WO2022151530A1 - 基于单角度楔块的临界折射纵波多材料检测系统及其声速测量方法 - Google Patents

基于单角度楔块的临界折射纵波多材料检测系统及其声速测量方法 Download PDF

Info

Publication number
WO2022151530A1
WO2022151530A1 PCT/CN2021/074278 CN2021074278W WO2022151530A1 WO 2022151530 A1 WO2022151530 A1 WO 2022151530A1 CN 2021074278 W CN2021074278 W CN 2021074278W WO 2022151530 A1 WO2022151530 A1 WO 2022151530A1
Authority
WO
WIPO (PCT)
Prior art keywords
longitudinal wave
sound velocity
phased array
angle
longitudinal
Prior art date
Application number
PCT/CN2021/074278
Other languages
English (en)
French (fr)
Inventor
罗忠兵
林莉
张松
王红
金士杰
马志远
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US17/742,237 priority Critical patent/US11635409B2/en
Publication of WO2022151530A1 publication Critical patent/WO2022151530A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0645Display representation or displayed parameters, e.g. A-, B- or C-Scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2468Probes with delay lines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2487Directing probes, e.g. angle probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/057Angular incidence, parallel to surface propagation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver

Definitions

  • a critical refraction longitudinal wave multi-material detection system based on a single-angle wedge and a sound velocity measurement method thereof belong to the field of high-end equipment detection.
  • Plate structures are widely used in high-end equipment in key fields such as aerospace, navigation, and automobiles. Due to the limitation of the existing technology, some defects and damages are inevitably generated in the plate-like structure during the manufacturing and service process. It is easy to produce folds in the titanium alloy plate, which seriously reduces the bearing performance and reliability of high-end equipment parts and threatens safe operation. Therefore, if the defects and damages in the plate structure can be effectively detected and evaluated, disasters can be warned in advance, which is of great significance to ensure the bearing performance and service reliability of high-end equipment.
  • the critical refracted longitudinal wave is a longitudinal wave incident at the first critical angle, parallel to the material surface and propagating along the near surface. It is widely used in residual stress measurement, surface/near surface defect detection, etc.
  • Existing research shows that the effective excitation of critically refracted longitudinal waves is difficult and requires strict ultrasonic incident angle.
  • the main solution is to design a wedge with an inclination angle of the first critical angle according to the sound velocity of longitudinal waves of the material to be measured, so as to realize the excitation and reception of critically refracted longitudinal waves. This method needs to design wedges with different inclination angles for different materials.
  • the method based on phased array ultrasonic excitation of critically refracted longitudinal waves provides a solution to this problem.
  • the ultrasonic wave can be incident into the material at the first critical angle, and a single wedge can meet the conditions of a variety of materials and sound speed changes. It does not depend on the thickness of the sample, and can effectively Solving the problem of in-plane sound velocity measurement of plate-like structures, significantly improving detection efficiency and reliability, and reducing detection costs, is of great significance to the development of high-quality detection and characterization technology for high-end equipment.
  • the invention proposes a critical refraction longitudinal wave multi-material detection system based on a single-angle wedge and a sound velocity measurement method thereof.
  • a single angle wedge can be used to realize the critical refraction longitudinal wave detection of various materials or under the condition of sound velocity variation, and accurately calculate the material longitudinal wave sound velocity.
  • a phased array ultrasonic critical refraction longitudinal wave one-transmit-one-receive detection system is built with the wedges, which specifically includes: M2M MultiX++ phased array ultrasonic host, a computer and a pair of linear array phased array ultrasonic probes; the computer is used to control the detection system , record the critical refraction longitudinal wave signal.
  • the single-angle wedge-based critical refraction longitudinal wave multi-material sound velocity measurement method calculates and optimizes the phased array ultrasonic delay rule, reads the arrival time of the received signal and performs interpolation processing, and calculates the material longitudinal wave sound velocity; including the following steps:
  • the number of aperture array elements n is preliminarily selected, and the value of the longitudinal wave sound speed v m is given, and the corresponding first critical angle ⁇ 1 is calculated by formula (1).
  • the formula (2) Calculate the phased array ultrasonic incident deflection angle ⁇ :
  • i is the serial number of any array element in the aperture
  • I is the serial number of the starting array element of the aperture
  • J is the serial number of the ending array element of the aperture
  • I ⁇ i ⁇ J ⁇ n i, I, J, n are all positive integers
  • t i is the delay time of the i-th array element
  • P is the distance between the array elements
  • the receiving probe has no delay, and the critical refracted longitudinal wave is excited and received; adjust the gain of the instrument and fix a certain value to ensure that the highest amplitude of the received signal is not less than 80% of the full screen, and does not exceed the full screen; Establish the relationship curve between the material longitudinal wave sound velocity v m and the critical refraction longitudinal wave amplitude A, fit and determine the v m value corresponding to the highest A value;
  • the receiving probe has no delay, excite and receive the critical refraction longitudinal wave, and obtain the relationship curve between the number n of the transmitting probe aperture array elements and the critical refraction longitudinal wave amplitude A; Select the number of aperture array elements according to the quality of the received signal, adjust the gain of the instrument, and determine the optimal delay law to ensure that the amplitude of the received signal is not less than 50% of the full screen, and the signal-to-noise ratio is not less than 12dB;
  • the critical refracted longitudinal wave is excited and received, the A-scan and B-scan signals are recorded in the computer, and the sampling frequency is not lower than 50MHz; the A-scan signal corresponding to each array element is subjected to linear interpolation processing to ensure that the sampling frequency is not lower than 50MHz. Below 500MHz;
  • the preliminary calculation of the phased array ultrasonic delay rule is further repeated, and the optimal delay rule is obtained by calculation, so as to realize the high-quality excitation and reception of critical refraction longitudinal waves based on single-angle wedges in the material to be tested, and the detection Defects and Evaluation Damage.
  • this critical refraction longitudinal wave multi-material detection system based on single-angle wedges and its sound speed measurement method: a phased array ultrasonic critical refraction longitudinal wave detection system is designed by designing a wedge block with the same inclination angle. ; Estimate the range of the longitudinal wave sound velocity of the material to be tested, calculate and optimize the ultrasonic delay law of the phased array, and establish the relationship between the longitudinal wave sound velocity and the critical refraction longitudinal wave amplitude; read the arrival time of the received signal and interpolate to calculate the longitudinal wave sound velocity of the material to be tested; The optimal delay law, excitation and reception of critically refracted longitudinal waves.
  • the invention can realize the critical refraction longitudinal wave detection under the condition of various materials or sound speed changes by using a single angle wedge block, and can effectively solve the plate structure without depending on the thickness information of the sample.
  • the in-plane sound velocity measurement problem can significantly improve the detection efficiency and reliability, and reduce the detection cost, which is of great significance to the development of high-end equipment detection and characterization technology.
  • Figure 1 is a schematic diagram of a phased array ultrasonic critical refraction longitudinal wave detection wedge.
  • Figure 2 is a schematic diagram of a phased array ultrasonic critical refraction longitudinal wave detection system.
  • Figure 3 shows the delay time when the number of aperture array elements of the phased array ultrasonic transmitting probe is 6 and different longitudinal wave sound velocity setting values.
  • FIG. 4 is a graph showing the relationship between the set value of the sound velocity of the phased array ultrasonic longitudinal wave and the amplitude of the critical refracted longitudinal wave.
  • Figure 5 shows the delay time when the number of aperture array elements of the phased array ultrasonic transmitting probe is 32 and the set value of the longitudinal wave sound velocity is 5000m/s.
  • Fig. 6 is a graph showing the relationship between the number of aperture array elements of the phased array ultrasonic transmitting probe and the amplitude of the critical refraction longitudinal wave.
  • Fig. 7 is the critical refraction longitudinal wave A-scan signal read by the phased array ultrasonic receiving probe.
  • Fig. 8 is the B-scan signal of the critically refracted longitudinal wave read by the phased array ultrasonic receiving probe.
  • Figure 9 is the delay time diagram when the number of aperture array elements of the phased array ultrasonic transmitting probe is 24 and the longitudinal wave sound velocity is 5866 m/s.
