WO2022151446A1 - 物理下行控制信道的传输方法及相关装置 - Google Patents

物理下行控制信道的传输方法及相关装置 Download PDF

Info

Publication number
WO2022151446A1
WO2022151446A1 PCT/CN2021/072331 CN2021072331W WO2022151446A1 WO 2022151446 A1 WO2022151446 A1 WO 2022151446A1 CN 2021072331 W CN2021072331 W CN 2021072331W WO 2022151446 A1 WO2022151446 A1 WO 2022151446A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
pdcch
domain resource
time
network device
Prior art date
Application number
PCT/CN2021/072331
Other languages
English (en)
French (fr)
Inventor
刘凤威
徐明慧
张佳胤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023542882A priority Critical patent/JP2024502661A/ja
Priority to EP21918650.9A priority patent/EP4266788A4/en
Priority to CN202180090729.0A priority patent/CN116762442A/zh
Priority to CA3205376A priority patent/CA3205376A1/en
Priority to PCT/CN2021/072331 priority patent/WO2022151446A1/zh
Priority to BR112023014315A priority patent/BR112023014315A2/pt
Publication of WO2022151446A1 publication Critical patent/WO2022151446A1/zh
Priority to US18/352,888 priority patent/US20230362948A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the technical field of wireless local area networks, and in particular, to a method and related apparatus for transmitting a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • a large sub-carrier spacing such as 240 kHz, 480 kHz, 960 kHz or even 1920 kHz sub-carrier spacing is proposed, which helps to increase the maximum number of fast Fourier transform (fast fourier transformation, FFT) points, and meet the requirements for data demodulation. increasing demands.
  • FFT fast fourier transformation
  • the scheduling of the shared channel in the new generation wireless communication system is time slot (14 Orthogonal Frequency Division Multiplexing (OFDM) symbols) or mini-slot (2 ⁇ 13) in time. OFDM symbols), the duration of the slot is determined by the sub-carrier spacing (Sub-Carrier Spacing, SCS), the larger the sub-carrier spacing, the shorter the duration of the slot.
  • OFDM symbols 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols
  • mini-slot 2 ⁇ 13
  • OFDM symbols Orthogonal Frequency Division Multiplexing
  • SCS sub-Carrier Spacing
  • the frame is defined as 10ms.
  • Monitor physical downlink control channel (PDCCH) Monitor physical downlink control channel (PDCCH) .
  • the duration of one time slot is significantly shortened. If the same PDCCH monitoring period and monitoring duration are configured as when the subcarrier spacing is 120kHz, the subcarrier When the carrier spacing is 480kHz, the monitoring frequency of PDCCH is 4 times that when the subcarrier spacing is 120kHz, the monitoring interval of multiple continuous monitoring is 1/4 of 120kHz, and the monitoring frequency of 960kHz is 8 times that of 120k. The interval is 1/8 of 120k, which puts forward higher requirements on the monitoring capability of the terminal equipment. In the related art, multi-slot monitoring is proposed, that is, the number of time slots between two adjacent monitoring intervals in one monitoring period is increased.
  • Multi-slot monitoring can increase the monitoring interval for two consecutive monitoring in one monitoring period. If the number of PDCCH symbols sent at one time is limited to 3, the number of PDCCHs that can be monitored is limited, and it cannot guarantee to serve enough users.
  • the number of terminals connected to the PDCCH needs to increase the number of PDCCHs, such as multiplying the time domain symbols for sending PDCCH from a maximum of 3 to a maximum of 12 or a maximum of 24 to maintain the occupied symbols for monitoring PDCCH in multiple time slots Therefore, the number of symbols used for monitoring the PDCCH needs to be increased, which increases the complexity of monitoring the PDCCH by the terminal equipment.
  • the embodiments of the present application provide a method and a related apparatus for transmitting a physical downlink control channel, which can serve enough users in a large subcarrier scenario, and can also avoid increasing the complexity of PDCCH monitoring by terminal equipment.
  • the present application provides a method for transmitting a physical downlink control channel, including:
  • the network device sends a resource configuration, where the resource configuration indicates a time domain resource used by the network device to send the physical downlink control channel PDCCH;
  • the network device sends the PDCCH of the first terminal device at the first time domain resource in the time domain resources used for the network device to send the PDCCH, and at the second time in the time domain resources used for the network device to send the PDCCH
  • the domain resource sends the PDCCH of the second terminal device.
  • the PDCCH is sent to different terminal devices in different time domain resources, so that when the number of symbols used for the network device to send the PDCCH is increased to meet the needs of multiple users, one terminal device only needs to be used for Monitoring the PDCCH on part of the time domain resources of the time domain resources for sending the PDCCH can also avoid increasing the complexity of monitoring the PDCCH by the terminal equipment and improve the efficiency of multi-slot scheduling.
  • the location of the first time domain resource may be sent by the network device to the first terminal device, or may be obtained by the first terminal device and the network device in an agreed manner.
  • the location of the second time domain resource may be sent by the network device to the second terminal device, or may be obtained by the second terminal device and the network device in an agreed manner.
  • the symbols of the first time domain resource are consecutive, and the symbols of the second time domain resource are also consecutive.
  • the symbols of a grouped time domain resource are all consecutive.
  • the symbols of the first time domain resources are spaced, and the symbols of the second time domain resources are also spaced.
  • the symbols of the first time domain resource and the symbols of the second time domain resource are distributed in a comb-like interval. In this way, the time span of the first time domain resource can be increased, and the time span of the second time domain resource can also be increased, the robustness of monitoring the PDCCH under the time-varying channel can be improved, and the probability of the terminal device successfully monitoring the PDCCH can be improved.
  • the resource configuration further includes a first time-domain resource configuration
  • the first time-domain resource configuration includes a start symbol of the first time-domain resource and a number of symbols of the first time-domain resource.
  • the first terminal device can determine the location of the first time domain resource according to the first time domain resource configuration, and monitor the PDCCH in the first time domain resource.
  • the resource configuration is carried in a search space field and/or a control-resource set (CORESET) field.
  • CORESET control-resource set
  • the configuration of the starting symbol of the first time domain resource is carried in the first field of the search space, the number of symbols in the first field is 14*S max , and S max is a PDCCH monitoring The maximum number of slots to span.
  • the first field can indicate the absolute position of the start symbol of the first time domain resource in a PDCCH monitoring span, and the flexibility of the position of the first time domain resource is high, which also enables the first terminal to directly obtain the first field according to the first field.
  • the position of the start symbol of the first time domain resource is carried in the first field of the search space, the number of symbols in the first field is 14*S max , and S max is a PDCCH monitoring The maximum number of slots to span.
  • the configuration of the start symbol of the first time domain resource is carried in the second field of the search space, the length of the second field is S max , and S max is the The maximum number of time slots included in the time domain resource of the device sending PDCCH.
  • the first symbol of the first time domain resource can only be the first symbol of a time slot.
  • the second field only needs to indicate the position of the time slot where the first resource is located in the time domain resource used by the network device to send the PDCCH, increase the indication granularity, and shorten the configuration of the start symbol used to indicate the first time domain resource. field length, thereby helping to save signaling overhead.
  • the first resource configuration includes an offset corresponding to the first time domain resource, and the offset indicates that a start symbol of the first time domain resource is used in the network device The start symbol of the time domain resource for transmitting the PDCCH.
  • the network device realizes indicating the start symbol of the first time domain resource by indicating the offset corresponding to the first time domain resource.
  • the first terminal device can obtain the start symbol of the first time domain resource according to the offset.
  • the search space or CORESET includes a field indicating the offset.
  • the first terminal device can obtain the offset according to the field, thereby obtaining the start symbol of the first time domain resource.
  • the search space includes a first CORESET set associated with the search space, the first CORESET set includes the offset, and the CORESET includes an indicator indicating the first CORESET Set of numbered fields.
  • the offset is indicated by the existing field, which helps to reduce the indication overhead.
  • the first time domain resource is determined according to one or more of an identifier of the first terminal device, a time slot index, or the number of monitoring times in a current period. In this way, the overhead of the network device indicating the first time domain resource configuration to the first terminal device can be saved.
  • the number of symbols of the first time domain resource is different from the number of symbols of the second time domain resource. In this way, the grouping of the time domain resources used by the network device to send the PDCCH is more flexible, so that it can better adapt to the actual demand.
  • the number of symbols of the first time domain resource is positively correlated with the aggregation level corresponding to the first time domain resource.
  • the network device and the first terminal device can determine the location of the first time domain resource according to the aggregation level.
  • the network device and the first terminal device can determine the aggregation level according to the location of the first time domain resource, which helps to reduce signaling overhead.
  • the symbols of the first time domain resource belong to one time slot. In this way, the first terminal device can be prevented from monitoring the PDCCH across time slots, thereby reducing the complexity of monitoring the PDCCH by the terminal device.
  • the embodiments of the present application provide a method for transmitting a PDCCH, including:
  • the terminal device receives a resource configuration, where the resource configuration includes a time domain resource for the network device to send the PDCCH;
  • the terminal device monitors the PDCCH of the terminal device in part of the time domain resources of the time domain resources used by the network device to send the PDCCH.
  • the terminal device only needs to monitor the PDCCH on part of the time domain resources used for sending the PDCCH, so that when the number of symbols used for the network device to send the PDCCH increases to meet the needs of multiple users, It can also avoid increasing the complexity of monitoring the PDCCH by the terminal equipment.
  • the location of some time domain resources may be sent by the network device to the terminal device, or may be obtained by the terminal device and the network device in an agreed manner.
  • the resource configuration further includes a first resource configuration indicating the partial time domain resource, the first time domain resource configuration includes a start symbol of the partial time domain resource and the partial time domain resource The number of symbols for the resource.
  • the terminal device can determine the location of the first time domain resource according to the first time domain resource configuration, and monitor the PDCCH in the first time domain resource.
  • the resource configuration is carried in a search space field and/or a CORESET field.
  • the configuration of the starting symbols of the partial time domain resources is carried in the first field of the search space, the number of symbols in the first field is 14*S max , and S max is one PDCCH The maximum number of time slots for the monitoring span.
  • the first field can indicate the absolute position of the start symbol of the first time domain resource in one PDCCH monitoring span, and the flexibility of the position of the first time domain resource is high, which also enables the terminal to directly obtain the first time domain resource according to the first field.
  • the location of the start symbol of the time domain resource is carried in the first field of the search space, the number of symbols in the first field is 14*S max , and S max is one PDCCH The maximum number of time slots for the monitoring span.
  • the first OFDM symbol of the partial time domain resource is the start symbol of a time slot
  • the configuration of the start symbol of the first time domain resource is carried in the first symbol of the search space.
  • the length of the second field is S max
  • S max is the maximum number of time slots of a PDCCH monitoring span.
  • the first symbol of the first time domain resource can only be the first symbol of a time slot.
  • the second field only needs to indicate the position of the time slot where the first resource is located in the time domain resource used by the network device to send the PDCCH, increase the indication granularity, and shorten the configuration of the start symbol used to indicate the first time domain resource. field length, thereby helping to save signaling overhead.
  • the first resource configuration includes an offset corresponding to the first time domain resource, and the offset indicates that a start symbol of the first time domain resource is used in the network device The start symbol of the time domain resource for transmitting the PDCCH.
  • the network device realizes indicating the start symbol of the first time domain resource by indicating the offset corresponding to the first time domain resource.
  • the terminal device can obtain the start symbol of the first time domain resource according to the offset.
  • the search space includes a field indicating the offset.
  • the device can obtain the offset according to the field, so as to obtain the start symbol of the first time domain resource.
  • the search space includes a first CORESET set associated with the search space, the first CORESET set includes the offset, and the CORESET includes an indicator indicating the first CORESET Set of numbered fields.
  • the offset is indicated by the existing field, which helps to reduce the indication overhead.
  • the method before the terminal device monitors the PDCCH of the terminal device in the partial time domain resources of the time domain resources used by the network device to send the PDCCH, the method further includes: the terminal device according to the The partial time domain resources are determined by one or more of the identifier of the terminal device, the time slot index, or the number of monitoring times in the current period.
  • the terminal device does not need to receive the first time domain resource configuration indicating the first time domain resource from the network device, which can save the overhead of the network device indicating the first time domain resource configuration to the first terminal device.
  • the number of symbols of the partial time domain resources is positively correlated with the aggregation level corresponding to the partial time domain resources.
  • the network device and the first terminal device can determine the location of the first time domain resource according to the aggregation level.
  • the network device and the first terminal device can determine the aggregation level according to the location of the first time domain resource, which helps to reduce signaling overhead.
  • the symbols of the partial time domain resources belong to one time slot. In this way, the terminal equipment can be prevented from monitoring the PDCCH across time slots, thereby reducing the complexity of the terminal equipment monitoring the PDCCH.
  • the present application also provides a method for transmitting PDCCH, including:
  • the network device sends a resource configuration, where the resource configuration includes a first time domain resource configuration and a second time domain resource configuration, the first time domain resource configuration indicates the first time domain resource, and the second time domain resource configuration indicates the first time domain resource configuration.
  • the resource configuration includes a first time domain resource configuration and a second time domain resource configuration
  • the first time domain resource configuration indicates the first time domain resource
  • the second time domain resource configuration indicates the first time domain resource configuration.
  • the network device sends the PDCCH to the first terminal device in the first time domain resource, and sends the PDCCH to the second terminal device in the second time domain resource.
  • the time domain resources used for sending PDCCH are divided into first time domain resources and second time domain resources, so that when the number of symbols used for network equipment to send PDCCH increases to meet the needs of multiple users, a terminal The device only needs to monitor the PDCCH on a part of the time domain resources used for transmitting the PDCCH, which can also avoid increasing the complexity of monitoring the PDCCH by the terminal device.
  • the location of the first time domain resource may be sent by the network device to the first terminal device, or may be obtained by the first terminal device and the network device in an agreed manner.
  • the location of the second time domain resource may be sent by the network device to the second terminal device, or may be obtained by the second terminal device and the network device in an agreed manner.
  • the symbols of the first time domain resource are consecutive, and the symbols of the second time domain resource are also consecutive.
  • the symbols of a grouped time domain resource are all consecutive.
  • the symbols of the first time domain resources are spaced, and the symbols of the second time domain resources are also spaced.
  • the symbols of the first time domain resource and the symbols of the second time domain resource are distributed in a comb-like interval. In this way, the time span of the first time domain resource can be increased, and the time span of the second time domain resource can also be increased, the robustness of monitoring the PDCCH under the time-varying channel can be improved, and the probability of the terminal device successfully monitoring the PDCCH can be improved.
  • the resource configuration is carried in a search space field and/or a control-resource set (CORESET) field.
  • CORESET control-resource set
  • the configuration of the starting symbol of the first time domain resource is carried in the first field of the search space, the number of symbols in the first field is 14*S max , and S max is a PDCCH monitoring The maximum number of slots to span.
  • the first field can indicate the absolute position of the start symbol of the first time domain resource in a PDCCH monitoring span, and the flexibility of the position of the first time domain resource is high, which also enables the first terminal to directly obtain the first field according to the first field.
  • the position of the start symbol of the first time domain resource is carried in the first field of the search space, the number of symbols in the first field is 14*S max , and S max is a PDCCH monitoring The maximum number of slots to span.
  • the present application also provides a method for transmitting PDCCH, including:
  • the terminal device receives the first time domain resource configuration from the network device, where the first time domain resource configuration includes the start symbol of the first time domain resource and the number of symbols of the part of the time domain resource; the first time domain resource is used for sending part of the time domain resources in the time domain resources of the PDCCH to the network device;
  • the terminal device monitors the PDCCH in the first time domain resource according to the first time domain resource configuration.
  • the terminal device only needs to monitor the PDCCH on part of the time domain resources used to transmit the PDCCH, thereby better implementing multi-slot scheduling and avoiding increasing the complexity of monitoring the PDCCH by the terminal device.
  • the symbols of the first time domain resource may be continuous or spaced.
  • the configuration of the starting symbol of the first time domain resource is carried in the first field of the search space, the number of symbols in the first field is 14*S max , and S max is a PDCCH monitoring The maximum number of slots to span.
  • the first field can indicate the absolute position of the start symbol of the first time domain resource in a PDCCH monitoring span, and the flexibility of the position of the first time domain resource is high, which also enables the first terminal to directly obtain the first field according to the first field.
  • the position of the start symbol of the first time domain resource is carried in the first field of the search space, the number of symbols in the first field is 14*S max , and S max is a PDCCH monitoring The maximum number of slots to span.
  • an embodiment of the present application further provides a PDCCH transmission apparatus, where the transmission apparatus may be network equipment, or may be used for network equipment.
  • the transmission device includes an input and output unit and a processing unit.
  • the input/output unit may be or may be deployed in a transceiver, a transceiver antenna, an input/output interface, or other units or modules capable of transmitting and receiving information, and the processing unit may be or may be deployed in a processor.
  • Input and output units are used for:
  • the resource configuration indicating a time domain resource for the network device to send the physical downlink control channel PDCCH
  • the PDCCH of the first terminal device is sent in the first time domain resource of the time domain resources used for the network device to send the PDCCH, and the PDCCH of the first terminal device is sent in the second time domain resource of the time domain resources used by the network device to send the PDCCH.
  • Two PDCCH of terminal equipment Two PDCCH of terminal equipment.
  • the PDCCH is sent to different terminal devices in different time domain resources, so that when the number of symbols used for the network device to send the PDCCH is increased to meet the needs of multiple users, one terminal device only needs to be used for Monitoring the PDCCH on part of the time domain resources in which the PDCCH is sent can also avoid increasing the complexity of monitoring the PDCCH by the terminal device.
  • the location of the first time domain resource may be sent by the network device to the first terminal device, or may be obtained by the first terminal device and the network device in an agreed manner.
  • the location of the second time domain resource may be sent by the network device to the second terminal device, or may be obtained by the second terminal device and the network device in an agreed manner.
  • the symbols of the first time domain resource are consecutive, and the symbols of the second time domain resource are also consecutive.
  • the symbols of a grouped time domain resource are all consecutive.
  • the symbols of the first time domain resources are spaced, and the symbols of the second time domain resources are also spaced.
  • the symbols of the first time domain resource and the symbols of the second time domain resource are distributed in a comb-like interval. In this way, the time span of the first time domain resource can be increased, and the time span of the second time domain resource can also be increased, the robustness of monitoring the PDCCH under the time-varying channel can be improved, and the probability of the terminal device successfully monitoring the PDCCH can be improved.
  • the resource configuration further includes a first time-domain resource configuration
  • the first time-domain resource configuration includes a start symbol of the first time-domain resource and a number of symbols of the first time-domain resource.
  • the first terminal device can determine the location of the first time domain resource according to the first time domain resource configuration, and monitor the PDCCH in the first time domain resource.
  • the resource configuration is carried in a search space field and/or a control-resource set (CORESET) field.
  • CORESET control-resource set
  • the configuration of the start symbol of the first time domain resource is carried in the first field of the search space, and the number of symbols in the first field is 14*Smax, and Smax is the length of one PDCCH monitoring span. Maximum number of slots.
  • the first field can indicate the absolute position of the start symbol of the first time domain resource in a PDCCH monitoring span, and the flexibility of the position of the first time domain resource is high, which also enables the first terminal to directly obtain the first field according to the first field.
  • the position of the start symbol of the first time domain resource is carried in the first field of the search space, and the number of symbols in the first field is 14*Smax, and Smax is the length of one PDCCH monitoring span. Maximum number of slots.
  • the configuration of the start symbol of the first time-domain resource is carried in the second field of the search space, and the length of the second field is Smax, and Smax is the value for the network device to send The maximum number of time slots included in the time domain resources of the PDCCH.
  • the first symbol of the first time domain resource can only be the first symbol of a time slot.
  • the second field only needs to indicate the position of the time slot where the first resource is located in the time domain resource used by the network device to send the PDCCH, increase the indication granularity, and shorten the configuration of the start symbol used to indicate the first time domain resource. field length, thereby helping to save signaling overhead.
  • the first resource configuration includes an offset corresponding to the first time domain resource, and the offset indicates that a start symbol of the first time domain resource is used in the network device The start symbol of the time domain resource for transmitting the PDCCH.
  • the network device realizes indicating the start symbol of the first time domain resource by indicating the offset corresponding to the first time domain resource.
  • the first terminal device can obtain the start symbol of the first time domain resource according to the offset.
  • the search space or CORESET includes a field indicating the offset.
  • the first terminal device can obtain the offset according to the field, thereby obtaining the start symbol of the first time domain resource.
  • the search space includes a first CORESET set associated with the search space, the first CORESET set includes the offset, and the CORESET includes an indicator indicating the first CORESET Set of numbered fields.
  • the offset is indicated by the existing field, which helps to reduce the indication overhead.
  • the first time domain resource is determined by the processing unit according to one or more of an identifier of the first terminal device, a time slot index, or the number of monitoring times in a current period. In this way, the overhead of the network device indicating the first time domain resource configuration to the first terminal device can be saved.
  • the number of symbols of the first time domain resource is different from the number of symbols of the second time domain resource. In this way, the grouping of the time domain resources used by the network device to send the PDCCH is more flexible, so that it can better adapt to the actual demand.
  • the number of symbols of the first time domain resource is positively correlated with the aggregation level corresponding to the first time domain resource.
  • the network device and the first terminal device can determine the location of the first time domain resource according to the aggregation level.
  • the network device and the first terminal device can determine the aggregation level according to the location of the first time domain resource, which helps to reduce signaling overhead.
  • the symbols of the first time domain resource belong to one time slot. In this way, the first terminal device can be prevented from monitoring the PDCCH across time slots, thereby reducing the complexity of monitoring the PDCCH by the terminal device.
  • the present application further provides a PDCCH transmission apparatus, where the transmission apparatus may be, but not limited to, terminal equipment, or may be used but not limited to terminal equipment.
  • the transmission device may include an input-output unit and a processing unit.
  • the input/output unit may be or may be deployed in a transceiver, a transceiver antenna, an input/output interface, or other units or modules capable of transmitting and receiving information, and the processing unit may be or may be deployed in a processor.
  • Input and output units are used for:
  • the resource configuration including time domain resources for the network device to send the PDCCH
  • the PDCCH of the terminal device is monitored in part of the time domain resources of the time domain resources used by the network device to send the PDCCH.
  • the terminal device only needs to monitor the PDCCH on part of the time domain resources used for sending the PDCCH, so that when the number of symbols used for the network device to send the PDCCH increases to meet the needs of multiple users, The complexity of monitoring the PDCCH by the terminal equipment can be avoided.
  • the location of some time domain resources may be sent by the network device to the terminal device, or may be obtained by the terminal device and the network device in an agreed manner.
  • the resource configuration further includes a first resource configuration indicating the partial time domain resource, the first time domain resource configuration includes a start symbol of the partial time domain resource and the partial time domain resource The number of symbols for the resource.
  • the terminal device can determine the location of the first time domain resource according to the first time domain resource configuration, and monitor the PDCCH in the first time domain resource.
  • the resource configuration is carried in a search space field and/or a CORESET field.
  • the configuration of the start symbols of the partial time domain resources is carried in the first field of the search space, the number of symbols in the first field is 14*Smax, and Smax is a PDCCH monitoring span maximum number of slots.
  • the first field can indicate the absolute position of the start symbol of the first time domain resource in one PDCCH monitoring span, and the flexibility of the position of the first time domain resource is high, which also enables the terminal to directly obtain the first time domain resource according to the first field.
  • the location of the start symbol of the time domain resource is carried in the first field of the search space, the number of symbols in the first field is 14*Smax, and Smax is a PDCCH monitoring span maximum number of slots.
  • the first OFDM symbol of the partial time domain resource is the start symbol of a time slot
  • the configuration of the start symbol of the first time domain resource is carried in the first symbol of the search space.
  • the length of the second field is Smax
  • Smax is the maximum number of time slots in one PDCCH monitoring span.
  • the first symbol of the first time domain resource can only be the first symbol of a time slot.
  • the second field only needs to indicate the position of the time slot where the first resource is located in the time domain resource used by the network device to send the PDCCH, increase the indication granularity, and shorten the configuration of the start symbol used to indicate the first time domain resource. field length, thereby helping to save signaling overhead.
  • the first resource configuration includes an offset corresponding to the first time domain resource, and the offset indicates that a start symbol of the first time domain resource is used in the network device The start symbol of the time domain resource for transmitting the PDCCH.
  • the network device realizes indicating the start symbol of the first time domain resource by indicating the offset corresponding to the first time domain resource.
  • the terminal device can obtain the start symbol of the first time domain resource according to the offset.
  • the search space includes a field indicating the offset.
  • the device can obtain the offset according to the field, so as to obtain the start symbol of the first time domain resource.
  • the search space includes a first CORESET set associated with the search space, the first CORESET set includes the offset, and the CORESET includes an indicator indicating the first CORESET Set of numbered fields.
  • the offset is indicated by the existing field, which helps to reduce the indication overhead.
  • the processing unit before the terminal device monitors the PDCCH of the terminal device in a part of the time domain resources of the time domain resources used by the network device to send the PDCCH, the processing unit is configured to: according to the terminal device The part of the time domain resources is determined by one or more of the identifier of the , the time slot index, or the number of monitoring times in the current period.
  • the terminal device does not need to receive the first time domain resource configuration indicating the first time domain resource from the network device, which can save the overhead of the network device indicating the first time domain resource configuration to the first terminal device.
  • the number of symbols of the partial time domain resources is positively correlated with the aggregation level corresponding to the partial time domain resources.
  • the network device and the first terminal device can determine the location of the first time domain resource according to the aggregation level.
  • the network device and the first terminal device can determine the aggregation level according to the location of the first time domain resource, which helps to reduce signaling overhead.
  • the symbols of the partial time domain resources belong to one time slot. In this way, the terminal equipment can be prevented from monitoring the PDCCH across time slots, thereby reducing the complexity of the terminal equipment monitoring the PDCCH.
  • an embodiment of the present application further provides a PDCCH transmission apparatus, where the transmission apparatus may be network equipment, or may be used for network equipment.
  • the transmission device includes an input and output unit and a processing unit.
  • the input/output unit may be or may be deployed in a transceiver, a transceiver antenna, an input/output interface, or other units or modules capable of transmitting and receiving information, and the processing unit may be or may be deployed in a processor.
  • Input and output units are used for:
  • the resource configuration includes a first time-domain resource configuration and a second time-domain resource configuration
  • the first time-domain resource configuration indicates a first time-domain resource
  • the second time-domain resource configuration indicates a second time-domain resource domain resources
  • the PDCCH is sent to the first terminal device in the first time domain resource, and the PDCCH is sent to the second terminal device in the second time domain resource.
  • the time domain resources used for sending PDCCH are divided into first time domain resources and second time domain resources, so that when the number of symbols used for network equipment to send PDCCH increases to meet the needs of multiple users, a terminal The device only needs to monitor the PDCCH on a part of the time domain resources used for transmitting the PDCCH, which can also avoid increasing the complexity of the terminal device monitoring the PDCCH.
  • the location of the first time domain resource may be sent by the network device to the first terminal device, or may be obtained by the first terminal device and the network device in an agreed manner.
  • the location of the second time domain resource may be sent by the network device to the second terminal device, or may be obtained by the second terminal device and the network device in an agreed manner.
  • the symbols of the first time domain resource are consecutive, and the symbols of the second time domain resource are also consecutive.
  • the symbols of a grouped time domain resource are all consecutive.
  • the symbols of the first time domain resources are spaced, and the symbols of the second time domain resources are also spaced.
  • the symbols of the first time domain resource and the symbols of the second time domain resource are distributed in a comb-like interval. In this way, the time span of the first time domain resources can be increased, and the time span of the second time domain resources can also be increased, the robustness of monitoring the PDCCH under the time-varying channel can be improved, and the probability of the terminal device successfully monitoring the PDCCH can be improved.
  • the resource configuration is carried in a search space field and/or a control-resource set (CORESET) field.
  • CORESET control-resource set
  • the configuration of the starting symbol of the first time domain resource is carried in the first field of the search space, the number of symbols in the first field is 14*S max , and S max is a PDCCH monitoring The maximum number of slots to span.
  • the first field can indicate the absolute position of the start symbol of the first time domain resource in a PDCCH monitoring span, and the flexibility of the position of the first time domain resource is high, which also enables the first terminal to directly obtain the first field according to the first field.
  • the position of the start symbol of the first time domain resource is carried in the first field of the search space, the number of symbols in the first field is 14*S max , and S max is a PDCCH monitoring The maximum number of slots to span.
  • the present application further provides a PDCCH transmission apparatus, where the transmission apparatus may be but not limited to terminal equipment, or may be used for but not limited to terminal equipment.
  • the transmission device may include an input-output unit and a processing unit.
  • the input/output unit may be or may be deployed in a transceiver, a transceiver antenna, an input/output interface, or other units or modules capable of transmitting and receiving information, and the processing unit may be or may be deployed in a processor.
  • Input and output units are used for:
  • the first time-domain resource configuration includes a start symbol of the first time-domain resource and the number of symbols of the partial time-domain resources; the first time-domain resource is used for all Part of the time domain resources in the time domain resources of the PDCCH sent by the network device;
  • the PDCCH is monitored in the first time domain resource.
  • a terminal device when the number of symbols used by the network device to send the PDCCH increases to meet the needs of multiple users, a terminal device only needs to monitor the PDCCH on part of the time domain resources used for sending the PDCCH, and it can also Avoid increasing the complexity of terminal equipment monitoring PDCCH.
  • the symbols of the first time domain resource may be continuous or spaced.
  • the configuration of the start symbol of the first time domain resource is carried in the first field of the search space, and the number of symbols in the first field is 14*Smax, and Smax is the length of one PDCCH monitoring span. Maximum number of slots.
  • the first field can indicate the absolute position of the start symbol of the first time domain resource in a PDCCH monitoring span, and the flexibility of the position of the first time domain resource is high, which also enables the first terminal to directly obtain the first field according to the first field.
  • the position of the start symbol of the first time domain resource is carried in the first field of the search space, and the number of symbols in the first field is 14*Smax, and Smax is the length of one PDCCH monitoring span. Maximum number of slots.
  • the present application provides a communication device, the communication device includes a processor, the processor is coupled to a memory, and when the processor executes a computer program or an instruction in the memory, the method of any one of the embodiments of the first aspect is executed. .
  • the apparatus further includes a memory.
  • the apparatus further includes a communication interface to which the processor is coupled.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the transceiver may include a transmitter (transmitter) and a receiver (receiver).
  • the communication device is a network device or a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, etc. on the chip or a chip system.
  • a processor may also be embodied as a processing circuit or a logic circuit.
  • the present application provides a communication system, where the communication system includes the transmission device of the fifth aspect and the transmission device of the sixth aspect, or the communication system includes the transmission device of the seventh aspect and the transmission device of the eighth aspect. transmission device.
  • the present application provides a computer program product.
  • the computer program product includes: a computer program (also referred to as code, or instructions), which, when the computer program is executed, causes the computer to execute the above-mentioned first to fourth aspects A method in any of the possible implementations of an aspect.
  • the present application provides a computer-readable storage medium, where the computer-readable medium stores a computer program (also referred to as code, or instruction), when it is run on a computer, so that the computer executes the above-mentioned first aspect
  • a computer program also referred to as code, or instruction
  • the present application further provides a circuit, including: a processor and an interface, configured to execute a computer program or instruction stored in a memory, to execute any one of the possible implementations of the first aspect to the fourth aspect. method.
  • FIG. 1 is a schematic diagram of a network architecture of a communication system involved in an embodiment of the application
