WO2022151352A1 - Hppd mutant protein having herbicide resistance and application thereof - Google Patents

Hppd mutant protein having herbicide resistance and application thereof Download PDF

Info

Publication number
WO2022151352A1
WO2022151352A1 PCT/CN2021/072156 CN2021072156W WO2022151352A1 WO 2022151352 A1 WO2022151352 A1 WO 2022151352A1 CN 2021072156 W CN2021072156 W CN 2021072156W WO 2022151352 A1 WO2022151352 A1 WO 2022151352A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
hppd
mutant
plant
mhppd
Prior art date
Application number
PCT/CN2021/072156
Other languages
French (fr)
Chinese (zh)
Inventor
张保龙
杨郁文
周珍珍
刘廷利
郭冬姝
Original Assignee
江苏省农业科学院
江苏中旗作物保护科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏省农业科学院, 江苏中旗作物保护科技有限公司 filed Critical 江苏省农业科学院
Priority to PCT/CN2021/072156 priority Critical patent/WO2022151352A1/en
Priority to CN202180005086.5A priority patent/CN114364793A/en
Publication of WO2022151352A1 publication Critical patent/WO2022151352A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/44Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
    • A01N37/46N-acyl derivatives
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/10Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds
    • A01N57/16Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds containing heterocyclic radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
    • C12Y113/110274-Hydroxyphenylpyruvate dioxygenase (1.13.11.27)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/90241Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Definitions

  • the invention belongs to the field of plant protein and plant herbicide resistance, and relates to HPPD mutant gene and protein with herbicide resistance and application thereof; in particular, the invention relates to p-hydroxyphenylpyruvate dioxygenase (HPPD) of rice
  • HPPD p-hydroxyphenylpyruvate dioxygenase
  • the mutant gene and the mutant HPPD protein it encodes can confer resistance to p-hydroxyphenylpyruvate dioxygenase inhibitor herbicides in plants, especially rice.
  • the invention discloses the nucleotide sequence and amino acid sequence of the mutant protein and their application in the field of plant herbicide resistance.
  • Farmland weeds compete with crops for resources such as living space, light, water and nutrients, and may become intermediate hosts of pests and diseases, seriously disturbing crop growth and causing yield reduction.
  • Traditional manual weeding is labor-intensive, time-consuming and inefficient; mechanical weeding is usually not thorough, and excessive and unreasonable tillage can easily cause soil erosion, nutrient loss, excessive energy consumption, and greenhouse gas emissions.
  • Spraying herbicides for weed control is simple, effective and efficient, and has gradually become the most economical and effective means of controlling weeds in farmland.
  • the continuous use of herbicides with a single target of action for many years has resulted in serious drug resistance of many weeds and become malignant weeds.
  • herbicides such as sulfonylureas have a long residual effect period in the soil, which has a greater impact on the next crop, and may also infiltrate with water, causing environmental pollution.
  • HPPD 4-hydroxyphenylpyruvate dioxygenase
  • HPPD inhibitor herbicides can be used as rotation agents and compound agents of ALS inhibitors, amides, synthetic hormones and other herbicides to control malignant weeds in farmland.
  • HPPD inhibitor herbicides generally have the advantages of high efficiency and low toxicity, not easy to produce resistance, good environmental compatibility, and safe for subsequent crops.
  • Target resistance refers to changes in the target gene or its encoded protein of a herbicide, resulting in plants being able to resist or tolerate a certain concentration of herbicide.
  • the most common form of target resistance is the change in the coding sequence of the herbicide target gene, resulting in the mutation of one or some amino acids of the target protein, which makes the herbicide unable to bind the target protein, but the normal physiological function of the protein is not affected. influences.
  • gene shuffling (DNA family shuffling) between the HPPD-encoding gene of maize and the HPPD-encoding gene of bacteria with resistance or tolerance to HPPD inhibitor herbicides, to obtain mutant maize HPPD with 18 point mutations gene, overexpression of this mutant corn HPPD protein in soybean, conferred resistance to various triketone herbicides in soybean (Siehl et al, 2014).
  • the DNA shuffling method causes mutations at multiple sites, which may change the overall conformation of HPPD; for another example, the HPPD protein sequences of various plants are compared with the HPPD of bacteria that are resistant or tolerant to HPPD inhibitor herbicides.
  • the target protein sequence of the herbicide does not change, but increases the copy number or expression level of the target gene of the herbicide in the plant, produces an excess of wild-type HPPD protein, and can also make the plant tolerant to a certain level of HPPD inhibitor herbicides .
  • Non-target resistance means that the target protein sequence, gene copy number and expression level have not changed, but due to the less absorption of herbicides by plants, the transfer is slow; or the herbicides entering the body are degraded, modified or passivated, making the herbicide unable to Inhibits the activity of the target protein.
  • HPPD inhibitor herbicides mainly focuses on maize and weeds.
  • a class of HPPD inhibitor herbicides that are widely used at present, mesotrione is mainly used as a herbicide in corn fields. Corn is tolerant to mesotrione and can withstand a certain concentration of mesotrione before and after seedling. oxalone, while the normal growth of maize was not significantly affected.
  • the technical problem to be solved by the present invention is to provide a mutant protein that can confer resistance to herbicides in plants. Further, the technical problem to be solved by the present invention is to provide a rice HPPD mutant protein that can confer resistance (resistance) to p-hydroxyphenylpyruvate dioxygenase inhibitor herbicides in plants.
  • the technical problem to be solved by the present invention is to provide a mutant gene that can impart herbicide resistance to plants. Further, the technical problem to be solved by the present invention is to provide a rice HPPD mutant gene that can confer resistance (resistance) to p-hydroxyphenylpyruvate dioxygenase inhibitor herbicides in plants.
  • the technical problem to be solved by the present invention is to provide an expression cassette, a recombinant vector or a cell.
  • the technical problem to be solved by the present invention is to provide the application of rice HPPD mutant protein, said nucleic acid or gene, said expression cassette, recombinant vector or cell in plant herbicide resistance.
  • the technical problem to be solved by the present invention is to provide a method for obtaining herbicide-resistant plant cells, plant tissues, plant parts or plants.
  • the technical problem to be solved by the present invention is to provide a method for identifying plants.
  • the technical problem to be solved by the present invention is to provide a method for controlling weeds.
  • the final technical problem to be solved by the present invention is to provide a method for protecting plants from damage caused by herbicides.
  • the present invention provides a rice HPPD mutant protein, the amino acid sequence of the rice HPPD mutant protein has any one or more of the following mutations: it corresponds to the amino acid of wild-type rice HPPD Sequence 29, 52, 54, 68, 92, 99, 117, 120, 132, 133, 146, 156, 206, 216, 237, 238, 244, 266, 270, 273, 277, 282, 295, 297 , 310, 313, 315, 316, 325, 333, 336, 338, 344, 345, 346, 349, 357, 388, 392, 404, 406, 408, 415 and 423 amino acids were mutated; From proline to valine, from proline to serine at position 336, from aspartic acid to lysine or isoleucine or threonine at position 338, and from arginine at position 346 Mutation to leucine, from methionine to is
  • the amino acid sequence of the rice HPPD mutant protein corresponds to the amino acid sequence of wild-type rice HPPD and has one or more mutant forms selected from the following: V29A, V52I, L54F, F68S, L92I, P99L, T117I, S120A ⁇ F132S ⁇ A133T ⁇ R146L ⁇ A156V ⁇ E206Q ⁇ E206V ⁇ Y216C ⁇ Y237N ⁇ I238T ⁇ F244L ⁇ V266A ⁇ N270D ⁇ T273S ⁇ P277V ⁇ V282E ⁇ L295Q ⁇ H297R ⁇ S310C ⁇ S310V ⁇ S310A ⁇ S310G ⁇ S310T ⁇ V313M ⁇ V313I ⁇ V313L ⁇ G315A ⁇ G315S ⁇ G315R ⁇ T316K ⁇ A325D ⁇ A333P ⁇ P336S ⁇ N338K ⁇ N338I ⁇ N338T ⁇ R344K ⁇ R345L ⁇ R345Q ⁇ R346L ⁇ D
  • described rice HPPD mutant protein it comprises:
  • (a) its amino acid sequence is selected from SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO: 50, SEQ ID NO:52, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:58, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:64, SEQ ID NO:66, SEQ ID NO:68, SEQ ID NO:70, SEQ ID NO:72, SEQ
  • the amino acid sequence of the mutant HPPD protein has any one of the following amino acid mutations: R345Q/R346L, Y216C/R345Q, P336S/R346L, V29A/R346L, L295Q/S310V, V29A/S310C, S310C/G415A, S310C/G415N, L295Q/R345Q, L295Q/S310C, L54F/R345Q, L54F/R346L, S120A/S310C, F68S/S310C, V266A/S310C, V266A/R345Q, S310C/M392I, S310C/R34 M392I, S310C/V313I, Y216C/P277V/R345Q, Y216C/P336S/R345Q, Y216C/R345Q/R346L, V29A/Y216C/R345
  • the amino acid sequence of the mutant HPPD protein has any one of the following amino acid sequences: SEQ ID NO: 124, SEQ ID NO: 136, SEQ ID NO: 128, SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146, SEQ ID NO: 148, SEQ ID NO:150, SEQ ID NO:152, SEQ ID NO:154, SEQ ID NO:156, SEQ ID NO:158, SEQ ID NO:160, SEQ ID NO:162, SEQ ID NO:164, SEQ ID NO:166, SEQ ID NO:168, SEQ ID NO:170, SEQ ID NO:172, SEQ ID NO:174, SEQ ID NO:176, SEQ ID NO:178, SEQ ID NO:180, SEQ ID NO: 182, SEQ ID NO: 184, SEQ ID NO
  • the content of the present invention also includes a nucleic acid or gene, specifically including:
  • nucleic acid or gene as defined in (i) and encodes a protein having p-hydroxyphenylpyruvate dioxygenase activity;
  • nucleotide sequence is selected from SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO: 15. SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:61, SEQ ID NO:63, SEQ ID NO: 65, SEQ ID NO:67, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:73
  • the content of the present invention also includes that the nucleotide sequence of the rice HPPD mutant gene has any one or more of the following mutations: the 86th nucleotide corresponding to the amino acid sequence of wild-type rice HPPD is mutated from T to C, the 154th nucleotide is mutated from G to A, the 160th nucleotide is mutated from C to T, the 203rd nucleotide is mutated from T to C, the 274th nucleotide is mutated from C to A, The 297th nucleotide is mutated from C to G, the 350th nucleotide is mutated from C to T, the 358th nucleotide is mutated from T to G, the 395th nucleotide is mutated from T to C, and the 397th nucleotide is mutated from T to G.
  • the nucleotide at position 437 is mutated from G to A, the nucleotide at position 437 is mutated from G to T, the nucleotide at position 467 is mutated from C to T, the nucleotide at position 616 is mutated from G to C, and the nucleotide at position 617 is mutated from G to C.
  • nucleotide is mutated from A to T
  • the 647th nucleotide is mutated from A to G
  • the 709th nucleotide is mutated from T to A
  • the 713th nucleotide is mutated from T to C
  • the 730th nucleotide Mutation from T to C nucleotide 797 from T to C
  • nucleotide 808 from A to G nucleotide 817 from A to T
  • nucleotide 829 from C Mutation is G
  • nucleotide 830 is mutated from C to T
  • nucleotide 831 is mutated from G to T
  • nucleotide 845 is mutated from T to A
  • nucleotide 884 is mutated from T to A
  • nucleotide 890 is mutated from A to G
  • nucleotide 928 is mutated from A to T or G
  • nucleotide 929 is mutated
  • the content of the present invention also includes an expression cassette, recombinant vector or cell containing the nucleic acid or gene.
  • Vectors suitable for use in the present invention include commercially available plasmids, including but not limited to: pBR322, pKK223-3, GEM1pD10, psiX174Bluescript II KS, pNH8A, pNH16A, pNH18A, pNH46A, ptrc99a, pDR540, pRIT5, pKK232-8, pCM7, pSV2CAT, pOG44, pXT1, pSG, pSVK3, pBPV, pMSG and pSVL etc.
  • plasmids including but not limited to: pBR322, pKK223-3, GEM1pD10, psiX174Bluescript II KS, pNH8A, pNH16A, pNH18A, pNH46A, ptrc99a, pDR540, pRIT5, pKK232-8, pCM7, pSV2CAT, pOG
  • the content of the present invention also includes the application of the rice HPPD mutant protein, the nucleic acid or the gene, the expression cassette, the recombinant vector or the cell in the aspect of plant herbicide resistance.
  • the herbicides are HPPD inhibitor herbicides, including triketones, pyrazolones and isoxazolones, preferably, the herbicides are mesotrione, oxaflutole, isoxazone One or more of caroxazone and cyclosulfonone.
  • the present invention also includes a method for obtaining herbicide-resistant plant cells, plant tissues, plant parts or plants, comprising the steps of:
  • the method of mutation includes the method of directed mutation, specifically through gene site-directed mutagenesis, error-prone PCR, gene editing (including methods mediated by CRISPR, TALEN, zinc finger enzymes, etc.) and the like.
  • the method includes error-prone PCR, gene editing (including methods mediated by CRISPR, TALEN, zinc finger enzymes, etc.), transgenic, hybridization, backcrossing or asexual reproduction steps.
  • the present invention also includes a method for identifying a plant, wherein the plant is a plant comprising the nucleic acid or gene, a plant expressing any of the proteins described, or a plant obtained by any of the methods, including the following step:
  • the content of the present invention also includes a method for controlling weeds, comprising: applying an effective dose of a herbicide to a field where crops are grown, the crops comprising the nucleic acid or gene or the expression cassette, recombinant vector or cell, the
  • the herbicides include triketones, pyrazolones and isoxazolones.
  • the herbicides are one of mesotrione, oxaflutole, isoxaflutole, and cyclosulfonone or more.
  • the present invention also includes a method for protecting plants from herbicide-induced damage, comprising: applying an effective dose of the herbicide to a field in which a crop is grown, the crop comprising the nucleic acid or gene or the
  • the expression cassette and recombinant vector are introduced into plants, and the introduced plants produce herbicide-resistant proteins, and the herbicides include triketones, pyrazolones and isoxazolones.
  • the herbicide is nitrosulfan One or more of oxaflutole, oxaflutole, isoxaflutole, and cyclosulfonone.
  • the plants described in the present invention are food crops and economic crops, including rice, wheat, rape and the like.
  • the present invention has the following advantages:
  • the present invention uses the improved error-prone PCR technology to carry out large-scale random mutation of the HPPD encoding gene of wild-type rice, and screened out a number of new mutations in Escherichia coli that can improve the resistance of Escherichia coli to HPPD inhibitor herbicides Combined with transgenic technology, it was determined that some mutation sites can improve the resistance of rice to mesotrione, isoxaflutole, oxaflutole and cyclosulfonone.
  • the invention expands the range of mutation sites of the rice HPPD gene resistant to HPPD inhibitor herbicides, and provides more flexible and diverse choices for cultivating rice varieties resistant to HPPD inhibitor herbicides; at the same time, the mutation identified by the invention
  • the transgenic plants of the type rice HPPD gene can tolerate certain concentrations of mesotrione, isoxaflutole, and oxaflutole, which expands the range of HPPD inhibitor herbicides that can be selected in rice. Combined with the advantages of gene editing technology, it is of great significance to identify new mutant rice HPPD proteins that confer resistance or tolerance to HPPD inhibitor herbicides in plants.
  • the random mutation of the rice HPPD gene cannot be efficiently performed using a commercially available error-prone PCR kit.
  • the present invention optimizes error-prone PCR components and reaction conditions through a large number of preliminary experiments, and finally controls the mutation rate more accurately within the range of 1-2 bases.
  • This method may provide technical reference for site-directed mutation of other genes.
  • the present invention uses a variety of HPPD inhibitor herbicides to identify the resistance of transgenic rice expressing mutant HPPD gene, and it is found that some transgenic lines can tolerate mesotrione, oxaflutole and isoxaflutole , cyclosulfonone and other four herbicides, expanding the types of HPPD inhibitor herbicides that can be selected for rice, which has a very broad application prospect for cultivating HPPD inhibitor herbicide-resistant or tolerant plants.
  • the single-point mutation or multi-point mutation mutant protein obtained by the present invention can tolerate HPPD inhibition of up to 300 ⁇ M mesotrione, 1000 ⁇ M oxaflutole, 800 ⁇ M isoxaflutole, etc. in Escherichia coli herbicides.
  • the transgenic rice containing single point or multiple point mutation of the present invention can tolerate up to 12g a.i./mu of mesotrione, 3g a.i./mu of oxaflutole, 12g a.i./mu of isoxaflutole and 3g a.i./mu of mesotrione Mu's cyclosulfonone and other four HPPD inhibitor herbicides.
  • FIG. 1 E. coli expressing wild-type (WT) or partially tolerated single-point mutant rice HPPD gene at the screening concentration of 0-20 ⁇ M mesotrione in 48 cells containing culture medium Color reaction in well plate. Under the culture conditions containing the same concentration of herbicides, the darker the color indicates the higher resistance or tolerance of the corresponding mutant HPPD protein to mesotrione. Under the condition of 10 ⁇ M mesotrione, the vast majority of mutant HPPD still developed significantly deeper color than wild type HPPD.
  • FIG. 3 Shows the color development of E. coli expressing wild-type (WT) or two-point combination mutant rice HPPD gene in a 48-well plate containing culture medium at the screening concentration of 0-40 ⁇ M mesotrione reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color indicates the higher resistance or tolerance of the corresponding mutant HPPD protein to mesotrione.
  • WT wild-type
  • FIG. 3 Shows the color development of E. coli expressing wild-type (WT) or two-point combination mutant rice HPPD gene in a 48-well plate containing culture medium at the screening concentration of 0-40 ⁇ M mesotrione reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color indicates the higher resistance or tolerance of the corresponding mutant HPPD protein to mesotrione.
  • FIG. 4 Shows the color development of E. coli expressing wild-type (WT) and three-point combination mutant rice HPPD gene in a 48-well plate containing culture medium at the screening concentration of 0-100 ⁇ M mesotrione reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color indicates the higher resistance or tolerance of the corresponding mutant HPPD protein to mesotrione. Among them, the wells corresponding to mutant HPPD containing Y216C/R345Q/P336S, Y216C/R345Q/R346L, L92I/S310C/V313I and P336S/R345Q/R346L developed the deepest color, indicating that it is resistant to mesotrione in E. coli The best receptivity.
  • FIG. 5 Shows the color development of E. coli expressing wild-type (WT) and four-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-250 ⁇ M mesotrione reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color indicates the higher resistance or tolerance of the corresponding mutant HPPD protein to mesotrione. Among them, the wells corresponding to mutant HPPD containing Y216C/R345Q/P336S/R346L, V52I/Y216C/P336S/R345Q and Y216C/P277V/S310C/R345Q developed the deepest color, indicating that it is resistant to mesotrione in E. coli The best receptivity.
  • Figure 6 shows the expression of Escherichia coli expressing wild-type (WT) and five-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-500 ⁇ M mesotrione color reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color indicates the higher resistance or tolerance of the corresponding mutant HPPD protein to mesotrione.
  • the 3 combinations shown, Y216C/S310C/P336S/R345Q/R346L, V29A/Y216C/S310C/P336S/R345Q and V52I/Y216C/S310C/P336S/R345Q were all tolerant to at least 300 ⁇ M mesotrione in E. coli .
  • FIG. 7 Shows the color reaction of E. coli expressing wild-type (WT) or single-point mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-120 ⁇ M of oxaflutole . Under the culture conditions containing the same concentration of herbicides, the darker the color, the higher the resistance or tolerance of the corresponding mutant HPPD protein to oxaflutole. Under the condition of 60 ⁇ M oxaflutole, the vast majority of mutant HPPD still developed significantly deeper color than wild type HPPD.
  • the wells corresponding to mutant HPPD containing V52I, F68S, F132S, Y216C, H297R, S310C, S310V, V313I, R345Q, M392I, F388L, S404G and Q406R developed the deepest color, indicating that it has the deepest color in E. coli best tolerated.
  • Figure 8 shows the color development of Escherichia coli expressing wild-type (WT) or two-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-120 ⁇ M of oxaflutole reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color, the higher the resistance or tolerance of the corresponding mutant HPPD protein to oxaflutole.
  • the mutant HP/V310C containing R345Q/R346L, Y216C/R345Q, P336S/R346L, V29A/R346L, S310C/G415A, S310C/G415N, L295Q/R345Q, F68S/S310C, V266A/S310C, V266A/R345I and SPD310C The corresponding well developed the darkest color, indicating that it had the best tolerance to oxaflutole in E. coli.
  • FIG. 9 Shows the color development of E. coli expressing wild-type (WT) and three-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-250 ⁇ M oxaflutole reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color, the higher the resistance or tolerance of the corresponding mutant HPPD protein to oxaflutole.
  • WT wild-type
  • FIG. 9 Shows the color development of E. coli expressing wild-type (WT) and three-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-250 ⁇ M oxaflutole reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color, the higher the resistance or tolerance of the corresponding mutant HPPD protein to oxaflutole.
  • the hole corresponding to the mutant HPPD of R346L developed the darkest color, indicating that it has the best tolerance to oxaflutole in E. coli.
  • FIG. 10 The color development of Escherichia coli expressing wild-type (WT) and four-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-500 ⁇ M oxaflutole reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color, the higher the resistance or tolerance of the corresponding mutant HPPD protein to oxaflutole.
  • WT wild-type
  • FIG. 10 The color development of Escherichia coli expressing wild-type (WT) and four-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-500 ⁇ M oxaflutole reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color, the higher the resistance or tolerance of the corresponding mutant HPPD protein to oxaflutole.
  • FIG. 11 Shows the color development of E. coli expressing wild-type (WT) and five-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-1000 ⁇ M oxaflutole reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color, the higher the resistance or tolerance of the corresponding mutant HPPD protein to oxaflutole. Among them, the combination of Y216C/S310C/P336S/R345Q/R346L has the best tolerance, and can develop color under the screening condition of 1000 ⁇ M oxaflutole. The screening conditions of oxaflutole can develop color, and V29A/Y216C/S310C/P336S/R345Q can tolerate 600 ⁇ M oxaflutole.
  • FIG. 12 Shows the color reaction of E. coli expressing wild-type (WT) and single-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-5 ⁇ M cyclosulfonone . Under the culture conditions containing the same concentration of herbicides, the darker the color, the higher the resistance or tolerance of the corresponding mutant HPPD protein to oxaflutole. Under the condition of 2 ⁇ M cyclosulfonone, the vast majority of mutant HPPD still developed significantly deeper color than wild-type HPPD.
  • FIG. 13 Shows the expression of Escherichia coli expressing wild-type (WT) and single-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-160 ⁇ M isoxaflutole color reaction. Under the culture conditions containing the same concentration of herbicide, the darker the color indicates the higher resistance or tolerance of the corresponding mutant HPPD protein to isoxaflutole. Under the condition of 100 ⁇ M isoxaflutole, the vast majority of mutant HPPD still developed significantly deeper color than wild type HPPD.
  • the wells corresponding to the mutant HPPD containing V52I, 68S, P99L, F132S, Y216C, H297R, V313I, S310V, P336S, R345Q, R346L and M392I developed the deepest color, indicating that it has the strongest effect on isoxaflutole in E. coli Best tolerated.
  • Figure 14 shows the expression of Escherichia coli expressing wild-type (WT) and five-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-1000 ⁇ M isoxaflutole color reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color, the higher the resistance or tolerance of the corresponding mutant HPPD protein to oxaflutole.
  • Y216C/S310C/P336S/R345Q/R346L and V29A/Y216C/S310C/P336S/R345Q has the best tolerance, and can develop color under the screening condition of 800 ⁇ M isoxaflutole, V52I/Y216C/S310C/P336S /R345Q was able to tolerate isoxaflutole at 600 ⁇ M.
  • Figure 15 A diagram showing the construction of the wild-type or mutant-type HPPD transgene expression vector for rice transformation.
  • ZmpUBI maize UBI gene promoter
  • OsHPPD wild-type or mutant rice HPPD gene
  • 6 ⁇ His Tag histidine tag in series 6 times
  • NOS Ter NOS terminator
  • p35S cauliflower mosaic virus 35S promoter
  • HygR hygromycin resistance gene
  • 35S Ter 35S terminator
  • LB T-DNA left border
  • RB T-DNA right border.
  • Figure 16 Tolerance of wild-type and mutant HPPD transgenic rice to mesotrione.
  • HPPD transgenic plants containing V266A, S310C, V313I and R345Q mutant forms can tolerate 6 g a.i./mu of mesotrione.
  • FIG. 17 Tolerance of wild-type and mutant HPPD transgenic rice to oxaflutole.
  • the HPPD transgenic plants containing the mutant forms of F68S, F132S, V313I, S310C, R345Q and M392I were able to tolerate oxaflutole (1.5 g a.i./mu) with varying degrees of tolerance.
  • FIG. 18 Tolerance of wild-type and mutant HPPD transgenic rice to isoxaflutole.
  • HPPD transgenic plants containing mutant forms of F68S, F132S, V313I, S310C and P336S had different degrees of tolerance to isoxaflutole (6 g a.i./mu).
  • FIG. 19 Tolerance of wild-type and mutant HPPD transgenic rice to cyclophanone.
  • the HPPD transgenic plants containing the mutant forms of F68S, V266A, S310C, R345Q and M392I were able to tolerate a concentration of 1.5 g a.i./mu of cyclopentanone.
  • Y216C/R345Q L295Q/S310C, L295Q/R345Q, S310C/M345Q, S310C/M392I, Y216C/S310C/P336S/R345Q/R346L, V29A/Y216C/S310C/P336S/R345Q and V545S31616C/S310C/P336S/R345Q/R346L
  • the PCR products were electrophoresed on a 1% agarose gel, and the agarose strip containing the target band of about 1.4Kb was cut under UV light.
  • the band was purified; the concentration of purified product was determined to be 31 ng/ ⁇ L using a microspectrophotometer (Nanodrop).
  • the pET-28a vector is preserved in this laboratory at a concentration of 124ng/ ⁇ L.
  • the 1.4Kb PCR product and pET-28a vector were double digested with restriction enzymes EcoR I and Xho I (TaKaRa, Japan), respectively.
  • the reaction system and reaction conditions were: PCR product or pET-28a vector, 30 ⁇ L; 10 ⁇ H buffer, 5 ⁇ L; EcoR I (15 U/ ⁇ L), 1 ⁇ L; Xho I (10 U/ ⁇ L), 1 ⁇ L; ddH 2 O, 13 ⁇ L; 37° C., 2 h.
  • the HPPD gene fragment of about 1.4Kb and the pET-28a vector fragment of 5.4Kb were recovered to obtain the HPPD gene fragment and linearized vector fragment containing the same sticky ends.
  • the concentration of purified product of HPPD fragment measured by spectrophotometer (Nanodrop) was 20 ng/ ⁇ L, and the concentration of purified product of pET-28a vector was 35 ng/ ⁇ L.
  • the above two purified fragments were ligated together with T4 DNA ligase (Takara, Japan).
  • reaction system and reaction conditions were: 5 ⁇ T4 DNA ligase buffer, 2 ⁇ L; HPPD fragment, 2 ⁇ L; pET-28a vector fragment, 2 ⁇ L; T4 DNA ligase (350U/ ⁇ l), 1 ⁇ L; ddH 2 O, 3 ⁇ L; 22° C., 1 h.
  • a total of 8 clones were picked by colony PCR reaction, and 7 of them could amplify the target band of about 500bp as positive clones.
  • Select clones No. 2 and No. 5 with brighter amplification bands inoculate them in liquid LB medium containing 50 ⁇ g/mL kanamycin, respectively, and culture with shaking at 37°C for 12 hours.
  • pET28a-OsHPPD-2 and pET28a-OsHPPD-5 the plasmids were extracted to obtain pET28a-OsHPPD-2 and pET28a-OsHPPD-5, and the plasmid concentrations of pET28a-OsHPPD-2 were 345 ng/ ⁇ L and pET28a-OsHPPD-5 were 288 ng/ ⁇ L using a microspectrophotometer (Nanodrop).
  • the primers pET28a-SF: TAATACGACTCACTATAGG and pET28a-SR: GCTAGTTATTGCTCAGCGG were used to verify the plasmid by Sanger sequencing (Qingke, China).
  • the GC content of wild-type rice HPPD gene (shown in SEQ ID NO: 1) is 70.8%, and the amino acid sequence is shown in SEQ ID NO: 2.
  • the present invention first attempts to use a tunable error-prone PCR kit (Tian Enze, CAT #:101005-100, China), error-prone PCR was performed with the diluted pET28a-OsHPPD-2 plasmid as a template, and no amplified band was obtained. To this end, the present invention tries different PCR reagents and reaction conditions to optimize the error-prone PCR system.
  • the present invention uses 2 ⁇ GC I buffer (Takara, CAT#: 9154) specially suitable for gene amplification with high GC content as PCR buffer, and uses Taq DNA polymerase with strong amplification ability (5U/ ⁇ l) (Takara, CAT#: R500A) to perform error - prone PCR, and optimize the usage of dATP, dTTP, dCTP, dGTP (Table 1 ), MnCl and MgCl in the amplification system, and test the amplification Efficiency and mutation rate.
  • the use concentration combinations of different dNTPs are shown in Table 1:
  • the numbers in the first row of the table correspond to lanes 2-21 in the electrophoresis below; the unit of dNTP concentration is mM.
  • HPPD error-prone PCR amplification products under different reaction conditions were purified by gel cutting and cloned into pClone007Simple vector (Qingke, China).
  • the reaction system was: HPPD purified fragment, 2 ⁇ L; pClone007Simple vector, 1 ⁇ L; 10 ⁇ TOPO Mixture, 1 ⁇ L; ddH 2 O, 6 ⁇ L.
  • the present invention adopts the above PCR system, and uses the 100-fold diluted pET28a-OsHPPD-2 plasmid as a template to perform error-prone PCR.
  • a total of 4 independent error-prone PCR amplifications are carried out, each time an additional specific dNTP is added, so that the final concentration of this dNTP is 0.4 mM, and the final concentration of the other 3 dNTPs is maintained at 0.2 mM.
  • the tyrosine aminotransferase in Escherichia coli can catalyze tyrosine to generate p-hydroxyphenylpyruvate (4-HPP), which is catalyzed by HPPD to generate homogentisic acid (HGA), and then generates brown pigment through autoxidation.
  • HPPD inhibitors can inhibit the catalytic reaction of HPPD, thereby inhibiting the production of brown pigment. Therefore, the intensity of HPPD activity or the degree of inhibition can be preliminarily judged according to the shade of brown pigment.
  • this study firstly tested the critical concentration of mesotrione tolerance of wild-type rice HPPD in E. coli.
  • the concentrations of the four independent error-prone PCR products tested were 27 ng/ ⁇ L, 25 ng/ ⁇ L, 32 ng/ ⁇ L and 30 ng/ ⁇ L, respectively.
  • the purified HPPD error-prone PCR products were ligated with the previously purified pET-28a vector.
  • the reaction system and reaction conditions were: 5 ⁇ T4 DNA ligase buffer, 2 ⁇ L; HPPD fragment, 2 ⁇ L; pET-28a vector fragment, 2 ⁇ L ; T4 DNA ligase, 1 ⁇ L; ddH 2 O, 3 ⁇ L; 22°C, 1 h.
  • 5 ligation reactions were performed simultaneously.
  • the electric shock cup was inserted into the well of an electric shock transforming instrument (Eppendorf, Germany), and the electric shock cup was taken out and added 500 ⁇ L
  • the liquid LB medium without antibiotics was gently pipetted and mixed, and the bacterial liquid was aspirated and transferred to a 1.5 mL centrifuge tube, shaken at 37°C, 200 rpm, and cultured for 1 h;
  • On a solid LB medium plate invert at 37°C for 12 hours, pick all monoclonal colonies as much as possible with an autoclaved toothpick, and inoculate it into an LB liquid culture containing 2 ⁇ M mesotrione and 1 g/L tyrosine substrate In a 24-well plate, 28°C, shaking at 150rpm for 24h.
  • the activity of mutant HPPD was then evaluated according to the shade of brown pigment they produced during tyrosine metabolism.
  • mHPPD-mutant-form-F 60 pairs of specific mutation primers were designed using a site-directed mutagenesis kit: "mHPPD-mutant-form-F” and "mHPPD-mutant-form-R” (see site-directed mutagenesis for the sequence).
  • the primer list is shown in Table 2), using the pET28a-OsHPPD-2 plasmid as a template, PCR amplification was performed to construct a pET28a vector containing the corresponding mutant HPPD gene, and then transferred into BL21-Gold (DE3) competent cells. The results of the large-scale screening were verified at the concentration of oxalone.
  • the present invention also tested the tolerance of the above 60 single-point mutant HPPDs to other types of HPPD inhibitor herbicides, including oxaflutole, cyclosulfonone and Isoxaflutole.
  • HPPD inhibitor herbicides including oxaflutole, cyclosulfonone and Isoxaflutole.
  • the critical concentration of wild-type rice HPPD that can tolerate oxaflutole, cyclosulfonone and isoxaflutole was determined and gradient experiments were carried out. The results showed that the critical concentrations of oxaflutole, cyclosulfonone and isoxaflutole were 40 ⁇ M, 1 ⁇ M and 80 ⁇ M, respectively.
  • L54F, S120A, Y237N, I238T, L295Q, A333P, R344K, D349G and E423G are only tolerant to mesotrione;
  • S404G, Q406R and Y408H are tolerant to mesotrione and mesotrione ;
  • S310G, G415A, G415N, V29A, V266A, G315S and T316K were mesotrione and cyclosulfonone tolerant;
  • A133T, A156V and V282E were mesotrione and isoxaflutole tolerant.
  • P99L is tolerant to mesotrione, oxaflutole and isoxaflutole; E206Q, E206V and G415S are tolerant to mesotrione, isoxaflutole and cyclosulfonone; F388L is nitroxazone Sulcotrione, oxaflutole, and cyclofenone were tolerated.
  • the present invention adopts the method of site-directed mutation PCR on the basis of single point mutation to detect the color development in the first round of color development screening.
  • the 60 single-point mutations of 60 single-point mutations were superimposed, and the purpose was to screen the double-point mutant HPPD with stronger tolerance than single-point mutation. Therefore, this round of screening used 5 ⁇ M mesotrione as the starting point.
  • the corresponding pET28a-mHPPD gene containing the single point mutation of the rice HPPD gene was used as the template (60 vectors constructed during the verification of the color development results, the plasmid concentrations were all between 200ng/ ⁇ L and 350ng/ ⁇ L), plasmid 100 After doubling dilution, equal volumes were mixed and used as templates for site-directed mutagenesis.
  • the primers were amplified using the 60 pairs of primers in Example 3; Phanta high-fidelity DNA polymerase (P505-d1, Novozymes, China) was used for amplification.
  • PCR reaction system 2 ⁇ Phanta Max buffer, 25 ⁇ L; dNTP Mix (10 mM each), 1 ⁇ l; 10 ⁇ M site-directed mutagenesis forward primer, 2 ⁇ L; 10 ⁇ M site-directed mutagenesis reverse primer, 2 ⁇ L; Phanta Max Super-Fidelity DNA polymerase (1U /uL), 1 ⁇ L; 100-fold diluted pET28a-mHPPD mixed plasmid template, 2 ⁇ L; ddH 2 O, 17 ⁇ L.
  • a toothpick of bacteria was used to pick all the monoclonal colonies as much as possible, inoculated into a 24-well plate in LB liquid medium containing 5 ⁇ M mesotrione, and cultured with shaking at 150 rpm at 28° C. for 24 h.
  • the activity of mutant HPPD was then evaluated according to the shade of brown pigment they produced during tyrosine metabolism. Similar to the process described in Example 3, the bacterial liquid in the colored wells was dipped, inoculated into liquid LB medium containing 50 ⁇ g/mL kanamycin, and incubated at 37 ° C and 220 rpm for 12 h, and the plasmid was extracted.
  • a total of 19 new double-point mutant HPPDs resistant to 5 ⁇ M mesotrione were obtained, including: Y216C/R345Q, P336S/R346L, V29A/R346L, L295Q/S310V, V29A/S310C, S310C/G415A, S310C/G415N , L295Q/R345Q, L295Q/S310C, L54F/R345Q, L54F/R346L, S120A/S310C, F68S/S310C, V266A/S310C, V266A/R345Q, S310C/M392I, S310C/R345Q, L21C0/M392, together with T21C0/M392
  • the two double point mutations R345Q/R346L and S310C/V313I screened by error-prone PCR, the present invention identified a total of 21 double point mutant HPPDs that were tolerant
  • Colony PCR was performed using the primer pair pET28a-SF and OsHPPD-CR (pET28a-SF: TAATACGACTCACTATAGG, OsHPPD-CR: CTAGGATCCTTGAACTGTAGGGGC) and 8 single clones were detected per vector.
  • pET28a-SF TAATACGACTCACTATAGG
  • OsHPPD-CR CTAGGATCCTTGAACTGTAGGGGC
  • the chromogenic results showed that the tested 21 double point mutation forms, including: R345Q/R346L, Y216C/R345Q, P336S/R346L, V29A/R346L, L295Q/S310V, V29A/S310C, S310C/G415A, S310C/G415N, L295Q /R345Q, L295Q/S310C, L54F/R345Q, L54F/R346L, S120A/S310C, F68S/S310C, V266A/S310C, V266A/R345Q, S310C/M392I, S310C/R345Q, T273S/S310C, L9 Mesotrione at or above 5 ⁇ M was tolerated to some extent.
  • the present invention further superimposes the mutation sites, that is, all double-point mutant HPPD vectors that can develop color at a concentration of 5 ⁇ M mesotrione are used as templates, and 60 pairs of primers are used to amplify the The three-point mutant HPPD with better tolerance should be screened additionally, and so on, until the five-point mutant HPPD.
  • a total of about 25,000 single clones were screened for three-point mutation, about 18,000 single clones were screened for four-point mutation, and about 9,500 single clones were screened for five-point mutation.
  • the initial mesotrione screening concentration that increases round by round is used to screen the mutant rice HPPD with better tolerance, that is, the initial mesotrione screening concentration for three-point mutation is 20 ⁇ M, and the initial mesotrione screening concentration for four-point mutation is 50 ⁇ M , the five-point mutation was 100 ⁇ M.
  • a higher mesotrione concentration gradient was further set to identify the upper limit of the mesotrione tolerance of the mutant HPPD.
  • a total of 28 three-point mutant HPPDs that can tolerate at least 20 ⁇ M mesotrione were screened in this study, including: Y216C/P277V/R345Q, Y216C/P336S/R345Q, Y216C/R345Q/R346L, V29A/Y216C/R345Q, Y216C /R345Q/G415A, Y216C/R345Q/E423G, L92I/S310C/V313I, V52I/Y216C/R345Q, Y216C/R345Q/F388L, P336S/R345Q/R346L, L295Q/S310C/G415A, L295S310, L54SQF/L29 /S310C, L295Q/S310C/F388L, L54F/L295Q/R345Q, L92I/L295Q/R345Q,
  • 14 four-point mutant HPPDs can tolerate at least 50 ⁇ M mesotrione, and the single three-point mutant HPPD can tolerate up to 20 ⁇ M mesotrione, and Compared with other single-point mutant HPPDs that can tolerate up to 10 ⁇ M mesotrione, the effect of the 14 four-point mutant HPPDs is far better than the sum of the three-point mutant and single-point mutants tolerance; at the same time, five The point mutants Y216C/S310C/P336S/R345Q/R346L and V29A/Y216C/S310C/P336S/R345Q were able to tolerate 300 ⁇ M mesotrione, among which the four point mutants Y216C/P336S/R345Q/R346L and V29A/Y216C/ P336S/R345Q can tolerate 150 ⁇ M mesotrione, while the single point mutant S310C can
  • the above two-point and multi-point combinations were used to verify the resistance of oxaflutole.
  • the double point mutation was developed at five concentrations of 40 ⁇ M, 60 ⁇ M, 80 ⁇ M, 100 ⁇ M and 120 ⁇ M, and the results showed that R345Q/R346L, Y216C/R345Q, P336S/R346L, V29A/R346L, S310C/G415A, S310C/G415N, L295Q/R345Q , F68S/S310C, V266A/S310C, V266A/R345Q and S310C/V313I mutant HPPD corresponding to the darkest wells, indicating that it has the best tolerance to oxaflutole in E.
  • the three-point mutation was developed at five concentrations of 50 ⁇ M, 100 ⁇ M, 150 ⁇ M, 200 ⁇ M and 250 ⁇ M.
  • /R346L, L54F/L295Q/S310C, L92I/L295Q/R345Q/ and L54F/P336S/R346L were the best tolerated; the four-point mutation was developed at five concentrations of 100 ⁇ M, 200 ⁇ M, 300 ⁇ M, 400 ⁇ M and 500 ⁇ M.
  • the holes corresponding to mutant HPPDs of Y216C/P336S/R345Q/R346L, V52I/Y216C/P336S/R345Q, S310C/P336S/R345Q/R346L, V29A/L295Q/S310C/G415A and V52I/L295Q/S310C/G415A have the deepest color rendering. It showed that it had the best tolerance to oxaflutole in Escherichia coli; the five-point mutation was developed at five concentrations of 200 ⁇ M, 400 ⁇ M, 600 ⁇ M, 800 ⁇ M and 1000 ⁇ M. Also set 0 ⁇ M as a control.
  • -Gold(DE3) competent cells (Novizan, China), placed on ice for 30min, water bath at 42°C for 60s, placed on ice for 2min, added 500 ⁇ L of liquid LB medium without antibiotics, and recovered with shaking at 37°C for 1h , take 100 ⁇ L of the recovery culture product, spread it evenly on a solid LB medium plate containing 50 ⁇ g/mL kanamycin, place it in a 37 °C incubator and invert for 12 h, pick 8 monoclonal colonies, and use the primer pET- SF and OsHPPD-CR were subjected to colony PCR (forward primer pET28a-SF: TAATACGACTCACTATAGG, reverse primer OsHPPD-CR: CTAGGATCCTTGAACTGTAGGGGC), the correct amplified product size was about 1.4kb, and then used 1% agarose gel electrophoresis to identify The PCR product is detected.
  • the corresponding single colony is a positive transformant containing the target plasmid.
  • Pick a single colony that is verified to be correct with a sterilized toothpick, transfer it to a test tube containing 3 mL of liquid LB medium containing 50 ⁇ g/mL kanamycin, place it on a shaker at 37 °C, and cultivate it with horizontal shaking at 180 rpm for 5 h , transfer 1 mL of bacterial liquid to a conical flask containing 100 mL of liquid LB medium containing 50 ⁇ g/mL kanamycin, place it on a shaker at 37 °C, and horizontally shake at 180 rpm until the OD 600 is between 0.4-0.6.
  • the purity of the purified protein was checked by SDS-PAGE.
  • the purified protein was electrophoresed on an 8% denaturing polyacrylamide gel (GenScript, China), and the electrophoresis condition was 120 V under constant pressure for 120 min. After electrophoresis, the gel was removed, placed in a clean glass petri dish, washed once with distilled water, and stained with 0.05% Coomassie brilliant blue (50% v/v methanol, 10% v/v glacial acetic acid, 0.05% m /v Coomassie Brilliant Blue R-250) was stained for 4h, and decolorized with decolorizing solution (30%v/v methanol, 10%v/v glacial acetic acid) for about 6h (with two new decolorizing solutions in between), both the dyeing and decolorization process were Shake slowly on a horizontal shaker at 60 rpm at room temperature. If a single band of the correct size is detected, it means that the protein purification effect is good, and the subsequent experiments are continued.
  • the purified protein was put into a dialysis bag (Yuanye, China) for dialysis at 4°C.
  • the dialysate was 10 mM PBS (pH 7.4) buffer, and dialyzed for 10-12 h, during which the dialysate was replaced twice.
  • the protein concentration after dialysis was determined using BCA protein quantification kit (Sangong, China).
  • the corresponding concentrations of mutant HPPD proteins are: WT 138.5ng/ ⁇ L; V52I 237.8ng/ ⁇ L; F68S 148.2ng/ ⁇ L; L92I 176.0ng/ ⁇ L; T117I 215.9ng/ ⁇ L; F132S 157.0ng/ ⁇ L; ⁇ L; V266A 180.7ng/ ⁇ L; L295Q 163.5ng/ ⁇ L; H297R 265.0ng/ ⁇ L; S310A 251.3ng/ ⁇ L; S310C 243.7ng/ ⁇ L; S310V 263.5ng/ ⁇ L; P336S 195.0ng/ ⁇ L; R345Q 168.4ng/ ⁇ L; G415A 244.2ng/ ⁇ L; R346L 332.7ng/ ⁇ L; M392I 140.4ng/ ⁇ L; Y216C/R345Q 112.8ng/ ⁇ L; ng/ ⁇ L; L295Q/R345Q 233.5ng/ ⁇ L; S310C/G415A 233.0ng/ ⁇ L
  • the injection volume was 20 ⁇ L, and the analysis conditions of HPLC were as follows: firstly, 5% to 50% methanol water (buffer A was water containing 0.1% formic acid, buffer B was methanol) gradient for 10 minutes, and then 5% methanol water was isocratic for 5 minutes; The flow rate was 1 mL/min; the column temperature was 30°C.
  • the detection wavelength of HGA is 292 nm.
  • more than 50% of the single-point mutant HPPDs have IC50s that are at least 10% higher than wild-type HPPDs.
  • S310C and R345Q single-point mutant HPPD showed the largest increase in IC50 relative to mesotrione, exceeding 20%; F68S and S310C single-point mutant HPPD had the largest increase in IC50 relative to oxaflutole, exceeding 30%; R345Q And R346L single-point mutant HPPD had the largest increase in IC50 relative to isoxaflutole, more than 20%; wild-type rice HPPD was very sensitive to cyclosulfonone, and most single-point mutant HPPDs had higher IC50 than cyclosulfonone. There are varying degrees of improvement.
  • the increase of IC50 of double-point mutant HPPD was significantly higher than that of single-point mutant HPPD.
  • S310C/R345Q has the largest increase in IC50 relative to mesotrione, reaching 1.8 times that of the wild type;
  • L295Q/R345Q has the largest increase in IC50 relative to oxaflutole and cyclosulfonone, reaching 2.94 times that of the wild type, respectively.
  • the IC50 of P336S/R346L increased the most, reaching 1.67 times that of the wild type, respectively.
  • the increase in IC50 of the three-point mutant HPPD relative to different HPPD inhibitor herbicides was similar to that of the two-point mutant HPPD, and was also significantly higher than that of the single-point mutant.
  • the increase in IC50 of four-point and five-point mutant HPPD was more obvious than that of different HPPD inhibitor herbicides.
  • the IC50 of Y216C/R345Q/P336S/R346L was 2.5 times and 3.8 times higher than that of the wild type compared to mesotrione and oxaflutole, respectively, and the IC50 of the five-point mutant HPPD of Y216C/R345Q/P336S/R346L/S310C
  • the increase was even greater, reaching 2.8 times and 4.6 times that of the wild type, respectively.
  • the four- and five-point mutant HPPD did not increase significantly in IC50 compared with two- and three-point mutants.
  • the catalytic rate of background enzyme is also significantly higher than that of wild type, which is about 2 times that of wild type, indicating that M392I is a
  • the mutant form has good application potential even at the expression level equivalent to that of the wild-type HPPD, and is especially suitable for in situ transformation of the HPPD gene using techniques such as gene editing.
  • HPPD-1 GTTACTTCTGCACTAGGTACCATGCCTCCCACTCCCACC
  • HPPD-2 CTTAGAATTCCCGGGGATCCCTAGGATCCTTGAACTGTAGGGGC
  • Point mutant HPPD F68S, F132S, V266A, S310C, V313I, P336S, R345Q and M392I
  • 9 double point mutant HPPDs Y216C/R345Q, P336S/R346L, L295Q/S310C, F68S/S310C, S310C/R345Q, S310C/G415A, S310C/V313I, L295Q/R345Q, S310C/M392I
  • three three-point mutant HPPD Y216C/P336S/R345Q, Y216C/R345Q/R346L, L92I/S310C/V313I
  • three five-point mutants HPPD Y216C/S310C/P336S/R345Q/R346L, V29A/Y216C/S310C/P336S/R345Q and V52I/Y216C/S310C/P336S
  • each plasmid placed in an incubator at 28°C for 36h upside-down culture, picked monoclonal colonies, and performed colony PCR using primers PUBI-SF and OsHPPD-CR.
  • For the transformation product of each plasmid identify 8 Agrobacterium monoclones, and if a specific band of 1.4 kb can be amplified, it is a positive colony containing the target plasmid.
  • 3 single clones of each plasmid were picked for Agrobacterium-mediated rice genetic transformation.
  • Example 8 Agrobacterium-mediated rice genetic transformation and identification of transgenic positive plants
  • Regeneration and culture of transgenic plants The newly grown hygromycin-resistant callus on the selection medium was transferred to regeneration medium (MS salt, 4.33 g; hydrolyzed casein, 2 g; sorbose) with sterile tweezers Alcohol, 30g; sucrose, 30g; 2g/mL 2,4-D, 1mL; add deionized water to 1L; autoclave; after cooling, add 200mg/mL carbenicillin sodium, 1mL; add 50mg/mL hygromycin B, 1mL; 1mg/mL NAA, 20 ⁇ L; 1mg/mL Kinetin, 2mL), cultured under long-day conditions (16h light/8h dark) for 2 to 4 weeks, until green seedlings grew; The green seedlings were clipped and placed in solid 1/2MS medium containing 25 ⁇ g/mL hygromycin until the seedlings grew to 5-8 cm; the seedlings were taken out, washed and placed in clean water
  • the transgenic plants grow to the 4-5 leaf stage, use the kit to extract the DNA of the surviving transgenic seedlings (Kang Weijie, China) as a template, and use the primers PUBI-SF and OsHPPD-CR to carry out PCR amplification, which can be amplified.
  • the single plant that produces the target band is the HPPD transgenic positive plant.
  • the present invention obtains 11 single-point mutation HPPD genes and 3 five-point mutation HPPD genes corresponding to transgenic plants, and each transformation event identifies at least 23 independent of transgenic lines.
  • each individual plant was extracted as a template, and the primers PUBI-SF and OsHPPD-CR were used for PCR amplification.
  • Increase PUBI-SF: GCCCTGCCTTCATACGCT and OsHPPD-CR: CTAGGATCCTTGAACTGTAGGGGC
  • Mendelian segregation ratio 1:3 (plants without the target band: plants with the target band)
  • select the transgenic lines containing a single copy insertion Line keep and continue to plant to the 4-5 leaf stage, use 1 times of mesotrione (6g a.i./mu as 1 times), 1 times of oxaflutole (1.5g a.i./mu as 1 times), 1 times of isotrizone Oxaflutole (6g a.i./mu as 1x) and 1x Cyclofenone (1.5g a.i.
  • transgenic plants treated with single point mutant HPPD gene were treated with 2 times of mesotrione, oxaflutole, isoxaflutole and cyclopentazone.
  • a pneumatic sprayer GADENA, Germany
  • GAAA pneumatic sprayer
  • the transgenic positive plants on the foliar surface so that the droplets are evenly distributed on the surface of the leaves, and the transformed recipient variety is used as a control; in a 28 °C culture room, under long-day conditions, continue to After culturing for 2 weeks, the growth status of the corresponding plants was observed, and the individual plants of 3 representative independent lines were selected for photographing and recording ( Figures 16-19).
  • the wild-type control plants either no longer grow new leaves, or the new leaves that grow are completely albino, most of the old leaves are dry, and the plants grow slowly; transgenic plants that are tolerant to the corresponding HPPD inhibitor herbicides can New leaves grow, and the new leaves are still green, and the plants can continue to grow to a certain extent; the herbicides used are mesotrione (Shengbang Luye, China), oxaflutole (BASF, Germany), cyclohuang ketone, isoxaflutole (prepared by our laboratory).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • General Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