  • Step 1 Design of a single-angle, one-transmit and one-receive ultrasonic wedge
  • the range of the longitudinal wave sound velocity v m is estimated to be 4000m/s-10000m/s. According to the requirement of v w ⁇ v m , plexiglass with a longitudinal wave sound velocity of 2730 m/s is selected as the material used for the wedge. According to formula (1), the range of the first critical angle ⁇ I corresponding to the critical refracted longitudinal wave is calculated, and the result is 15.4°-43.0°.
  • the sound attenuation coefficient of plexiglass was measured by the pulse reflection method to be 0.20dB/mm, and the height of the center of the first array element of the wedge was determined to be 4mm. According to the size of the selected phased array ultrasonic probe, the length of the wedge is 56mm, the width is 37mm, and the height of the highest point is 12mm.
  • the wedge is one-piece, with a sound-absorbing layer in the middle, as shown in Figure 1, to ensure that the transmitting and receiving ultrasonic signals do not interfere with each other, the wedge is placed on the surface of the CSK-IA standard test block as a whole, and the ultrasonic incident surface is parallel In the thickness direction of the test block, the coupling between the two is ensured with the help of oil;
  • Step 2 Build a phased array ultrasonic excitation critical refraction longitudinal wave detection system
  • phased array ultrasonic critical refraction longitudinal wave one-transmit-one-receive detection system as shown in Figure 2, which specifically includes: M2M MultiX++ phased array ultrasonic host, computer and a pair of linear array phased arrays Ultrasonic probe; use a computer to control the detection system and record the critical refraction longitudinal wave signal.
  • the number n of aperture array elements is initially selected to be 6. It can be known from step 1 that the first critical angle ⁇ I corresponding to the sound velocity value of 4000 m/s is 43.0°.
  • the delay rule of the phased array ultrasonic transmitting probe is calculated.
  • the calculation method is as shown in formula (3), and the delay time is obtained as 430ns.
  • Step 4 Optimize the calculation delay rule
  • step 1 According to the estimated sound speed range in step 1, with 500m/s as a step, in the operation process of the phased array ultrasonic testing system shown in step 2, from low to high, set the longitudinal wave sound speed v m of the material to be tested to 4000m/s. , 4500m/s, 5000m/s, 5500m/s, 6000m/s, 6500m/s, 7000m/s, 7500m/s, 8000m/s, 8500m/s, 9000m/s, 9500m/s, 10000m/s.
  • the receiving probe has no delay, and excites and receives critical refracted longitudinal waves.
  • the transmitting probe aperture array elements n to be 12, 18, 24, and 32 respectively, select 6000 m/s as v m in formula (1), and calculate the transmitting probe delay rule according to step 3. Taking the number of aperture array elements as 32 as an example, the delay time is shown in Figure 5.
  • the receiving probe has no delay and can excite and receive critical refracted longitudinal waves.
  • the relationship curve between the number n of the aperture array elements of the transmitting probe and the amplitude A of the critical refraction longitudinal wave is obtained, as shown in Figure 6.
  • Step 5 Receive signal arrival time reading and interpolation processing
  • the critical refracted longitudinal waves are excited and received, and the A-scan and B-scan signals are recorded in the computer with a sampling frequency of 100MHz.
  • Figure 8 shows the receiving probe B-scan signal. Interpolate the A-scan signal corresponding to each receiving array element, and the time interval between two adjacent points of the signal is 1 ns.
  • Step 6 Calculate the sound velocity of the material to be tested
  • the longitudinal wave sound velocity of the material to be measured is calculated to be 5866 m/s, and this value is the actual longitudinal wave sound velocity of the material to be measured.
  • the actual longitudinal wave sound velocity calculated in step 6 is set as v m in formula (1) in the calculation principle of the delay law, and in step 2, the material longitudinal wave sound velocity is set to 5866m/s in the phased array ultrasonic critical refraction longitudinal wave detection system, and the aperture The number of array elements is set to 24, and step 3 is repeated.
  • the optimal delay rule is calculated as shown in Figure 9.
  • the adjusted gain is 53dB
  • the corresponding critical refracted longitudinal wave signal amplitude is 80% of the full screen
  • the signal-to-noise ratio is 38dB. Realize high-quality excitation and reception of critically refracted longitudinal waves, laying the foundation for defect detection and damage evaluation.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种基于单角度楔块的临界折射纵波的声速测量方法,包括:设计倾角相同的一发一收楔块,搭建相控阵超声临界折射纵波检测系统;预估待测材料纵波声速范围,计算优化相控阵超声延迟法则,建立纵波声速与临界折射纵波幅值的关系;读取接收信号到达时间并插值处理,计算待测材料纵波声速;确定最优延迟法则,激励和接收临界折射纵波。方法利用单一角度楔块即可实现多种材料或声速变化条件下临界折射纵波检测,不依赖厚度信息,可有效解决板状结构平面内声速测量难题,显著提高检测效率和可靠性,降低检测成本。还提供了一种基于单角度楔块的临界折射纵波多材料检测系统。

Description

基于单角度楔块的临界折射纵波多材料检测系统及其声速测量方法 技术领域
基于单角度楔块的临界折射纵波多材料检测系统及其声速测量方法,属于高端装备检测领域。
背景技术
板状结构广泛应用于航空航天、航海、汽车等关键领域高端装备。受现有工艺水平的限制,板状结构在制造和服役过程中不可避免地产生一些缺陷和损伤,如经热压固化制备的碳纤维增强树脂基复合材料板中容易产生分层,经轧制成型的钛合金板中容易产生折叠等,严重降低高端装备零部件的承载性能和可靠性,威胁安全运行。因此,若能够对板状结构中缺陷和损伤进行有效检测与评价,便可提前预警灾难,对确保高端装备的承载性能和服役可靠性意义重大。
临界折射纵波是以第一临界角入射、平行于材料表面且沿近表面传播的纵波,广泛应用于残余应力测量、表面/近表面缺陷检测等,对于高端装备板状结构的检测具有重要价值。现有研究表明:临界折射纵波的有效激励较为困难,对超声入射角度要求苛刻。目前,主要解决思路为:根据被测材料纵波声速设计倾角为第一临界角的楔块,从而实现临界折射纵波的激励和接收。这种方法对于不同材料需要设计不同倾角的楔块,对于声速各向异性或声速随时间变化的情况,多个楔块不仅适应性差、增加检测成本,且更换楔块过程中容易改变耦合状态,给定量检测与表征带来了诸多不便,不能满足高端装备制造与服役的迫切需求。
基于相控阵超声激励临界折射纵波的方法为这一难题提供了解决思路。通过设计合适的延时法则控制声波的偏转,继而实现超声波以第一临界角入射至材料 内部,单个楔块即可满足多种材料、声速变化的情况,不依赖于试样厚度信息,可有效解决板状结构平面内声速测量难题,显著提高检测效率和可靠性,降低检测成本,对发展高端装备高质量检测与表征技术具有重要意义。
发明内容
本发明提出基于单角度楔块的临界折射纵波多材料检测系统及其声速测量方法。通过搭建相控阵超声一发一收检测系统,利用单一角度楔块即可实现多种材料或声速变化条件下临界折射纵波检测,精准计算材料纵波声速。
本发明采用的技术方案是:
基于单角度楔块的临界折射纵波多材料检测系统,设计倾角相同的一发一收超声楔块,搭建相控阵超声临界折射纵波检测系统:
(1)单角度一发一收超声楔块设计
估计待测材料纵波声速v m范围,选定楔块材质,要求楔块纵波声速v w满足v w<v m;基于Snell定律计算临界折射纵波对应的第一临界角α I范围,公式如下:
Figure PCTCN2021074278-appb-000001
选取α I范围内某一角度作为楔块倾角θ w;根据选定楔块材质的声衰减系数,确定楔块第一阵元中心高度;根据相控阵超声探头尺寸确定楔块尺寸,两楔块中间设有吸声层,以保证发射、接收超声信号之间互不干扰,将楔块整体放置于待测材料表面,借助耦合剂保证两者之间耦合稳定;
(2)搭建相控阵超声临界折射纵波检测系统
用所述楔块搭建相控阵超声临界折射纵波一发一收检测系统,具体包括:M2M MultiX++相控阵超声主机、计算机和一对线性阵列相控阵超声探头;使用 计算机对检测系统进行控制,记录临界折射纵波信号。
所述的基于单角度楔块的临界折射纵波多材料声速测量方法:计算优化相控阵超声延迟法则,读取接收信号到达时间并进行插值处理,计算材料纵波声速;包括以下几个步骤:
(1)初步计算相控阵超声延迟法则
根据所述楔块声衰减系数,初步选定孔径阵元数n,并给定纵波声速v m值,利用公式(1)计算对应第一临界角α Ι,根据所述楔块角度、利用公式(2)计算相控阵超声入射偏转角度θ:
θ=α Ιw       (2)
进而计算相控阵超声发射探头的延迟法则,计算方法如公式(3):
Figure PCTCN2021074278-appb-000002
其中,i为孔径内任一阵元序号,I为孔径起始阵元序号,J为孔径终止阵元序号,I≤i≤J≤n(i、I、J、n均为正整数),t i为第i个阵元的延迟时间,P为阵元间距;
(2)优化计算延迟法则
选取所述待测材料纵波声速范围的5%-10%中某一数值为步进,在所述相控阵超声检测系统中由低到高、依次设置待测材料纵波声速v m,按所述计算发射探头延迟法则,接收探头无延时,激励和接收临界折射纵波;调节仪器增益并固定某一数值,保证接收信号中最高幅值不低于满屏的80%、不超满屏;建立材料纵波声速v m与临界折射纵波幅值A的关系曲线,拟合并确定最高A值 对应的v m值;
设定不同孔径阵元数n并按所述计算发射探头延迟法则,接收探头无延时,激励、接收临界折射纵波,得到发射探头孔径阵元数n与临界折射纵波幅值A的关系曲线;根据接收信号质量选择孔径阵元数,调节仪器增益,确定优化的延迟法则,保证接收信号幅值不低于满屏的50%,信噪比不低于12dB;
(3)接收信号到达时间读取与插值处理
基于所述优化计算延迟法则,激励接收临界折射纵波,在计算机中记录A扫描和B扫描信号,采样频率不低于50MHz;对每个阵元对应A扫信号进行线性插值处理,保证采样频率不低于500MHz;
(4)计算待测材料纵波声速
由接收信号到达时间读取与插值处理计算接收探头所用孔径内两阵元之间的延迟时间t ij,利用公式(4)计算步骤(5)B扫描中临界折射纵波与相控阵超声阵元平面之间的夹角Δθ:
Figure PCTCN2021074278-appb-000003
根据所求Δθ计算待测材料纵波声速v m,计算方法如公式(5):
Figure PCTCN2021074278-appb-000004
(5)计算最优延迟法则
基于计算待测材料纵波声速v m,进一步重复初步计算相控阵超声延迟法则,计算得到最优延迟法则,从而在待测材料实现基于单角度楔块的临界折射纵波高质量激励和接收,检测缺陷和评价损伤。
本发明的有益效果是:这种基于单角度楔块的临界折射纵波多材料检测系统及其声速测量方法:设计了倾角相同的一发一收楔块,搭建相控阵超声临界折射 纵波检测系统;预估待测材料纵波声速范围,计算优化相控阵超声延迟法则,建立纵波声速与临界折射纵波幅值的关系;读取接收信号到达时间并插值处理,计算待测材料纵波声速;确定最优延迟法则,激励和接收临界折射纵波。本发明通过搭建相控阵超声一发一收检测系统,利用单一角度楔块即可实现多种材料或声速变化条件下临界折射纵波检测,不依赖于试样厚度信息,可有效解决板状结构平面内声速测量难题,显著提高检测效率和可靠性,降低检测成本,对发展高端装备检测与表征技术具有重要意义。
附图说明
图1是相控阵超声临界折射纵波检测楔块示意图。
图2是相控阵超声临界折射纵波检测系统示意图。
图3是相控阵超声发射探头孔径阵元数为6、不同纵波声速设置值下延迟时间。
图4是相控阵超声纵波声速设置值和临界折射纵波幅值关系曲线图。
图5是相控阵超声发射探头孔径阵元数为32、纵波声速设置值为5000m/s时延迟时间。
图6是相控阵超声发射探头孔径阵元数和临界折射纵波幅值关系曲线图。
图7是相控阵超声接收探头读取的临界折射纵波A扫描信号。
图8是相控阵超声接收探头读取的临界折射纵波B扫描信号。
图9是相控阵超声发射探头孔径阵元数为24、纵波声速为5866m/s时延迟时间图。
具体实施方式
步骤1单角度一发一收超声楔块设计
以CSK-IA标准试块(碳钢)为测试对象,估计其纵波声速v m范围为4000m/s-10000m/s。根据v w<v m的要求,选定纵波声速为2730m/s的有机玻璃作为楔块所用材料。根据公式(1)计算临界折射纵波对应的第一临界角α I范围,结果是15.4°-43.0°。
Figure PCTCN2021074278-appb-000005
选取20°作为楔块倾角θ w。利用脉冲反射法测得有机玻璃声衰减系数为0.20dB/mm,确定楔块第一阵元中心高度为4mm。根据所选相控阵超声探头尺寸确定楔块长度为56mm,宽度37mm,最高点高度12mm。楔块为一体式,中间设有吸声层,如图1所示,以保证发射、接收超声信号之间互不干扰,将楔块整体放置于CSK-IA标准试块表面,超声波入射面平行于试块厚度方向,借助机油保证两者之间耦合稳定;
步骤2搭建相控阵超声激励临界折射纵波检测系统
基于步骤1中设计的楔块,搭建相控阵超声临界折射纵波一发一收检测系统,如图2所示,具体包括:M2M MultiX++相控阵超声主机、计算机和一对线性阵列相控阵超声探头;使用计算机对检测系统进行控制,记录临界折射纵波信号。
步骤3初步计算相控阵超声延迟法则
根据步骤1中楔块声衰减系数,初步选定孔径阵元数n为6。由步骤1可知,声速值为4000m/s对应的第一临界角α I为43.0°。根据公式(2)计算相控阵超声入射偏转角度θ:
θ=α Iw=43.0°-20°=23.0°     (2)
进而计算相控阵超声发射探头的延迟法则,以第6个阵元的延迟时间t 6为例,计算方法如公式(3),得到延迟时间为430ns。
Figure PCTCN2021074278-appb-000006
同理,可计算其他阵元延迟时间,如图3所示。
步骤4优化计算延迟法则
根据步骤1中估计声速范围,以500m/s为步进,在步骤2所示的相控阵超声检测系统操作流程中由低到高、依次设置待测材料的纵波声速v m为4000m/s,4500m/s,5000m/s,5500m/s,6000m/s,6500m/s,7000m/s,7500m/s,8000m/s,8500m/s,9000m/s,9500m/s,10000m/s。按步骤(3)计算发射探头延迟法则,如图3,接收探头无延时,激励和接收临界折射纵波。调节仪器增益为67dB,此时接收信号中最高幅值为满屏的93%。建立材料纵波声速v m与临界折射纵波幅值A的关系曲线,如图4,并确定最高A值对应声速为6000m/s。
设定发射探头孔径阵元数n分别为12、18、24、32,选定6000m/s作为公式(1)中的v m,并按步骤3计算发射探头延迟法则。以孔径阵元数32时为例,延迟时间如图5,接收探头无延时,激励、接收临界折射纵波。得到发射探头孔径阵元数n与临界折射纵波幅值A的关系曲线,如图6。选择孔径阵元数为24,调节仪器增益为53dB,此时接收信号幅值为83%,信噪比为41dB,满足接收信号幅值不低于满屏的50%、信噪比不低于12dB的要求。
步骤5接收信号到达时间读取和插值处理
基于步骤4中优化后的延迟法则,激励、接收临界折射纵波,在计算机中记 录A扫描和B扫描信号,采样频率为100MHz,如图7所示为接收探头阵元1和32对应的A扫描信号,图8所示为接收探头B扫描信号。对每个接收阵元对应的A扫描信号进行插值处理,信号相邻两点时间间隔1ns。
步骤6计算待测材料声速
选定步骤5中接收阵元1和32对应的A扫描信号,并读取临界折射纵波最大幅值处的对应时间,如图7,分别是11926ns、11009ns,作差得到这两个阵元之间的延迟时间t 1-32=-917ns,根据公式(4)计算B扫描信号中临界折射纵波与相控阵超声阵元平面之间的夹角Δθ为-7.73°,如图8所示:
Figure PCTCN2021074278-appb-000007
根据公式(5),计算待测材料纵波声速为5866m/s,此值就是待测材料的实际纵波声速。
Figure PCTCN2021074278-appb-000008
步骤7优化延迟法则
将步骤6计算的实际纵波声速设为延迟法则计算原理中公式(1)中的v m,在步骤2相控阵超声临界折射纵波检测系统中设定材料纵波声速为5866m/s,并将孔径阵元数设为24,重复步骤3,计算得到最优延迟法则如图9,调节增益为53dB,对应临界折射纵波信号幅值为满屏的80%,信噪比38dB,从而在待测材料实现临界折射纵波的高质量激励和接收,为缺陷检测和损伤评价奠定基础。

Claims (2)

  1. 基于单角度楔块的临界折射纵波多材料检测系统,其特征是:设计倾角相同的一发一收超声楔块,搭建相控阵超声临界折射纵波检测系统:
    (1)单角度一发一收超声楔块设计
    估计待测材料纵波声速v m范围,选定楔块材质,要求楔块纵波声速v w满足v w<v m;基于Snell定律计算临界折射纵波对应的第一临界角α I范围,公式如下:
    Figure PCTCN2021074278-appb-100001
    选取α I范围内某一角度作为楔块倾角θ w;根据选定楔块材质的声衰减系数,确定楔块第一阵元中心高度;根据相控阵超声探头尺寸确定楔块尺寸,两楔块中间设有吸声层,以保证发射、接收超声信号之间互不干扰,将楔块整体放置于待测材料表面,借助耦合剂保证两者之间耦合稳定;
    (2)搭建相控阵超声临界折射纵波检测系统
    用所述楔块搭建相控阵超声临界折射纵波一发一收检测系统,具体包括:M2M MultiX++相控阵超声主机、计算机和一对线性阵列相控阵超声探头;使用计算机对检测系统进行控制,记录临界折射纵波信号。
  2. 根据权利要求1所述的基于单角度楔块的临界折射纵波多材料声速测量方法,其特征在于:计算优化相控阵超声延迟法则,读取接收信号到达时间并进行插值处理,计算材料纵波声速;包括以下几个步骤:
    (1)初步计算相控阵超声延迟法则
    根据所述楔块声衰减系数,初步选定孔径阵元数n,并给定纵波声速v m值,利用公式(1)计算对应第一临界角α Ι,根据所述楔块角度、利用公式(2)计 算相控阵超声入射偏转角度θ:
    θ=α Ιw    (2)
    进而计算相控阵超声发射探头的延迟法则,计算方法如公式(3):
    Figure PCTCN2021074278-appb-100002
    其中,i为孔径内任一阵元序号,I为孔径起始阵元序号,J为孔径终止阵元序号,I≤i≤J≤n(i、I、J、n均为正整数),t i为第i个阵元的延迟时间,P为阵元间距;
    (2)优化计算延迟法则
    选取所述待测材料纵波声速范围的5%-10%中某一数值为步进,在所述相控阵超声检测系统中由低到高、依次设置待测材料纵波声速v m,按所述计算发射探头延迟法则,接收探头无延时,激励和接收临界折射纵波;调节仪器增益并固定某一数值,保证接收信号中最高幅值不低于满屏的80%、不超满屏;建立材料纵波声速v m与临界折射纵波幅值A的关系曲线,拟合并确定最高A值对应的v m值;
    设定不同孔径阵元数n并按所述计算发射探头延迟法则,接收探头无延时,激励、接收临界折射纵波,得到发射探头孔径阵元数n与临界折射纵波幅值A的关系曲线;根据接收信号质量选择孔径阵元数,调节仪器增益,确定优化的延迟法则,保证接收信号幅值不低于满屏的50%,信噪比不低于12dB;
    (3)接收信号到达时间读取与插值处理
    基于所述优化计算延迟法则,激励接收临界折射纵波,在计算机中记录A扫描和B扫描信号,采样频率不低于50MHz;对每个阵元对应A扫信号进行线性插值处理,保证采样频率不低于500MHz;
    (4)计算待测材料纵波声速
    由接收信号到达时间读取与插值处理计算接收探头所用孔径内两阵元之间的延迟时间t ij,利用公式(4)计算步骤(5)B扫描中临界折射纵波与相控阵超声阵元平面之间的夹角Δθ:
    Figure PCTCN2021074278-appb-100003
    根据所求Δθ计算待测材料纵波声速v m,计算方法如公式(5):
    Figure PCTCN2021074278-appb-100004
    (5)计算最优延迟法则
    基于计算待测材料纵波声速v m,进一步重复初步计算相控阵超声延迟法则,计算得到最优延迟法则,从而在待测材料实现基于单角度楔块的临界折射纵波高质量激励和接收,检测缺陷和评价损伤。
PCT/CN2021/074278 2021-01-16 2021-01-29 基于单角度楔块的临界折射纵波多材料检测系统及其声速测量方法 WO2022151530A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/742,237 US11635409B2 (en) 2021-01-16 2022-05-11 Multi-material inspection system and velocity measurement method of critically refracted longitudinal wave based on single-angle wedges

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110058134.9A CN112903820B (zh) 2021-01-16 2021-01-16 基于单角度楔块的临界折射纵波多材料检测系统及其声速测量方法
CN202110058134.9 2021-01-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/742,237 Continuation US11635409B2 (en) 2021-01-16 2022-05-11 Multi-material inspection system and velocity measurement method of critically refracted longitudinal wave based on single-angle wedges

Publications (1)

Publication Number Publication Date
WO2022151530A1 true WO2022151530A1 (zh) 2022-07-21

Family

ID=76114017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074278 WO2022151530A1 (zh) 2021-01-16 2021-01-29 基于单角度楔块的临界折射纵波多材料检测系统及其声速测量方法

Country Status (3)

Country Link
US (1) US11635409B2 (zh)
CN (1) CN112903820B (zh)
WO (1) WO2022151530A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115327328A (zh) * 2022-10-17 2022-11-11 广东电网有限责任公司 一种非对称环氧-导体嵌件界面缺陷超声检测方法及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10557828B2 (en) * 2014-02-17 2020-02-11 Westinghouse Electric Company Llc Ultrasonic phased array transducer for the NDE inspection of the jet pump riser welds and welded attachments
CN113758617B (zh) * 2021-09-10 2022-10-18 哈尔滨工业大学 一种基于宽带扫频信号频域计算的应力梯度高效无损检测系统及其检测方法
CN113504307B (zh) * 2021-09-10 2021-12-21 西南石油大学 一种多频率岩心声速测量装置
CN115389069B (zh) * 2022-08-31 2024-04-19 北京理工大学 一种平面应力检测装置及检测方法
CN115855333B (zh) * 2022-12-21 2023-08-25 北京工研精机股份有限公司 一种基于临界折射纵波检测的表面应力分布云图构建方法
CN115856087B (zh) * 2023-02-27 2023-05-19 南昌航空大学 基于纵波一发一收超声相控阵探头的全聚焦成像方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010129701A2 (en) * 2009-05-05 2010-11-11 Actuant Corporation Non-contact acoustic signal propagation property evaluation of synthetic fiber rope
CN103017953A (zh) * 2011-09-22 2013-04-03 北京理工大学 金属材料近表面残余应力检测装置
CN105044213A (zh) * 2015-06-28 2015-11-11 大连理工大学 一种纤维增强树脂基复合材料相控阵超声检测晶片延迟法则优化方法
CN105319271A (zh) * 2014-07-30 2016-02-10 中国科学院声学研究所 一种横、纵波联合超声相控阵检测方法
CN105606705A (zh) * 2016-01-05 2016-05-25 北京理工大学 一种用于测量细管表层周向残余应力的超声无损检测装置
CN109341912A (zh) * 2018-11-13 2019-02-15 西南交通大学 一种超声波平面楔块用于曲面工件的残余应力测量方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8438928B2 (en) * 2010-05-17 2013-05-14 Structural Integrity Associates, Inc. Apparatus and method for non-destructive testing using ultrasonic phased array
CN103018326A (zh) * 2012-11-29 2013-04-03 北京理工大学 接触式超声无损检测直线自动扫查装置
CN105158339B (zh) * 2015-08-18 2018-09-25 中国工程物理研究院化工材料研究所 纵横波一体化超声波探头、弹性模量及分布的测试系统和测试方法
CN111337171B (zh) * 2020-04-03 2023-04-28 北京工商大学 一种应用于临界折射纵波应力检测的声时差测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010129701A2 (en) * 2009-05-05 2010-11-11 Actuant Corporation Non-contact acoustic signal propagation property evaluation of synthetic fiber rope
CN103017953A (zh) * 2011-09-22 2013-04-03 北京理工大学 金属材料近表面残余应力检测装置
CN105319271A (zh) * 2014-07-30 2016-02-10 中国科学院声学研究所 一种横、纵波联合超声相控阵检测方法
CN105044213A (zh) * 2015-06-28 2015-11-11 大连理工大学 一种纤维增强树脂基复合材料相控阵超声检测晶片延迟法则优化方法
CN105606705A (zh) * 2016-01-05 2016-05-25 北京理工大学 一种用于测量细管表层周向残余应力的超声无损检测装置
CN109341912A (zh) * 2018-11-13 2019-02-15 西南交通大学 一种超声波平面楔块用于曲面工件的残余应力测量方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115327328A (zh) * 2022-10-17 2022-11-11 广东电网有限责任公司 一种非对称环氧-导体嵌件界面缺陷超声检测方法及装置

Also Published As

Publication number Publication date
US20220268739A1 (en) 2022-08-25
CN112903820A (zh) 2021-06-04
CN112903820B (zh) 2022-03-25
US11635409B2 (en) 2023-04-25

Similar Documents

Publication Publication Date Title
WO2022151530A1 (zh) 基于单角度楔块的临界折射纵波多材料检测系统及其声速测量方法
US7389693B2 (en) Methods and apparatus for porosity measurement
JP4938050B2 (ja) 超音波診断評価装置
Liu et al. Adhesive debonding inspection with a small EMAT in resonant mode
US20230061816A1 (en) Air-coupled Ultrasonic Detection Method and Device Based on Defect Probability Reconstruction Algorithm
CN111521136B (zh) 一种基于水平剪切波的钢筋混凝土结构裂缝深度检测方法及检测装置
Kupperman et al. Ultrasonic NDE of cast stainless steel
CN110243945A (zh) 基于合成孔径聚焦与模式转换波的超声tofd盲区抑制方法
CN110988143A (zh) 一种隧道混凝土管片缺陷检测方法及设备
CN110849962A (zh) 利用电磁超声原理评估金属裂痕纹走向与深度的装置及方法
Karaojiuzt et al. Defect detection in concrete using split spectrum processing
CN113686963B (zh) 一种自密实钢管混凝土异形柱密实性检测方法
CN111256630B (zh) 利用电磁超声导波频散特性快速测量金属板材厚度方法
JP3597182B2 (ja) 超音波音速測定方法及びこれらに基づいてヤング率及びポアソン比を求める方法
CN112268959A (zh) 一种测定不同温度下超声板波衰减系数的方法
Hesse et al. A single probe spatial averaging technique for guided waves and its application to surface wave rail inspection
JP4378019B2 (ja) 超音波による金属の材質劣化検出方法
Bottiglieri et al. Corrective Techniques for the Ultrasonic Nondestructive Evaluation of Ceramic Materials
JP2012189352A (ja) 表面を伝播する超音波の音速測定装置と方法
US20230393098A1 (en) Reference-Free Load-Modulated Longitudinal Rail Stress Measurement Using Ultrasonic LCR Waves
Chen et al. Characteristics of Wave Propagation in Austenitic Stainless Steel Welds and Its Application in Ultrasonic TOFD Testing
JPH1164309A (ja) 圧延材の材料特性測定方法及び装置
US6393917B1 (en) System and method for ultrasonic image reconstruction using mode-converted Rayleigh wave
Chen et al. Analysis on wave propagation characters in austenitic stainless steel weld and application in ultrasonic time of flight testing
Peterson et al. Assessment of Corrosion Damage in Steel Samples Using Electro-Magnetic Acoustic Measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918729

Country of ref document: EP

Kind code of ref document: A1