  • FIG. 2A is a schematic structural diagram of a network device according to an embodiment of the present application.
  • 2B is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a scenario of transmitting PDCCH involved in the present application.
  • FIG. 4A is a schematic diagram of a scenario of sending a PDCCH according to an embodiment of the present application.
  • 4B is a schematic flowchart of a PDCCH transmission method according to an embodiment of the present application.
  • 5A is a schematic diagram of another scenario of sending a PDCCH provided by an embodiment of the present application.
  • FIG. 5B is a schematic diagram of another scenario of sending a PDCCH according to an embodiment of the present application.
  • 6A is a schematic diagram of another scenario of sending a PDCCH provided by an embodiment of the present application.
  • FIG. 6B is a schematic diagram of another scenario of sending a PDCCH according to an embodiment of the present application.
  • FIG. 7A is a schematic diagram of another scenario of sending a PDCCH according to an embodiment of the present application.
  • FIG. 7B is a schematic diagram of another scenario of sending a PDCCH according to an embodiment of the present application.
  • FIG. 8A is a schematic diagram of the numbering of CCE groups provided in an embodiment of the present application.
  • 8B is a schematic diagram of the numbering of CCE groups provided in an embodiment of the present application.
  • 9A is a schematic diagram of another scenario of sending a PDCCH provided by an embodiment of the present application.
  • FIG. 9B is a schematic diagram of another scenario of sending a PDCCH according to an embodiment of the present application.
  • FIG. 9C is a schematic diagram of another scenario of sending a PDCCH according to an embodiment of the present application.
  • FIG. 9D is a schematic diagram of another scenario of sending a PDCCH according to an embodiment of the present application.
  • FIG. 10A is a schematic diagram of another scenario for sending a PDCCH according to an embodiment of the present application.
  • FIG. 10B is a schematic diagram of another scenario for sending a PDCCH according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a PDCCH transmission apparatus provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another PDCCH transmission apparatus provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another PDCCH transmission apparatus provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another PDCCH transmission apparatus provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a network architecture of a communication system according to an embodiment of the present application.
  • the communication system includes a network device and a plurality of terminal devices (such as the terminal device 121 and the terminal device 122 in FIG. 1 ).
  • the terminal device 121 and the terminal device 122 may communicate with the network device 111 .
  • the communication system may be a communication system supporting a fourth generation (4G) access technology, such as a long term evolution (LTE) access technology; or, the communication system may also be a communication system supporting a fifth generation (5th generation) access technology.
  • 4G fourth generation
  • 5G fifth generation
  • generation, 5G) access technology communication system such as new radio (NR) access technology
  • NR new radio
  • third generation, 3G third generation
  • UMTS universal mobile telecommunications system
  • the communication system can also be a second generation (second generation, 2G) access technology communication system, such as global system for mobile communications (global system for mobile communications, GSM) access technology
  • the communication system may also be a communication system supporting multiple wireless technologies, such as a communication system supporting LTE technology and NR technology.
  • the communication system can also be adapted to future-oriented communication technologies.
  • the network device 111 in FIG. 1 may be a next generation nodeB (gNB), a transmission reception point (TRP), a relay node (relay node) in a 5G or a future generation access technology communication system , access point (access point, AP) and so on.
  • gNB next generation nodeB
  • TRP transmission reception point
  • relay node relay node
  • 5G Fifth Generation
  • AP access point
  • the terminal device in FIG. 1 may be a device that provides voice or data connectivity to users, for example, may also be referred to as user equipment (user equipment, UE), mobile station (mobile station), subscriber unit (subscriber unit), station (station), terminal equipment (terminal equipment, TE), etc.
  • the terminal may be a cellular phone, a personal digital assistant (PDA), a wireless modem, a handheld, a laptop computer, a cordless phone, a wireless Local loop (wireless local loop, WLL) station, tablet computer (pad), etc.
  • devices that can access the communication system, communicate with the network side of the communication system, or communicate with other objects through the communication system can be the terminals in the embodiments of the present application, for example, intelligent transportation Terminals and automobiles in the smart home, household equipment in the smart home, power meter reading instruments in the smart grid, voltage monitoring instruments, environmental monitoring instruments, video monitoring instruments in the smart security network, cash registers, etc.
  • the terminal may communicate with a network device, for example, the network device 111 or the network device 112 . Communication between multiple terminals is also possible. Terminals can be statically fixed or mobile.
  • FIG. 2A is a schematic structural diagram of a network device.
  • the structure of the network device in this embodiment of the present application reference may be made to the structure shown in FIG. 2A .
  • the network device includes at least one processor 1111 , at least one transceiver 1113 , at least one network interface 1114 and one or more antennas 1115 .
  • the network device further includes at least one memory 1112 .
  • the processor 1111, the memory 1112, the transceiver 1113 and the network interface 1114 are connected, for example, through a bus.
  • the antenna 1115 is connected to the transceiver 1113 .
  • the network interface 1114 is used to connect the network device with other communication devices through a communication link, for example, the network device is connected with the core network element 101 through the S1 interface.
  • the connection may include various types of interfaces, transmission lines, or buses, which are not limited in this embodiment.
  • the processor in this embodiment of the present application may include at least one of the following types: a general-purpose central processing unit (CPU), a digital signal processor (DSP), a microprocessor, An application-specific integrated circuit (ASIC), a microcontroller (MCU), a field programmable gate array (FPGA), or an integrated circuit for implementing logic operations .
  • the processor 1111 may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor. At least one processor 1111 may be integrated in one chip or located on multiple different chips.
  • the memory in this embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM) or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM).
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory may also be compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.) , a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, without limitation.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.
  • magnetic disk storage medium or other magnetic storage device or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, without limitation.
  • the memory 1112 may exist independently and be connected to the processor 1111 .
  • the memory 1112 can also be integrated with the processor 1111, for example, in one chip.
  • the memory 1112 can store program codes for implementing the technical solutions of the embodiments of the present application, and is controlled and executed by the processor 1111 .
  • the processor 1111 is configured to execute computer program codes stored in the memory 1112, thereby implementing the technical solutions in the embodiments of the present application.
  • the transceiver 1113 may be used to support the reception or transmission of radio frequency signals between the network device and the terminal, and the transceiver 1113 may be connected to the antenna 1115 .
  • the transceiver 1113 includes a transmitter Tx and a receiver Rx. Specifically, one or more antennas 1115 can receive radio frequency signals, and the receiver Rx of the transceiver 1113 is used to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital The baseband signal or digital intermediate frequency signal is provided to the processor 1111, so that the processor 1111 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 1113 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 1111, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass a The radio frequency signal is transmitted by the antenna or antennas 1115.
  • the receiver Rx can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal. The order of precedence is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, and the up-mixing processing and digital-to-analog conversion processing
  • the sequence of s is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • the transceiver 1113 can also be understood as an input and output unit.
  • the network device 111 may include a baseband unit (baseband unit, BBU), a radio remote unit (radio remote unit, RRU), and an antenna, the BBU is connected to the RRU, and the RRU is connected to the antenna.
  • BBU baseband unit
  • RRU radio remote unit
  • the network device 112 may include a baseband unit (baseband unit, BBU), a radio remote unit (radio remote unit, RRU), and an antenna, the BBU is connected to the RRU, and the RRU is connected to the antenna.
  • BBU baseband unit
  • RRU radio remote unit
  • FIG. 2B it is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the structures of the terminal device 121 and the terminal device 122 may refer to the structure shown in FIG. 2B .
  • the terminal device includes at least one processor 1211 and at least one transceiver 1212 .
  • the terminal device 121 further includes at least one memory 1213 .
  • the processor 1211 , the memory 1213 and the transceiver 1212 are connected.
  • the terminal device 121 may further include an output device 1214 , an input device 1215 and one or more antennas 1216 .
  • the antenna 1216 is connected to the transceiver 1212 , and the output device 1214 and the input device 1215 are connected to the processor 1211 .
  • the transceiver 1212, the memory 1213 and the antenna 1216 can refer to the related description in FIG. 2A to achieve similar functions.
  • the processor 1211 may be a baseband processor or a CPU, and the baseband processor and the CPU may be integrated or separated.
  • the processor 1211 can be used to implement various functions for the terminal device 121, for example, to process communication protocols and communication data, or to control the entire terminal device 121, execute software programs, and process data of software programs; or It is used to assist in the completion of computing processing tasks, such as graphics and image processing or audio processing, etc.; or the processor 1211 is used to implement one or more of the above functions
  • the output device 1214 is in communication with the processor 1211 and can display information in a variety of ways.
  • the output device 1214 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • Input device 1215 is in communication with processor 1211 and can accept user input in a variety of ways.
  • the input device 1215 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • the network device first configures the terminal device with a time domain resource for sending the PDCCH, and the terminal device monitors the time domain resource for sending the PDCCH, obtains the PDCCH, and obtains the related scheduling information of the PDSCH ( For example, a time slot for transmitting PDSCH is scheduled), and then PDSCH is received according to the obtained scheduling information.
  • the absolute duration of a slot is negatively correlated with the subcarrier spacing, that is to say, the larger the subcarrier spacing, the shorter the absolute duration of a slot, then the The absolute duration is also shorter.
  • a PDCCH monitoring span (PDCCH-monitoring span) or monitoring window, including multiple time slots
  • the PDCCH may be transmitted only on part of the time slots in a monitoring span.
  • one PDCCH monitoring span includes 4 time slots; when the subcarrier spacing is 960 kHz, one PDCCH monitoring span includes 8 time slots.
  • the PDCCH monitoring span may also be referred to as a monitoring span. In this application, the monitoring span can also be understood as a monitoring window, and the monitoring span is described in this application.
  • the monitoring period K s as 40 time slots
  • the monitoring offset O s as 10 time slots
  • the monitoring time slot length T s in one monitoring period as 3 time slots, in a single time slot monitoring or monitoring
  • the span includes a single time slot:
  • a frame contains 80 time slots, frame 0 ⁇ 10,11,12 ⁇ , frame 0 ⁇ 50,51,52 ⁇ , frame 1 ⁇ 10,11,12 ⁇ , frame 1 ⁇ 50,51 ,52 ⁇ ... for the terminal equipment to monitor the PDCCH.
  • the value inside " ⁇ " is the number of the time slot.
  • frame 0 ⁇ 10, 11, 12 ⁇ refers to slot 10, slot 11 and slot 12 in frame 0.
  • time slot 10 is a PDCCH monitoring span
  • time slot 11- is a PDCCH monitoring span
  • time slot 12 is a PDCCH monitoring span
  • time slot 50 is a PDCCH monitoring span
  • time slot 51 is a PDCCH monitoring span
  • 52 is a PDCCH monitoring span.
  • a frame contains 320 time slots, frame 0 ⁇ 10,11,12 ⁇ , frame 0 ⁇ 50,51,52 ⁇ , frame 0 ⁇ 90,91,92 ⁇ ,..., frame 0 ⁇ 290, 291, 292 ⁇ , frame 1 ⁇ 10, 11, 12 ⁇ , frame 1 ⁇ 50, 51, 52 ⁇ ... for the terminal equipment to monitor the PDCCH.
  • time slot 10 is a PDCCH monitoring span
  • time slot 11- is a PDCCH monitoring span
  • time slot 12 is a PDCCH monitoring span
  • time slot 50 is a PDCCH monitoring span
  • time slot 51 is a PDCCH monitoring span
  • 52 is a PDCCH monitoring span.
  • the SCS is 960kHz
  • there are 640 time slots in one frame frame 0 ⁇ 10,11,12 ⁇ , frame 0 ⁇ 50,51,52 ⁇ , frame 0 ⁇ 90,91,92 ⁇ ,..., frame 0 ⁇ 610, 611, 612 ⁇ , frame 1 ⁇ 10, 11, 12 ⁇ , frame 1 ⁇ 50, 51, 52 ⁇ ... for the terminal equipment to monitor the PDCCH.
  • the time between braces is 1/4 of 120kHz, and the time between two numbers in brackets is 1/4 of SCS at 120kHz. That is, compared with 120kHz, the large subcarrier spacing significantly increases the monitoring frequency, and the time interval between the first symbols of two adjacent monitoring spans in one monitoring period is significantly shortened, which increases the complexity of the terminal equipment monitoring PDCCH. Therefore, it is proposed to increase the The number of time slots included in the monitoring span of the large subcarrier interval, and the time interval between two adjacent monitoring spans in one monitoring period is increased to reduce the complexity of terminal equipment monitoring PDCCH
  • one frame contains 320 time slots, frame 0 ⁇ 10,14,18 ⁇ , frame0 ⁇ 50,54,58 ⁇ , frame0 ⁇ 90,94,98 ⁇ ,..., frame0 ⁇ 290, 294, 298 ⁇ , frame 1 ⁇ 10, 14, 18 ⁇ , frame 1 ⁇ 50, 54, 58 ⁇ ... for terminal equipment to monitor PDCCH.
  • time slot 10-time slot 13 is a PDCCH monitoring span
  • time slot 14-time slot 17 is a PDCCH monitoring span
  • time slot 18-time slot 21 is a PDCCH monitoring span
  • time slot 50-time slot 53 is a PDCCH monitoring span PDCCH monitoring span
  • time slot 54-time slot 57 is a PDCCH monitoring span
  • time slot 58-time slot 61 is a PDCCH monitoring span. It can be seen that in a scenario where the monitoring span includes multiple time slots, only part of the time slots in a PDCCH monitoring span are used for sending PDCCH, or in a PDCCH monitoring span, only part of the time slots are used for terminal equipment to monitor PDCCH.
  • a frame contains 640 time slots, frame 0 ⁇ 10,18,26 ⁇ , frame 0 ⁇ 50,58,66 ⁇ , frame 0 ⁇ 90,98,106 ⁇ ,..., frame 0 ⁇ 610,618,626 ⁇ , frame 1 ⁇ 10, 18, 26 ⁇ , frame 1 ⁇ 50, 58, 66 ⁇ ... for the terminal equipment to monitor the PDCCH.
  • the PDCCH will not be able to carry a sufficient amount of scheduling information, making it difficult to schedule more users to transmit the user PDSCH. demand.
  • the number of symbols in the time domain resources used for sending PDCCH is increased, the number of symbols that each terminal device needs to monitor will also increase, that is, the number of PDCCH candidates that the user needs to monitor will increase, which will cause the process of the terminal device to monitor the PDCCH. More complex.
  • the network device may group the time domain resources used for sending the PDCCH.
  • Each group of time-domain resource groups can be used to carry a corresponding PDCCH sent to a group of users.
  • the subcarrier spacing is greater than or equal to 480 kHz
  • the symbols with the same filling pattern are used to send the PDCCH to a group of terminal devices.
  • the terminal equipment at the receiving end it is not necessary to monitor the entire time domain resource used for sending PDCCH under a certain configuration, but only needs to monitor the PDCCH on the time domain resource corresponding to a certain group, so as to avoid adding terminals.
  • the device monitors the complexity of the PDCCH.
  • the PDCCH transmission method may include:
  • the network device sends a resource configuration, where the resource configuration indicates a time domain resource for the network device to send the PDCCH.
  • the terminal device receives the resource configuration.
  • the network device may send the resource configuration to multiple terminal devices, and each terminal device receives the resource configuration.
  • the resource configuration may indicate the starting symbol and the number of symbols for the network device to transmit the time domain resource of the PDCCH.
  • the time domain resource used by the network device to send the PDCCH is a plurality of consecutive symbols.
  • the network device sends the PDCCH of the first terminal device in the first time domain resource in the time domain resources used for the network device to send the PDCCH.
  • the network device sends the PDCCH of the second terminal device in the second time domain resource in the time domain resources used for the network device to send the PDCCH.
  • the time domain resource used by the network device to send the PDCCH may be divided into multiple time domain resource groups, or multiple time domain resource intervals, or multiple time domain resource ranges.
  • time domain resource grouping, time domain resource interval, or time domain resource range can be understood as time domain resources allocated to a group of terminal devices and used for sending PDCCH to the group of terminal devices.
  • Time-domain resource grouping, time-domain resource interval, or time-domain resource range can also be understood as time-domain resources allocated to a group of terminal devices for monitoring PDCCH by the group of terminal devices.
  • monitoring the PDCCH can also be understood as detecting the PDCCH, blindly detecting the PDCCH, and the like.
  • the first time domain resource may be understood as a first time domain resource grouping
  • the second time domain resource may be understood as a second time domain resource grouping.
  • the network device sends a part of the PDCCH of the terminal device in the first time domain resource, and sends another part of the PDCCH of the terminal device in the second time domain resource. It can be understood that the first terminal device is any one of the terminal devices in the part, and the second terminal device is any one of the terminal devices in the other part.
  • the network device also sends the PDCCH to the terminal device in a packet manner.
  • a plurality of terminal devices are divided into a plurality of user groups.
  • the plurality of user groups include a first user group and a second user group.
  • One user group may correspond to one time domain resource group.
  • the network device sends the PDCCH in each time domain resource group to the terminal equipment of the user group corresponding to each time domain resource group.
  • the first time domain resource group corresponds to the first user group
  • the second time domain resource group corresponds to the second user group.
  • the network device sends the PDCCH of the first user group in the first time domain resource, and sends the PDCCH of the second user group in the second time domain resource.
  • the terminal equipment of each group only needs to monitor the PDCCH on the time domain resources corresponding to the user group to which it belongs, thereby reducing the complexity of monitoring the PDCCH by the terminal equipment.
  • time-domain resource grouping and the user grouping are for the convenience of description, and it is not limited that there must be actual time-domain resource grouping and user grouping. It can also be understood that a part of the time domain resources is used to send the PDCCH of some terminal devices to some terminal devices, and the other part of the time domain resources is used to send the PDCCH of another part of the terminal devices to another part of the terminal devices.
  • the network device may map the PDCCH sent to the first terminal device to the first time domain resource, and the PDCCH sent to the second terminal device to the second time domain resource.
  • the first terminal device monitors the PDCCH of the first terminal device in the first time domain resource.
  • the first terminal device blindly detects the PDCCH of the first terminal device in the first time domain resource.
  • the first time domain resource may be understood as a time domain resource used by the first terminal device to monitor the PDCCH.
  • the location of the first time domain resource may be sent by the network device to the first terminal device, or may be obtained by the first terminal device and the network device in an agreed manner.
  • the second terminal device monitors the PDCCH of the second terminal device in the second time domain resource.
  • the second terminal device blindly detects the PDCCH of the second terminal device in the second time domain resource.
  • the second time domain resource may be understood as a time domain resource used by the second terminal device to monitor the PDCCH.
  • the location of the second time domain resource may be sent by the network device to the second terminal device, or may be obtained by the second terminal device and the network device in an agreed manner.
  • steps 404 and 405 can also be understood as that the terminal device monitors the PDCCH on part of the time domain resources used to transmit the PDCCH.
  • the time domain resources used for sending PDCCH are grouped, so that when the number of symbols used for sending PDCCH by network equipment is increased to meet the needs of multiple users, a terminal equipment only needs to be used for sending PDCCH.
  • Monitoring the PDCCH on part of the time domain resources can also avoid increasing the complexity of the terminal equipment monitoring the PDCCH.
  • the symbols of the first time domain resources are consecutive, and the symbols of the second time domain resources are also consecutive.
  • the symbols of a grouped time domain resource are all consecutive.
  • the terminal equipment can monitor the PDCCH in multiple consecutive symbols, which can more effectively avoid increasing the complexity of the terminal equipment monitoring the PDCCH.
  • the symbols of the first time domain resources are spaced, and the symbols of the second time domain resources are also spaced.
  • the symbols of the first time domain resource and the symbols of the second time domain resource are distributed in a comb-like interval. In this way, the time span of the first time domain resource can be increased, and the time span of the second time domain resource can also be increased, the robustness of monitoring the PDCCH under the time-varying channel can be improved, and the probability of the terminal device successfully monitoring the PDCCH can be improved.
  • the symbols of a part of the time domain resource grouping may be continuous, and the symbols of another part of the time domain resource grouping may be spaced.
  • the location of the first time domain resource may be sent by the network device to the first terminal device, or may be obtained by the first terminal device and the network device in an agreed manner.
  • the network device sends a search space and a control-resource set (CORESET) to the terminal device.
  • CORESET control-resource set
  • the monitoring slot period and offset of the search space The monitoringSlotPeriodicityAndOffset field indicates the period and offset, and the duration indicates the number of time slots to be continuously monitored in a cycle. These two fields can determine the specific time slot for transmitting PDCCH.
  • the monitoring symbol monitoringSymbolsWithinSlot field in the time slot of the search space indicates the start symbol in the time slot (or a PDCCH monitoring span) of the time domain resource used for transmitting the PDCCH in each time slot for transmitting the PDCCH.
  • the length of the monitoringSymbolsWithinSlot field of the monitoring symbols in the time slot is 14 bits, and the ith bit corresponds to the ith symbol in a time slot. That is, each bit corresponds to one symbol in one slot.
  • the mth bit is 1, indicating that the mth symbol is the start symbol of the time domain resource used for transmitting the PDCCH in the time slot.
  • the 5th bit of the monitoringSymbolsWithinSlot field is 1, which indicates that the 5th symbol (symbol 4) is the start symbol in the time slot of the time domain resource used for transmitting the PDCCH.
  • control resource setting identifier controlResourceSetId field in the search space is used to associate the search space with the CORESET, wherein the duration field in the associated CORESET indicates the number of symbols used for time domain resources used to transmit PDCCH in the time slot.
  • first time domain resource is any one time domain resource group in the multiple time domain resource groups
  • second time domain resource is any one of the multiple time domain resource groups in a time domain that is different from the first time domain resource. Grouping of resources.
  • the first terminal device is any terminal device in the first user group corresponding to the first time domain resource.
  • the second terminal device is any terminal device in the second user group corresponding to the second time domain resource.
  • the solution related to the first time domain resource is also applicable to the second time domain resource, and this application will not repeat the description for the second time domain resource.
  • the following describes a solution in which the network device configures the first time domain resource when the location of the first time domain resource provided by the present application is sent by the network device to the first terminal device.
  • the resource configuration includes a first time-domain resource configuration, where the first time-domain resource configuration includes a start symbol of the first time-domain resource and a number of symbols of the first time-domain resource.
  • the start symbol of the first time domain resource may refer to the start symbol of the first time domain resource within a PDCCH monitoring span.
  • the resource configuration may be carried in a search space and/or a control resource set (control-resource set, CORESET).
  • the network device sends the search space and CORESET to the end device, the search space and/or CORESET including the resource configuration.
  • the configuration of the start symbol of the first time domain resource is carried in the first field of the search space.
  • the number of symbols in the first field is 14*S max , where S max is the maximum number of time slots included in one PDCCH monitoring span. For example, if the maximum allowable subcarrier spacing is 960 kHz, then S max is the number of time slots 8 included in one PDCCH monitoring span when the subcarrier spacing is 960 kHz.
  • the first field may be, for example, a time unit obtained by extending a range corresponding to a monitoring symbols within slot field or a monitoring PDCCH start position indication (monitoringSymbolsWithinTimeUnit) field corresponding to all symbols within the monitoring span. It should be understood that the first field may also have other names, and this application does not limit the name of the first field.
  • the duration field of the CORESET associated with this search space indicates the number of symbols of the first time domain resource.
  • the terminal equipment monitors the PDCCH once in S time slots (one monitoring span) in consecutive T s time slots, and the symbols for monitoring the PDCCH in the S time slots are consecutive S*D symbols, D
  • the number of persistent symbols configured for the CORESET associated with the search space, that is, the value of the duration field. S is 1 when SCS is 120kHz.
  • ⁇ 0 is the index corresponding to the reference SCS.
  • the reference SCS is 120kHz
  • ⁇ 0 is 3.
  • is an index corresponding to the subcarrier spacing of the PDCCH.
  • ⁇ 0 is 3 as an example for description, but ⁇ 0 is not limited to be 3.
  • the absolute duration occupied by the number of symbols used for the network device to transmit the PDCCH is the same as the absolute number of symbols used by the network device to transmit the PDCCH under the same configuration when the SCS is 120 kHz.
  • the duration remains basically the same or the same.
  • the time unit or monitoring span time unit corresponding to the monitoringSymbolsWithinTimeUnit field may be defined as the time slot length when the SCS is 120kHz.
  • time unit can also be changed to slot unit, multi-slot (xslots) or span (span) or window (window) and other similar meanings.
  • the unit of the time unit can also be the slot length of the SCS based on other values or an absolute time length.
  • the first field in the search space sent to the first terminal device is [0, 0, 0, 1, 0, 0,...], the total length is 112 bits, and the associated The duration field of the CORESET indicates 3, indicating that the start symbol of the first time domain resource in the time domain resources used by the network device to send the PDCCH is the fourth symbol within the monitoring span, and the number of symbols is 3. That is, the first time domain resource is that the time domain resource used for transmitting the PDCCH is the 4th to 6th symbols in the multi-slot, or symbols 3 to 5 (symbol numbers start from 0).
  • the first terminal device monitors the PDCCH at symbols 3-5 within the monitoring span.
  • the first field in the search space sent to the first terminal device is [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,....]
  • the total length is 112 bits
  • the duration field of the associated CORESET indicates 2, which indicates the first time domain in the time domain resources used by the network device to send the PDCCH
  • the starting symbol of the resource is the 15th symbol in the monitoring span, and the number of symbols of the first time domain resource is 2.
  • the first time domain resources are the time domain resources used to transmit the PDCCH, which are the 15th to 16th symbols within the multi-slot or within the monitoring span, or the symbols within the monitoring span.
  • Symbols 14 to 15 correspond to symbols 0 to 1 of the second time slot within the monitoring span.
  • the first terminal device monitors the PDCCH at symbols 14-15 within the monitoring span.
  • the network device can indicate the absolute location of the first time domain resource to the first terminal device, and the flexibility of the location of the first time domain resource is high.
  • the terminal device also does not need to acquire the location of the total time domain resources used by the network device to send the PDCCH, which can save the overhead of a related signaling message indicating the total time domain resources used by the network device to send the PDCCH.
  • the resource configuration may not include the configuration of time domain resources for the network device to send the PDCCH. That is to say, in such a solution, the steps of the PDCCH transmission method may include the following steps:
  • the network device sends a resource configuration, where the resource configuration includes a first time domain resource configuration and a second time domain resource configuration, the first time domain resource configuration indicates the first time domain resource, and the second time domain resource configuration indicates the second time domain resource ;
  • the network device sends the PDCCH to the first terminal device in the first time domain resource, and sends the PDCCH to the second terminal device in the second time domain resource;
  • the first terminal device sends the PDCCH to the first terminal device in the first time domain resource, and sends the PDCCH to the second terminal device in the second time domain resource.
  • a terminal device when the number of symbols used by the network device to send the PDCCH increases to meet the needs of multiple users, a terminal device only needs to monitor the PDCCH on part of the time domain resources used for sending the PDCCH, and it can also Avoid increasing the complexity of terminal equipment monitoring PDCCH.
  • the first symbol of the first time domain resource is the start symbol of a time slot
  • the configuration of the start symbol of the first time domain resource is carried in the second field of the search space superior.
  • the second field may indicate the start symbol of the first time domain resource by indicating the position of the time slot in which the first time domain resource is located in the time domain resource used by the network device to send the PDCCH.
  • the length of the second field is S max
  • S max is the maximum number of time slots included in one PDCCH monitoring span.
  • This second field may be referred to as a time unit monitoring symbol monitoringSymbolsWithinTimeUnit field or a time unit monitoring slot monitoringSlotsWithinTimeUnit field.
  • the first symbol of the first time domain resource is restricted to be only the first symbol of a time slot.
  • the second field only needs to indicate the position of the time slot where the first time domain resource is located in the time domain resource used by the network device to send the PDCCH, increase the indication granularity, and shorten the initial symbol used to indicate the first time domain resource.
  • the length of the configured field thereby helping to save signaling overhead.
  • the second field in the search space sent to the first terminal device is [1,0,0,0,0,0,0,0], and the duration field of the CORESET associated with the search space indicates 3, which indicates the first time domain
  • the starting symbol of the resource is the first symbol of the first time slot in the time domain resource used by the network device to send the PDCCH, and the number of symbols is 3. That is, in a scenario where the symbols of the first time domain resource are continuous, the first time domain resource is the 1st to 3rd symbols of the first time slot used for transmitting the time domain resource of the PDCCH, or symbols 0 to 2 (symbol numbering starts at 0).
  • the terminal equipment monitors the PDCCH in symbols 0 to 2 of the first time slot used for transmitting the time domain resources of the PDCCH.
  • the symbol of the first time domain resource is an interval
  • the first time domain resource is the first and ninth symbols and the second symbol of the first time slot of the time domain resource used to transmit the PDCCH.
  • the first terminal device monitors the PDCCH at symbols 0 and 8 of the first time slot and symbol 2 of the second time slot of the time domain resource for transmitting the PDCCH.
  • the second field in the search space sent to the first terminal device is [0,1,0,0,0,0,0], and the duration field of the CORESET associated with the search space indicates 2, indicating the first time domain
  • the starting symbol of the resource is the first symbol of the second time slot in the time domain resource used by the network device to send the PDCCH, and the number of symbols is 2. That is, in a scenario where the symbols of the first time domain resource are continuous, the first time domain resource is the 1st to 2nd symbols of the second time slot used to transmit the time domain resource of the PDCCH, or symbols 0 to 1 (symbol numbering starts at 0).
  • the terminal equipment monitors the PDCCH in symbols 0-1 of the second time slot used for transmitting the time domain resources of the PDCCH, and monitors the PDCCH corresponding to the symbols 14-15 in a PDCCH monitoring span.
  • the symbol of the first time domain resource is an interval
  • the first time domain resource is the first and ninth symbols of the second time slot of the time domain resource for transmitting PDCCH, or Symbols 0 and 8 of the second slot.
  • the first terminal device monitors the PDCCH at symbols 0 and 8 of the second time slot used for transmitting the time domain resource of the PDCCH.
  • the first time domain resource configuration includes an offset corresponding to the first time domain resource, and the offset is used to indicate that the start symbol of the first time domain resource is used by the network device to send the PDCCH location in the time domain resource. That is to say, the network device realizes indicating the start symbol of the first time domain resource by indicating the offset.
  • the offset corresponding to the first time domain resource can be understood as the number of offset symbols of the start symbol of the first time domain resource relative to the first symbol of the time domain resource used by the network device to send the PDCCH.
  • the search space includes a third field indicating the offset. In this way, by indicating the offset in the third field, the terminal device can more directly obtain the offset corresponding to the first time domain resource, thereby obtaining the position of the start symbol of the first time domain resource.
  • the third field may be referred to as a one detection time offset indication timeOffsetIndexWithinOneDetection field, or a span time offset indication timeOffsetIndexWithinSpan field or a span time offset timeOffsetWithinSpan field or a span symbol offset symbolOffsetWithinSpan field or a span symbol offset indication symbolOffsetIndexWithinSpan field.
  • the third field may also have other names, and this application does not limit the name of the third field.
  • the search space also includes a field indicating the start symbol of the time domain resource used by the network device to send the PDCCH.
  • the monitoring symbols within time unit field in the search space indicates the start symbol of the time domain resource used by the network device to send the PDCCH. start symbol.
  • the length of the monitoring symbols within time unit field may be 14, which is indicated by the granularity of S symbols. It can be understood that the S symbols are indicated as a symbol unit or a symbol set.
  • the monitoring symbols within time unit field may configure bit i to be 1, indicating that the starting symbol of the time domain resource used by the network device to send the PDCCH is symbol i*S (i*S+1th symbol).
  • the monitoring symbols within time unit field is a bitmap, and when the i-th bit of the monitoring symbols within time unit field is 1, it indicates that the starting symbol of the time domain resource used by the network device to send the PDCCH is the symbol i*S.
  • the field of the start symbol of the time domain resource used by the network device to send the PDCCH may also be referred to as the monitoring symbol unit within the time unit monitoring symbols unit within time unit field, the monitoring symbol set within the time unit monitoring symbols set within time unit field, Or one of the monitoring symbols group within time unit fields of the monitoring symbols group within the time unit.
  • the third field in the search space indicates that the start symbol of the first time domain resource is the start symbol of the time domain resource used by the network device to transmit the PDCCH.
  • the duration field in CORESET indicates the number of symbols of the first time domain resource.
  • the third field may be combined with the duration field to indicate the offset corresponding to the first time domain resource.
  • the value indicated by the third field is O in
  • the offset corresponding to the first time domain resource within the time domain resource used by the network device to send the PDCCH is O in *D, or in other words, the starting symbol of the first time domain resource is the O in *D+1 th symbol in the time domain resource used by the network device to send the PDCCH.
  • D is the value indicated by the duration field.
  • the value range of O in is 0 to Smax-1.
  • the offset corresponding to the first time domain resource within the time domain resource used by the network device to send the PDCCH is O in .
  • the starting symbol of the first time domain resource is the 0 in +1 th symbol in the time domain resource used by the network device to send the PDCCH.
  • D is the value indicated by the duration field.
  • the value range of O in is 0 to Smax-1.
  • the first terminal device can obtain the start symbol of the time domain resource for the network device to send the PDCCH according to the field in the search space indicating the start symbol of the time domain resource for the network device to send the PDCCH, according to the third field and the duration field in CORESET, determine the start symbol of the first time domain resource in the start symbol of the time domain resource used by the network device to send the PDCCH, and determine the number of symbols of the first time domain resource according to the duration field in the CORESET, thereby The location of the first time domain resource at the time domain resource for the network device to transmit the PDCCH may be determined.
  • D is the value indicated by the duration field.
  • SCS is 480kHz
  • the monitoringSymbolsWithinTimeUnit field is [1,0,0,0,0,0,0 ,0 ,0,0,0,0,0,0,0]
  • the third field indicates 3, which indicates the start symbol of the time domain resource used by the network device to send the PDCCH
  • the offset within the monitoring span is 0 symbols (symbol 0)
  • the first time domain resource is the 7th to 8th symbols (symbols 6 to 7) in the time domain resource for the network device to send the PDCCH.
  • the first terminal device monitors the PDCCH on the 7th to 8th symbols in the time domain resource used by the network device to send the PDCCH.
  • the first terminal device monitors the PDCCH on symbols 4-6 in the time domain resource used by the network device to send the PDCCH.
  • a field indicating the offset is included in the CORESET.
  • the field indicating the offset can indirectly indicate the start symbol of the first time domain resource, or in other words indicate the start symbol of the first time domain resource in the time domain resource used by the network device to send the PDCCH.
  • the CORESET also includes a duration field, and the meaning of the duration field is the same as the meaning of the duration field in the above-mentioned embodiment where the search space includes a field indicating an offset.
  • the network device may configure the search space with an associated CORESET number.
  • the first terminal device can obtain the associated CORESET number according to the search space, and obtain the corresponding CORESET field according to the CORESET number, thereby obtaining the position of the first time domain resource according to the CORESET field, so as to receive the PDCCH in the first time domain resource.
  • different CORESET numbers correspond to different offsets, and different CORESET numbers may correspond to the same duration field and/or frequency domain position.
  • a search space includes a first CORESET set associated with the search space, the first CORESET set includes the offset, and the CORESET includes a field indicating a number of the first CORESET set.
  • the network device can configure the number of the first CORESET set associated with the search space, and the network device and the first terminal device are configured according to downlink control information (DCI) or determined in the first CORESET set according to predefined rules.
  • DCI downlink control information
  • the CORESET number corresponding to the first terminal device For example, the number of CORESETs included in the CORESET set numbered p is ⁇ p*S,p*S+1,...,p*S+S-1 ⁇ , the CORESETs in the CORESET set have the same duration field, the same frequency Domain location.
  • the first terminal device determines the CORESET field corresponding to the first terminal device according to the CORESET number corresponding to the first terminal device, so as to obtain the location of the first time domain resource, and receives the PDCCH in the first
  • the first time domain resource is determined according to one or more of an identity document (ID) of the first terminal device, a time slot index, or the number of monitoring times in the current period.
  • ID identity document
  • the network device and the first terminal device determine that the first time domain resource is used for the network device according to one or more of the identity document (ID) of the first terminal device, the time slot index, or the number of monitoring times in the current period.
  • ID identity document
  • the network device and the first terminal device determine, according to the search space and/or the field in the CORESET that indicates the time domain resource used by the network device to send the PDCCH, the number of Q consecutive symbols of the time domain resource used by the network device to send the PDCCH. Location.
  • the network device and the first terminal device determine the offset within Q consecutive symbols according to one or more of the identity document (ID) of the first terminal device, the time slot index, or the number of monitoring times in the current period quantity.
  • ID identity document
  • the network device can group multiple terminal devices according to the identifiers of multiple terminal devices, and divide them into multiple user groups. Each user group corresponds to a different offset, and determines each user group according to the offset of each user group. The position of the time domain resource corresponding to the user group in the time domain resource used by the network device to send the PDCCH.
  • the first terminal device determines, according to the search space and/or the field in the CORESET, the time domain resource for the network device to send the PDCCH, and determines, according to its own identity, the offset of the group to which it belongs within Q consecutive symbols, and According to the offset, the position of the time domain resource corresponding to the user group to which it belongs is determined in the time domain resource used by the network device to send the PDCCH.
  • the way of determining the offset can be one of the following.
  • D is the value indicated by the duration field in CORESET.
  • the relationship between offset and ID and k dec is shown in Table 1 below.
  • the offset is 0, and the first time domain resource is symbol 0 and symbol 1 in the Q symbols used by the network device to send the PDCCH, or It is said that the time domain resources used by the first terminal equipment to monitor the PDCCH are symbol 0 and symbol 1 in the Q symbols. If the ID corresponding to the first terminal device is 1 and k dec is 1, the offset is 4, and the first time domain resource is the symbol 4 and the symbol 5 in the Q symbols used by the network device to send the PDCCH.
  • the time domain resources for monitoring the PDCCH by the first terminal device are symbol 4 and symbol 5 of the Q symbols.
  • the network device and the first terminal device may also select an offset from the set of offset values according to an agreed rule.
  • the number of elements in the offset value set may be related to the number of terminal devices served by the network device. The greater the number of terminal devices served by the network device, the greater the number of elements in the offset value set, the less the number of terminal devices served by the network device, and the less the number of elements in the offset value set.
  • the network device and the first terminal device may determine the first time-domain resource location according to an offset of a control channel element (control channel element, CCE).
  • control channel element control channel element
  • CCE groups or CCE sets can be defined, and each CCE group is numbered individually. Different CCE groups or different CCE sets have the same CCE number, and different CCE groups or different CCEs correspond to different time domain offsets, that is, the offsets are related to the number of the CCE group or the number of the CCE set.
  • the numbers of CCE group 1 (the first three columns in FIG. 8A ) are defined as 0 to N cce -1 (number 0 to number 11 in the first three columns in FIG. 8A ), and the numbers of CCE group 2 are 0 to N cce -1 (number 0-number 11 in columns 4-6 in Figure 8A), and so on.
  • the network device may indicate the number of the CCE group or the number of the CCE set through a newly defined field in the CORESET, and may also determine the number of the CCE group or the number of the CCE set according to the ID.
  • the first terminal device and the network device determine the starting position of the first time domain resource within the Q consecutive symbols according to the determined number of the CCE group or the number of the CCE set, and determine the number of symbols of the first time domain resource according to the duration field of the CORESET .
  • a CCE group or CCE set may be defined, and multiple CCE groups are numbered consecutively.
  • the numbers of CCE group 1 (the first three columns in FIG. 8B ) are defined as 0-N cce -1 (number 0-number 11 in the first three columns in FIG. 8B ), CCE group 2 (as in FIG. 8B ) Columns 4-6) are numbered N cce ⁇ 2N cce -1 (numbers 12-23 in the first 3 columns in FIG. 8B ), and so on, different CCE groups have different time domain offsets quantity.
  • the first terminal device can determine the starting position of the first time domain resource within the Q consecutive symbols according to the CCE number offset or the CCE number starting value, and determine the number of symbols of the first time domain resource according to the CORESET duration.
  • the CCE number offset or the start value of the CCE number is indicated by the network device, or the first terminal device determines the number of the CCE in the CORESET according to the ID, and determines, according to the number of the CCE, that the first time domain resource is in the time domain used for PDCCH transmission.
  • the starting position within the Q consecutive symbols is determined according to the duration field of the CORESET to determine the number of symbols of the first time domain resource.
  • the corresponding relationship between the offset value and the CCE number is shown, and every three columns corresponds to an offset value.
  • the CCE number introduces an overall offset. If all CCEs with the same offset value are defined as a CCE group or CCE set, CCE interleaving, resource element group (REG) binding, etc. are only allowed to be performed within the CCE group or CCE set.
  • the CCE offset may be determined according to one or more of the identification (ID) of the terminal device, the time slot index, or the number of monitoring times in the current period.
  • Some solutions for grouping the time domain resources used by the network device to send the PDCCH are provided below.
  • the following scheme can be used in a scenario where the symbols of the first time domain resource are consecutive.
  • the symbol of the first time domain resource spans two time slots, and symbol 12 and symbol 13 belong to the first time slot.
  • slot, symbol 14 belongs to the second slot.
  • cross-slot grouping is not performed, that is, the symbols of one time-domain resource grouping are in one time slot.
  • the symbols of the first time domain resources are in the same time slot, and the symbols of the second time domain resources are in the same time slot.
  • the number of symbols in each time-domain resource grouping may be the same or different.
  • the monitoring span of the PDCCH in which the time domain resource for the network device to send the PDCCH is located is S time slots (S>1) in total, that is, S*14 symbols in total.
  • S is the same as the definition in the foregoing embodiment, and details are not repeated here.
  • the time domain resources used by the network device to send the PDCCH occupy D*S symbols, where D is the number of persistent symbols configured by the CORESET associated with the search space. If the S*D symbols are grouped uniformly, the S*D symbols can be divided into S time-domain resource grouping. Therefore, if mod(14, D) ⁇ 0 when S*D>14, the phenomenon that the packet spans time slots will occur. As shown in FIG.
  • symbols 12 to 14 of the fifth time domain resource grouping in a PDCCH monitoring span belong to 2 time slots, among which symbols 12 and 13 belong to the first time slot, and symbols 12 and 13 belong to the first time slot. 14 belongs to the second time slot. Based on this situation, the present application provides some grouping strategies to avoid grouping across time domains.
  • the symbols of a time-domain resource grouping are within 2 time slots, taking the time-slot as the boundary, the symbols in one time-slot and the time-domain resource grouping closest to the same time slot
  • One or more time-domain resource groups are combined, and one symbol is added to each combined time-domain resource group.
  • symbols 12 and 13 are located in one time slot, and symbol 14 is located in another time slot.
  • the time-domain resource grouping originally including symbols 6-8 can be changed to include symbols 6-9 by adding one symbol
  • the time-domain resource grouping originally including symbols 9-11 can be changed to include symbols 10-13 by adding a symbol .
  • the time domain resource grouping originally including symbols 15-18 can be changed to include symbols 14-18 by adding one symbol.
  • the 2 time slots used by the network device to send the time domain resources of the PDCCH are grouped, and the number of symbols obtained for the 7 time domain resource groupings are 3, 3, 4, 4, 4, 3, 3.
  • the time slot is used as the boundary, and the symbols in one time-slot are closest to the time-domain resource group in the same time slot.
  • the time-domain resources are grouped together. As shown in the schematic diagram of the scenario shown in Fig. 9C, symbols 12 and 13 are located in one time slot, and symbol 14 is located in another time slot. Then, the time domain resource grouping originally including symbols 9-11 can be changed to include symbols 9-13 by adding 2 symbols. The time domain resource grouping originally including symbols 15-18 can be changed to include symbols 14-18 by adding one symbol. According to such a grouping strategy, the 2 time slots used by the network device to send the time domain resources of the PDCCH are grouped, and the number of symbols obtained for the 7 time domain resource groupings are 3, 3, 3, 5, 4, 3, 3.
  • the time-domain resource grouping is divided into two time-domain resource groups with the time slot as the boundary.
  • the difference between the number of symbols included in the time-domain resource grouping and the original time-domain resource grouping is greater than the set threshold (for example, the set threshold is 1), that is, when the original time-domain resource grouping includes 3 symbols, the split time-domain resource grouping has only If one symbol is present, then one symbol in the adjacent time domain resource grouping is merged into the split time domain resource grouping.
  • symbol 12 and symbol 13 are located in one time slot, and symbol 14 is located in another time slot.
  • symbol 12 and the symbol 13 are regarded as a time domain resource group
  • symbol 14 and the symbol 15 are regarded as a time domain resource group.
  • the time-domain resource group that originally includes symbols 15 to 17 is changed to include symbols 16 and 17 .
  • the 2 time slots used by the network device to send the time domain resources of the PDCCH are grouped, and the number of symbols of the obtained 7 time domain resource groups are 3, 3, 3, 3, 2, 2, 2,3,3.
  • the method can make the difference in the number of symbols between the regrouped groups less than or equal to the set threshold. It should be understood that the set threshold is not limited to 1, and may be other values.
  • the number of symbols in a time-domain resource grouping is positively correlated with an aggregation level corresponding to the time-domain resource grouping. That is to say, the number of symbols of the first time domain resource is positively correlated with the aggregation level corresponding to the first time domain resource.
  • the network device can select an appropriate aggregation level according to the channel conditions of the terminal device. In this way, the network device and the terminal device can determine the time domain resources and the grouping situation of the terminal device according to the agreed grouping scheme and the aggregation level. The number of symbols in the time-domain resource grouping, and/or the corresponding aggregation level, increases sequentially according to the chronological order. This solution can be used in a scenario where the number of symbols of the first time domain resource is continuous.
  • the time domain resource group corresponding to the low aggregation level can be configured to the terminal device, and if the channel condition is poor, the time domain resource group corresponding to the high aggregation level can be configured to the terminal device.
  • the network device sends the PDCCH to the terminal device on the time domain resource grouping determined according to the aggregation level.
  • the m-th numerical value in " ⁇ " represents the number of symbols of the m-th time-domain resource grouping. That is, each value in " ⁇ ” corresponds to the number of symbols in a time-domain resource grouping.
  • the value in the kth "[]" in " ⁇ ” is the value range of the aggregation level corresponding to the kth time domain resource grouping.
  • the aggregation level includes two classifications. For example, according to category 1, if the network device indicates to the first terminal device that the aggregation level is 8, and the number of symbols Q of time domain resources used by the network device to transmit PDCCH is 4, then according to Table 2, the first terminal device can determine the aggregation level Level 4 is in the second "[]", and the number of symbols in the corresponding time-domain resource grouping is 3. That is, the first time-domain resource is the 2-4th symbols (symbols 1-3) of the time-domain resource used to transmit the PDCCH.
  • the network device and the terminal device can determine the grouping of time domain resources according to the aggregation level.
  • the terminal device can also determine the aggregation level when the network device indicates the grouping of time domain resources. For example, according to category 1, if the number of symbols Q of the time domain resources used by the network device to transmit the PDCCH is 4, the first time domain resource configuration sent by the network device to the first terminal device indicates that the first time domain resource is used to transmit the PDCCH. 2-4th symbols (symbols 1-3) of the time domain resource, then according to Table 2, the first terminal device may determine that the aggregation level is 8 or 16.
  • the monitoring slot period and offset monitoringSlotPeriodicityandOffset field can increase the value range of the element.
  • the value range of monitoring slot period and offset field can be extended to ⁇ sl1,sl2,sl4,sl5,sl8,sl10,sl16,sl20,sl32,sl40,sl64,sl128,sl80,sl160,sl320,sl640,sl1280 ,sl2560,sl5120,sl10240,sl20480 ⁇ , where sl32,sl64,sl80,sl5120,sl10240,sl20480 are extended elements, and the value of the offset under the corresponding configuration follows the existing definition.
  • each user group corresponds to one beam direction, and different user groups correspond to different beam directions.
  • the network device sends the PDCCH to the terminal equipment of the user group.
  • the first user group corresponds to the first beam direction
  • the second user group corresponds to the second beam direction.
  • the network device sends the PDCCH to the first terminal device in the first beam direction, and sends the PDCCH to the second terminal device in the second beam direction.
  • the beam information for the network device to send the PDCCH may be beam information for sending a physical downlink share channel (PDSCH) or receiving a physical uplink share channel (PUSCH).
  • the beam information corresponding to each user group may be the beam information used by the network device to transmit the PDSCH of the user group or receive the PUSCH of the user group.
  • the beam information indicates the beam direction.
  • a new beam information can also be defined, the corresponding beam width is narrower than the beam width of the traditional method for transmitting PDCCH, and wider than the beam width of transmitting PDSCH or receiving PUSCH in the traditional method; or the new beam information includes B1 beams (TCI), B1 is greater than the total number of beams B2 of channel state information reference signals (CSI-RS), and less than the total number of beams B3 of PDSCH or synchronization signal and PBCH block (synchronization signal and PBCH block, SSB) , wherein the B1 new beams have the same coverage as the B2 CSI-RS beams and the B3 SSB beams.
  • TCI B1 beams
  • B1 is greater than the total number of beams B2 of channel state information reference signals (CSI-RS), and less than the total number of beams B3 of PDSCH or synchronization signal and PBCH block (synchronization signal and PBCH block, SSB) , wherein the B1 new beams have the same coverage as the
  • the above beam information may be replaced by TCI information or spatial relation information spatialrelationinfo. That is to say, the functions used by the above beam information can be implemented by TCI information or spatial correlation information.
  • the beam direction of the PDCCH sent by the network device may be unaware of the terminal device. That is, the network device may not indicate the beam direction for sending the PDCCH to the terminal device.
  • the network device may also indicate the beam direction for sending the PDCCH to the terminal device through CORESET or a transmission configuration indicator (TCI) state.
  • TCI transmission configuration indicator
  • the terminal device can use the receiving beam direction corresponding to the beam direction for sending the PDCCH to receive the PDCCH, thereby improving the probability of successful reception of the PDCCH.
  • the CORESET numbers indicated for terminal devices in different user groups are different. That is, the network device may use the CORESET number to indicate the beam information for sending the PDCCH, that is, CORESETs corresponding to different CORESET numbers have different TCI information.
  • the CORESET number may also instruct the terminal device to monitor the time domain resources of the PDCCH.
  • the CORESET number associated with the search space sent by the network device to the first terminal device indicates the first beam information or the first TCI information.
  • the first terminal device can obtain the first beam information or the first TCI information according to the associated CORESET number, and obtain the CORESET field corresponding to the associated CORESET number, thereby obtaining the location of the first time domain resource according to the CORESET field. That is, the CORESET number of the solution can indicate both CORESET and beam information.
  • the TCI sent by the network device to the terminal device indicates sending beam information of the PDCCH, and also instructs the terminal device to monitor the time domain resources of the PDCCH.
  • the TCI sent by the network device to the first terminal device indicates the first beam information and also indicates the first time domain resource.
  • the network equipment If the network equipment is in the beam direction corresponding to each user group, it sends the PDCCH to the terminal equipment of the user group. Then, the network device involves beam switching in the process of sending the PDCCH to multiple terminal devices. Beam switching takes a certain amount of time.
  • the indicated number of symbols Q used for the time domain resource of the PDCCH sent by the network device may include the time domain resource of the PDCCH sent by the network device to each terminal device.
  • the value indicated by the duration field in CORESET can be D or D+G.
  • each time-domain resource group corresponds to one beam-switching guard gap.
  • each time-domain resource group in the first S-1 time-domain resource groups corresponds to one Beam switching protection gap
  • the last time domain resource group has no corresponding beam switching protection gap.
  • the terminal device determines the offset
  • G also needs to be considered.
  • the first terminal device may determine that the offset corresponding to the first time domain resource is O in *(D+G), and O in may be the indicated value, or the value of mod(ID, S) or the foregoing enumeration other methods.
  • the granularity of the DMRS sent by the network device to the terminal device is S symbols.
  • the position of the front-loaded DMRS needs to be defined as the minimum interval with the position of Q consecutive symbols is less than or equal to a given value.
  • the traditional solution is that the minimum distance from the position of the symbol of the PDCCH successfully detected by the terminal is less than or equal to a given value.
  • a solution for grouping time domain resources is provided.
  • the frequency domain resources may also be grouped, and the frequency domain resources used by the network device to transmit the PDCCH are divided into multiple frequency domain resource groups, and each frequency domain resource group is used to send to the terminal equipment in the corresponding user group. PDCCH.
  • the schemes for grouping resources in the time domain and grouping resources in the frequency domain may also be combined.
  • the time-domain resources and frequency-domain resources are divided into multiple time-frequency resource groups, each time-frequency resource group corresponds to a user group, and each time-frequency resource is used to send the PDCCH to the terminal equipment in the corresponding user group.
  • the terminal equipment monitors or blindly detects the PDCCH on the time-frequency resources of the corresponding time-frequency resource group.
  • frequency domain resource grouping and time-frequency resource grouping are for the convenience of description, and do not necessarily exist objectively and actually.
  • the transmission device 1100 includes an input-output unit 1101 and a processing unit 1102 .
  • the input/output unit 1101 may be or may be deployed in a transceiver, a transceiver antenna, an input/output interface, and other units or modules capable of implementing information sending and receiving functions.
  • the processing unit 1102 may be or may be deployed on a processor.
  • the input and output unit 1101 is used for:
  • the resource configuration indicating a time domain resource for the network device to send the physical downlink control channel PDCCH
  • the PDCCH of the first terminal device is sent in the first time domain resource of the time domain resources used for the network device to send the PDCCH, and the PDCCH of the first terminal device is sent in the second time domain resource of the time domain resources used by the network device to send the PDCCH.
  • Two PDCCH of terminal equipment Two PDCCH of terminal equipment.
  • the PDCCH is sent to different terminal devices in different time domain resources, so that when the number of symbols used by the network device to send the PDCCH is increased to meet the needs of multiple users, one terminal device only needs to be used for sending PDCCH.
  • Monitoring the PDCCH on part of the time domain resources of the PDCCH can also avoid increasing the complexity of monitoring the PDCCH by the terminal device.
  • the location of the first time domain resource may be sent by the network device to the first terminal device, or may be obtained by the first terminal device and the network device in an agreed manner.
  • the location of the second time domain resource may be sent by the network device to the second terminal device, or may be obtained by the second terminal device and the network device in an agreed manner.
  • the symbols of the first time domain resource are consecutive, and the symbols of the second time domain resource are also consecutive.
  • the symbols of a grouped time domain resource are all consecutive.
  • the symbols of the first time domain resources are spaced, and the symbols of the second time domain resources are also spaced.
  • the symbols of the first time domain resource and the symbols of the second time domain resource are distributed in a comb-like interval. In this way, the time span of the first time domain resource can be increased, and the time span of the second time domain resource can also be increased, the robustness of monitoring the PDCCH under the time-varying channel can be improved, and the probability of the terminal device successfully monitoring the PDCCH can be improved.
  • the resource configuration further includes a first time-domain resource configuration
  • the first time-domain resource configuration includes a start symbol of the first time-domain resource and a number of symbols of the first time-domain resource.
  • the first terminal device can determine the location of the first time domain resource according to the first time domain resource configuration, and monitor the PDCCH in the first time domain resource.
  • the resource configuration is carried in a search space field and/or a control-resource set (CORESET) field.
  • CORESET control-resource set
  • the configuration of the starting symbol of the first time domain resource is carried in the first field of the search space, the number of symbols in the first field is 14*S max , and S max is a PDCCH monitoring The maximum number of slots to span.
  • the first field can indicate the absolute position of the start symbol of the first time domain resource in a PDCCH monitoring span, and the flexibility of the position of the first time domain resource is high, which also enables the first terminal to directly obtain the first field according to the first field.
  • the position of the start symbol of the first time domain resource is carried in the first field of the search space, the number of symbols in the first field is 14*S max , and S max is a PDCCH monitoring The maximum number of slots to span.
  • the configuration of the start symbol of the first time domain resource is carried in the second field of the search space, the length of the second field is S max , and S max is the The maximum number of time slots included in the time domain resource of the device sending PDCCH.
  • the first symbol of the first time domain resource can only be the first symbol of a time slot.
  • the second field only needs to indicate the position of the time slot where the first resource is located in the time domain resource used by the network device to send the PDCCH, increase the indication granularity, and shorten the configuration of the start symbol used to indicate the first time domain resource. field length, thereby helping to save signaling overhead.
  • the first resource configuration includes an offset corresponding to the first time domain resource, and the offset indicates that a start symbol of the first time domain resource is used in the network device The start symbol of the time domain resource for transmitting the PDCCH.
  • the network device realizes indicating the start symbol of the first time domain resource by indicating the offset corresponding to the first time domain resource.
  • the first terminal device can obtain the start symbol of the first time domain resource according to the offset.
  • the search space or CORESET includes a field indicating the offset.
  • the first terminal device can obtain the offset according to the field, thereby obtaining the start symbol of the first time domain resource.
  • the search space includes a first CORESET set associated with the search space, the first CORESET set includes the offset, and the CORESET includes an indicator indicating the first CORESET Set of numbered fields.
  • the offset is indicated by the existing field, which helps to reduce the indication overhead.
  • the first time domain resource is determined by the processing unit 1102 according to one or more of an identifier of the first terminal device, a time slot index, or the number of monitoring times in a current period. In this way, the overhead of the network device indicating the first time domain resource configuration to the first terminal device can be saved.
  • the number of symbols of the first time domain resource is different from the number of symbols of the second time domain resource. In this way, the grouping of the time domain resources used by the network device to send the PDCCH is more flexible, so that it can better adapt to the actual demand.
  • the number of symbols of the first time domain resource is positively correlated with the aggregation level corresponding to the first time domain resource.
  • the network device and the first terminal device can determine the location of the first time domain resource according to the aggregation level.
  • the network device and the first terminal device can determine the aggregation level according to the location of the first time domain resource, which helps to reduce signaling overhead.
  • the symbols of the first time domain resource belong to one time slot. In this way, the first terminal device can be prevented from monitoring the PDCCH across time slots, thereby reducing the complexity of monitoring the PDCCH by the terminal device.
  • the transmission apparatus may be but not limited to terminal equipment, or may be used but not limited to terminal equipment.
  • the transmission device may include an input-output unit 1201 and a processing unit 1202 .
  • the input/output unit 1201 may be or may be deployed in a transceiver, a transceiver antenna, an input/output interface, and other units or modules capable of implementing information sending and receiving functions.
  • the processing unit 1202 may be or may be deployed on a processor.
  • the input and output unit 1201 is used for:
  • the resource configuration including time domain resources for the network device to send the PDCCH
  • the PDCCH of the terminal device is monitored in part of the time domain resources of the time domain resources used by the network device to send the PDCCH.
  • a terminal device when increasing the number of symbols used by the network device to send the PDCCH to meet the needs of multiple users, a terminal device only needs to monitor the PDCCH on part of the time domain resources used for sending the PDCCH , it can also avoid increasing the complexity of the terminal equipment to monitor the PDCCH.
  • the location of some time domain resources may be sent by the network device to the terminal device, or may be obtained by the terminal device and the network device in an agreed manner.
  • the resource configuration further includes a first resource configuration indicating the partial time domain resource, the first time domain resource configuration includes a start symbol of the partial time domain resource and the partial time domain resource The number of symbols for the resource.
  • the terminal device can determine the location of the first time domain resource according to the first time domain resource configuration, and monitor the PDCCH in the first time domain resource.
  • the resource configuration is carried in a search space field and/or a CORESET field.
  • the configuration of the start symbols of the partial time domain resources is carried in the first field of the search space, the number of symbols in the first field is 14*Smax, and Smax is a PDCCH monitoring span maximum number of slots.
  • the first field can indicate the absolute position of the start symbol of the first time domain resource in one PDCCH monitoring span, and the flexibility of the position of the first time domain resource is high, which also enables the terminal to directly obtain the first time domain resource according to the first field.
  • the location of the start symbol of the time domain resource is carried in the first field of the search space, the number of symbols in the first field is 14*Smax, and Smax is a PDCCH monitoring span maximum number of slots.
  • the first OFDM symbol of the partial time domain resource is the start symbol of a time slot
  • the configuration of the start symbol of the first time domain resource is carried in the first symbol of the search space.
  • the length of the second field is Smax
  • Smax is the maximum number of time slots in one PDCCH monitoring span.
  • the first symbol of the first time domain resource can only be the first symbol of a time slot.
  • the second field only needs to indicate the position of the time slot where the first resource is located in the time domain resource used by the network device to send the PDCCH, increase the indication granularity, and shorten the configuration of the start symbol used to indicate the first time domain resource. field length, thereby helping to save signaling overhead.
  • the first resource configuration includes an offset corresponding to the first time domain resource, and the offset indicates that a start symbol of the first time domain resource is used in the network device The start symbol of the time domain resource for transmitting the PDCCH.
  • the network device realizes indicating the start symbol of the first time domain resource by indicating the offset corresponding to the first time domain resource.
  • the terminal device can obtain the start symbol of the first time domain resource according to the offset.
  • the search space includes a field indicating the offset.
  • the device can obtain the offset according to the field, so as to obtain the start symbol of the first time domain resource.
  • the search space includes a first CORESET set associated with the search space, the first CORESET set includes the offset, and the CORESET includes an indicator indicating the first CORESET Set of numbered fields.
  • the offset is indicated by the existing field, which helps to reduce the indication overhead.
  • the processing unit 1202 before the terminal device monitors the PDCCH of the terminal device in the part of the time domain resources of the time domain resources used by the network device to send the PDCCH, the processing unit 1202 is configured to: according to the terminal device One or more of the identification of the device, the time slot index, or the number of monitoring times in the current period determines the partial time domain resources.
  • the terminal device does not need to receive the first time domain resource configuration indicating the first time domain resource from the network device, which can save the overhead of the network device indicating the first time domain resource configuration to the first terminal device.
  • the number of symbols of the partial time domain resources is positively correlated with the aggregation level corresponding to the partial time domain resources.
  • the network device and the first terminal device can determine the location of the first time domain resource according to the aggregation level.
  • the network device and the first terminal device can determine the aggregation level according to the location of the first time domain resource, which helps to reduce signaling overhead.
  • the symbols of the partial time domain resources belong to one time slot. In this way, the terminal equipment can be prevented from monitoring the PDCCH across time slots, thereby reducing the complexity of the terminal equipment monitoring the PDCCH.
  • the transmission apparatus includes an input and output unit 1301 and a processing unit 1302 .
  • the input/output unit 1301 may be or may be deployed in a transceiver, a transceiver antenna, an input/output interface, and other units or modules capable of implementing information transceiver functions.
  • the processing unit 1302 may be or may be deployed on a processor.
  • the input and output unit 1301 is used to:
  • the resource configuration includes a first time-domain resource configuration and a second time-domain resource configuration
  • the first time-domain resource configuration indicates a first time-domain resource
  • the second time-domain resource configuration indicates a second time-domain resource domain resources
  • the PDCCH is sent to the first terminal device in the first time domain resource, and the PDCCH is sent to the second terminal device in the second time domain resource.
  • the time domain resources used for sending PDCCH are divided into first time domain resources and second time domain resources, so that when the number of symbols used for network equipment to send PDCCH increases to meet the needs of multiple users, a terminal The device only needs to monitor the PDCCH on a part of the time domain resources used for transmitting the PDCCH, which can also avoid increasing the complexity of monitoring the PDCCH by the terminal device.
  • the location of the first time domain resource may be sent by the network device to the first terminal device, or may be obtained by the first terminal device and the network device in an agreed manner.
  • the location of the second time domain resource may be sent by the network device to the second terminal device, or may be obtained by the second terminal device and the network device in an agreed manner.
  • the symbols of the first time domain resource are consecutive, and the symbols of the second time domain resource are also consecutive.
  • the symbols of a grouped time domain resource are all consecutive.
  • the symbols of the first time domain resources are spaced, and the symbols of the second time domain resources are also spaced.
  • the symbols of the first time domain resource and the symbols of the second time domain resource are distributed in a comb-like interval. In this way, the time span of the first time domain resource can be increased, and the time span of the second time domain resource can also be increased, the robustness of monitoring the PDCCH under the time-varying channel can be improved, and the probability of the terminal device successfully monitoring the PDCCH can be improved.
  • the resource configuration is carried in a search space field and/or a control-resource set (CORESET) field.
  • CORESET control-resource set
  • the configuration of the start symbol of the first time domain resource is carried in the first field of the search space, and the number of symbols in the first field is 14*Smax, and Smax is the length of one PDCCH monitoring span. Maximum number of slots.
  • the first field can indicate the absolute position of the start symbol of the first time domain resource in a PDCCH monitoring span, and the flexibility of the position of the first time domain resource is high, which also enables the first terminal to directly obtain the first field according to the first field.
  • the position of the start symbol of the first time domain resource is carried in the first field of the search space, and the number of symbols in the first field is 14*Smax, and Smax is the length of one PDCCH monitoring span. Maximum number of slots.
  • the transmission apparatus may include an input-output unit 1401 and a processing unit 1402 .
  • the input/output unit 1401 may be or may be deployed in a transceiver, a transceiver antenna, an input/output interface, and other units or modules capable of implementing information sending and receiving functions.
  • the processing unit 1402 may be or may be deployed on a processor.
  • the input and output unit 1401 is used for:
  • the first time-domain resource configuration includes a start symbol of the first time-domain resource and the number of symbols of the partial time-domain resources; the first time-domain resource is used for all Part of the time domain resources in the time domain resources of the PDCCH sent by the network device;
  • the PDCCH is monitored in the first time domain resource.
  • the terminal device only needs to monitor the PDCCH on part of the time domain resources used for sending the PDCCH.
  • the number of symbols used by the network device to send the PDCCH increases to meet the needs of multiple users, a terminal device It is only necessary to monitor the PDCCH on a part of the time domain resources used for transmitting the PDCCH, which can also avoid increasing the complexity of monitoring the PDCCH by the terminal device.
  • the symbols of the first time domain resource may be continuous or spaced.
  • the configuration of the start symbol of the first time domain resource is carried in the first field of the search space, and the number of symbols in the first field is 14*Smax, and Smax is the length of one PDCCH monitoring span. Maximum number of slots.
  • the first field can indicate the absolute position of the start symbol of the first time domain resource in a PDCCH monitoring span, and the flexibility of the position of the first time domain resource is high, which also enables the first terminal to directly obtain the first field according to the first field.
  • the position of the start symbol of the first time domain resource is carried in the first field of the search space, and the number of symbols in the first field is 14*Smax, and Smax is the length of one PDCCH monitoring span. Maximum number of slots.
  • the present application provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and the computer instructions instruct the server to execute the PDCCH transmission method provided by any of the foregoing embodiments.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • the modules in the apparatus of the embodiment of the present application may be combined, divided and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种物理下行控制信道的传输方法及相关装置。传输方法包括:网络设备发送资源配置,资源配置指示用于网络设备发送物理下行控制信道PDCCH的时域资源;网络设备在用于网络设备发送PDCCH的时域资源中的第一时域资源发送第一终端设备的PDCCH,在用于网络设备发送PDCCH的时域资源中的第二时域资源发送第二终端设备的PDCCH。这样在增加用于网络设备发送PDCCH的符号数增多满足多用户的需求时,一个终端设备仅需要在用于发送PDCCH的时域资源中的部分的时域资源上监测PDCCH,也能够避免增加终端设备监测PDCCH的复杂度。

Description

物理下行控制信道的传输方法及相关装置 技术领域
本申请涉及无线局域网络技术领域,尤其涉及一种物理下行控制信道(physical downlink control channel,PDCCH)的传输方法及相关装置。
背景技术
相关技术中,提出了大子载波间隔,例如240kHz、480kHz、960kHz甚至1920kHz的子载波间隔,这样有助于提高最大的快速傅立叶变换(fast fourier transformation,FFT)点数,以及满足对数据解调时延越来越高的要求。
然而新一代无线通信系统(new radio,NR)中共享信道的调度在时间上是时隙(14个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号)或迷你时隙(2~13个OFDM符号),时隙的持续时间由子载波间隔(Sub-Carrier Spacing,SCS)确定,子载波间隔越大,时隙的持续时间越短。
现有NR系统中帧定义为10ms,当子载波间隔为120kHz时,一个帧可以包括80个时隙,若网络设备配置终端设备监测PDCCH的周期为40个时隙,偏移为10个时隙,监测持续时间为3个时隙时,则终端设备需在帧0的时隙{10,11,12}(m=0),帧0的时隙{50,51,52}(m=1),帧1的{10,11,12}(m=2),帧1的时隙{50,51,52}(m=3)….监测物理下行控制信道(physical downlink control channel,PDCCH)。
当数据子载波间隔从现有NR系统中的120kHz增加至480kHz或960kHz时,一个时隙的持续时间显著缩短,若与子载波间隔为120kHz时配置相同的PDCCH监测周期和监测持续时间,则子载波间隔为480kHz时PDCCH监测频率为子载波间隔为120kHz时的4倍,多次连续监测的监测间隔是120kHz的1/4,,960kHz的监测频率为120k的8倍,多次连续监测的监测间隔是120k的1/8,对终端设备的监测能力提出较高的要求。相关技术中,提出了多时隙监测,即增加一个监测周期内两次相邻监测间隔的时隙数。
多时隙监测可以增加一个监测周期内连续两次监测的监测间隔,一次发送PDCCH的符号数若限制在3以内,则能监测的PDCCH数量有限,不能保证服务于足够多的用户,为了保证能监测到PDCCH的终端的数量,需增加PDCCH的数量,如将发送PDCCH的时域符号从最多3个成倍扩展至最多12个或最多24个,以维持多时隙内用于监测PDCCH的符号所占用的比例,这样需要增加用于监测PDCCH的符号数,这增加了终端设备监测PDCCH的复杂度。
发明内容
本申请实施例提供了一种物理下行控制信道的传输方法及相关装置,能够在大子载波场景下,服务于足够多的用户,也能够避免增加终端设备监测PDCCH的复杂度。
第一方面,本申请提供一种物理下行控制信道的传输方法,包括:
网络设备发送资源配置,所述资源配置指示用于网络设备发送物理下行控制信道PDCCH的时域资源;
所述网络设备在所述用于网络设备发送PDCCH的时域资源中的第一时域资源发送第 一终端设备的PDCCH,在所述用于网络设备发送PDCCH的时域资源中的第二时域资源发送第二终端设备的PDCCH。
本申请的技术方案,通过分别在不同的时域资源向不同的终端设备发送PDCCH,这样在增加用于网络设备发送PDCCH的符号数增多满足多用户的需求时,一个终端设备仅需要在用于发送PDCCH的时域资源中的部分的时域资源上监测PDCCH,也能够避免增加终端设备监测PDCCH的复杂度,提高多时隙调度的效率。
其中,第一时域资源的位置可以是网络设备发送给第一终端设备的,也可以是第一终端设备与网络设备按照约定的方式得到的。第二时域资源的位置可以是网络设备发送给第二终端设备的,也可以是第二终端设备与网络设备按照约定的方式得到的。
一种可能的实现方式中,第一时域资源的符号是连续的,第二时域资源的符号也是连续的。或者说,一个分组的时域资源的符号都是连续的。这样,终端设备能够在连续的多个符号监测PDCCH,能够更加有效地避免增加终端设备监测PDCCH的复杂度。
在另一种可能的实现方式中,第一时域资源的符号是间隔的,第二时域资源的符号也是间隔的。例如,第一时域资源的符号与第二时域资源的符号是呈梳齿状间隔分布的。这样能够增加第一时域资源在时间上的跨度,也能够增加第二时域资源在时间上的跨度,提升监测PDCCH在时变信道下的鲁棒性,能够提升终端设备成功监测PDCCH的几率。
在一些实施方式中,资源配置还包括第一时域资源配置,所述第一时域资源配置包括所述第一时域资源的起始符号和所述第一时域资源的符号数。这样第一终端设备可以根据第一时域资源配置,确定第一时域资源的位置,在第一时域资源监测PDCCH。
在某些实施方式中,资源配置承载在搜索空间的字段和/或控制资源集(control-resource set,CORESET)字段。
在一种可能的实现方式中,第一时域资源的起始符号的配置承载在搜索空间的第一字段上,所述第一字段的符号数为14*S max,S max为一个PDCCH监测跨度的最大时隙数。这样,第一字段能够指示第一时域资源的起始符号在一个PDCCH监测跨度的绝对位置,第一时域资源的位置的灵活度较高,也使得第一终端能够根据第一字段直接得到第一时域资源的起始符号的位置。
在另一种可能的实现方式中,第一时域资源的起始符号的配置承载在搜索空间的第二字段上,所述第二字段的长度为S max,S max为所述用于网络设备发送PDCCH的时域资源包含的最大时隙数。这样,限制第一时域资源的第1个符号只能是一个时隙的第一个符号。那么,第二字段只需要指示第一资源所在时隙在用于网络设备发送PDCCH的时域资源中的位置,增大指示粒度,缩短用于指示第一时域资源的起始符号的配置的字段的长度,从而有助于节省信令开销。
在一些实施方式中,所述第一资源配置包括所述第一时域资源对应的偏移量,所述偏移量指示所述第一时域资源的起始符号在所述用于网络设备发送PDCCH的时域资源的起始符号。这样的方案中,网络设备通过指示第一时域资源对应的偏移量实现指示第一时域资源的起始符号。第一终端设备能够根据偏移量得到第一时域资源的起始符号。
在一种可能的实现方式中,所述搜索空间或CORESET包括指示所述偏移量的字段。这样第一终端设备能够根据该字段获得偏移量,从而得到第一时域资源的起始符号。
在另一种可能的实现方式中,所述搜索空间包括与所述搜索空间关联的第一CORESET集,所述第一CORESET集包括所述偏移量,所述CORESET包括指示所述第一CORESET集的编号的字段。这样通过已有的字段指示偏移量,有助于降低指示开销。
在一些实施方式中,所述第一时域资源是根据所述第一终端设备的标识,时隙索引,或当前周期内的监测次数中的一种或多种确定的。这样可以节省网络设备向第一终端设备指示第一时域资源配置的开销。
在一些实施方式中,第一时域资源的符号数与第二时域资源的符号数是不同的。这样用于网络设备发送PDCCH的时域资源的分组更加灵活,从而能够更好地适配实际需求。
在一些实施方式中,第一时域资源的符号数与第一时域资源对应的聚合级别正相关。这样的方案,网络设备和第一终端设备能够根据聚合级别,确定第一时域资源的位置。或者,网络设备和第一终端设备能够根据第一时域资源的位置,确定聚合级别,有助于减少信令开销。
在一些实施方式中,第一时域资源的符号属于一个时隙。这样能够避免第一终端设备跨时隙监测PDCCH,从而降低终端设备监测PDCCH的复杂度。
应理解,上述关于第一时域资源的实现方式,也是用于第二时域资源,不再重复说明。
第二方面,本申请实施方式提供一种PDCCH的传输方法,包括:
终端设备接收资源配置,所述资源配置包括用于网络设备发送PDCCH的时域资源;
所述终端设备在所述用于网络设备发送PDCCH的时域资源的部分时域资源中监测所述终端设备的PDCCH。
本申请的技术方案,终端设备仅需要在用于发送PDCCH的时域资源中的部分的时域资源上监测PDCCH,这样在增加用于网络设备发送PDCCH的符号数增多满足多用户的需求时,也能够避免增加终端设备监测PDCCH的复杂度。
其中,部分时域资源的位置可以是网络设备发送给终端设备的,也可以是终端设备与网络设备按照约定的方式得到的。
在一些实施方式中,所述资源配置还包括指示所述部分时域资源的第一资源配置,所述第一时域资源配置包括所述部分时域资源的起始符号和所述部分时域资源的符号数。这样终端设备可以根据第一时域资源配置,确定第一时域资源的位置,在第一时域资源监测PDCCH。
在一些实施方式中,所述资源配置承载在搜索空间的字段和/或CORESET字段。
在一种可能的实现方式中,所述部分时域资源的起始符号的配置承载在搜索空间的第一字段上,所述第一字段的符号数为14*S max,S max为一个PDCCH监测跨度的最大时隙数。这样,第一字段能够指示第一时域资源的起始符号在一个PDCCH监测跨度的绝对位置,第一时域资源的位置的灵活度较高,也使得终端能够根据第一字段直接得到第一时域资源的起始符号的位置。
在另一种可能的实现方式中,所述部分时域资源的第1个OFDM符号为一个时隙的起始符号,所述第一时域资源的起始符号的配置承载在搜索空间的第二字段上,所述第二字段的长度为S max,S max为一个PDCCH监测跨度的最大时隙数。这样,限制第一时域资源的第1个符号只能是一个时隙的第一个符号。那么,第二字段只需要指示第一资源所在时隙 在用于网络设备发送PDCCH的时域资源中的位置,增大指示粒度,缩短用于指示第一时域资源的起始符号的配置的字段的长度,从而有助于节省信令开销。
在一些实施方式中,所述第一资源配置包括所述第一时域资源对应的偏移量,所述偏移量指示所述第一时域资源的起始符号在所述用于网络设备发送PDCCH的时域资源的起始符号。这样的方案中,网络设备通过指示第一时域资源对应的偏移量实现指示第一时域资源的起始符号。终端设备能够根据偏移量得到第一时域资源的起始符号。
在一种可能的实现方式中,所述搜索空间包括指示所述偏移量的字段。这样设备能够根据该字段获得偏移量,从而得到第一时域资源的起始符号。
在另一种可能的实现方式中,所述搜索空间包括与所述搜索空间关联的第一CORESET集,所述第一CORESET集包括所述偏移量,所述CORESET包括指示所述第一CORESET集的编号的字段。这样通过已有的字段指示偏移量,有助于降低指示开销。
在一些实施方式中,所述终端设备在所述用于网络设备发送PDCCH的时域资源的部分时域资源中监测所述终端设备的PDCCH之前,所述方法还包括:所述终端设备根据所述终端设备的标识,时隙索引,或当前周期内的监测次数中的一种或多种确定所述部分时域资源。这样的方案,终端设备可以不必从网络设备接收指示第一时域资源的第一时域资源配置,可以节省网络设备向第一终端设备指示第一时域资源配置的开销。
在一些实施方式中,所述部分时域资源的符号数与所述部分时域资源对应的聚合级别正相关。这样的方案,网络设备和第一终端设备能够根据聚合级别,确定第一时域资源的位置。或者,网络设备和第一终端设备能够根据第一时域资源的位置,确定聚合级别,有助于减少信令开销。
在一些实施方式中,所述部分时域资源的符号属于一个时隙。这样能够避免终端设备跨时隙监测PDCCH,从而降低终端设备监测PDCCH的复杂度。
应理解,上述关于第一时域资源的实现方式,也是用于第二时域资源,不再重复说明。
第三方面,本申请还提提供一种PDCCH的传输方法,包括:
网络设备发送资源配置,所述资源配置包括第一时域资源配置和第二时域资源配置,所述第一时域资源配置指示第一时域资源,所述第二时域资源配置指示第二时域资源;
所述网络设备在第一时域资源向第一终端设备发送PDCCH,在第二时域资源向第二终端设备发送PDCCH。
这样的方案,通过将用于发送PDCCH的时域资源分为第一时域资源和第二时域资源,这样在增加用于网络设备发送PDCCH的符号数增多满足多用户的需求时,一个终端设备仅需要在用于发送PDCCH的时域资源中的部分的时域资源上监测PDCCH,也能够避免增加终端设备监测PDCCH的复杂度。
第一时域资源的位置可以是网络设备发送给第一终端设备的,也可以是第一终端设备与网络设备按照约定的方式得到的。第二时域资源的位置可以是网络设备发送给第二终端设备的,也可以是第二终端设备与网络设备按照约定的方式得到的。
一种可能的实现方式中,第一时域资源的符号是连续的,第二时域资源的符号也是连续的。或者说,一个分组的时域资源的符号都是连续的。这样,终端设备能够在连续的多个符号监测PDCCH,能够更加有效地避免增加终端设备监测PDCCH的复杂度。
在另一种可能的实现方式中,第一时域资源的符号是间隔的,第二时域资源的符号也是间隔的。例如,第一时域资源的符号与第二时域资源的符号是呈梳齿状间隔分布的。这样能够增加第一时域资源在时间上的跨度,也能够增加第二时域资源在时间上的跨度,提升监测PDCCH在时变信道下的鲁棒性,能够提升终端设备成功监测PDCCH的几率。
在某些实施方式中,资源配置承载在搜索空间的字段和/或控制资源集(control-resource set,CORESET)字段。
在一种可能的实现方式中,第一时域资源的起始符号的配置承载在搜索空间的第一字段上,所述第一字段的符号数为14*S max,S max为一个PDCCH监测跨度的最大时隙数。这样,第一字段能够指示第一时域资源的起始符号在一个PDCCH监测跨度的绝对位置,第一时域资源的位置的灵活度较高,也使得第一终端能够根据第一字段直接得到第一时域资源的起始符号的位置。
第四方面,本申请还提供一种PDCCH的传输方法,包括:
终端设备接收来自网络设备的第一时域资源配置,第一时域资源配置包括第一时域资源的起始符号和所述部分时域资源的符号数;所述第一时域资源为用于所述网络设备发送PDCCH的时域资源中的部分时域资源;
所述终端设备根据第一时域资源配置,在第一时域资源监测PDCCH。
这样的方案,终端设备仅需要在用于发送PDCCH的时域资源中的部分的时域资源上监测PDCCH,从而能够更好地实现多时隙调度,也能够避免增加终端设备监测PDCCH的复杂度。
第一时域资源的符号可以是连续的,也可以是间隔的。
在一种可能的实现方式中,第一时域资源的起始符号的配置承载在搜索空间的第一字段上,所述第一字段的符号数为14*S max,S max为一个PDCCH监测跨度的最大时隙数。这样,第一字段能够指示第一时域资源的起始符号在一个PDCCH监测跨度的绝对位置,第一时域资源的位置的灵活度较高,也使得第一终端能够根据第一字段直接得到第一时域资源的起始符号的位置。
第五方面,本申请实施方式还提供一种PDCCH的传输装置,该传输装置可以是网络设备,或者可以用于网络设备。该传输装置包括输入输出单元和处理单元。该输入输出单元可以是或可以部署在收发器、收发天线、输入输出接口等能够实现信息收发功能的单元或模块,该处理单元可以是或可以部署在处理器。输入输出单元用于:
发送资源配置,所述资源配置指示用于网络设备发送物理下行控制信道PDCCH的时域资源;以及
在所述用于网络设备发送PDCCH的时域资源中的第一时域资源发送第一终端设备的PDCCH,在所述用于网络设备发送PDCCH的时域资源中的第二时域资源发送第二终端设备的PDCCH。
本申请的技术方案,通过分别在不同的时域资源向不同的终端设备发送PDCCH,这样在增加用于网络设备发送PDCCH的符号数增多满足多用户的需求时,一个终端设备仅需要在用于发送PDCCH的时域资源中的部分的时域资源上监测PDCCH,也能够避免增加终 端设备监测PDCCH的复杂度。
其中,第一时域资源的位置可以是网络设备发送给第一终端设备的,也可以是第一终端设备与网络设备按照约定的方式得到的。第二时域资源的位置可以是网络设备发送给第二终端设备的,也可以是第二终端设备与网络设备按照约定的方式得到的。
一种可能的实现方式中,第一时域资源的符号是连续的,第二时域资源的符号也是连续的。或者说,一个分组的时域资源的符号都是连续的。这样,终端设备能够在连续的多个符号监测PDCCH,能够更加有效地避免增加终端设备监测PDCCH的复杂度。
在另一种可能的实现方式中,第一时域资源的符号是间隔的,第二时域资源的符号也是间隔的。例如,第一时域资源的符号与第二时域资源的符号是呈梳齿状间隔分布的。这样能够增加第一时域资源在时间上的跨度,也能够增加第二时域资源在时间上的跨度,提升监测PDCCH在时变信道下的鲁棒性,能够提升终端设备成功监测PDCCH的几率。
在一些实施方式中,资源配置还包括第一时域资源配置,所述第一时域资源配置包括所述第一时域资源的起始符号和所述第一时域资源的符号数。这样第一终端设备可以根据第一时域资源配置,确定第一时域资源的位置,在第一时域资源监测PDCCH。
在某些实施方式中,资源配置承载在搜索空间的字段和/或控制资源集(control-resource set,CORESET)字段。
在一种可能的实现方式中,第一时域资源的起始符号的配置承载在搜索空间的第一字段上,所述第一字段的符号数为14*Smax,Smax为一个PDCCH监测跨度的最大时隙数。这样,第一字段能够指示第一时域资源的起始符号在一个PDCCH监测跨度的绝对位置,第一时域资源的位置的灵活度较高,也使得第一终端能够根据第一字段直接得到第一时域资源的起始符号的位置。
在另一种可能的实现方式中,第一时域资源的起始符号的配置承载在搜索空间的第二字段上,所述第二字段的长度为Smax,Smax为所述用于网络设备发送PDCCH的时域资源包含的最大时隙数。这样,限制第一时域资源的第1个符号只能是一个时隙的第一个符号。那么,第二字段只需要指示第一资源所在时隙在用于网络设备发送PDCCH的时域资源中的位置,增大指示粒度,缩短用于指示第一时域资源的起始符号的配置的字段的长度,从而有助于节省信令开销。
在一些实施方式中,所述第一资源配置包括所述第一时域资源对应的偏移量,所述偏移量指示所述第一时域资源的起始符号在所述用于网络设备发送PDCCH的时域资源的起始符号。这样的方案中,网络设备通过指示第一时域资源对应的偏移量实现指示第一时域资源的起始符号。第一终端设备能够根据偏移量得到第一时域资源的起始符号。
在一种可能的实现方式中,所述搜索空间或CORESET包括指示所述偏移量的字段。这样第一终端设备能够根据该字段获得偏移量,从而得到第一时域资源的起始符号。
在另一种可能的实现方式中,所述搜索空间包括与所述搜索空间关联的第一CORESET集,所述第一CORESET集包括所述偏移量,所述CORESET包括指示所述第一CORESET集的编号的字段。这样通过已有的字段指示偏移量,有助于降低指示开销。
在一些实施方式中,所述第一时域资源是所述处理单元根据所述第一终端设备的标识,时隙索引,或当前周期内的监测次数中的一种或多种确定的。这样可以节省网络设备向第 一终端设备指示第一时域资源配置的开销。
在一些实施方式中,第一时域资源的符号数与第二时域资源的符号数是不同的。这样用于网络设备发送PDCCH的时域资源的分组更加灵活,从而能够更好地适配实际需求。
在一些实施方式中,第一时域资源的符号数与第一时域资源对应的聚合级别正相关。这样的方案,网络设备和第一终端设备能够根据聚合级别,确定第一时域资源的位置。或者,网络设备和第一终端设备能够根据第一时域资源的位置,确定聚合级别,有助于减少信令开销。
在一些实施方式中,第一时域资源的符号属于一个时隙。这样能够避免第一终端设备跨时隙监测PDCCH,从而降低终端设备监测PDCCH的复杂度。
应理解,上述关于第一时域资源的实现方式,也是用于第二时域资源,不再重复说明。
第六方面,本申请还提供一种PDCCH的传输装置,该传输装置可以是但不限于终端设备,或者可以用于但不限于终端设备。该传输装置可包括输入输出单元和处理单元。该输入输出单元可以是或可以部署在收发器、收发天线、输入输出接口等能够实现信息收发功能的单元或模块,该处理单元可以是或可以部署在处理器。输入输出单元用于:
接收资源配置,所述资源配置包括用于网络设备发送PDCCH的时域资源;以及
在所述用于网络设备发送PDCCH的时域资源的部分时域资源中监测所述终端设备的PDCCH。
本申请的技术方案,终端设备仅需要在用于发送PDCCH的时域资源中的部分的时域资源上监测PDCCH,这样在增加用于网络设备发送PDCCH的符号数增多满足多用户的需求时,能够避免终端设备监测PDCCH的复杂度。
其中,部分时域资源的位置可以是网络设备发送给终端设备的,也可以是终端设备与网络设备按照约定的方式得到的。
在一些实施方式中,所述资源配置还包括指示所述部分时域资源的第一资源配置,所述第一时域资源配置包括所述部分时域资源的起始符号和所述部分时域资源的符号数。这样终端设备可以根据第一时域资源配置,确定第一时域资源的位置,在第一时域资源监测PDCCH。
在一些实施方式中,所述资源配置承载在搜索空间的字段和/或CORESET字段。
在一种可能的实现方式中,所述部分时域资源的起始符号的配置承载在搜索空间的第一字段上,所述第一字段的符号数为14*Smax,Smax为一个PDCCH监测跨度的最大时隙数。这样,第一字段能够指示第一时域资源的起始符号在一个PDCCH监测跨度的绝对位置,第一时域资源的位置的灵活度较高,也使得终端能够根据第一字段直接得到第一时域资源的起始符号的位置。
在另一种可能的实现方式中,所述部分时域资源的第1个OFDM符号为一个时隙的起始符号,所述第一时域资源的起始符号的配置承载在搜索空间的第二字段上,所述第二字段的长度为Smax,Smax为一个PDCCH监测跨度的最大时隙数。这样,限制第一时域资源的第1个符号只能是一个时隙的第一个符号。那么,第二字段只需要指示第一资源所在时隙在用于网络设备发送PDCCH的时域资源中的位置,增大指示粒度,缩短用于指示第一时域资源的起始符号的配置的字段的长度,从而有助于节省信令开销。
在一些实施方式中,所述第一资源配置包括所述第一时域资源对应的偏移量,所述偏移量指示所述第一时域资源的起始符号在所述用于网络设备发送PDCCH的时域资源的起始符号。这样的方案中,网络设备通过指示第一时域资源对应的偏移量实现指示第一时域资源的起始符号。终端设备能够根据偏移量得到第一时域资源的起始符号。
在一种可能的实现方式中,所述搜索空间包括指示所述偏移量的字段。这样设备能够根据该字段获得偏移量,从而得到第一时域资源的起始符号。
在另一种可能的实现方式中,所述搜索空间包括与所述搜索空间关联的第一CORESET集,所述第一CORESET集包括所述偏移量,所述CORESET包括指示所述第一CORESET集的编号的字段。这样通过已有的字段指示偏移量,有助于降低指示开销。
在一些实施方式中,所述终端设备在所述用于网络设备发送PDCCH的时域资源的部分时域资源中监测所述终端设备的PDCCH之前,所述处理单元用于:根据所述终端设备的标识,时隙索引,或当前周期内的监测次数中的一种或多种确定所述部分时域资源。这样的方案,终端设备可以不必从网络设备接收指示第一时域资源的第一时域资源配置,可以节省网络设备向第一终端设备指示第一时域资源配置的开销。
在一些实施方式中,所述部分时域资源的符号数与所述部分时域资源对应的聚合级别正相关。这样的方案,网络设备和第一终端设备能够根据聚合级别,确定第一时域资源的位置。或者,网络设备和第一终端设备能够根据第一时域资源的位置,确定聚合级别,有助于减少信令开销。
在一些实施方式中,所述部分时域资源的符号属于一个时隙。这样能够避免终端设备跨时隙监测PDCCH,从而降低终端设备监测PDCCH的复杂度。
应理解,上述关于第一时域资源的实现方式,也是用于第二时域资源,不再重复说明。
第七方面,本申请实施方式还提供一种PDCCH的传输装置,该传输装置可以是网络设备,或者可以用于网络设备。该传输装置包括输入输出单元和处理单元。该输入输出单元可以是或可以部署在收发器、收发天线、输入输出接口等能够实现信息收发功能的单元或模块,该处理单元可以是或可以部署在处理器。输入输出单元用于:
发送资源配置,所述资源配置包括第一时域资源配置和第二时域资源配置,所述第一时域资源配置指示第一时域资源,所述第二时域资源配置指示第二时域资源;以及
在第一时域资源向第一终端设备发送PDCCH,在第二时域资源向第二终端设备发送PDCCH。
这样的方案,通过将用于发送PDCCH的时域资源分为第一时域资源和第二时域资源,这样在增加用于网络设备发送PDCCH的符号数增多满足多用户的需求时,一个终端设备仅需要在用于发送PDCCH的时域资源中的部分的时域资源上监测PDCCH,也能够避免增加终端设备监测PDCCH的复杂度。
第一时域资源的位置可以是网络设备发送给第一终端设备的,也可以是第一终端设备与网络设备按照约定的方式得到的。第二时域资源的位置可以是网络设备发送给第二终端设备的,也可以是第二终端设备与网络设备按照约定的方式得到的。
一种可能的实现方式中,第一时域资源的符号是连续的,第二时域资源的符号也是连 续的。或者说,一个分组的时域资源的符号都是连续的。这样,终端设备能够在连续的多个符号监测PDCCH,能够更加有效地避免增加终端设备监测PDCCH的复杂度。
在另一种可能的实现方式中,第一时域资源的符号是间隔的,第二时域资源的符号也是间隔的。例如,第一时域资源的符号与第二时域资源的符号是呈梳齿状间隔分布的。这样能够增加第一时域资源在时间上的跨度,也能够增加第二时域资源在时间上的跨度,提升监测PDCCH在时变信道下的鲁棒性,能够提升终端设备成功监测PDCCH的几率。
在某些实施方式中,资源配置承载在搜索空间的字段和/或控制资源集(control-resource set,CORESET)字段。
在一种可能的实现方式中,第一时域资源的起始符号的配置承载在搜索空间的第一字段上,所述第一字段的符号数为14*S max,S max为一个PDCCH监测跨度的最大时隙数。这样,第一字段能够指示第一时域资源的起始符号在一个PDCCH监测跨度的绝对位置,第一时域资源的位置的灵活度较高,也使得第一终端能够根据第一字段直接得到第一时域资源的起始符号的位置。
第八方面,本申请还提供一种PDCCH的传输装置,该传输装置可以是但不限于终端设备,或者可以用于但不限于终端设备。该传输装置可包括输入输出单元和处理单元。该输入输出单元可以是或可以部署在收发器、收发天线、输入输出接口等能够实现信息收发功能的单元或模块,该处理单元可以是或可以部署在处理器。输入输出单元用于:
接收来自网络设备的第一时域资源配置,第一时域资源配置包括第一时域资源的起始符号和所述部分时域资源的符号数;所述第一时域资源为用于所述网络设备发送PDCCH的时域资源中的部分时域资源;以及
根据第一时域资源配置,在第一时域资源监测PDCCH。
这样的方案,在增加用于网络设备发送PDCCH的符号数增多满足多用户的需求时,一个终端设备仅需要在用于发送PDCCH的时域资源中的部分的时域资源上监测PDCCH,也能够避免增加终端设备监测PDCCH的复杂度。
第一时域资源的符号可以是连续的,也可以是间隔的。
在一种可能的实现方式中,第一时域资源的起始符号的配置承载在搜索空间的第一字段上,所述第一字段的符号数为14*Smax,Smax为一个PDCCH监测跨度的最大时隙数。这样,第一字段能够指示第一时域资源的起始符号在一个PDCCH监测跨度的绝对位置,第一时域资源的位置的灵活度较高,也使得第一终端能够根据第一字段直接得到第一时域资源的起始符号的位置。
第九方面,本申请提供一种通信设备,通信设备包括处理器,处理器与存储器耦合,当处理器执行存储器中的计算机程序或指令时,使得上述第一方面任一实施方式的方法被执行。
可选地,该装置还包括存储器。
可选地,该装置还包括通信接口,处理器与通信接口耦合。
可选的,处理器为一个或多个,存储器为一个或多个。
可选的,存储器可以与处理器集成在一起,或者存储器与处理器分离设置。
可选的,收发器中可以包括,发射机(发射器)和接收机(接收器)。
在一种实现方式中,该通信设备为网络设备或终端设备。当该通信设备为网络设备或终端设备时,通信接口可以是收发器,或,输入/输出接口。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信设备为芯片或芯片系统。当该装置为芯片或芯片系统时,通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理器也可以体现为处理电路或逻辑电路。
第十方面,本申请提供了一种通信系统,通信系统包括上述第五方面的传输装置,以及上述第六方面的传输装置,或者通信系统包括上述第七方面的传输装置和上述第八方面的传输装置。
第十一方面,本申请提供了一种计算机程序产品,计算机程序产品包括:计算机程序(也可以称为代码,或指令),当计算机程序被运行时,使得计算机执行上述第一方面至第四方面中任一种可能实现方式中的方法。
第十二方面,本申请提供了一种计算机可读存储介质,计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中任一种可能实现方式中的方法。
第十三方面,本申请还提供一种电路,包括:处理器和接口,用于执行存储器中存储的计算机程序或指令,执行上述第一方面至第四方面中任一种可能实现方式中的方法。
附图说明
图1为本申请实施例涉及的通信系统的网络架构示意图;
图2A为本申请实施例的网络设备的结构示意图;
图2B为本申请实施例的终端设备的结构示意图;
图3为本申请涉及的传输PDCCH的场景示意图;
图4A为本申请实施例提供的发送PDCCH的场景示意图;
图4B为本申请实施例的PDCCH的传输方法的流程示意图;
图5A为本申请实施例提供的发送PDCCH的另一场景示意图;
图5B为本申请实施例提供的发送PDCCH的另一场景示意图;
图6A为本申请实施例提供的发送PDCCH的另一场景示意图;
图6B为本申请实施例提供的发送PDCCH的另一场景示意图;
图7A为本申请实施例提供的发送PDCCH的另一场景示意图;
图7B为本申请实施例提供的发送PDCCH的另一场景示意图;
图8A为本申请实施例提供的CCE组的编号示意图;
图8B为本申请实施例提供的CCE组的编号示意图;
图9A为本申请实施例提供的发送PDCCH的另一场景示意图;
图9B为本申请实施例提供的发送PDCCH的另一场景示意图;
图9C为本申请实施例提供的发送PDCCH的另一场景示意图;
图9D为本申请实施例提供的发送PDCCH的另一场景示意图;
图10A为本申请实施例提供的发送PDCCH的另一场景示意图;
图10B为本申请实施例提供的发送PDCCH的另一场景示意图;
图11为本申请实施例提供的PDCCH的传输装置的结构示意图;
图12为本申请实施例提供的另一PDCCH的传输装置的结构示意图;
图13为本申请实施例提供的另一PDCCH的传输装置的结构示意图;
图14为本申请实施例提供的另一PDCCH的传输装置的结构示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
图1为本申请实施例涉及的通信系统的网络架构示意图。通信系统包括网络设备和多个终端设备(如图1中的终端设备121和终端设备122)。终端设备121和终端设备122可以与网络设备111进行通信。
该通信系统可以是支持第四代(fourth generation,4G)接入技术的通信系统,例如长期演进(long term evolution,LTE)接入技术;或者,该通信系统也可以是支持第五代(fifth generation,5G)接入技术通信系统,例如新无线(new radio,NR)接入技术;或者,该通信系统也可以是支持第三代(third generation,3G)接入技术的通信系统,例如(universal mobile telecommunications system,UMTS)接入技术;或者该通信系统也可以是第二代(second generation,2G)接入技术的通信系统,例如全球移动通讯系统(global system for mobile communications,GSM)接入技术;或者,该通信系统还可以是支持多种无线技术的通信系统,例如支持LTE技术和NR技术的通信系统。另外,该通信系统也可以适用于面向未来的通信技术。
图1中的网络设备111可以是5G或未来某一代接入技术通信系统中的下一代基站(next generation nodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node)、接入点(access point,AP)等等。
图1中的终端设备可以是一种向用户提供语音或者数据连通性的设备,例如也可以称为用户设备(user equipment,UE),移动台(mobile station),用户单元(subscriber unit),站台(station),终端设备(terminal equipment,TE)等。终端可以为蜂窝电话(cellular phone),个人数字助理(personal digital assistant,PDA),无线调制解调器(modem),手持设备(handheld),膝上型电脑(laptop computer),无绳电话(cordless phone),无线本地环路(wireless local loop,WLL)台,平板电脑(pad)等。随着无线通信技术的发展,可以接入通信系统、可以与通信系统的网络侧进行通信,或者通过通信系统与其它物体进行通信的设备都可以是本申请实施例中的终端,譬如,智能交通中的终端和汽车、智能家居中的家用设备、智能电网中的电力抄表仪器、电压监测仪器、环境监测仪器、智能安全网络中的视频监控仪器、收款机等等。在本申请实施例中,终端可以与网络设备,例如网络设备111或者网络设备112进行通信。多个终端之间也可以进行通信。终端可以是静态固定的,也可以是移动的。
图2A是一种网络设备的结构示意图。本申请实施例中的网络设备的结构可以参考图2A所示的结构。
网络设备包括至少一个处理器1111、至少一个收发器1113、至少一个网络接口1114和一个或多个天线1115。可选的,网络设备还包括至少一个存储器1112。处理器1111、存储器1112、收发器1113和网络接口1114相连,例如通过总线相连。天线1115与收发器1113相连。网络接口1114用于使得网络设备通过通信链路,与其它通信设备相连,例如网络设备通过S1接口,与核心网网元101相连。在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。
本申请实施例中的处理器,例如处理器1111,可以包括如下至少一种类型:通用中央处理器(central processing unit,CPU)、数字信号处理器(digital signal processor,DSP)、微处理器、特定应用集成电路专用集成电路(application-specific integrated circuit,ASIC)、微控制器(microcontroller unit,MCU)、现场可编程门阵列(field programmable gate array,FPGA)、或者用于实现逻辑运算的集成电路。例如,处理器1111可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。至少一个处理器1111可以是集成在一个芯片中或位于多个不同的芯片上。
本申请实施例中的存储器,例如存储器1112,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器1112可以是独立存在,与处理器1111相连。可选的,存储器1112也可以和处理器1111集成在一起,例如集成在一个芯片之内。其中,存储器1112能够存储执行本申请实施例的技术方案的程序代码,并由处理器1111来控制执行,被执行的各类计算机程序代码也可被视为是处理器1111的驱动程序。例如,处理器1111用于执行存储器1112中存储的计算机程序代码,从而实现本申请实施例中的技术方案。
收发器1113可以用于支持网络设备与终端之间射频信号的接收或者发送,收发器1113可以与天线1115相连。
收发器1113包括发射机Tx和接收机Rx。具体地,一个或多个天线1115可以接收射频信号,该收发器1113的接收机Rx用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器1111,以便处理器1111对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器1113中的发射机Tx还用于从处理器1111接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线1115发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射 频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
该收发器1113也可以理解为输入输出单元。
可选的,网络设备111可以包括基带单元(baseband unit,BBU)、射频拉远单元(radio remote unit,RRU)和天线,BBU与RRU相连,RRU与天线相连。
可选的,网络设备112可以包括基带单元(baseband unit,BBU)、射频拉远单元(radio remote unit,RRU)和天线,BBU与RRU相连,RRU与天线相连。
如图2B所示,为本申请实施例提供的一种终端设备的结构示意图。终端设备121和终端设备122的结构可以参考图2B所示的结构。
终端设备包括至少一个处理器1211、至少一个收发器1212。可选的,终端设备121还包括至少一个存储器1213。处理器1211、存储器1213和收发器1212相连。可选的,终端设备121还可以包括输出设备1214、输入设备1215和一个或多个天线1216。天线1216与收发器1212相连,输出设备1214、输入设备1215与处理器1211相连。
收发器1212、存储器1213以及天线1216可以参考图2A中的相关描述,实现类似功能。
处理器1211可以是基带处理器,也可以是CPU,基带处理器和CPU可以集成在一起,或者分开。
处理器1211可以用于为终端设备121实现各种功能,例如用于对通信协议以及通信数据进行处理,或者用于对整个终端设备121进行控制,执行软件程序,处理软件程序的数据;或者用于协助完成计算处理任务,例如对图形图像处理或者音频处理等等;或者处理器1211用于实现上述功能中的一种或者多种
输出设备1214和处理器1211通信,可以以多种方式来显示信息。例如,输出设备1214可以是液晶显示器(liquid crystal display,LCD)、发光二级管(light emitting diode,LED)显示设备、阴极射线管(cathode ray tube,CRT)显示设备、或投影仪(projector)等。输入设备1215和处理器1211通信,可以以多种方式接受用户的输入。例如,输入设备1215可以是鼠标、键盘、触摸屏设备或传感设备等。
一种接入技术中,网络设备会先为终端设备配置用于发送PDCCH的时域资源,终端设备在该用于发送PDCCH的时域资源上进行监测,得到PDCCH,获得PDSCH的相关调度信息(例如调度发送PDSCH的时隙),再根据得到的调度信息接收PDSCH。
然而,如图3所示的场景示意图,一个时隙的绝对时长是与子载波间隔负相关的,也即是说,子载波间隔越大,一个时隙的绝对时长越短,那么一个符号的绝对时长也越短。
在大子载波间隔(例如子载波间隔大于或等于480kHz)的场景下,往往需要实现多时隙监测,在一个PDCCH监测跨度(PDCCH-monitoring span)或监测窗中,包括多个时隙,网络设备可仅在一个监测跨度中的部分时隙上发送PDCCH。例如,子载波间隔为480kHz时,一个PDCCH监测跨度包括4个时隙;子载波间隔为960kHz时,一个PDCCH监测跨度包括8个时隙。PDCCH监测跨度也可以称为监测跨度。本申请中,监测跨度又可以理解为监测窗,本申请中以监测跨度进行说明。
以监测周期K s为40个时隙,监测偏移量O s为10个时隙,一个监测周期内的监测的时隙长度T s为3个时隙为例,在单时隙监测或监测跨度包括单时隙的场景下:
如果SCS为120kHz,一个帧内包含80个时隙,帧0{10,11,12}、帧0{50,51,52}、帧1{10,11,12}、帧1{50,51,52}……用于终端设备监测PDCCH。“{}”内的值为时隙的编号。例如帧0{10,11,12}指帧0中的时隙10,时隙11和时隙12。其中,时隙10为一个PDCCH监测跨度;时隙11-为一个PDCCH监测跨度;时隙12为一个PDCCH监测跨度;时隙50为一个PDCCH监测跨度;时隙51为一个PDCCH监测跨度;时隙52为一个PDCCH监测跨度。
如果SCS为480kHz,一个帧内包含320个时隙,帧0{10,11,12}、帧0{50,51,52}、帧0{90,91,92}、……、帧0{290,291,292}、帧1{10,11,12}、帧1{50,51,52}……用于终端设备监测PDCCH。其中,时隙10为一个PDCCH监测跨度;时隙11-为一个PDCCH监测跨度;时隙12为一个PDCCH监测跨度;时隙50为一个PDCCH监测跨度;时隙51为一个PDCCH监测跨度;时隙52为一个PDCCH监测跨度。
如果SCS为960kHz,一个帧内包含640个时隙,帧0{10,11,12}、帧0{50,51,52}、帧0{90,91,92}、……、帧0{610,611,612}、帧1{10,11,12}、帧1{50,51,52}……用于终端设备监测PDCCH。
对于SCS为480kHz的情况而言,大括号间的时间是120kHz的1/4,括号内两个数字间的时间是SCS为120kHz时的1/4。即大子载波间隔相对于120kHz,监测频率明显提升,以及一个监测周期内两个相邻监测跨度的第一个符号间的时间间隔明显缩短,增加了终端设备监测PDCCH的复杂度,因此提出增加大子载波间隔的监测跨度所包括的时隙数,增加一个监测周期内两个相邻监测跨度的时间间隔,以降低终端设备监测PDCCH的复杂度
以K s=40,O s=10,T s=12(480kHz)或24(960kHz)为例,在监测跨度包括多时隙的场景下:
如果SCS为480kHz,一个帧内包含320个时隙,帧0{10,14,18}、帧0{50,54,58}、帧0{90,94,98}、……、帧0{290,294,298}、帧1{10,14,18}、帧1{50,54,58}……用于终端设备监测PDCCH。其中,时隙10-时隙13为一个PDCCH监测跨度;时隙14-时隙17为一个PDCCH监测跨度;时隙18-时隙21为一个PDCCH监测跨度;时隙50-时隙53为一个PDCCH监测跨度;时隙54-时隙57为一个PDCCH监测跨度;时隙58-时隙61为一个PDCCH监测跨度。可以看出,在监测跨度包括多时隙的场景下,一个PDCCH监测跨度中,仅部分时隙用于发送PDCCH,或者说,一个PDCCH监测跨度中,仅部分时隙用于终端设备监测PDCCH。
如果SCS为960kHz,一个帧内包含640个时隙,帧0{10,18,26}、帧0{50,58,66}、帧0{90,98,106}、……、帧0{610,618,626}、帧1{10,18,26}、帧1{50,58,66}……用于终端设备监测PDCCH。
在监测跨度包括多时隙的场景下,如果用于发送PDCCH的时域资源的符号数如果不变,会导致PDCCH无法承载足够数量的调度信息,难以满足为更多的用户调度用于发送用户PDSCH的需求。
如果增加用于发送PDCCH的时域资源的符号数,每个终端设备所需监测的符号数也 会增多,即增加用户需要监测的PDCCH的candidates的数量,这会导致终端设备监测PDCCH的过程会更复杂。
本申请提供了一种能够更好地实现多时隙调度,也能够避免增加终端设备监测PDCCH的复杂度的方案。如图4A所示的场景示意图,本申请中,在网络设备需要向多个终端设备发送PDCCH的场景下,网络设备可对用于发送PDCCH的时域资源进行分组。每一组时域资源分组可用于承载发送给一组用户对应的PDCCH。图4A中,子载波间隔大于或等于480kHz时,用于网络设备发送PDCCH的时域资源中,填充图案相同的符号用于向一组终端设备发送PDCCH。这样,对于接收端的终端设备,可以不必在某一种配置下的整个用于发送PDCCH的时域资源上进行监测,只需要在某一分组对应的时域资源上监测PDCCH,从而可以避免增加终端设备监测PDCCH的复杂度。
下面结合本申请实施例的PDCCH的传输方法,介绍本申请的技术方案。
如图4B所示的流程示意图,本申请实施例的PDCCH的传输方法可包括:
401、网络设备发送资源配置,资源配置指示用于网络设备发送PDCCH的时域资源。
对应的,终端设备接收资源配置。
具体地,网络设备可向多个终端设发送资源配置,每个终端设备接收该资源配置。
例如,该资源配置可以指示用于网络设备发送PDCCH的时域资源的起始符号,以及符号数。
该用于网络设备发送PDCCH的时域资源为连续的多个符号。
402、网络设备在用于网络设备发送PDCCH的时域资源中的第一时域资源发送第一终端设备的PDCCH。
403、网络设备在用于网络设备发送PDCCH的时域资源中的第二时域资源发送第二终端设备的PDCCH。
该用于网络设备发送PDCCH的时域资源可分为多个时域资源分组,或多个时域资源区间,或多个时域资源范围。
本申请中,时域资源分组,时域资源区间,或时域资源范围,可以理解为分配给一组终端设备,用于向该一组终端设备发送PDCCH的时域资源。时域资源分组,时域资源区间,或时域资源范围,也可以理解为分配给一组终端设备,用于该一组终端设备监测PDCCH的时域资源。
本申请中,监测PDCCH,又可以理解为检测PDCCH,盲检PDCCH等。
第一时域资源又可以理解为第一时域资源分组,第二时域资源可以理解为第二时域资源分组。网络设备在第一时域资源发送一部分的终端设备的PDCCH,在第二时域资源发送另一部分的终端设备的PDCCH。可以理解,第一终端设备为该一部分的终端设备中的任一个终端设备,第二终端设备为该另一部分的终端设备中的任一个终端设备。
也可以理解,网络设备也通过分组的方式向终端设备发送PDCCH。多个终端设备被分为多个用户分组。多个用户分组包括第一用户分组和第二用户分组。一个用户分组可与一个时域资源分组对应。网络设备在各个时域资源分组向每个时域资源分组对应的用户分组 的终端设备发送PDCCH。例如,第一时域资源分组对应第一用户分组,第二时域资源分组对应第二用户分组。网络设备在第一时域资源发送第一用户分组的PDCCH,在第二时域资源发送第二用户分组的PDCCH。
这样,每个组的终端设备只需要在所属的用户分组对应的时域资源上监测PDCCH,降低终端设备监测PDCCH的复杂度。
应理解,本申请中,时域资源分组以及用户分组是为了便于描述,并不限定一定存在实际的时域资源分组以及用户分组。也可以理解为,一部分时域资源用于向一部分终端设备发送一部分终端设备的PDCCH,另一部分时域资源用于向另一部分终端设备发送另一部分终端设备的PDCCH。
在步骤402之前,网络设备可将发送给第一终端设备的PDCCH映射至第一时域资源,将发送给第二终端设备的PDCCH映射至第二时域资源。
404、第一终端设备在第一时域资源中监测第一终端设备的PDCCH。
也可以说,第一终端设备在第一时域资源中盲检第一终端设备的PDCCH。
第一时域资源可以理解为,用于第一终端设备监测PDCCH的时域资源。
第一时域资源的位置可以是网络设备发送给第一终端设备的,也可以是第一终端设备与网络设备按照约定的方式得到的。
405、第二终端设备在第二时域资源中监测第二终端设备的PDCCH。
也可以说,第二终端设备在第二时域资源中盲检第二终端设备的PDCCH。
第二时域资源可以理解为,用于第二终端设备监测PDCCH的时域资源。
第二时域资源的位置可以是网络设备发送给第二终端设备的,也可以是第二终端设备与网络设备按照约定的方式得到的。
上述步骤404和步骤405也可以理解为,终端设备在用于传输PDCCH的部分时域资源上监测PDCCH。
本申请的技术方案,通过对用于发送PDCCH的时域资源进行分组,这样在增加用于网络设备发送PDCCH的符号数增多满足多用户的需求时,一个终端设备仅需要在用于发送PDCCH的时域资源中的部分的时域资源上监测PDCCH,也能够避免增加终端设备监测PDCCH的复杂度。
如图5A所示的场景示意图,在一种可能的实现方式中,第一时域资源的符号是连续的,第二时域资源的符号也是连续的。或者说,一个分组的时域资源的符号都是连续的。这样,终端设备能够在连续的多个符号监测PDCCH,能够更加有效地避免增加终端设备监测PDCCH的复杂度。
如图5B所示的场景示意图,在另一种可能的实现方式中,第一时域资源的符号是间隔的,第二时域资源的符号也是间隔的。例如,第一时域资源的符号与第二时域资源的符号是呈梳齿状间隔分布的。这样能够增加第一时域资源在时间上的跨度,也能够增加第二时域资源在时间上的跨度,提升监测PDCCH在时变信道下的鲁棒性,能够提升终端设备成功监测PDCCH的几率。
应理解,在一些情况下,可以是一部分时域资源分组的符号是连续的,另一部分时域资源分组的符号是间隔的。
第一时域资源的位置可以是网络设备发送给第一终端设备的,也可以是第一终端设备与网络设备按照约定的方式得到的。
为便于说明,先提供一种实施方式中,网络设备向终端设备发送资源配置的方案。
在一种实施方式中,网络设备向终端设备发送搜索空间和控制资源集(control-resource set,CORESET)。
搜索空间的监测时隙周期和偏移monitoringSlotPeriodicityAndOffset字段指示周期和偏移量,持续时长duration指示一个周期内需连续监测的时隙数,通过这两个字段可以确定传输PDCCH的具体时隙。
搜索空间的时隙内监测符号monitoringSymbolsWithinSlot字段指示每一个传输PDCCH的时隙内用于传输PDCCH的时域资源在时隙(或者说一个PDCCH监测跨度)内的起始符号。该时隙内监测符号monitoringSymbolsWithinSlot字段的长度是14比特,第i个比特对应一个时隙内的第i个符号。也即是说,每一比特对应一个时隙内的一个符号。第m个比特为1,则指示第m个符号为用于传输PDCCH的时域资源在时隙内的起始符号。例如,monitoringSymbolsWithinSlot字段的第5个比特是1,则指示第5个符号(符号4)为用于传输PDCCH的时域资源在时隙内的起始符号。
搜索空间中的控制资源设置标识controlResourceSetId字段用于关联搜索该搜索空间与CORESET,其中关联CORESET中的duration字段指示用于时隙内用于传输PDCCH的时域资源的符号数。
上述方法可同样用于确定本方案中的监测跨度的位置,即搜索空间的monitoringSlotPeriodicityAndOffset字段指示周期和偏移量,duration字段指示一个周期内需连续监测的监测跨度包括的总时隙数(对应前文举例中Ts=3变成Ts=12或Ts=24),通过这两个字段可以确定传输PDCCH的具体监测跨度。
应理解,第一时域资源是多个时域资源分组中的任一个时域资源分组,第二时域资源是多个时域资源分组中的任一个与第一时域资源不同的时域资源分组。
第一终端设备为第一时域资源对应的第一用户分组中的任一终端设备。第二终端设备为第二时域资源对应的第二用户分组中的任一终端设备。
本申请中,与第一时域资源有关的方案,也适用于第二时域资源,本申请针对第二时域资源不作重复说明。
下面阐述本申请提供的第一时域资源的位置是网络设备发送给第一终端设备时,网络设备配置第一时域资源的方案。
在一些实现方式中,资源配置包括第一时域资源配置,该第一时域资源配置包括第一时域资源的起始符号和所述第一时域资源的符号数。该第一时域资源的起始符号可以指第一时域资源在一个PDCCH监测跨度内的起始符号。这样第一终端设备能够根据网络设备发送的资源配置准确地获得第一时域资源的位置,以在第一时域资源盲检或接收PDSCH。
具体地,资源配置可承载在搜索空间和/或控制资源集(control-resource set,CORESET)。例如,网络设备向终端设备发送搜索空间和CORESET,搜索空间和/或CORESET包括资 源配置。
在一种可能的实现方式中,第一时域资源的起始符号的配置承载在搜索空间的第一字段上。第一字段的符号数为14*S max,S max为一个PDCCH监测跨度包含的最大时隙数。例如,若允许的最大子载波间隔为960kHz,则S max为子载波间隔为960kHz时,一个PDCCH监测跨度包含的时隙数8。该第一字段例如可以是将时隙内监测符号(monitoring symbols within slot)字段所对应的范围延长得到的时间单元或监测跨度内所有符号对应的监测PDCCH起始位置指示(monitoringSymbolsWithinTimeUnit)字段。应理解,第一字段也可以为其他名称,本申请对第一字段的名称不做限定。与该搜索空间关联的CORESET的持续时间duration字段指示第一时域资源的符号数。
例如,一个PDCCH监测跨度包含的最大时隙数S max为4,那么第一字段的符号数为14*4=56。
在一个监测周期内,终端设备在连续T s个时隙内的S个时隙(一个监测跨度)监测一次PDCCH,且S个时隙中监测PDCCH的符号为连续的S*D个符号,D为与搜索空间关联的CORESET配置的持续符号数,即duration字段的取值。在SCS为120kHz时,S为1。
在一个例子中,
Figure PCTCN2021072331-appb-000001
μ 0为参考SCS对应的指数。例如参考SCS为120kHz,μ 0为3。μ为PDCCH的子载波间隔对应的指数。本申请中以μ 0为3为例进行说明,但是并不限定μ 0为3。
例如,SCS为480kHz时,μ=5,此时S=4;SCS为960kHz时,μ=6,此时S=8。这样能够使得在SCS增大时,每个监测跨度内,用于网络设备传输PDCCH的符号数所占的绝对时长与SCS为120kHz时相同配置下用于网络设备传输PDCCH的符号数所占的绝对时长保持基本一致或相同。
monitoringSymbolsWithinTimeUnit字段对应的的时间单元或监测跨度time unit可定义为SCS为120kHz时的时隙长度。time unit还可以改为时隙单元(slotunit),多时隙(xslots)或跨度(span)或窗(window)等类似的含义。time unit的单位也可以是基于其他数值的SCS的时隙长度或某个绝对时间长度。
例如,如图6A所示的场景示意图,发送给第一终端设备的搜索空间中第一字段为[0,0,0,1,0,0,….],总长度为112比特,所关联的CORESET的duration字段指示3,则指示用于网络设备发送PDCCH的时域资源中的第一时域资源的起始符号为监测跨度内的第4个符号,符号数为3。也即,第一时域资源为用于传输PDCCH的时域资源为多时隙内的第4-6个符号,或者说符号3~5(符号编号从0开始)。第一终端设备在监测跨度内的符号3-5监测PDCCH。
又例如,如图6B所示的场景示意图,例2:发送给第一终端设备的搜索空间中第一字段为[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,….],总长度为112比特,所关联的CORESET的duration字段指示2,则指示用于网络设备发送PDCCH的时域资源中的第一时域资源的起始符号为监测跨度内第15个符号,第一时域资源的符号数为2。也即,在第一时域资源连续的情况下,第一时域资源为用于传输PDCCH的时域资源为多时隙内或监测跨度内的第15-16个符 号,或者说监测跨度内的符号14~15(符号编号从0开始),对应监测跨度内的第二个时隙的符号0~1。第一终端设备在监测跨度内的符号14~15监测PDCCH。
这样,网络设备能够向第一终端设备指示第一时域资源的绝对位置,第一时域资源的位置的灵活度较高。终端设备也可不用获取用于网络设备发送PDCCH的总时域资源的位置,能够省去指示用于网络设备发送PDCCH的总时域资源的相关信令消息的开销。
应理解,这样的方案中,资源配置可不包括用于网络设备发送PDCCH的时域资源的配置。也即是说,这样的方案中,PDCCH的传输方法的步骤可包括以下步骤:
网络设备发送资源配置,资源配置包括第一时域资源配置和第二时域资源配置,第一时域资源配置指示第一时域资源,所述第二时域资源配置指示第二时域资源;
网络设备在第一时域资源向第一终端设备发送PDCCH,在第二时域资源向第二终端设备发送PDCCH;
第一终端设备在第一时域资源向第一终端设备发送PDCCH,在第二时域资源向第二终端设备发送PDCCH。
这样的方案,在增加用于网络设备发送PDCCH的符号数增多满足多用户的需求时,一个终端设备仅需要在用于发送PDCCH的时域资源中的部分的时域资源上监测PDCCH,也能够避免增加终端设备监测PDCCH的复杂度。
在另一种可能的实现方式中,第一时域资源的第1个符号为一个时隙的起始符号,所述第一时域资源的起始符号的配置承载在搜索空间的第二字段上。第二字段可通过指示第一时域资源所在时隙在用于网络设备发送PDCCH的时域资源中的位置,指示第一时域资源的起始符号。该第二字段的长度为S max,S max为一个PDCCH监测跨度包含的最大时隙数。该第二字段可以称作时间内单元监测符号monitoringSymbolsWithinTimeUnit字段或时间单元内监测时隙monitoringSlotsWithinTimeUnit字段。这样的方案中,限制第一时域资源的第1个符号只能是一个时隙的第一个符号。那么,第二字段只需要指示第一时域资源所在时隙在用于网络设备发送PDCCH的时域资源中的位置,增大指示粒度,缩短用于指示第一时域资源的起始符号的配置的字段的长度,从而有助于节省信令开销。
例如,S max=8。发送给第一终端设备的搜索空间中第二字段为[1,0,0,0,0,0,0,0],搜索空间所关联的CORESET的duration字段指示3,则指示第一时域资源的起始符号为用于网络设备发送PDCCH的时域资源中的第1时隙的第1个符号,符号数为3。也即,在第一时域资源的符号是连续的场景下,第一时域资源为用于传输PDCCH的时域资源的第1时隙的第1-3个符号,或者说符号0~2(符号编号从0开始)。终端设备在用于传输PDCCH的时域资源的第1个时隙的符号0~2监测PDCCH。在第一时域资源的符号是间隔的场景下,S max=8时,第一时域资源为用于传输PDCCH的时域资源的第1个时隙的第1、9个符号以及第2个时隙的第3个符号,或者说第1个时隙的符号0、8,以及第2个时隙的符号2(符号编号从0开始)。第一终端设备在用于传输PDCCH的时域资源的第1个时隙的符号0、8,以及第2个时隙的符号2监测PDCCH。
又例如,S max=8。发送给第一终端设备的搜索空间中第二字段为[0,1,0,0,0,0,0,0],搜索空间所关联的CORESET的duration字段指示2,则指示第一时域资源的起始符号为用于网 络设备发送PDCCH的时域资源中的第2时隙的第1个符号,符号数为2。也即,在第一时域资源的符号是连续的场景下,第一时域资源为用于传输PDCCH的时域资源的第2时隙的第1-2个符号,或者说符号0~1(符号编号从0开始)。终端设备在用于传输PDCCH的时域资源的第2个时隙的符号0~1监测PDCCH,对应一个PDCCH监测跨度内的符号14~15监测PDCCH。在第一时域资源的符号是间隔的场景下,S max=8时,第一时域资源为用于传输PDCCH的时域资源的第2个时隙的第1、9个符号,或者说第2个时隙的符号0、8。第一终端设备在用于传输PDCCH的时域资源的第2个时隙的符号0、8监测PDCCH。
在又一种可能的实现方式中,第一时域资源配置包括第一时域资源对应的偏移量,偏移量用于指示第一时域资源的起始符号在用于网络设备发送PDCCH的时域资源中的位置。也即是说,网络设备通过指示偏移量,实现指示第一时域资源的起始符号。第一时域资源对应的偏移量可以理解为,第一时域资源的起始符号相对于用于网络设备发送PDCCH的时域资源的第1个符号的偏移符号数。
在一些实施例中,搜索空间包括指示偏移量的第三字段。这样通过第三字段指示偏移量,终端设备能够更直接地获取到第一时域资源对应的偏移量,从而获得第一时域资源的起始符号的位置。
该第三字段可称为一次检测时间偏移指示timeOffsetIndexWithinOneDetection字段,或跨度时间偏移指示timeOffsetIndexWithinSpan字段或跨度时间偏移timeOffsetWithinSpan字段或跨度符号偏移symbolOffsetWithinSpan字段或跨度符号偏移指示symbolOffsetIndexWithinSpan字段。当然,在其他实施例中,第三字段也可以为其他名称,本申请对第三字段的名称不作限定。
具体地,搜索空间中还包括指示用于网络设备发送PDCCH的时域资源的起始符号的字段,例如搜索空间中的monitoring symbols within time unit字段指示用于网络设备发送PDCCH的时域资源的起始符号。monitoring symbols within time unit字段的长度可为14,以S个符号为粒度进行指示。可以理解为,将S个符号作为一个符号单元或一个符号集进行指示。例如,monitoring symbols within time unit字段可通过配置比特i为1,指示用于网络设备发送PDCCH的时域资源的起始符号为符号i*S(第i*S+1个符号)。又例如,monitoring symbols within time unit字段为比特位图,monitoring symbols within time unit字段的第i个比特为1时,指示用于网络设备发送PDCCH的时域资源的起始符号为符号i*S。用于网络设备发送PDCCH的时域资源的起始符号的字段也可以称作时间单元内的监测符号单元monitoring symbols unit within time unit字段,时间单元内的检测符号集monitoring symbols set within time unit字段,或者时间单元内的监测符号组monitoring symbols group within time unit字段中的一种。
搜索空间中的第三字段指示第一时域资源的起始符号在用于网络设备发送PDCCH的时域资源的起始符号。CORESET中的duration字段指示第一时域资源的符号数。
在一个实施例中,第三字段可与duration字段结合指示第一时域资源对应的偏移量。
例如,第三字段指示的值为O in,在第一时域资源的符号是连续的的场景下,第一时域资源在在用于网络设备发送PDCCH的时域资源内对应的偏移量为O in*D,或者说,第一时 域资源的起始符号为在用于网络设备发送PDCCH的时域资源中的第O in*D+1个符号。其中,D为duration字段指示的数值。O in的取值范围为0~Smax-1。在第一时域资源的符号是间隔的场景,第一时域资源在用于网络设备发送PDCCH的时域资源内对应的偏移量为O in。或者说,第一时域资源的起始符号为在用于网络设备发送PDCCH的时域资源中的第O in+1个符号。其中,D为duration字段指示的数值。O in的取值范围为0~Smax-1。
这样,第一终端设备能够根据搜索空间中的指示用于网络设备发送PDCCH的时域资源的起始符号的字段,获得用于网络设备发送PDCCH的时域资源的起始符号,根据第三字段和CORESET中的duration字段,确定第一时域资源的起始符号在用于网络设备发送PDCCH的时域资源的起始符号,根据CORESET中的duration字段确定第一时域资源的符号数,从而可以确定第一时域资源在用于网络设备发送PDCCH的时域资源的位置。
可选的,CORESET中的duration字段还可以指示用于网络设备发送PDCCH的时域资源的符号数Q=D*S。D为duration字段所指示的值。这样的方案中,用于网络设备发送PDCCH的时域资源中,各个分组的时域资源的符号数是相同的。
例如,如图7A所示的场景示意图,SCS为480kHz,S=4,第一时域资源的符号是连续的情况下,若monitoringSymbolsWithinTimeUnit字段为[1,0,0,0,0,0,0,0,0,0,0,0,0,0],duration字段指示2(也即D=2),第三字段指示3,则表示用于网络设备发送PDCCH的时域资源的起始符号在监测跨度内的偏移量为0个符号(符号0),用于网络设备发送PDCCH的时域资源的符号数为2*4=8,第一时域资源对应的在一个PDCCH监测跨度内的偏移量为3*2=6,或者说第一时域资源的起始符号为用于网络设备发送PDCCH的时域资源中的第7个符号,第一时域资源的符号数为2。也即是说,第一时域资源为用于网络设备发送PDCCH的时域资源中的第7-8个符号(符号6-7)。第一终端设备在用于网络设备发送PDCCH的时域资源中的第7-8个符号上监测PDCCH。
又例如,如图7B所示的场景示意图,SCS为480kHz,S=4,第一时域资源的符号是连续的情况下,若monitoringSymbolsWithinTimeUnit字段为[0,0,1,0,0,0,0,0,0,0,0,0,0,0],duration字段指示3(也即D=3),第三字段指示1,则表示用于网络设备发送PDCCH的时域资源的起始符号的偏移量为第2*4=8个符号,用于网络设备发送PDCCH的时域资源的符号数为3,第一时域资源在用于网络设备发送PDCCH的时域资源内的偏移量为1*3=3,或者说第一时域资源的起始符号为用于网络设备发送PDCCH的时域资源中的第4个符号,第一时域资源的符号数为3。也即是说,第一时域资源为用于网络设备发送PDCCH的时域资源中的第4-6个符号,对应监测跨度内的符号14~15。第一终端设备在用于网络设备发送PDCCH的时域资源中的第4-6个符号上监测PDCCH。
在另一些实施例中,CORESET中包括指示偏移量的字段。
这样的方案中,指示偏移量的字段能够间接地指示第一时域资源的起始符号,或者说指示第一时域资源在用于网络设备发送PDCCH的时域资源中的起始符号。CORESET中也包括duration字段,该duration字段的含义与上述搜索空间中包括指示偏移量的字段的实施例中,duration字段的含义相同。
在一个例子中,网络设备可为搜索空间配置关联的CORESET编号。第一终端设备能 够根据搜索空间获得关联的CORESET编号,根据CORESET编号获得对应的CORESET字段,从而根据CORESET字段得到第一时域资源的位置,以在第一时域资源接收PDCCH。其中,不同的CORESET编号对应不同的偏移量,不同的CORESET编号可以对应相同的duration字段和/或频域位置。
在另一个例子中,搜索空间包括与所述搜索空间关联的第一CORESET集,所述第一CORESET集包括所述偏移量,所述CORESET包括指示所述第一CORESET集的编号的字段。具体来说,网络设备可为搜索空间配置关联的第一CORESET集的编号,网络设备和第一终端设备根据下行控制信息(downlink control Information,DCI)配置或根据预定义规则在第一CORESET集中确定该第一终端设备对应的CORESET编号。例如,编号为p的CORESET集包括的CORESET的编号为{p*S,p*S+1,…,p*S+S-1},该CORESET集中的CORESET有相同的duration字段,相同的频域位置。第一终端设备再根据该第一终端设备对应的CORESET编号确定第一终端设备对应的CORESET字段,以获得第一时域资源的位置,并在第一时域资源接收PDCCH。
下面具体阐述终端设备按照与网络设备约定的方式得到第一时域资源的方案。
在一些实施例中,第一时域资源是根据第一终端设备的标识(identity document,ID),时隙索引,或当前周期内的监测次数中的一种或多种确定的。网络设备和第一终端设备根据第一终端设备的标识(identity document,ID),时隙索引,或当前周期内的监测次数中的一种或多种确定第一时域资源在用于网络设备发送PDCCH的时域资源中的位置。
具体地,网络设备和第一终端设备根据搜索空间和/或CORESET中包括指示用于网络设备发送PDCCH的时域资源的字段,确定用于网络设备发送PDCCH的时域资源的Q个连续符号的位置。
然后网络设备和第一终端设备根据第一终端设备的标识(identity document,ID),时隙索引,或当前周期内的监测次数中的一种或多种确定在Q个连续符号内的偏移量。
网络设备可根据多个终端设备的标识,对多个终端设备进行分组,分为多个用户分组,每个用户分组对应不同的偏移量,并根据每个用户分组的偏移量确定每个用户分组对应的时域资源在用于网络设备发送PDCCH的时域资源中的位置。第一终端设备根据搜索空间和/或CORESET中的字段,确定用于网络设备发送PDCCH的时域资源,根据自身的标识,确定自身所属的分组在Q个连续的符号内的偏移量,以及根据该偏移量确定自身所属的用户分组对应的时域资源在用于网络设备发送PDCCH的时域资源中的位置。
关于该偏移量的确定方式可以为以下几种中的一种。
例如,可根据终端设备的标识确定偏移量,偏移量O sym=mod(ID,S)*D。D为CORESET中的duration字段指示的值。
又例如,可根据终端设备的标识和当前周期内的已监测次数k dec确定偏移量,偏移量O sym=mod(ID+k dec,S)*D。以该方式为例,具体例如,SCS为480kHz,S=4,D=2,用于网络设备发送PDCCH的时域资源为符号0~符号7。偏移量与ID和k dec的关系如下表1所示。
表1
ID k dec=0 k dec=1 k dec=2 k dec=3
0 0<=>{0,1} 2<=>{2,3} 4<=>{4,5} 6<=>{6,7}
1 2<=>{2,3} 4<=>{4,5} 6<=>{6,7} 0<=>{0,1}
2 4<=>{4,5} 6<=>{6,7} 0<=>{0,1} 2<=>{2,3}
3 6<=>{6,7} 0<=>{0,1} 2<=>{2,3} 4<=>{4,5}
其中,表1中“<=>”左边的数值为偏移量,右边的数值为在第一时域资源的符号是连续的情况下,用于终端设备监测PDCCH的时域资源的符号编号(相对于Q个符号内的编号)。
例如,若第一终端设备对应的ID为0,k dec为0,则偏移量为0,第一时域资源为用于网络设备发送PDCCH的Q个符号中的符号0和符号1,或者说用于第一终端设备监测PDCCH的时域资源为Q个符号中的符号0和符号1。若第一终端设备对应的ID为1,k dec为1,则偏移量为4,第一时域资源为用于网络设备发送PDCCH的Q个符号中的符号4和符号5,或者说用于第一终端设备监测PDCCH的时域资源为Q个符号中的符号4和符号5。
当然,上述表1仅用作举例,并不构成对本申请的限定,在其他实施例中,SCS、S和D的取值也可以为其他值。
网络设备和第一终端设备还可以按照约定的规则从偏移量取值集合中选取偏移量。可选地,偏移量取值集合的元素个数可以与网络设备所服务的终端设备的数量有关。网络设备服务的终端设备的数量越多,偏移量取值集合的元素个数越多,网络设备服务的终端设备的数量越少,偏移量取值集合的元素个数越少。
在一些可选的实施例中,网络设备和第一终端设备可以根据控制信道元素(control channel element,CCE)的偏移量确定第一时域资源位置。
例如,可以定义CCE组或CCE集,各个CCE组单独编号。不同的CCE组或不同的CCE集有相同的CCE编号,不同的CCE组或不同的CCE对应不同的时域偏移量,即偏移量与CCE组的编号或CCE集的编号相关。如定义CCE组1(如图8A中的前3列)的编号为0~N cce-1(如图8A中的前3列中的编号0-编号11),CCE组2的编号为0~N cce-1(如图8A中的4-6列中的编号0-编号11),以此类推。
网络设备可以通过CORESET中的新定义一个字段指示CCE组的编号或CCE集的编号,也可以根据ID确定CCE组的编号或CCE集的编号。
第一终端设备和网络设备根据确定的CCE组的编号或CCE集的编号确定第一时域资源在Q个连续符号内的起始位置,根据CORESET的duration字段确定第一时域资源的符号数。
以CORESET的duration字段指示3为例,如图8A所示的偏移值与CCE编号的对应关系图,每三列对应一个偏移值。同一个偏移值内的CCE完成编号后,开始下一个偏移值的CCE编号。
又例如,可以定义CCE组或CCE集,多个CCE组连续编号。如定义CCE组1(如图8B中的前3列)的编号为0~N cce-1(如图8B中的前3列中的编号0-编号11),CCE组2(如图8B中的第4-6列)的编号为N cce~2N cce-1(如图8B中的前3列中的编号12-编号23), 以此类推,不同的CCE组有不同的时域偏移量。这样第一终端设备可以根据CCE编号偏移量或CCE编号起始值确定第一时域资源在Q个连续符号内的起始位置,根据CORESET的duration确定第一时域资源的符号数。
CCE编号偏移量或CCE编号起始值是网络设备指示的,或者,第一终端设备根据ID确定CORESET中CCE的编号,并根据该CCE的编号确定第一时域资源在用于传输PDCCH的Q个连续符号内的起始位置,根据CORESET的duration字段确定第一时域资源的符号数。
如图8B所示的偏移值与CCE编号的对应关系图,每三列对应一个偏移值。对于指定终端设备,CCE编号会引入一个整体的偏移。若将同一个偏移值的所有CCE定义为CCE组或CCE集,则CCE交织,资源单元组(resource element group,REG)绑定等仅允许在CCE组或CCE集内进行。
CCE偏移量可根据终端设备的标识(ID),时隙索引,或当前周期内的监测次数中的一种或多种确定。
在一些实施例中,可根据ID确定的偏移量O cce。具体地,O cce=mod(ID,S)*N cce。其中,N cce为CCE集或CCE组内的CCE数,可根据CORESET的配置确定。
在另一些实施例中,可根据ID和当前周期内的监测次数确定的偏移量O cce。具体地,O cce=mod(ID+k dec,S)*N cce
下面提供一些对用于网络设备发送PDCCH的时域资源进行分组的方案。以下方案可用于第一时域资源的符号是连续的场景。
如图9A所示的场景示意图,若资源配置指示的第一时域资源为符号12~符号14,那么第一时域资源的符号跨了两个时隙,其中符号12和符号13属于第一个时隙,符号14属于第二个时隙。
本申请提供的一种分组方案中,不进行跨时隙分组,也即是说,一个时域资源分组的符号在一个时隙内。本申请实施例中,第一时域资源的符号在同一个时隙内,第二时域资源的符号在同一个时隙内。
在一些实施例中,每个时域资源分组的符号数可以是相同的,也可以是不同的。
例如,用于网络设备发送PDCCH的时域资源所在的PDCCH监测跨度共S个时隙(S>1),也即共S*14个符号。S的定义与上述实施例中的定义相同,此处不再赘述。用于网络设备发送PDCCH的时域资源占用D*S个符号,其中D为与搜索空间关联的CORESET配置的持续符号数.若按照均匀分组的方式,可将该S*D个符号分为S个时域资源分组。因此S*D>14时若mod(14,D)≠0,则会出现分组跨时隙的现象。如图9A所示,当D=3时,一个PDCCH监测跨度中的第5个时域资源分组的符号12~14属于2个时隙,其中符号12和符号13属于第一个时隙,符号14属于第二个时隙。基于这种情况,本申请提供一些避免跨时域分组的分组策略。
在一个例子中,若一个时域资源分组的符号在2个时隙内,则以时隙为边界,将在一个时隙内的符号和与该时域资源分组在同一个时隙内最近的一个或多个时域资源分组合并,在每个被合并的时域资组增加一个符号。如图9B所示的场景示意图,符号12和符号13 位于一个时隙,符号14位于另一个时隙。那么原包括符号6~8的时域资源分组,可增加一个符号,变更为包括符号6~9,原包括符号9~11的时域资源分组,可增加一个符号,变更为包括符号10~13。原包括符号15~18的时域资源分组,可增加一个符号,变更为包括符号14~18。按照这样的分组策略,对用于网络设备发送PDCCH的时域资源的2个时隙进行分组,得到的7个时域资源分组的符号数分别为3,3,4,4,4,3,3。
在另一个例子中,若一个时域资源分组的符号在两个时隙内,则以时隙为边界,将在一个时隙内的符号和与该时域资源分组在同一个时隙内最近的时域资源分组合并。如图9C所示的场景示意图,符号12和符号13位于一个时隙,符号14位于另一个时隙。那么原包括符号9~11的时域资源分组,可增加2个符号,变更为包括符号9~13。原包括符号15~18的时域资源分组,可增加一个符号,变更为包括符号14~18。按照这样的分组策略,对用于网络设备发送PDCCH的时域资源的2个时隙进行分组,得到的7个时域资源分组的符号数分别为3,3,3,5,4,3,3。
在又一个例子中,若一个时域资源分组的符号在两个时隙内,则以时隙为边界,将该时域资源分组,拆分为两个时域资源分组,若拆分后的时域资源分组与原有时域资源分组包括的符号数之差大于设定阈值(例如设定阈值为1),即当原时域资源分组包括3个符号,拆分后的时域资源分组只有一个符号,则将相邻的时域资源分组中的一个符号合并至该拆分后的时域资源分组。
如图9D所示的场景示意图,符号12和符号13位于一个时隙,符号14位于另一个时隙。那么将符号12和符号13作为一个时域资源分组,将符号14和符号15作为一个时域资源分组。原包括符号15~符号17的时域资源分组,变更为包括符号16和符号17。按照这样的分组策略,对用于网络设备发送PDCCH的时域资源的2个时隙进行分组,得到的7个时域资源分组的符号数分别为3,3,3,3,2,2,2,3,3。该方法可以使得重新分组后的组间的符号数差值小于等于设定阈值。应理解,设定阈值不限定为1,也可以是其他值。
本申请提供的另一种分组方案中,时域资源分组的符号数与该时域资源分组对应的聚合级别正相关。也即是说,第一时域资源的符号数,与第一时域资源对应的聚合级别正相关。
网络设备可根据终端设备的信道条件选择合适的聚合级别。这样网络设备和终端设备可按照约定的分组方案,根据聚合级别,确定时域资源以及终端设备的分组情况。时域资源分组的符号数,和/或对应的聚合级别,按照时间先后顺序,依次增大。该方案可用于第一时域资源的符号数是连续的场景。
例如,若信道条件较好,可配置低聚合级别对应的时域资源分组给终端设备,若信道条件较差,可配置高聚合级别对应的时域资源分组给终端设备。网络设备在根据聚合级别确定的时域资源分组上,向该终端设备发送PDCCH。
表2聚合级别与PDCCH的划分
Figure PCTCN2021072331-appb-000002
Figure PCTCN2021072331-appb-000003
上述表格中“<=>”的左侧为时域资源分组情况,右侧为各时域资源分组对应的聚合级别。关于时域资源分组情况,“{}”内的第m个数值,表示第m个时域资源分组的符号数。也即“{}”内的每一个数值,对应一个时域资源分组的符号数。关于聚合级别,“{}”内的第k个“[]”内的数值为第k个时域资源分组对应的聚合级别的取值范围。
聚合级别包括两种分类。例如,按照分类1,若网络设备向第一终端设备指示聚合级别为8,网络设备用于传输PDCCH的时域资源的符号数Q为4,那么按照表2,第一终端设备可以确定该聚合级别4在第2个“[]”内,对应的时域资源分组的符号数为3。也即,第一时域资源为用于传输PDCCH的时域资源的第2-4个符号(符号1-3)。
上述方案是网络设备和终端设备可以根据聚合级别确定时域资源的分组情况,对应的,终端设备也可以在网络设备指示时域资源的分组情况的情况下,确定聚合级别。例如,按照分类1,若网络设备用于传输PDCCH的时域资源的符号数Q为4,网络设备向第一终端设备发送的第一时域资源配置指示第一时域资源为用于传输PDCCH的时域资源的第2-4个符号(符号1-3),那么按照表2,第一终端设备可以确定聚合级别为8或16。
在一些可选的实施例中,监测时隙周期和偏移monitoringSlotPeriodicityandOffset字段可以增加元素的取值范围。例如监测时隙周期和偏移字段的取值范围可扩展为{sl1,sl2,sl4,sl5,sl8,sl10,sl16,sl20,sl32,sl40,sl64,sl128,sl80,sl160,sl320,sl640,sl1280,sl2560,sl5120,sl10240,sl20480},其中,sl32,sl64,sl80,sl5120,sl10240,sl20480为扩展的元素,对应配置下的偏移量的取值沿用现有的定义。
如图10A所示的场景示意图,在一些可选的实施例中,每个用户分组对应一个波束方向,不同的用户分组对应不同的波束方向。网络设备在每个用户分组对应的波束方向上,向该用户分组的终端设备发送PDCCH。
例如,第一用户分组对应第一波束方向,第二用户分组对应第二波束方向。网络设备在第一波束方向向第一终端设备发送PDCCH,在第二波束方向向第二终端设备发送PDCCH。
网络设备发送PDCCH的波束信息可以为发送物理下行共享信道(physical downlink share channel,PDSCH)或接收物理上行共享信道(physical uplink share channel,PUSCH)的波束信息。或者说,每个用户分组对应的波束信息,可以是网络设备用于发送该用户分组的PDSCH或接收该用户分组PUSCH的波束信息。波束信息指示波束方向。
还可以定义一种新的波束信息,其对应的波束宽度较传统方法中的传输PDCCH的波 束宽度窄,较传统方法中传输PDSCH或接收PUSCH的波束宽度宽;或该新的波束信息共包含B1个波束(TCI),B1大于信道状态信息参考信号(channel state information reference signals,CSI-RS)的波束总数B2,小于PDSCH或同步信号和PBCH块(synchronization signal and PBCH block,SSB)的波束总数B3,其中B1个新波束与B2的CSI-RS波束、B3个SSB波束的覆盖范围相同。
其中,上述的波束信息可以替换为TCI信息,或者空间关联信息spatialrelationinfo。也即是说,可由TCI信息,或者空间关联信息来实现上述波束信息所用于实现的功能。
网络设备发送PDCCH的波束方向,终端设备可以是无感知的。也即网络设备可以不向终端设备指示发送PDCCH的波束方向。
网络设备也可通过CORESET或传输配置指示(transmission configuration indicator,TCI)状态向终端设备指示发送PDCCH的波束方向。这样终端设备可以采用与发送PDCCH的波束方向对应的接收波束方向,接收PDCCH,提升PDCCH的接收成功几率。
在一些实施例中,为不同的用户分组中的终端设备指示的CORESET编号不同。也即,网络设备可通过CORESET编号,来指示发送PDCCH的波束信息,即不同的CORESET编号对应的CORESET有不同的TCI信息。可选的,该CORESET编号也可以指示该终端设备监测PDCCH的时域资源。
例如,网络设备向第一终端设备发送的搜索空间关联的CORESET编号指示第一波束信息或第一TCI信息。第一终端设备能够根据该关联的CORESET编号,获得第一波束信息或第一TCI信息,并获得该关联的CORESET编号对应的CORESET字段,从而根据CORESET字段得到第一时域资源的位置。也即,该方案CORESET编号既可以指示CORESET,也可以指示波束信息。
在另一些实施例中,网络设备向终端设备发送的TCI,指示发送PDCCH的波束信息,也指示该终端设备监测PDCCH的时域资源。例如,网络设备向第一终端设备发送的TCI,指示第一波束信息,也指示第一时域资源。
若网络设备在每个用户分组对应的波束方向上,向该用户分组的终端设备发送PDCCH。那么网络设备在向多个终端设备发送PDCCH的过程中,涉及波束切换。波束切换需要一定的时间。
在一些实施例中,网络设备向终端设备发送的资源配置中,所指示的用于网络设备发送PDCCH的时域资源的符号数Q,可包括网络设备向各个终端设备发送PDCCH的时域资源的符号数D*S,以及波束切换保护间隙G。这样的方案中,Q=(D+G)*S或D*S+G*(S-1)。CORESET中的duration字段所指示的值可以是D也可以是D+G。
如图10B所示的场景示意图中的(a),Q=(D+G)*S的情况下,每个时域资源分组对应一个波束切换保护间隙。
如图10B所示的场景示意图中的(b),Q=D*S+G*(S-1)的情况下,前S-1个时域资源分组中的每个时域资源分组对应一个波束切换保护间隙,最后一个时域资源分组没有对应的波束切换保护间隙。
这样的方案中,终端设备确定偏移量时,也需要考虑G。例如,第一终端设备可确定 第一时域资源对应的偏移量为O in*(D+G),O in可以是指示的值,还可以是mod(ID,S)的值或前文列举的其他方法。
在一些实施例中,网络设备向终端设备发送的DMRS的粒度为S个符号。前置DMRS(front-loaded DMRS)的位置需定义为与Q个连续符号的位置的最小间隔小于等于给定值。传统方案为与该终端成功检测到的PDCCH的符号的位置的最小间隔小于等于给定值。
本申请实施例中,提供了对时域资源进行分组的方案。对应的,也可以对频域资源进行分组,将网络设备用于传输PDCCH的频域资源分为多个频域资源分组,每个频域资源分组用于向对应的用户分组中的终端设备发送PDCCH。
在一些实施方式中,也可以将对时域资源分组以及对频域资源分组的方案结合。将时域资源和频域资源分为多个时频资源分组,每个时频资源分组对应一个用户分组,每个时频资源用于向对应的用户分组中的终端设备发送PDCCH,用户分组中的终端设备在对应的时频资源分组的时频资源上监测或盲检PDCCH。
应理解,上述频域资源分组,以及时频资源分组是为了便于描述,并不一定是客观实际存在。
如图11所示的传输装置的结构示意图,本申请实施方式还提供一种PDCCH的传输装置1100,该传输装置1100可以是网络设备,或者可以用于网络设备。该传输装置1100包括输入输出单元1101和处理单元1102。该输入输出单元1101可以是或可以部署在收发器、收发天线、输入输出接口等能够实现信息收发功能的单元或模块。该处理单元1102可以是或可以部署在处理器。输入输出单元1101用于:
发送资源配置,所述资源配置指示用于网络设备发送物理下行控制信道PDCCH的时域资源;以及
在所述用于网络设备发送PDCCH的时域资源中的第一时域资源发送第一终端设备的PDCCH,在所述用于网络设备发送PDCCH的时域资源中的第二时域资源发送第二终端设备的PDCCH。
本申请的技术方案,分别在不同的时域资源向不同的终端设备发送PDCCH,这样在增加用于网络设备发送PDCCH的符号数增多满足多用户的需求时,一个终端设备仅需要在用于发送PDCCH的时域资源中的部分的时域资源上监测PDCCH,也能够避免增加终端设备监测PDCCH的复杂度。
其中,第一时域资源的位置可以是网络设备发送给第一终端设备的,也可以是第一终端设备与网络设备按照约定的方式得到的。第二时域资源的位置可以是网络设备发送给第二终端设备的,也可以是第二终端设备与网络设备按照约定的方式得到的。
一种可能的实现方式中,第一时域资源的符号是连续的,第二时域资源的符号也是连续的。或者说,一个分组的时域资源的符号都是连续的。这样,终端设备能够在连续的多个符号监测PDCCH,能够更加有效地避免增加终端设备监测PDCCH的复杂度。
在另一种可能的实现方式中,第一时域资源的符号是间隔的,第二时域资源的符号也是间隔的。例如,第一时域资源的符号与第二时域资源的符号是呈梳齿状间隔分布的。这样能够增加第一时域资源在时间上的跨度,也能够增加第二时域资源在时间上的跨度,提升监测PDCCH在时变信道下的鲁棒性,能够提升终端设备成功监测PDCCH的几率。
在一些实施方式中,资源配置还包括第一时域资源配置,所述第一时域资源配置包括所述第一时域资源的起始符号和所述第一时域资源的符号数。这样第一终端设备可以根据第一时域资源配置,确定第一时域资源的位置,在第一时域资源监测PDCCH。
在某些实施方式中,资源配置承载在搜索空间的字段和/或控制资源集(control-resource set,CORESET)字段。
在一种可能的实现方式中,第一时域资源的起始符号的配置承载在搜索空间的第一字段上,所述第一字段的符号数为14*S max,S max为一个PDCCH监测跨度的最大时隙数。这样,第一字段能够指示第一时域资源的起始符号在一个PDCCH监测跨度的绝对位置,第一时域资源的位置的灵活度较高,也使得第一终端能够根据第一字段直接得到第一时域资源的起始符号的位置。
在另一种可能的实现方式中,第一时域资源的起始符号的配置承载在搜索空间的第二字段上,所述第二字段的长度为S max,S max为所述用于网络设备发送PDCCH的时域资源包含的最大时隙数。这样,限制第一时域资源的第1个符号只能是一个时隙的第一个符号。那么,第二字段只需要指示第一资源所在时隙在用于网络设备发送PDCCH的时域资源中的位置,增大指示粒度,缩短用于指示第一时域资源的起始符号的配置的字段的长度,从而有助于节省信令开销。
在一些实施方式中,所述第一资源配置包括所述第一时域资源对应的偏移量,所述偏移量指示所述第一时域资源的起始符号在所述用于网络设备发送PDCCH的时域资源的起始符号。这样的方案中,网络设备通过指示第一时域资源对应的偏移量实现指示第一时域资源的起始符号。第一终端设备能够根据偏移量得到第一时域资源的起始符号。
在一种可能的实现方式中,所述搜索空间或CORESET包括指示所述偏移量的字段。这样第一终端设备能够根据该字段获得偏移量,从而得到第一时域资源的起始符号。
在另一种可能的实现方式中,所述搜索空间包括与所述搜索空间关联的第一CORESET集,所述第一CORESET集包括所述偏移量,所述CORESET包括指示所述第一CORESET集的编号的字段。这样通过已有的字段指示偏移量,有助于降低指示开销。
在一些实施方式中,所述第一时域资源是所述处理单元1102根据所述第一终端设备的标识,时隙索引,或当前周期内的监测次数中的一种或多种确定的。这样可以节省网络设备向第一终端设备指示第一时域资源配置的开销。
在一些实施方式中,第一时域资源的符号数与第二时域资源的符号数是不同的。这样用于网络设备发送PDCCH的时域资源的分组更加灵活,从而能够更好地适配实际需求。
在一些实施方式中,第一时域资源的符号数与第一时域资源对应的聚合级别正相关。这样的方案,网络设备和第一终端设备能够根据聚合级别,确定第一时域资源的位置。或者,网络设备和第一终端设备能够根据第一时域资源的位置,确定聚合级别,有助于减少信令开销。
在一些实施方式中,第一时域资源的符号属于一个时隙。这样能够避免第一终端设备跨时隙监测PDCCH,从而降低终端设备监测PDCCH的复杂度。
应理解,上述关于第一时域资源的实现方式,也是用于第二时域资源,不再重复说明。
如图12所示的传输装置的结构示意图,本申请还提供一种PDCCH的传输装置1200,该传输装置可以是但不限于终端设备,或者可以用于但不限于终端设备。该传输装置可包括输入输出单元1201和处理单元1202。该输入输出单元1201可以是或可以部署在收发器、收发天线、输入输出接口等能够实现信息收发功能的单元或模块。该处理单元1202可以是或可以部署在处理器。输入输出单元1201用于:
接收资源配置,所述资源配置包括用于网络设备发送PDCCH的时域资源;以及
在所述用于网络设备发送PDCCH的时域资源的部分时域资源中监测所述终端设备的PDCCH。
本申请的技术方案,这样在增加用于网络设备发送PDCCH的符号数增多满足多用户的需求时,一个终端设备仅需要在用于发送PDCCH的时域资源中的部分的时域资源上监测PDCCH,也能够避免增加终端设备监测PDCCH的复杂度。
其中,部分时域资源的位置可以是网络设备发送给终端设备的,也可以是终端设备与网络设备按照约定的方式得到的。
在一些实施方式中,所述资源配置还包括指示所述部分时域资源的第一资源配置,所述第一时域资源配置包括所述部分时域资源的起始符号和所述部分时域资源的符号数。这样终端设备可以根据第一时域资源配置,确定第一时域资源的位置,在第一时域资源监测PDCCH。
在一些实施方式中,所述资源配置承载在搜索空间的字段和/或CORESET字段。
在一种可能的实现方式中,所述部分时域资源的起始符号的配置承载在搜索空间的第一字段上,所述第一字段的符号数为14*Smax,Smax为一个PDCCH监测跨度的最大时隙数。这样,第一字段能够指示第一时域资源的起始符号在一个PDCCH监测跨度的绝对位置,第一时域资源的位置的灵活度较高,也使得终端能够根据第一字段直接得到第一时域资源的起始符号的位置。
在另一种可能的实现方式中,所述部分时域资源的第1个OFDM符号为一个时隙的起始符号,所述第一时域资源的起始符号的配置承载在搜索空间的第二字段上,所述第二字段的长度为Smax,Smax为一个PDCCH监测跨度的最大时隙数。这样,限制第一时域资源的第1个符号只能是一个时隙的第一个符号。那么,第二字段只需要指示第一资源所在时隙在用于网络设备发送PDCCH的时域资源中的位置,增大指示粒度,缩短用于指示第一时域资源的起始符号的配置的字段的长度,从而有助于节省信令开销。
在一些实施方式中,所述第一资源配置包括所述第一时域资源对应的偏移量,所述偏移量指示所述第一时域资源的起始符号在所述用于网络设备发送PDCCH的时域资源的起始符号。这样的方案中,网络设备通过指示第一时域资源对应的偏移量实现指示第一时域资源的起始符号。终端设备能够根据偏移量得到第一时域资源的起始符号。
在一种可能的实现方式中,所述搜索空间包括指示所述偏移量的字段。这样设备能够根据该字段获得偏移量,从而得到第一时域资源的起始符号。
在另一种可能的实现方式中,所述搜索空间包括与所述搜索空间关联的第一CORESET集,所述第一CORESET集包括所述偏移量,所述CORESET包括指示所述第一CORESET集的编号的字段。这样通过已有的字段指示偏移量,有助于降低指示开销。
在一些实施方式中,所述终端设备在所述用于网络设备发送PDCCH的时域资源的部分时域资源中监测所述终端设备的PDCCH之前,所述处理单元1202用于:根据所述终端设备的标识,时隙索引,或当前周期内的监测次数中的一种或多种确定所述部分时域资源。这样的方案,终端设备可以不必从网络设备接收指示第一时域资源的第一时域资源配置,可以节省网络设备向第一终端设备指示第一时域资源配置的开销。
在一些实施方式中,所述部分时域资源的符号数与所述部分时域资源对应的聚合级别正相关。这样的方案,网络设备和第一终端设备能够根据聚合级别,确定第一时域资源的位置。或者,网络设备和第一终端设备能够根据第一时域资源的位置,确定聚合级别,有助于减少信令开销。
在一些实施方式中,所述部分时域资源的符号属于一个时隙。这样能够避免终端设备跨时隙监测PDCCH,从而降低终端设备监测PDCCH的复杂度。
应理解,上述关于第一时域资源的实现方式,也是用于第二时域资源,不再重复说明。
如图13所示的传输装置的结构示意图,本申请实施方式还提供一种PDCCH的传输装置1300,该传输装置可以是网络设备,或者可以用于网络设备。该传输装置包括输入输出单元1301和处理单元1302。该输入输出单元1301可以是或可以部署在收发器、收发天线、输入输出接口等能够实现信息收发功能的单元或模块。该处理单元1302可以是或可以部署在处理器。输入输出单元1301用于:
发送资源配置,所述资源配置包括第一时域资源配置和第二时域资源配置,所述第一时域资源配置指示第一时域资源,所述第二时域资源配置指示第二时域资源;以及
在第一时域资源向第一终端设备发送PDCCH,在第二时域资源向第二终端设备发送PDCCH。
这样的方案,通过将用于发送PDCCH的时域资源分为第一时域资源和第二时域资源,这样在增加用于网络设备发送PDCCH的符号数增多满足多用户的需求时,一个终端设备仅需要在用于发送PDCCH的时域资源中的部分的时域资源上监测PDCCH,也能够避免增加终端设备监测PDCCH的复杂度。
第一时域资源的位置可以是网络设备发送给第一终端设备的,也可以是第一终端设备与网络设备按照约定的方式得到的。第二时域资源的位置可以是网络设备发送给第二终端设备的,也可以是第二终端设备与网络设备按照约定的方式得到的。
一种可能的实现方式中,第一时域资源的符号是连续的,第二时域资源的符号也是连续的。或者说,一个分组的时域资源的符号都是连续的。这样,终端设备能够在连续的多个符号监测PDCCH,能够更加有效地避免增加终端设备监测PDCCH的复杂度。
在另一种可能的实现方式中,第一时域资源的符号是间隔的,第二时域资源的符号也是间隔的。例如,第一时域资源的符号与第二时域资源的符号是呈梳齿状间隔分布的。这样能够增加第一时域资源在时间上的跨度,也能够增加第二时域资源在时间上的跨度,提 升监测PDCCH在时变信道下的鲁棒性,能够提升终端设备成功监测PDCCH的几率。
在某些实施方式中,资源配置承载在搜索空间的字段和/或控制资源集(control-resource set,CORESET)字段。
在一种可能的实现方式中,第一时域资源的起始符号的配置承载在搜索空间的第一字段上,所述第一字段的符号数为14*Smax,Smax为一个PDCCH监测跨度的最大时隙数。这样,第一字段能够指示第一时域资源的起始符号在一个PDCCH监测跨度的绝对位置,第一时域资源的位置的灵活度较高,也使得第一终端能够根据第一字段直接得到第一时域资源的起始符号的位置。
如图14所示的传输装置的结构示意图,本申请还提供一种PDCCH的传输装置1400,该传输装置1400可以是但不限于终端设备,或者可以用于但不限于终端设备。该传输装置可包括输入输出单元1401和处理单元1402。该输入输出单元1401可以是或可以部署在收发器、收发天线、输入输出接口等能够实现信息收发功能的单元或模块。该处理单元1402可以是或可以部署在处理器。输入输出单元1401用于:
接收来自网络设备的第一时域资源配置,第一时域资源配置包括第一时域资源的起始符号和所述部分时域资源的符号数;所述第一时域资源为用于所述网络设备发送PDCCH的时域资源中的部分时域资源;以及
根据第一时域资源配置,在第一时域资源监测PDCCH。
这样的方案,终端设备仅需要在用于发送PDCCH的时域资源中的部分的时域资源上监测PDCCH,在增加用于网络设备发送PDCCH的符号数增多满足多用户的需求时,一个终端设备仅需要在用于发送PDCCH的时域资源中的部分的时域资源上监测PDCCH,也能够避免增加终端设备监测PDCCH的复杂度。
第一时域资源的符号可以是连续的,也可以是间隔的。
在一种可能的实现方式中,第一时域资源的起始符号的配置承载在搜索空间的第一字段上,所述第一字段的符号数为14*Smax,Smax为一个PDCCH监测跨度的最大时隙数。这样,第一字段能够指示第一时域资源的起始符号在一个PDCCH监测跨度的绝对位置,第一时域资源的位置的灵活度较高,也使得第一终端能够根据第一字段直接得到第一时域资源的起始符号的位置。
本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,该计算机指令指示该服务器执行上述任一实施方式提供的PDCCH的传输方法。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程 构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (30)

  1. 一种物理下行控制信道的传输方法,其特征在于,包括:
    网络设备发送资源配置,所述资源配置指示用于网络设备发送物理下行控制信道PDCCH的时域资源;
    所述网络设备在所述用于网络设备发送PDCCH的时域资源中的第一时域资源发送第一终端设备的PDCCH,在所述用于网络设备发送PDCCH的时域资源中的第二时域资源发送第二终端设备的PDCCH。
  2. 根据权利要求1所述的方法,其特征在于,所述资源配置还包括第一时域资源配置,所述第一时域资源配置包括所述第一时域资源的起始符号和所述第一时域资源的符号数。
  3. 根据权利要求2所述的方法,其特征在于,所述资源配置承载在搜索空间的字段和/或控制资源集CORESET字段。
  4. 根据权利要求3所述的方法,其特征在于,所述第一时域资源的起始符号的配置承载在搜索空间的第一字段上,所述第一字段的符号数为14*S max,S max为一个PDCCH监测跨度的最大时隙数。
  5. 根据权利要求3所述的方法,其特征在于,所述第一时域资源的第1个OFDM符号为一个时隙的起始符号,所述第一时域资源的起始符号的配置承载在搜索空间的第二字段上,所述第二字段的长度为S max,S max为一个PDCCH监测跨度的最大时隙数。
  6. 根据权利要求3所述的方法,其特征在于,所述第一资源配置包括所述第一时域资源对应的偏移量,所述偏移量指示所述第一时域资源的起始符号在所述用于网络设备发送PDCCH的时域资源的起始符号。
  7. 根据权利要求6所述的方法,其特征在于,所述搜索空间或CORESET包括指示所述偏移量的字段。
  8. 根据权利要求6所述的方法,其特征在于,所述搜索空间包括与所述搜索空间关联的第一CORESET集,所述第一CORESET集包括所述偏移量,所述CORESET包括指示所述第一CORESET集的编号的字段。
  9. 根据权利要求1所述的方法,其特征在于,所述第一时域资源是根据所述第一终端设备的标识,时隙索引,或当前周期内的监测次数中的一种或多种确定的。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述第一时域资源的符号数 与所述第二时域资源的符号数是不同的。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述第一时域资源的符号数与所述第一时域资源对应的聚合级别正相关。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述第一时域资源的符号属于一个时隙。
  13. 一种PDCCH的传输方法,其特征在于,包括:
    终端设备接收资源配置,所述资源配置包括用于网络设备发送PDCCH的时域资源;
    所述终端设备在所述用于网络设备发送PDCCH的时域资源的部分时域资源中监测所述终端设备的PDCCH。
  14. 根据权利要求13所述的方法,其特征在于,所述资源配置还包括指示所述部分时域资源的第一资源配置,所述第一时域资源配置包括所述部分时域资源的起始符号和所述部分时域资源的符号数。
  15. 根据权利要求14所述的方法,其特征在于,所述资源配置承载在搜索空间的字段和/或CORESET字段。
  16. 根据权利要求15所述的方法,其特征在于,所述部分时域资源的起始符号的配置承载在搜索空间的第一字段上,所述第一字段的符号数为14*S max,S max为一个PDCCH监测跨度的最大时隙数。
  17. 根据权利要求15所述的方法,其特征在于,所述部分时域资源的第1个OFDM符号为一个时隙的起始符号,所述第一时域资源的起始符号的配置承载在搜索空间的第二字段上,所述第二字段的长度为S max,S max为一个PDCCH监测跨度的最大时隙数。
  18. 根据权利要求14所述的方法,其特征在于,所述第一资源配置包括所述第一时域资源对应的偏移量,所述偏移量指示所述第一时域资源的起始符号在所述用于网络设备发送PDCCH的时域资源的起始符号。
  19. 根据权利要求18所述的方法,其特征在于,所述搜索空间包括指示所述偏移量的字段。
  20. 根据权利要求18所述的方法,其特征在于,所述搜索空间包括与所述搜索空间关联的第一CORESET集,所述第一CORESET集包括所述偏移量,所述CORESET包括指示所述第一CORESET集的编号的字段。
  21. 根据权利要求13所述的方法,其特征在于,所述终端设备在所述用于网络设备发送PDCCH的时域资源的部分时域资源中监测所述终端设备的PDCCH之前,所述方法还包括:
    所述终端设备根据所述终端设备的标识,时隙索引,或当前周期内的监测次数中的一种或多种确定所述部分时域资源。
  22. 根据权利要求13-21任一项所述的方法,其特征在于,所述部分时域资源的符号数与所述部分时域资源对应的聚合级别正相关。
  23. 根据权利要求13-22任一项所述的方法,其特征在于,所述部分时域资源的符号属于一个时隙。
  24. 一种PDCCH的传输装置,其特征在于,包括输入输出单元和处理单元,所述输入输出单元用于:
    发送资源配置,所述资源配置指示用于网络设备发送物理下行控制信道PDCCH的时域资源;以及
    在所述用于网络设备发送PDCCH的时域资源中的第一时域资源发送第一终端设备的PDCCH,在所述用于网络设备发送PDCCH的时域资源中的第二时域资源发送第二终端设备的PDCCH。
  25. 一种PDCCH的传输装置,其特征在于,包括输入输出单元和处理单元,所述输入输出单元用于:
    接收资源配置,所述资源配置包括用于网络设备发送PDCCH的时域资源;以及
    在所述用于网络设备发送PDCCH的时域资源的部分时域资源中监测所述终端设备的PDCCH。
  26. 一种网络设备,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机指令,所述处理器执行该计算机指令,使得所述通信设备执行权利要求1-12任一项所述的方法。
  27. 一种终端设备,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机指令,所述处理器执行该计算机指令,使得所述通信设备执行权利要求13-23任一项所述的方法。
  28. 一种通信系统,其特征在于,所述系统包括权利要求24所述的传输装置和权利要求25所述的传输装置。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,所述计算机指令指示通信设备执行权权利要求1-23中任一项所述的方法。
  30. 一种电路,其特征在于,包括:处理器和接口,用于执行存储器中存储的计算机程序或指令,执行权利要求1-23中任一项所述的方法。
PCT/CN2021/072331 2021-01-15 2021-01-15 物理下行控制信道的传输方法及相关装置 WO2022151446A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2023542882A JP2024502661A (ja) 2021-01-15 2021-01-15 物理ダウンリンク制御チャネル伝送方法及び関連する装置
EP21918650.9A EP4266788A4 (en) 2021-01-15 2021-01-15 PHYSICAL DOWNLINK CONTROL CHANNEL TRANSMISSION METHOD AND RELATED APPARATUS
CN202180090729.0A CN116762442A (zh) 2021-01-15 2021-01-15 物理下行控制信道的传输方法及相关装置
CA3205376A CA3205376A1 (en) 2021-01-15 2021-01-15 Physical downlink control channel transmission method and related apparatus
PCT/CN2021/072331 WO2022151446A1 (zh) 2021-01-15 2021-01-15 物理下行控制信道的传输方法及相关装置
BR112023014315A BR112023014315A2 (pt) 2021-01-15 2021-01-15 Método de transmissão de canal de controle de enlace descendente físico e aparelho relacionado
US18/352,888 US20230362948A1 (en) 2021-01-15 2023-07-14 Physical downlink control channel transmission method and related apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072331 WO2022151446A1 (zh) 2021-01-15 2021-01-15 物理下行控制信道的传输方法及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/352,888 Continuation US20230362948A1 (en) 2021-01-15 2023-07-14 Physical downlink control channel transmission method and related apparatus

Publications (1)

Publication Number Publication Date
WO2022151446A1 true WO2022151446A1 (zh) 2022-07-21

Family

ID=82447939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072331 WO2022151446A1 (zh) 2021-01-15 2021-01-15 物理下行控制信道的传输方法及相关装置

Country Status (7)

Country Link
US (1) US20230362948A1 (zh)
EP (1) EP4266788A4 (zh)
JP (1) JP2024502661A (zh)
CN (1) CN116762442A (zh)
BR (1) BR112023014315A2 (zh)
CA (1) CA3205376A1 (zh)
WO (1) WO2022151446A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888361A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 一种公共控制信息的传输方法、装置和设备
WO2018141139A1 (zh) * 2017-02-04 2018-08-09 华为技术有限公司 发送信息的方法、接收信息的方法和装置
CN109391430A (zh) * 2017-08-11 2019-02-26 维沃移动通信有限公司 Pdcch资源配置、确定方法、网络侧设备及用户终端
CN110876185A (zh) * 2018-08-31 2020-03-10 中国移动通信有限公司研究院 指示信令的传输、接收方法、装置、网络侧设备及终端
WO2020220310A1 (en) * 2019-04-30 2020-11-05 Zte Corporation System and method for downlink control signaling

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10993216B2 (en) * 2018-04-06 2021-04-27 Intel Corporation Flexible slot format indication (SFI) monitoring for new radio unlicensed communications
US11638246B2 (en) * 2018-08-10 2023-04-25 Apple Inc. Enhanced PDCCH monitoring in new radio systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888361A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 一种公共控制信息的传输方法、装置和设备
WO2018141139A1 (zh) * 2017-02-04 2018-08-09 华为技术有限公司 发送信息的方法、接收信息的方法和装置
CN109391430A (zh) * 2017-08-11 2019-02-26 维沃移动通信有限公司 Pdcch资源配置、确定方法、网络侧设备及用户终端
CN110876185A (zh) * 2018-08-31 2020-03-10 中国移动通信有限公司研究院 指示信令的传输、接收方法、装置、网络侧设备及终端
WO2020220310A1 (en) * 2019-04-30 2020-11-05 Zte Corporation System and method for downlink control signaling

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4266788A4 *
ZTE, ZTE MICROELECTRONICS: "PDCCH procedure and DCI carried by PDSCH region", 3GPP DRAFT; R1-1701588 PDCCH PROCEDURE AND DCI CARRIED BY PDSCH REGION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20170213 - 20170217, 12 February 2017 (2017-02-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051208755 *

Also Published As

Publication number Publication date
CN116762442A (zh) 2023-09-15
JP2024502661A (ja) 2024-01-22
EP4266788A1 (en) 2023-10-25
US20230362948A1 (en) 2023-11-09
BR112023014315A2 (pt) 2023-09-26
CA3205376A1 (en) 2022-07-21
EP4266788A4 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
US11632206B2 (en) Method and apparatus for obtaining resource indication value
EP3883315A1 (en) Method for switching between uplinks, communication apparatus, and communication system
US20210250159A1 (en) Resource configuration method and apparatus
US20190268787A1 (en) Communication method and communications apparatus
US11589357B2 (en) Detection window indication method and apparatus
CN108282291B (zh) 一种dci传输方法、ue和网络侧设备
WO2018228586A1 (zh) 一种通信方法、网络设备及用户设备
CN110768768B (zh) 探测参考信号的资源配置方法及通信装置
US11051300B2 (en) Method and apparatus for transmitting control channel information in an OFDM system
EP4138494A1 (en) Spatial parameter determination method and device
US8432852B2 (en) Uplink timing control signal
CN111436085B (zh) 通信方法及装置
WO2018137700A1 (zh) 一种通信方法,装置及系统
CN113890699A (zh) Pdcch监听方法、发送方法及相关设备
AU2019382040A1 (en) Sequence generation and processing method and apparatus
WO2022151446A1 (zh) 物理下行控制信道的传输方法及相关装置
WO2019029464A1 (zh) 用于灵活双工系统的数据传输方法及设备
WO2023274211A1 (zh) 控制信息发送方法、控制信息接收方法以及通信装置
EP4280759A1 (en) Terminal, base station, and wireless communication method
CN113424622B (zh) 一种ofdm符号的资源属性确定方法及其相关设备
CN111435890B (zh) 一种pdsch资源位置的确定方法、终端和网络侧设备
CN113784438A (zh) 信道配置方法及设备
WO2019029735A1 (zh) 一种物理资源块prb网格的指示方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3205376

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202180090729.0

Country of ref document: CN

Ref document number: 2023542882

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023014315

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021918650

Country of ref document: EP

Effective date: 20230719

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023014315

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230717