Disclosed are a mutant HPPD protein and a nucleic acid or gene encoding the protein or a fragment. The HPPD protein or a biologically active fragment thereof retains or enhances the property of catalyzing conversion of a 4-hydroxyphenylpyruvic acid (4-HPPA) to a homogentisic acid, and is significantly less sensitive to an HPPD inhibitor than a wild-type HPPD. The present invention further relates to a method for obtaining a plant comprising expression vectors and host cells and having reduced sensitivity to HPPD inhibitor herbicides. The mutant protein having a single point mutation or multiple point mutations obtained in the present invention can tolerate four HPPD inhibitor herbicides such as mesotrione, topramezone, isoxaflutole, and tembotrione in Escherichia coli. The transgenic rice having a single point mutation or multiple point mutations in the present invention can tolerate four HPPD inhibitor herbicides such as mesotrione, topramezone, isoxaflutole, and tembotrione.

Description

具有除草剂抗性的HPPD突变型蛋白及其应用HPPD mutant protein with herbicide resistance and its application 技术领域technical field
本发明属于植物蛋白和植物抗除草剂领域,涉及具有除草剂抗性的HPPD突变型基因、蛋白及其应用;具体而言,本发明涉及水稻的对羟基苯丙酮酸双加氧酶(HPPD)突变基因及其编码的突变HPPD蛋白,该突变蛋白能赋予植物尤其水稻抗对羟基苯丙酮酸双加氧酶抑制剂类除草剂的特性。本发明公开了该突变蛋白的核苷酸序列和氨基酸序列,以及它们在植物抗除草剂领域中的应用。The invention belongs to the field of plant protein and plant herbicide resistance, and relates to HPPD mutant gene and protein with herbicide resistance and application thereof; in particular, the invention relates to p-hydroxyphenylpyruvate dioxygenase (HPPD) of rice The mutant gene and the mutant HPPD protein it encodes can confer resistance to p-hydroxyphenylpyruvate dioxygenase inhibitor herbicides in plants, especially rice. The invention discloses the nucleotide sequence and amino acid sequence of the mutant protein and their application in the field of plant herbicide resistance.
背景技术Background technique
农田杂草与作物竞争生存空间、光照、水分和养分等资源,并可能成为病虫害的中间寄主,严重干扰作物生长,引起减产。传统的人工拔草费工费时,效率低;机械除草通常不彻底,过度以及不合理地翻耕还容易造成土壤侵蚀、养分流失、能源过度消耗、温室气体排放等问题。喷施除草剂除草简便易行、效果好、效率高,逐渐成为了农田防控杂草最经济有效的手段。然而,单一作用靶标的除草剂多年连续使用,使多种杂草产生了严重的抗药性,成为恶性杂草。此外,如磺酰脲类等除草剂在土壤中残效期长,对下茬作物影响较大,也可能随水渗透,造成污染环境。Farmland weeds compete with crops for resources such as living space, light, water and nutrients, and may become intermediate hosts of pests and diseases, seriously disturbing crop growth and causing yield reduction. Traditional manual weeding is labor-intensive, time-consuming and inefficient; mechanical weeding is usually not thorough, and excessive and unreasonable tillage can easily cause soil erosion, nutrient loss, excessive energy consumption, and greenhouse gas emissions. Spraying herbicides for weed control is simple, effective and efficient, and has gradually become the most economical and effective means of controlling weeds in farmland. However, the continuous use of herbicides with a single target of action for many years has resulted in serious drug resistance of many weeds and become malignant weeds. In addition, herbicides such as sulfonylureas have a long residual effect period in the soil, which has a greater impact on the next crop, and may also infiltrate with water, causing environmental pollution.
20世纪90年代对羟基苯丙酮酸双加氧酶(4-hydroxyphenylpyruvate dioxygenase,HPPD)首次被确定为除草剂作用靶标,此后一系列HPPD抑制剂类除草剂相继被开发出来,包括异噁唑类、二酮腈类、三酮类、吡唑盐类等。HPPD是质体琨和生育酚合成途径中的关键酶。质体琨是类胡萝卜素合成途经中的关键酶八氢蕃茄红素脱氢酶(phytoene desaturase)反应的电子受体,也是光合系统II的电子受体。质体琨和生育酚都是重要的抗氧化物质,能够清除植物组织中的活性氧自由基。抑制HPPD的活性,将造成质体琨和生育酚的缺乏,影响类胡萝卜素的合成和光合作用,从而导致植物白化死亡。HPPD抑制剂类除草剂可以作为ALS抑制剂类、酰胺类、合成激素类等除草剂的轮换药剂和复配药剂,防治农田恶性杂草。HPPD抑制剂类除草剂一般具有高效低毒、不易产生抗性、环境兼容性好、对后茬作物安全等优点。In the 1990s, 4-hydroxyphenylpyruvate dioxygenase (HPPD) was first identified as the target of herbicides. Since then, a series of HPPD inhibitor herbicides have been developed successively, including isoxazoles, Diketone nitriles, triketones, pyrazole salts, etc. HPPD is a key enzyme in the synthesis pathway of plastid and tocopherol. Plastid Kun is an electron acceptor for the reaction of phytoene desaturase, a key enzyme in the carotenoid synthesis pathway, and an electron acceptor for photosynthetic system II. Both plastidol and tocopherol are important antioxidants that can scavenge reactive oxygen radicals in plant tissues. Inhibiting the activity of HPPD will result in the lack of plastid and tocopherol, affecting the synthesis and photosynthesis of carotenoids, resulting in plant albino death. HPPD inhibitor herbicides can be used as rotation agents and compound agents of ALS inhibitors, amides, synthetic hormones and other herbicides to control malignant weeds in farmland. HPPD inhibitor herbicides generally have the advantages of high efficiency and low toxicity, not easy to produce resistance, good environmental compatibility, and safe for subsequent crops.
植物抗除草剂主要依靠靶标抗性和非靶标抗性两种机制。靶标抗性是指除草剂的靶标基因或其编码蛋白发生变化,导致植物能够抵抗或耐受一定浓度的除草剂。最常见的靶标抗性的形式是除草剂靶标基因的编码序列发生改变,导致靶标蛋白的某个或某些氨基酸发生突变,使得除草剂不能结合靶标蛋白,而该蛋白的正常生理功能却不受影响。例如,将玉米HPPD酶的编码基因与对HPPD抑制剂类除草剂具有抗性或耐受性的细菌的HPPD编码基因进行基因改组(DNA family Shuffling),获得具有18个点突变的突变型玉米HPPD基因,在大豆中过量表达该突变型玉米HPPD蛋白,使大豆产生了对多种三酮类除草剂的抗性(Siehl et al,2014)。DNA shuffling的方法造成多个位点的突变,可能改变了HPPD的整体构象;又如,将多种植物的HPPD蛋白序列与对HPPD抑制剂类除草剂具有抗性或耐受性的细菌的HPPD蛋白进行序列比对,进而对植物HPPD编码基因进行单点和多点突变,将突变的植物HPPD蛋白转入相应的植物中,能够赋予转基因植物对于HPPD抑制剂类除草的抗性或耐受性;另有研究报道,直接将荧光假单胞杆菌(Pseudomonas fluorescens)的HPPD基因转入到大豆和烟草的叶绿体中也能够提高植物对于硝磺草酮的抗性(Dufourmantel et al.,2009)。此外,除草剂的靶标蛋白序列没有改变,但是提高植物体内除草剂的靶标基因的拷贝数或表达水平,产生过量的野生型HPPD蛋白,也能使植物耐受一定水平的HPPD抑制剂类除草剂。Plant resistance to herbicides mainly relies on two mechanisms: target resistance and non-target resistance. Target resistance refers to changes in the target gene or its encoded protein of a herbicide, resulting in plants being able to resist or tolerate a certain concentration of herbicide. The most common form of target resistance is the change in the coding sequence of the herbicide target gene, resulting in the mutation of one or some amino acids of the target protein, which makes the herbicide unable to bind the target protein, but the normal physiological function of the protein is not affected. influences. For example, gene shuffling (DNA family shuffling) between the HPPD-encoding gene of maize and the HPPD-encoding gene of bacteria with resistance or tolerance to HPPD inhibitor herbicides, to obtain mutant maize HPPD with 18 point mutations gene, overexpression of this mutant corn HPPD protein in soybean, conferred resistance to various triketone herbicides in soybean (Siehl et al, 2014). The DNA shuffling method causes mutations at multiple sites, which may change the overall conformation of HPPD; for another example, the HPPD protein sequences of various plants are compared with the HPPD of bacteria that are resistant or tolerant to HPPD inhibitor herbicides. Sequence alignment of the protein, and then single-point and multi-point mutation of the plant HPPD encoding gene, and the mutated plant HPPD protein is transferred into the corresponding plants, which can confer resistance or tolerance to the HPPD inhibitor herbicides in the transgenic plants Another study reported that the direct transfer of the HPPD gene of Pseudomonas fluorescens into the chloroplasts of soybean and tobacco can also improve the resistance of plants to mesotrione (Dufourmantel et al., 2009). In addition, the target protein sequence of the herbicide does not change, but increases the copy number or expression level of the target gene of the herbicide in the plant, produces an excess of wild-type HPPD protein, and can also make the plant tolerant to a certain level of HPPD inhibitor herbicides .
非靶标抗性是指靶标蛋白序列、基因拷贝数和表达水平没有改变,而由于植物对除 草剂的吸收少,转移慢;或者进入体内的除草剂被降解、修饰或钝化,使除草剂不能抑制靶标蛋白的活性。目前,对HPPD抑制剂类除草剂非靶标抗性的研究主要集中在玉米和杂草中。一类目前应用较广的HPPD抑制剂类除草剂硝磺草酮主要是应用于玉米田的除草剂,玉米对于硝磺草酮具有耐受性,苗前苗后均可承受一定浓度的硝磺草酮,而玉米的正常生长不受显著性的影响。已有研究报道相比于对硝磺草酮敏感的植物,玉米对硝磺草酮的吸收相对较慢,代谢相对较快(Mitchell et al.,2001)。另有研究鉴定到对了硝磺草酮不敏感的杂草糙果苋群体(Hausman et al.,2011;Ma et al.,2013),和敏感群体相比,抗性群体的硝磺草酮吸收速率与敏感群体没有明显差异,甚至略高于敏感群体,然而半降解时间(DT50)显著短于敏感群体,除草剂处理离体叶片结合高效液相色谱鉴定结果表明,在喷施硝磺草酮24小时之后,抗性群体中的硝磺草酮的含量显著低于敏感群体(Ma et al.,2013)。在糙果苋中施加马拉硫磷或四环唑(Tetcyclacis)之后,硝磺草酮不敏感的群体对硝磺草酮的敏感性变高,说明硝磺草酮不敏感的糙果苋可能对除草剂的代谢能力更强(Ma et al.,2013)。Non-target resistance means that the target protein sequence, gene copy number and expression level have not changed, but due to the less absorption of herbicides by plants, the transfer is slow; or the herbicides entering the body are degraded, modified or passivated, making the herbicide unable to Inhibits the activity of the target protein. At present, research on non-target resistance to HPPD inhibitor herbicides mainly focuses on maize and weeds. A class of HPPD inhibitor herbicides that are widely used at present, mesotrione is mainly used as a herbicide in corn fields. Corn is tolerant to mesotrione and can withstand a certain concentration of mesotrione before and after seedling. oxalone, while the normal growth of maize was not significantly affected. It has been reported that the absorption of mesotrione in maize is relatively slow and the metabolism of mesotrione is relatively fast compared with that of mesotrione-sensitive plants (Mitchell et al., 2001). Another study identified a mesotrione-insensitive weed Amaranthus population (Hausman et al., 2011; Ma et al., 2013), and compared with the sensitive population, the mesotrione-resistant population The absorption rate was not significantly different from that of the sensitive group, even slightly higher than that of the sensitive group, but the half-degradation time (DT50) was significantly shorter than that of the sensitive group. After 24 hours of exposure to ketone, the content of mesotrione in the resistant population was significantly lower than that in the sensitive population (Ma et al., 2013). After the application of malathion or Tetcyclacis in Amaranthus, the mesotrione-insensitive populations became more sensitive to mesotrione, indicating that the mesotrione-insensitive Amaranth might be The ability to metabolize herbicides is stronger (Ma et al., 2013).
为创制除草剂抗性或耐受性作物品种,转基因技术已经广泛采用。然而,转基因作物品种的安全性在全球范围内仍存在较大争议,各国对于转基因作物的商品化也持有不同的态度。目前,受到政策影响和转基因作物登记成本的限制,转基因抗除草剂的应用和推广具有较大阻力。新近发展起来的以CRISPR系统为代表的基因编辑技术有望改善上述困境。通过CRISPR/Cas9、CRISPR/Cpf1等系统介导的基因定点突变及同源重组可以对植物内源除草剂靶标基因进行改造,从而赋予植物对于除草剂的抗性或耐受性。目前报道的成功实例都集中在乙酰乳酸合成酶(ALS)抑制剂类、乙酰辅酶A羧化酶(ACCase)抑制剂类和草甘膦等除草剂的抗性和耐受性植物的创制方面。考虑到HPPD抑制剂类除草剂的巨大应用前景,以及非转基因HPPD抑制剂类除草剂抗性和耐受性植物种质的缺乏,需要科学家不断研究提高作物对这一类除草剂抗性和耐受性的方法。水稻是全球最重要的粮食作物,而其野生型品种对于绝大多数的HPPD抑制剂类除草剂敏感。To create herbicide-resistant or tolerant crop varieties, transgenic technology has been widely used. However, the safety of genetically modified crops is still controversial on a global scale, and countries have different attitudes towards the commercialization of genetically modified crops. At present, due to the influence of policy and the restriction of the registration cost of genetically modified crops, the application and promotion of genetically modified herbicides have great resistance. The recently developed gene editing technology represented by the CRISPR system is expected to improve the above dilemma. Through CRISPR/Cas9, CRISPR/Cpf1 and other systems-mediated gene site-directed mutagenesis and homologous recombination, plant endogenous herbicide target genes can be modified to confer resistance or tolerance to herbicides in plants. The successful examples reported so far focus on the creation of acetolactate synthase (ALS) inhibitors, acetyl-CoA carboxylase (ACCase) inhibitors, and the creation of plants that are resistant and tolerant to herbicides such as glyphosate. Considering the huge application prospects of HPPD inhibitor herbicides and the lack of non-transgenic HPPD inhibitor herbicides resistant and tolerant plant germplasm, it is necessary for scientists to continuously study to improve the resistance and tolerance of crops to this class of herbicides. Receptive method. Rice is the most important food crop in the world, and its wild-type varieties are sensitive to most HPPD inhibitor herbicides.
此前,尚未有文献报道对水稻内源HPPD编码基因进行单点或多点突变能够同时赋予水稻多种HPPD抑制剂类除草剂的抗性。Previously, there has been no literature report that single-point or multiple-point mutation of the endogenous HPPD-encoding gene in rice can confer resistance to multiple HPPD inhibitor herbicides in rice at the same time.
发明内容SUMMARY OF THE INVENTION
发明目的:本发明所要解决的技术问题是提供一种可以赋予植物对除草剂抗性的突变型蛋白。进一步地,本发明所要解决的技术问题是提供一种可以赋予植物抗(耐)对羟基苯丙酮酸双加氧酶抑制剂类除草剂特性的水稻HPPD突变型蛋白。Purpose of the invention: The technical problem to be solved by the present invention is to provide a mutant protein that can confer resistance to herbicides in plants. Further, the technical problem to be solved by the present invention is to provide a rice HPPD mutant protein that can confer resistance (resistance) to p-hydroxyphenylpyruvate dioxygenase inhibitor herbicides in plants.
本发明还要解决的技术问题是提供一种可以赋予植物抗除草剂特性的突变型基因。进一步地,本发明所要解决的技术问题是提供一种可以赋予植物抗(耐)对羟基苯丙酮酸双加氧酶抑制剂类除草剂特性的水稻HPPD突变型基因。The technical problem to be solved by the present invention is to provide a mutant gene that can impart herbicide resistance to plants. Further, the technical problem to be solved by the present invention is to provide a rice HPPD mutant gene that can confer resistance (resistance) to p-hydroxyphenylpyruvate dioxygenase inhibitor herbicides in plants.
本发明还要解决的技术问题是提供了一种表达盒、重组载体或细胞。The technical problem to be solved by the present invention is to provide an expression cassette, a recombinant vector or a cell.
本发明还要解决的技术问题是提供了水稻HPPD突变型蛋白、所述的核酸或基因,所述的表达盒、重组载体或细胞在植物抗除草剂方面的应用。The technical problem to be solved by the present invention is to provide the application of rice HPPD mutant protein, said nucleic acid or gene, said expression cassette, recombinant vector or cell in plant herbicide resistance.
本发明还要解决的技术问题是提供了一种获得具有除草剂抗性的植物细胞、植物组织、植物部分或植物的方法。The technical problem to be solved by the present invention is to provide a method for obtaining herbicide-resistant plant cells, plant tissues, plant parts or plants.
本发明还要解决的技术问题是提供了一种鉴定植物的方法。The technical problem to be solved by the present invention is to provide a method for identifying plants.
本发明还要解决的技术问题是提供了一种控制杂草的方法。The technical problem to be solved by the present invention is to provide a method for controlling weeds.
本发明最后要解决的技术问题是提供了一种用于保护植物免受由除草剂引起的损伤的方法。The final technical problem to be solved by the present invention is to provide a method for protecting plants from damage caused by herbicides.
技术方案:为了解决上述技术问题,本发明提供了一种水稻HPPD突变型蛋白,所述水稻HPPD突变型蛋白的氨基酸序列存在以下任意一种或多种突变:其对应于野生型水稻HPPD的氨基酸序列的第29、52、54、68、92、99、117、120、132、133、146、156、206、216、237、238、244、266、270、273、277、282、295、297、310、313、315、316、325、333、336、338、344、345、346、349、357、388、392、404、406、408、415和423位氨基酸发生突变;其中,第277位由脯氨酸突变为缬氨酸,第336由脯氨酸突变为丝氨酸,第338位由天冬氨酸突变为赖氨酸或异亮氨酸或苏氨酸,第346位由精氨酸突变为亮氨酸,第392位由甲硫氨酸突变为异亮氨酸,第415位由甘氨酸突变为丙氨酸或天冬酰胺或丝氨酸。Technical solution: In order to solve the above technical problems, the present invention provides a rice HPPD mutant protein, the amino acid sequence of the rice HPPD mutant protein has any one or more of the following mutations: it corresponds to the amino acid of wild-type rice HPPD Sequence 29, 52, 54, 68, 92, 99, 117, 120, 132, 133, 146, 156, 206, 216, 237, 238, 244, 266, 270, 273, 277, 282, 295, 297 , 310, 313, 315, 316, 325, 333, 336, 338, 344, 345, 346, 349, 357, 388, 392, 404, 406, 408, 415 and 423 amino acids were mutated; From proline to valine, from proline to serine at position 336, from aspartic acid to lysine or isoleucine or threonine at position 338, and from arginine at position 346 Mutation to leucine, from methionine to isoleucine at position 392, and from glycine to alanine or asparagine or serine at position 415.
其中,所述水稻HPPD突变型蛋白的氨基酸序列对应于野生型水稻HPPD的氨基酸序列具有选自下述的一种或多种突变形式:V29A、V52I、L54F、F68S、L92I、P99L、T117I、S120A、F132S、A133T、R146L、A156V、E206Q、E206V、Y216C、Y237N、I238T、F244L、V266A、N270D、T273S、P277V、V282E、L295Q、H297R、S310C、S310V、S310A、S310G、S310T、V313M、V313I、V313L、G315A、G315S、G315R、T316K、A325D、A333P、P336S、N338K、N338I、N338T、R344K、R345L、R345Q、R346L、D349G、N357S、F388L、M392I、S404G、S404L、S404T、Q406R、Y408H、G415A、G415N、G415S和E423G。Wherein, the amino acid sequence of the rice HPPD mutant protein corresponds to the amino acid sequence of wild-type rice HPPD and has one or more mutant forms selected from the following: V29A, V52I, L54F, F68S, L92I, P99L, T117I, S120A 、F132S、A133T、R146L、A156V、E206Q、E206V、Y216C、Y237N、I238T、F244L、V266A、N270D、T273S、P277V、V282E、L295Q、H297R、S310C、S310V、S310A、S310G、S310T、V313M、V313I、V313L 、G315A、G315S、G315R、T316K、A325D、A333P、P336S、N338K、N338I、N338T、R344K、R345L、R345Q、R346L、D349G、N357S、F388L、M392I、S404G、S404L、S404T、Q406R、Y408H、G415A、G415N , G415S and E423G.
其中,所述的水稻HPPD突变型蛋白,其包括:Wherein, described rice HPPD mutant protein, it comprises:
(a)其氨基酸序列选自SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10、SEQ ID NO:12、SEQ ID NO:14、SEQ ID NO:16、SEQ ID NO:18、SEQ ID NO:20、SEQ ID NO:22、SEQ ID NO:24、SEQ ID NO:26、SEQ ID NO:28、SEQ ID NO:30、SEQ ID NO:32、SEQ ID NO:34、SEQ ID NO:36、SEQ ID NO:38、SEQ ID NO:40、SEQ ID NO:42、SEQ ID NO:44、SEQ ID NO:46、SEQ ID NO:48、SEQ ID NO:50、SEQ ID NO:52、SEQ ID NO:54、SEQ ID NO:56、SEQ ID NO:58、SEQ ID NO:60、SEQ ID NO:62、SEQ ID NO:64、SEQ ID NO:66、SEQ ID NO:68、SEQ ID NO:70、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:78、SEQ ID NO:80、SEQ ID NO:82、SEQ ID NO:84、SEQ ID NO:86、SEQ ID NO:88、SEQ ID NO:90、SEQ ID NO:92、SEQ ID NO:94、SEQ ID NO:96、SEQ ID NO:98、SEQ ID NO:100、SEQ ID NO:102、SEQ ID NO:104、SEQ ID NO:106、SEQ ID NO:108、SEQ ID NO:110、SEQ ID NO:112、SEQ ID NO:114、SEQ ID NO:116、SEQ ID NO:118、SEQ ID NO:120或SEQ ID NO:122中的任意一个;或(a) its amino acid sequence is selected from SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO: 50, SEQ ID NO:52, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:58, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:64, SEQ ID NO:66, SEQ ID NO:68, SEQ ID NO:70, SEQ ID NO:72, SEQ ID NO:74, SEQ ID NO:76, SEQ ID NO:78, SEQ ID NO:80, SEQ ID NO:82, SEQ ID NO:84, SEQ ID NO:86, SEQ ID NO:88, SEQ ID NO:90, SEQ ID NO:92, SEQ ID NO:94, SEQ ID NO:96, SEQ ID NO:98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, any one of SEQ ID NO: 118, SEQ ID NO: 120 or SEQ ID NO: 122; or
(b)在(a)中的氨基酸序列经过取代和/或缺失和/或添加一个或多个氨基酸,且具有对羟基苯丙酮酸双加氧酶活性的由(a)衍生的蛋白质。(b) A protein derived from (a) having the amino acid sequence in (a) substituted and/or deleted and/or added with one or more amino acids and having p-hydroxyphenylpyruvate dioxygenase activity.
其中,所述突变型HPPD蛋白的氨基酸序列具有如下的氨基酸突变中的任意一种:R345Q/R346L、Y216C/R345Q、P336S/R346L、V29A/R346L、L295Q/S310V、V29A/S310C、S310C/G415A、S310C/G415N、L295Q/R345Q、L295Q/S310C、L54F/R345Q、L54F/R346L、S120A/S310C、F68S/S310C、V266A/S310C、V266A/R345Q、S310C/M392I、S310C/R345Q、T273S/S310C、L92I/M392I、S310C/V313I、Y216C/P277V/R345Q、Y216C/P336S/R345Q、Y216C/R345Q/R346L、V29A/Y216C/R345Q、Y216C/R345Q/G415A、Y216C/R345Q/E423G、L92I/S310C/V313I、V52I/Y216C/R345Q、Y216C/R345Q/F388L、P336S/R345Q/R346L、L295Q/S310C/G415A、L54F/L295Q/S310C、S120A/L295Q/S310C、L295Q/S310C/F388L、L54F/L295Q/R345Q、L92I/L295Q/R345Q、L295Q/S310C/R345Q、L54F/S310C/G415A、L92I/S310C/G415A、V266A/S310C/G415A、S310C/V313I/G415A、 L54F/P336S/R346L、L92I/P336S/R346L、S310C/P336S/R346L、V29A/S310C/V313I、L54F/S310C/V313I、I238T/S310C/V313I、L54F/Y216C/R345Q、V29A/Y216C/P336S/R345Q、Y216C/P336S/R345Q/R346L、V52I/Y216C/P336S/R345Q、Y216C/P336S/R345Q/E423G、Y216C/S310C/R345Q/G415A、L54F/Y216C/S310C/R345Q、Y216C/P277V/S310C/R345Q、V52I/Y216C/S310C/R345Q、Y216C/S310C/R345Q/F388L、S310C/P336S/R345Q/R346L、V29A/L295Q/S310C/G415A、V52I/L295Q/S310C/G415A、L54F/L295Q/S310C/G415A、L295Q/S310C/M392I/G415A、Y216C/S310C/P336S/R345Q/R346L、V29A/Y216C/S310C/P336S/R345Q和V52I/Y216C/S310C/P336S/R345Q。Wherein, the amino acid sequence of the mutant HPPD protein has any one of the following amino acid mutations: R345Q/R346L, Y216C/R345Q, P336S/R346L, V29A/R346L, L295Q/S310V, V29A/S310C, S310C/G415A, S310C/G415N, L295Q/R345Q, L295Q/S310C, L54F/R345Q, L54F/R346L, S120A/S310C, F68S/S310C, V266A/S310C, V266A/R345Q, S310C/M392I, S310C/R34 M392I, S310C/V313I, Y216C/P277V/R345Q, Y216C/P336S/R345Q, Y216C/R345Q/R346L, V29A/Y216C/R345Q, Y216C/R345Q/G415A, Y216C/R345Q/VC230/V3G/I92 Y216C/R345Q, Y216C/R345Q/F388L, P336S/R345Q/R346L, L295Q/S310C/G415A, L54F/L295Q/S310C, S120A/L295Q/S310C, L295Q/S310C/F388L, L55Q/L92RI9 R345Q、L295Q/S310C/R345Q、L54F/S310C/G415A、L92I/S310C/G415A、V266A/S310C/G415A、S310C/V313I/G415A、 L54F/P336S/R346L V29A/S310C/V313I, L54F/S310C/V313I, I238T/S310C/V313I, L54F/Y216C/R345Q, V29A/Y216C/P336S/R345Q, Y216C/P336S/R345Q/R346L, V52I/Y216C/Y216YC P336S/R345Q/E423G, Y216C/S310C/R345Q/G415A, L54F/Y216C/S310C/R345Q, Y216C/P277V/S310C/R345Q, V52I/Y216C/S310C/R345Q, Y216C/S310C/R34CL/F36C/R34 R 345Q/R346L, V29A/L295Q/S310C/G415A, V52I/L295Q/S310C/G415A, L54F/L295Q/S310C/G415A, L295Q/S310C/M392I/G415A, Y216C/S310C/P336S/R34 S310C/P336S/R345Q and V52I/Y216C/S310C/P336S/R345Q.
其中,所述突变型HPPD蛋白的氨基酸序列具有如下的氨基酸序列中的任意一种:SEQ ID NO:124、SEQ ID NO:136、SEQ ID NO:128、SEQ ID NO:130、SEQ ID NO:132、SEQ ID NO:134、SEQ ID NO:136、SEQ ID NO:138、SEQ ID NO:140、SEQ ID NO:142、SEQ ID NO:144、SEQ ID NO:146、SEQ ID NO:148、SEQ ID NO:150、SEQ ID NO:152、SEQ ID NO:154、SEQ ID NO:156、SEQ ID NO:158、SEQ ID NO:160、SEQ ID NO:162、SEQ ID NO:164、SEQ ID NO:166、SEQ ID NO:168、SEQ ID NO:170、SEQ ID NO:172、SEQ ID NO:174、SEQ ID NO:176、SEQ ID NO:178、SEQ ID NO:180、SEQ ID NO:182、SEQ ID NO:184、SEQ ID NO:186、SEQ ID NO:188、SEQ ID NO:190、SEQ ID NO:192、SEQ ID NO:194、SEQ ID NO:196、SEQ ID NO:198、SEQ ID NO:200、SEQ ID NO:202、SEQ ID NO:204、SEQ ID NO:206、SEQ ID NO:208、SEQ ID NO:210、SEQ ID NO:212、SEQ ID NO:214、SEQ ID NO:216、SEQ ID NO:218、SEQ ID NO:220、SEQ ID NO:222、SEQ ID NO:224、SEQ ID NO:226、SEQ ID NO:228、SEQ ID NO:230、SEQ ID NO:232、SEQ ID NO:234、SEQ ID NO:236、SEQ ID NO:238、SEQ ID NO:240、SEQ ID NO:242、SEQ ID NO:244、SEQ ID NO:246、SEQ ID NO:248、SEQ ID NO:250、SEQ ID NO:252或SEQ ID NO:254。Wherein, the amino acid sequence of the mutant HPPD protein has any one of the following amino acid sequences: SEQ ID NO: 124, SEQ ID NO: 136, SEQ ID NO: 128, SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146, SEQ ID NO: 148, SEQ ID NO:150, SEQ ID NO:152, SEQ ID NO:154, SEQ ID NO:156, SEQ ID NO:158, SEQ ID NO:160, SEQ ID NO:162, SEQ ID NO:164, SEQ ID NO:166, SEQ ID NO:168, SEQ ID NO:170, SEQ ID NO:172, SEQ ID NO:174, SEQ ID NO:176, SEQ ID NO:178, SEQ ID NO:180, SEQ ID NO: 182, SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID NO: 190, SEQ ID NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198, SEQ ID NO:200, SEQ ID NO:202, SEQ ID NO:204, SEQ ID NO:206, SEQ ID NO:208, SEQ ID NO:210, SEQ ID NO:212, SEQ ID NO:214, SEQ ID NO:216, SEQ ID NO:218, SEQ ID NO:220, SEQ ID NO:222, SEQ ID NO:224, SEQ ID NO:226, SEQ ID NO:228, SEQ ID NO:230, SEQ ID NO: 232, SEQ ID NO:234, SEQ ID NO:236, SEQ ID NO:238, SEQ ID NO:240, SEQ ID NO:242, SEQ ID NO:244, SEQ ID NO:246, SEQ ID NO:248, SEQ ID NO:250, SEQ ID NO:252 or SEQ ID NO:254.
本发明内容还包括一种核酸或基因,具体包括:The content of the present invention also includes a nucleic acid or gene, specifically including:
(i)其编码上述任一项突变型HPPD的蛋白;或(i) it encodes a protein of any one of the above mutant HPPDs; or
(ii)在严格条件下与(i)限定的核酸或基因的核苷酸序列杂交且编码具有对羟基苯丙酮酸双加氧酶活性的蛋白质的核苷酸序列;或(ii) a nucleotide sequence that hybridizes under stringent conditions to the nucleotide sequence of a nucleic acid or gene as defined in (i) and encodes a protein having p-hydroxyphenylpyruvate dioxygenase activity; or
(iii)其核苷酸序列选自由SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:33、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:57、SEQ ID NO:59、SEQ ID NO:61、SEQ ID NO:63、SEQ ID NO:65、SEQ ID NO:67、SEQ ID NO:69、SEQ ID NO:71、SEQ ID NO:73、SEQ ID NO:75、SEQ ID NO:77、SEQ ID NO:79、SEQ ID NO:81、SEQ ID NO:83、SEQ ID NO:85、SEQ ID NO:87、SEQ ID NO:89、SEQ ID NO:91、SEQ ID NO:93、SEQ ID NO:95、SEQ ID NO:97、SEQ ID NO:99、SEQ ID NO:101、SEQ ID NO:103、SEQ ID NO:105、SEQ ID NO:107、SEQ ID NO:109、SEQ ID NO:111、SEQ ID NO:113、SEQ ID NO:115、SEQ ID NO:117、SEQ ID NO:119、SEQ ID NO:121、SEQ ID NO:123、SEQ ID NO:125、SEQ ID NO:127、SEQ ID NO:129、SEQ ID NO:131、SEQ ID NO:133、SEQ ID NO:135、SEQ ID NO:137、SEQ ID NO:139、SEQ ID NO:141、SEQ ID NO:143、SEQ ID NO:145、SEQ ID NO:147、SEQ ID NO:149、SEQ ID NO:151、SEQ ID NO:153、 SEQ ID NO:155、SEQ ID NO:157、SEQ ID NO:159、SEQ ID NO:161、SEQ ID NO:163、SEQ ID NO:165、SEQ ID NO:167、SEQ ID NO:169、SEQ ID NO:171、SEQ ID NO:173、SEQ ID NO:175、SEQ ID NO:177、SEQ ID NO:179、SEQ ID NO:181、SEQ ID NO:183、SEQ ID NO:185、SEQ ID NO:187、SEQ ID NO:189、SEQ ID NO:191、SEQ ID NO:193、SEQ ID NO:195、SEQ ID NO:197、SEQ ID NO:199、SEQ ID NO:201、SEQ ID NO:203、SEQ ID NO:205、SEQ ID NO:207、SEQ ID NO:209、SEQ ID NO:211、SEQ ID NO:213、SEQ ID NO:215、SEQ ID NO:217、SEQ ID NO:219、SEQ ID NO:221、SEQ ID NO:223、SEQ ID NO:225、SEQ ID NO:227、SEQ ID NO:229、SEQ ID NO:231、SEQ ID NO:233、SEQ ID NO:235、SEQ ID NO:237、SEQ ID NO:239、SEQ ID NO:241、SEQ ID NO:243、SEQ ID NO:245、SEQ ID NO:247、SEQ ID NO:249、SEQ ID NO:251或SEQ ID NO:253所示的核苷酸序列或其互补序列中的任意一个。(iii) its nucleotide sequence is selected from SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO: 15. SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:61, SEQ ID NO:63, SEQ ID NO: 65, SEQ ID NO:67, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:75, SEQ ID NO:77, SEQ ID NO:79, SEQ ID NO:81, SEQ ID NO:83, SEQ ID NO:85, SEQ ID NO:87, SEQ ID NO:89, SEQ ID NO:91, SEQ ID NO:93, SEQ ID NO:95, SEQ ID NO:97, SEQ ID NO:99, SEQ ID NO:101, SEQ ID NO:103, SEQ ID NO:105, SEQ ID NO:107, SEQ ID NO:109, SEQ ID NO:111, SEQ ID NO:113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO:133, SEQ ID NO:135, SEQ ID NO:137, SEQ ID NO:139, SEQ ID NO:141, SEQ ID NO:143, SEQ ID NO:145, SEQ ID NO:147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO :167, SEQ ID NO:169, SEQ ID NO:171, SEQ ID NO:173, SEQ ID NO:175, SEQ ID NO:177, SEQ ID NO:179, SEQ ID NO:181, SEQ ID NO:183 , SEQ ID NO:185, SEQ ID NO:187, SEQ ID NO:189, SEQ ID NO:191, SEQ ID NO:193, SEQ ID NO:195, SEQ ID NO:197, SEQ ID NO:199, SEQ ID NO:199 ID NO:201, SEQ ID NO:203, SEQ ID NO:205, SEQ ID NO:207, SEQ ID NO:209, SEQ ID NO:211, SEQ ID NO:213, SEQ ID NO:215, SEQ ID NO :217, SEQ ID NO:219, SEQ ID NO:221, SEQ ID NO:223, SEQ ID NO:225, SEQ ID NO:227, SEQ ID NO:229, SEQ ID NO:231, SEQ ID NO:233 , SEQ ID NO:235, SEQ ID NO:237, SEQ ID NO:239, SEQ ID NO:241, SEQ ID NO:243, SEQ ID NO:245, SEQ ID NO:247, SEQ ID NO:249, SEQ ID NO:249 Any one of the nucleotide sequence shown in ID NO: 251 or SEQ ID NO: 253 or its complement.
具体地,本发明的内容还包括水稻HPPD突变型基因的核苷酸序列存在下列任意一种或几种突变:其对应于野生型水稻HPPD的氨基酸序列的第86位核苷酸由T突变为C,第154位核苷酸由G突变为A,第160位核苷酸由C突变为T,第203位核苷酸由T突变为C,第274位核苷酸由C突变为A,第297位核苷酸由C突变为G,第350位核苷酸由C突变为T,第358位核苷酸由T突变为G,第395位核苷酸由T突变为C,第397位核苷酸由G突变为A,第437位核苷酸由G突变为T,第467位核苷酸由C突变为T,第616位核苷酸由G突变为C,第617位核苷酸由A突变为T,第647位核苷酸由A突变为G,第709位核苷酸由T突变为A,第713位核苷酸由T突变为C,第730位核苷酸由T突变为C,第797位核苷酸由T突变为C,第808位核苷酸由A突变为G,第817位核苷酸由A突变为T,第829位核苷酸由C突变为G,第830位核苷酸由C突变为T,第831位核苷酸由G突变为T,第845位核苷酸由T突变为A,第884位核苷酸由T突变为A,第890位核苷酸由A突变为G,第928位核苷酸由A突变为T或G,第929位核苷酸由G突变为T或C,第930位核苷酸由C突变为T,第937位核苷酸由G突变为A或C,第939位核苷酸由G突变为T,第943位核苷酸由G突变为A或T,第944位核苷酸由G突变为C,第945位核苷酸由G突变为T,第947位核苷酸由C突变为A,第974位核苷酸由C突变为A,第997位核苷酸由G突变为C,第1006位核苷酸由C突变为A,第1007位核苷酸由C突变为G,第1008位核苷酸由G突变为T,第1013位核苷酸由A突变为T或C,第1014位核苷酸由C突变为A,第1030位核苷酸由C突变为A,第1031位核苷酸由G突变为A,第1034位核苷酸由G突变为A或T,第1037位核苷酸由G突变为T,第1046位核苷酸由A突变为G,第1070位核苷酸由A突变为G,第1164位核苷酸由T突变为A,第1176位核苷酸由G突变为A,第1210位核苷酸由A突变为G或C,第1211位核苷酸由G突变为C或T,第1216位核苷酸由C突变为A,第1217位核苷酸由A突变为G,第1222位核苷酸由T突变为C,第1243位核苷酸由G突变为A或T,第1244位核苷酸由G突变为C或A,第1245位核苷酸由G突变为C,第1268位核苷酸由A突变为G。Specifically, the content of the present invention also includes that the nucleotide sequence of the rice HPPD mutant gene has any one or more of the following mutations: the 86th nucleotide corresponding to the amino acid sequence of wild-type rice HPPD is mutated from T to C, the 154th nucleotide is mutated from G to A, the 160th nucleotide is mutated from C to T, the 203rd nucleotide is mutated from T to C, the 274th nucleotide is mutated from C to A, The 297th nucleotide is mutated from C to G, the 350th nucleotide is mutated from C to T, the 358th nucleotide is mutated from T to G, the 395th nucleotide is mutated from T to C, and the 397th nucleotide is mutated from T to G. The nucleotide at position 437 is mutated from G to A, the nucleotide at position 437 is mutated from G to T, the nucleotide at position 467 is mutated from C to T, the nucleotide at position 616 is mutated from G to C, and the nucleotide at position 617 is mutated from G to C. The nucleotide is mutated from A to T, the 647th nucleotide is mutated from A to G, the 709th nucleotide is mutated from T to A, the 713th nucleotide is mutated from T to C, and the 730th nucleotide Mutation from T to C, nucleotide 797 from T to C, nucleotide 808 from A to G, nucleotide 817 from A to T, nucleotide 829 from C Mutation is G, nucleotide 830 is mutated from C to T, nucleotide 831 is mutated from G to T, nucleotide 845 is mutated from T to A, and nucleotide 884 is mutated from T to A, nucleotide 890 is mutated from A to G, nucleotide 928 is mutated from A to T or G, nucleotide 929 is mutated from G to T or C, nucleotide 930 is mutated from C Mutation to T, Nucleotide 937 from G to A or C, Nucleotide 939 from G to T, Nucleotide 943 from G to A or T, Nucleotide 944 Mutation from G to C, Nucleotide 945 from G to T, Nucleotide 947 from C to A, Nucleotide 974 from C to A, Nucleotide 997 from G Mutation to C, nucleotide 1006 is mutated from C to A, nucleotide 1007 is mutated from C to G, nucleotide 1008 is mutated from G to T, nucleotide 1013 is mutated from A to T or C, nucleotide 1014 is mutated from C to A, nucleotide 1030 is mutated from C to A, nucleotide 1031 is mutated from G to A, and nucleotide 1034 is mutated from G to A or T, nucleotide 1037 is mutated from G to T, nucleotide 1046 is mutated from A to G, nucleotide 1070 is mutated from A to G, and nucleotide 1164 is mutated from T to A, nucleotide 1176 is mutated from G to A, nucleotide 1210 is mutated from A to G or C, nucleotide 1211 is mutated from G to C or T, nucleotide 1216 is mutated from C Mutation to A, nucleotide 1217 from A to G, nucleotide 1222 from T to C, nucleotide 1243 from G to A or T, nucleotide 1244 from G Mutation to C or A, nucleotide 1245 from G to C, nucleotide 1268 from A mutated to G.
本发明内容还包括一种表达盒、重组载体或细胞,其含有所述的核酸或基因。The content of the present invention also includes an expression cassette, recombinant vector or cell containing the nucleic acid or gene.
本发明中适用的载体包括可从商业渠道获得的质粒,包括但不限于:pBR322、pKK223-3、GEM1pD10、psiX174Bluescript II KS、pNH8A、pNH16A、pNH18A、pNH46A、ptrc99a、pDR540、pRIT5、pKK232-8、pCM7、pSV2CAT、pOG44、pXT1、pSG、pSVK3、pBPV、pMSG和pSVL等。Vectors suitable for use in the present invention include commercially available plasmids, including but not limited to: pBR322, pKK223-3, GEM1pD10, psiX174Bluescript II KS, pNH8A, pNH16A, pNH18A, pNH46A, ptrc99a, pDR540, pRIT5, pKK232-8, pCM7, pSV2CAT, pOG44, pXT1, pSG, pSVK3, pBPV, pMSG and pSVL etc.
本发明内容还包括所述的水稻HPPD突变型蛋白、所述的核酸或基因,所述的表达盒、重组载体或细胞在植物抗除草剂方面的应用。The content of the present invention also includes the application of the rice HPPD mutant protein, the nucleic acid or the gene, the expression cassette, the recombinant vector or the cell in the aspect of plant herbicide resistance.
其中,所述除草剂为HPPD抑制剂类除草剂,包括三酮类、吡唑酮类以及异噁唑酮类,作为优选,所述除草剂为硝磺草酮、苯唑草酮、异噁唑草酮、环磺酮中的一种或多种。Wherein, the herbicides are HPPD inhibitor herbicides, including triketones, pyrazolones and isoxazolones, preferably, the herbicides are mesotrione, oxaflutole, isoxazone One or more of caroxazone and cyclosulfonone.
本发明内容还包括一种获得具有除草剂抗性的植物细胞、植物组织、植物部分或植物的方法,包括如下步骤:The present invention also includes a method for obtaining herbicide-resistant plant cells, plant tissues, plant parts or plants, comprising the steps of:
1)使植物包含所述的核酸或基因;或1) causing the plant to comprise the nucleic acid or gene; or
2)使植物表达所述的水稻HPPD突变型蛋白;2) making the plant express the rice HPPD mutant protein;
3)通过突变的方法,获得包含所述的核酸或基因,或所述的突变型水稻HPPD蛋白或其生物活性片段;或3) by the method of mutation, obtain the nucleic acid or gene, or the mutant rice HPPD protein or its biologically active fragment; or
(4)对植物细胞、植物组织、植物部分或植物的内源HPPD基因进行基因编辑,以实现在其中表达任一项所述的突变型水稻HPPD蛋白。(4) Gene editing of plant cells, plant tissues, plant parts or endogenous HPPD genes of plants to express any one of the mutant rice HPPD proteins therein.
其中,所述突变的方法包括定向突变的方法,具体为通过基因定点突变、易错PCR、基因编辑(包括CRISPR、TALEN、锌指酶等介导的方法)等。Wherein, the method of mutation includes the method of directed mutation, specifically through gene site-directed mutagenesis, error-prone PCR, gene editing (including methods mediated by CRISPR, TALEN, zinc finger enzymes, etc.) and the like.
其中,所述的方法,其包括易错PCR、基因编辑(包括CRISPR、TALEN、锌指酶等介导的方法)、转基因、杂交、回交或无性繁殖步骤。Wherein, the method includes error-prone PCR, gene editing (including methods mediated by CRISPR, TALEN, zinc finger enzymes, etc.), transgenic, hybridization, backcrossing or asexual reproduction steps.
本发明内容还包括一种鉴定植物的方法,其中所述植物是包含所述的核酸或基因的植物、表达任一所述的蛋白的植物或由任一所述的方法获得的植物,包括以下步骤:The present invention also includes a method for identifying a plant, wherein the plant is a plant comprising the nucleic acid or gene, a plant expressing any of the proteins described, or a plant obtained by any of the methods, including the following step:
1)测定所述植物是否包含所述的核酸或基因;或1) determining whether the plant contains the nucleic acid or gene; or
2)测定所述植物是否表达所述的蛋白。2) Determine whether the plant expresses the protein.
本发明内容还包括一种控制杂草的方法,包括:对种植作物的大田施用有效剂量的除草剂,所述作物包含所述的核酸或基因或所述的表达盒、重组载体或细胞,所述除草剂包括三酮类、吡唑酮类以及异噁唑酮类,作为优选,所述除草剂为硝磺草酮、苯唑草酮、异噁唑草酮、环磺酮中的一种或多种。The content of the present invention also includes a method for controlling weeds, comprising: applying an effective dose of a herbicide to a field where crops are grown, the crops comprising the nucleic acid or gene or the expression cassette, recombinant vector or cell, the The herbicides include triketones, pyrazolones and isoxazolones. Preferably, the herbicides are one of mesotrione, oxaflutole, isoxaflutole, and cyclosulfonone or more.
本发明内容还包括一种用于保护植物免受由除草剂引起的损伤的方法,包括:对种植作物的大田施用有效剂量的除草剂,所述作物包含所述的核酸或基因或将所述的表达盒、重组载体导入植物,导入后的植物产生除草剂抗性蛋白,所述除草剂包括三酮类、吡唑酮类以及异噁唑酮类,作为优选,所述除草剂为硝磺草酮、苯唑草酮、异噁唑草酮、环磺酮中的一种或多种。The present invention also includes a method for protecting plants from herbicide-induced damage, comprising: applying an effective dose of the herbicide to a field in which a crop is grown, the crop comprising the nucleic acid or gene or the The expression cassette and recombinant vector are introduced into plants, and the introduced plants produce herbicide-resistant proteins, and the herbicides include triketones, pyrazolones and isoxazolones. Preferably, the herbicide is nitrosulfan One or more of oxaflutole, oxaflutole, isoxaflutole, and cyclosulfonone.
本发明中所述植物为粮食作物、经济作物,包括水稻、小麦、油菜等。The plants described in the present invention are food crops and economic crops, including rice, wheat, rape and the like.
有益效果:相对于现有技术,本发明具备以下优点:Beneficial effect: Compared with the prior art, the present invention has the following advantages:
1)本发明利用改良的易错PCR技术,对野生型水稻的HPPD编码基因进行大规模随机突变,筛选到了多个在大肠杆菌中能提高大肠杆菌对HPPD抑制剂类除草剂抗的新的突变型基因,结合转基因技术,确定了部分突变位点能够提高水稻对硝磺草酮、异噁唑草酮、苯唑草酮和环磺酮的抗性。本发明扩大了抗HPPD抑制类除草剂的水稻HPPD基因的突变位点范围,为培育抗HPPD抑制剂类除草剂的水稻品种提供了更为灵活和多样的选择;同时,本发明鉴定到的突变型水稻HPPD基因的转基因植物能够耐受一定浓度的硝磺草酮、异噁唑草酮、苯唑草酮,扩展了在水稻中可选的HPPD抑制剂类除草剂的范围。结合基因编辑技术的优势,鉴定到赋予植物对于HPPD抑制剂类除草剂抗性或耐受性的新型突变型水稻HPPD蛋白就显现出了重大的意义。1) The present invention uses the improved error-prone PCR technology to carry out large-scale random mutation of the HPPD encoding gene of wild-type rice, and screened out a number of new mutations in Escherichia coli that can improve the resistance of Escherichia coli to HPPD inhibitor herbicides Combined with transgenic technology, it was determined that some mutation sites can improve the resistance of rice to mesotrione, isoxaflutole, oxaflutole and cyclosulfonone. The invention expands the range of mutation sites of the rice HPPD gene resistant to HPPD inhibitor herbicides, and provides more flexible and diverse choices for cultivating rice varieties resistant to HPPD inhibitor herbicides; at the same time, the mutation identified by the invention The transgenic plants of the type rice HPPD gene can tolerate certain concentrations of mesotrione, isoxaflutole, and oxaflutole, which expands the range of HPPD inhibitor herbicides that can be selected in rice. Combined with the advantages of gene editing technology, it is of great significance to identify new mutant rice HPPD proteins that confer resistance or tolerance to HPPD inhibitor herbicides in plants.
2)利用市售的易错PCR试剂盒不能对水稻HPPD基因有效地进行随机突变。本发明通过大量的前期实验,优化易错PCR组分和反应条件,最终将突变率较为精准地控制在1~2个碱基的范围内,该方法可能为其他基因的定点突变提供技术借鉴。通过优化的易错PCR结合饱和突变的方法对水稻野生型HPPD蛋白进行了系统性的突变并在大 肠杆菌中进行抗性或耐受性检测,获得了一系列耐受HPPD抑制剂类除草剂的新的突变型蛋白。此外,本发明使用多种HPPD抑制剂类除草剂对表达突变型HPPD基因的转基因水稻进行抗性鉴定,发现部分转基因株系能够耐受硝磺草酮、苯唑草酮、异噁唑草酮、环磺酮等四种除草剂,扩大了水稻可选HPPD抑制剂类除草剂的种类,这对于培育HPPD抑制剂类除草剂的抗性或耐受性植物具有十分广泛的应用前景。2) The random mutation of the rice HPPD gene cannot be efficiently performed using a commercially available error-prone PCR kit. The present invention optimizes error-prone PCR components and reaction conditions through a large number of preliminary experiments, and finally controls the mutation rate more accurately within the range of 1-2 bases. This method may provide technical reference for site-directed mutation of other genes. Systematically mutated the wild-type HPPD protein in rice by an optimized error-prone PCR method combined with saturation mutation and tested for resistance or tolerance in E. coli, and obtained a series of HPPD inhibitor herbicides. New mutant proteins. In addition, the present invention uses a variety of HPPD inhibitor herbicides to identify the resistance of transgenic rice expressing mutant HPPD gene, and it is found that some transgenic lines can tolerate mesotrione, oxaflutole and isoxaflutole , cyclosulfonone and other four herbicides, expanding the types of HPPD inhibitor herbicides that can be selected for rice, which has a very broad application prospect for cultivating HPPD inhibitor herbicide-resistant or tolerant plants.
3)本发明获得的单点突变或多点突变的突变型蛋白,在大肠杆菌中能够耐受最高300μM的硝磺草酮、1000μM的苯唑草酮、800μM的异噁唑草酮等HPPD抑制剂类除草剂。本发明含有单点或多点突变的转基因水稻能够耐受最高12g a.i./亩的硝磺草酮、3g a.i./亩的苯唑草酮、12g a.i./亩的异噁唑草酮和3g a.i./亩的环磺酮等四种HPPD抑制剂类除草剂。3) The single-point mutation or multi-point mutation mutant protein obtained by the present invention can tolerate HPPD inhibition of up to 300 μM mesotrione, 1000 μM oxaflutole, 800 μM isoxaflutole, etc. in Escherichia coli herbicides. The transgenic rice containing single point or multiple point mutation of the present invention can tolerate up to 12g a.i./mu of mesotrione, 3g a.i./mu of oxaflutole, 12g a.i./mu of isoxaflutole and 3g a.i./mu of mesotrione Mu's cyclosulfonone and other four HPPD inhibitor herbicides.
附图说明Description of drawings
图1、易错PCR预实验琼脂糖凝胶电泳结果。Figure 1. Agarose gel electrophoresis results of error-prone PCR pre-experiment.
图2、显示了在0~20μM的硝磺草酮的筛选浓度下,表达了野生型(WT)或部分耐受性较好的单点突变型水稻HPPD基因的大肠杆菌在含培养液的48孔板中的显色反应。在含有相同浓度除草剂的培养条件下,颜色越深表示相应的突变型HPPD蛋白对硝磺草酮的抗性或耐受性越高。绝大多数突变型HPPD在10μM硝磺草酮的条件下,仍有明显深于野生型HPPD的显色。其中,含有V52I、L54F、T117I、S120A、F132S、Y216C、Y237N、L295Q、H297R、S310A、S310C、S310V、V313I、G315S、G315R、T316K、A333P、P336S、R344K、R345Q、R346L、M392I、D349G、F388L和E423G的突变型HPPD对应的孔显色最深,表明其在大肠杆菌中对硝磺草酮的耐受性最佳。Figure 2. E. coli expressing wild-type (WT) or partially tolerated single-point mutant rice HPPD gene at the screening concentration of 0-20 μM mesotrione in 48 cells containing culture medium Color reaction in well plate. Under the culture conditions containing the same concentration of herbicides, the darker the color indicates the higher resistance or tolerance of the corresponding mutant HPPD protein to mesotrione. Under the condition of 10 μM mesotrione, the vast majority of mutant HPPD still developed significantly deeper color than wild type HPPD. Among them, including V52I, L54F, T117I, S120A, F132S, Y216C, Y237N, L295Q, H297R, S310A, S310C, S310V, V313I, G315S, G315R, T316K, A333P, P336S, R344K, R345Q, R9346, ML398I, R9346 The wells corresponding to the mutant HPPD of E423G developed the darkest color, indicating that it had the best mesotrione tolerance in E. coli.
图3、显示了在0~40μM的硝磺草酮的筛选浓度下,表达了野生型(WT)或双点组合突变型水稻HPPD基因的大肠杆菌在含培养液的48孔板中的显色反应。在含有相同浓度除草剂的培养条件下,颜色越深表示相应的突变型HPPD蛋白对硝磺草酮的抗性或耐受性越高。其中,含有Y216C/R345Q、P336S/R346L、S310C/G415A、L295Q/S310C、L54F/R345Q、S120A/S310C、F68S/S310C、S310C/M392I、S310C/R345Q和S310C/V313I的突变型HPPD对应的孔显色最深,表明其在大肠杆菌中对硝磺草酮的耐受性最佳。Figure 3. Shows the color development of E. coli expressing wild-type (WT) or two-point combination mutant rice HPPD gene in a 48-well plate containing culture medium at the screening concentration of 0-40 μM mesotrione reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color indicates the higher resistance or tolerance of the corresponding mutant HPPD protein to mesotrione. Among them, there are wells corresponding to mutant HPPD of Y216C/R345Q, P336S/R346L, S310C/G415A, L295Q/S310C, L54F/R345Q, S120A/S310C, F68S/S310C, S310C/M392I, S310C/R345Q and S310C/V313I The darkest color indicates that it has the best tolerance to mesotrione in E. coli.
图4、显示了在0~100μM的硝磺草酮的筛选浓度下,表达了野生型(WT)、三点组合突变型水稻HPPD基因的大肠杆菌在含培养液的48孔板中的显色反应。在含有相同浓度除草剂的培养条件下,颜色越深表示相应的突变型HPPD蛋白对硝磺草酮的抗性或耐受性越高。其中,含有Y216C/R345Q/P336S、Y216C/R345Q/R346L、L92I/S310C/V313I和P336S/R345Q/R346L的突变型HPPD对应的孔显色最深,表明其在大肠杆菌中对硝磺草酮的耐受性最佳。Figure 4. Shows the color development of E. coli expressing wild-type (WT) and three-point combination mutant rice HPPD gene in a 48-well plate containing culture medium at the screening concentration of 0-100 μM mesotrione reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color indicates the higher resistance or tolerance of the corresponding mutant HPPD protein to mesotrione. Among them, the wells corresponding to mutant HPPD containing Y216C/R345Q/P336S, Y216C/R345Q/R346L, L92I/S310C/V313I and P336S/R345Q/R346L developed the deepest color, indicating that it is resistant to mesotrione in E. coli The best receptivity.
图5、显示了在0~250μM的硝磺草酮的筛选条件下,表达了野生型(WT)、四点组合突变型水稻HPPD基因的大肠杆菌在含培养液的48孔板中的显色反应。在含有相同浓度除草剂的培养条件下,颜色越深表示相应的突变型HPPD蛋白对硝磺草酮的抗性或耐受性越高。其中,含有Y216C/R345Q/P336S/R346L、V52I/Y216C/P336S/R345Q和Y216C/P277V/S310C/R345Q的突变型HPPD对应的孔显色最深,表明其在大肠杆菌中对硝磺草酮的耐受性最佳。Figure 5. Shows the color development of E. coli expressing wild-type (WT) and four-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-250 μM mesotrione reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color indicates the higher resistance or tolerance of the corresponding mutant HPPD protein to mesotrione. Among them, the wells corresponding to mutant HPPD containing Y216C/R345Q/P336S/R346L, V52I/Y216C/P336S/R345Q and Y216C/P277V/S310C/R345Q developed the deepest color, indicating that it is resistant to mesotrione in E. coli The best receptivity.
图6、显示了在0~500μM的硝磺草酮的筛选条件下,表达了野生型(WT)、五点组合突变型水稻HPPD基因的大肠杆菌在含培养液的48孔板中的的显色反应。在含有相同浓度除草剂的培养条件下,颜色越深表示相应的突变型HPPD蛋白对硝磺草酮的抗性或耐受性越高。所示3种组合的Y216C/S310C/P336S/R345Q/R346L、V29A/Y216C/S310C/P336S/R345Q和V52I/Y216C/S310C/P336S/R345Q在大肠杆菌中均 能耐受至少300μM的硝磺草酮。Figure 6 shows the expression of Escherichia coli expressing wild-type (WT) and five-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-500 μM mesotrione color reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color indicates the higher resistance or tolerance of the corresponding mutant HPPD protein to mesotrione. The 3 combinations shown, Y216C/S310C/P336S/R345Q/R346L, V29A/Y216C/S310C/P336S/R345Q and V52I/Y216C/S310C/P336S/R345Q were all tolerant to at least 300 μM mesotrione in E. coli .
图7、显示了在0~120μM的苯唑草酮的筛选条件下,表达了野生型(WT)或单点突变型水稻HPPD基因的大肠杆菌在含培养液的48孔板中的显色反应。在含有相同浓度除草剂的培养条件下,颜色越深表示相应的突变型HPPD蛋白对苯唑草酮的抗性或耐受性越高。绝大多数突变型HPPD在60μM苯唑草酮的条件下,仍有明显深于野生型HPPD的显色。其中,含有V52I、F68S、F132S、Y216C、H297R、S310C、S310V、V313I、R345Q、M392I、F388L、S404G和Q406R的突变型HPPD对应的孔显色最深,表明其在大肠杆菌中对苯唑草酮的耐受性最佳。Figure 7. Shows the color reaction of E. coli expressing wild-type (WT) or single-point mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-120 μM of oxaflutole . Under the culture conditions containing the same concentration of herbicides, the darker the color, the higher the resistance or tolerance of the corresponding mutant HPPD protein to oxaflutole. Under the condition of 60 μM oxaflutole, the vast majority of mutant HPPD still developed significantly deeper color than wild type HPPD. Among them, the wells corresponding to mutant HPPD containing V52I, F68S, F132S, Y216C, H297R, S310C, S310V, V313I, R345Q, M392I, F388L, S404G and Q406R developed the deepest color, indicating that it has the deepest color in E. coli best tolerated.
图8、显示了在0~120μM的苯唑草酮的筛选条件下,表达了野生型(WT)或双点组合突变型水稻HPPD基因的大肠杆菌在含培养液的48孔板中的显色反应。在含有相同浓度除草剂的培养条件下,颜色越深表示相应的突变型HPPD蛋白对苯唑草酮的抗性或耐受性越高。其中,含有R345Q/R346L、Y216C/R345Q、P336S/R346L、V29A/R346L、S310C/G415A、S310C/G415N、L295Q/R345Q、F68S/S310C、V266A/S310C、V266A/R345Q和S310C/V313I的突变型HPPD对应的孔显色最深,表明其在大肠杆菌中对苯唑草酮的耐受性最佳。Figure 8 shows the color development of Escherichia coli expressing wild-type (WT) or two-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-120 μM of oxaflutole reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color, the higher the resistance or tolerance of the corresponding mutant HPPD protein to oxaflutole. Among them, the mutant HP/V310C containing R345Q/R346L, Y216C/R345Q, P336S/R346L, V29A/R346L, S310C/G415A, S310C/G415N, L295Q/R345Q, F68S/S310C, V266A/S310C, V266A/R345I and SPD310C The corresponding well developed the darkest color, indicating that it had the best tolerance to oxaflutole in E. coli.
图9、显示了在0~250μM的苯唑草酮的筛选条件下,表达了野生型(WT)、三点组合突变型水稻HPPD基因的大肠杆菌在含培养液的48孔板中的显色反应。在含有相同浓度除草剂的培养条件下,颜色越深表示相应的突变型HPPD蛋白对苯唑草酮的抗性或耐受性越高。其中,含有Y216C/P336S/R345Q、Y216C/R345Q/R346L、V29A/Y216C/R345Q、L92I/S310C/V313I、P336S/R345Q/R346L、L54F/L295Q/S310C、L92I/L295Q/R345Q/和L54F/P336S/R346L的突变型HPPD对应的孔显色最深,表明其在大肠杆菌中对苯唑草酮的耐受性最佳。Figure 9. Shows the color development of E. coli expressing wild-type (WT) and three-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-250 μM oxaflutole reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color, the higher the resistance or tolerance of the corresponding mutant HPPD protein to oxaflutole. Among them, Y216C/P336S/R345Q, Y216C/R345Q/R346L, V29A/Y216C/R345Q, L92I/S310C/V313I, P336S/R345Q/R346L, L54F/L295Q/S310C, L92I/L295Q/R36S/P345Q/ and The hole corresponding to the mutant HPPD of R346L developed the darkest color, indicating that it has the best tolerance to oxaflutole in E. coli.
图10、显示了在0~500μM的苯唑草酮的筛选条件下,表达了野生型(WT)、四点组合突变型水稻HPPD基因的大肠杆菌在含培养液的48孔板中的显色反应。在含有相同浓度除草剂的培养条件下,颜色越深表示相应的突变型HPPD蛋白对苯唑草酮的抗性或耐受性越高。其中,含有Y216C/P336S/R345Q/R346L、V52I/Y216C/P336S/R345Q、S310C/P336S/R345Q/R346L、V29A/L295Q/S310C/G415A和V52I/L295Q/S310C/G415A的突变型HPPD对应的孔显色最深,表明其在大肠杆菌中对苯唑草酮的耐受性最佳。Figure 10. The color development of Escherichia coli expressing wild-type (WT) and four-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-500 μM oxaflutole reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color, the higher the resistance or tolerance of the corresponding mutant HPPD protein to oxaflutole. Among them, there are wells corresponding to mutant HPPD of Y216C/P336S/R345Q/R346L, V52I/Y216C/P336S/R345Q, S310C/P336S/R345Q/R346L, V29A/L295Q/S310C/G415A and V52I/L295Q/S310C/G415A The darkest color indicates that it has the best tolerance to oxaflutole in E. coli.
图11、显示了在0~1000μM的苯唑草酮的筛选条件下,表达了野生型(WT)、五点组合突变型水稻HPPD基因的大肠杆菌在含培养液的48孔板中的显色反应。在含有相同浓度除草剂的培养条件下,颜色越深表示相应的突变型HPPD蛋白对苯唑草酮的抗性或耐受性越高。其中,组合Y216C/S310C/P336S/R345Q/R346L的耐受性最好,在1000μM苯唑草酮的筛选条件能够显色,V52I/Y216C/S310C/P336S/R345Q耐受性较好,在800μM苯唑草酮的筛选条件能够显色,V29A/Y216C/S310C/P336S/R345Q能够耐受在600μM苯唑草酮。Figure 11. Shows the color development of E. coli expressing wild-type (WT) and five-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-1000 μM oxaflutole reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color, the higher the resistance or tolerance of the corresponding mutant HPPD protein to oxaflutole. Among them, the combination of Y216C/S310C/P336S/R345Q/R346L has the best tolerance, and can develop color under the screening condition of 1000μM oxaflutole. The screening conditions of oxaflutole can develop color, and V29A/Y216C/S310C/P336S/R345Q can tolerate 600μM oxaflutole.
图12、显示了在0~5μM的环磺酮的筛选条件下,表达了野生型(WT)、单点组合突变型水稻HPPD基因的大肠杆菌在含培养液的48孔板中的显色反应。在含有相同浓度除草剂的培养条件下,颜色越深表示相应的突变型HPPD蛋白对苯唑草酮的抗性或耐受性越高。绝大多数突变型HPPD在2μM环磺酮的条件下,仍有明显深于野生型HPPD的显色。其中,含有F68S、Y216C、V266A、H297R、V313I、P336S、R345Q、R346L、M392I的突变型HPPD对应的孔显色最深,表明其在大肠杆菌中对环磺酮的耐受性最佳。Figure 12. Shows the color reaction of E. coli expressing wild-type (WT) and single-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-5 μM cyclosulfonone . Under the culture conditions containing the same concentration of herbicides, the darker the color, the higher the resistance or tolerance of the corresponding mutant HPPD protein to oxaflutole. Under the condition of 2μM cyclosulfonone, the vast majority of mutant HPPD still developed significantly deeper color than wild-type HPPD. Among them, the wells corresponding to mutant HPPD containing F68S, Y216C, V266A, H297R, V313I, P336S, R345Q, R346L, and M392I developed the deepest color, indicating that it has the best tolerance to cyclosulfonone in E. coli.
图13、显示了在0~160μM的异噁唑草酮的筛选条件下,表达了野生型(WT)、单点组合突变型水稻HPPD基因的大肠杆菌在含培养液的48孔板中的显色反应。在含有 相同浓度除草剂的培养条件下,颜色越深表示相应的突变型HPPD蛋白对异噁唑草酮的抗性或耐受性越高。绝大多数突变型HPPD在100μM异噁唑草酮的条件下,仍有明显深于野生型HPPD的显色。其中,含有V52I、68S、P99L、F132S、Y216C、H297R、V313I、S310V、P336S、R345Q、R346L和M392I的突变型HPPD对应的孔显色最深,表明其在大肠杆菌中对异噁唑草酮的耐受性最佳。Figure 13. Shows the expression of Escherichia coli expressing wild-type (WT) and single-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-160 μM isoxaflutole color reaction. Under the culture conditions containing the same concentration of herbicide, the darker the color indicates the higher resistance or tolerance of the corresponding mutant HPPD protein to isoxaflutole. Under the condition of 100 μM isoxaflutole, the vast majority of mutant HPPD still developed significantly deeper color than wild type HPPD. Among them, the wells corresponding to the mutant HPPD containing V52I, 68S, P99L, F132S, Y216C, H297R, V313I, S310V, P336S, R345Q, R346L and M392I developed the deepest color, indicating that it has the strongest effect on isoxaflutole in E. coli Best tolerated.
图14、显示了在0~1000μM的异噁唑草酮的筛选条件下,表达了野生型(WT)、五点组合突变型水稻HPPD基因的大肠杆菌在含培养液的48孔板中的显色反应。在含有相同浓度除草剂的培养条件下,颜色越深表示相应的突变型HPPD蛋白对苯唑草酮的抗性或耐受性越高。其中,组合Y216C/S310C/P336S/R345Q/R346L和V29A/Y216C/S310C/P336S/R345Q的耐受性最好,在800μM异噁唑草酮的筛选条件能够显色,V52I/Y216C/S310C/P336S/R345Q能够耐受在600μM异噁唑草酮。Figure 14 shows the expression of Escherichia coli expressing wild-type (WT) and five-point combination mutant rice HPPD gene in a 48-well plate containing culture medium under the screening conditions of 0-1000 μM isoxaflutole color reaction. Under the culture conditions containing the same concentration of herbicides, the darker the color, the higher the resistance or tolerance of the corresponding mutant HPPD protein to oxaflutole. Among them, the combination of Y216C/S310C/P336S/R345Q/R346L and V29A/Y216C/S310C/P336S/R345Q has the best tolerance, and can develop color under the screening condition of 800 μM isoxaflutole, V52I/Y216C/S310C/P336S /R345Q was able to tolerate isoxaflutole at 600 μM.
图15、显示了用于水稻转化的水稻野生型或突变型的HPPD转基因表达载体的构建图。ZmpUBI:玉米UBI基因启动子;OsHPPD:野生型或或突变型水稻HPPD基因;6×His Tag:串联6次的组氨酸标签;NOS Ter:NOS终止子;p35S:花椰菜花叶病毒35S启动子;HygR:潮霉素抗性基因;35S Ter:35S终止子;LB:T-DNA左边界,RB:T-DNA右边界。Figure 15. A diagram showing the construction of the wild-type or mutant-type HPPD transgene expression vector for rice transformation. ZmpUBI: maize UBI gene promoter; OsHPPD: wild-type or mutant rice HPPD gene; 6×His Tag: histidine tag in series 6 times; NOS Ter: NOS terminator; p35S: cauliflower mosaic virus 35S promoter ; HygR: hygromycin resistance gene; 35S Ter: 35S terminator; LB: T-DNA left border, RB: T-DNA right border.
图16、野生型和突变型HPPD转基因水稻对硝磺草酮的耐受性情况。其中,含有V266A、S310C、V313I和R345Q突变形式的HPPD转基因植株能够耐受6g a.i./亩的硝磺草酮。Y216C/R345Q、P336S/R346L、L295Q/S310C、F68S/S310C、S310C/R345Q、S310C/G415A、S310C/V313I、Y216C/P336S/R345Q、Y216C/R345Q/R346L,L92I/S310C/V313I,Y216C/S310C/P336S/R345Q/R346L、V29A/Y216C/S310C/P336S/R345Q和V52I/Y216C/S310C/P336S/R345Q能够耐受12g a.i./亩的硝磺草酮。Figure 16. Tolerance of wild-type and mutant HPPD transgenic rice to mesotrione. Among them, HPPD transgenic plants containing V266A, S310C, V313I and R345Q mutant forms can tolerate 6 g a.i./mu of mesotrione. Y216C/R345Q, P336S/R346L, L295Q/S310C, F68S/S310C, S310C/R345Q, S310C/G415A, S310C/V313I, Y216C/P336S/R345Q, Y216C/R345Q/R346L, L910C/V313I, Y2/S31 P336S/R345Q/R346L, V29A/Y216C/S310C/P336S/R345Q and V52I/Y216C/S310C/P336S/R345Q can tolerate 12g a.i./mu of mesotrione.
图17、野生型和突变型HPPD转基因水稻对苯唑草酮的耐受性情况。其中,含有F68S、F132S、V313I、S310C、R345Q和M392I突变形式的HPPD转基因植株能够耐受对苯唑草酮(1.5g a.i./亩)具有不同程度的耐受性。Y216C/R345Q、P336S/R346L、S310C/G415A、S310C/V313I、F68S/S310C、L295Q/R345Q,Y216C/R345Q/R346L,L92I/S310C/V313I,Y216C/P336S/R345Q、Y216C/S310C/P336S/R345Q/R346L、V29A/Y216C/S310C/P336S/R345Q和V52I/Y216C/S310C/P336S/R345Q能够耐受3g a.i./亩浓度的苯唑草酮。Figure 17. Tolerance of wild-type and mutant HPPD transgenic rice to oxaflutole. Among them, the HPPD transgenic plants containing the mutant forms of F68S, F132S, V313I, S310C, R345Q and M392I were able to tolerate oxaflutole (1.5 g a.i./mu) with varying degrees of tolerance. Y216C/R345Q, P336S/R346L, S310C/G415A, S310C/V313I, F68S/S310C, L295Q/R345Q, Y216C/R345Q/R346L, L92I/S310C/V313I, Y216C/P336S/R331S30C/P6/Y216S/R345Q/R345Q R346L, V29A/Y216C/S310C/P336S/R345Q and V52I/Y216C/S310C/P336S/R345Q can tolerate 3g a.i./mu of oxaflutole.
图18、野生型和突变型HPPD转基因水稻对异噁唑草酮的耐受性情况。其中,含有F68S、F132S、V313I、S310C和P336S突变形式的HPPD转基因植株对异噁唑草酮(6g a.i./亩)具有不同程度的耐受性。Y216C/R345Q、P336S/R346L、L295Q/S310C、F68S/S310C、S310C/R345Q、S310C/M392I、Y216C/P336S/R345Q、Y216C/R345Q/R346L、L92I/S310C/V313I、Y216C/S310C/P336S/R345Q/R346L、V29A/Y216C/S310C/P336S/R345Q和V52I/Y216C/S310C/P336S/R345Q能够耐受12g a.i./亩浓度的异噁唑草酮。Figure 18. Tolerance of wild-type and mutant HPPD transgenic rice to isoxaflutole. Among them, HPPD transgenic plants containing mutant forms of F68S, F132S, V313I, S310C and P336S had different degrees of tolerance to isoxaflutole (6 g a.i./mu). Y216C/R345Q, P336S/R346L, L295Q/S310C, F68S/S310C, S310C/R345Q, S310C/M392I, Y216C/P336S/R345Q, Y216C/R345Q/R346L, L92I/S310C/V310C/R310SCC/P3/Y2 R346L, V29A/Y216C/S310C/P336S/R345Q and V52I/Y216C/S310C/P336S/R345Q can tolerate isoxaflutole at a concentration of 12g a.i./mu.
图19、野生型和突变型HPPD转基因水稻对环璜酮的耐受性情况。其中,含有F68S、V266A、S310C、R345Q和M392I突变形式的HPPD转基因植株能够耐受1.5g a.i./亩浓度的环璜酮。Y216C/R345Q、L295Q/S310C、L295Q/R345Q、S310C/M345Q、S310C/M392I、Y216C/S310C/P336S/R345Q/R346L、V29A/Y216C/S310C/P336S/R345Q和V52I/Y216C/S310C/P336S/R345Q能够耐受3g a.i./亩浓度的环璜酮。Figure 19. Tolerance of wild-type and mutant HPPD transgenic rice to cyclophanone. Among them, the HPPD transgenic plants containing the mutant forms of F68S, V266A, S310C, R345Q and M392I were able to tolerate a concentration of 1.5 g a.i./mu of cyclopentanone. Y216C/R345Q, L295Q/S310C, L295Q/R345Q, S310C/M345Q, S310C/M392I, Y216C/S310C/P336S/R345Q/R346L, V29A/Y216C/S310C/P336S/R345Q and V545S31616C/S310C/P336S/R345Q/R346L Tolerant to 3g a.i./mu concentration of cyclopentanone.
具体实施方式Detailed ways
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。The embodiments of the present invention will be described in detail below with reference to the examples, but those skilled in the art will understand that the following examples are only used to illustrate the present invention, and should not be regarded as limiting the scope of the present invention. If the specific conditions are not indicated in the examples, it is carried out according to the conventional conditions or the conditions suggested by the manufacturer. The reagents or instruments used without the manufacturer's indication are conventional products that can be obtained from the market.
实施例1、水稻HPPD(OsHPPD)基因的克隆Example 1. Cloning of rice HPPD (OsHPPD) gene
根据水稻(Oryza sativa Japonica)HPPD基因(基因ID:LOC_Os02g07160)的编码区序列以及pET-28a载体的序列设计并合成引物(金斯瑞,中国):28a-OsHPPD-F:TGGGTCGCGGATCCGAATTCATGCCTCCCACTCCCACC和28a-OsHPPD-R:TGGTGGTGGTGGTGCTCGAGCTAGGATCCTTGAACTGTAGGGGC。利用这对引物,以水稻品种日本晴的cDNA为模板,用Phanta Max高保真DNA聚合酶(P505-d1,诺唯赞,中国)扩增水稻HPPD基因。反应体系为:PCR扩增条件如下:Based on the coding region sequence of rice (Oryza sativa Japonica) HPPD gene (gene ID: LOC_Os02g07160) and the sequence of pET-28a vector, primers were designed and synthesized (GenScript, China): 28a-OsHPPD-F: TGGGTCGCGGATCCGAATTCATGCCTCCCACTCCCACC and 28a-OsHPPD- R: TGGTGGTGGTGGGTGCTCGAGCTAGGATCCTTGAACTGTAGGGGC. Using this pair of primers, the rice HPPD gene was amplified with Phanta Max high-fidelity DNA polymerase (P505-d1, Novozan, China) using the cDNA of rice variety Nipponbare as a template. The reaction system is: PCR amplification conditions are as follows:
Figure PCTCN2021072156-appb-000001
Figure PCTCN2021072156-appb-000001
