WO2022151523A1 - 基于透射式机械调制的光束光轴自稳装置及自稳方法 - Google Patents

基于透射式机械调制的光束光轴自稳装置及自稳方法 Download PDF

Info

Publication number
WO2022151523A1
WO2022151523A1 PCT/CN2021/073335 CN2021073335W WO2022151523A1 WO 2022151523 A1 WO2022151523 A1 WO 2022151523A1 CN 2021073335 W CN2021073335 W CN 2021073335W WO 2022151523 A1 WO2022151523 A1 WO 2022151523A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
optical axis
transmission element
transmission
type mechanical
Prior art date
Application number
PCT/CN2021/073335
Other languages
English (en)
French (fr)
Inventor
张翔
高帆
张念
袁孝
熊宝星
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2022151523A1 publication Critical patent/WO2022151523A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0071Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction

Definitions

  • the invention relates to the field of optical technology, in particular to a self-stabilizing device and a self-stabilizing method for a beam optical axis based on transmission-type mechanical modulation.
  • the atmospheric transmission effects can be divided into linear effects and nonlinear effects.
  • the former includes atmospheric refraction, atmospheric absorption and scattering, and atmospheric turbulence, etc.
  • Atmospheric absorption and scattering cause laser power attenuation
  • atmospheric turbulence causes laser beam quality decline; the latter is mainly affected by stimulated Raman scattering, thermal halo and breakdown.
  • the inhomogeneity of the spatial refractive index of the transmission medium In the process of long-distance transmission of laser beams in the atmosphere, the main reason why the uniformity of intensity and directivity of laser beams are affected is the inhomogeneity of the spatial refractive index of the transmission medium. Initially, the inhomogeneity of the refractive index in the short-distance space will cause a slight change in the intensity distribution and directivity of the beam, but with the continuous increase of the transmission distance, the change is accumulated continuously, and finally the intensity uniformity of the beam is greatly changed. and directivity.
  • the current general method is to use adaptive optics technology. Wavefront distortion, using anamorphic mirrors to apply compensation controls.
  • the adaptive optics technology effectively overcomes the distortion disturbance of the strong laser beam caused by atmospheric turbulence, and alleviates the influence of thermal halo to a certain extent, which has been verified in various high-energy laser systems to a certain extent.
  • the response time of the adaptive optics system is on the order of several milliseconds or even ten milliseconds, and the adaptive optics system has a complex structure, expensive manufacturing and maintenance costs, and complicated applications, making it difficult to meet the requirements of equipment.
  • small-scale, fast-response phase distortions caused by complex effects in various high-energy laser systems can greatly affect the initial beam quality of intense laser beams, such as the mm-scale space caused by coolant turbulence in immersion laser systems Modulation and phase distortion, etc., adaptive optics technology is also difficult to solve such problems.
  • the technical problem to be solved by the present invention is to provide a beam optical axis self-stabilizing device and self-stabilizing method based on transmissive mechanical modulation. Focusable power and energy concentration.
  • the present invention provides a self-stabilizing device for the optical axis of a light beam based on transmission type mechanical modulation, comprising a 1/4 wave plate, a transmission element and a driving source, the driving source drives the transmission element to adjust the optical axis
  • the axis rotates at a uniform speed; the incident light is modulated by a 1/4 wave plate and then enters the transmission element, and the driving source drives the transmission element to rotate to drive the beam to rotate, so as to obtain outgoing light with consistent beam directivity.
  • the transmission element is a Dove prism, and the base angle of the Dove prism is 45°.
  • the transmission element includes two optical wedges arranged in pairs, the shape and size of the two optical wedges are the same, the two optical wedges are arranged symmetrically in the center and relatively fixed, and are modulated by a quarter wave plate.
  • the rear beam is incident perpendicular to the wedge.
  • the transmissive element comprises two transmissive volume Bragg gratings arranged in pairs, the period and size of the two volume Bragg gratings are equal, the centers of the two volume Bragg gratings are symmetrically placed and relatively fixed, and the distance between the two volume Bragg gratings is 1
  • the beam modulated by the /4 wave plate is incident perpendicular to the volume Bragg grating.
  • the transmission element includes two blazed gratings arranged in pairs, the period, the groove angle and the size of the two blazed gratings are equal, and the centers of the two blazed gratings are symmetrically arranged and relatively fixed, and the center of the two blazed gratings is symmetric and relatively fixed.
  • the beam modulated by the 4-wave plate is incident perpendicular to the blazed grating.
  • the transmission element is a cylindrical mirror
