位的噪声环境,则确定所述第一量子比特的第二环境噪声模型;
    所述计算模块,还用于根据所述第二环境噪声模型和所述串扰强度,确定所述第一量子比特和所述第二量子比特之间传输线串扰强度在所述噪声环境中的变化量。
  18. 根据权利要求16或17所述的装置,其特征在于,所述第一量子比特和第二量子比特分别对应的量子态均基于identity门进行谱量子过程层析;所述identity门是对所述第一量子比特和所述第二量子比特所处的量子线路上不做真实操作的自由演化门。
  19. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至11中任一项所述的方法的步骤。
  20. 一种计算机可读存储介质,存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至11中任一项所述的方法的步骤。
PCT/CN2021/114409 2021-01-18 2021-08-25 量子比特的串扰分析方法、装置、计算机设备和存储介质 WO2022151737A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21839812.1A EP4053755B1 (en) 2021-01-18 2021-08-25 Quantum bit crosstalk analyzing method and apparatus, computer device and storage medium
JP2022513589A JP7274666B2 (ja) 2021-01-18 2021-08-25 量子ビットのクロストーク分析方法、装置、コンピュータ機器及びコンピュータプログラム
KR1020227007878A KR20220105155A (ko) 2021-01-18 2021-08-25 큐비트들에 대한 누화 분석 방법 및 장치, 컴퓨터 디바이스, 및 저장 매체
US17/674,793 US11960973B2 (en) 2021-01-18 2022-02-17 Method and apparatus for crosstalk analysis of qubits, computer device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110061593.2 2021-01-18
CN202110061593.2A CN113011592B (zh) 2021-01-18 2021-01-18 量子比特的串扰分析方法、装置、计算机设备和存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/674,793 Continuation US11960973B2 (en) 2021-01-18 2022-02-17 Method and apparatus for crosstalk analysis of qubits, computer device, and storage medium

Publications (1)

Publication Number Publication Date
WO2022151737A1 true WO2022151737A1 (zh) 2022-07-21

Family

ID=76384211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114409 WO2022151737A1 (zh) 2021-01-18 2021-08-25 量子比特的串扰分析方法、装置、计算机设备和存储介质

Country Status (2)

Country Link
CN (1) CN113011592B (zh)
WO (1) WO2022151737A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117892830A (zh) * 2024-03-14 2024-04-16 山东云海国创云计算装备产业创新中心有限公司 量子比特驱动串扰的补偿方法、量子比特补偿方法和产品