用1%的琼脂糖凝胶对PCR产物进行电泳,在紫外灯下切下含有大约1.4Kb的目标条带的琼脂糖胶条,按照DNA纯化试剂盒(Axygen,USA)的说明书步骤,对目标条带进行纯化;利用微量分光光度计(Nanodrop)测定纯化产物浓度为31ng/μL。pET-28a载体为本实验室保存,浓度为124ng/μL。The PCR products were electrophoresed on a 1% agarose gel, and the agarose strip containing the target band of about 1.4Kb was cut under UV light. The band was purified; the concentration of purified product was determined to be 31 ng/μL using a microspectrophotometer (Nanodrop). The pET-28a vector is preserved in this laboratory at a concentration of 124ng/μL.
将1.4Kb的PCR产物和pET-28a载体分别用限制性内切酶EcoR I和Xho I(TaKaRa,Japan)进行双酶切,反应体系和反应条件为:PCR产物或pET-28a载体,30μL;10×H缓冲液,5μL;EcoR I(15U/μL),1μL;Xho I(10U/μL),1μL;ddH 2O,13μL;37℃,2h。按照DNA纯化试剂盒(Axygen,USA)的说明书步骤,回收约1.4Kb的HPPD基因片段和5.4Kb的pET-28a载体片段,得到含有相同黏性末端的HPPD基因片段和线性化载体片段,利用微量分光光度计(Nanodrop)测得HPPD片段纯化产物浓度为20ng/μL,pET-28a载体纯化产物浓度为35ng/μL。用T4DNA连接酶(Takara,Japan)将上述2个纯化后的片段连接在一起,反应体系和反应条件:5×T4DNA连接酶缓冲液,2μL;HPPD片段,2μL;pET-28a载体片段,2μL;T4DNA连接酶(350U/μl),1μL;ddH 2O,3μL;22℃,1h。将连接产物全部转入100μL缓慢融化的DH5α感受态细胞(擎科,中国)中,轻轻吹吸混匀,冰上静置30min,42℃水浴45s,冰上静置2min,加入500μL不含抗生素的液体LB培养基,37℃220rpm恢复培养1h,涂布于含有50μg/mL卡那霉素的固体LB培养基平板上,置于37℃温箱倒置培养12h,用121℃高压灭菌后的牙签挑取单克隆菌落,用载体和基因特异性引物(正向引物pET28a-SF:TAATACGACTCACTATAGG,反向引物OsHPPD-CR:CTAGGATCCTTGAACTGTAGGGGC)进行菌落PCR鉴定阳性克隆,PCR反应体系和反应条件为: The 1.4Kb PCR product and pET-28a vector were double digested with restriction enzymes EcoR I and Xho I (TaKaRa, Japan), respectively. The reaction system and reaction conditions were: PCR product or pET-28a vector, 30 μL; 10×H buffer, 5 μL; EcoR I (15 U/μL), 1 μL; Xho I (10 U/μL), 1 μL; ddH 2 O, 13 μL; 37° C., 2 h. According to the instructions of the DNA purification kit (Axygen, USA), the HPPD gene fragment of about 1.4Kb and the pET-28a vector fragment of 5.4Kb were recovered to obtain the HPPD gene fragment and linearized vector fragment containing the same sticky ends. The concentration of purified product of HPPD fragment measured by spectrophotometer (Nanodrop) was 20 ng/μL, and the concentration of purified product of pET-28a vector was 35 ng/μL. The above two purified fragments were ligated together with T4 DNA ligase (Takara, Japan). The reaction system and reaction conditions were: 5×T4 DNA ligase buffer, 2 μL; HPPD fragment, 2 μL; pET-28a vector fragment, 2 μL; T4 DNA ligase (350U/μl), 1 μL; ddH 2 O, 3 μL; 22° C., 1 h. Transfer all the ligation products into 100 μL of slowly thawed DH5α competent cells (Qingke, China), gently pipette and mix, let stand on ice for 30 min, 42 ℃ water bath for 45 s, stand on ice for 2 min, add 500 μL Antibiotic liquid LB medium, 37 ℃ 220rpm recovery culture for 1h, spread on the solid LB medium plate containing 50μg/mL kanamycin, placed in a 37 ℃ incubator for 12h inverted culture, autoclaved at 121 ℃ after sterilization The toothpick picks monoclonal colonies, and uses the vector and gene-specific primers (forward primer pET28a-SF: TAATACGACTCACTATAGG, reverse primer OsHPPD-CR: CTAGGATCCTTGAACTGTAGGGGC) to identify positive clones by colony PCR. The PCR reaction system and reaction conditions are:
Figure PCTCN2021072156-appb-000002
Figure PCTCN2021072156-appb-000002
Figure PCTCN2021072156-appb-000003
Figure PCTCN2021072156-appb-000003
菌落PCR反应共挑取8个克隆,其中7个可以扩增出约为500bp的目标条带,作为阳性克隆。选取扩增条带较亮的2号和5号克隆,分别接种于含有50μg/mL卡那霉素的液体LB培养基中,37℃振荡培养12h,利用质粒小量提取试剂盒(康为世纪,中国)提取质粒得到pET28a-OsHPPD-2和pET28a-OsHPPD-5,利用微量分光光度计(Nanodrop)测定质粒浓度pET28a-OsHPPD-2为345ng/μL,pET28a-OsHPPD-5浓度为288ng/μL。利用引物pET28a-SF:TAATACGACTCACTATAGG和pET28a-SR:GCTAGTTATTGCTCAGCGG对质粒进行Sanger测序验证(擎科,中国),2个质粒测序结果一致,故采用浓度较高的pET28a-OsHPPD-2进行后续实验。A total of 8 clones were picked by colony PCR reaction, and 7 of them could amplify the target band of about 500bp as positive clones. Select clones No. 2 and No. 5 with brighter amplification bands, inoculate them in liquid LB medium containing 50 μg/mL kanamycin, respectively, and culture with shaking at 37°C for 12 hours. , China), the plasmids were extracted to obtain pET28a-OsHPPD-2 and pET28a-OsHPPD-5, and the plasmid concentrations of pET28a-OsHPPD-2 were 345 ng/μL and pET28a-OsHPPD-5 were 288 ng/μL using a microspectrophotometer (Nanodrop). The primers pET28a-SF: TAATACGACTCACTATAGG and pET28a-SR: GCTAGTTATTGCTCAGCGG were used to verify the plasmid by Sanger sequencing (Qingke, China).
实施例2、利用易错PCR对水稻HPPD基因(OsHPPD)进行随机突变Example 2. Random mutation of rice HPPD gene (OsHPPD) using error-prone PCR
野生型水稻HPPD基因(SEQ ID NO:1所示)的GC含量为70.8%,氨基酸序列如SEQ ID NO:2所示,本发明首先尝试利用可调型易错PCR试剂盒(天恩泽,CAT#:101005-100,中国),以稀释后的pET28a-OsHPPD-2质粒为模板进行易错PCR,未能得到扩增条带。为此,本发明尝试不同的PCR试剂和反应条件,对易错PCR体系进行优化。由于水稻HPPD基因GC含量很高,本发明用专门适用于高GC含量基因扩增的2×GC I buffer(Takara,CAT#:9154)作为PCR缓冲液,使用扩增能力强的Taq DNA聚合酶(5U/μl)(Takara,CAT#:R500A)进行易错PCR,并对扩增体系中的dATP,dTTP,dCTP,dGTP(表1),MnCl 2和MgCl 2使用量进行优化,测试扩增效率和突变率。不同dNTP的使用浓度组合见表1: The GC content of wild-type rice HPPD gene (shown in SEQ ID NO: 1) is 70.8%, and the amino acid sequence is shown in SEQ ID NO: 2. The present invention first attempts to use a tunable error-prone PCR kit (Tian Enze, CAT #:101005-100, China), error-prone PCR was performed with the diluted pET28a-OsHPPD-2 plasmid as a template, and no amplified band was obtained. To this end, the present invention tries different PCR reagents and reaction conditions to optimize the error-prone PCR system. Due to the high GC content of rice HPPD gene, the present invention uses 2×GC I buffer (Takara, CAT#: 9154) specially suitable for gene amplification with high GC content as PCR buffer, and uses Taq DNA polymerase with strong amplification ability (5U/μl) (Takara, CAT#: R500A) to perform error - prone PCR, and optimize the usage of dATP, dTTP, dCTP, dGTP (Table 1 ), MnCl and MgCl in the amplification system, and test the amplification Efficiency and mutation rate. The use concentration combinations of different dNTPs are shown in Table 1:
表1易错体系中dNTP使用浓度预实验Table 1 Pre-experiment of dNTP concentration in error-prone system
Figure PCTCN2021072156-appb-000004
Figure PCTCN2021072156-appb-000004
表中第一行的编号,对应下面电泳中的泳道2-21;dNTP浓度的单位为mM。The numbers in the first row of the table correspond to lanes 2-21 in the electrophoresis below; the unit of dNTP concentration is mM.
琼脂糖凝胶电泳结果表明,当任何一种dNTP浓度为0时,都不能扩增任何条带。而dNTP浓度为0.07~0.8mM,即正常扩增浓度的0.35~4倍时,能够扩出目的条带。MnCl 2浓度在0.2mM以下时,能够扩增出目的产物;而在0.2mM以上时,随着MnCl 2浓度的增加,HPPD基因目的条带逐渐变弱;在MnCl 2浓度为0.4mM以上时,检测不到扩增条带。MgCl 2的浓度不影响扩增产物量。实验结果见图1。 The results of agarose gel electrophoresis showed that when any dNTP concentration was 0, no band could be amplified. When the dNTP concentration is 0.07-0.8 mM, that is, 0.35-4 times the normal amplification concentration, the target band can be amplified. When the concentration of MnCl 2 is below 0.2 mM, the target product can be amplified; when the concentration of MnCl 2 is above 0.2 mM, the target band of HPPD gene gradually weakens with the increase of the concentration of MnCl 2 ; when the concentration of MnCl 2 is above 0.4 mM, No amplified band was detected. The concentration of MgCl did not affect the amount of amplified product. The experimental results are shown in Figure 1.
随后对不同反应条件下的HPPD易错PCR扩增产物进行切胶纯化,并克隆到pClone007Simple载体(擎科,中国)中,反应体系为:HPPD纯化片段,2μL;pClone007Simple载体,1μL;10×TOPO混合液,1μL;ddH 2O,6μL。将连接产物全部转入50μL缓慢融化的DH5α感受态细胞(擎科,中国)中,轻轻吹吸混匀,冰上静置30min,42℃水浴45s,冰上静置2min,加入500μL不含抗生素的液体LB培养基,37℃220rpm恢复培养1h,涂布于含有50μg/mL卡那霉素的固体LB培养基平板上,置于37℃温箱倒置培养12h,用121℃高压灭菌后的牙签挑取单克隆菌落,用载体和基因特异性引物 (正向引物pET28a-SF,反向引物OsHPPD-CR)进行菌落PCR鉴定阳性克隆。挑取20个单克隆进行Sanger测序,结果表明当dNTP浓度为0.4mM时,MnCI 2的添加量为0.2mM时,MgCI 2的添加量为2.5mM时,突变率为1~2bp/克隆。本发明采用上述PCR体系,以100倍稀释后的pET28a-OsHPPD-2质粒为模板,进行易错PCR。 Subsequently, the HPPD error-prone PCR amplification products under different reaction conditions were purified by gel cutting and cloned into pClone007Simple vector (Qingke, China). The reaction system was: HPPD purified fragment, 2 μL; pClone007Simple vector, 1 μL; 10×TOPO Mixture, 1 μL; ddH 2 O, 6 μL. Transfer all the ligation products into 50 μL of slowly thawed DH5α competent cells (Qingke, China), gently pipette and mix, let stand on ice for 30 min, water bath at 42°C for 45 s, stand on ice for 2 min, add 500 μL without Antibiotic liquid LB medium, 37 ℃ 220rpm recovery culture for 1h, spread on the solid LB medium plate containing 50μg/mL kanamycin, placed in a 37 ℃ incubator for 12h inverted culture, autoclaved at 121 ℃ after sterilization The toothpick picks monoclonal colonies, and uses the vector and gene-specific primers (forward primer pET28a-SF, reverse primer OsHPPD-CR) to carry out colony PCR to identify positive clones. 20 single clones were picked for Sanger sequencing, and the results showed that when the dNTP concentration was 0.4 mM, when the addition amount of MnCI 2 was 0.2 mM, and the addition amount of MgCI 2 was 2.5 mM, the mutation rate was 1-2 bp/clone. The present invention adopts the above PCR system, and uses the 100-fold diluted pET28a-OsHPPD-2 plasmid as a template to perform error-prone PCR.
本发明共进行了4次独立的易错PCR扩增,每次额外添加1种特定的dNTP,使该种dNTP终浓度为0.4mM,其他3种dNTP终浓度保持在0.2mM。In the present invention, a total of 4 independent error-prone PCR amplifications are carried out, each time an additional specific dNTP is added, so that the final concentration of this dNTP is 0.4 mM, and the final concentration of the other 3 dNTPs is maintained at 0.2 mM.
易错PCR反应体系:Error-prone PCR reaction system:
2×GC I PCR buffer(MgCI 2Plus) 2×GC I PCR buffer (MgCI 2 Plus) 15μL15μL
dATP或dTTP或dCTP或dGTP(2.5mM)dATP or dTTP or dCTP or dGTP (2.5mM) 2.4μL2.4μL
10×易错PCR专用dNTP(2.5mM each)10x dNTPs for error-prone PCR (2.5mM each) 2.4μL2.4μL
易错PCR专用MnCl 2(10mM) MnCl 2 for error-prone PCR (10mM) 0.6μL0.6μL
100倍稀释的pET28a-OsHPPD-2质粒100-fold diluted pET28a-OsHPPD-2 plasmid 0.5μL0.5μL
10μM扩增正向引物(28a-OsHPPD-F)10μM amplification forward primer (28a-OsHPPD-F) 1μL 1μL
10μM扩增反向引物(28a-OsHPPD-R)10 μM Amplification Reverse Primer (28a-OsHPPD-R) 1μL1μL
rTaq DNA聚合酶rTaq DNA polymerase 0.5μL0.5μL
ddH 2O ddH 2 O 6.6μL6.6μL
易错PCR反应程序:Error-prone PCR reaction procedure:
Figure PCTCN2021072156-appb-000005
Figure PCTCN2021072156-appb-000005
实施例3、基于显色反应的HPPD抗性突变体的筛选Example 3. Screening of HPPD-resistant mutants based on color reaction
大肠杆菌中的酪氨酸氨基转移酶可以催化酪氨酸生成对羟苯基丙酮酸(4-HPP),后者被HPPD催化生成尿黑酸(HGA),再经自氧化作用生成棕色色素。HPPD抑制剂可以抑制HPPD的催化反应,从而抑制棕色色素的产生。因此,可以根据棕色色素颜色的深浅来初步判断HPPD活性的强弱或者受抑制程度。The tyrosine aminotransferase in Escherichia coli can catalyze tyrosine to generate p-hydroxyphenylpyruvate (4-HPP), which is catalyzed by HPPD to generate homogentisic acid (HGA), and then generates brown pigment through autoxidation. HPPD inhibitors can inhibit the catalytic reaction of HPPD, thereby inhibiting the production of brown pigment. Therefore, the intensity of HPPD activity or the degree of inhibition can be preliminarily judged according to the shade of brown pigment.
为了摸索稳定的显色反应条件,本研究首先测试了野生型水稻HPPD在大肠杆菌中能够耐受硝磺草酮的临界浓度。首先取1μL pET28a-OsHPPD-2质粒,加入到50μL缓慢融化的BL21-Gold(DE3)感受态细胞(优宝生物,中国)中,轻轻吹吸混匀,冰上静置30min,42℃水浴热激45s,冰上静置2min,37℃恢复培养1h,涂布于含有50μg/mL卡那霉素的固体LB培养基平板上,37℃倒置培养12h。用灭过菌的牙签挑取单克隆,在一个新的含有50μg/mL卡那霉素的固体LB培养基平板上划线保存菌种,同时利用引物进行菌落PCR(正向引物pET28a-SF:TAATACGACTCACTATAGG,反向引物OsHPPD-CR:CTAGGATCCTTGAACTGTAGGGGC),筛选阳性克隆。挑取阳性单菌落,分别接种于含有0μM、1μM、2μM、5μM、10μM、15μM、20μM、30μM、40μM、50μM和100μM共11种浓度的硝磺草酮、1g/L酪氨酸底物和IPTG诱导剂的液体LB培养基中,37℃,150rpm振荡培养24h;IPTG的浓度设置0.01mM、0.02mM、 0.05mM、0.1mM、0.2mM、0.5mM和1mM共7个浓度。结果表明,在IPTG为0.02mM时,0mM硝磺草酮对应的孔显色程度最深,且2μM硝磺草酮浓度对应的孔完全没有显色,1μM硝磺草酮对应的孔有极微弱的显色。后在0.02mM的IPTG的条件下,重复显色实验3次,均得到与第1次预实验相同的结果,说明该条件较稳定,可用于后续显色反应,即0.02mM的IPTG诱导剂,2μM硝磺草酮作为野生型水稻HPPD不能显色的临界浓度。In order to explore the stable color reaction conditions, this study firstly tested the critical concentration of mesotrione tolerance of wild-type rice HPPD in E. coli. First, take 1 μL of pET28a-OsHPPD-2 plasmid, add it to 50 μL of slowly thawed BL21-Gold(DE3) competent cells (Youbao Bio, China), gently pipette and mix, let stand on ice for 30 min, water bath at 42°C Heat shock for 45 s, stand on ice for 2 min, resume culture at 37 °C for 1 h, spread on solid LB medium plates containing 50 μg/mL kanamycin, and invert at 37 °C for 12 h. Pick a single clone with a sterilized toothpick, streak the strain on a new solid LB medium plate containing 50 μg/mL kanamycin, and perform colony PCR with primers (forward primer pET28a-SF: TAATACGACTCACTATAGG, reverse primer OsHPPD-CR: CTAGGATCCTTGAACTGTAGGGGC) to screen for positive clones. Pick positive single colonies and inoculate them with 11 concentrations of mesotrione, 1 g/L tyrosine substrate and In liquid LB medium of IPTG inducer, 37°C, 150 rpm shaking culture for 24 hours; IPTG concentrations were set to 7 concentrations of 0.01 mM, 0.02 mM, 0.05 mM, 0.1 mM, 0.2 mM, 0.5 mM and 1 mM. The results showed that when IPTG was 0.02 mM, the pores corresponding to 0 mM mesotrione had the deepest color development, the pores corresponding to 2 μM mesotrione had no color at all, and the pores corresponding to 1 μM mesotrione had very weak color development. Color rendering. Then, under the condition of 0.02mM IPTG, the color development experiment was repeated 3 times, and the same results as the first pre-experiment were obtained, indicating that this condition is relatively stable and can be used for the subsequent color development reaction, that is, 0.02mM IPTG inducer, 2 μM mesotrione was the critical concentration for wild-type rice HPPD to fail to develop color.
本研究共进行4次独立的易错PCR扩增反应(DATP,DTTP,DCTP,DGTP4种独立易错PCR),将所有易错PCR扩增产物分别连入pET-28a载体后得到突变对应的pET28a-mHPPD质粒,转化BL21-Gold(DE3)感受态细胞,总共挑取约201300个单克隆,在24孔板中进行显色反应。具体实验过程如下:A total of 4 independent error-prone PCR amplification reactions (DATP, DTTP, DCTP, DGTP) were performed in this study. All error-prone PCR amplification products were ligated into the pET-28a vector to obtain pET28a corresponding to the mutation. -mHPPD plasmid, transformed into BL21-Gold(DE3) competent cells, about 201300 single clones were picked in total, and the color reaction was carried out in a 24-well plate. The specific experimental process is as follows:
对于每次独立的易错PCR反应,取100μL产物用限制性内切酶EcoR I和Xho I(TaKaRa,Japan)分2管进行双酶切,反应体系和反应条件为:易错PCR产物,50μL;10×H缓冲液,8μL;EcoR I,1μL;Xho I,1μL;ddH 2O,20μL;37℃,2h。按照DNA纯化试剂盒(Axygen,USA)的说明书步骤,回收约1.4Kb的易错PCR后的HPPD片段,利用微量分光光度计(Nanodrop)测得HPPD片段纯化产物的浓度。所测4次独立的易错PCR纯化产物浓度分别为27ng/μL、25ng/μL、32ng/μL和30ng/μL。将纯化后的HPPD易错PCR产物分别与此前纯化的pET-28a载体进行连接,反应体系和反应条件为:5×T4DNA连接酶缓冲液,2μL;HPPD片段,2μL;pET-28a载体片段,2μL;T4DNA连接酶,1μL;ddH 2O,3μL;22℃,1h。对于每次易错PCR片段的连接产物,同时进行5管连接反应。对于每管连接产物,分别将产物全部加入100μL缓慢融化的BL21-Gold(DE3)感受态细胞(本实验室制备,适用于电击转化)中,用移液器枪头轻柔吹吸混匀,吸出感受态细胞与质粒的混合物全部转入-20℃预冷的电击杯中(BIO-RAD,USA),将电击杯插入电击转化仪(Eppendorf,Germany)的孔槽中,取出电击杯,加入500μL不含抗生素的液体LB培养基轻轻吹打混匀,吸出菌液转入1.5mL离心管中,37℃,200rpm振荡,恢复培养1h;分别涂布于4个含有50μg/mL卡那霉素的固体LB培养基平板上,37℃倒置培养12h,用高压灭菌的牙签尽可能地挑取所有单克隆菌落,接种到含有2μM硝磺草酮和1g/L酪氨酸底物的LB液体培养基的24孔板中,28℃,150rpm振荡培养24h。然后根据它们在酪氨酸代谢过程中产生棕色色素的颜色深浅来评价突变型HPPD活性的强弱。 For each independent error-prone PCR reaction, 100 μL of the product was taken into 2 tubes for double digestion with restriction enzymes EcoR I and Xho I (TaKaRa, Japan). The reaction system and reaction conditions were: error-prone PCR product, 50 μL ; 10×H buffer, 8 μL; EcoR I, 1 μL; Xho I, 1 μL; ddH 2 O, 20 μL; 37°C, 2 h. According to the instructions of the DNA purification kit (Axygen, USA), the error-prone HPPD fragment of about 1.4 Kb after PCR was recovered, and the concentration of the purified product of the HPPD fragment was measured by a microspectrophotometer (Nanodrop). The concentrations of the four independent error-prone PCR products tested were 27 ng/μL, 25 ng/μL, 32 ng/μL and 30 ng/μL, respectively. The purified HPPD error-prone PCR products were ligated with the previously purified pET-28a vector. The reaction system and reaction conditions were: 5×T4 DNA ligase buffer, 2 μL; HPPD fragment, 2 μL; pET-28a vector fragment, 2 μL ; T4 DNA ligase, 1 μL; ddH 2 O, 3 μL; 22°C, 1 h. For the ligation product of each error-prone PCR fragment, 5 ligation reactions were performed simultaneously. For each tube of ligation products, add all the products to 100 μL of slowly thawed BL21-Gold(DE3) competent cells (prepared in this laboratory, suitable for electroshock transformation), and mix them by gently blowing with a pipette tip. The mixture of competent cells and plasmids was all transferred into a pre-cooled electric shock cup (BIO-RAD, USA) at -20°C. The electric shock cup was inserted into the well of an electric shock transforming instrument (Eppendorf, Germany), and the electric shock cup was taken out and added 500 μL The liquid LB medium without antibiotics was gently pipetted and mixed, and the bacterial liquid was aspirated and transferred to a 1.5 mL centrifuge tube, shaken at 37°C, 200 rpm, and cultured for 1 h; On a solid LB medium plate, invert at 37°C for 12 hours, pick all monoclonal colonies as much as possible with an autoclaved toothpick, and inoculate it into an LB liquid culture containing 2 μM mesotrione and 1 g/L tyrosine substrate In a 24-well plate, 28°C, shaking at 150rpm for 24h. The activity of mutant HPPD was then evaluated according to the shade of brown pigment they produced during tyrosine metabolism.
在含有2μM硝磺草酮的条件下,共鉴定到1017个有不同程度显色的克隆,蘸取显色的孔中的菌液,接种到含有50μg/mL卡那霉素的液体LB培养基中,37℃,220rpm振荡培养12h后,提取质粒pET28a-mHPPD,利用引物pET28a-SF:TAATACGACTCACTATAGG和pET28a-SR:GCTAGTTATTGCTCAGCGG对质粒pET28a-mHPPD进行Sanger测序验证,将测序结果利用Vector NTI软件与野生型水稻HPPD基因进行比对,共鉴定到60种不同氨基酸变化的单点突变和2种不同的双点突变形式,包括:V29A、V52I、L54F、F68S、L92I、P99L、T117I、S120A、F132S、A133T、R146L、A156V、E206Q、E206V、Y216C、Y237N、I238T、F244L、V266A、N270D、T273S、P277V、V282E、L295Q、H297R、S310C、S310V、S310A、S310G、S310T、V313M、V313I、V313L、G315A、G315S、G315R、T316K、A325D、A333P、P336S、N338K、N338I、N338T、R344K、R345L、R345Q、R346L、D349G、N357S、F388L、M392I、S404G、S404L、S404T、Q406R、Y408H、G415A、G415N、G415S、E423G、R345Q/R346L和S310C/V313I。Under the condition containing 2μM mesotrione, a total of 1017 clones with different degrees of color development were identified, and the bacterial solution in the colored wells was dipped and inoculated into liquid LB medium containing 50μg/mL kanamycin After culturing at 37°C and 220rpm for 12h, the plasmid pET28a-mHPPD was extracted, and the plasmid pET28a-mHPPD was verified by Sanger sequencing using the primers pET28a-SF: TAATACGACTCACTATAGG and pET28a-SR: GCTAGTTATTGCTCAGCGG, and the sequencing results were verified by Vector NTI software and wild-type A total of 60 single point mutations and 2 different double point mutations with different amino acid changes were identified, including: V29A, V52I, L54F, F68S, L92I, P99L, T117I, S120A, F132S, A133T 、R146L、A156V、E206Q、E206V、Y216C、Y237N、I238T、F244L、V266A、N270D、T273S、P277V、V282E、L295Q、H297R、S310C、S310V、S310A、S310G、S310T、V313M、V313I、V313L、G315A、G315S 、G315R、T316K、A325D、A333P、P336S、N338K、N338I、N338T、R344K、R345L、R345Q、R346L、D349G、N357S、F388L、M392I、S404G、S404L、S404T、Q406R、Y408H、G415A、G415N、G415S、E423G , R345Q/R346L and S310C/V313I.
进一步,根据所有单点和双点的突变形式,利用定点突变试剂盒,分别设计60对特异的突变引物:“mHPPD-突变形式-F”和“mHPPD-突变形式-R”(序列见定点突变引物列表参见表2),以pET28a-OsHPPD-2质粒为模板,进行PCR扩增,构建含有相应的突变型HPPD基因的pET28a载体,转入BL21-Gold(DE3)感受态细胞,在2μM硝磺草酮的浓度下,对大规模筛选结果进行验证。确认上述62种突变型HPPD确实能够在2μM硝磺草酮的浓度下显色。对于利用2μM硝磺草酮筛选到的能够显色的单点和双点突变型HPPD蛋白,利用上述同样的显色方法,进一步提高硝磺草酮的浓度,检测鉴定到的突变型HPPD蛋白是否能在大肠杆菌中耐受更高浓度的硝磺草酮。进一步设置5μM、10μM、15μM和20μM共4种浓度,同时设置0μM和2μM作为对照。显色结果表明,V52I、F68S、L92I、T117I、F132S、Y216C、H297R、S310V、S310A、S310C、S310T、V313I、P336S、R345Q、R346L、M392I、V29A、L54F、S120A、Y237N、I238T、V266A、L295Q、G315R、G315S、T316K、A333P、R344K、D349G、F388L和E423G共31个突变(图2),S310C/V313I和R345Q/R346L共2种双点突变(图3),显色效果最为明显。Further, according to all single-site and double-point mutation forms, 60 pairs of specific mutation primers were designed using a site-directed mutagenesis kit: "mHPPD-mutant-form-F" and "mHPPD-mutant-form-R" (see site-directed mutagenesis for the sequence). The primer list is shown in Table 2), using the pET28a-OsHPPD-2 plasmid as a template, PCR amplification was performed to construct a pET28a vector containing the corresponding mutant HPPD gene, and then transferred into BL21-Gold (DE3) competent cells. The results of the large-scale screening were verified at the concentration of oxalone. It was confirmed that the above-mentioned 62 mutant HPPDs could indeed develop color at a concentration of 2 μM mesotrione. For the single-point and double-point mutant HPPD proteins screened by 2 μM mesotrione that can develop color, use the same color development method as above to further increase the concentration of mesotrione to detect whether the identified mutant HPPD protein is Can tolerate higher concentrations of mesotrione in E. coli. A total of 4 concentrations of 5 μM, 10 μM, 15 μM and 20 μM were further set, while 0 μM and 2 μM were set as controls. The color development results show that V52I, F68S, L92I, T117I, F132S, Y216C, H297R, S310V, S310A, S310C, S310T, V313I, P336S, R345Q, R346L, M392I, V29A, L54F, S120A, Y266A, I9Q238T , G315R, G315S, T316K, A333P, R344K, D349G, F388L and E423G, a total of 31 mutations (Figure 2), S310C/V313I and R345Q/R346L, a total of 2 double-point mutations (Figure 3), with the most obvious color rendering effect.
表2定点突变引物序列Table 2 Site-directed mutagenesis primer sequences
编号Numbering 引物名称primer name 序列(5’到3’)Sequence (5' to 3')
11 mHPPD-V29A-FmHPPD-V29A-F GGGCACCGCCGCTTCGTCGGGCACCGCCGCTTCGTC
22 mHPPD-V29A-RmHPPD-V29A-R CGGACGAAGCGGCGGTGCCCGGCGAGGCGGCGGACGAAGCGGCGGTGCCCGGCGAGGCGG
33 mHPPD-V52I-FmHPPD-V52I-F CGAGCTCTGGTGCGCCGACGAGCTCTGGTGCGCCGA
44 mHPPD-V52I-RmHPPD-V52I-R TCGGCGCACCAGAGCTCGATGTGGTGGATCGGCGCACCAGAGCTCGATGTGGTGGA
55 mHPPD-L54F-FmHPPD-L54F-F CTGGTGCGCCGACGCCGCGCTGGTGCGCCGACGCCGCG
66 mHPPD-L54F-RmHPPD-L54F-R CGCGGCGTCGGCGCACCAGAACTCGACGTCGCGGCGTCGGCGCACCAGAACTCGACGT
77 mHPPD-F68S-FmHPPD-F68S-F GCCGCGGGCCGGTTCGCCTCCGCCCTGGGCGCGCCGCTCGCCGCGGGCCGGTTCGCCTCCGCCCTGGGCGCGCCGCTC
88 mHPPD-F68S-RmHPPD-F68S-R GGCGAACCGGCCCGCGGCGGCGAACCGGCCCGCGGC
99 mHPPD-L92I-FmHPPD-L92I-F GCTCCGCCTCCGTCGCGTTCCTGCTCCGCCTCCGTCGCGTTCCT
1010 mHPPD-L92I-RmHPPD-L92I-R ACGCGACGGAGGCGGAGCGGATGAGGAACGCGACGGAGGCGGAGCCGGATGAGGA
1111 mHPPD-P99L-FmHPPD-P99L-F TCTTCACCGCCCCCTACGGTCTTCACCGCCCCCTACGG
1212 mHPPD-P99L-RmHPPD-P99L-R CCGTAGGGGGCGGTGAAGAGCAACGCCCGTAGGGGGCGGTGAAGAGCAACGC
1313 mHPPD-T117I-FmHPPD-T117I-F CCGCCTCCATCCCTTCCTTCCGCCTCCATCCCTTCCTT
1414 mHPPD-T117I-RmHPPD-T117I-R AGGAAGGGATGGAGGCGGTGATGGCCAGGAAGGGATGGAGGCGGTGATGGCC
1515 mHPPD-S120A-FmHPPD-S120A-F TCCCTTCCTTCTCCCCAGGTCCCTTCCTTCTCCCCAGG
1616 mHPPD-S120A-RmHPPD-S120A-R CTGGGGAGAAGGAAGGGATGGCGGCTGGGGAGAAGGAAGGGATGGCGG
1717 mHPPD-F132S-FmHPPD-F132S-F CCGCGGACCACGGCCTCGCGGTCCGCGGACCACGGCCTCGCGGT
1818 mHPPD-F132S-RmHPPD-F132S-R CGAGGCCGTGGTCCGCGGCGGACCTCGAGGCCGTGGTCCGCGGCGGACCT
1919 mHPPD-A133T-FmHPPD-A133T-F GGCGCCGCG CGGAGGTTCACCGCGGACCACGGCCTCGCGGGCGCCGCGCGGAGGTTCACCGCGGACCACGGCCTCGCG
2020 mHPPD-A133T-RmHPPD-A133T-R GAACCTCCGCGCGGCGCCGAACCTCCGCGCGGCGCC
21twenty one mHPPD-R146L-FmHPPD-R146L-F TCGCCGACGCGGCCGACGCCTTCGCCGACGCGGCCGACGCCT
22twenty two mHPPD-R146L-RmHPPD-R146L-R CGTCGGCCGCGTCGGCGACGAGCAGCGTCGGCCGCGTCGGCGACGAGCAG
23twenty three mHPPD-A156V-FmHPPD-A156V-F GCGGCCGACGCCTTCCGCGTCAGCGTCGCGGCCGGTGCGGCGGCCGACGCCTTCCGCGTCAGCGTCGCGGCCGGTGCG
24twenty four mHPPD-A156V-RmHPPD-A156V-R GCGGAAGGCGTCGGCCGCGCGGAAGGCGTCGGCCGC
2525 mHPPD-E206Q-FmHPPD-E206Q-F TTCCTCCCGGGTTTCCAGGGCGTCAGCAACCCGGGCTTCCTCCCGGGTTTCCAGGGCGTCAGCAACCCGGGC
2626 mHPPD-E206Q-RmHPPD-E206Q-R GAAACCCGGGAGGAAGGGGAAACCCGGGAGGAAGGG
2727 mHPPD-E206V-FmHPPD-E206V-F TTCCTCCCGGGTTTCGTGGGCGTCAGCAACCCGGGCTTCCTCCCGGGTTTCGTGGGCGTCAGCAACCCGGGC
2828 mHPPD-E206V-RmHPPD-E206V-R GAAACCCGGGAGGAAGGGGAAACCCGGGAGGAAGGG
2929 mHPPD-Y216C-FmHPPD-Y216C-F CG TGGACTGCGGCCTCCGCCGGTTCGACCACGCGTGGACTGCGGCCTCCGCCGGTTCGACCACG
3030 mHPPD-Y216C-RmHPPD-Y216C-R GGAGGCCGCAGTCCACGGCGCCCGGGTTGCTGGGAGGCCGCAGTCCACGGCGCCCGGGTTGCTG
3131 mHPPD-Y237N-FmHPPD-Y237N-F GAACATCTCCGGGTTCACCGGGTTCCACGAGTGAACATCTCCGGGTTCACCGGGTTCCACGAGT
3232 mHPPD-Y237N-RmHPPD-Y237N-R TGAACCCGGAGATGTTCGCGGCTACCGGAGCGAGTGAACCCGGAGATGTTCGCGGCTACCGGAGCGAG
3333 mHPPD-I238T-FmHPPD-I238T-F CCGGTAGCCGCGTACACCTCCGGGTTCACCGGGTTCCCGGTAGCCGCGTACACCTCCGGGTTCACCGGGTTC
3434 mHPPD-I238T-RmHPPD-I238T-R GTACGCGGCTACCGGAGCGTACGCGGCTACCGGAGC
3535 mHPPD-F244L-FmHPPD-F244L-F ACCGGGCTCCACGAGTTCGCCGAGTTCACCGCACCGGGCTCCACGAGTTCGCCGAGTTCACCGC
3636 mHPPD-F244L-RmHPPD-F244L-R AACTCGTGGAGCCCGGTGAACCCGGAGATGTAAACTCGTGGAGCCCGGTGAACCCGGAGATGTA
3737 mHPPD-V266A-FmHPPD-V266A-F TCAACTCGGTGGCCCTCGCCAACAACGCGGAGTCAACTCGGTGGCCCTCGCCAACAACGCGGAG
3838 mHPPD-V266A-RmHPPD-V266A-R GAGGGCCACCGAGTTGAGGCCGCTCTCGGCGGGAGGGCCACCGAGTTGAGGCCGCTCTCGGCGG
3939 mHPPD-N270D-FmHPPD-N270D-F AA CGACGCGGAGACCGTGCTGCTGCCGCTCAAAACGACGCGGAGACCGTGCTGCTGCCGCTCAA
4040 mHPPD-N270D-RmHPPD-N270D-R ACGGTCTCCGCGTCGTTGGCGAGCACCACCGAACGGTCTCCGCGTCGTTGGCGAGCACCACCGA
4141 mHPPD-T273S-FmHPPD-T273S-F AACAACGCGGAGTCCGTGCTGCTGCCGCTCAACAACAACGCGGAGTCCGTGCTGCTGCCGCTCAAC
4242 mHPPD-T273S-RmHPPD-T273S-R ACGGACTCCGCGTTGTTGGCGAGCACCACCGAACGGACTCCGCGTTTGTTGGCGAGCACCACCGA
4343 mHPPD-P277V-FmHPPD-P277V-F TCAACGAGCCGGTGCACGTCAACGAGCCGGTGCACG
4444 mHPPD-P277V-RmHPPD-P277V-R CGTGCACCGGCTCGTTGAGAACCAGCACGTGCACCGGCTCGTTGAGAACCAGCA
4545 mHPPD-V282E-FmHPPD-V282E-F CTGCCGCTCAACGAGCCGGAGCACGGCACCAAGCGGCGGCTGCCGCTCAACGAGCCGGAGCACGGCACCAAGCGGCGG
4646 mHPPD-V282E-RmHPPD-V282E-R CGGCTCGTTGAGCGGCAGCGGCTCGTTGAGCGGCAG
4747 mHPPD-L295Q-FmHPPD-L295Q-F GGAGCCAGATACAGACGTACCAGGACCACCACGGCGGCCCGGAGCCAGATACAGACGTACCAGGACCACCACGGCGGCCC
4848 mHPPD-L295Q-RmHPPD-L295Q-R GTACGTCTGTATCTGGCTCCGTACGTCTGTATCTGGCTCC
4949 mHPPD-H297R-FmHPPD-H297R-F ACG TACCTGGACCGCCACGGCGGCCCGGGGGTGACGTACCTGGACCGCCACGGCGGCCCGGGGGTG
5050 mHPPD-H297R-RmHPPD-H297R-R TGGCGGTCCAGGTACGTCTGTATCTGGCTCCGTGGCGGTCCAGGTACGTCTGTATCTGGCTCCG
5151 mHPPD-S310C-FmHPPD-S310C-F CGCGCTGGCCTGCGACGACGTGCTCGGGACCGCGCTGGCCTGCGACGACGTGCTCGGGAC
5252 mHPPD-S310C-RmHPPD-S310C-R ACGTCGTCGCAGGCCAGCGCGATGTGCTGCACGTCGTCGCAGGCCAGCGCGATGTGCTGC
5353 mHPPD-S310V-FmHPPD-S310V-F CGCGCTGGCCGTTGACGACGTGCTCGGGACGCGCGCTGGCCGTTGACGACGTGCTCGGGACG
5454 mHPPD-S310V-RmHPPD-S310V-R GCACGTCGTCAACGGCCAGCGCGATGTGCTGGCACGTCGTCAACGGCCAGCGCGATGTGCTG
5555 mHPPD-S310A-FmHPPD-S310A-F CGCGCTGGCCGCTGACGACGTGCTCGGGACGCGCGCTGGCCGCTGACGACGTGCTCGGGACG
5656 mHPPD-S310A-RmHPPD-S310A-R GCACGTCGTCAGCGGCCAGCGCGATGTGCTGGCACGTCGTCAGCGGCCAGCGCGATGTGCTG
5757 mHPPD-S310G-FmHPPD-S310G-F CGCGCTGGCCGGTGACGACGTGCTCGGGACGCGCGCTGGCCGGTGACGACGTGCTCGGGACG
5858 mHPPD-S310G-RmHPPD-S310G-R GCACGTCGTCACCGGCCAGCGCGATGTGCTGGCACGTCGTCACCGGCCAGCGCGATGTGCTG
5959 mHPPD-S310T-FmHPPD-S310T-F C GCGCTGGCCACTGACGACGTGCTCGGGACGCGCGCTGGCCACTGACGACGTGCTCGGGACG
6060 mHPPD-S310T-RmHPPD-S310T-R GCACGTCGTCAGTGGCCAGCGCGATGTGCTGGCACGTCGTCAGTGGCCAGCGCGATGTGCTG
6161 mHPPD-V313M-FmHPPD-V313M-F CAGCGACGACATGCTCGGGACGCTGAGGGAGATCAGCGACGACATGCTCGGGACGCTGAGGGAGAT
6262 mHPPD-V313M-RmHPPD-V313M-R GTCCCGAGCATGTCGTCGCTGGCCAGCGCGGTCCCGAGCATGTCGTCGCTGGCCAGCGCG
6363 mHPPD-V313I-FmHPPD-V313I-F CAGCGACGACATTCTCGGGACGCTGAGGGAGATCAGCGACGACATTCTCGGGACGCTGAGGGAGAT
6464 mHPPD-V313I-RmHPPD-V313I-R GTCCCGAGAATGTCGTCGCTGGCCAGCGCGGTCCCGAGAATGTCGTCGCTGGCCAGCGCG
6565 mHPPD-V313L-FmHPPD-V313L-F CAGCGACGACCTGCTCGGGACGCTGAGGGAGATCAGCGACGACCTGCTCGGGACGCTGAGGGAGAT
6666 mHPPD-V313L-RmHPPD-V313L-R GTCCCGAGCAGGTCGTCGCTGGCCAGCGCGGTCCCGAGCAGGTCGTCGCTGGCCAGCGCG
6767 mHPPD-G315A-FmHPPD-G315A-F CGACGTGCTCGCTACGCTGAGGGAGATGCCGACGTGCTCGCTACGCTGAGGGAGATGC
6868 mHPPD-G315A-RmHPPD-G315A-R CTCAGCGTAGCGAGCACGTCGTCGCTGGCCCTCAGCGTAGCGAGCACGTCGTCGCTGGCC
6969 mHPPD-G315S-FmHPPD-G315S-F CGACGTGCTCTCGACGCTGAGGGAGATGCCGACGTGCTCTCGACGCTGAGGGAGATGC
7070 mHPPD-G315S-RmHPPD-G315S-R CTCAGCGTCGAGAGCACGTCGTCGCAGGCCCTCAGCGTCGAGAGCACGTCGTCGCAGGCC
7171 mHPPD-G315R-FmHPPD-G315R-F CGACGTGCTCAGGACGCTGAGGGAGATGCCGACGTGCTCAGGACGCTGAGGGAGATGC
7272 mHPPD-G315R-RmHPPD-G315R-R CTCAGCGTCCTGAGCACGTCGTCGCAGGCCCTCAGCGTCCTGAGCACGTCGTCGCAGGCC
7373 mHPPD-T316K-FmHPPD-T316K-F GACGACGTGCTCGGGAAGCTGAGGGAGATGCGGGCGGACGACGTGCTCGGGAAGCTGAGGGAGATGCGGGCG
7474 mHPPD-T316K-RmHPPD-T316K-R CCCGAGCACGTCGTCGCTCCCGAGCACGTCGTCGCT
7575 mHPPD-A325D-FmHPPD-A325D-F TCCGACATGGGCGGCTTCGAGTTCTTGGCGCCTCCGACATGGGCGGCTTCGAGTTCTTGGCGCC
7676 mHPPD-A325D-RmHPPD-A325D-R AAGCCGCCCATGTCGGAGCGCGCCCGCATCTCAAGCCGCCCATGTCGGAGCGCGCCCCGCATCTC
7777 mHPPD-A333P-FmHPPD-A333P-F GCCGCCGCCCAACTACTACGAGCCGCCGCCCAACTACTACGA
7878 mHPPD-A333P-RmHPPD-A333P-R TAGTAGTTGGGCGGCGGCGGCGGCAAGAATAGTAGTTGGGCGGCGGCGGCGGCAAAGAA
7979 mHPPD-P336S-FmHPPD-P336S-F CCAACTACTACGACGGCGTGCGCCAACTACTACGACGGCGTGCG
8080 mHPPD-P336S-RmHPPD-P336S-R CGCACGCCGTCGTAGTAGTTGGGACTCGGCGGCGCCACGCACGCCGTCGTAGTAGTTGGGACTCGGCGGCGCCA
8181 mHPPD-N338K-FmHPPD-N338K-F TTGGCGCCGCCGCCGCCCAAATACTACGACGGCGTGCGGTTGGCGCCGCCGCCGCCCAAATACTACGACGGCGTGCGG
8282 mHPPD-N338K-RmHPPD-N338K-R GGGCGGCGGCGGCGCCAAGGGCGGCGGCGGCGCCAA
8383 mHPPD-N338I-FmHPPD-N338I-F TTGGCGCCGCCGCCGCCCATCTACTACGACGGCGTGCGGTTGGCGCCGCCGCCGCCCATCTACTACGACGGCGTGCGG
8484 mHPPD-N338I-RmHPPD-N338I-R GGGCGGCGGCGGCGCCAAGGGCGGCGGCGGCGCCAA
8585 mHPPD-N338T-FmHPPD-N338T-F TTGGCGCCGCCGCCGCCCACCTACTACGACGGCGTGCGGTTGGCGCCGCCGCCGCCCACCTACTACGACGGCGTGCGG
8686 mHPPD-N338T-RmHPPD-N338T-R GGGCGGCGGCGGCGCCAAGGGCGGCGGCGGCGCCAA
8787 mHPPD-R344K-FmHPPD-R344K-F AACTACTACGACGGCGTGAAGCGGCGCGCCGGGGACGTGAACTACTACGACGGCGTGAAGCGGCGCGCCGGGGACGTG
8888 mHPPD-R344K-RmHPPD-R344K-R CACGCCGTCGTAGTAGTTGGCACGCCGTCGTAGTAGTTGG
8989 mHPPD-R345L-FmHPPD-R345L-F TACGACGGCGTGCGGCTGCGCGCCGGGGACGTGCTCTACGACGGCGTGCGGCTGCGCGCCGGGGACGTGCTC
9090 mHPPD-R345L-RmHPPD-R345L-R CCGCACGCCGTCGTAGTACCGCACGCCGTCGTAGTA
9191 mHPPD-R345Q-FmHPPD-R345Q-F TACGACGGCGTGCGGCAGCGCGCCGGGGACGTGCTCTACGACGGCGTGCGGCAGCGCGCCGGGGACGTGCTC
9292 mHPPD-R345Q-RmHPPD-R345Q-R CCGCACGCCGTCGTAGTACCGCACGCCGTCGTAGTA
9393 mHPPD-R346L-FmHPPD-R346L-F CCGGGGACGTGCTCTCGGACCGGGGACGTGCTCTCGGA
9494 mHPPD-R346L-RmHPPD-R346L-R CGAGAGCACGTCCCCGGCGAGCCGCCGCACGCGAGAGCACGTCCCCGGCGAGCCGCCGCACG
9595 mHPPD-D349G-FmHPPD-D349G-F GGCGTGCTCTCGGAGGAGCAGATCAACGAGTGGGCGTGCTCTCGGAGGAGCAGATCAACGAGTG
9696 mHPPD-D349G-RmHPPD-D349G-R TCCTCCGAGAGCACGCCCCCGGCGCGCCGCCGCACTCCTCCGAGAGCACGCCCCCGGCGCGCCGCCGCAC
9797 mHPPD-N357S-FmHPPD-N357S-F AGCAGATCAGCGAGTGCCAGGAGCTCGGGGTGAGCAGATCAGCGAGTGCCAGGAGCTCGGGGTG
9898 mHPPD-N357S-RmHPPD-N357S-R GCACTCGCTGATCTGCTCCTCCGAGAGCACGTGCACTCGCTGATCTGCTCCTCCGAGAGCACGT
9999 mHPPD-F388L-FmHPPD-F388L-F GCCAACCTTATTCTTGGAGATGATGCCAACCTTATTCTTGGAGATGAT
100100 mHPPD-F388L-RmHPPD-F388L-R CCAAGAATAAGGTTGGCCTGTCTCCTACTGGCCCAAGAATAAGGTTGGCCTGTCTCCTACTGGC
101101 mHPPD-M392I-FmHPPD-M392I-F ACCTTTTTCTTGGAGATAATACAAAGGATTGGGTGCAACCTTTTTCTTGGAGATAATACAAAGGATTGGGTGCA
102102 mHPPD-M392I-RmHPPD-M392I-R CTCCAAGAAAAAGGTTGGCCCTCCAAGAAAAAGGTTTGGCC
103103 mHPPD-S404G-FmHPPD-S404G-F ATGGAGAAGGATGAGGGTGGGCAGGAGTACCAGAAGATGGAGAAGGATGAGGGTGGGCAGGAGTACCAGAAG
104104 mHPPD-S404G-RmHPPD-S404G-R CTCATCCTTCTCCATGCACCCTCATCCTTCTCCATGCACC
105105 mHPPD-S404L-FmHPPD-S404L-F ATGGAGAAGGATGAGCTTGGGCAGGAGTACCAGAAGATGGAGAAGGATGAGCTTGGGCAGGAGTACCAGAAG
106106 mHPPD-S404L-RmHPPD-S404L-R CTCATCCTTCTCCATGCACCCTCATCCTTCTCCATGCACC
107107 mHPPD-S404T-FmHPPD-S404T-F ATGGAGAAGGATGAGACTGGGCAGGAGTACCAGAAGATGGAGAAGGATGAGACTGGGCAGGAGTACCAGAAG
108108 mHPPD-S404T-RmHPPD-S404T-R CTCATCCTTCTCCATGCACCCTCATCCTTCTCCATGCACC
109109 mHPPD-Q406R-FmHPPD-Q406R-F AAGGATGAGAGTGGGCGGGAGTACCAGAAGGGCGGCAAGGATGAGAGTGGGCGGGAGTACCAGAAGGGCGGC
110110 mHPPD-Q406R-RmHPPD-Q406R-R CCCACTCTCATCCTTCTCCCCACTCTCATCCTTCTC
111111 mHPPD-Y408H-FmHPPD-Y408H-F GAGAGTGGGCAGGAGCACCAGAAGGGCGGCTGCGGCGAGAGTGGGCAGGAGCACCAGAAGGGCGGCTGCGGC
112112 mHPPD-Y408H-RmHPPD-Y408H-R CTCCTGCCCACTCTCATCCCTCCTGCCCACTCTCATCC
113113 mHPPD-G415A-FmHPPD-G415A-F GGCTGCGGCGCGTTTGGGAAGGGCAACTTCGGCTGCGGCGCGTTTGGGAAGGGCAACTTC
114114 mHPPD-G415A-RmHPPD-G415A-R CTTCCCAAACGCGCCGCAGCCGCCCTTCTGGCTTCCCAAACGCGCCGCAGCCGCCCTTCTGG
115115 mHPPD-G415N-FmHPPD-G415N-F CGGCTGCGGCAATTTTGGGAAGGGCAACTTCCGGCTGCGGCAATTTTGGGAAGGGCAACTTC
116116 mHPPD-G415N-RmHPPD-G415N-R CCTTCCCAAAATTGCCGCAGCCGCCCTTCTGCCTTCCCAAAATTGCCGCAGCCGCCCTTCTG
117117 mHPPD-G415S-FmHPPD-G415S-F CGGCTGCGGCAGTTTTGGGAAGGGCAACTTCCGGCTGCGGCAGTTTTGGGAAGGGCAACTTC
118118 mHPPD-G415S-RmHPPD-G415S-R CCTTCCCAAAACTGCCGCAGCCGCCCTTCTGCCTTCCCAAAACTGCCGCAGCCGCCCTTCTG
119119 mHPPD-E423G-FmHPPD-E423G-F TTCT CGGGGCTGTTCAAGTCCATTGAGGAGTATGTTCTCGGGGCTGTTCAAGTCCATTGAGGAGTATG
120120 mHPPD-E423G-RmHPPD-E423G-R TTGAACAGCCCCGAGAAGTTGCCCTTCCCAAATTGAACAGCCCCGAGAAGTTGCCCTTCCCAAA
在硝磺草酮筛选鉴定结果的基础上,本发明还检测了上述60种单点突变型HPPD对其他种类的HPPD抑制剂类除草剂的耐受性,包括苯唑草酮、环磺酮和异噁唑草酮。利用上述同样的显色方法,首先对野生型水稻HPPD能够耐受苯唑草酮、环磺酮和异噁 唑草酮的临界浓度进行测定和梯度实验。结果表明,苯唑草酮、环磺酮和异噁唑草酮的临界浓度分别为40μM、1μM和80μM,梯度实验结果表明,上述60种单点突变性HPPD对这3种除草剂均有不同程度的耐受性(图7、12、13)。其中V52I、F68S、L92I、T117I、F132S、Y216C、H297R、S310V、S310A、S310C、S310T、V313I、P336S、R345Q、R346L、M392I对这4种除草剂均有一定程度的耐受性,而其他位点对不同除草剂的耐受性具有差异。如L54F、S120A、Y237N、I238T、L295Q、A333P、R344K、D349G和E423G仅对硝磺草酮具有一定的耐受性;S404G、Q406R和Y408H对硝磺草酮和苯唑草酮具有耐受性;S310G、G415A、G415N、V29A、V266A、G315S和T316K对硝磺草酮和环磺酮具有耐受性;A133T、A156V和V282E对硝磺草酮和异噁唑草酮具有耐受性。P99L对硝磺草酮、苯唑草酮和异噁唑草酮具有耐受性;E206Q、E206V和G415S对硝磺草酮、异噁唑草酮和环磺酮具有耐受性;F388L对硝磺草酮、苯唑草酮和环璜酮具有耐受性。On the basis of the screening and identification results of mesotrione, the present invention also tested the tolerance of the above 60 single-point mutant HPPDs to other types of HPPD inhibitor herbicides, including oxaflutole, cyclosulfonone and Isoxaflutole. Using the same color development method described above, firstly, the critical concentration of wild-type rice HPPD that can tolerate oxaflutole, cyclosulfonone and isoxaflutole was determined and gradient experiments were carried out. The results showed that the critical concentrations of oxaflutole, cyclosulfonone and isoxaflutole were 40 μM, 1 μM and 80 μM, respectively. The gradient experiment results showed that the above 60 single-point mutant HPPDs had different effects on the three herbicides. degree of tolerance (Figures 7, 12, 13). Among them, V52I, F68S, L92I, T117I, F132S, Y216C, H297R, S310V, S310A, S310C, S310T, V313I, P336S, R345Q, R346L, M392I have a certain degree of tolerance to these four herbicides, while other Spots have differences in tolerance to different herbicides. For example, L54F, S120A, Y237N, I238T, L295Q, A333P, R344K, D349G and E423G are only tolerant to mesotrione; S404G, Q406R and Y408H are tolerant to mesotrione and mesotrione ; S310G, G415A, G415N, V29A, V266A, G315S and T316K were mesotrione and cyclosulfonone tolerant; A133T, A156V and V282E were mesotrione and isoxaflutole tolerant. P99L is tolerant to mesotrione, oxaflutole and isoxaflutole; E206Q, E206V and G415S are tolerant to mesotrione, isoxaflutole and cyclosulfonone; F388L is nitroxazone Sulcotrione, oxaflutole, and cyclofenone were tolerated.
实施例4、利用定点突变PCR对单点HPPD基因突变进行组合Example 4. Combining single-site HPPD gene mutations by site-directed mutagenesis PCR
考虑到多点突变有可能提高突变型HPPD蛋白对HPPD抑制剂类除草剂的抗性,本发明在单点突变的基础上,采用定点突变PCR的方法将第一轮显色筛选中有显色的60个单点突变进行叠加,旨在筛选耐受性强于单点突变的双点突变型HPPD,故本轮筛选采用5μM硝磺草酮为起点。Considering that multiple point mutation may improve the resistance of mutant HPPD protein to HPPD inhibitor herbicides, the present invention adopts the method of site-directed mutation PCR on the basis of single point mutation to detect the color development in the first round of color development screening. The 60 single-point mutations of 60 single-point mutations were superimposed, and the purpose was to screen the double-point mutant HPPD with stronger tolerance than single-point mutation. Therefore, this round of screening used 5 μM mesotrione as the starting point.
具体地,首先以含有单点突变的水稻HPPD基因的对应的pET28a-mHPPD为模板(验证显色结果时构建的60个载体,质粒浓度均在200ng/μL到350ng/μL之间),质粒100倍稀释后,等体积混合,作为定点突变的模板,引物采用实施例3中的60对引物分别扩增;用Phanta高保真DNA聚合酶(P505-d1,诺唯赞,中国)进行扩增。PCR反应体系:2×Phanta Max缓冲液,25μL;dNTP Mix(10mM each),1μl;10μM定点突变正向引物,2μL;10μM定点突变反向引物,2μL;Phanta Max Super-Fidelity DNA聚合酶(1U/uL),1μL;100倍稀释的pET28a-mHPPD混合质粒模板,2μL;ddH 2O,17μL。 Specifically, the corresponding pET28a-mHPPD gene containing the single point mutation of the rice HPPD gene was used as the template (60 vectors constructed during the verification of the color development results, the plasmid concentrations were all between 200ng/μL and 350ng/μL), plasmid 100 After doubling dilution, equal volumes were mixed and used as templates for site-directed mutagenesis. The primers were amplified using the 60 pairs of primers in Example 3; Phanta high-fidelity DNA polymerase (P505-d1, Novozymes, China) was used for amplification. PCR reaction system: 2 × Phanta Max buffer, 25 μL; dNTP Mix (10 mM each), 1 μl; 10 μM site-directed mutagenesis forward primer, 2 μL; 10 μM site-directed mutagenesis reverse primer, 2 μL; Phanta Max Super-Fidelity DNA polymerase (1U /uL), 1 μL; 100-fold diluted pET28a-mHPPD mixed plasmid template, 2 μL; ddH 2 O, 17 μL.
PCR反应条件为:PCR reaction conditions are:
Figure PCTCN2021072156-appb-000006
Figure PCTCN2021072156-appb-000006
取20μL扩增产物用限制性内切酶Dpn I(10U/μl,TaKaRa,Japan)消化,以除去甲基化的质粒模板,反应体系和条件:点突变扩增产物,20μL;10×T缓冲液,4μL;Dpn I,1μL;ddH 2O,15μL;37℃,6h;70℃,15min。将热失活后的酶切产物,加入100μL缓慢融化的BL21-Gold(DE3)感受态细胞中,轻轻吹吸混匀,冰上静置30min,42℃水浴热激45s,冰上静置2min,加入500μL不含抗生素的液体LB培养基,37℃恢复培养1h,分别涂布于5个含有50μg/mL卡那霉素的固体LB培养基平板上,37℃倒置培养12h,用高压灭菌的牙签尽可能地挑取所有单克隆菌落,接种到含有5μM硝磺草酮的LB液体培养基的24孔板中,28℃,150rpm振荡培养24h。然后根据它们在酪氨酸代谢过程中产生棕色色素的颜色深浅来评价突变型HPPD活性的强弱。同实施例3中所述过程类似的,蘸取显色的孔中的菌液,接种到含有50μg/mL卡那霉素的液体 LB培养基中,37℃,220rpm振荡培养12h后,提取质粒,利用引物pET28a-SF:TAATACGACTCACTATAGG和pET28a-SR:GCTAGTTATTGCTCAGCGG对得到的质粒进行Sanger测序验证,将测序结果利用Vector NTI软件与野生型水稻HPPD基因进行比对。本轮筛选共挑取约26000个单克隆,在24孔板中进行显色反应,筛选条件同实施例3中所述。共得到19个新的能够耐受5μM硝磺草酮的双点突变型HPPD,包括:Y216C/R345Q、P336S/R346L、V29A/R346L、L295Q/S310V、V29A/S310C、S310C/G415A、S310C/G415N、L295Q/R345Q、L295Q/S310C、L54F/R345Q、L54F/R346L、S120A/S310C、F68S/S310C、V266A/S310C、V266A/R345Q、S310C/M392I、S310C/R345Q、T273S/S310C、L92I/M392I,连同易错PCR筛选到的2种双点突变R345Q/R346L、S310C/V313I,本发明共鉴定到21种对5μM硝磺草酮的有耐受性的双点突变型HPPD(图3、8)。本次测序后得到的双点突变的质粒,继续用于更高浓度除草剂耐受性的鉴定和后续更多点突变型HPPD的筛选的模板。 Take 20 μL of the amplified product and digest it with restriction enzyme Dpn I (10 U/μl, TaKaRa, Japan) to remove the methylated plasmid template. Reaction system and conditions: point mutation amplification product, 20 μL; 10×T buffer solution, 4 μL; Dpn I, 1 μL; ddH 2 O, 15 μL; 37°C, 6h; 70°C, 15min. Add the heat-inactivated enzyme digestion product to 100 μL of slowly thawed BL21-Gold(DE3) competent cells, gently pipette and mix, let stand on ice for 30 min, heat shock in a 42°C water bath for 45 s, and let stand on ice For 2 min, add 500 μL of liquid LB medium without antibiotics, resume the culture at 37 °C for 1 h, spread on 5 solid LB medium plates containing 50 μg/mL kanamycin, and invert at 37 °C for 12 h. A toothpick of bacteria was used to pick all the monoclonal colonies as much as possible, inoculated into a 24-well plate in LB liquid medium containing 5 μM mesotrione, and cultured with shaking at 150 rpm at 28° C. for 24 h. The activity of mutant HPPD was then evaluated according to the shade of brown pigment they produced during tyrosine metabolism. Similar to the process described in Example 3, the bacterial liquid in the colored wells was dipped, inoculated into liquid LB medium containing 50 μg/mL kanamycin, and incubated at 37 ° C and 220 rpm for 12 h, and the plasmid was extracted. , using primers pET28a-SF: TAATACGACTCACTATAGG and pET28a-SR: GCTAGTTATTGCTCAGCGG to verify the obtained plasmid by Sanger sequencing, and use Vector NTI software to compare the sequencing results with wild-type rice HPPD gene. A total of about 26,000 single clones were picked in this round of screening, and the color reaction was carried out in a 24-well plate. The screening conditions were the same as those described in Example 3. A total of 19 new double-point mutant HPPDs resistant to 5μM mesotrione were obtained, including: Y216C/R345Q, P336S/R346L, V29A/R346L, L295Q/S310V, V29A/S310C, S310C/G415A, S310C/G415N , L295Q/R345Q, L295Q/S310C, L54F/R345Q, L54F/R346L, S120A/S310C, F68S/S310C, V266A/S310C, V266A/R345Q, S310C/M392I, S310C/R345Q, L21C0/M392, together with T21C0/M392 The two double point mutations R345Q/R346L and S310C/V313I screened by error-prone PCR, the present invention identified a total of 21 double point mutant HPPDs that were tolerant to 5 μM mesotrione (Figures 3 and 8). The double-point mutant plasmid obtained after this sequencing will continue to be used as a template for the identification of herbicide tolerance at higher concentrations and the subsequent screening of more point mutant HPPD.
具体地,首先分别取1μL得到的双点突变的质粒,分别加入25μL缓慢融化的BL21-Gold(DE3)感受态细胞中,轻轻吹吸混匀,冰上静置30min,42℃水浴热激45s,冰上静置2min,加入500μL不含抗生素的液体LB培养基,37℃恢复培养1h,分别涂布于含有50μg/mL卡那霉素的固体LB培养基平板上,37℃倒置培养12h。利用引物pET28a-SF和OsHPPD-CR对进行菌落PCR(pET28a-SF:TAATACGACTCACTATAGG,OsHPPD-CR:CTAGGATCCTTGAACTGTAGGGGC),每个载体检测8个单克隆。对于每个单独的质粒转化事件,分别挑取3个单克隆,接种到含有更高浓度硝磺草酮的液体LB培养基中,本轮筛选设置10μM、20μM、30μM和40μM共4种浓度,同时设置0μM和5μM作为对照。显色结果表明,被测的21种双点突变形式,包括:R345Q/R346L、Y216C/R345Q、P336S/R346L、V29A/R346L、L295Q/S310V、V29A/S310C、S310C/G415A、S310C/G415N、L295Q/R345Q、L295Q/S310C、L54F/R345Q、L54F/R346L、S120A/S310C、F68S/S310C、V266A/S310C、V266A/R345Q、S310C/M392I、S310C/R345Q、T273S/S310C、L92I/M392I和S310C/V313I在一定程度耐受5μM或5μM以上的硝磺草酮。其中,含有Y216C/R345Q、P336S/R346L、S310C/G415A、L295Q/S310C、L54F/R345Q、S120A/S310C、F68S/S310C、S310C/M392I、S310C/R345Q和S310C/V313I的突变型HPPD对应的孔显色最深,表明其在大肠杆菌中对硝磺草酮的耐受性最佳。利用与上述同样的突变和筛选策略,本发明对于突变位点进一步叠加,即以所有在5μM的硝磺草酮浓度下能够显色的双点突变型HPPD载体作为模板,用60对引物分别扩增筛选耐受性更好的三点突变型HPPD,以此类推,直至五点突变型HPPD。三点突变型共筛选约25000个单克隆,四点突变共筛选约18000个单克隆,五点突变共筛选约9500个单克隆。本发明采用逐轮升高的起始硝磺草酮筛选浓度来筛选耐受性更好的突变型水稻HPPD,即三点突变的起始硝磺草酮筛选浓度为20μM,四点突变为50μM,五点突变为100μM。利用起始筛选浓度得到新的突变型HPPD之后,进一步设置更高的硝磺草酮浓度梯度,鉴定突变型HPPD耐受硝磺草酮的上限。本研究共筛选到28个能够至少耐受20μM硝磺草酮的三点突变型HPPD,包括:Y216C/P277V/R345Q、Y216C/P336S/R345Q、Y216C/R345Q/R346L、V29A/Y216C/R345Q、Y216C/R345Q/G415A、Y216C/R345Q/E423G、L92I/S310C/V313I、V52I/Y216C/R345Q、Y216C/R345Q/F388L、P336S/R345Q/R346L、L295Q/S310C/G415A、L54F/L295Q/S310C、S120A/L295Q/S310C、L295Q/S310C/F388L、L54F/L295Q/R345Q、L92I/L295Q/R345Q、L295Q/S310C/R345Q、L54F/S310C/G415A、L92I/S310C/G415A、V266A/S310C/G415A、S310C/V313I/G415A、L54F/P336S/R346L、L92I/P336S/R346L、S310C/P336S/R346L、V29A/S310C/V313I、 L54F/S310C/V313I、I238T/S310C/V313I、L54F/Y216C/R345Q;14个能够至少耐受50μM硝磺草酮的四点突变型HPPD,包括:V29A/Y216C/P336S/R345Q、Y216C/P336S/R345Q/R346L、V52I/Y216C/P336S/R345Q、Y216C/P336S/R345Q/E423G、Y216C/S310C/R345Q/G415A、L54F/Y216C/S310C/R345Q、Y216C/P277V/S310C/R345Q、V52I/Y216C/S310C/R345Q、Y216C/S310C/R345Q/F388L、S310C/P336S/R345Q/R346L、V29A/L295Q/S310C/G415A、V52I/L295Q/S310C/G415A、L54F/L295Q/S310C/G415A、L295Q/S310C/M392I/G415A;3个能够至少耐受300μM硝磺草酮的五点突变型HPPD,包括:Y216C/S310C/P336S/R345Q/R346L、V29A/Y216C/S310C/P336S/R345Q和V52I/Y216C/S310C/P336S/R345Q(图4-6)。Specifically, first take 1 μL of the obtained double-point mutant plasmids, respectively, add 25 μL of slowly thawed BL21-Gold (DE3) competent cells, gently pipette and mix, let stand on ice for 30 min, and heat shock in a 42°C water bath. 45s, stand on ice for 2min, add 500μL of liquid LB medium without antibiotics, resume culture at 37°C for 1h, spread on solid LB medium plates containing 50μg/mL kanamycin, and invert at 37°C for 12h . Colony PCR was performed using the primer pair pET28a-SF and OsHPPD-CR (pET28a-SF: TAATACGACTCACTATAGG, OsHPPD-CR: CTAGGATCCTTGAACTGTAGGGGC) and 8 single clones were detected per vector. For each individual plasmid transformation event, 3 single clones were picked and inoculated into liquid LB medium containing a higher concentration of mesotrione. In this round of screening, a total of 4 concentrations of 10 μM, 20 μM, 30 μM and 40 μM were set. Both 0 μM and 5 μM were set as controls. The chromogenic results showed that the tested 21 double point mutation forms, including: R345Q/R346L, Y216C/R345Q, P336S/R346L, V29A/R346L, L295Q/S310V, V29A/S310C, S310C/G415A, S310C/G415N, L295Q /R345Q, L295Q/S310C, L54F/R345Q, L54F/R346L, S120A/S310C, F68S/S310C, V266A/S310C, V266A/R345Q, S310C/M392I, S310C/R345Q, T273S/S310C, L9 Mesotrione at or above 5 μM was tolerated to some extent. Among them, there are wells corresponding to mutant HPPD of Y216C/R345Q, P336S/R346L, S310C/G415A, L295Q/S310C, L54F/R345Q, S120A/S310C, F68S/S310C, S310C/M392I, S310C/R345Q and S310C/V313I The darkest color indicates that it has the best tolerance to mesotrione in E. coli. Using the same mutation and screening strategy as above, the present invention further superimposes the mutation sites, that is, all double-point mutant HPPD vectors that can develop color at a concentration of 5 μM mesotrione are used as templates, and 60 pairs of primers are used to amplify the The three-point mutant HPPD with better tolerance should be screened additionally, and so on, until the five-point mutant HPPD. A total of about 25,000 single clones were screened for three-point mutation, about 18,000 single clones were screened for four-point mutation, and about 9,500 single clones were screened for five-point mutation. In the present invention, the initial mesotrione screening concentration that increases round by round is used to screen the mutant rice HPPD with better tolerance, that is, the initial mesotrione screening concentration for three-point mutation is 20 μM, and the initial mesotrione screening concentration for four-point mutation is 50 μM , the five-point mutation was 100 μM. After obtaining a new mutant HPPD using the initial screening concentration, a higher mesotrione concentration gradient was further set to identify the upper limit of the mesotrione tolerance of the mutant HPPD. A total of 28 three-point mutant HPPDs that can tolerate at least 20μM mesotrione were screened in this study, including: Y216C/P277V/R345Q, Y216C/P336S/R345Q, Y216C/R345Q/R346L, V29A/Y216C/R345Q, Y216C /R345Q/G415A, Y216C/R345Q/E423G, L92I/S310C/V313I, V52I/Y216C/R345Q, Y216C/R345Q/F388L, P336S/R345Q/R346L, L295Q/S310C/G415A, L295S310, L54SQF/L29 /S310C, L295Q/S310C/F388L, L54F/L295Q/R345Q, L92I/L295Q/R345Q, L295Q/S310C/R345Q, L54F/S310C/G415A, L92I/S310G/G415A, V266A, S3105S/G41 , L54F/P336S/R346L, L92I/P336S/R346L, S310C/P336S/R346L, V29A/S310C/V313I, L54F/S310C/V313I, I238T/S310C/V313I, L54F/Y216C/R345Q can withstand at least 14; Four-point mutant HPPD of mesotrione, including: V29A/Y216C/P336S/R345Q, Y216C/P336S/R345Q/R346L, V52I/Y216C/P336S/R345Q, Y216C/P336S/R345Q/E423G, Y216C/S310C/R345Q /G415A, L54F/Y216C/S310C/R345Q, Y216C/P277V/S310C/R345Q, V52I/Y216C/S310C/R345Q, Y216C/S310C/R345Q/F388L, S310C/P336S/R345Q/R35Q/L346L, V29G/R35Q/S1029 , V52I/L295Q/S310C/G415A, L54F/L295Q/S310C/G415A, L295Q/S310C/M392I/G415A; 3 five-point mutant HPPDs that can tolerate at least 300μM mesotrione, including: Y216C/S310C/P336S /R345Q/R346L, V29A/Y216C/S310C/P336S/R345Q and V52I/Y216C/S310C/P33 6S/R345Q (Figure 4-6).
在本发明鉴定到的四点突变型HPPD中,14个能够至少耐受50μM硝磺草酮的四点突变型HPPD,与单独的三点突变型HPPD最高能够耐受20μM硝磺草酮,以及其他单点突变型HPPD最高能够耐受10μM硝磺草酮相比,该14个四点突变型HPPD的效果远远优于三点突变型和单点突变型耐受能力之和;同时,五点突变型Y216C/S310C/P336S/R345Q/R346L和V29A/Y216C/S310C/P336S/R345Q能够耐受300μM的硝磺草酮,其中,四点突变型Y216C/P336S/R345Q/R346L和V29A/Y216C/P336S/R345Q能够耐受150μM的硝磺草酮,而单点突变型S310C仅能耐受10μM硝磺草酮,因此,该五点突变型Y216C/S310C/P336S/R345Q/R346L和V29A/Y216C/S310C/P336S/R345Q效果远远优于两者之和。Among the four-point mutant HPPDs identified in the present invention, 14 four-point mutant HPPDs can tolerate at least 50 μM mesotrione, and the single three-point mutant HPPD can tolerate up to 20 μM mesotrione, and Compared with other single-point mutant HPPDs that can tolerate up to 10 μM mesotrione, the effect of the 14 four-point mutant HPPDs is far better than the sum of the three-point mutant and single-point mutants tolerance; at the same time, five The point mutants Y216C/S310C/P336S/R345Q/R346L and V29A/Y216C/S310C/P336S/R345Q were able to tolerate 300 μM mesotrione, among which the four point mutants Y216C/P336S/R345Q/R346L and V29A/Y216C/ P336S/R345Q can tolerate 150 μM mesotrione, while the single point mutant S310C can only tolerate 10 μM mesotrione. Therefore, the five point mutants Y216C/S310C/P336S/R345Q/R346L and V29A/Y216C/ The effect of S310C/P336S/R345Q is far better than the sum of the two.
利用苯唑草酮对上述双点及多点组合进行抗性验证。双点突变利用40μM、60μM、80μM、100μM和120μM等5个浓度进行显色,结果表明R345Q/R346L、Y216C/R345Q、P336S/R346L、V29A/R346L、S310C/G415A、S310C/G415N、L295Q/R345Q、F68S/S310C、V266A/S310C、V266A/R345Q和S310C/V313I的突变型HPPD对应的孔显色最深,表明其在大肠杆菌中对苯唑草酮的耐受性最佳。三点突变利用50μM、100μM、150μM、200μM和250μM等5个浓度进行显色,结果表明Y216C/P336S/R345Q、Y216C/R345Q/R346L、V29A/Y216C/R345Q、L92I/S310C/V313I、P336S/R345Q/R346L、L54F/L295Q/S310C、L92I/L295Q/R345Q/和L54F/P336S/R346L的耐受性最佳;四点突变利用100μM、200μM、300μM、400μM和500μM等5个浓度进行显色结果表明Y216C/P336S/R345Q/R346L、V52I/Y216C/P336S/R345Q、S310C/P336S/R345Q/R346L、V29A/L295Q/S310C/G415A和V52I/L295Q/S310C/G415A的突变型HPPD对应的孔显色最深,表明其在大肠杆菌中对苯唑草酮的耐受性最佳;五点突变利用200μM、400μM、600μM、800μM和1000μM等5个浓度进行显色。同时设置0μM作为对照。结果表明组合Y216C/S310C/P336S/R345Q/R346L和V52I/Y216C/S310C/P336S/R345Q耐受性较好(图8-11)。另外,利用异噁唑草酮对上述五点组合进行抗性验证,结果表明组合Y216C/S310C/P336S/R345Q/R346L和V29A/Y216C/S310C/P336S/R345Q的耐受性最好,在800μM异噁唑草酮的筛选条件能够显色,V52I/Y216C/S310C/P336S/R345Q能够耐受在600μM异噁唑草酮(图14)。The above two-point and multi-point combinations were used to verify the resistance of oxaflutole. The double point mutation was developed at five concentrations of 40 μM, 60 μM, 80 μM, 100 μM and 120 μM, and the results showed that R345Q/R346L, Y216C/R345Q, P336S/R346L, V29A/R346L, S310C/G415A, S310C/G415N, L295Q/R345Q , F68S/S310C, V266A/S310C, V266A/R345Q and S310C/V313I mutant HPPD corresponding to the darkest wells, indicating that it has the best tolerance to oxaflutole in E. coli. The three-point mutation was developed at five concentrations of 50 μM, 100 μM, 150 μM, 200 μM and 250 μM. /R346L, L54F/L295Q/S310C, L92I/L295Q/R345Q/ and L54F/P336S/R346L were the best tolerated; the four-point mutation was developed at five concentrations of 100 μM, 200 μM, 300 μM, 400 μM and 500 μM. The holes corresponding to mutant HPPDs of Y216C/P336S/R345Q/R346L, V52I/Y216C/P336S/R345Q, S310C/P336S/R345Q/R346L, V29A/L295Q/S310C/G415A and V52I/L295Q/S310C/G415A have the deepest color rendering. It showed that it had the best tolerance to oxaflutole in Escherichia coli; the five-point mutation was developed at five concentrations of 200 μM, 400 μM, 600 μM, 800 μM and 1000 μM. Also set 0 μM as a control. The results showed that the combination Y216C/S310C/P336S/R345Q/R346L and V52I/Y216C/S310C/P336S/R345Q were well tolerated (Figures 8-11). In addition, the resistance of the above five-point combination was verified by isoxaflutole, and the results showed that the combination Y216C/S310C/P336S/R345Q/R346L and V29A/Y216C/S310C/P336S/R345Q had the best tolerance, at 800 μM isotope. The screening conditions for oxaflutole were able to develop color, and V52I/Y216C/S310C/P336S/R345Q could tolerate isoxaflutole at 600 μM ( FIG. 14 ).
实施例5、HPPD蛋白的表达与纯化Example 5. Expression and purification of HPPD protein
将100ng的水稻野生型HPPD基因表达载体质粒pET28a-HPPD-2和相应的单点或双点或多点的水稻突变型HPPD表达载体质粒pET-mHPPD分别加入到100μL经过缓慢融化的大肠杆菌菌株BL21-Gold(DE3)的感受态细胞中(诺唯赞,中国),冰上放置30min,42℃水浴60s,冰上放置2min,加入500μL不含抗生素的液体LB培养基,37℃振荡恢复培养1h,取将100μL恢复培养产物,均匀涂布于含有50μg/mL卡那霉 素的固体LB培养基平板上,置于37℃温箱倒置培养12h,挑取8个单克隆菌落,利用引物pET-SF和OsHPPD-CR进行菌落PCR(正向引物pET28a-SF:TAATACGACTCACTATAGG,反向引物OsHPPD-CR:CTAGGATCCTTGAACTGTAGGGGC),正确的扩增产物大小约为1.4kb,随后利用1%的琼脂糖凝胶电泳对PCR产物进行检测,如果检测到特异的扩增条带,其相对应的单菌落即为含有目标质粒的阳性转化子。用灭菌的牙签挑取1个验证正确的单菌落,转接至盛有3mL含有50μg/mL卡那霉素的液体LB培养基的试管中,置于37℃摇床,180rpm水平振荡培养5h,转接1mL菌液至盛有100mL含有50μg/mL卡那霉素的液体LB培养基的锥形瓶中,置于37℃摇床,180rpm水平振荡培养至OD 600在0.4-0.6之间,加入25μL 1M IPTG,转移至16℃摇床,180rpm水平振荡诱导15h,8000rpm离心2min收集菌体,用4℃预冷的10mM pH7.4的PBS缓冲液洗涤菌体2次,用10mL 10mM pH7.4的PBS缓冲液重悬菌体,冰上超声破碎10min,超声条件为:功率15%,超声1s,间隔2s,超声10min;超声破碎后12000rpm离心30min,去除沉淀,上清液即为粗酶液。利用Co 2+层析柱(GE,USA)按照说明书纯化对粗酶液进行纯化,用含有10mM咪唑的缓冲液冲洗层析柱去除杂质,用含有500mM咪唑的洗脱缓冲液洗脱,得到目的蛋白。 Add 100ng of the wild-type rice HPPD gene expression vector plasmid pET28a-HPPD-2 and the corresponding single-point or double-point or multi-point rice mutant HPPD expression vector plasmid pET-mHPPD to 100 μL of slowly thawed E. coli strain BL21, respectively. -Gold(DE3) competent cells (Novizan, China), placed on ice for 30min, water bath at 42°C for 60s, placed on ice for 2min, added 500μL of liquid LB medium without antibiotics, and recovered with shaking at 37°C for 1h , take 100 μL of the recovery culture product, spread it evenly on a solid LB medium plate containing 50 μg/mL kanamycin, place it in a 37 °C incubator and invert for 12 h, pick 8 monoclonal colonies, and use the primer pET- SF and OsHPPD-CR were subjected to colony PCR (forward primer pET28a-SF: TAATACGACTCACTATAGG, reverse primer OsHPPD-CR: CTAGGATCCTTGAACTGTAGGGGC), the correct amplified product size was about 1.4kb, and then used 1% agarose gel electrophoresis to identify The PCR product is detected. If a specific amplified band is detected, the corresponding single colony is a positive transformant containing the target plasmid. Pick a single colony that is verified to be correct with a sterilized toothpick, transfer it to a test tube containing 3 mL of liquid LB medium containing 50 μg/mL kanamycin, place it on a shaker at 37 °C, and cultivate it with horizontal shaking at 180 rpm for 5 h , transfer 1 mL of bacterial liquid to a conical flask containing 100 mL of liquid LB medium containing 50 μg/mL kanamycin, place it on a shaker at 37 °C, and horizontally shake at 180 rpm until the OD 600 is between 0.4-0.6. Add 25 μL of 1M IPTG, transfer to a shaker at 16 °C, induce horizontal shaking at 180 rpm for 15 h, centrifuge at 8000 rpm for 2 min to collect the cells, wash the cells twice with 10 mM pH7. 4 of PBS buffer to resuspend the cells, and ultrasonically disrupt them on ice for 10 min. The ultrasonic conditions are: power 15%, ultrasonic for 1 s, interval for 2 s, and ultrasonic for 10 min; after ultrasonication, centrifuge at 12,000 rpm for 30 min to remove the precipitate, and the supernatant is the crude enzyme liquid. The crude enzyme solution was purified by Co 2+ chromatography column (GE, USA) according to the instructions. The column was washed with a buffer containing 10 mM imidazole to remove impurities, and eluted with an elution buffer containing 500 mM imidazole to obtain the objective protein.
SDS-PAGE检测纯化后蛋白的纯度。利用8%的变性聚丙烯酰胺凝胶(金斯瑞,中国)对纯化后的蛋白进行电泳,电泳条件为120V恒压120min。电泳结束后,取下凝胶,置于干净的玻璃培养皿中,蒸馏水清洗一次,用0.05%的考马斯亮蓝染液(50%v/v甲醇,10%v/v冰乙酸,0.05%m/v考马斯亮蓝R-250)染色4h,用脱色液(30%v/v甲醇,10%v/v冰乙酸)脱色大约6h(其间换两次新的脱色液),染色和脱色过程均在室温下在水平摇床60rpm缓慢振荡。如果检测到大小正确的单一条带,则表示蛋白纯化效果较好,继续进行后续实验。The purity of the purified protein was checked by SDS-PAGE. The purified protein was electrophoresed on an 8% denaturing polyacrylamide gel (GenScript, China), and the electrophoresis condition was 120 V under constant pressure for 120 min. After electrophoresis, the gel was removed, placed in a clean glass petri dish, washed once with distilled water, and stained with 0.05% Coomassie brilliant blue (50% v/v methanol, 10% v/v glacial acetic acid, 0.05% m /v Coomassie Brilliant Blue R-250) was stained for 4h, and decolorized with decolorizing solution (30%v/v methanol, 10%v/v glacial acetic acid) for about 6h (with two new decolorizing solutions in between), both the dyeing and decolorization process were Shake slowly on a horizontal shaker at 60 rpm at room temperature. If a single band of the correct size is detected, it means that the protein purification effect is good, and the subsequent experiments are continued.
将纯化后的蛋白放入透析袋(源叶,中国)于4℃条件下进行透析,透析液为10mM PBS(pH7.4)缓冲液,透析10~12h,期间更换两次透析液。透析后的蛋白利用BCA蛋白定量试剂盒(生工,中国)进行浓度测定。对应的突变型HPPD蛋白的浓度为:WT 138.5ng/μL;V52I 237.8ng/μL;F68S 148.2ng/μL;L92I 176.0ng/μL;T117I 215.9ng/μL;F132S 157.0ng/μL;Y216C 170.4ng/μL;V266A 180.7ng/μL;L295Q 163.5ng/μL;H297R 265.0ng/μL;S310A 251.3ng/μL;S310C 243.7ng/μL;S310V 263.5ng/μL;S310T188.7ng/μL;V313I 296.8ng/μL;P336S 195.0ng/μL;R345Q 168.4ng/μL;G415A 244.2ng/μL;R346L 332.7ng/μL;M392I 140.4ng/μL;Y216C/R345Q 112.8ng/μL;P336S/R346L220.5ng/μL;L295Q/S310C 151.8ng/μL;L295Q/R345Q 233.5ng/μL;S310C/G415A 233.0ng/μL;S310C/R345Q 378.9ng/μL;F68S/S310C 212.6ng/μL;S310C/V313I 235.8ng/μL;S310C/M392I 198.2ng/μL;L92I/M392I 285.1ng/μL;Y216C/P336S/R345Q 352.6ng/μL;Y216C/R345Q/R346L 284.9ng/μL;L295Q/S310C/R345Q 192.5ng/μL;S310C/V313I/G415A 255.3ng/μL;L92I/S310C/V313I 182.3ng/μL;Y216C/P336S/R345Q/R346L 167.9ng/μL;V52I/Y216C/P336S/R345Q 295.2ng/μL;V52I/L295Q/S310C/G415A 302.7ng/μL;L295Q/S310C/M392I/G415A 285.2ng/μL;Y216C/S310C/P336S/R345Q/R346L 266.3ng/μL;V52I/Y216C/S310C/P336S/R345Q 234.6ng/μL。The purified protein was put into a dialysis bag (Yuanye, China) for dialysis at 4°C. The dialysate was 10 mM PBS (pH 7.4) buffer, and dialyzed for 10-12 h, during which the dialysate was replaced twice. The protein concentration after dialysis was determined using BCA protein quantification kit (Sangong, China). The corresponding concentrations of mutant HPPD proteins are: WT 138.5ng/μL; V52I 237.8ng/μL; F68S 148.2ng/μL; L92I 176.0ng/μL; T117I 215.9ng/μL; F132S 157.0ng/μL; μL; V266A 180.7ng/μL; L295Q 163.5ng/μL; H297R 265.0ng/μL; S310A 251.3ng/μL; S310C 243.7ng/μL; S310V 263.5ng/μL; P336S 195.0ng/μL; R345Q 168.4ng/μL; G415A 244.2ng/μL; R346L 332.7ng/μL; M392I 140.4ng/μL; Y216C/R345Q 112.8ng/μL; ng/μL; L295Q/R345Q 233.5ng/μL; S310C/G415A 233.0ng/μL; S310C/R345Q 378.9ng/μL; F68S/S310C 212.6ng/μL; S310C/V313I 235.8ng/μL; μL; L92I/M392I 285.1ng/μL; Y216C/P336S/R345Q 352.6ng/μL; Y216C/R345Q/R346L 284.9ng/μL; L295Q/S310C/R345Q 192.5ng/μL; S310C/V313I/μL; L92I/S310C/V313I 182.3ng/μL; Y216C/P336S/R345Q/R346L 167.9ng/μL; V52I/Y216C/P336S/R345Q 295.2ng/μL; V52I/L295Q/S310C/G415A 302.7ng/μL; M392I/G415A 285.2ng/μL; Y216C/S310C/P336S/R345Q/R346L 266.3ng/μL; V52I/Y216C/S310C/P336S/R345Q 234.6ng/μL.
实施例6、HPPD酶活性及酶动力学参数的测定Example 6. Determination of HPPD enzyme activity and enzyme kinetic parameters
1)设定对羟基苯丙酮酸(4-HPP)的底物浓度为5.0~100μM(分别包括5、10、20、40、60、80、100μM),配制1mL的标准酶促反应体系:1mM抗坏血酸、10μM Fe 2+、 10mM PBS(pH7.4)、适量的HPPD蛋白,30℃下反应1min后用10%(v/v)TFA终止反应,控制底物转化率不超过10%。利用高效液相色谱(HPLC)检测产物尿黑酸(homogentisic acid,HGA)的生成量,利用Origin Pro 8.0软件非线性拟合Michaelis Menten方程,并计算酶动力学参数。 1) Set the substrate concentration of p-hydroxyphenylpyruvate (4-HPP) to 5.0-100 μM (including 5, 10, 20, 40, 60, 80, and 100 μM, respectively), and prepare 1 mL of standard enzymatic reaction system: 1 mM Ascorbic acid, 10 μM Fe 2+ , 10 mM PBS (pH 7.4), an appropriate amount of HPPD protein, 10% (v/v) TFA was used to terminate the reaction after the reaction at 30°C for 1 min, and the substrate conversion rate was controlled not to exceed 10%. The production of homogentisic acid (HGA) was detected by high performance liquid chromatography (HPLC), the Michaelis Menten equation was nonlinearly fitted by Origin Pro 8.0 software, and the kinetic parameters of the enzyme were calculated.
2)HPPD抑制剂类除草剂对HPPD蛋白抑制能力IC50的测定2) Determination of the ability of HPPD inhibitor herbicides to inhibit HPPD protein IC50
先将不同浓度的硝磺草酮、苯唑草酮、异噁唑草酮(0、2、4、6、10μM),环磺酮(0、0.2、0.4、0.5、0.8μM)、分别与HPPD蛋白在30℃条件下预孵育30min以达到平衡,然后添加到同步骤1)的酶促反应体系中,于30℃条件下再反应10min后用10%(v/v)的TFA终止酶反应。通过HPLC检测产物HGA生成的结果,计算相对于抑制剂浓度为0μM时其他抑制剂浓度下的相对酶活。最终HPPD的半抑制浓度(IC50)值通过以下方程式进行非线性回归拟合来计算:First, different concentrations of mesotrione, oxaflutole, isoxaflutole (0, 2, 4, 6, 10 μM) and cyclosulfonone (0, 0.2, 0.4, 0.5, 0.8 μM) were mixed with The HPPD protein was pre-incubated at 30°C for 30min to reach equilibrium, then added to the enzymatic reaction system as in step 1), and the enzymatic reaction was terminated with 10% (v/v) TFA after the reaction was carried out at 30°C for another 10min. . The results of product HGA production were detected by HPLC, and the relative enzyme activities at other inhibitor concentrations were calculated relative to the inhibitor concentration of 0 μM. The half inhibitory concentration (IC50) value of the final HPPD was calculated by nonlinear regression fitting of the following equation:
y=100/[1+10^(x-lgIC50)]y=100/[1+10^(x-lgIC50)]
其中y是不同抑制剂浓度下的相对酶活,x是抑制剂浓度值的对数。where y is the relative enzyme activity at different inhibitor concentrations and x is the logarithm of the inhibitor concentration value.
酶反应结束后,加入等体积的色谱甲醇终止反应,用0.22μm有机系滤膜过滤后进行高效液相分析,检测产物HGA的产生情况。高效液相色谱仪的型号为Alliance e2695(Waters,USA),使用的色谱柱为ZORBAX SB-Aq 5μ4.6×250mm(Aglient,USA)反相色谱柱。进样量为20μL,高效液相的分析条件为:先5%~50%甲醇水(buffer A为含0.1%甲酸的水,buffer B为甲醇)梯度10min,然后5%甲醇水等度5min;流速为1mL/min;柱温为30℃。HGA的检测波长为292nm。After the enzymatic reaction was completed, an equal volume of chromatographic methanol was added to terminate the reaction, and after filtration with a 0.22 μm organic filter membrane, high-performance liquid phase analysis was performed to detect the production of the product HGA. The model of the high performance liquid chromatograph is Alliance e2695 (Waters, USA), and the chromatographic column used is a ZORBAX SB-Aq 5μ4.6×250mm (Aglient, USA) reversed-phase chromatographic column. The injection volume was 20 μL, and the analysis conditions of HPLC were as follows: firstly, 5% to 50% methanol water (buffer A was water containing 0.1% formic acid, buffer B was methanol) gradient for 10 minutes, and then 5% methanol water was isocratic for 5 minutes; The flow rate was 1 mL/min; the column temperature was 30°C. The detection wavelength of HGA is 292 nm.
以上的酶活检测相关数据参见表3。See Table 3 for the data related to the above enzyme activity detection.
表3table 3
Figure PCTCN2021072156-appb-000007
Figure PCTCN2021072156-appb-000007
Figure PCTCN2021072156-appb-000008
Figure PCTCN2021072156-appb-000008
Figure PCTCN2021072156-appb-000009
Figure PCTCN2021072156-appb-000009
从以上酶动力学相关参数测定结果可以看出,相对于野生型(WT),绝大多数突变型HPPD的相对与HPPD抑制剂类除草剂的IC50值均有明显的提高。尽管有的突变型HPPD的酶催化活性可能受到一定的影响,但是IC50的提高仍然可以赋予突变型HPPD对相应HPPD抑制剂类除草剂的耐受性,这从大肠杆菌的显色实验的结果和突变型HPPD的转基因水稻对不同种类HPPD抑制剂类除草剂的耐受性提高两个方面可以看出来。It can be seen from the measurement results of the above parameters related to enzyme kinetics that compared with the wild type (WT), the relative IC50 values of most mutant HPPD and HPPD inhibitor herbicides are significantly improved. Although the enzymatic catalytic activity of some mutant HPPDs may be affected to a certain extent, the increase of IC50 can still confer tolerance to the corresponding HPPD inhibitor herbicides in mutant HPPDs, which is based on the results of the chromogenic experiments of Escherichia coli and the The improved tolerance of transgenic rice with mutant HPPD to different kinds of HPPD inhibitor herbicides can be seen from two aspects.
具体地,其中,超过50%的单点突变型HPPD的IC50至少比野生型HPPD高出10%。尤其地,S310C和R345Q单点突变型HPPD相对于硝磺草酮的IC50增幅最大,超过20%;F68S和S310C单点突变型HPPD相对于苯唑草酮的IC50增幅最大,超过30%;R345Q和R346L单点突变型HPPD相对于异噁唑草酮的IC50增幅最大,超过20%;野生型水稻HPPD对环磺酮非常敏感,绝大多数单点突变型HPPD相对于环磺酮对IC50均有不同程度的提高。Specifically, among them, more than 50% of the single-point mutant HPPDs have IC50s that are at least 10% higher than wild-type HPPDs. In particular, S310C and R345Q single-point mutant HPPD showed the largest increase in IC50 relative to mesotrione, exceeding 20%; F68S and S310C single-point mutant HPPD had the largest increase in IC50 relative to oxaflutole, exceeding 30%; R345Q And R346L single-point mutant HPPD had the largest increase in IC50 relative to isoxaflutole, more than 20%; wild-type rice HPPD was very sensitive to cyclosulfonone, and most single-point mutant HPPDs had higher IC50 than cyclosulfonone. There are varying degrees of improvement.
双点突变型HPPD相对于不同HPPD抑制剂类除草剂的IC50的增幅明显高于单点突变型HPPD。其中,S310C/R345Q相对于硝磺草酮的IC50增幅最大,达到了野生型的1.8倍;L295Q/R345Q相对于苯唑草酮和环磺酮的IC50增幅最大,分别达到了野生型的2.94倍和5.5倍;P336S/R346L相对于异噁唑草酮的IC50增幅最大,分别达到了野生型的1.67倍。三点突变型HPPD相对于不同HPPD抑制剂类除草剂的IC50的增幅与双点突变型HPPD相仿,也明显高于单点突变型。Compared with different HPPD inhibitor herbicides, the increase of IC50 of double-point mutant HPPD was significantly higher than that of single-point mutant HPPD. Among them, S310C/R345Q has the largest increase in IC50 relative to mesotrione, reaching 1.8 times that of the wild type; L295Q/R345Q has the largest increase in IC50 relative to oxaflutole and cyclosulfonone, reaching 2.94 times that of the wild type, respectively. Compared with isoxaflutole, the IC50 of P336S/R346L increased the most, reaching 1.67 times that of the wild type, respectively. The increase in IC50 of the three-point mutant HPPD relative to different HPPD inhibitor herbicides was similar to that of the two-point mutant HPPD, and was also significantly higher than that of the single-point mutant.
四点和五点突变型HPPD相对于不同HPPD抑制剂类除草剂的IC50的增幅更为明显。其中,Y216C/R345Q/P336S/R346L相对于硝磺草酮和苯唑草酮的IC50分别达到野生型的2.5倍和3.8倍,Y216C/R345Q/P336S/R346L/S310C的五点突变型HPPD的IC50提高幅度更大,分别达到野生型的2.8倍和4.6倍。而对于环磺酮和异噁唑草酮的,四点和五点突变型HPPD相比于双点和三点突变,IC50的增幅并不明显。The increase in IC50 of four-point and five-point mutant HPPD was more obvious than that of different HPPD inhibitor herbicides. Among them, the IC50 of Y216C/R345Q/P336S/R346L was 2.5 times and 3.8 times higher than that of the wild type compared to mesotrione and oxaflutole, respectively, and the IC50 of the five-point mutant HPPD of Y216C/R345Q/P336S/R346L/S310C The increase was even greater, reaching 2.8 times and 4.6 times that of the wild type, respectively. For cyclosulfonone and isoxaflutole, the four- and five-point mutant HPPD did not increase significantly in IC50 compared with two- and three-point mutants.
综上可以看出,对于不同种类的HPPD抑制剂类除草剂,不同突变形式的HPPD的耐受性有所差异。总的来说,随着突变位点数目的累加,突变型HPPD对HPPD抑制剂类除草剂的IC50值逐步增加,反映出相应突变型HPPD对除草剂对耐受性逐步增强。其中,对于环磺酮和异噁唑草酮四点和五点突变的耐受性明显好于单点、双点和三点突变;对于环磺酮和异噁唑草酮,双点和三点突变的耐受性明显好于单点突变,但进一步增加突变位点数目对耐受性增加对作用不大。上述结果为后续转基因实验和应用提供了有价值的参考。To sum up, it can be seen that for different types of HPPD inhibitor herbicides, the tolerance of different mutant forms of HPPD is different. In general, with the accumulation of the number of mutation sites, the IC50 values of mutant HPPD to HPPD inhibitor herbicides gradually increased, reflecting the gradual increase in the tolerance of the corresponding mutant HPPD to herbicides. Among them, the tolerance of four- and five-point mutations for cyclosulfonone and isoxaflutole was significantly better than that of single-point, double-point and three-point mutations; for cyclosulfonone and isoxaflutole, the two- and three-point mutations The tolerance of point mutation is obviously better than that of single point mutation, but further increasing the number of mutation sites has little effect on the increase of tolerance. The above results provide a valuable reference for subsequent transgenic experiments and applications.
此外,值得注意的是含有M392I的单点突变和双点突变型HPPD除了IC50值有所增大,本底酶催化速率也明显高于野生型,约为野生型的2倍,说明M392I这种突变形式即使在与野生型HPPD相当的表达水平下也有较好的应用潜力,特别适合利用基因编辑等技术对HPPD基因进行原位改造。In addition, it is worth noting that in addition to the increase in IC50 value of HPPD containing M392I single point mutation and double point mutation, the catalytic rate of background enzyme is also significantly higher than that of wild type, which is about 2 times that of wild type, indicating that M392I is a The mutant form has good application potential even at the expression level equivalent to that of the wild-type HPPD, and is especially suitable for in situ transformation of the HPPD gene using techniques such as gene editing.
实施例7、突变型HPPD基因的水稻表达载体的构建和农杆菌转化Example 7. Construction of rice expression vector of mutant HPPD gene and transformation of Agrobacterium
根据水稻HPPD基因的编码区序列,设计两端添加酶切位点的基因特异性引物,HPPD-1:GTTACTTCTGCACTAGGTACCATGCCTCCCACTCCCACC和HPPD-2:CTTAGAATTCCCGGGGATCCCTAGGATCCTTGAACTGTAGGGGC,综合单点到五点 显色结果,选则8种单点突变型HPPD(F68S、F132S、V266A、S310C、V313I、P336S、R345Q和M392I),9种双点突变型HPPD(Y216C/R345Q、P336S/R346L、L295Q/S310C、F68S/S310C、S310C/R345Q、S310C/G415A、S310C/V313I、L295Q/R345Q、S310C/M392I)、3种三点突变型HPPD(Y216C/P336S/R345Q、Y216C/R345Q/R346L、L92I/S310C/V313I)和3种五点突变型HPPD(Y216C/S310C/P336S/R345Q/R346L、V29A/Y216C/S310C/P336S/R345Q和V52I/Y216C/S310C/P336S/R345Q),以含有相应突变的pET28a-mHPPD载体为模板,扩增含有相应突变型HPPD基因编码区DNA序列,1%琼脂糖凝胶电泳后,利用前述试剂盒切胶纯化,用限制性内切酶BamH I和Kpn I进行双酶切;,通过同源重组试剂盒(诺唯赞,中国),将HPPD片段连入pCambia1390-ZmPUBI载体(ZmPUBI,玉米Ubiquitin 1基因启动子)(图15),利用引物PUBI-SF和OsHPPD-CR(PUBI-SF:GCCCTGCCTTCATACGCT和OsHPPD-CR:CTAGGATCCTTGAACTGTAGGGGC)对单克隆菌落进行菌落PCR,每个转化质粒挑取8个单克隆进行菌落PCR检测,从中挑取1个阳性克隆,利用质粒小量提取试剂盒提取质粒,并利用引物PUBI-SF和NOST-SR(PUBI-SF:GCCCTGCCTTCATACGCT,NOST-SR:TGCCAAATGTTTGAACGATC)进行Sanger测序,并利用Vector NIT软件与野生型水稻HPPD基因序列进行比对,验证HPPD基因突变位点以及与启动子接头的正确性,构建获得对应突变位点的突变型水稻HPPD基因的表达载体pC1390-PUBI-mHPPD,利用微量分光光度计测定测序正确的质粒的浓度,测定结果分别为pC1390-UBI-mHPPD-F68S,313ng/μL;pC1390-UBI-mHPPD-F132S,225ng/μL;pC1390-UBI-mHPPD-V266A,374ng/μL;pC1390-UBI-mHPPD-S310C,295ng/μL;pC1390-UBI-mHPPD-V313I,303ng/μL;pC1390-UBI-mHPPD-P336S,280ng/μL;pC1390-UBI-mHPPD-R345Q,357ng/μL;pC1390-UBI-mHPPD-M392I,257ng/μL;pC1390-UBI-mHPPD-Y216C/R345Q,378ng/μL;pC1390-UBI-mHPPD-P336S/R346L,296ng/μL;pC1390-UBI-mHPPD-L295Q/S310C,295ng/μL;pC1390-UBI-mHPPD-F68S/S310C,340ng/μL;pC1390-UBI-mHPPD-S310C/R345Q,288ng/μL;pC1390-UBI-mHPPD-S310C/G415A,346ng/μL;pC1390-UBI-mHPPD-S310C/V313I,246ng/μL;pC1390-UBI-mHPPD-L295Q/R345Q,298ng/μL;pC1390-UBI-mHPPD-S310C/M392I,269ng/μL;pC1390-UBI-mHPPD-Y216C/P336S/R345Q,215ng/μL、pC1390-UBI-mHPPD-Y216C/R345Q/R346L,266ng/μL、pC1390-UBI-mHPPD-L92I/S310C/V313I,224ng/μL、pC1390-UBI-mHPPD-Y216C/S310C/P336S/R345Q/R346L,227ng/μL;pC1390-UBI-mHPPD-V29A/Y216C/S310C/P336S/R345Q,309ng/μL;pC1390-UBI-mHPPD-V52I/Y216C/S310C/P336S/R345Q,482ng/μL。According to the coding region sequence of the rice HPPD gene, gene-specific primers with restriction sites added at both ends were designed, HPPD-1: GTTACTTCTGCACTAGGTACCATGCCTCCCACTCCCACC and HPPD-2: CTTAGAATTCCCGGGGATCCCTAGGATCCTTGAACTGTAGGGGC, 8 kinds of single-point to five-point color development results were comprehensively selected. Point mutant HPPD (F68S, F132S, V266A, S310C, V313I, P336S, R345Q and M392I), 9 double point mutant HPPDs (Y216C/R345Q, P336S/R346L, L295Q/S310C, F68S/S310C, S310C/R345Q, S310C/G415A, S310C/V313I, L295Q/R345Q, S310C/M392I), three three-point mutant HPPD (Y216C/P336S/R345Q, Y216C/R345Q/R346L, L92I/S310C/V313I) and three five-point mutants HPPD (Y216C/S310C/P336S/R345Q/R346L, V29A/Y216C/S310C/P336S/R345Q and V52I/Y216C/S310C/P336S/R345Q), using the pET28a-mHPPD vector containing the corresponding mutation as a template, amplify the corresponding mutation Type HPPD gene coding region DNA sequence, after 1% agarose gel electrophoresis, use the aforementioned kit to cut the gel and purify it, and carry out double digestion with restriction enzymes BamHI and Kpn I; Weizan, China), the HPPD fragment was ligated into the pCambia1390-ZmPUBI vector (ZmPUBI, the promoter of the maize Ubiquitin 1 gene) (Figure 15), using primers PUBI-SF and OsHPPD-CR (PUBI-SF: GCCCTGCCTTCATACGCT and OsHPPD-CR: CTAGGATCCTTGAACTGTAGGGGC) carried out colony PCR on the monoclonal colonies, picked 8 monoclones from each transformed plasmid for colony PCR detection, picked 1 positive clone from them, extracted the plasmids with a plasmid mini-extraction kit, and used primers PUBI-SF and Sanger sequencing was performed on NOST-SR (PUBI-SF: GCCCTGCCTTCATACGCT, NOST-SR: TGCCAAATGTTTGAACGATC), and Vector NIT software was used to compare with the wild-type rice HPPD gene sequence to verify the correctness of the HPPD gene mutation site and the linker with the promoter , construct the expression vector pC to obtain the mutant rice HPPD gene corresponding to the mutation site 1390-PUBI-mHPPD, the concentration of the correctly sequenced plasmid was determined by microspectrophotometer, and the determination results were pC1390-UBI-mHPPD-F68S, 313ng/μL; pC1390-UBI-mHPPD-F132S, 225ng/μL; pC1390-UBI -mHPPD-V266A, 374ng/μL; pC1390-UBI-mHPPD-S310C, 295ng/μL; pC1390-UBI-mHPPD-V313I, 303ng/μL; pC1390-UBI-mHPPD-P336S, 280ng/μL; pC1390-UBI-mHPPD -R345Q, 357ng/μL; pC1390-UBI-mHPPD-M392I, 257ng/μL; pC1390-UBI-mHPPD-Y216C/R345Q, 378ng/μL; pC1390-UBI-mHPPD-P336S/R346L, 296ng/μL; pC1390-UBI -mHPPD-L295Q/S310C, 295ng/μL; pC1390-UBI-mHPPD-F68S/S310C, 340ng/μL; pC1390-UBI-mHPPD-S310C/R345Q, 288ng/μL; pC1390-UBI-mHPPD-S310C/G415A, 346ng /μL; pC1390-UBI-mHPPD-S310C/V313I, 246ng/μL; pC1390-UBI-mHPPD-L295Q/R345Q, 298ng/μL; pC1390-UBI-mHPPD-S310C/M392I, 269ng/μL; -Y216C/P336S/R345Q, 215ng/μL, pC1390-UBI-mHPPD-Y216C/R345Q/R346L, 266ng/μL, pC1390-UBI-mHPPD-L92I/S310C/V313I, 224ng/μL, pC1390-UBI-mHPPD-Y216C /S310C/P336S/R345Q/R346L, 227ng/μL; pC1390-UBI-mHPPD-V29A/Y216C/S310C/P336S/R345Q, 309ng/μL; pC1390-UBI-mHPPD-V52I/Y216C/S310C/P336S/R345Q, 482ng/μL /μL.
利用热激法将1μL上述的水稻HPPD基因表达载体质粒分别加入到100μL经过缓慢融化的农杆菌菌株EHA105的感受态细胞中(唯地生物,中国),液氮冻5min,42℃水浴5min,冰上放置5min,加入500μL LB液体培养基,28℃振荡恢复培养3h,取将100μL恢复培养产物,均匀涂布于含有50μg/mL利福平和50μg/mL卡那霉素的固体LB培养基平板上,置于28℃温箱倒置培养36h,挑取单克隆菌落,利用引物PUBI-SF和OsHPPD-CR进行菌落PCR。对于每个质粒的转化产物,鉴定8个农杆菌单克隆,如果能够扩增出1.4kb的特异性条带,即为含有目标质粒的阳性菌落。为了防止个别单菌落侵染活性较低,每个质粒的农杆菌挑取3个单克隆进行农杆菌介导的水稻遗传转化。Using the heat shock method, 1 μL of the above-mentioned rice HPPD gene expression vector plasmid was added to 100 μL of slowly thawed competent cells of Agrobacterium strain EHA105 (Vedida, China), frozen in liquid nitrogen for 5 min, water bath at 42°C for 5 min, iced Place on the plate for 5 min, add 500 μL of LB liquid medium, and shake at 28°C for 3 hours of recovery culture. Take 100 μL of the recovery culture product and spread it evenly on a solid LB medium plate containing 50 μg/mL rifampicin and 50 μg/mL kanamycin. , placed in an incubator at 28°C for 36h upside-down culture, picked monoclonal colonies, and performed colony PCR using primers PUBI-SF and OsHPPD-CR. For the transformation product of each plasmid, identify 8 Agrobacterium monoclones, and if a specific band of 1.4 kb can be amplified, it is a positive colony containing the target plasmid. In order to prevent the low infection activity of individual single colonies, 3 single clones of each plasmid were picked for Agrobacterium-mediated rice genetic transformation.
实施例8、农杆菌介导的水稻遗传转化及转基因阳性植物的鉴定Example 8. Agrobacterium-mediated rice genetic transformation and identification of transgenic positive plants
1)愈伤组织的获得:选择饱满健康的水稻品种日本晴种子去壳;在70%的乙醇中 表面消毒1min,其间不断摇动;再用含有1滴吐温-20的3%的次氯酸钠消毒30分钟,其间在摇床上摇动;用灭菌的蒸馏水洗5次,每次约2min,期间不断摇动;然后用镊子将洗过的种子夹出,置于铺有5层无菌的滤纸得培养皿中,将种子均匀铺展在滤纸上,再在其上覆盖5层滤纸,使种子干燥;将15颗种子放置在愈伤诱导固体培养基(N6盐,4g;肌醇,0.1g;脯氨酸,2.8g;水解酪蛋白,0.3g;蔗糖,30g;2g/mL 2,4-D,1mL;植物凝胶,4g;加无离子水至1L;高压灭菌)上,使胚乳埋到培养基内,胚露出培养基表面,使盾片恰好与培养基接触;将培养皿置于28℃培养室中,在长日照条件下(16h光照/8h黑暗)培养大约4周,直至长出大量质地硬实的嫩黄色愈伤块;1) Obtainment of callus: choose plump and healthy rice variety Nipponbare seeds to remove hulls; sterilize the surface in 70% ethanol for 1 min with constant shaking; then disinfect with 3% sodium hypochlorite containing 1 drop of Tween-20 for 30 minutes , in the meantime, shake on a shaker; wash 5 times with sterilized distilled water, about 2min each time, and shake continuously during the period; then use tweezers to pick out the washed seeds and place them in a petri dish covered with 5 layers of sterile filter paper , spread the seeds evenly on the filter paper, and then cover it with 5 layers of filter paper to dry the seeds; place 15 seeds on the callus induction solid medium (N6 salt, 4 g; inositol, 0.1 g; proline, 2.8g; hydrolyzed casein, 0.3g; sucrose, 30g; 2g/mL 2,4-D, 1mL; phytogel, 4g; add deionized water to 1L; autoclave) to bury the endosperm into the medium Inside, the embryos are exposed on the surface of the medium, so that the scutellum is just in contact with the medium; the culture dish is placed in a 28°C culture room and cultured under long-day light conditions (16h light/8h dark) for about 4 weeks, until a large amount of texture grows. Hard and bright yellow callus;
2)农杆菌准备和共培养:用无菌牙签分别蘸取3个含有相应HPPD表达载体的单菌落,接种于20mL含有50μg/mL利福平和50μg/mL卡那霉素的液体LB培养基中,振荡培养36h;5000rpm离心2min,用1mL液体N6培养基(N6盐,4g;肌醇,0.1g;水解酪蛋白,1g;葡萄糖,10g;蔗糖,30g;2g/mL 2,4-D,1mL;加无离子水至1L;高压灭菌;冷却后加100mM乙酰丁香酮,1mL)重悬菌体,利用紫外分光光度计测定菌液浓度,再用液体N6培养基将农杆菌重悬液稀释至OD 600=0.08;用300℃高温灭菌后晾凉的镊子夹取水稻愈伤组织块,使其浸泡在稀释后的农杆菌菌液中,静置20min;倒掉农杆菌菌液,用无菌镊子夹取水稻愈伤块,置于铺有5层无菌滤纸的培养皿中,将愈伤铺开,再在其上覆盖5层滤纸,干燥愈伤2h;向共培养基平板上加入500μL液体N6培养基,将一张与培养皿直径相当的无菌滤纸置于培养基表面,使液体均匀浸润滤纸,再将干燥的愈伤摆放于铺有滤纸的共培养培养基(N6盐,4g;肌醇,0.1g;水解酪蛋白,1g;葡萄糖,10g;蔗糖,30g;2g/mL 2,4-D,1mL;植物凝胶,4g;加无离子水至1L;高压灭菌;冷却后加100mM乙酰丁香酮,1mL)上;使用透气胶带(3M,USA)将盛有愈伤组织的培养皿封口,再用锡箔纸包住培养基,25℃黑暗共培养3天; 2) Agrobacterium preparation and co-cultivation: Dip 3 single colonies containing the corresponding HPPD expression vector with a sterile toothpick and inoculate them in 20 mL of liquid LB medium containing 50 μg/mL rifampicin and 50 μg/mL kanamycin , shake culture for 36h; centrifuge at 5000rpm for 2min, add 1mL liquid N6 medium (N6 salt, 4g; inositol, 0.1g; hydrolyzed casein, 1g; glucose, 10g; sucrose, 30g; 2g/mL 2,4-D, 1mL; add deionized water to 1L; autoclave; after cooling, add 100mM acetosyringone, 1mL) to resuspend the bacteria, use a UV spectrophotometer to measure the concentration of the bacteria solution, and then use liquid N6 medium to resuspend the Agrobacterium Dilute to OD 600 = 0.08; use tweezers that have been sterilized at 300°C and then aired to cool, pick up the rice callus block, soak it in the diluted Agrobacterium solution, and let it stand for 20 minutes; pour out the Agrobacterium solution, Use sterile tweezers to pick up the rice callus, place it in a petri dish covered with 5 layers of sterile filter paper, spread the callus, then cover it with 5 layers of filter paper, and dry the callus for 2 hours; Add 500 μL of liquid N6 medium to the top, place a sterile filter paper with a diameter equivalent to that of the petri dish on the surface of the medium, make the liquid evenly infiltrate the filter paper, and place the dried callus on the co-cultivation medium ( N6 salt, 4g; inositol, 0.1g; hydrolyzed casein, 1g; glucose, 10g; sucrose, 30g; 2g/mL 2,4-D, 1mL; Sterilize; add 100 mM acetosyringone, 1 mL) after cooling; seal the petri dish containing the callus with breathable tape (3M, USA), then wrap the medium with tin foil, and co-cultivate at 25°C for 3 days in the dark ;
3)阳性愈伤组织的筛选:用无菌镊子将共培养后的愈伤组织,用无菌水洗5次,再用含有500μg/mL羧苄青霉素钠的无菌蒸馏水洗1次;将愈伤组织置于铺有5层无菌滤纸得培养皿中,将愈伤组织铺开,再在其上覆盖5层滤纸,使其干燥,再将干燥后的愈伤转到恢复培养基(N6盐,4g;肌醇,0.1g;水解酪蛋白,1g;葡萄糖,10g;蔗糖,30g;2g/mL 2,4-D,1mL;加无离子水至1L;高压灭菌;冷却后加250mg/mL羧苄青霉素,1mL)上,置于28℃培养室,在长日照条件下(16h光照/8h黑暗)培养3天;用无菌镊子将恢复培养后的愈伤组织转移到含有50μg/mL潮霉素的筛选培养基(N6盐,4g;肌醇,0.1g;水解酪蛋白,1g;葡萄糖,10g;蔗糖,30g;2g/mL 2,4-D,1mL;加无离子水至1L;高压灭菌;冷却后加200mg/mL羧苄青霉素钠,1mL;加50mg/mL潮霉素B,1mL)上,在长日照条件下培养2~4周,直至有新的质地硬实的嫩黄色愈伤组织长出来;3) Screening of positive callus: use sterile forceps to wash the co-cultured callus with sterile water for 5 times, and then wash once with sterile distilled water containing 500 μg/mL carbenicillin sodium; The tissue is placed in a petri dish covered with 5 layers of sterile filter paper, the callus is spread out, and then covered with 5 layers of filter paper on it to dry, and then the dried callus is transferred to recovery medium (N6 salts). , 4g; inositol, 0.1g; hydrolyzed casein, 1g; glucose, 10g; sucrose, 30g; 2g/mL 2,4-D, 1mL; add deionized water to 1L; autoclave; add 250mg/mL after cooling mL carbenicillin, 1 mL), placed in a 28°C culture room, and cultured for 3 days under long-day light conditions (16h light/8h dark); use sterile tweezers to transfer the recovered callus to a medium containing 50 μg/mL Selection medium for hygromycin (N6 salt, 4g; inositol, 0.1g; hydrolyzed casein, 1g; glucose, 10g; sucrose, 30g; 2g/mL 2,4-D, 1mL; add deionized water to 1L ; high pressure sterilization; after cooling, add 200mg/mL carbenicillin sodium, 1mL; add 50mg/mL hygromycin B, 1mL), and cultivate under long-day conditions for 2 to 4 weeks, until there is a new firm and tender tender yellow callus grows;
4)转基因植株的再生和培养:用无菌镊子将筛选培养基上新长出的潮霉素抗性愈伤组织转移到再生培养基(MS盐,4.33g;水解酪蛋白,2g;山梨糖醇,30g;蔗糖,30g;2g/mL 2,4-D,1mL;加无离子水至1L;高压灭菌;冷却后加200mg/mL羧苄青霉素钠,1mL;加50mg/mL潮霉素B,1mL;1mg/mL NAA,20μL;1mg/mL Kinetin,2mL)上,在长日照条件下(16h光照/8h黑暗)培养2~4周,直至绿色的小苗长出来;用无菌镊子将绿色小苗夹出,置于含有25μg/mL潮霉素的固体1/2MS培养基,直至小苗长到5~8cm;将小苗取出,洗净置于清水中,于28℃培养室,在长日照条件下炼苗3~5天;将转基因苗移栽到土中,于32℃温室,在长日照条件下种植;4) Regeneration and culture of transgenic plants: The newly grown hygromycin-resistant callus on the selection medium was transferred to regeneration medium (MS salt, 4.33 g; hydrolyzed casein, 2 g; sorbose) with sterile tweezers Alcohol, 30g; sucrose, 30g; 2g/mL 2,4-D, 1mL; add deionized water to 1L; autoclave; after cooling, add 200mg/mL carbenicillin sodium, 1mL; add 50mg/mL hygromycin B, 1mL; 1mg/mL NAA, 20μL; 1mg/mL Kinetin, 2mL), cultured under long-day conditions (16h light/8h dark) for 2 to 4 weeks, until green seedlings grew; The green seedlings were clipped and placed in solid 1/2MS medium containing 25 μg/mL hygromycin until the seedlings grew to 5-8 cm; the seedlings were taken out, washed and placed in clean water, cultured at 28°C in a long day Condition the seedlings for 3 to 5 days; transplant the transgenic seedlings into the soil and plant them in a greenhouse at 32°C under long-day light conditions;
待转基因植物长到4~5叶期时,利用试剂盒提取存活下来的转基因苗的DNA(康为世纪,中国)作为模版,用引物PUBI-SF和OsHPPD-CR进行PCR扩增,能够扩增出 目标条带的单株即为HPPD转基因阳性植株,本发明共获得11种单点突变的HPPD基因和3种五点突变的HPPD基因对应的转基因植株,每个转化事件鉴定到至少23个独立的转基因株系。When the transgenic plants grow to the 4-5 leaf stage, use the kit to extract the DNA of the surviving transgenic seedlings (Kang Weijie, China) as a template, and use the primers PUBI-SF and OsHPPD-CR to carry out PCR amplification, which can be amplified. The single plant that produces the target band is the HPPD transgenic positive plant. The present invention obtains 11 single-point mutation HPPD genes and 3 five-point mutation HPPD genes corresponding to transgenic plants, and each transformation event identifies at least 23 independent of transgenic lines.
实施例9、除草剂处理表达突变型HPPD的转基因植株Example 9. Herbicide treatment of transgenic plants expressing mutant HPPD
对于23个不同的突变型HPPD转基因植物(pC1390-UBI-mHPPD-F68S;pC1390-UBI-mHPPD-F132S;pC1390-UBI-mHPPD-V266A;pC1390-UBI-mHPPD-S310C;pC1390-UBI-mHPPD-V313I;pC1390-UBI-mHPPD-P336S;pC1390-UBI-mHPPD-R345Q;pC1390-UBI-mHPPD-M392I;pC1390-UBI-mHPPD-Y216C/R345Q;pC1390-UBI-mHPPD-P336S/R346L;pC1390-UBI-mHPPD-L295Q/S310C;pC1390-UBI-mHPPD-F68S/S310C;pC1390-UBI-mHPPD-S310C/R345Q;pC1390-UBI-mHPPD-S310C/G415A;pC1390-UBI-mHPPD-S310C/V313I;pC1390-UBI-mHPPD-L295Q/R345Q;pC1390-UBI-mHPPD-S310C/M392I;pC1390-UBI-mHPPD-Y216C/P336S/R345Q;pC1390-UBI-mHPPD-Y216C/R345Q/R346L;pC1390-UBI-mHPPD-L92I/S310C/V313I;pC1390-UBI-mHPPD-Y216C/S310C/P336S/R345Q/R346L;pC1390-UBI-mHPPD-V29A/Y216C/S310C/P336S/R345Q;pC1390-UBI-mHPPD-V52I/Y216C/S310C/P336S/R345Q)的后代,每种选取10~15个转基因阳性单株的后代,种植在土种,待小苗长到3叶期时提取每个单株的作为模版,用引物PUBI-SF和OsHPPD-CR进行PCR扩增(PUBI-SF:GCCCTGCCTTCATACGCT和OsHPPD-CR:CTAGGATCCTTGAACTGTAGGGGC),根据1:3(不含目的条带的植株:含有目的条带的植株)的孟德尔分离比,选出含有单拷贝插入的转基因株系,保留下来继续种植至4-5叶期,用1倍硝磺草酮(6g a.i./亩作为1倍)、1倍苯唑草酮(1.5g a.i./亩作为1倍)、1倍异噁唑草酮(6g a.i./亩作为1倍)和1倍环璜酮(1.5g a.i./亩作为1倍)处理单点突变型HPPD基因的转基因植株。2倍硝磺草酮、苯唑草酮、异噁唑草酮以及环璜酮处理多点突变型HPPD基因的转基因植株。使用气压式喷雾器(GARDENA,Germany)对转基因阳性植物进行叶面喷施处理,使液滴均匀分布与叶片表面,以转化受体品种作为对照;于28℃培养室,在长日照条件下,继续培养2周后,观察相应植株的生长状况,选取3个有代表性的独立株系的单株拍照记录(图16~19)。其中,野生型对照植株或不再长出新叶,或长出的新叶完全白化,大部分老叶干枯,植株生长缓慢;对相应HPPD抑制剂类除草剂具有耐受性的转基因植株,能够长出新叶,且新叶仍然保持绿色,植株也能一定程度地继续生长;所用的除草剂硝磺草酮(胜邦绿野,中国)、苯唑草酮(BASF,Germany)、环璜酮、异噁唑草酮(本实验室自行配制)。For 23 different mutant HPPD transgenic plants (pC1390-UBI-mHPPD-F68S; pC1390-UBI-mHPPD-F132S; pC1390-UBI-mHPPD-V266A; pC1390-UBI-mHPPD-S310C; pC1390-UBI-mHPPD-V313I pC1390-UBI-mHPPD-P336S; pC1390-UBI-mHPPD-R345Q; pC1390-UBI-mHPPD-M392I; pC1390-UBI-mHPPD-Y216C/R345Q; pC1390-UBI-mHPPD-P336S/R346L; -L295Q/S310C; pC1390-UBI-mHPPD-F68S/S310C; pC1390-UBI-mHPPD-S310C/R345Q; pC1390-UBI-mHPPD-S310C/G415A; pC1390-UBI-mHPPD-S310C/V313I; -L295Q/R345Q; pC1390-UBI-mHPPD-S310C/M392I; pC1390-UBI-mHPPD-Y216C/P336S/R345Q; pC1390-UBI-mHPPD-Y216C/R345Q/R346L; ; pC1390-UBI-mHPPD-Y216C/S310C/P336S/R345Q/R346L; pC1390-UBI-mHPPD-V29A/Y216C/S310C/P336S/R345Q; For progeny, 10 to 15 offspring of transgene-positive individual plants were selected for each and planted in soil seeds. When the seedlings grew to the 3-leaf stage, each individual plant was extracted as a template, and the primers PUBI-SF and OsHPPD-CR were used for PCR amplification. Increase (PUBI-SF: GCCCTGCCTTCATACGCT and OsHPPD-CR: CTAGGATCCTTGAACTGTAGGGGC), according to the Mendelian segregation ratio of 1:3 (plants without the target band: plants with the target band), select the transgenic lines containing a single copy insertion Line, keep and continue to plant to the 4-5 leaf stage, use 1 times of mesotrione (6g a.i./mu as 1 times), 1 times of oxaflutole (1.5g a.i./mu as 1 times), 1 times of isotrizone Oxaflutole (6g a.i./mu as 1x) and 1x Cyclofenone (1.5g a.i. /mu as 1 times) transgenic plants treated with single point mutant HPPD gene. The transgenic plants of the multi-point mutant HPPD gene were treated with 2 times of mesotrione, oxaflutole, isoxaflutole and cyclopentazone. Use a pneumatic sprayer (GARDENA, Germany) to spray the transgenic positive plants on the foliar surface, so that the droplets are evenly distributed on the surface of the leaves, and the transformed recipient variety is used as a control; in a 28 °C culture room, under long-day conditions, continue to After culturing for 2 weeks, the growth status of the corresponding plants was observed, and the individual plants of 3 representative independent lines were selected for photographing and recording (Figures 16-19). Among them, the wild-type control plants either no longer grow new leaves, or the new leaves that grow are completely albino, most of the old leaves are dry, and the plants grow slowly; transgenic plants that are tolerant to the corresponding HPPD inhibitor herbicides can New leaves grow, and the new leaves are still green, and the plants can continue to grow to a certain extent; the herbicides used are mesotrione (Shengbang Luye, China), oxaflutole (BASF, Germany), cyclohuang ketone, isoxaflutole (prepared by our laboratory).

Claims (15)

  1. 一种水稻HPPD突变型蛋白,其特征在于,所述水稻HPPD突变型蛋白的氨基酸序列存在以下任意一种或多种突变:其对应于野生型水稻HPPD的氨基酸序列的第29、52、54、68、92、99、117、120、132、133、146、156、206、216、237、238、244、266、270、273、277、282、295、297、310、313、315、316、325、333、336、338、344、345、346、349、357、388、392、404、406、408、415和423位氨基酸发生突变;其中,第277位由脯氨酸突变为缬氨酸,第336由脯氨酸突变为丝氨酸,第338位由天冬氨酸突变为赖氨酸或异亮氨酸或苏氨酸,第346位由精氨酸突变为亮氨酸,第392位由甲硫氨酸突变为异亮氨酸,第415位由甘氨酸突变为丙氨酸或天冬酰胺或丝氨酸。A rice HPPD mutant protein, characterized in that the amino acid sequence of the rice HPPD mutant protein has any one or more of the following mutations: it corresponds to the 29th, 52nd, 54th, 68, 92, 99, 117, 120, 132, 133, 146, 156, 206, 216, 237, 238, 244, 266, 270, 273, 277, 282, 295, 297, 310, 313, 315, 316, 325, 333, 336, 338, 344, 345, 346, 349, 357, 388, 392, 404, 406, 408, 415 and 423 amino acids were mutated; wherein, the 277th position was mutated from proline to valine , 336 from proline to serine, 338 from aspartic acid to lysine or isoleucine or threonine, 346 from arginine to leucine, 392 From methionine to isoleucine, and from glycine to alanine or asparagine or serine at position 415.
  2. 根据权利要求1所述的水稻HPPD突变型蛋白,其特征在于,所述水稻HPPD突变型蛋白的氨基酸序列对应于野生型水稻HPPD的氨基酸序列,具有选自下述的一种或多种突变形式:V29A、V52I、L54F、F68S、L92I、P99L、T117I、S120A、F132S、A133T、R146L、A156V、E206Q、E206V、Y216C、Y237N、I238T、F244L、V266A、N270D、T273S、V282E、L295Q、H297R、S310C、S310V、S310A、S310G、S310T、V313M、V313I、V313L、G315A、G315S、G315R、T316K、A325D、A333P、R344K、R345L、R345Q、D349G、N357S、F388L、S404G、S404L、S404T、Q406R、Y408H和E423G。The rice HPPD mutant protein according to claim 1, wherein the amino acid sequence of the rice HPPD mutant protein corresponds to the amino acid sequence of wild-type rice HPPD, and has one or more mutant forms selected from the following : V29A, V52I, L54F, F68S, L92I, P99L, T117I, S120A, F132S, A133T, R146L, A156V, E206Q, E206V, Y216C, Y237N, I238T, F244L, V266A, N270D, T21S, HC L295Q, V297R 、S310V、S310A、S310G、S310T、V313M、V313I、V313L、G315A、G315S、G315R、T316K、A325D、A333P、R344K、R345L、R345Q、D349G、N357S、F388L、S404G、S404L、S404T、Q406R、Y408H和E423G .
  3. 根据权利要求1或2所述的水稻HPPD突变型蛋白,其特征在于,其包括:The rice HPPD mutant protein according to claim 1 or 2, characterized in that it comprises:
    (a)其氨基酸序列选自SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10、SEQ ID NO:12、SEQ ID NO:14、SEQ ID NO:16、SEQ ID NO:18、SEQ ID NO:20、SEQ ID NO:22、SEQ ID NO:24、SEQ ID NO:26、SEQ ID NO:28、SEQ ID NO:30、SEQ ID NO:32、SEQ ID NO:34、SEQ ID NO:36、SEQ ID NO:38、SEQ ID NO:40、SEQ ID NO:42、SEQ ID NO:44、SEQ ID NO:46、SEQ ID NO:48、SEQ ID NO:50、SEQ ID NO:52、SEQ ID NO:54、SEQ ID NO:56、SEQ ID NO:58、SEQ ID NO:60、SEQ ID NO:62、SEQ ID NO:64、SEQ ID NO:66、SEQ ID NO:68、SEQ ID NO:70、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:78、SEQ ID NO:80、SEQ ID NO:82、SEQ ID NO:84、SEQ ID NO:86、SEQ ID NO:88、SEQ ID NO:90、SEQ ID NO:92、SEQ ID NO:94、SEQ ID NO:96、SEQ ID NO:98、SEQ ID NO:100、SEQ ID NO:102、SEQ ID NO:104、SEQ ID NO:106、SEQ ID NO:108、SEQ ID NO:110、SEQ ID NO:112、SEQ ID NO:114、SEQ ID NO:116、SEQ ID NO:118、SEQ ID NO:120或SEQ ID NO:122;或(a) its amino acid sequence is selected from SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO: 50, SEQ ID NO:52, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:58, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:64, SEQ ID NO:66, SEQ ID NO:68, SEQ ID NO:70, SEQ ID NO:72, SEQ ID NO:74, SEQ ID NO:76, SEQ ID NO:78, SEQ ID NO:80, SEQ ID NO:82, SEQ ID NO:84, SEQ ID NO:86, SEQ ID NO:88, SEQ ID NO:90, SEQ ID NO:92, SEQ ID NO:94, SEQ ID NO:96, SEQ ID NO:98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID NO: 120 or SEQ ID NO: 122; or
    (b)在(a)中的氨基酸序列经过取代和/或缺失和/或添加一个或多个氨基酸,且具有对羟基苯丙酮酸双加氧酶活性的由(a)衍生的蛋白质。(b) A protein derived from (a) having the amino acid sequence in (a) substituted and/or deleted and/or added with one or more amino acids and having p-hydroxyphenylpyruvate dioxygenase activity.
  4. 根据权利要求1~3中任一项所述的水稻HPPD突变型蛋白,其特征在于,所述突变型HPPD蛋白的氨基酸序列具有如下的氨基酸突变中的任意一种:R345Q/R346L、Y216C/R345Q、P336S/R346L、V29A/R346L、L295Q/S310V、V29A/S310C、S310C/G415A、S310C/G415N、L295Q/R345Q、L295Q/S310C、L54F/R345Q、L54F/R346L、S120A/S310C、F68S/S310C、V266A/S310C、V266A/R345Q、S310C/M392I、S310C/R345Q、T273S/S310C、L92I/M392I、S310C/V313I、Y216C/P277V/R345Q、Y216C/P336S/R345Q、Y216C/R345Q/R346L、V29A/Y216C/R345Q、Y216C/R345Q/G415A、Y216C/R345Q/E423G、L92I/S310C/V313I、V52I/Y216C/R345Q、Y216C/R345Q/F388L、P336S/R345Q/R346L、L295Q/S310C/G415A、L54F/L295Q/S310C、S120A/L295Q/S310C、L295Q/S310C/F388L、L54F/L295Q/R345Q、L92I/L295Q/R345Q、L295Q/S310C/R345Q、L54F/S310C/G415A、L92I/S310C/G415A、V266A/S310C/G415A、S310C/V313I/G415A、L54F/P336S/R346L、L92I/P336S/R346L、S310C/P336S/R346L、V29A/S310C/V313I、 L54F/S310C/V313I、I238T/S310C/V313I、L54F/Y216C/R345Q、V29A/Y216C/P336S/R345Q、Y216C/P336S/R345Q/R346L、V52I/Y216C/P336S/R345Q、Y216C/P336S/R345Q/E423G、Y216C/S310C/R345Q/G415A、L54F/Y216C/S310C/R345Q、Y216C/P277V/S310C/R345Q、V52I/Y216C/S310C/R345Q、Y216C/S310C/R345Q/F388L、S310C/P336S/R345Q/R346L、V29A/L295Q/S310C/G415A、V52I/L295Q/S310C/G415A、L54F/L295Q/S310C/G415A、L295Q/S310C/M392I/G415A、Y216C/S310C/P336S/R345Q/R346L、V29A/Y216C/S310C/P336S/R345Q和V52I/Y216C/S310C/P336S/R345Q。The rice HPPD mutant protein according to any one of claims 1 to 3, wherein the amino acid sequence of the mutant HPPD protein has any one of the following amino acid mutations: R345Q/R346L, Y216C/R345Q , P336S/R346L, V29A/R346L, L295Q/S310V, V29A/S310C, S310C/G415A, S310C/G415N, L295Q/R345Q, L295Q/S310C, L54F/R345Q, L54F/R346L, S12660A/S3 /S310C, V266A/R345Q, S310C/M392I, S310C/R345Q, T273S/S310C, L92I/M392I, S310C/V313I, Y216C/P277V/R345Q, Y216C/P336S/R345Q, Y216C/R329A/R345Y1R , Y216C/R345Q/G415A, Y216C/R345Q/E423G, L92I/S310C/V313I, V52I/Y216C/R345Q, Y216C/R345Q/F388L, P336S/R345Q/R346L, L295Q/S310C/G420/S310C /L295Q/S310C, L295Q/S310C/F388L, L54F/L295Q/R345Q, L92I/L295Q/R345Q, L295Q/S310C/R345Q, L54F/S310C/G415A, L92V/S310C/G415A, V2615C/G415C/S300I /G415A, L54F/P336S/R346L, L92I/P336S/R346L, S310C/P336S/R346L, V29A/S310C/V313I, L54F/S310C/V313I, I238T/S310C/V313I, L54F/Y316C/R354 /R345Q, Y216C/P336S/R345Q/R346L, V52I/Y216C/P336S/R345Q, Y216C/P336S/R345Q/E423G, Y216C/S310C/R345Q/G415A, L54F/Y216C/S310C/R3645Q/S10210C/R3345Q/YR , V52I/Y216C/S310C/R345Q, Y216C/ S310C/R345Q/F388L, S310C/P336S/R345Q/R346L, V29A/L295Q/S310C/G415A, V52I/L295Q/S310C/G415A, L54F/L295Q/S310C/G415A, L295Q/S310C/G410C/16C/M39 P336S/R345Q/R346L, V29A/Y216C/S310C/P336S/R345Q and V52I/Y216C/S310C/P336S/R345Q.
  5. 根据权利要求4所述的水稻HPPD突变型蛋白,其特征在于,所述突变型HPPD蛋白的氨基酸序列具有如下的氨基酸序列中的任意一种:SEQ ID NO:124、SEQ ID NO:126、SEQ ID NO:128、SEQ ID NO:130、SEQ ID NO:132、SEQ ID NO:134、SEQ ID NO:136、SEQ ID NO:138、SEQ ID NO:140、SEQ ID NO:142、SEQ ID NO:144、SEQ ID NO:146、SEQ ID NO:148、SEQ ID NO:150、SEQ ID NO:152、SEQ ID NO:154、SEQ ID NO:156、SEQ ID NO:158、SEQ ID NO:160、SEQ ID NO:162、SEQ ID NO:164、SEQ ID NO:166、SEQ ID NO:168、SEQ ID NO:170、SEQ ID NO:172、SEQ ID NO:174、SEQ ID NO:176、SEQ ID NO:178、SEQ ID NO:180、SEQ ID NO:182、SEQ ID NO:184、SEQ ID NO:186、SEQ ID NO:188、SEQ ID NO:190、SEQ ID NO:192、SEQ ID NO:194、SEQ ID NO:196、SEQ ID NO:198、SEQ ID NO:200、SEQ ID NO:202、SEQ ID NO:204、SEQ ID NO:206、SEQ ID NO:208、SEQ ID NO:210、SEQ ID NO:212、SEQ ID NO:214、SEQ ID NO:216、SEQ ID NO:218、SEQ ID NO:220、SEQ ID NO:222、SEQ ID NO:224、SEQ ID NO:226、SEQ ID NO:228、SEQ ID NO:230、SEQ ID NO:232、SEQ ID NO:234、SEQ ID NO:236、SEQ ID NO:238、SEQ ID NO:240、SEQ ID NO:242、SEQ ID NO:244、SEQ ID NO:246、SEQ ID NO:248、SEQ ID NO:250、SEQ ID NO:252或SEQ ID NO:254。The rice HPPD mutant protein according to claim 4, wherein the amino acid sequence of the mutant HPPD protein has any one of the following amino acid sequences: SEQ ID NO:124, SEQ ID NO:126, SEQ ID NO:126, ID NO: 128, SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO :144, SEQ ID NO:146, SEQ ID NO:148, SEQ ID NO:150, SEQ ID NO:152, SEQ ID NO:154, SEQ ID NO:156, SEQ ID NO:158, SEQ ID NO:160 , SEQ ID NO:162, SEQ ID NO:164, SEQ ID NO:166, SEQ ID NO:168, SEQ ID NO:170, SEQ ID NO:172, SEQ ID NO:174, SEQ ID NO:176, SEQ ID NO:176 ID NO: 178, SEQ ID NO: 180, SEQ ID NO: 182, SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID NO: 190, SEQ ID NO: 192, SEQ ID NO :194, SEQ ID NO:196, SEQ ID NO:198, SEQ ID NO:200, SEQ ID NO:202, SEQ ID NO:204, SEQ ID NO:206, SEQ ID NO:208, SEQ ID NO:210 , SEQ ID NO:212, SEQ ID NO:214, SEQ ID NO:216, SEQ ID NO:218, SEQ ID NO:220, SEQ ID NO:222, SEQ ID NO:224, SEQ ID NO:226, SEQ ID NO:226 ID NO:228, SEQ ID NO:230, SEQ ID NO:232, SEQ ID NO:234, SEQ ID NO:236, SEQ ID NO:238, SEQ ID NO:240, SEQ ID NO:242, SEQ ID NO :244, SEQ ID NO:246, SEQ ID NO:248, SEQ ID NO:250, SEQ ID NO:252 or SEQ ID NO:254.
  6. 一种核酸或基因,其特征在于,其编码权利要求1~5任一项所述的突变型蛋白。A nucleic acid or gene encoding the mutant protein according to any one of claims 1 to 5.
  7. 根据权利要求6所述的核酸或基因,其特征在于,其包括:The nucleic acid or gene according to claim 6, characterized in that it comprises:
    (i)其编码权利要求1~5任一项所述的蛋白;或(i) it encodes the protein of any one of claims 1 to 5; or
    (ii)在严格条件下与(i)限定的核酸或基因的核苷酸序列杂交且编码具有对羟基苯丙酮酸双加氧酶活性的蛋白质的核苷酸序列;或(ii) a nucleotide sequence that hybridizes under stringent conditions to the nucleotide sequence of a nucleic acid or gene as defined in (i) and encodes a protein having p-hydroxyphenylpyruvate dioxygenase activity; or
    (iii)其核苷酸序列选自如下所示的核苷酸序列或其互补序列中的任意一个:SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:33、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:57、SEQ ID NO:59、SEQ ID NO:61、SEQ ID NO:63、SEQ ID NO:65、SEQ ID NO:67、SEQ ID NO:69、SEQ ID NO:71、SEQ ID NO:73、SEQ ID NO:75、SEQ ID NO:77、SEQ ID NO:79、SEQ ID NO:81、SEQ ID NO:83、SEQ ID NO:85、SEQ ID NO:87、SEQ ID NO:89、SEQ ID NO:91、SEQ ID NO:93、SEQ ID NO:95、SEQ ID NO:97、SEQ ID NO:99、SEQ ID NO:101、SEQ ID NO:103、SEQ ID NO:105、SEQ ID NO:107、SEQ ID NO:109、SEQ ID NO:111、SEQ ID NO:113、SEQ ID NO:115、SEQ ID NO:117、SEQ ID NO:119、SEQ ID NO:121、SEQ ID NO:123、SEQ ID NO:125、SEQ ID NO:127、SEQ ID NO:129、SEQ ID NO:131、SEQ ID NO:133、SEQ ID NO:135、SEQ ID NO:137、SEQ ID NO:139、SEQ ID NO:141、SEQ ID NO:143、SEQ ID NO:145、SEQ ID NO:147、 SEQ ID NO:149、SEQ ID NO:151、SEQ ID NO:153、SEQ ID NO:155、SEQ ID NO:157、SEQ ID NO:159、SEQ ID NO:161、SEQ ID NO:163、SEQ ID NO:165、SEQ ID NO:167、SEQ ID NO:169、SEQ ID NO:171、SEQ ID NO:173、SEQ ID NO:175、SEQ ID NO:177、SEQ ID NO:179、SEQ ID NO:181、SEQ ID NO:183、SEQ ID NO:185、SEQ ID NO:187、SEQ ID NO:189、SEQ ID NO:191、SEQ ID NO:193、SEQ ID NO:195、SEQ ID NO:197、SEQ ID NO:199、SEQ ID NO:201、SEQ ID NO:203、SEQ ID NO:205、SEQ ID NO:207、SEQ ID NO:209、SEQ ID NO:211、SEQ ID NO:213、SEQ ID NO:215、SEQ ID NO:217、SEQ ID NO:219、SEQ ID NO:221、SEQ ID NO:223、SEQ ID NO:225、SEQ ID NO:227、SEQ ID NO:229、SEQ ID NO:231、SEQ ID NO:233、SEQ ID NO:235、SEQ ID NO:237、SEQ ID NO:239、SEQ ID NO:241、SEQ ID NO:243、SEQ ID NO:245、SEQ ID NO:247、SEQ ID NO:249、SEQ ID NO:251或SEQ ID NO:253。(iii) its nucleotide sequence is selected from any one of the following nucleotide sequences or their complementary sequences: SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9 , SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:19 ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO :43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59 , SEQ ID NO:61, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:67, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:75, SEQ ID NO:69 ID NO:77, SEQ ID NO:79, SEQ ID NO:81, SEQ ID NO:83, SEQ ID NO:85, SEQ ID NO:87, SEQ ID NO:89, SEQ ID NO:91, SEQ ID NO :93, SEQ ID NO:95, SEQ ID NO:97, SEQ ID NO:99, SEQ ID NO:101, SEQ ID NO:103, SEQ ID NO:105, SEQ ID NO:107, SEQ ID NO:109 , SEQ ID NO:111, SEQ ID NO:113, SEQ ID NO:115, SEQ ID NO:117, SEQ ID NO:119, SEQ ID NO:121, SEQ ID NO:123, SEQ ID NO:125, SEQ ID NO:125 ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO : 143, SEQ ID NO: 145, SEQ ID NO :147, SEQ ID NO:149, SEQ ID NO:151, SEQ ID NO:153, SEQ ID NO:155, SEQ ID NO:157, SEQ ID NO:159, SEQ ID NO:161, SEQ ID NO:163 , SEQ ID NO:165, SEQ ID NO:167, SEQ ID NO:169, SEQ ID NO:171, SEQ ID NO:173, SEQ ID NO:175, SEQ ID NO:177, SEQ ID NO:179, SEQ ID NO:179 ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO :197, SEQ ID NO:199, SEQ ID NO:201, SEQ ID NO:203, SEQ ID NO:205, SEQ ID NO:207, SEQ ID NO:209, SEQ ID NO:211, SEQ ID NO:213 , SEQ ID NO:215, SEQ ID NO:217, SEQ ID NO:219, SEQ ID NO:221, SEQ ID NO:223, SEQ ID NO:225, SEQ ID NO:227, SEQ ID NO:229, SEQ ID NO:229 ID NO:231, SEQ ID NO:233, SEQ ID NO:235, SEQ ID NO:237, SEQ ID NO:239, SEQ ID NO:241, SEQ ID NO:243, SEQ ID NO:245, SEQ ID NO :247, SEQ ID NO:249, SEQ ID NO:251 or SEQ ID NO:253.
  8. 一种表达盒、重组载体或细胞,其特征在于,其含有权利要求6或7所述的核酸或基因。An expression cassette, recombinant vector or cell, characterized in that it contains the nucleic acid or gene according to claim 6 or 7.
  9. 权利要求1~5任一项所述的水稻HPPD突变型蛋白、权利要求6或7所述的核酸或基因,权利要求8所述的表达盒、重组载体或细胞在植物抗除草剂方面的应用。Application of the rice HPPD mutant protein according to any one of claims 1 to 5, the nucleic acid or gene according to claim 6 or 7, and the expression cassette, recombinant vector or cell according to claim 8 in plant herbicide resistance .
  10. 根据权利要求9所述的应用,其特征在于,所述除草剂包括三酮类、吡唑酮类以及异噁唑酮类中的一种或多种。The application according to claim 9, wherein the herbicide comprises one or more of triketones, pyrazolones and isoxazolones.
  11. 一种获得具有除草剂抗性的植物细胞、植物组织、植物部分或植物的方法,其特征在于,包括如下步骤:A method for obtaining herbicide-resistant plant cells, plant tissues, plant parts or plants, comprising the steps of:
    1)使植物包含权利要求6或7所述的核酸或基因;或1) causing the plant to comprise the nucleic acid or gene of claim 6 or 7; or
    2)使植物表达权利要求1~5所述的突变型水稻HPPD蛋白;或2) expressing the mutant rice HPPD protein of claims 1 to 5 in a plant; or
    3)通过突变的方法,获得包含权利要求6或7所述的核酸或基因,或权利要求1~5任一项所述的突变型水稻HPPD蛋白或其生物活性片段;或3) Obtain the nucleic acid or gene according to claim 6 or 7, or the mutant rice HPPD protein according to any one of claims 1 to 5 or a biologically active fragment thereof by a method of mutation; or
    4)对植物细胞、植物组织、植物部分或植物的内源HPPD基因进行基因编辑,以实现在其中表达权利要求1~5中任一项所述的突变型水稻HPPD蛋白。4) Gene editing of plant cells, plant tissues, plant parts or endogenous HPPD genes of plants to express the mutant rice HPPD protein according to any one of claims 1 to 5 therein.
  12. 根据权利要求11所述的方法,其特征在于,其包括易错PCR、基因编辑、转基因、杂交、回交或无性繁殖步骤。12. The method of claim 11, comprising the steps of error-prone PCR, gene editing, transgenic, cross-breeding, backcrossing, or asexual reproduction.
  13. 一种鉴定植物的方法,其中所述植物是包含权利要求6或7所述的核酸或基因的植物、表达权利要求1~5之任一所述的蛋白的植物或由权利要求11~12之任一所述的方法获得的植物,其特征在于,包括以下步骤:A method for identifying a plant, wherein the plant is a plant comprising the nucleic acid or gene of claim 6 or 7, a plant expressing the protein of any one of claims 1 to 5, or a plant composed of any of claims 11 to 12. The plant that any described method obtains, is characterized in that, comprises the following steps:
    1)测定所述植物是否包含权利要6或7所述的核酸或基因;或1) determining whether the plant comprises the nucleic acid or gene of claim 6 or 7; or
    2)测定所述植物是否表达权利要求1~5之任一所述的突变型蛋白。2) Determining whether the plant expresses the mutant protein of any one of claims 1-5.
  14. 一种控制杂草的方法,其特征在于,包括:对种植作物的大田施用有效剂量的除草剂,所述作物包含权利要求6或7所述的核酸或基因或权利要求8所述的表达盒、重组载体或细胞,所述除草剂为HPPD抑制剂类除草剂,包括三酮类、吡唑酮类以及异噁唑酮类中的一种或多种。A method for controlling weeds, comprising: applying an effective dose of herbicide to the field of planting crops, the crops comprising the nucleic acid or gene according to claim 6 or 7 or the expression cassette according to claim 8 , a recombinant vector or cell, and the herbicide is an HPPD inhibitor herbicide, including one or more of triketones, pyrazolones and isoxazolones.
  15. 一种用于保护植物免受由除草剂引起的损伤的方法,其特征在于,包括:对种植作物的大田施用有效剂量的除草剂,所述作物包含权利要求6或7所述的核酸或基因或将权利要求8所述的表达盒、重组载体导入植物,导入后的植物产生除草剂抗性蛋白,所述除草剂包括三酮类、吡唑酮类以及异噁唑酮类的一种或多种。A method for protecting plants from damage caused by herbicides, comprising: applying an effective dose of herbicides to a field where crops are grown, the crops comprising the nucleic acid or gene according to claim 6 or 7 Or introduce the expression cassette and the recombinant vector of claim 8 into a plant, and the plant after the introduction produces a herbicide-resistant protein, and the herbicide includes one of triketones, pyrazolones and isoxazolones or variety.
PCT/CN2021/072156 2021-01-15 2021-01-15 Hppd mutant protein having herbicide resistance and application thereof WO2022151352A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/072156 WO2022151352A1 (en) 2021-01-15 2021-01-15 Hppd mutant protein having herbicide resistance and application thereof
CN202180005086.5A CN114364793A (en) 2021-01-15 2021-01-15 HPPD mutant protein with herbicide resistance and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072156 WO2022151352A1 (en) 2021-01-15 2021-01-15 Hppd mutant protein having herbicide resistance and application thereof

Publications (1)

Publication Number Publication Date
WO2022151352A1 true WO2022151352A1 (en) 2022-07-21

Family

ID=81105238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072156 WO2022151352A1 (en) 2021-01-15 2021-01-15 Hppd mutant protein having herbicide resistance and application thereof

Country Status (2)

Country Link
CN (1) CN114364793A (en)
WO (1) WO2022151352A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116064430A (en) * 2021-09-14 2023-05-05 山东舜丰生物科技有限公司 Mutant HPPD polypeptides and uses thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102971428A (en) * 2010-05-04 2013-03-13 巴斯夫欧洲公司 Plants having increased tolerance to herbicides
CN103237894A (en) * 2010-08-13 2013-08-07 先锋国际良种公司 Compositions and methods comprising sequences having hydroxyphenylpyruvate dioxygenase (HPPD) activity
EP2669373A1 (en) * 2010-11-10 2013-12-04 Bayer CropScience AG HPPD variants and methods of use
CN108866092A (en) * 2017-05-11 2018-11-23 中国科学院遗传与发育生物学研究所 Generation of anti-herbicide gene and application thereof
CN110616203A (en) * 2018-06-04 2019-12-27 青岛清原化合物有限公司 Mutant p-hydroxyphenylpyruvate dioxygenase, nucleic acid encoding same and use thereof
WO2020221312A1 (en) * 2019-04-30 2020-11-05 山东舜丰生物科技有限公司 Herbicide-resistant gene, polypeptide, and application thereof in plant breeding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3055389A1 (en) * 2017-03-07 2018-09-13 BASF Agricultural Solutions Seed US LLC Hppd variants and methods of use
WO2019233349A1 (en) * 2018-06-04 2019-12-12 青岛清原化合物有限公司 Mutant p-hydroxyphenylpyruvate dioxygenase, and coding nucleic acid and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102971428A (en) * 2010-05-04 2013-03-13 巴斯夫欧洲公司 Plants having increased tolerance to herbicides
CN103237894A (en) * 2010-08-13 2013-08-07 先锋国际良种公司 Compositions and methods comprising sequences having hydroxyphenylpyruvate dioxygenase (HPPD) activity
EP2669373A1 (en) * 2010-11-10 2013-12-04 Bayer CropScience AG HPPD variants and methods of use
CN108866092A (en) * 2017-05-11 2018-11-23 中国科学院遗传与发育生物学研究所 Generation of anti-herbicide gene and application thereof
CN110616203A (en) * 2018-06-04 2019-12-27 青岛清原化合物有限公司 Mutant p-hydroxyphenylpyruvate dioxygenase, nucleic acid encoding same and use thereof
WO2020221312A1 (en) * 2019-04-30 2020-11-05 山东舜丰生物科技有限公司 Herbicide-resistant gene, polypeptide, and application thereof in plant breeding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116064430A (en) * 2021-09-14 2023-05-05 山东舜丰生物科技有限公司 Mutant HPPD polypeptides and uses thereof
CN116064430B (en) * 2021-09-14 2023-08-11 山东舜丰生物科技有限公司 Mutant HPPD polypeptides and uses thereof

Also Published As

Publication number Publication date
CN114364793A (en) 2022-04-15

Similar Documents

Publication Publication Date Title
EP2465933A2 (en) Disease-inducible promoters
JPH06500472A (en) Glyphosate-resistant 5-enolpyruvylshikimate-3-phosphate synthase
BG64394B1 (en) Manipulation of protoporphyrinogen oxidase enzyme activity in eukaryotic organisms
US10633669B2 (en) Herbicide-resistant protein, encoding gene and use thereof
JP7181528B2 (en) Method for producing HSL protein with enhanced catalytic activity to oxidize 4-HPPD inhibitor in a 2-oxoglutarate-dependent manner
WO2019024534A1 (en) Rice als mutant protein for conferring herbicide resistance to plants, and use thereof
BR112020015958A2 (en) HERBICIDE TOLERANT PROTEIN, HERBICIDE TOLERANT GENE, EXPRESSION CASSETTE, RECOMBINANT VECTOR, METHODS, PLANTING SYSTEM TO CONTROL WEED GROWTH, PLANTING METHOD OR SYSTEM, USE OF A TOLE PROTEIN
CN113549639B (en) Regulatory gene for reducing contents of total proteins and phenol in flue gas of tobacco leaves
JP6486505B2 (en) Herbicide resistant proteins, their coding genes and uses
JPH04229182A (en) Novel signal sequence
WO2022151352A1 (en) Hppd mutant protein having herbicide resistance and application thereof
US11952582B2 (en) Herbicide-resistance gene and application thereof in plant breeding
CN110628733A (en) Herbicide tolerance protein, coding gene and application thereof
US20180244732A1 (en) Herbicide-resistant protein, encoding gene and use thereof
US20120011599A1 (en) Hyddroperoxide genes and tolerance to abiotic stress in plants
CN111560055B (en) Application of rice gene OsLAT3 in regulation of absorption and accumulation of diquat
CN112608938A (en) Application of OsAO2 gene in controlling drought resistance of rice
Afroz et al. Transgenic lines of Oryza sativa (Basmati 2000) expressing Xa21 demonstrate enhanced resistance to bacterial blight
JP2003511049A (en) Method for increasing crop yield or biomass using protoporphyrinogen oxidase gene
CN117925701B (en) Application of GhTPS gene in regulation and control of verticillium resistance of cotton
JP7482563B1 (en) Luminescence-related genes from Shiinotomoshibitake
AU780525B2 (en) Novel miniature inverted-repeat transposable elements (MITEs)-like element and transcriptional activation element
JP2003250370A (en) Disease-resistant gramineous plant
CN117925684A (en) Rice stress resistance related protein GNP3, and coding gene and application thereof
JP5648822B2 (en) Modification of rice anthranilate synthase using homologous recombination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918558

Country of ref document: EP

Kind code of ref document: A1