  • the two end surfaces of the cylindrical mirror are symmetrically arranged relative to the cylindrical mirror
  • the included angle between the end surface of the cylindrical mirror and the side surface of the cylindrical mirror is 30°-60° °
  • the light beam modulated by the quarter wave plate is incident from one end face of the cylindrical mirror and exits from the other end face of the cylindrical mirror.
  • the drive source is a hollow shaft motor.
  • a first beam expanding and collimating system for expanding and collimating the light beam is also included, and the incident light enters the quarter wave plate after passing through the first beam expanding and collimating system.
  • a second beam expanding and collimating system for expanding and collimating the light beam is also included, and the light emitted from the transmission element is emitted through the second beam expanding and collimating system.
  • the invention discloses a beam optical axis self-stabilization method based on transmission type mechanical modulation, comprising the following steps:
  • Phase modulation is performed on the incident light through a 1/4 wave plate to obtain a modulated beam
  • the modulated light beam is processed by the transmission element rotating around the optical axis to obtain outgoing light with consistent beam directivity.
  • the present invention provides a device for beam rotation, which uses the method of mechanical modulation, that is, the phase of the beam moves at high speed with time, and the light passes through each part of the beam aperture during the transmission process to ensure that the beam is transmitted during the transmission process.
  • the phase delay remains the same.
  • the focal spot mass center of the beam obtained by the present invention is stable, the beam directivity is consistent, and the beam has higher focusable power and energy concentration.
  • the device in the present invention has compact structure, low cost and high effect.
  • FIG. 1 is a schematic structural diagram 1 of a beam optical axis self-stabilizing device based on transmission-type mechanical modulation of the present invention, wherein the transmission element is a Dove prism;
  • FIG. 2 is a second structural schematic diagram of a self-stabilizing device for beam optical axis based on transmission type mechanical modulation of the present invention, wherein the transmission elements are two optical wedges arranged in pairs;
  • FIG. 3 is a schematic structural diagram 3 of a beam optical axis self-stabilizing device based on transmissive mechanical modulation of the present invention, wherein the transmissive elements are two transmissive volume Bragg gratings arranged in pairs;
  • FIG. 4 is a schematic diagram 4 of the structure of the optical axis self-stabilizing device of the light beam based on the transmission type mechanical modulation of the present invention, wherein the transmission elements are two blazed gratings arranged in pairs;
  • Fig. 5 is the structural schematic diagram 5 of the optical axis self-stabilizing device of the light beam based on the transmission type mechanical modulation of the present invention, wherein, the transmission element is a cylindrical mirror;
  • Fig. 6 is the structural representation of cylindrical mirror
  • Fig. 7 is the beam expander collimation system of "convex-convex" lens combination
  • Figure 8 is a beam expander collimation system with a "concave-convex" lens combination.
  • the present invention discloses a beam optical axis self-stabilization device based on transmission type mechanical modulation, including a quarter wave plate 3, a transmission element and a driving source, and the driving source drives the transmission element to light
  • the axis is the axis of uniform rotation; the incident light is modulated by the 1/4 wave plate 3 and then enters the transmission element, and the driving source drives the transmission element to rotate to drive the beam to rotate, so as to obtain the outgoing light with the same beam directivity.
  • the working principle of the present invention is as follows: the present invention uses the method of mechanical modulation, that is, the phase of the beam moves at high speed with time, so that the light passes through each part of the beam aperture during the transmission process, and the phase delay of the beam during the transmission process is kept consistent. .
  • the focal spot centroid of the beam is stable, the beam directivity is consistent, and the beam has higher focusable power and energy concentration.
  • the laser 11 emits a laser beam. After the laser beam is transmitted in a non-uniform medium over a long distance, the self-stabilizing device in the present invention can realize the beam self-stabilization, and obtain a beam with a stable center of mass and consistent beam directivity.
  • the transmission element can be a Dove prism 4, and the base angle of the Dove prism 4 is 45°.
  • the transmission element is the Dove prism 4, the tilt of the image during the rotation of the beam can be compensated.
  • the transmission element may include two optical wedges 6 arranged in pairs, the shape and size of the two optical wedges 6 are the same, the two optical wedges 6 are symmetrically arranged in the center and relatively fixed, and the 1/4 wave plate 3
  • the modulated light beam is incident perpendicular to the wedge 6 .
  • the optical wedges 6 are used in combination, and the two produce different deflection angles, which can compensate for small-angle deviations.
  • the transmissive element may include two transmissive volume Bragg gratings 7 arranged in pairs, the period and size of the two volume Bragg gratings are equal, the centers of the two volume Bragg gratings are symmetrically placed and relatively fixed, and the two volume Bragg gratings are arranged through a 1/4 wave plate.
  • the modulated beam is incident perpendicular to the volume Bragg grating.
  • the transmissive volume Bragg grating 7 can be used to filter out the middle and high frequency components of the beam emitted from the laser 1, thereby improving the beam quality of the emitted beam.
  • the transmission element may include two blazed gratings 8 arranged in pairs, the period, the groove angle and the size of the two blazed gratings 8 are equal, and the two blazed gratings 8 are symmetrically arranged in the center and relatively fixed.
  • the beam modulated by the 4-wave plate 3 is incident perpendicular to the blazed grating 8 .
  • the blazed grating 8 can transmit a certain order of spectrum in a specific wavelength band, thereby filtering the light beam.
  • the transmission element can be a cylindrical mirror 9, the two end surfaces of the cylindrical mirror 9 are symmetrically arranged with respect to the cylindrical mirror 9, and the angle between the end surface of the cylindrical mirror 9 and the side surface of the cylindrical mirror 9 is 30°-60°,
  • the light beam modulated by the quarter wave plate 3 is incident from one end surface of the cylindrical mirror 9 and exits from the other end surface of the cylindrical mirror 9 .
  • the cylindrical mirror 9 is small in size, compact in structure, and easy to install.
  • the driving source may be a hollow shaft motor.
  • the hollow shaft motor facilitates the installation of the transmissive element so that the transmissive element can be rotated around the optical axis.
  • the present invention further includes a first beam expansion and collimation system 2 for beam expansion and collimation, and the incident light enters the quarter wave plate 3 after passing through the first beam expansion and collimation system 2 .
  • the first beam expansion and collimation system 2 includes a first convex lens and a second convex lens, and the distance between the first convex lens and the second convex lens is equal to the sum of the focal length of the first convex lens and the focal length of the second convex lens. That is, the first beam expander collimation system 2 is a combination of "convex-convex" lenses.
  • the first beam expanding and collimating system 2 includes a first concave lens and a third convex lens, and the sum of the distances between the first concave lens and the third convex lens is equal to the focal length of the third convex lens minus the focal length of the first concave lens, that is,
  • the second beam expander collimation system 5 is a "concave-convex" lens combination.
  • the present invention also includes a second beam expansion and collimation system 5 for expanding and collimating the light beam, and the light emitted from the transmission element is emitted through the second beam expansion and collimation system 5 .
  • the second beam expander collimation system 5 may also be a "convex-convex" lens combination or a "concave-convex” lens combination.
  • the second beam expansion and collimation system 5 includes a fourth convex lens and a fifth convex lens, and beam expansion is realized by the combination of the fourth convex lens and the fifth convex lens.
  • the second beam expansion and collimation system 5 may also include a second concave lens and a sixth convex lens, and beam expansion is realized by combining the second concave lens and the sixth convex lens.
  • the beam expanding and collimating principles of the second beam expanding and collimating system 5 are the same as those of the first beam expanding and collimating system 2 .
  • the diameter of the laser beam incident on the 1/4 wave plate 3 after passing through the first beam expansion and collimation system 2 is 5 mm (in this example, only the circular beam spot is used as an example, but the The shape is not limited to a circle, and may be a square or other shapes), taking the device shown in FIG. 1 as an example.
  • the beam passing through the 1/4 wave plate 3 is incident on the Dove prism 4, the rotation speed of the platform is about 20,000 rpm, and the power supply frequency of the motor is 50Hz. 5 Control the spot size and divergence angle of the outgoing beam.
  • the invention discloses a beam optical axis self-stabilization method based on transmission type mechanical modulation, comprising the following steps:
  • Step 1 Phase modulation is performed on the incident light through the 1/4 wave plate 3 to obtain a modulated beam
  • Step 2 The modulated light beam is processed by the transmission element rotating around the optical axis to obtain outgoing light with consistent beam directivity.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种基于透射式机械调制的光束光轴自稳装置及自稳方法,包括1/4波片(3)、透射元件和驱动源,驱动源驱动透射元件以光轴为轴线均速自转;入射光经1/4波片(3)调制后射入透射元件,驱动源带动透射元件自转以带动光束旋转,获得光束指向性一致的出射光。

Description

基于透射式机械调制的光束光轴自稳装置及自稳方法 技术领域
本发明涉及光学技术领域,具体涉及一种基于透射式机械调制的光束光轴自稳装置及自稳方法。
背景技术
强激光在大气中传输时,会受到大气的各种影响,大气传输效应可分为线性效应和非线性效应。前者包括大气折射、大气吸收与散射和大气湍流等,大气吸收和散射引起激光功率衰减,大气湍流造成激光学束质量下降;后者主要有受激拉曼散射、热晕和击穿等影响。
激光束在大气长距离传输过程中,其强度均匀性和指向性受到影响的主要原因是传输介质的空间折射率不均匀性。起初短距离空间上的折射率不均匀会导致光束的强度分布和指向性发生一定轻微变化,但随着传输距离的不断增大,该变化不断被累积,最终大幅度地改变光束的强度均匀性和指向性。
如何使强激光束克服大气影响以高光束质量远程传输,同时在靶面具有良好的焦斑质心稳定性和高可聚焦功率,目前通用的方法是采用自适应光学技术,根据信标光探测的波前畸变,利用变形镜上施加补偿控制。自适应光学技术有效地克服了大气湍流对强激光束的畸变扰动,并在一定程度上缓解了热晕的影响,在各种高能激光系统中得到了一定程度的验证。但是,自适应光学系统的反应时间约数毫秒甚至十毫秒量级,且自适应光学系统结构复杂、制造维护成本昂贵,应用复杂,难以满足装备的要求。另一方面,各种高能激光系统中的复杂效应引起的小尺度、快速响应的相位畸变会极大地影响强激光束的初始光束质量,例如浸液式激光系统中冷却液湍流引起的mm级空间调制和相位畸变等 等,自适应光学技术也难以解决此类问题。
发明内容
本发明要解决的技术问题是提供一种基于透射式机械调制的光束光轴自稳装置及自稳方法,其获得的光束的焦斑质心稳定、光束指向性一致,同时该光束具有更高的可聚焦功率和能量集中度。
为了解决上述技术问题,本发明提供了一种基于透射式机械调制的光束光轴自稳装置,包括1/4波片、透射元件和驱动源,所述驱动源驱动所述透射元件以光轴为轴线均速自转;入射光经1/4波片调制后射入透射元件,所述驱动源带动所述透射元件自转以带动光束旋转,获得光束指向性一致的出射光。
作为优选的,所述透射元件为道威棱镜,所述道威棱镜的底角为45°。
作为优选的,所述透射元件包括两个成对设置的光楔,两个所述光楔的形状和大小相同,两个所述光楔中心对称设置且相对固定,经1/4波片调制后的光束垂直于光楔入射。
作为优选的,所述透射元件包括两个成对设置的透射式体布拉格光栅,两个所述体布拉格光栅的周期和尺寸相等,两个所述体布拉格光栅中心对称放置且相对固定,经1/4波片调制后的光束垂直于体布拉格光栅入射。
作为优选的,所述透射元件包括两个成对设置的闪耀光栅,两个所述闪耀光栅的周期、槽形角和尺寸相等,两个所述闪耀光栅中心对称设置且相对固定,经1/4波片调制后的光束垂直于闪耀光栅入射。
作为优选的,所述透射元件为圆柱镜,所述圆柱镜的两个端面相对于所述圆柱镜对称设置,所述圆柱镜的端面与所述圆柱镜的侧面的夹角为30°-60°,经1/4波片调制后的光束从所述圆柱镜的一端面入射,并从所述圆柱镜的另一端面出射。
作为优选的,所述驱动源为空心轴电机。
作为优选的,还包括对光束进行扩束准直的第一扩束准直系统,入射光经所述第一扩束准直系统后进入1/4波片。
作为优选的,还包括对光束进行扩束准直的第二扩束准直系统,从所述透射元件射出的光线经所述第二扩束准直系统射出。
本发明公开了一种基于透射式机械调制的光束光轴自稳方法,包括以下步骤:
通过1/4波片对入射光进行相位调制,获得调制后的光束;
通过绕光轴自转的透射元件对调制后的光束进行处理,获得光束指向性一致的出射光。
本发明的有益效果:
1、本发明提供了一种光束旋转的装置,其利用机械调制的方法,即光束的相位随时间高速运动,光在传输过程中经过光束口径内的每个部分,保证光束在传输过程中的相位延迟保持一致。
2、本发明获得的光束的焦斑质心稳定、光束指向性一致,同时该光束具有更高的可聚焦功率和能量集中度。
3、本发明中的装置,结构紧凑,成本低,效果高。
附图说明
图1为本发明的基于透射式机械调制的光束光轴自稳装置的结构示意图一,其中,透射元件为道威棱镜;
图2为本发明的基于透射式机械调制的光束光轴自稳装置的结构示意图二,其中,透射元件为两个成对设置的光楔;
图3为本发明的基于透射式机械调制的光束光轴自稳装置的结构示意图三,其中,透射元件为两个成对设置的透射式体布拉格光栅;
图4为本发明的基于透射式机械调制的光束光轴自稳装置的结构示意图四,其中,透射元件为两个成对设置的闪耀光栅;
图5为本发明的基于透射式机械调制的光束光轴自稳装置的结构示意图五,其中,透射元件为圆柱镜;
图6为圆柱镜的结构示意图;
图7为“凸-凸”透镜组合的扩束准直系统;
图8为“凹-凸”透镜组合的扩束准直系统。
图中标号说明:1、激光器;2、第一扩束准直系统;3、1/4波片;4、道威棱镜;5、第二扩束准直系统;6、光楔;7、透射式体布拉格光栅;8、闪耀光栅;9、圆柱镜。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
参照图1-图5所示,本发明的公开了一种基于透射式机械调制的光束光轴自稳装置,包括1/4波片3、透射元件和驱动源,驱动源驱动透射元件以光轴为轴线均速自转;入射光经1/4波片3调制后射入透射元件,驱动源带动透射元件自转以带动光束旋转,获得光束指向性一致的出射光。本发明的工作原理是:本发明利用机械调制的方法,即光束的相位随时间高速运动,使得光在传输过程中经过光束口径内的每个部分,保证光束在传输过程中的相位延迟保持一致。该光束的焦斑质心稳定、光束指向性一致,同时该光束具有更高的可聚焦功率和能量集中度。
激光器11发出激光束,当激光束在长距离在不均匀介质中传输后,可通过 本发明中的自稳装置实现光束自稳,获得质心稳定,光束指向性一致的光束。
如图1所示,透射元件可为道威棱镜4,道威棱镜4的底角为45°。当透射元件为道威棱镜4时,可以补偿光束转动过程中像的倾斜。
如图2所示,透射元件可包括两个成对设置的光楔6,两个光楔6的形状和大小相同,两个光楔6中心对称设置且相对固定,经1/4波片3调制后的光束垂直于光楔6入射。光楔6组合在一起使用,二者产生不同的偏向角,可补偿小角度的的偏差。
如图3所示,透射元件可包括两个成对设置的透射式体布拉格光栅7,两个体布拉格光栅的周期和尺寸相等,两个体布拉格光栅中心对称放置且相对固定,经1/4波片3调制后的光束垂直于体布拉格光栅入射。透射式体布拉格光栅7可以作为滤除从激光器1出射光束的中高频成份,起到改善发射光束的光束质量。
如图4所示,透射元件可包括两个成对设置的闪耀光栅8,两个闪耀光栅8的周期、槽形角和尺寸相等,两个闪耀光栅8中心对称设置且相对固定,经1/4波片3调制后的光束垂直于闪耀光栅8入射。闪耀光栅8可使特定波段的某一级光谱透射,从而对光束进行滤波。
如图5所示,透射元件可为圆柱镜9,圆柱镜9的两个端面相对于圆柱镜9对称设置,圆柱镜9的端面与圆柱镜9的侧面的夹角为30°-60°,经1/4波片3调制后的光束从圆柱镜9的一端面入射,并从圆柱镜9的另一端面出射。圆柱镜9体积小,结构紧凑,方便安装。
本发明中,驱动源可为空心轴电机。空心轴电机便于安装透射元件,以此实现透射元件绕光轴转动。
参照图7和图8所示,本发明还包括对光束进行扩束准直的第一扩束准直系统2,入射光经第一扩束准直系统2后进入1/4波片3。第一扩束准直系统2包括第一凸透镜和第二凸透镜,第一凸透镜与第二凸透镜的距离等于第一凸透 镜的焦距与第二凸透镜的焦距之和。即第一扩束准直系统2为“凸-凸”透镜组合。在另一实施例中,第一扩束准直系统2包括第一凹透镜和第三凸透镜,第一凹透镜和第三凸透镜的距离之和等于第三凸透镜的焦距减去第一凹透镜的焦距,即第二扩束准直系统5为“凹-凸”透镜组合。
本发明还包括对光束进行扩束准直的第二扩束准直系统5,从透射元件射出的光线经第二扩束准直系统5射出。第二扩束准直系统5也可为“凸-凸”透镜组合或“凹-凸”透镜组合。第二扩束准直系统5包括第四凸透镜和第五凸透镜,通过第四凸透镜和第五凸透镜的组合实现光束扩束。在另一实施例中,第二扩束准直系统5也可包括第二凹透镜和第六凸透镜,通过第二凹透镜和第六凸透镜组合,实现光束扩束。第二扩束准直系统5的扩束和准直原理与第一扩束准直系统2相同。
以波长为532nm的连续激光器为例,激光经第一扩束准直系统2后入射到1/4波片3上的光斑直径为5mm(本实施案例中仅以圆形光斑为例,但其形状不限于圆形,可以为方形或者其他形状),以图1所示的装置为例。经1/4波片3的光束入射到道威棱镜4上,平台的转动速度约2万转/分钟,电机供电频率为50Hz,从道威棱镜4出射的光束经第二扩束准直系统5控制出射光束的光斑尺寸和发散角。
本发明公开了一种基于透射式机械调制的光束光轴自稳方法,包括以下步骤:
步骤一、通过1/4波片3对入射光进行相位调制,获得调制后的光束;
步骤二、通过绕光轴自转的透射元件对调制后的光束进行处理,获得光束指向性一致的出射光。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种基于透射式机械调制的光束光轴自稳装置,其特征在于,包括1/4波片、透射元件和驱动源,所述驱动源驱动所述透射元件以光轴为轴线均速自转;入射光经1/4波片调制后射入透射元件,所述驱动源带动所述透射元件自转以带动光束旋转,获得光束指向性一致的出射光。
  2. 如权利要求1所述的基于透射式机械调制的光束光轴自稳装置,其特征在于,所述透射元件为道威棱镜,所述道威棱镜的底角为45°。
  3. 如权利要求1所述的基于透射式机械调制的光束光轴自稳装置,其特征在于,所述透射元件包括两个成对设置的光楔,两个所述光楔的形状和大小相同,两个所述光楔中心对称设置且相对固定,经1/4波片调制后的光束垂直于光楔入射。
  4. 如权利要求1所述的基于透射式机械调制的光束光轴自稳装置,其特征在于,所述透射元件包括两个成对设置的透射式体布拉格光栅,两个所述体布拉格光栅的周期和尺寸相等,两个所述体布拉格光栅中心对称放置且相对固定,经1/4波片调制后的光束垂直于体布拉格光栅入射。
  5. 如权利要求1所述的基于透射式机械调制的光束光轴自稳装置,其特征在于,所述透射元件包括两个成对设置的闪耀光栅,两个所述闪耀光栅的周期、槽形角和尺寸相等,两个所述闪耀光栅中心对称设置且相对固定,经1/4波片调制后的光束垂直于闪耀光栅入射。
  6. 如权利要求1所述的基于透射式机械调制的光束光轴自稳装置,其特征在于,所述透射元件为圆柱镜,所述圆柱镜的两个端面相对于所述圆柱镜对称设置,所述圆柱镜的端面与所述圆柱镜的侧面的夹角为30°-60°,经1/4波片调制后的光束从所述圆柱镜的一端面入射,并从所述圆柱镜的另一端面出射。
  7. 如权利要求1所述的基于透射式机械调制的光束光轴自稳装置,其特征在于,所述驱动源为空心轴电机。
  8. 如权利要求1所述的基于透射式机械调制的光束光轴自稳装置,其特征在于,还包括对光束进行扩束准直的第一扩束准直系统,入射光经所述第一扩束准直系统后进入1/4波片。
  9. 如权利要求1所述的基于透射式机械调制的光束光轴自稳装置,其特征在于,还包括对光束进行扩束准直的第二扩束准直系统,从所述透射元件射出的光线经所述第二扩束准直系统射出。
  10. 一种基于透射式机械调制的光束光轴自稳方法,其特征在于,包括以下步骤:
    通过1/4波片对入射光进行相位调制,获得调制后的光束;
    通过绕光轴自转的透射元件对调制后的光束进行处理,获得光束指向性一致的出射光。
PCT/CN2021/073335 2021-01-14 2021-01-22 基于透射式机械调制的光束光轴自稳装置及自稳方法 WO2022151523A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110049305.1A CN112698513A (zh) 2021-01-14 2021-01-14 基于透射式机械调制的光束光轴自稳装置及自稳方法
CN202110049305.1 2021-01-14

Publications (1)

Publication Number Publication Date
WO2022151523A1 true WO2022151523A1 (zh) 2022-07-21

Family

ID=75514836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073335 WO2022151523A1 (zh) 2021-01-14 2021-01-22 基于透射式机械调制的光束光轴自稳装置及自稳方法

Country Status (2)

Country Link
CN (1) CN112698513A (zh)
WO (1) WO2022151523A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117092811A (zh) * 2023-10-18 2023-11-21 中国工程物理研究院激光聚变研究中心 一种基于旋转双光楔的光束偏折装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113092446A (zh) * 2021-05-21 2021-07-09 厦门大学 基于道威棱镜的90度拉曼信号收集平面光路系统
US20240052757A1 (en) * 2022-08-11 2024-02-15 Raytheon Technologies Corporation Detection of gas turbine engine blade abnormalities based on light reflections

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2244219Y (zh) * 1995-11-03 1997-01-01 浙江大学 全角度ccd条码扫描器
CN101382654A (zh) * 2008-09-23 2009-03-11 北京理工大学 一种可补偿偏振引起的强度变化的光束旋转装置及方法
CN202062087U (zh) * 2010-12-27 2011-12-07 中国科学院西安光学精密机械研究所 一种实现道威棱镜反射面轴线与旋转轴平行的系统
CN104148802A (zh) * 2014-08-04 2014-11-19 北京万恒镭特机电设备有限公司 光束形成装置及其形成方法
JP2020165840A (ja) * 2019-03-29 2020-10-08 株式会社トプコン ガイド光照射装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2244219Y (zh) * 1995-11-03 1997-01-01 浙江大学 全角度ccd条码扫描器
CN101382654A (zh) * 2008-09-23 2009-03-11 北京理工大学 一种可补偿偏振引起的强度变化的光束旋转装置及方法
CN202062087U (zh) * 2010-12-27 2011-12-07 中国科学院西安光学精密机械研究所 一种实现道威棱镜反射面轴线与旋转轴平行的系统
CN104148802A (zh) * 2014-08-04 2014-11-19 北京万恒镭特机电设备有限公司 光束形成装置及其形成方法
JP2020165840A (ja) * 2019-03-29 2020-10-08 株式会社トプコン ガイド光照射装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117092811A (zh) * 2023-10-18 2023-11-21 中国工程物理研究院激光聚变研究中心 一种基于旋转双光楔的光束偏折装置
CN117092811B (zh) * 2023-10-18 2023-12-22 中国工程物理研究院激光聚变研究中心 一种基于旋转双光楔的光束偏折装置

Also Published As

Publication number Publication date
CN112698513A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
WO2022151523A1 (zh) 基于透射式机械调制的光束光轴自稳装置及自稳方法
JP3089017B2 (ja) 集束鏡の組合せを有する高出力レーザ装置
US7970040B1 (en) Apparatus for incoherent combining of high power lasers for long-range directed-energy applications
CN110573119A (zh) 用于在光学材料中写入折射率变化的光束多路复用器
JP2013503751A (ja) 少なくとも5mmの周辺厚さを有するZnSレンズを備えるレーザー集束ヘッド、およびそのような集束ヘッドを用いた方法およびレーザー切削ユニット
US20190346737A1 (en) Supercontinuum coherent light source
US4192573A (en) Variable power attenuator for light beams
CA2340913A1 (en) Apparatus for manufacturing long-period fiber gratings and apparatus for manufacturing two-band long-period fiber gratings using the same
Linslal et al. Challenges in coherent beam combining of high power fiber amplifiers: a review
KR101400512B1 (ko) 쳐프 펄스 증폭 시스템에서 회절격자 기반 펄스 확장기
Zavelani-Rossi et al. High-Intensity Lasers for Nuclear and Physical Applications
CN213814159U (zh) 基于透射式机械调制的光束光轴自稳装置及光学系统
US11975405B2 (en) System and method laser for processing of materials
CN116526275A (zh) 基于凹球面体镜片与多通腔的超短脉冲产生装置及方法
Yoshida et al. YAG laser perfomance improved by stimulated Brillouin scattering phase conjugation mirror in Thomson scattering diagnostics at JT-60
Laskin et al. Refractive field mapping beam shaping optics: important features for a right choice
US5790584A (en) Highly repetitive laser employing a rotating wedge
US20230152600A1 (en) Beam optical axis self-stabilizing device and method based on reflection mechanical modulation
CN213814139U (zh) 基于反射式机械调制的光束光轴自稳装置及光学系统
Laskin et al. Applying of refractive spatial beam shapers with scanning optics
CA2076735A1 (en) Stimulated raman laser or amplifier using axicon pumping
Laskin et al. Creating round and square flattop laser spots in microprocessing systems with scanning optics
Liu et al. A remote laser focusing system with spatial light modulator
JPH07188774A (ja) 方向性電磁鋼板の鉄損改善処理装置
CN112505934B (zh) 一种相干度和偏振度可调的光源系统及其调控方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918722

Country of ref document: EP

Kind code of ref document: A1