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113011592B (zh) * 2021-01-18 2022-03-18 腾讯科技(深圳)有限公司 量子比特的串扰分析方法、装置、计算机设备和存储介质
EP4053755B1 (en) 2021-01-18 2024-02-28 Tencent Technology (Shenzhen) Company Limited Quantum bit crosstalk analyzing method and apparatus, computer device and storage medium
CN113537501B (zh) * 2021-07-12 2022-04-29 北京百度网讯科技有限公司 电磁串扰的标定和缓释方法、装置及电子设备
CN116400204A (zh) * 2021-12-28 2023-07-07 本源量子计算科技(合肥)股份有限公司 两比特量子门的保真度测量方法、装置及量子计算机系统
CN116400189B (zh) * 2021-12-28 2024-07-16 本源量子计算科技(合肥)股份有限公司 量子芯片的性能测试方法、装置及量子计算机系统
CN114330727B (zh) * 2022-01-10 2023-03-10 北京百度网讯科技有限公司 量子门的控制脉冲确定方法及装置、电子设备和介质
CN115329972B (zh) * 2022-08-10 2024-07-12 北京百度网讯科技有限公司 量子计算机性能确定方法及装置、电子设备和介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090259905A1 (en) * 2008-04-15 2009-10-15 Nec Laboratories America, Inc. System and method for quantum computer calibration and performance estimation
CN110738321A (zh) * 2019-10-15 2020-01-31 北京百度网讯科技有限公司 一种量子信号处理方法及装置
CN111814362A (zh) * 2020-08-28 2020-10-23 腾讯科技(深圳)有限公司 量子噪声过程分析方法、系统及存储介质和终端设备
CN113011592A (zh) * 2021-01-18 2021-06-22 腾讯科技(深圳)有限公司 量子比特的串扰分析方法、装置、计算机设备和存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150089382A (ko) * 2014-01-27 2015-08-05 연세대학교 원주산학협력단 디지털 유방 엑스선 촬영용 시스템을 위한 검출양자효율의 검출방법, 검출시스템 및 그 방법을 실행하는 프로그램이 기록된 기록매체
CN107994307B (zh) * 2017-11-17 2019-11-08 合肥本源量子计算科技有限责任公司 一种使用可调量子数据总线耦合多量子比特的量子芯片和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090259905A1 (en) * 2008-04-15 2009-10-15 Nec Laboratories America, Inc. System and method for quantum computer calibration and performance estimation
CN110738321A (zh) * 2019-10-15 2020-01-31 北京百度网讯科技有限公司 一种量子信号处理方法及装置
CN111814362A (zh) * 2020-08-28 2020-10-23 腾讯科技(深圳)有限公司 量子噪声过程分析方法、系统及存储介质和终端设备
CN113011592A (zh) * 2021-01-18 2021-06-22 腾讯科技(深圳)有限公司 量子比特的串扰分析方法、装置、计算机设备和存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117892830A (zh) * 2024-03-14 2024-04-16 山东云海国创云计算装备产业创新中心有限公司 量子比特驱动串扰的补偿方法、量子比特补偿方法和产品
CN117892830B (zh) * 2024-03-14 2024-05-31 山东云海国创云计算装备产业创新中心有限公司 量子比特驱动串扰的补偿方法、量子比特补偿方法和产品

Also Published As

Publication number Publication date
CN113011592A (zh) 2021-06-22
CN113011592B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2022151737A1 (zh) 量子比特的串扰分析方法、装置、计算机设备和存储介质
US11599450B2 (en) Debugging quantum programs
Proctor et al. Measuring the capabilities of quantum computers
JP7199489B2 (ja) 量子測定ノイズの除去方法、システム、電子機器、及び媒体
Sidhu et al. Tight bounds on the simultaneous estimation of incompatible parameters
US20180144262A1 (en) Compilation, memory management, and fault localization with ancillas in an unknown state
Anderson et al. Structural equation modeling in practice: A review and recommended two-step approach.
CN110210073B (zh) 量子噪声过程分析方法、装置、设备及存储介质
JP7274666B2 (ja) 量子ビットのクロストーク分析方法、装置、コンピュータ機器及びコンピュータプログラム
WO2022041974A1 (zh) 量子噪声过程分析方法、系统及存储介质和电子设备
US11386345B2 (en) Strong simulation methods for unit testing quantum software
Zidan et al. Rapid solution of logical equivalence problems by quantum computation algorithm
US20230196169A1 (en) Method and system for determining many-body localization state, storage medium, and program product
JP7334298B2 (ja) 量子測定機器の較正方法および装置、電子機器ならびに媒体
Ydri Multitrace approach to noncommutative Φ 2 4 theory
Patel et al. Charter: Identifying the most-critical gate operations in quantum circuits via amplified gate reversibility
Kiwit et al. Application-oriented benchmarking of quantum generative learning using QUARK
Babukhin et al. Nondestructive classification of quantum states using an algorithmic quantum computer
US12061953B2 (en) Multi-exponential error extrapolation
Mesman et al. Q-profile: Profiling tool for quantum control stacks applied to the quantum approximate optimization algorithm
Wollschläger et al. Discrete Randomized Smoothing Meets Quantum Computing
Oldfield et al. Faster and Better Quantum Software Testing through Specification Reduction and Projective Measurements
Boone Concepts and methods for benchmarking quantum computers
Nirmala et al. Comparative Analysis of Quantum Computing Algorithm
Adoni A quantum accelerated approach for the central path method in linear programming

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021839812

Country of ref document: EP

Effective date: 20220119

ENP Entry into the national phase

Ref document number: 2022513589

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE