WO2022151091A1 - 信息发送方法、信息接收方法及通信装置 - Google Patents

信息发送方法、信息接收方法及通信装置 Download PDF

Info

Publication number
WO2022151091A1
WO2022151091A1 PCT/CN2021/071585 CN2021071585W WO2022151091A1 WO 2022151091 A1 WO2022151091 A1 WO 2022151091A1 CN 2021071585 W CN2021071585 W CN 2021071585W WO 2022151091 A1 WO2022151091 A1 WO 2022151091A1
Authority
WO
WIPO (PCT)
Prior art keywords
uci
resource units
pusch
upper limit
symbol
Prior art date
Application number
PCT/CN2021/071585
Other languages
English (en)
French (fr)
Inventor
丁洋
官磊
李胜钰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/071585 priority Critical patent/WO2022151091A1/zh
Priority to CN202180077581.7A priority patent/CN116547936A/zh
Publication of WO2022151091A1 publication Critical patent/WO2022151091A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method for sending information, a method for receiving information, and a communication device in a wireless communication system.
  • the 5G communication system is committed to supporting higher system performance, and will support multiple service types, different deployment scenarios and a wider spectrum range.
  • the above-mentioned various service types include enhanced mobile broadband (eMBB), massive machine type communication (mMTC), ultra-reliable and low latency communication (ultra-reliable and low latency communications, URLLC), Multimedia broadcast and multicast services (multimedia broadcast multicast service, MBMS) and positioning services.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC ultra-reliable and low latency communications
  • Multimedia broadcast and multicast services multimedia broadcast multicast service, MBMS
  • Different deployment scenarios include indoor hotspot, dense urban, suburban, urban macro, and high-speed rail scenarios.
  • the wider spectrum range means that 5G will support a spectrum range up to 100GHz, which includes both the low frequency part below 6GHz and the high frequency part above 6GHz up to 100GHz.
  • the UCIs with different priorities are sequentially In the case of resource mapping, it may cause a problem of decoding error. For example, if a high-priority UCI has a mapping error, the mapping position of the low-priority UCI is also incorrect, which will cause the network device to decode the UCI information incorrectly. Therefore, how to improve the decoding accuracy of UCI information is an urgent problem to be solved.
  • the present application provides a method for sending information, a method for receiving information, and a communication device, which can improve the decoding accuracy of UCI information.
  • a method for sending information comprising: determining a starting position and an upper limit of the number of resource units for mapping the first uplink control information UCI on the uplink physical shared channel PUSCH; according to the first UCI mapping on the PUSCH The starting position and the upper limit of the number of resource units, determine the starting position where the second uplink control information UCI is mapped on the PUSCH, wherein the priority of the first UCI is higher than the priority of the second UCI; determine the priority of the first UCI The actual number of resource units and the actual number of resource units of the second UCI; the first UCI is mapped on the PUSCH according to the starting position of the first UCI mapped on the PUSCH and the actual number of resource units of the first UCI, according to the The starting position of the mapping of the second UCI on the PUSCH and the actual number of resource elements of the second UCI are mapped to the second UCI on the PUSCH; the PUSCH is sent.
  • the starting position of the second UCI mapped on the PUSCH is determined according to the starting position of the first UCI mapped on the PUSCH and the upper limit of the number of resource units.
  • the starting position is not limited by whether the first UCI has a load size error, so this mapping method can ensure that when the first UCI has a load size error, the second UCI is mapped to the correct position on the PUSCH, avoiding the occurrence of the second UCI mapping position. associated errors, thereby improving the decoding accuracy of UCI information.
  • determining the upper limit of the number of the first UCI resource units includes: determining the upper limit of the number of the first UCI resource units according to configuration information sent by the network device, where the configuration information Including the upper limit ratio of the number of resource units used to indicate the first UCI, and the upper limit of the number of first UCI resource units is determined according to the upper limit ratio of the first UCI resource unit number and the total number of resource units available for UCI transmission on the PUSCH.
  • other indication information may also be included for the configuration information.
  • the method further includes: the configuration information includes an upper limit ratio ⁇ HP for indicating the number of resource units of the first UCI and a resource for indicating the second UCI The upper limit ratio ⁇ LP of the number of units; or, the configuration information includes a ratio ⁇ that is used to indicate the upper limit ratio ⁇ LP of the second UCI resource unit number and the sum of the upper limit of the first UCI resource unit number and the upper limit of the second UCI resource unit number HP+LP ; or, the configuration information includes the ratio ⁇ HP+LP of the sum of the upper limit of the number of the first UCI resource units and the upper limit of the number of the second UCI resource units and indicates that the upper limit of the number of the first UCI resource units is in the first UCI The ratio p HP of the sum of the upper limit of the number of resource units and the upper limit of the number of the second UCI resource units.
  • determining the starting position of the second UCI mapping on the PUSCH includes: the starting position of the second UCI mapping on the PUSCH is located at the first UCI The first resource element of the Nth complete symbol after the upper limit of the number of the first UCI resource elements is mapped on the PUSCH, where N is a positive integer greater than or equal to 1.
  • the starting position of the mapping of the second UCI on the PUSCH may also be located in the first resource element of the last symbol or the last resource element of the last symbol on the PUSCH.
  • the starting position for mapping the first UCI on the PUSCH has nothing to do with the upper limit of the number of resource units.
  • the starting position of the second UCI mapped on the PUSCH is not affected by whether the first UCI has a payload size error. Therefore, the second UCI will not have a payload size error due to the first UCI. The associated errors occur, thereby improving the decoding accuracy of the UCI information.
  • the first UCI and the second UCI may be transmitted on the PUSCH, but no uplink data information may be transmitted; the PUSCH may transmit both the first UCI and the second UCI, and uplink data. information.
  • the method includes: determining the actual number of resource units of the first UCI according to the upper limit ratio of the number of the first UCI resource units and the upper limit ratio of the number of the second UCI resource units and the actual number of resource units of the second UCI.
  • the actual number of resource units of the first UCI is limited by the upper limit of the number of the first UCI resource units, the actual number of the first UCI resource units is less than or equal to the upper limit of the number of the first UCI resource units, the The number of two UCI actual resource units is limited by the upper limit of the number of the second UCI resource units, and the actual number of the second UCI resource units is less than or equal to the upper limit of the number of the second UCI resource units.
  • the method includes: when the PUSCH transmits both the first UCI and the second UCI, and transmits uplink data, the actual number of resource elements of the first UCI satisfies:
  • Q' HP-UCI is the actual number of resource units of the first UCI
  • O HP-UCI is the number of bits of the first UCI before encoding
  • L HP-UCI is the number of CRC bits of the cyclic redundancy check of the first UCI
  • ⁇ HP is the first symbol of the DMRS.
  • Q' LP-UCI is the actual number of resource units of the second UCI
  • O LP-UCI is the number of bits of the second UCI before encoding
  • L LP-UCI is the number of cyclic redundancy check CRC bits of the second UCI
  • ⁇ LP is the second symbol
  • the upper limit ratio of the number of UCI resource units where Indicates rounded up.
  • the method includes: when the PUSCH transmits the first UCI and the second UCI but does not transmit uplink data, the actual number of resource elements of the first UCI meets the requirement :
  • Q' HP-UCI is the actual number of resource units of the first UCI
  • O HP-UCI is the number of bits of the first UCI before encoding
  • L HP-UCI is the number of CRC bits of the cyclic redundancy check of the first UCI
  • R is the code rate of the PUSCH
  • Q m is the modulation order of the PUSCH
  • ⁇ HP is the first symbol of the DMRS.
  • Q' LP-UCI is the actual number of resource units of the second UCI
  • O LP-UCI is the number of bits of the second UCI before encoding
  • L LP-UCI is the number of cyclic redundancy check CRC bits of the second UCI
  • R is the code rate of the PUSCH
  • Q m is the modulation order of the PUSCH
  • ⁇ LP is the second symbol
  • the upper limit ratio of the number of UCI resource units where Indicates rounded up.
  • the method includes: when the PUSCH transmits both the first UCI and the second UCI, and transmits uplink data, the actual number of resource elements of the first UCI satisfies:
  • Q' HP-UCI is the actual number of resource units of the first UCI
  • O HP-UCI is the number of bits of the first UCI before encoding
  • L HP-UCI is the number of CRC bits of the cyclic redundancy check of the first UCI
  • ⁇ HP+LP ⁇ LP is the upper limit ratio of the number of the first UCI resource units
  • Q' LP-UCI is the actual number of resource units of the second UCI
  • O LP-UCI is the number of bits of the second UCI before encoding
  • L LP-UCI is the number of cyclic redundancy check CRC bits of the second UCI
  • ⁇ LP is the second symbol
  • the upper limit ratio of the number of UCI resource units where Indicates rounded up.
  • the method includes: when the PUSCH transmits the first UCI and the second UCI but does not transmit uplink data, the actual number of resource elements of the first UCI meets the requirement :
  • Q' HP-UCI is the actual number of resource units of the first UCI
  • O HP-UCI is the number of bits of the first UCI before encoding
  • L HP-UCI is the number of CRC bits of the cyclic redundancy check of the first UCI
  • R is the code rate of the PUSCH
  • Q m is the modulation order of the PUSCH
  • ⁇ HP+LP ⁇ LP is the upper limit ratio of the number of the first UCI resource units
  • Q' LP-UCI is the actual number of resource units of the second UCI
  • O LP-UCI is the number of bits of the second UCI before encoding
  • L LP-UCI is the number of cyclic redundancy check CRC bits of the second UCI
  • R is the code rate of the PUSCH
  • Q m is the modulation order of the PUSCH
  • ⁇ LP is the second symbol
  • the upper limit ratio of the number of UCI resource units where Indicates rounded up.
  • the method includes: when the PUSCH transmits both the first UCI and the second UCI, and transmits uplink data, the actual number of resource elements of the first UCI satisfies:
  • Q' HP-UCI is the actual number of resource units of the first UCI
  • O HP-UCI is the number of bits of the first UCI before encoding
  • L HP-UCI is the number of CRC bits of the cyclic redundancy check of the first UCI
  • l 0 is 0 or is the symbol index of the first symbol that does not carry the DMRS after the symbol of the first demodulation reference signal DMRS
  • p HP ⁇ HP+ LP is the upper limit ratio of the number of the first UCI resource units
  • Q' LP-UCI is the actual number of resource units of the second UCI
  • O LP-UCI is the number of bits of the second UCI before encoding
  • L LP-UCI is the number of cyclic redundancy check CRC bits of the second UCI
  • (1-p HP ) ⁇ HP+LP is the upper limit ratio of the number of the second UCI resource units, where Indicates rounded up.
  • the method includes: when the PUSCH transmits the first UCI and the second UCI but does not transmit uplink data, the actual number of resource elements of the first UCI meets the requirement :
  • Q' HP-UCI is the actual number of resource units of the first UCI
  • O HP-UCI is the number of bits of the first UCI before encoding
  • L HP-UCI is the number of CRC bits of the cyclic redundancy check of the first UCI
  • R is the code rate of the PUSCH
  • Q m is the modulation order of the PUSCH
  • l 0 is 0 or is the symbol index of the first symbol that does not carry the DMRS after the symbol of the first demodulation reference signal DMRS
  • p HP ⁇ HP+ LP is the upper limit ratio of the number of the first UCI resource units
  • Q' LP-UCI is the actual number of resource units of the second UCI
  • O LP-UCI is the number of bits of the second UCI before encoding
  • L LP-UCI is the number of CRC bits of the second UCI cyclic redundancy check
  • R is the code rate of the PUSCH
  • Q m is the modulation order of the PUSCH
  • (1-p HP ) ⁇ HP+LP is the upper limit ratio of the number of the second UCI resource units, where Indicates rounded up.
  • the method further includes: the first UCI represents high-priority hybrid automatic repeat feedback information HARQ-ACK, and the second UCI represents low-priority HARQ-ACK .
  • the first UCI may be high-priority HARQ-ACK
  • the second UCI may be other types of low-priority UCI information except HARQ-ACK; or, the first UCI is high Priority CSI information, the second UCI is low-priority HARQ-ACK; or, the first UCI is high-priority CSI information, and the second UCI is other types of low-priority UCI information except HARQ-ACK.
  • a second aspect provides a method for receiving information, the method comprising: sending configuration information, and determining an upper limit of the number of resource units of a first UCI according to the configuration information, wherein the configuration information is used to indicate the upper limit of the number of resource units of the first UCI Ratio, according to the ratio of the upper limit of the number of the first UCI resource units and the total number of resource units on the physical uplink shared channel PUSCH that can be used to transmit UCI, determine the upper limit of the number of the first UCI resource units; receive the PUSCH, the PUSCH includes the first UCI , second UCI and uplink data.
  • the configuration information includes an upper limit ratio ⁇ HP for indicating the number of resource units of the first UCI and an upper limit ratio ⁇ for indicating the number of resource units of the second UCI. LP ; or, the configuration information includes a ratio ⁇ HP+LP for indicating the upper limit ratio of the number of second UCI resource units and indicating the sum of the upper limit of the number of first UCI resource units and the upper limit of the number of second UCI resource units; or , the configuration information includes the ratio ⁇ HP+LP of the sum of the upper limit of the number of the first UCI resource unit and the upper limit of the number of the second UCI resource unit and indicates that the upper limit of the number of the first UCI resource unit is the upper limit of the number of the first UCI resource unit and The ratio p HP to the sum of the upper limit of the second UCI resource unit number.
  • a terminal device in a third aspect, includes a processing unit and a transceiver unit, the processing unit is configured to: determine the starting position of the first uplink control information UCI mapped on the uplink physical shared channel PUSCH and the upper limit of the number of resource units ; Determine the starting position of the second uplink control information UCI mapped on the PUSCH according to the starting position of the first UCI and the upper limit of the number of resource units mapped on the PUSCH, wherein the priority of the first UCI is higher than the first UCI.
  • Two UCI priorities determine the actual number of resource units of the first UCI and the actual number of resource units of the second UCI; according to the starting position of the first UCI mapped on the PUSCH and the actual number of resource units of the first UCI
  • the first UCI is mapped on the PUSCH
  • the second UCI is mapped on the PUSCH according to the starting position of the second UCI mapped on the PUSCH and the actual number of resource units of the second UCI
  • the transceiver unit is used to send the PUSCH.
  • the starting position of the second UCI mapped on the PUSCH is determined according to the starting position of the first UCI mapped on the PUSCH and the upper limit of the number of resource units.
  • the starting position is not limited by whether the first UCI has a load size error, so this mapping method can ensure that when the first UCI has a load size error, the second UCI is mapped to the correct position on the PUSCH, avoiding the occurrence of the second UCI mapping position. associated errors, thereby improving the decoding accuracy of UCI information.
  • determining the upper limit of the number of the first UCI resource units includes: the processing unit determining the upper limit of the number of the first UCI resource units according to the configuration information sent by the network device, wherein, The configuration information includes an upper limit ratio of the number of resource units used to indicate the first UCI, and the number of the first UCI resource units is determined according to the upper limit ratio of the number of resource units of the first UCI and the total number of resource units available for UCI transmission on the PUSCH upper limit.
  • other indication information may also be included for the configuration information.
  • the method further includes: the configuration information includes an upper limit ratio ⁇ HP for indicating the number of resource units of the first UCI and a resource for indicating the second UCI The upper limit ratio ⁇ LP of the number of units; or, the configuration information includes a ratio ⁇ that is used to indicate the upper limit ratio ⁇ LP of the second UCI resource unit number and the sum of the upper limit of the first UCI resource unit number and the upper limit of the second UCI resource unit number HP+LP ; or, the configuration information includes the ratio ⁇ HP+LP of the sum of the upper limit of the number of the first UCI resource units and the upper limit of the number of the second UCI resource units and indicates that the upper limit of the number of the first UCI resource units is in the first UCI The ratio p HP of the sum of the upper limit of the number of resource units and the upper limit of the number of the second UCI resource units.
  • determining the starting position of the second UCI mapping on the PUSCH includes: the starting position of the second UCI mapping on the PUSCH is located at the first UCI The first resource element of the Nth complete symbol after the upper limit of the number of the first UCI resource elements is mapped on the PUSCH, where N is a positive integer greater than or equal to 1.
  • the starting position of the mapping of the second UCI on the PUSCH may also be located in the first resource element of the last symbol or the last resource element of the last symbol on the PUSCH.
  • the starting position for mapping the first UCI on the PUSCH has nothing to do with the upper limit of the number of resource units.
  • the starting position of the second UCI mapped on the PUSCH is not affected by whether the first UCI has a payload size error. Therefore, the second UCI will not have a payload size error due to the first UCI. The associated errors occur, thereby improving the decoding accuracy of the UCI information.
  • the first UCI and the second UCI may be transmitted on the PUSCH, but no uplink data information may be transmitted; the PUSCH may transmit both the first UCI and the second UCI, and uplink data. information.
  • the method includes: the processing unit determining the actual first UCI according to the upper ratio of the number of the first UCI resource units and the upper ratio of the upper limit of the number of the second UCI resource units The number of resource units and the actual number of resource units of the second UCI.
  • the actual number of resource units of the first UCI is limited by the upper limit of the number of the first UCI resource units, the actual number of the first UCI resource units is less than or equal to the upper limit of the number of the first UCI resource units, the The actual number of the two UCI resource units is limited by the upper limit of the number of the second UCI resource units, and the actual number of the second UCI resource units is less than or equal to the upper limit of the number of the second UCI resource units.
  • the method includes: when the PUSCH transmits both the first UCI and the second UCI, and transmits uplink data, the actual number of resource elements of the first UCI satisfies:
  • Q' HP-UCI is the actual number of resource units of the first UCI
  • O HP-UCI is the number of bits of the first UCI before encoding
  • L HP-UCI is the number of CRC bits of the cyclic redundancy check of the first UCI
  • ⁇ HP is the first symbol of the DMRS.
  • Q' LP-UCI is the actual number of resource units of the second UCI
  • O LP-UCI is the number of bits of the second UCI before encoding
  • L LP-UCI is the number of cyclic redundancy check CRC bits of the second UCI
  • ⁇ LP is the second symbol
  • the upper limit ratio of the number of UCI resource units where Indicates rounded up.
  • the method includes: when the PUSCH transmits the first UCI and the second UCI but does not transmit uplink data, the actual number of resource elements of the first UCI meets the requirement :
  • Q' HP-UCI is the actual number of resource units of the first UCI
  • O HP-UCI is the number of bits of the first UCI before encoding
  • L HP-UCI is the number of CRC bits of the cyclic redundancy check of the first UCI
  • R is the code rate of the PUSCH
  • Q m is the modulation order of the PUSCH
  • ⁇ HP is the first symbol of the DMRS.
  • Q' LP-UCI is the actual number of resource units of the second UCI
  • O LP-UCI is the number of bits of the second UCI before encoding
  • L LP-UCI is the number of cyclic redundancy check CRC bits of the second UCI
  • R is the code rate of the PUSCH
  • Q m is the modulation order of the PUSCH
  • ⁇ LP is the second symbol
  • the upper limit ratio of the number of UCI resource units where Indicates rounded up.
  • the method includes: when the PUSCH transmits both the first UCI and the second UCI, and transmits uplink data, the actual number of resource elements of the first UCI satisfies:
  • Q' HP-UCI is the actual number of resource units of the first UCI
  • O HP-UCI is the number of bits of the first UCI before encoding
  • L HP-UCI is the number of CRC bits of the cyclic redundancy check of the first UCI
  • ⁇ HP+LP ⁇ LP is the upper limit ratio of the number of the first UCI resource units
  • Q' LP-UCI is the actual number of resource units of the second UCI
  • O LP-UCI is the number of bits of the second UCI before encoding
  • L LP-UCI is the number of cyclic redundancy check CRC bits of the second UCI
  • ⁇ LP is the second symbol
  • the upper limit ratio of the number of UCI resource units where Indicates rounded up.
  • the method includes: when the PUSCH transmits the first UCI and the second UCI but does not transmit uplink data, the actual number of resource elements of the first UCI meets the requirement :
  • Q' HP-UCI is the actual number of resource units of the first UCI
  • O HP-UCI is the number of bits of the first UCI before encoding
  • L HP-UCI is the number of CRC bits of the cyclic redundancy check of the first UCI
  • R is the code rate of the PUSCH
  • Q m is the modulation order of the PUSCH
  • ⁇ HP+LP ⁇ LP is the upper limit ratio of the number of the first UCI resource units
  • Q' LP-UCI is the actual number of resource units of the second UCI
  • O LP-UCI is the number of bits of the second UCI before encoding
  • L LP-UCI is the number of cyclic redundancy check CRC bits of the second UCI
  • R is the code rate of the PUSCH
  • Q m is the modulation order of the PUSCH
  • ⁇ LP is the second symbol
  • the upper limit ratio of the number of UCI resource units where Indicates rounded up.
  • the method includes: when the PUSCH transmits both the first UCI and the second UCI, and transmits uplink data, the actual number of resource elements of the first UCI satisfies:
  • Q' HP-UCI is the actual number of resource units of the first UCI
  • O HP-UCI is the number of bits of the first UCI before encoding
  • L HP-UCI is the number of CRC bits of the cyclic redundancy check of the first UCI
  • l 0 is 0 or is the symbol index of the first symbol that does not carry the DMRS after the symbol of the first demodulation reference signal DMRS
  • p HP ⁇ HP+ LP is the upper limit ratio of the number of the first UCI resource units
  • Q' LP-UCI is the actual number of resource units of the second UCI
  • O LP-UCI is the number of bits of the second UCI before encoding
  • L LP-UCI is the number of cyclic redundancy check CRC bits of the second UCI
  • (1-p HP ) ⁇ HP+LP is the upper limit ratio of the number of the second UCI resource units, where Indicates rounded up.
  • the method includes: when the PUSCH transmits the first UCI and the second UCI but does not transmit uplink data, the actual number of resource elements of the first UCI meets the requirement :
  • Q' HP-UCI is the actual number of resource units of the first UCI
  • O HP-UCI is the number of bits of the first UCI before encoding
  • L HP-UCI is the number of CRC bits of the cyclic redundancy check of the first UCI
  • R is the code rate of the PUSCH
  • Q m is the modulation order of the PUSCH
  • l 0 is 0 or is the symbol index of the first symbol that does not carry the DMRS after the symbol of the first demodulation reference signal DMRS
  • p HP ⁇ HP+ LP is the upper limit ratio of the number of the first UCI resource units
  • Q' LP-UCI is the actual number of resource units of the second UCI
  • O LP-UCI is the number of bits of the second UCI before encoding
  • L LP-UCI is the number of CRC bits of the second UCI cyclic redundancy check
  • R is the code rate of the PUSCH
  • Q m is the modulation order of the PUSCH
  • (1-p HP ) ⁇ HP+LP is the upper limit ratio of the number of the second UCI resource units, where Indicates rounded up.
  • the method further includes: the first UCI represents high-priority hybrid automatic repeat feedback information HARQ-ACK, and the second UCI represents low-priority HARQ-ACK .
  • the first UCI may be high-priority HARQ-ACK
  • the second UCI may be other types of low-priority UCI information except HARQ-ACK; or, the first UCI is high Priority CSI information, the second UCI is low-priority HARQ-ACK; or, the first UCI is high-priority CSI information, and the second UCI is other types of low-priority UCI information except HARQ-ACK.
  • a network device in a fourth aspect, includes a transceiver unit, the transceiver unit is configured to: the transceiver unit sends configuration information to a terminal device, and the terminal device determines the upper limit of the number of resource units of the first UCI according to the configuration information, wherein The configuration information is used to indicate the upper limit ratio of the number of resource units of the first UCI, and the terminal device determines the first UCI according to the upper limit ratio of the number of resource units of the first UCI and the total number of resource units available for UCI transmission on the physical uplink shared channel PUSCH The upper limit of the number of UCI resource units; the PUSCH is received, and the PUSCH includes the first UCI, the second UCI and uplink data.
  • the configuration information includes an upper limit ratio ⁇ HP for indicating the number of resource units of the first UCI and an upper limit ratio ⁇ for indicating the number of resource units of the second UCI. LP ; or, the configuration information includes a ratio ⁇ HP+LP for indicating the upper limit ratio of the number of second UCI resource units and indicating the sum of the upper limit of the number of first UCI resource units and the upper limit of the number of second UCI resource units; or , the configuration information includes the ratio ⁇ HP+LP of the sum of the upper limit of the number of the first UCI resource unit and the upper limit of the number of the second UCI resource unit and indicates that the upper limit of the number of the first UCI resource unit is the upper limit of the number of the first UCI resource unit and The ratio p HP to the sum of the upper limit of the second UCI resource unit number.
  • a fifth aspect provides a chip, the chip includes a processor and a data interface, the processor invokes and runs a computer program from a memory through the data interface, so that a device on which the chip system is installed executes the above-mentioned first aspect or the first aspect.
  • Information sending method in any implementation manner.
  • a computer-readable medium stores program codes for device execution, the program codes including information transmission in the second aspect or any implementation manner of the second aspect. method.
  • a computer program product comprising: computer program code, when the computer program code runs on a computer, causes the computer to execute the first aspect or any implementation manner of the first aspect method of sending information.
  • a communication system in an eighth aspect, includes the terminal device in the third aspect or any implementation manner of the third aspect and the network device in the third aspect or any implementation manner of the third aspect.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a mapping rule for multiplexing UCI and uplink data with the same priority on PUSCH in a prior art of the present application;
  • FIG. 3 is a schematic diagram of a mapping rule for multiplexing UCI and uplink data with the same priority on PUSCH in another prior art of the present application;
  • FIG. 4 is a schematic flowchart of a method for sending and receiving information according to an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a method for multiplexing UCIs with different priorities on PUSCH according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a PUSCH time-frequency resource block in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the starting position of a second UCI in the PUSCH in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the starting position of another second UCI in the PUSCH in the embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a terminal device in an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a network device in an embodiment of the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • FIG. 1 shows a schematic diagram of a communication system applicable to the method provided by this embodiment of the present application.
  • the communication system may include at least one network device, such as a base station (gNB) in a 5G system as shown in FIG. 1 ; the communication system may also include at least one terminal device, such as a user as shown in FIG. 1 .
  • gNB base station
  • UE user equipment
  • the network device may send configuration information to the terminal device, and the terminal device may send uplink data to the network device based on the configuration information; for another example, the network device may send downlink data to the terminal device. Therefore, the gNB and the UE in FIG. 1 can constitute a communication system.
  • Terminal devices in the communication system may also constitute a communication system.
  • UE4 can control UE5 and UE6 to execute corresponding instructions. This application does not limit this.
  • the network device in the communication system may be any device with a wireless transceiver function.
  • the network equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC) ), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband Unit, BBU), wireless fidelity (wireless fidelity, WiFi) system
  • the access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc. can also be 5G, such as, NR, gNB in the system, or, transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of a base station in a 5G system, or, it can also be a network node that constitutes
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless chain
  • the functions of the road control radio link control, RLC
  • media access control media access control, MAC
  • physical (physical, PHY) layers The functions of the road control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layers.
  • the higher-layer signaling such as the RRC layer signaling
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network devices in an access network (radio access network, RAN), and the CU may also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user equipment.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( Wireless terminals in transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit application scenarios.
  • FIG. 1 is only a simplified schematic diagram for easy understanding, and the communication system may further include other network devices or may also include other terminal devices, which are not shown in FIG. 1 .
  • URLLC ultra-reliable and low-latency service
  • URLLC is a high-priority service.
  • the so-called low-latency and high-reliability performance of the URLLC service can be known from the definition of the performance indicators of the URLLC service by the 3GPP RAN and RAN 1 working groups.
  • the delay refers to the transmission time required by the user application layer data packet from the SDU (Service Data Unit) of the wireless protocol stack layer 2/3 of the sender to the SDU of the wireless protocol stack layer 2/3 of the receiver.
  • SDU Service Data Unit
  • the user plane delay requirement of the URLLC service is 0.5ms for both uplink and downlink, and the performance requirement of 0.5ms refers to the average delay of data packets.
  • Reliability refers to the success probability that the sender transmits X bits of data correctly to the receiver within a certain period of time (L seconds).
  • L seconds The time required for the wireless protocol stack layer 2/3 SDU.
  • a typical requirement is to send 32 bytes of data within 1ms to achieve 99.999% reliability.
  • end-to-end delay within 0.25ms.
  • a 99.9999999% probability of successful transmission is achieved.
  • hybrid automatic repeat request is an efficient transmission mechanism, and the reliability of downlink data transmission can be greatly improved through HARQ.
  • the UE will send HARQ feedback information (HARQ-ACK) according to the actual situation.
  • HARQ-ACK HARQ feedback information
  • the network device needs to retransmit, which reduces the overall resource consumption of data transmission.
  • HARQ feedback information is a kind of uplink control information UCI.
  • UCI also includes scheduling request (SR), and channel state information (CSI) consists of CSI part 1 and CSI part 2.
  • SR scheduling request
  • CSI channel state information
  • mapping rules when multiplexing different types of UCI information and uplink data information under the same priority on the physical uplink shared channel (PUSCH) for transmission are as follows.
  • the multiplexing of high-level UCI and uplink data on the PUSCH is explained, wherein, FIG. 2 is a schematic diagram of the mapping rule for multiplexing UCI and uplink data with the same priority on the PUSCH in a prior art of the present application, and FIG. 3 is another example of the present application.
  • FIG. 2 is a schematic diagram of the mapping rule for multiplexing UCI and uplink data with the same priority on PUSCH in a prior art of the present application
  • FIG. 3 is another example of the present application.
  • the mapping sequence of multiplexing UCI and uplink data information with the same priority on the PUSCH is HARQ feedback information, CSI part1, CSI part2 and uplink data. information.
  • the HARQ feedback information of (a), (b), (c) and (d) in FIG. 2 is mapped as when the HARQ feedback information is more than 2 bits, then according to the actual size, the first available after the DMRS symbol Symbols start and are mapped sequentially. If the HARQ feedback information can occupy the entire current symbol, it will occupy the current symbol, and then occupy the next symbol. If the HARQ feedback information is not enough to occupy the entire current symbol, it will be distributed on the frequency domain resources at equal intervals on the current symbol.
  • the HARQ feedback information in the UCI information is mapped, and the HARQ feedback information is mapped from the first available symbol after the DMRS symbol, as shown in (a) of FIG. 2 .
  • the uplink data is mapped sequentially from the first available symbol resource on the PUSCH, wherein the first available symbol resource is to remove DMRS and HARQ feedback Information, CSI part 1 and CSI part 2 mapped resources, the first available symbol resource on PUSCH.
  • the HARQ feedback information of (a), (b), (c), (d) and (e) in FIG. 3 is mapped to the PUSCH when the HARQ feedback information is any size of 0, 1 or 2 bits.
  • PUSCH resources are reserved according to the 2-bit HARQ feedback information, which becomes a reserved area. It should be understood that, since the number of bits represented by each symbol in the resource block depends on the selected modulation order, the number of UCI and uplink data mapping resource elements in the figure is only an example.
  • the number of resource units that need to be mapped for the HARQ feedback information in the UCI information is reserved, and the resource reservation area of the HARQ feedback information is formed, and the resource reservation area starts from the first available symbol after the DMRS symbol, as shown in Figure 3 ( a) shown.
  • the first available symbol resource is the resource unit excluding the reserved area for DMRS and HARQ feedback information, and the first available symbol resource on the PUSCH.
  • the uplink data is mapped sequentially from the first available symbol resource on the PUSCH. There is no need to bypass the HARQ feedback information reservation area, where the first available symbol resource is the resource element mapped by excluding DMRS, CSI part 1 and CSI part 2, and the first available symbol resource on the PUSCH.
  • the HARQ feedback information resource is reserved.
  • the reserved area will be remapped by the HARQ feedback information, and the mapping position starts from the first symbol of the HARQ feedback information resource reserved area to cover the information already mapped in the reserved area.
  • UCIs with different priorities are multiplexed on the same PUSCH.
  • time-domain conflicts occur between services with different priorities
  • the multiplexing on the same PUSCH can be realized by performing resource mapping after the joint coding of the two. After the independent coding of the two, resource mapping is performed in sequence to realize multiplexing on the same PUSCH.
  • the terminal device After the network device sends the downlink control information (DCI) of high and low priority services to the terminal device on the physical downlink control channel (PDCCH) or the physical downlink shared channel (PDSCH), The terminal device sends UCI information to the network device on the PUSCH to feed back information on the high and low priority services processed by the terminal device.
  • DCI downlink control information
  • PDSCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the terminal device When a terminal device performs blind detection on high-priority DCI information, there may be a situation of missed detection.
  • the terminal device maps the high-priority UCI information on the PUSCH first, and then maps the low-priority UCI information on the PUSCH. Priority UCI information.
  • the indication field is used to indicate the total number of DL DCIs that need to feed back HARQ this time, even if the terminal equipment misses the detection of high-priority DCI information blindly, the terminal equipment will The UCI information corresponding to the detected DL DCI is supplemented, so as not to affect the position of the low-priority UCI information on the PUSCH, so as to avoid decoding errors by the network equipment.
  • the network device sends UCI with high and low priority on the PUSCH configured (configured grant, CG) and the PUSCH used for UL DCI format 0-0 scheduling, since there is no UL DAI indication field, when the terminal When the blind detection of high-priority DCI information is missed, the UCI information sent by the terminal device will lack the UCI information corresponding to the missed high-priority DCI information. An error occurs in the location of the priority UCI information, resulting in a decoding error by the network device.
  • the first UCI represents a UCI of a higher-priority service
  • the second UCI represents a UCI of a lower-priority service, wherein the priority of the first UCI is higher than that of the second UCI.
  • the first service priority is higher than the second service priority.
  • the URLLC service has a higher priority than the eMBB service, which is not limited in the implementation of this application. .
  • the sending combinations of the first UCI and the second UCI may be the following four, which are not limited in this embodiment of the present application.
  • the first UCI is high-priority HARQ feedback information and the second UCI is low-priority HARQ feedback information.
  • the first UCI is high-priority HARQ feedback information and the second UCI is other types of low-priority UCI information except HARQ feedback information, such as low-priority CSI information, which are not limited in the embodiments of the present application.
  • the first UCI is high-priority CSI information and the second UCI is low-priority HARQ feedback information.
  • the first UCI is high-priority CSI information and the second UCI is other types of low-priority UCI information except HARQ feedback information, for example, low-priority CSI information, which are not limited in the embodiments of the present application.
  • FIG. 4 is a schematic flowchart of an information sending method and an information receiving method according to an embodiment of the present application.
  • the terminal device determines the starting position of the first uplink control information UCI mapped on the PUSCH and the upper limit of the number of resource units.
  • the upper limit of the number of resource elements of the first UCI indicates the maximum number of resource elements that the first UCI can map on the PUSCH.
  • S403 Determine the actual number of resource units of the first UCI and the actual number of resource units of the second UCI.
  • the actual number of resource units of the first UCI is the actual number of resource units mapped on the PUSCH by the first UCI, the actual number of resource units is less than or equal to the upper limit of the number of resource units of the first UCI, the nature of the actual number of resource units of the second UCI and the first The actual number of resource units of a UCI is the same, which is not repeated here.
  • the actual number of resource units may be determined according to a rate matching rule, and the first UCI and the second UCI have different rate matching rules according to their respective service types.
  • the end device sends the PUSCH.
  • the network device Before S401, the network device sends configuration information to the terminal device, where the configuration information can be used to determine the upper limit of the number of resource units mapped on the PUSCH by the first UCI.
  • FIG. 5 is a schematic flowchart of a method for multiplexing UCIs with different priorities on the PUSCH according to the embodiment of the present application.
  • the PUSCH data transmission parameters are used to determine the starting position of the first UCI and the second UCI mapped on the PUSCH, the upper limit of the number of resource units and the actual number of resource units, and the uplink channel data transmission parameters may include the total number of PUSCH resource units, demodulation Reference signal (demodulation reference signal, DMRS) location and number of resource elements, phase tracking reference signal (PTRS) location and number of resource elements, modulation order Q m and code rate R, etc.
  • demodulation Reference signal demodulation reference signal
  • PTRS phase tracking reference signal
  • the PUSCH can transmit UCI information and uplink data information, and can also transmit UCI information but not uplink data information, which is not limited in this embodiment of the present application.
  • the total number of PUSCH resource units may be configured through the high-level configuration information of the network device, or may be dynamically indicated by the network device sending DCI to the terminal device, which is not limited in this embodiment of the present application.
  • the actual number of resources occupied by the first UCI and the second UCI will be determined by using the total number of resource units available for transmitting UCI information on the PUSCH, where the total number of resource units available for transmitting UCI information on the PUSCH may be divided by DMRS resource units.
  • the number of resource units other than the number and the number of PTRS resource units is not limited in this embodiment of the present application.
  • the position of the DMRS information will be used to determine the starting position of the first UCI mapping on the PUSCH.
  • the first UCI information includes HARQ feedback information
  • the starting position of the HARQ feedback information on the PUSCH is located after the DMRS position.
  • FIG. 6 is a PUSCH time-frequency resource in an embodiment of the present application
  • the horizontal direction is time domain information
  • the minimum horizontal time domain unit is a symbol
  • the vertical direction is frequency domain information
  • the vertical vertical frequency domain minimum unit is a subcarrier
  • a symbol and a subcarrier together form the smallest unit of time-frequency resources, resource element (RE).
  • the DMRS is mapped on the third symbol of the PUSCH. Therefore, if the first UCI includes HARQ feedback information, the HARQ feedback information is mapped from the fourth symbol.
  • UCI information other than HARQ feedback information is mapped from the first symbol.
  • the modulation order Q m and the code rate R will be used to determine the actual number of resources on which the UCI information is mapped on the PUSCH.
  • the terminal device determines the upper limit of the number of first UCI resource units and the upper limit of the number of second UCI resource units according to the configuration information sent by the network device.
  • the network device sends configuration information to the terminal device on radio resource control signaling (radio resource control, RRC).
  • radio resource control radio resource control
  • the configuration information in this embodiment of the present application may be used to indicate the upper limit ratio ⁇ HP of the number of first UCI resource units and the upper limit ratio ⁇ LP of the number of second UCI resource units, to directly obtain the upper limit of the number of first UCI resource units.
  • the configuration information in this embodiment of the present application may also be used to indicate the upper limit ratio ⁇ HP of the number of resource units of the first UCI and the ratio ⁇ HP+LP of the sum of the upper limit of the number of resource units of the first UCI and the second UCI, which is directly obtained.
  • the upper limit ratio of the number of the first UCI resource units is ⁇ HP
  • the upper limit ratio of the number of the second UCI resource units is indirectly obtained as ⁇ HP+LP ⁇ HP .
  • the configuration information in this embodiment of the present application may also be used to indicate the upper limit ratio ⁇ LP of the number of resource units of the second UCI and the ratio ⁇ HP+LP of the sum of the upper limit of the number of resource units of the first UCI and the second UCI, which is obtained indirectly.
  • the upper limit ratio ⁇ HP+LP - ⁇ LP of the number of the first UCI resource elements is directly obtained, and the upper limit ratio ⁇ LP of the number of resource elements mapped on the PUSCH by the second UCI is directly obtained.
  • the configuration information in this embodiment of the present application may also be used to indicate the ratio ⁇ HP+LP of the sum of the upper limit of the number of resource units of the first UCI and the second UCI, and to indicate that the upper limit of the number of resource units of the first UCI is between the upper limit of the number of the first UCI and the second UCI.
  • the ratio p HP of the upper limit sum of the number of UCI resource units indirectly obtains the upper limit ratio p HP ⁇ HP+LP of the first UCI resource unit number, and the upper limit ratio of the second UCI resource unit number (1-p HP ) ⁇ HP+ LP
  • the configuration information in this embodiment of the present application may also be used to indicate the ratio p HP of the upper limit of the number of the first UCI resource units to the sum of the upper limit of the number of resource units of the first UCI and the second UCI and the ratio p HP indicating the number of resource units of the first UCI.
  • the upper limit ratio ⁇ HP directly obtains the upper limit ratio ⁇ HP of the number of first UCI resource units, and indirectly obtains the upper limit ratio of the number of second UCI resource units as ( ⁇ HP - ⁇ HP ⁇ p HP )/p HP .
  • the configuration information in this embodiment of the present application may also be used to indicate the ratio p HP of the upper limit of the number of resource units of the first UCI to the sum of the upper limit of the upper limit of the number of resource units of the first UCI and the upper limit of the number of resource units of the second UCI and the ratio p HP indicating the number of resource units of the second UCI.
  • the upper limit ratio ⁇ LP indirectly obtains the upper limit ratio ⁇ LP ⁇ p HP /(1-p HP ) of the number of the first UCI resource units, and directly obtains the upper limit ratio ⁇ LP of the second UCI resource unit number.
  • the ratio is p LP .
  • the upper limit ratio of the number of the first UCI resource units and the upper limit ratio of the number of the second UCI resource units can be obtained in the above manner, which will not be repeated here.
  • the upper limit of the number of UCI resource units is obtained by multiplying the ratio of the upper limit of the number of UCI resource units and the total number of resource units that can be used to transmit UCI on the PUSCH;
  • the multiplication operation of the total number of resource units obtains the upper limit of the number of the second UCI resource units.
  • the upper limit of the number of first UCI resource units may be used to determine the starting position of the second UCI mapped on the PUSCH, and may also be used to control the actual number of resource units of the first UCI not to exceed the upper limit of the number of first UCI resource units.
  • the upper limit of the number of second UCI resource units is used to control the actual number of resource units of the second UCI not to exceed the upper limit of the number of second UCI resource units.
  • S503 Determine the starting position of the second UCI on the PUSCH.
  • the starting position of the first UCI mapped on the PUSCH and the upper limit of the number of resource units determine the starting position of the second UCI on the PUSCH.
  • This step corresponds to S402 in FIG. 4 .
  • the starting position of the PUSCH occupied by the second uplink control information UCI is determined, wherein the priority of the first UCI is higher than the priority of the second UCI.
  • the starting position where the second UCI is mapped on the PUSCH may be located at the first resource element of the Nth complete symbol after the upper limit of the number of resource elements of the first UCI is mapped on the PUSCH by the first UCI, where N is a positive value greater than or equal to 1 Integer.
  • FIG. 7 is a schematic diagram of a starting position of a second UCI in the PUSCH in an embodiment of the present application.
  • Figure 7(a) takes the UCI information including HARQ feedback information as an example, the starting position of the first UCI mapped on the PUSCH is the symbol after the DMRS information, and the upper limit of the number of resource elements according to the first UCI is that the first UCI is on the PUSCH Reserved resources, the reserved resources are the values within the range of the virtual box in FIG. 7 , that is, the upper limit of the number of resource units of the first UCI, and the fourth to sixth symbols in the time-frequency resource block shown in the figure are reserved . Even if the upper limit of the number of resource elements reserved by the first UCI on the PUSCH does not occupy the sixth symbol, the starting position of the second UCI mapped on the PUSCH may be located at the first resource element of the seventh symbol.
  • the upper limit of the number of the first UCI resource units is the value within the range of the dashed box in FIG. 7 , and the first UCI can be reserved except from the symbol after the DMRS information. resources, resources may also be reserved for the first UCI starting from the first symbol of the PUSCH according to the upper limit of the number of resource units of the first UCI. Even if the upper limit of the number of resource elements reserved by the first UCI on the PUSCH does not occupy the fourth symbol, the starting position of the second UCI mapped on the PUSCH may be located at the first resource element in the fifth symbol.
  • the starting position of the second UCI mapped on the PUSCH is determined. Since the starting position of the second UCI mapped on the PUSCH is not affected by the occurrence of the first UCI The load size error is limited, so this mapping method can ensure that when a load size error occurs in the first UCI, the second UCI is mapped to the correct position on the PUSCH, avoiding joint errors in the second UCI mapping position.
  • the starting position of the second UCI mapped on the PUSCH is located at the last symbol on the PUSCH.
  • FIG. 8 is a schematic diagram of the starting position of another second UCI in the PUSCH in the embodiment of the present application.
  • the starting position of the second UCI mapped on the PUSCH is located at the last symbol on the PUSCH.
  • the mapping rule of frequency first, time domain mapping, that is, mapping in the frequency domain and then in the time domain the mapping sequence of the second UCI on the last symbol of the PUSCH is as follows: two kinds.
  • the second UCI can be mapped from the first resource element of the last symbol, mapped in the order of the frequency domain index of the resource element from small to large, and after the last symbol is mapped, according to the time of the resource element Domain indexes are mapped in order from large to small.
  • the second UCI can also be mapped from the last resource unit of the last symbol, mapped in descending order of the frequency domain index of the resource unit, and after the last symbol is mapped, according to the resource unit Time domain indices are mapped in order from large to small.
  • S504 according to the configuration information sent by the network device, determine the actual number of resource units of the first UCI and the actual number of resource units of the second UCI through a rate matching rule.
  • the actual number of resource units of the first UCI is the actual number of resource units mapped on the PUSCH by the first UCI, the actual number of resource units is less than or equal to the upper limit of the number of resource units of the first UCI, the nature of the actual number of resource units of the second UCI and the first The actual number of resource units of a UCI is the same, which is not repeated here.
  • the actual number of resource units of the first UCI and the actual number of resource units of the second UCI are obtained through their corresponding rate matching rules.
  • UCI information and uplink data information can be transmitted on PUSCH, and UCI information can also be transmitted on PUSCH, but uplink data information is not transmitted.
  • the actual number of resources mapped on the PUSCH is calculated for different types of UCI according to the following rate matching rules.
  • the actual number of resource elements of the HARQ feedback information is calculated by formula (1), where Indicates rounded up.
  • the physical meaning of the first part of formula (1) is based on the actual number of data bits of the HARQ feedback information (the number of bits before coding O ACK and the number of CRC check bits L ACK ), the code rate offset factor and the code rate of the data uplink data to calculate the number of resource elements encoded by the HARQ feedback information.
  • the physical meaning of (O ACK +L ACK )/Q' ACK is the code rate of UCI
  • the physical meaning is the code rate of uplink data, Indicates the ratio of the uplink data code rate to the UCI code rate.
  • the UCI code rate is smaller than the uplink data code rate, which is beneficial to the reliability of UCI in terms of transmission performance.
  • the physical meaning of the second part of formula (1) is to determine the upper limit of the number of HARQ feedback information resource elements according to the upper limit ratio ⁇ of the number of resource elements mapped on the PUSCH by UCI, where is the total number of resource elements on the PUSCH that can be used to transmit UCI, wherein 10 is the symbol index of the first symbol that does not carry the DMRS after the symbol of the first demodulation reference signal DMRS.
  • the minimum value of the two parts is used as the actual number of resource elements Q' ACK for the HARQ feedback information.
  • the CSI information consists of CSI part 1 and CSI part 2, the actual number of resource units of CSI part 1 is calculated by formula (2), and the actual number of resource units of CSI part 2 is calculated by formula (3).
  • the actual number of resource elements of the HARQ feedback information is calculated by formula (1).
  • the actual number of resource units is calculated according to the following rate matching rules for different types of UCI.
  • the actual number of resource elements of the HARQ feedback information is calculated by formula (4).
  • Q m is the modulation order
  • R is the code rate
  • CSI information consists of CSI part 1 and CSI part 2.
  • the actual number of resource units in CSI part 1 is calculated by formula (5).
  • the actual number of resource units of CSI part 2 is calculated by formula (6). If it is determined that there is no CSI part 2, the actual number of resource units of CSI part 1 is calculated by formula (7).
  • the terminal device determines that the upper limit of the number of the first UCI resource units may be the upper limit ratio ⁇ HP and the upper limit of the number of the second UCI resource units may be the upper limit ratio ⁇ LP , therefore, when calculating the first UCI actual resource unit
  • formulas (1) to (4) are selected to calculate the actual number of first UCI resource units, where the ratio of the data code rate to the UCI code rate Replaced by the ratio of the data bit rate to the first UCI bit rate
  • formulas (5) to (7) are selected to calculate the actual number of resource units of the first UCI.
  • the corresponding formula can also be selected from the above formulas (1) to (7) according to the data type of the current uplink channel transmission.
  • formulas (1) to (4) are selected to calculate the actual number of resource elements of the second UCI, where the ratio of the data code rate to the UCI code rate Replaced with the ratio of the data bit rate to the second UCI bit rate
  • formulas (5) to (7) are selected to calculate the actual number of resource elements of the second UCI.
  • the actual number of resource units of the first UCI satisfies:
  • Q' HP-UCI is the actual number of resource units of the first UCI
  • O HP-UCI is the number of bits of the first UCI before encoding
  • L HP-UCI is the number of CRC bits of the cyclic redundancy check of the first UCI
  • is the code rate of uplink data is the total number of resource elements that can be used to transmit UCI on the PUSCH, where l 0 is 0 or is the symbol index of the first symbol that does not carry the DMRS after the symbol of the first demodulation reference signal DMRS.
  • 10 when the first UCI is high-priority CSI information, 10 is 0; when the first UCI is high-priority HARQ feedback information, 10 is the first demodulation reference signal DMRS symbol after the symbol does not carry the Symbol index of the first symbol of the DMRS
  • Q' LP-UCI is the actual number of resource elements of the second UCI
  • O LP-UCI is the number of bits of the second UCI before encoding
  • L LP-UCI is the number of CRC bits of the cyclic redundancy check of the second UCI
  • is the code rate of uplink data is the total number of resource elements that can be used to transmit UCI on the PUSCH, where l 0 is 0 or is the symbol index of the first symbol that does not carry the DMRS after the symbol of the first demodulation reference signal DMRS.
  • the actual number of first UCI resource units satisfies:
  • Q' HP-UCI is the actual number of resource units of the first UCI
  • O HP-UCI is the number of bits of the first UCI before encoding
  • L HP-UCI is the number of CRC bits of the cyclic redundancy check of the first UCI
  • R is the code rate of PUSCH
  • Q m is the modulation order of PUSCH
  • l 0 is 0 or is the symbol index of the first symbol that does not carry the DMRS after the symbol of the first demodulation reference signal DMRS.
  • Q' LP-UCI is the actual number of resource units of the second UCI
  • O LP-UCI is the number of bits of the second UCI before encoding
  • L LP-UCI is the number of cyclic redundancy check CRC bits of the second UCI
  • R is the code rate of PUSCH
  • Q m is the modulation order of PUSCH
  • l 0 is 0 or is the symbol index of the first symbol that does not carry the DMRS after the symbol of the first demodulation reference signal DMRS.
  • the configuration information is used to indicate the upper limit ratio ⁇ LP of the number of resource elements of the second UCI and the ratio ⁇ HP+LP of the sum of the upper limit of the number of resource elements of the first UCI and the second UCI
  • the actual number of resource units of the first UCI satisfies:
  • the actual number of first UCI resource units satisfies:
  • the configuration information is used to indicate the ratio ⁇ HP+LP of the upper limit of the number of resource units of the first UCI and the second UCI and the ratio of the upper limit of the number of resource units of the first UCI to the sum of the upper limit of the number of resource units of the first UCI and the second UCI
  • p HP the upper limit ratio of UCI used to calculate the actual number of resource units of the first UCI
  • p HP the upper limit ratio of UCI used to calculate the actual number of resource units of the second UCI
  • (1-p HP ) ⁇ HP+LP
  • the actual number of first UCI resource units satisfies:
  • the actual number of first UCI resource units satisfies:
  • the upper limit ratio of different priorities in the prior art is only used to control the actual number of resource units mapped by UCI on PUSCH not to exceed the upper limit of the number of resource units of UCI on PUSCH.
  • the upper limit ratio not only has this effect, It is also used to assist in determining the upper limit of the number of resource elements mapped to the PUSCH by the first UCI to determine the location where the second UCI starts to be mapped on the PUSCH, so as to ensure that when the first UCI is mapped incorrectly during the encoding process, the network device will not be affected. Decoding of the second UCI.
  • the first UCI is mapped on the PUSCH according to the starting position of the first UCI mapped on the PUSCH and the actual number of resource elements of the first UCI
  • the starting position of the PUSCH according to the second UCI is mapped on the PUSCH.
  • the second UCI is mapped on the PUSCH with the actual number of resource elements of the second UCI.
  • the mapping sequence of UCI information and uplink data information on the PUSCH is the first UCI, the second UCI, and the uplink data information, wherein the uplink data is only used when the UCI information and the data information need to be multiplexed on the same uplink channel. It only appears when the uplink channel does not need to transmit uplink data information, and there is no need to map data information on the PUSCH.
  • FIGS. 9 and 10 are another mapping rules for multiplexing the first UCI and the second UCI on the PUSCH in the embodiments of the present application.
  • FIG. 9 shows that the starting position of the second UCI mapping in the PUSCH is located at the Nth after the upper limit of the number of the first UCI resource elements mapped by the first UCI on the PUSCH The mapping method of the first resource element of a complete symbol, where N is a positive integer greater than or equal to 1.
  • FIG. 10 shows that the starting position of the second UCI on the PUSCH is located in the last symbol on the PUSCH.
  • the starting position of the second UCI in the PUSCH is located in the first complete symbol after the upper limit of the number of resource elements mapped by the first UCI on the PUSCH , corresponding to the position in Figure 7
  • S901 Determine the location where the first UCI starts to be mapped, wherein when the first UCI includes HARQ feedback information, the first UCI can be mapped from the first symbol after the DMRS symbol, as shown in (a) of FIG. 9 .
  • the first UCI when the first UCI does not include HARQ feedback information, the first UCI may also be mapped from the position shown in (a) of FIG. 10 .
  • the two steps of obtaining the actual number of resource units mapped on the PUSCH by the first UCI and the determined upper limit of the number of resource units mapped by the first UCI on the PUSCH are parallel steps, in no particular order.
  • the first UCI internal mapping rule is the mapping rule of the same priority UCI in the existing protocol, as shown in FIG. 2 or FIG. 3 , and details are not described herein.
  • the first UCI when the first UCI does not include HARQ feedback information, the first UCI may also be mapped on the PUSCH as shown in (b) of FIG. 10 .
  • the second UCI internal mapping rule is a mapping rule for UCIs with the same priority in the prior art, as shown in FIG. 2 or FIG. 3 , and details are not described herein.
  • the starting position of the second UCI in the PUSCH is located in the last symbol of the PUSCH, which corresponds to the position in FIG. 8 .
  • S1001 Determine the location where the first UCI starts to be mapped, wherein when the first UCI does not include HARQ feedback information, the first UCI can be mapped from the first symbol after the DMRS symbol, as shown in (a) of FIG. 10 .
  • the first UCI when the first UCI includes HARQ feedback information, the first UCI may also be mapped from the position shown in (a) of FIG. 9 .
  • the first UCI when the first UCI includes HARQ feedback information, the first UCI may also be mapped on the PUSCH as shown in (b) of FIG. 9 .
  • the second UCI internal mapping rule is a mapping rule for UCIs with the same priority in the prior art, as shown in FIG. 2 or FIG. 3 , and details are not described herein.
  • FIG. 11 is a schematic block diagram of a terminal device 1100 according to an embodiment of the present application. As shown in FIG. 11 , the terminal device includes: a processing unit 1101 and a transceiver unit 1102 .
  • the processing unit is used to determine the starting position of the first UCI mapped on the PUSCH and the upper limit of the number of resource elements; according to the starting position of the first UCI mapped on the PUSCH and the upper limit of the number of resource elements, determine the starting position of the second UCI to be mapped on the PUSCH.
  • the priority of the first UCI is higher than the priority of the second UCI; determining the actual number of resource elements of the first UCI and the actual number of resource elements of the second UCI; according to the starting position of the first UCI mapped on the PUSCH and The first UCI is mapped on the PUSCH with the actual number of resource elements of the first UCI, and the second UCI is mapped on the PUSCH according to the starting position of the second UCI mapped on the PUSCH and the actual number of resource elements of the second UCI.
  • the transceiver unit is used to transmit PUSCH.
  • each unit in 1100 in the terminal device is respectively configured to perform each action or processing process performed by the terminal device in each of the foregoing methods, so the beneficial effects in the foregoing method embodiments can also be achieved.
  • the detailed description thereof is omitted.
  • FIG. 12 is a schematic block diagram of a network device 1200 according to an embodiment of the present application. As shown in FIG. 12 , the network device includes: a transceiver unit 1201 .
  • the transceiver unit is configured to send configuration information to the terminal device, and the terminal device determines the upper limit of the number of first UCI resource units according to the configuration information, wherein the configuration information is used to indicate the ratio of the upper limit of the number of first UCI resource units, and the terminal device determines the upper limit of the number of first UCI resource units according to the configuration information.
  • the upper limit ratio of the number and the total number of resource units on the PUSCH that can be used to transmit UCI determine the upper limit of the number of the first UCI resource units.
  • the transceiver unit receives the PUSCH, where the PUSCH includes the first UCI, the second UCI and uplink data.
  • each unit in 1200 in the terminal device is respectively used to execute each action or processing process performed by the terminal device in the above-mentioned methods, so the beneficial effects in the above-mentioned method embodiments can also be achieved.
  • the detailed description thereof is omitted.
  • the embodiments of the present application also provide a computer-readable medium, where the computer-readable medium stores a computer program (also referred to as code, or instruction), when it runs on a computer, so that the computer executes any of the foregoing method embodiments method in .
  • a computer program also referred to as code, or instruction
  • An embodiment of the present application also provides a chip system, including a memory and a processor, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that a communication device installed with the chip system executes the The method in any of the above method embodiments.
  • the chip system may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • An embodiment of the present application further provides a communication system, including: a communication apparatus for executing the method in any of the foregoing embodiments.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信息发送方法、信息接收方法及通信装置,该方法包括:根据第一上行控制信息UCI在PUSCH上映射的起始位置和资源单元数目上限,确定第二上行控制信息UCI在PUSCH上映射的起始位置,其中第一UCI的优先级高于第二UCI的优先级;根据第一UCI在PUSCH上映射的起始位置和第一UCI实际资源单元数在PUSCH上映射第一UCI,根据第二UCI在PUSCH上映射的起始位置和第二UCI实际资源单元数在PUSCH上映射第二UCI;发送PUSCH。本申请实施例中第二UCI在PUSCH上映射的起始位置不受第一UCI映射关系的影响,能够提高UCI信息的译码准确性。

Description

信息发送方法、信息接收方法及通信装置 技术领域
本申请涉及无线通信技术领域,尤其涉及无线通信系统中的信息发送方法、信息接收方法及通信装置。
背景技术
5G通信系统致力于支持更高系统性能,将支持多种业务类型、不同部署场景和更宽的频谱范围。其中,上述的多种业务类型包括增强移动宽带(enhanced mobile broadband,eMBB),海量机器类型通信(massive machine type communication,mMTC),超可靠低延迟通信(ultra-reliable and low latency communications,URLLC),多媒体广播多播业务(multimedia broadcast multicast service,MBMS)和定位业务等。不同部署场景包括室内热点(indoor hotspot)、密集城区(dense urban)、郊区、城区宏覆盖(urban macro)及高铁场景等。更宽的频谱范围是指5G将支持高达100GHz的频谱范围,这既包括6GHz以下的低频部分,也包括6GHz以上最高到100GHz的高频部分。
如果不同优先级业务的上行控制信息(uplink control information,UCI)需要通过独立编码的方式在同一个物理上行共享信道上(physical uplink shared channel,PUSCH)进行复用时,在对不同优先级UCI依次进行资源映射的情况下,可能会导致译码错误的问题。例如,如果高优先级的UCI发生映射错误导致低优先级UCI映射位置也发生错误,这将导致网络设备对UCI信息译码错误。因此,如何提高UCI信息的译码准确性是亟待解决的问题。
发明内容
本申请提供一种信息发送方法、信息接收方法方法及通信装置,能够提高UCI信息的译码准确性。
第一方面,提供了一种信息发送方法,包括:确定第一上行控制信息UCI在上行物理共享信道PUSCH上映射的起始位置和资源单元数目上限;根据该第一UCI在该PUSCH上映射的起始位置和资源单元数目上限,确定第二上行控制信息UCI在该PUSCH上映射的起始位置,其中该第一UCI的优先级高于该第二UCI的优先级;确定该第一UCI的实际资源单元数和该第二UCI的实际资源单元数;根据该第一UCI在该PUSCH上映射的起始位置和该第一UCI实际资源单元数在该PUSCH上映射该第一UCI,根据该第二UCI在该PUSCH上映射的起始位置和该第二UCI实际资源单元数在该PUSCH上映射该第二UCI;发送该PUSCH。
在本申请实施例的技术方案中,根据第一UCI映射在PUSCH上的起始位置和资源单元数目上限,确定第二UCI映射在PUSCH上的起始位置,由于第二UCI映射在PUSCH上的起始位置不受第一UCI是否发生载荷大小错误限制,因此这种映射方式可以保证在第一UCI发生载荷大小错误时,第二UCI映射在PUSCH上的位置正确,避免第二UCI映 射位置发生连带错误,从而提高了UCI信息的译码准确性。
结合第一方面,在第一方面的某些实现方式中,确定该第一UCI资源单元数目上限包括:根据网络设备发送的配置信息,确定该第一UCI资源单元数目上限,其中,该配置信息包括用于指示该第一UCI的资源单元数目上限比例,根据该第一UCI资源单元数目上限比例和该PUSCH的上可用于传输UCI的资源单元总数,确定该第一UCI资源单元数目上限。
在某些可能实现的方式中,针对该配置信息,还可以包括其他指示信息。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该配置信息包括用于指示该第一UCI的资源单元数目上限比例α HP和用于指示该第二UCI的资源单元数目上限比例α LP;或者,该配置信息包括用于指示第二UCI资源单元数目上限比例α LP和指示该第一UCI资源单元数目上限和该第二UCI资源单元数目上限的总和的比例α HP+LP;或者,该配置信息包括该第一UCI资源单元数目上限和该第二UCI资源单元数目上限的总和的比例α HP+LP和指示该第一UCI资源单元数目上限在该第一UCI资源单元数目上限和该第二UCI资源单元数目上限总和的比例p HP
结合第一方面,在第一方面的某些实现方式中,确定该第二UCI在该PUSCH上映射的起始位置包括:该第二UCI在该PUSCH上映射的起始位置位于该第一UCI在该PUSCH上映射该第一UCI资源单元数目上限之后的第N个完整符号的第一个资源单元,其中N为大于等于1的正整数。
在某些可能实现的方式中,第二UCI在该PUSCH上映射的起始位置还可以位于该PUSCH上最后一个符号的第一个资源单元或者最后一个符号的最后一个资源单元,该实现方式和该第一UCI在该PUSCH上映射的起始位置和资源单元数目上限无关。
在本申请实施例的技术方案中,第二UCI在该PUSCH上映射的起始位置不受第一UCI是否发生载荷大小错误的影响,因此,第二UCI不会因为第一UCI发生载荷大小错误而发生连带错误,从而提高了UCI信息的译码准确性。
在某些可能实现的方式中,该PUSCH上可以传输该第一UCI和该第二UCI,但不传输上行数据信息;该PUSCH上还可以既传输第一UCI和第二UCI,又传输上行数据信息。
结合第一方面,在第一方面的某些实现方式中,该方法包括:根据该第一UCI资源单元数目上限比例和该第二UCI资源单元数目上限比例,确定该第一UCI实际资源单元数和该第二UCI实际资源单元数。
在某些可能实现的方式中,该第一UCI实际资源单元数受到该第一UCI资源单元数目上限的限制,该第一UCI实际资源单元数小于等于该第一UCI资源单元数目上限,该第二UCI实际资源单元数受到该第二UCI资源单元数目上限的限制,该第二UCI实际资源单元数小于等于该第二UCI资源单元数目上限。
结合第一方面,在第一方面的某些实现方式中,该方法包括:当该PUSCH既传输第一UCI和该第二UCI,又传输上行数据时,该第一UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000001
其中,Q' HP-UCI为该第一UCI实际资源单元数,O HP-UCI为编码前该第一UCI的比特数,L HP-UCI为该第一UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000002
为该第一UCI的码率偏移因子,
Figure PCTCN2021071585-appb-000003
为上行数据的码率,
Figure PCTCN2021071585-appb-000004
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,α HP为该第一UCI资源单元数目上限比例;
该第二UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000005
其中,Q' LP-UCI为该第二UCI实际资源单元数,O LP-UCI为编码前该第二UCI的比特数,L LP-UCI为该第二UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000006
为该第二UCI的码率偏移因子,
Figure PCTCN2021071585-appb-000007
为上行数据的码率,
Figure PCTCN2021071585-appb-000008
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,α LP为该第二UCI资源单元数目上限比例,其中
Figure PCTCN2021071585-appb-000009
表示向上取整。
结合第一方面,在第一方面的某些实现方式中,该方法包括:当该PUSCH传输该第一UCI和该第二UCI,但不传输上行数据时,该第一UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000010
其中,Q' HP-UCI为该第一UCI实际资源单元数,O HP-UCI为编码前该第一UCI的比特数,L HP-UCI为该第一UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000011
为该第一UCI的码率偏移因子,R为该PUSCH的码率,Q m为该PUSCH的调制阶数,
Figure PCTCN2021071585-appb-000012
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,α HP为该第一UCI资源单元数目上限比例;
该第二UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000013
其中,Q' LP-UCI为该第二UCI实际资源单元数,O LP-UCI为编码前该第二UCI的比特数,L LP-UCI为该第二UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000014
为该第二UCI的码率偏移因子, R为该PUSCH的码率,Q m为该PUSCH的调制阶数,
Figure PCTCN2021071585-appb-000015
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,α LP为该第二UCI资源单元数目上限比例,其中
Figure PCTCN2021071585-appb-000016
表示向上取整。
结合第一方面,在第一方面的某些实现方式中,该方法包括:当该PUSCH既传输第一UCI和该第二UCI,又传输上行数据时,该第一UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000017
其中,Q' HP-UCI为该第一UCI实际资源单元数,O HP-UCI为编码前该第一UCI的比特数,L HP-UCI为该第一UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000018
为该第一UCI的码率偏移因子,
Figure PCTCN2021071585-appb-000019
为上行数据的码率,
Figure PCTCN2021071585-appb-000020
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,α HP+LPLP为该第一UCI资源单元数目上限比例;
该第二UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000021
其中,Q' LP-UCI为该第二UCI实际资源单元数,O LP-UCI为编码前该第二UCI的比特数,L LP-UCI为该第二UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000022
为该第二UCI的码率偏移因子,
Figure PCTCN2021071585-appb-000023
为上行数据的码率,
Figure PCTCN2021071585-appb-000024
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,α LP为该第二UCI资源单元数目上限比例,其中
Figure PCTCN2021071585-appb-000025
表示向上取整。
结合第一方面,在第一方面的某些实现方式中,该方法包括:当该PUSCH传输该第一UCI和该第二UCI,但不传输上行数据时,该第一UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000026
其中,Q' HP-UCI为该第一UCI实际资源单元数,O HP-UCI为编码前该第一UCI的比特数, L HP-UCI为该第一UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000027
为该第一UCI的码率偏移因子,R为该PUSCH的码率,Q m为该PUSCH的调制阶数,
Figure PCTCN2021071585-appb-000028
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,α HP+LPLP为该第一UCI资源单元数目上限比例;
该第二UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000029
其中,Q' LP-UCI为该第二UCI实际资源单元数,O LP-UCI为编码前该第二UCI的比特数,L LP-UCI为该第二UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000030
为该第二UCI的码率偏移因子,R为该PUSCH的码率,Q m为该PUSCH的调制阶数,
Figure PCTCN2021071585-appb-000031
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,α LP为该第二UCI资源单元数目上限比例,其中
Figure PCTCN2021071585-appb-000032
表示向上取整。
结合第一方面,在第一方面的某些实现方式中,该方法包括:当该PUSCH既传输第一UCI和该第二UCI,又传输上行数据时,该第一UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000033
其中,Q' HP-UCI为该第一UCI实际资源单元数,O HP-UCI为编码前该第一UCI的比特数,L HP-UCI为该第一UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000034
为该第一UCI的码率偏移因子,
Figure PCTCN2021071585-appb-000035
为上行数据的码率,
Figure PCTCN2021071585-appb-000036
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,p HP·α HP+LP为该第一UCI资源单元数目上限比例;
该第二UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000037
其中,Q' LP-UCI为该第二UCI实际资源单元数,O LP-UCI为编码前该第二UCI的比特数,L LP-UCI为该第二UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000038
为该第二UCI的码率偏移因子,
Figure PCTCN2021071585-appb-000039
为上行数据的码率,
Figure PCTCN2021071585-appb-000040
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,(1-p HP)·α HP+LP为该第二UCI资源单元数目上限比例,其中
Figure PCTCN2021071585-appb-000041
表示向上取整。
结合第一方面,在第一方面的某些实现方式中,该方法包括:当该PUSCH传输该第一UCI和该第二UCI,但不传输上行数据时,该第一UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000042
其中,Q' HP-UCI为该第一UCI实际资源单元数,O HP-UCI为编码前该第一UCI的比特数,L HP-UCI为该第一UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000043
为该第一UCI的码率偏移因子,R为该PUSCH的码率,Q m为该PUSCH的调制阶数,
Figure PCTCN2021071585-appb-000044
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,p HP·α HP+LP为该第一UCI资源单元数目上限比例;
该第二UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000045
其中,Q' LP-UCI为该第二UCI实际资源单元数,O LP-UCI为编码前该第二UCI比特数,L LP-UCI为该第二UCI循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000046
为该第二UCI码率偏移因子,R为该PUSCH的码率,Q m为该PUSCH的调制阶数,
Figure PCTCN2021071585-appb-000047
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,(1-p HP)·α HP+LP为该第二UCI资源单元数目上限比例,其中
Figure PCTCN2021071585-appb-000048
表示向上取整。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一UCI表示高优先级混合自动重传反馈信息HARQ-ACK,该第二UCI表示低优先级HARQ-ACK。
在某些可能的实现方式中,该第一UCI可以是高优先级HARQ-ACK,该第二UCI可以为低优先级除HARQ-ACK以外的其他类型UCI信息;或者,该第一UCI为高优先级CSI信息,该第二UCI为低优先级HARQ-ACK;或者,该第一UCI为高优先级CSI信息,该第二UCI为低优先级除HARQ-ACK以外的其他类型UCI信息。
第二方面,提供一种信息接收的方法,该方法包括:发送配置信息,根据该配置信息确定第一UCI的资源单元数目上限,其中该配置信息用于指示该第一UCI的资源单元数目上限比例,根据该第一UCI资源单元数目上限比例和物理上行共享信道PUSCH的上可用于传输UCI的资源单元总数,确定该第一UCI资源单元数目上限;接收该PUSCH,该PUSCH包括该第一UCI、第二UCI和上行数据。
结合第二方面,在第二方面的某些实现方式中,该配置信息包括用于指示该第一UCI的资源单元数目上限比例α HP和用于指示该第二UCI的资源单元数目上限比例α LP;或者,该配置信息包括用于指示第二UCI资源单元数目上限比例α LP和指示该第一UCI资源单元数目上限和该第二UCI资源单元数目上限的总和的比例α HP+LP;或者,该配置信息包括该第一UCI资源单元数目上限和该第二UCI资源单元数目上限的总和的比例α HP+LP和指示该第一UCI资源单元数目上限在该第一UCI资源单元数目上限和该第二UCI资源单元数目上限总和的比例p HP
第三方面,提供一种终端设备,该终端设备包括处理单元和收发单元,该处理单元用于:确定第一上行控制信息UCI在上行物理共享信道PUSCH上映射的起始位置和资源单元数目上限;根据该第一UCI在该PUSCH上映射的起始位置和资源单元数目上限,确定第二上行控制信息UCI在该PUSCH上映射的起始位置,其中该第一UCI的优先级高于该第二UCI的优先级;确定该第一UCI的实际资源单元数和该第二UCI的实际资源单元数;根据该第一UCI在该PUSCH上映射的起始位置和该第一UCI实际资源单元数在该PUSCH上映射该第一UCI,根据该第二UCI在该PUSCH上映射的起始位置和该第二UCI实际资源单元数在该PUSCH上映射该第二UCI;该收发单元用于发送该PUSCH。
在本申请实施例的技术方案中,根据第一UCI映射在PUSCH上的起始位置和资源单元数目上限,确定第二UCI映射在PUSCH上的起始位置,由于第二UCI映射在PUSCH上的起始位置不受第一UCI是否发生载荷大小错误限制,因此这种映射方式可以保证在第一UCI发生载荷大小错误时,第二UCI映射在PUSCH上的位置正确,避免第二UCI映射位置发生连带错误,从而提高了UCI信息的译码准确性。
结合第三方面,在第三方面的某些实现方式中,确定该第一UCI资源单元数目上限包括:该处理单元根据网络设备发送的配置信息,确定该第一UCI资源单元数目上限,其中,该配置信息包括用于指示该第一UCI的资源单元数目上限比例,根据该第一UCI资源单元数目上限比例和该PUSCH的上可用于传输UCI的资源单元总数,确定该第一UCI资源单元数目上限。
在某些可能实现的方式中,针对该配置信息,还可以包括其他指示信息。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该配置信息包括用于指示该第一UCI的资源单元数目上限比例α HP和用于指示该第二UCI的资源单元数目上限比例α LP;或者,该配置信息包括用于指示第二UCI资源单元数目上限比例α LP和指示该第一UCI资源单元数目上限和该第二UCI资源单元数目上限的总和的比例α HP+LP;或者,该配置信息包括该第一UCI资源单元数目上限和该第二UCI资源单元数目上限的总和的比例α HP+LP和指示该第一UCI资源单元数目上限在该第一UCI资源单元数目上限和该第二UCI资源单元数目上限总和的比例p HP
结合第三方面,在第三方面的某些实现方式中,确定该第二UCI在该PUSCH上映射的起始位置包括:该第二UCI在该PUSCH上映射的起始位置位于该第一UCI在该PUSCH上映射该第一UCI资源单元数目上限之后的第N个完整符号的第一个资源单元,其中N为大于等于1的正整数。
在某些可能实现的方式中,第二UCI在该PUSCH上映射的起始位置还可以位于该PUSCH上最后一个符号的第一个资源单元或者最后一个符号的最后一个资源单元,该实 现方式和该第一UCI在该PUSCH上映射的起始位置和资源单元数目上限无关。
在本申请实施例的技术方案中,第二UCI在该PUSCH上映射的起始位置不受第一UCI是否发生载荷大小错误的影响,因此,第二UCI不会因为第一UCI发生载荷大小错误而发生连带错误,从而提高了UCI信息的译码准确性。
在某些可能实现的方式中,该PUSCH上可以传输该第一UCI和该第二UCI,但不传输上行数据信息;该PUSCH上还可以既传输第一UCI和第二UCI,又传输上行数据信息。
结合第三方面,在第三方面的某些实现方式中,该方法包括:该处理单元根据该第一UCI资源单元数目上限比例和该第二UCI资源单元数目上限比例,确定该第一UCI实际资源单元数和该第二UCI实际资源单元数。
在某些可能实现的方式中,该第一UCI实际资源单元数受到该第一UCI资源单元数目上限的限制,该第一UCI实际资源单元数小于等于该第一UCI资源单元数目上限,该第二UCI实际资源单元数受到该第二UCI资源单元数目上限的限制,该第二UCI实际资源单元数小于等于该第二UCI资源单元数目上限。
结合第三方面,在第三方面的某些实现方式中,该方法包括:当该PUSCH既传输第一UCI和该第二UCI,又传输上行数据时,该第一UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000049
其中,Q' HP-UCI为该第一UCI实际资源单元数,O HP-UCI为编码前该第一UCI的比特数,L HP-UCI为该第一UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000050
为该第一UCI的码率偏移因子,
Figure PCTCN2021071585-appb-000051
为上行数据的码率,
Figure PCTCN2021071585-appb-000052
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,α HP为该第一UCI资源单元数目上限比例;
该第二UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000053
其中,Q' LP-UCI为该第二UCI实际资源单元数,O LP-UCI为编码前该第二UCI的比特数,L LP-UCI为该第二UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000054
为该第二UCI的码率偏移因子,
Figure PCTCN2021071585-appb-000055
为上行数据的码率,
Figure PCTCN2021071585-appb-000056
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,α LP为该第二UCI资源单元数目上限比例,其中
Figure PCTCN2021071585-appb-000057
表示向上取整。
结合第三方面,在第三方面的某些实现方式中,该方法包括:当该PUSCH传输该第 一UCI和该第二UCI,但不传输上行数据时,该第一UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000058
其中,Q' HP-UCI为该第一UCI实际资源单元数,O HP-UCI为编码前该第一UCI的比特数,L HP-UCI为该第一UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000059
为该第一UCI的码率偏移因子,R为该PUSCH的码率,Q m为该PUSCH的调制阶数,
Figure PCTCN2021071585-appb-000060
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,α HP为该第一UCI资源单元数目上限比例;
该第二UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000061
其中,Q' LP-UCI为该第二UCI实际资源单元数,O LP-UCI为编码前该第二UCI的比特数,L LP-UCI为该第二UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000062
为该第二UCI的码率偏移因子,R为该PUSCH的码率,Q m为该PUSCH的调制阶数,
Figure PCTCN2021071585-appb-000063
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,α LP为该第二UCI资源单元数目上限比例,其中
Figure PCTCN2021071585-appb-000064
表示向上取整。
结合第三方面,在第三方面的某些实现方式中,该方法包括:当该PUSCH既传输第一UCI和该第二UCI,又传输上行数据时,该第一UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000065
其中,Q' HP-UCI为该第一UCI实际资源单元数,O HP-UCI为编码前该第一UCI的比特数,L HP-UCI为该第一UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000066
为该第一UCI的码率偏移因子,
Figure PCTCN2021071585-appb-000067
为上行数据的码率,
Figure PCTCN2021071585-appb-000068
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,α HP+LPLP为该第一UCI资源单元数目上限比例;
该第二UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000069
其中,Q' LP-UCI为该第二UCI实际资源单元数,O LP-UCI为编码前该第二UCI的比特数,L LP-UCI为该第二UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000070
为该第二UCI的码率偏移因子,
Figure PCTCN2021071585-appb-000071
为上行数据的码率,
Figure PCTCN2021071585-appb-000072
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,α LP为该第二UCI资源单元数目上限比例,其中
Figure PCTCN2021071585-appb-000073
表示向上取整。
结合第三方面,在第三方面的某些实现方式中,该方法包括:当该PUSCH传输该第一UCI和该第二UCI,但不传输上行数据时,该第一UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000074
其中,Q' HP-UCI为该第一UCI实际资源单元数,O HP-UCI为编码前该第一UCI的比特数,L HP-UCI为该第一UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000075
为该第一UCI的码率偏移因子,R为该PUSCH的码率,Q m为该PUSCH的调制阶数,
Figure PCTCN2021071585-appb-000076
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,α HP+LPLP为该第一UCI资源单元数目上限比例;
该第二UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000077
其中,Q' LP-UCI为该第二UCI实际资源单元数,O LP-UCI为编码前该第二UCI的比特数,L LP-UCI为该第二UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000078
为该第二UCI的码率偏移因子,R为该PUSCH的码率,Q m为该PUSCH的调制阶数,
Figure PCTCN2021071585-appb-000079
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,α LP为该第二UCI资源单元数目上限比例,其中
Figure PCTCN2021071585-appb-000080
表示向上取整。
结合第三方面,在第三方面的某些实现方式中,该方法包括:当该PUSCH既传输第一UCI和该第二UCI,又传输上行数据时,该第一UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000081
其中,Q' HP-UCI为该第一UCI实际资源单元数,O HP-UCI为编码前该第一UCI的比特数,L HP-UCI为该第一UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000082
为该第一UCI的码率偏移因子,
Figure PCTCN2021071585-appb-000083
为上行数据的码率,
Figure PCTCN2021071585-appb-000084
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,p HP·α HP+LP为该第一UCI资源单元数目上限比例;
该第二UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000085
其中,Q' LP-UCI为该第二UCI实际资源单元数,O LP-UCI为编码前该第二UCI的比特数,L LP-UCI为该第二UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000086
为该第二UCI的码率偏移因子,
Figure PCTCN2021071585-appb-000087
为上行数据的码率,
Figure PCTCN2021071585-appb-000088
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,(1-p HP)·α HP+LP为该第二UCI资源单元数目上限比例,其中
Figure PCTCN2021071585-appb-000089
表示向上取整。
结合第三方面,在第三方面的某些实现方式中,该方法包括:当该PUSCH传输该第一UCI和该第二UCI,但不传输上行数据时,该第一UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000090
其中,Q' HP-UCI为该第一UCI实际资源单元数,O HP-UCI为编码前该第一UCI的比特数,L HP-UCI为该第一UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000091
为该第一UCI的码率偏移因子,R为该PUSCH的码率,Q m为该PUSCH的调制阶数,
Figure PCTCN2021071585-appb-000092
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,p HP·α HP+LP为该第一UCI资源单元数目上限比例;
该第二UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000093
其中,Q' LP-UCI为该第二UCI实际资源单元数,O LP-UCI为编码前该第二UCI比特数,L LP-UCI为该第二UCI循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000094
为该第二UCI码率偏移因子,R为该PUSCH的码率,Q m为该PUSCH的调制阶数,
Figure PCTCN2021071585-appb-000095
为该PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引,(1-p HP)·α HP+LP为该第二UCI资源单元数目上限 比例,其中
Figure PCTCN2021071585-appb-000096
表示向上取整。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该第一UCI表示高优先级混合自动重传反馈信息HARQ-ACK,该第二UCI表示低优先级HARQ-ACK。
在某些可能的实现方式中,该第一UCI可以是高优先级HARQ-ACK,该第二UCI可以为低优先级除HARQ-ACK以外的其他类型UCI信息;或者,该第一UCI为高优先级CSI信息,该第二UCI为低优先级HARQ-ACK;或者,该第一UCI为高优先级CSI信息,该第二UCI为低优先级除HARQ-ACK以外的其他类型UCI信息。
第四方面,提供了一种网络设备,该网络设备包括收发单元,该收发单元用于:收发单元发送配置信息给终端设备,终端设备根据该配置信息确定第一UCI的资源单元数目上限,其中该配置信息用于指示该第一UCI的资源单元数目上限比例,终端设备根据该第一UCI资源单元数目上限比例和物理上行共享信道PUSCH的上可用于传输UCI的资源单元总数,确定该第一UCI资源单元数目上限;接收该PUSCH,该PUSCH包括该第一UCI、第二UCI和上行数据。
结合第四方面,在第四方面的某些实现方式中,该配置信息包括用于指示该第一UCI的资源单元数目上限比例α HP和用于指示该第二UCI的资源单元数目上限比例α LP;或者,该配置信息包括用于指示第二UCI资源单元数目上限比例α LP和指示该第一UCI资源单元数目上限和该第二UCI资源单元数目上限的总和的比例α HP+LP;或者,该配置信息包括该第一UCI资源单元数目上限和该第二UCI资源单元数目上限的总和的比例α HP+LP和指示该第一UCI资源单元数目上限在该第一UCI资源单元数目上限和该第二UCI资源单元数目上限总和的比例p HP
第五方面,提供一种芯片,该芯片包括处理器与数据接口,处理器通过该数据接口从存储器调用并运行计算机程序,使得安装该芯片系统的设备执行上述第一方面或第一方面中的任意一种实现方式中的信息发送方法。
第六方面,提供一种计算机可读介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行第二方面或者第二方面的任意一种实现方式中的信息发送方法。
第七方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行第一方面或者第一方面的任意一种实现方式中的信息发送方法。
第八方面,提供一种通信系统,该通信系统包括第三方面或者第三方面的任意一种实现方式中的终端设备以及第三方面或者第三方面的任意一种实现方式中的网络设备。
附图说明
图1是本申请实施例的通信系统示意图;
图2是本申请一种现有技术中相同优先级UCI和上行数据复用在PUSCH上映射规则示意图;
图3是本申请另一种现有技术中相同优先级UCI和上行数据复用在PUSCH上映射规则示意图;
图4是本申请实施例一种信息发送和接收方法流程示意图;
图5是本申请实施例一种不同优先级UCI复用在PUSCH上的方法流程示意图;
图6是本申请实施例中的一种PUSCH时频资源块示意图;
图7是本申请实施例中一种第二UCI在PUSCH中起始位置示意图;
图8是本申请实施例中另一种第二UCI在PUSCH中起始位置示意图;
图9是本申请实施例中一种第一UCI和第二UCI复用在PUSCH上的映射规则;
图10是本申请实施例中另一种第一UCI和第二UCI复用在PUSCH上的映射规则;
图11是本申请实施例中终端设备的示意性框图;
图12是本申请实施例中网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。可以理解的是,所描述的实施例是本申请一部分的实施例,而不是全部的实施例。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(Long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)、或者未来演进网络等。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例提供的方法的通信系统。图1中示出了适用于本申请实施例提供的方法的通信系统的示意图。如图所示,该通信系统可以包括至少一个网络设备,如图1中所示的5G系统中的基站(gNB);该通信系统还可以包括至少一个终端设备,如图1中所示的用户设备(user equipment,UE)1至UE 6。网络设备与终端设备之间可以通过无线链路通信。例如,网络设备可以向终端设备发送配置信息,终端设备可以基于该配置信息向网络设备发送上行数据;又例如,网络设备可以向终端设备发送下行数据。因此,图1中的gNB和UE可以构成一个通信系统。
该通信系统中的终端设备,如,UE 4至UE 6,也可以构成一个通信系统。例如,UE4可以控制UE 5和UE 6执行相应的指令。本申请对此不作限定。
应理解,该通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband Unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络 节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
还可以理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
5G通信系统相比与4G通信系统的一大特征就是增加了对超可靠低时延业务URLLC的支持。URLLC的业务种类包括很多种,典型的用例包括工业控制、工业生产流程自动化、人机交互和远程医疗等。
由于URLLC业务具有低时延和高可靠性的特征,因此相比于5G通信中的其他业务,URLLC为高优先级业务。所谓URLLC业务的低时延和高可靠性的性能,根据3GPP RAN和RAN 1工作组对URLLC业务的性能指标定义可知。
时延是指用户应用层数据包从发送端无线协议栈层2/3的SDU(Service Data Unit)到达接收端无线协议栈层2/3SDU所需的传输时间。在网络设备和终端设备均不不处于非连续接收态时,URLLC业务的用户面时延要求对于上下行均为0.5ms,其中0.5ms的性能要求是指数据包的平均时延。
可靠性是指发送端在一定时间内(L秒)向接收端正确传输X比特数据的成功概率,上述的时间仍定义为用户应用层数据包从发送端无线协议栈层2/3SDU到达接收端无线协议栈层2/3SDU所需的时间。对于URLLC业务,一个典型需求是在1ms内发送32bytes数据达到99.999%的可靠性,对于具体的URLLC业务有不同的要求,例如某些极端苛刻的工业控制需要在端到端时延在0.25ms内达到99.9999999%的传输成功概率。
由于URLLC业务需要具备高可靠性的特征,混合自动重传(hybrid automatic repeat  request,HARQ)是一种高效的传输机制,通过HARQ可以极大提高下行数据传输的可靠性。UE会根据实际情况发送HARQ反馈信息(HARQ-ACK),当UE向网络设备发送HARQ否定应答消息时,网络设备才需要重传,这样降低了数据传输的整体资源消耗。
HARQ反馈信息属于上行控制信息UCI的一种,UCI还包括调度请求(scheduling request,SR),信道状态信息(channel state information,CSI)由CSI part 1和CSI part 2组成。
现有技术中对相同优先级下的不同类型的UCI信息和上行数据信息复用在物理上行共享信道(physical uplink shared channel,PUSCH)上传输时的映射规则如下,下面将结合图2对相同优先级UCI和上行数据复用在PUSCH上进行说明,其中,图2是本申请一种现有技术中相同优先级UCI和上行数据复用在PUSCH上映射规则示意图,图3本申请另一种现有技术中相同优先级UCI和上行数据复用在PUSCH上映射规则示意图。
以相同优先级的不同类型UCI包括HARQ反馈信息、CSI part1和CSI part2为例,相同优先级UCI和上行数据信息复用在PUSCH上的映射顺序为HARQ反馈信息、CSI part1、CSI part2和上行数据信息。
图2中的(a)、(b)、(c)和(d)的HARQ反馈信息映射为当HARQ反馈信息是大于2比特时,那么按照实际的大小,在DMRS符号之后的第一个可用符号开始,顺序进行映射。如果HARQ反馈信息可以占满当前整个符号,则占满当前符号,再占据下一个符号。如果HARQ反馈信息不足以占满当前整个符号,则会在当前符号上,等间隔分散在频域资源上。
S201,映射UCI信息中的HARQ反馈信息,HARQ反馈信息从DMRS符号之后的第一个可用符号开始映射,如图2的(a)。
S202,当HARQ反馈信息是大于2比特时,如图2的(b),从PUSCH上的第一个可用符号资源开始顺序映射CSI part 1,其中,第一个可用符号资源为除去DMRS、HARQ反馈信息映射的资源单元,PUSCH上第一个可用符号资源。
S203,当HARQ反馈信息是大于2比特时,如图2的(c),从PUSCH上的第一个可用符号资源开始顺序映射CSI part 2,其中,第一个可用符号资源为除去DMRS、HARQ反馈信息以及CSI part 1映射的资源单元,PUSCH上第一个可用符号资源。
S204,当HARQ反馈信息是大于2比特时,如图2的(d),从PUSCH上的第一个可用符号资源开始顺序映射上行数据,其中,第一个可用符号资源为除去DMRS、HARQ反馈信息、CSI part 1以及CSI part 2映射的资源,PUSCH上第一个可用符号资源。
图3中的(a)、(b)、(c)、(d)和(e)的HARQ反馈信息映射为当HARQ反馈信息为0、1或者2比特中任意一种大小时,在PUSCH中的DMRS符号之后的第一个UCI可用符号开始,按照2比特的HARQ反馈信息预留PUSCH资源,成为预留区域。应理解,由于资源块中每个符号代表的比特数取决于选用的调制阶数,因此,图中UCI和上行数据映射资源单元的数目仅为示例作用。
S301,预留UCI信息中的HARQ反馈信息需要映射的资源单元数目,形成HARQ反馈信息的资源预留区域,该资源预留区域从DMRS符号之后的第一个可用符号开始,如图3的(a)所示。
S302,映射UCI信息中的CSI part 1,当HARQ反馈信息为0、1或者2比特中任意 一种大小时,如图3的(b),从PUSCH上的第一个可用符号资源开始顺序映射CSI part1,绕开HARQ反馈信息预留区域,保证CSI part 1不会与HARQ反馈信息冲突。其中第一个可用符号资源为除去DMRS、HARQ反馈信息预留区域的资源单元,PUSCH上第一个可用符号资源。
S303,映射UCI信息中的CSI part 2,当HARQ反馈信息为0、1或者2比特中任意一种大小时,如图3的(c),从PUSCH上的第一个可用符号资源开始顺序映射CSI part2,此时不需要绕开HARQ反馈信息预留区域,其中第一个可用符号资源为除去DMRS、CSI part 1的资源单元,PUSCH上第一个可用符号资源。
S304,映射上行数据信息,当HARQ反馈信息为0、1或者2比特中任意一种大小时,如图3的(d),从PUSCH上的第一个可用符号资源开始顺序映射上行数据,此时不需要绕开HARQ反馈信息预留区域,其中第一个可用符号资源为除去DMRS、CSI part 1以及CSI part 2映射的资源单元,PUSCH上第一个可用符号资源。
S305,当HARQ反馈信息为0、1或者2比特中任意一种大小时,如图3的(e),不论S303和S304中是否将HARQ反馈信息资源预留区域填满,HARQ反馈信息资源预留区域将被HARQ反馈信息重新映射,映射位置从HARQ反馈信息资源预留区域第一个符号开始以覆盖掉已经映射在该预留区域的信息。
除了相同优先级不同UCI和上行数据复用在同一个PUSCH资源块上以外,还可能是优先级不同的UCI复用在同一个PUSCH上,在一些特定场景下,不同优先级业务发生时域冲突时,例如高优先级HARQ反馈信息和低优先级HARQ反馈信息发生时域冲突时,可以通过对二者的联合编码后统一进行资源映射来实现在同一个PUSCH上的复用,还可以通过对二者的独立编码后依次进行资源映射来实现同一个PUSCH上的复用。
网络设备在物理下行控制信道(physical downlink control channel,PDCCH)或者物理下行共享信道(physical downlink shared channel,PDSCH)上向终端设备发送高低优先级业务的下行控制信息(downlink control information,DCI)后,终端设备在PUSCH上向网络设备发送UCI信息来对终端设备处理高低优先级的业务情况进行信息反馈。
当终端设备对高优先级DCI信息进行盲检时,可能会存在漏检的情况。在同一个上行信道资源块上复用高优先级UCI和低优先级UCI时,针对二者为独立编码后依次进行映射的情况,终端设备在PUSCH上先映射高优先级UCI信息,再映射低优先级UCI信息。
当终端设备在由用于上行发送的下行控制信息格式0-1(UL DCI format 0-1)调度的PUSCH上发送高低优先级的UCI时,由于存在用于上行的下行分配指示(downlink assignment index,UL DAI)的指示字段,该指示字段用于指示本次需要反馈HARQ的DL DCI的总数,即使终端设备对高优先级的DCI信息盲检时存在漏检的情况,终端设备也会将漏检的DL DCI对应的UCI信息补上,从而不影响低优先级UCI信息在PUSCH上的位置,以此避免网络设备发生译码错误。
但是,当网络设备在配置(configured grant,CG)的PUSCH和用于UL DCI format 0-0调度的PUSCH上发送高低优先级的UCI时,由于不存在UL DAI指示字段,所以,当终端设备对高优先级的DCI信息盲检存在漏检情况时,终端设备发送的UCI信息将会缺少漏检的高优先级DCI信息对应的UCI信息,该UCI的载荷大小(payload size)发生错误,使得低优先级UCI信息位置发生错误,使得网络设备出现译码错误。
为了解决上述问题,本申请实施例提出了一种信息发送方法、信息接收方法及通信装置,下面将结合附图对此进行详细说明。
应理解,本申请实施例中第一UCI表示较高优先级业务的UCI,第二UCI表示较低优先级业务的UCI,其中,第一UCI的优先级比第二UCI的优先级高。
本申请实施例中对不同业务之间存在相对优先级,第一业务优先级高于第二业务优先级,例如,URLLC业务相对于eMBB业务具有较高的优先级,在本申请实施中不作限制。
第一UCI和第二UCI发送组合可以是以下四种,本申请实施例对此不作限制。
第一种,第一UCI为高优先级HARQ反馈信息和第二UCI为低优先级HARQ反馈信息。
第二种,第一UCI为高优先级HARQ反馈信息和第二UCI为低优先级除HARQ反馈信息以外的其他类型UCI信息,例如,低优先级CSI信息,在本申请实施例中不作限制。
第三种,第一UCI为高优先级CSI信息和第二UCI为低优先级HARQ反馈信息。
第四种,第一UCI为高优先级CSI信息和第二UCI为低优先级除HARQ反馈信息以外的其他类型UCI信息,例如,低优先级CSI信息,在本申请实施例中不作限制。
图4是本申请实施例一种信息发送方法和信息接收方法流程示意图。
S401,终端设备确定第一上行控制信息UCI在PUSCH上映射的起始位置和资源单元数目上限。
应理解,第一UCI资源单元数目上限表示第一UCI在该PUSCH上最多能够映射的资源单元数目。
S402,根据该第一UCI在PUSCH上映射的起始位置和资源单元数目上限,确定第二UCI在PUSCH上映射的起始位置,其中该第一UCI的优先级高于该第二UCI的优先级。
S403,确定该第一UCI的实际资源单元数和该第二UCI的实际资源单元数。
应理解,第一UCI实际资源单元数为第一UCI映射在PUSCH上的实际资源单元数,该实际资源单元数小于等于第一UCI资源单元数目上限,第二UCI实际资源单元数的本质和第一UCI实际资源单元数一致,在此不作赘述。
应理解,实际资源单元数可以根据速率匹配规则确定,第一UCI和第二UCI根据各自的业务类型,分别有不同的速率匹配规则。
S404,根据该第一UCI在PUSCH上映射的起始位置和第一UCI实际资源单元数在PUSCH上映射第一UCI,根据该第二UCI在PUSCH上映射的起始位置和第二UCI实际资源单元数在PUSCH上映射第二UCI。
S405,端设备发送该PUSCH。
S406,在S401之前,网络设备给终端设备发送配置信息,该配置信息可以用于确定第一UCI映射在PUSCH上的资源单元数目的上限。
下面将结合图5具体说明本申请实施例中信息发送方法和信息接收方法,图5是本申请实施例一种不同优先级UCI复用在PUSCH上的方法流程示意图。
S501,确定PUSCH数据传输参数。
应理解,PUSCH数据传输参数用于确定第一UCI和第二UCI映射在PUSCH上的起始位置、资源单元数目上限以及实际资源单元数,上行信道数据传输参数可以包括PUSCH资源单元总数、解调参考信号(demodulation reference signal,DMRS)位置和资源单元数 目、相位跟踪参考信号(phase tracking reference signal,PTRS)的位置和资源单元数目,调制阶数Q m和码率R等。
其中PUSCH可以传输UCI信息和上行数据信息,还可以传输UCI信息但不传输上行数据信息,在本申请实施例中不作限制。
PUSCH资源单元总数可以通过网络设备高层配置信息进行配置或者通过网络设备给终端设备发送DCI进行动态指示,在本申请实施例中不作限制。
应理解,第一UCI和第二UCI占据的实际资源数将使用PUSCH上可用于传输UCI信息的资源单元总数来确定,其中,PUSCH上可用于传输UCI信息的资源单元总数可以为除DMRS资源单元数目和PTRS资源单元数目以外的资源单元数目,在本申请实施例中不作限制。
应理解,DMRS信息的位置将用于确定第一UCI映射在PUSCH上的起始位置,第一UCI信息中包括HARQ反馈信息时,HARQ反馈信息在PUSCH上的起始位置位于DMRS位置之后。
例如,如图6所示,图6为本申请实施例中的一种PUSCH时频资源,横向为时域信息,横向时域最小单位为一个符号,纵向为频域信息,纵向频域最小单位为一个子载波,由一个符号和一个子载波共同组成时频资源的最小单位,资源单元(resource element,RE)。如图所示,DMRS映射在PUSCH第三个符号上,因此,如果第一UCI包括HARQ反馈信息时,则HARQ反馈信息从第四个符号开始映射。
应理解,除HARQ反馈信息以外的UCI信息从第一个符号开始映射。
应理解,当终端设备在PUSCH上传输UCI信息,但不传输上行数据信息时,调制阶数Q m和码率R将用于确定UCI信息映射在PUSCH上的实际资源数。
S502,终端设备根据网络设备发送的配置信息,确定第一UCI资源单元数目上限和第二UCI资源单元数目上限。
对应于图4中的S401步骤中的确定第一UCI资源单元数目上限。
应理解,网络设备在无线资源控制信令(radio resource control,RRC)上向终端设备发送配置信息。
可选的,本申请实施例中的配置信息可以用于指示第一UCI资源单元数目的上限比例α HP和第二UCI资源单元数目的上限比例α LP,直接得到第一UCI资源单元数目的上限比例α HP,和第二UCI资源单元数目的上限比例α LP
可选的,本申请实施例中配置信息还可以用于指示第一UCI的资源单元数目的上限比例α HP和第一UCI和第二UCI资源单元数目上限总和的比例α HP+LP,直接得到第一UCI资源单元数目的上限比例α HP,间接得到第二UCI资源单元数目的上限比例为α HP+LPHP
可选的,本申请实施例中配置信息还可以用于指示第二UCI的资源单元数目的上限比例α LP和第一UCI和第二UCI资源单元数目上限总和的比例α HP+LP,间接得到第一UCI资源单元数目的上限比例α HP+LPLP,直接得到第二UCI映射在PUSCH上的资源单元数目的上限比例α LP
可选的,本申请实施例中配置信息还可以用于指示第一UCI和第二UCI资源单元数目上限总和的比例α HP+LP和指示第一UCI资源单元数目上限在第一UCI和第二UCI资源 单元数目上限总和的比例p HP,间接得到第一UCI资源单元数目的上限比例p HP·α HP+LP,和第二UCI资源单元数目的上限比例(1-p HP)·α HP+LP
可选的,本申请实施例中配置信息还可以用于指示第一UCI资源单元数目上限在第一UCI和第二UCI资源单元数目上限总和的比例p HP和指示第一UCI的资源单元数目的上限比例α HP,直接得到第一UCI资源单元数目的上限比例α HP,间接得到第二UCI资源单元数目的上限比例为(α HPHP·p HP)/p HP
可选的,本申请实施例中配置信息还可以用于指示第一UCI资源单元数目上限在第一UCI和第二UCI资源单元数目上限总和的比例p HP和指示第二UCI的资源单元数目的上限比例α LP,间接得到第一UCI资源单元数目的上限比例α LP·p HP/(1-p HP),直接得到第二UCI资源单元数目的上限比例α LP
如果配置信息可以用于指示第二UCI资源单元数目上限在第一UCI和第二UCI资源单元数目上限总和的比例,该比例为p LP。同样可以通过上述方式得到第一UCI资源单元数目上限比例和第二UCI资源单元数目上限比例,在此不作赘述。
通过第一UCI资源单元数目上限比例和PUSCH上可用于传输UCI的资源单元总数的乘法运算,得到第一UCI资源单元数目上限;通过第二UCI资源单元数目上限比例和PUSCH上可用于传输UCI的资源单元总数的乘法运算,得到第二UCI资源单元数目上限。
第一UCI资源单元数目上限可以用于确定第二UCI映射在PUSCH上的起始位置,还可以用于控制第一UCI实际资源单元数目不超过第一UCI资源单元数目上限。
第二UCI资源单元数目上限用于控制第二UCI实际资源单元数目不超过第二UCI资源单元数目上限。
S503,确定第二UCI在PUSCH上的起始位置。
可选的,根据第一UCI映射在PUSCH上的起始位置和资源单元数目上限,确定第二UCI在PUSCH上的起始位置,这个步骤对应于图4中的S402,根据该第一UCI占据的PUSCH的上限,确定第二上行控制信息UCI占据的PUSCH的起始位置,其中该第一UCI的优先级高于该第二UCI的优先级。
第二UCI映射在PUSCH上的起始位置可以位于第一UCI在PUSCH上映射第一UCI资源单元数目上限之后的第N个完整的符号的第一个资源单元,其中N为大于等于1的正整数。
例如,图7为本申请实施例中一种第二UCI在PUSCH中起始位置示意图。图7的(a)以UCI信息包括HARQ反馈信息为例,第一UCI映射在PUSCH上的起始位置为DMRS信息之后的符号,根据第一UCI的资源单元数目上限为第一UCI在PUSCH上预留资源,该预留资源为图7中虚框范围内的数值,也就是第一UCI的资源单元数目上限,预留了图示时频资源块中的第四个符号至第六个符号。即使第一UCI预留在PUSCH上的资源单元数目上限未占满第六个符号,第二UCI映射在PUSCH上的起始位置可以位于第七个符号第一个资源单元。
图7的(b)以UCI信息不包括HARQ反馈信息为例,第一UCI资源单元数目的上限为图7中虚框范围内的数值,第一UCI除了可以从DMRS信息之后的符号开始预留资源,还可以根据第一UCI的资源单元数目上限从PUSCH第一个符号开始为第一UCI预留资源。即使第一UCI预留在PUSCH上的资源单元数目上限未占满第四个符号,第二UCI 映射在PUSCH上的起始位置可以位于第五个符号第一个资源单元。
根据第一UCI映射在PUSCH上的起始位置和资源单元数目上限,确定第二UCI映射在PUSCH上的起始位置,由于第二UCI映射在PUSCH上的起始位置不受第一UCI是否发生载荷大小错误限制,因此这种映射方式可以保证在第一UCI发生载荷大小错误时,第二UCI映射在PUSCH上的位置正确,避免第二UCI映射位置发生连带错误。
可选的,第二UCI映射在PUSCH上的起始位置位于PUSCH上最后一个符号。
例如,如图8所示,图8是本申请实施例中另一种第二UCI在PUSCH中的起始位置示意图。第二UCI映射在PUSCH上的起始位置位于该PUSCH上最后一个符号,按照先频后时的映射规则,即先频域映射再时域映射,第二UCI在PUSCH最后一个符号的映射顺序有两种。
如图8的(a)所示,第二UCI可以从最后一个符号的第一个资源单元开始映射,按照资源单元频域索引从小到大的顺序映射,映射完最后一个符号,按照资源单元时域索引从大到小的顺序映射。
如图8的(b)所示,第二UCI还可以从最后一个符号的最后一个资源单元开始映射,按照资源单元频域索引从大到小的顺序映射,映射完最后一个符号,按照资源单元时域索引从大到小的顺序映射。
S504,根据网络设备发送的配置信息,通过速率匹配规则确定第一UCI实际资源单元数和第二UCI实际资源单元数。
应理解,第一UCI实际资源单元数为第一UCI映射在PUSCH上的实际资源单元数,该实际资源单元数小于等于第一UCI资源单元数目上限,第二UCI实际资源单元数的本质和第一UCI实际资源单元数一致,在此不作赘述。
其中,第一UCI实际资源单元数和第二UCI实际资源单元数通过各自对应的速率匹配规则获得。
PUSCH上可以既传输UCI信息又传输上行数据信息,PUSCH上还可以传输UCI信息,但不传输上行数据信息。
当PUSCH上既传输UCI信息又传输上行数据信息时,不同类型UCI分别按照以下速率匹配规则计算映射在PUSCH上的实际资源数。
当UCI信息包括HARQ反馈信息和CSI信息时,HARQ反馈信息的实际资源单元数由公式(1)计算得到,其中
Figure PCTCN2021071585-appb-000097
表示向上取整。
Figure PCTCN2021071585-appb-000098
其中,公式(1)第一部分的物理意义是根据HARQ反馈信息实际的数据比特数(编码前的比特数O ACK和CRC校验比特数L ACK)、码率偏移因子
Figure PCTCN2021071585-appb-000099
和数据上行数据的码率,来计算HARQ反馈信息编码后的资源单元数。
其中(O ACK+L ACK)/Q' ACK的物理意义是UCI的码率,
Figure PCTCN2021071585-appb-000100
的物理 意义是上行数据的码率,
Figure PCTCN2021071585-appb-000101
表示上行数据码率和UCI码率的比值,UCI的码率小于上行数据的码率,在传输性能上有利于UCI的可靠性。
公式(1)第二部分的物理意义是根据UCI映射在PUSCH上的资源单元数目上限比例α,来确定HARQ反馈信息资源单元数目上限,其中
Figure PCTCN2021071585-appb-000102
为PUSCH的上可用于传输UCI的资源单元总数,其中l 0为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引。
两部分的最小值作为HARQ反馈信息实际资源单元数Q' ACK
CSI信息由CSI part 1和CSI part 2组成,CSI part 1的实际资源单元数目由公式(2)计算得到,CSI part 2实际资源单元数目由公式(3)计算得到。
Figure PCTCN2021071585-appb-000103
Figure PCTCN2021071585-appb-000104
当UCI信息仅包括HARQ反馈信息时,HARQ反馈信息的实际资源单元数目由公式(1)计算得到。
当PUSCH上传输UCI信息但不传输上行数据信息时,不同类型UCI分别按照以下速率匹配规则计算实际资源单元数。
当UCI信息包括HARQ反馈信息和CSI信息时,HARQ反馈信息的实际资源单元数由公式(4)计算得到。
Figure PCTCN2021071585-appb-000105
其中,Q m为调制阶数,R为码率。
CSI信息由CSI part 1和CSI part 2组成,当PUSCH上传输UCI信息,但不传输上行数据信息时,若确定有CSI part 2,则CSI part 1的实际资源单元数由公式(5)计算得到,此时CSI part 2的实际资源单元数由公式(6)计算得到。若确定没有CSI part 2,则CSI part 1的实际资源单元数由公式(7)计算得到.
Figure PCTCN2021071585-appb-000106
Figure PCTCN2021071585-appb-000107
Figure PCTCN2021071585-appb-000108
本申请实施例,在S502中终端设备确定了第一UCI资源单元数目的上限可以为上限比例α HP和第二UCI资源单元数目上限可以为上限比例α LP,因此在计算第一UCI实际资源单元数可以根据当前上行信道传输的数据类型从上述公式(1)至(7)中选择相应的公式进行计算,此时公式中的UCI比例上限α=α HP。具体来说,当PUSCH上一起传输UCI信息和数据信息时,选择公式(1)至(4)来计算第一UCI实际资源单元数,其中,数据码率和UCI码率的比值
Figure PCTCN2021071585-appb-000109
替换为数据码率和第一UCI码率的比值
Figure PCTCN2021071585-appb-000110
当PUSCH上传输UCI信息,但不传输上行数据信息时,选择公式(5)至(7)来计算第一UCI的实际资源单元数目。
在计算第二UCI的实际资源单元数目也可以根据当前上行信道传输的数据类型从上述公式(1)至(7)中选择相应的公式进行计算,此时公式中的UCI比例上限α=α LP。具体来说,当PUSCH上一起传输UCI信息和数据信息时,选择公式(1)至(4)来计算第二UCI的实际资源单元数目,其中,数据码率和UCI码率的比值
Figure PCTCN2021071585-appb-000111
替换为数据码率和第二UCI码率的比值
Figure PCTCN2021071585-appb-000112
当PUSCH上传输UCI信息,但不传输上行数据信息时,选择公式(5)至(7)来计算第二UCI的实际资源单元数目。
根据S502中直接或者间接获得的第一UCI资源单元数目的上限和第二UCI资源单元数目上限,确定第一UCI实际资源单元数和第二UCI实际资源单元数。
以第一UCI为高优先级HARQ反馈信息和第二UCI为低优先级HARQ反馈信息为例。
例如,当配置信息用于指示第一UCI资源单元数目的上限比例α HP和第二UCI资源单元数目的上限比例α LP时,则用于计算第一UCI的实际资源单元数中的UCI上限比例为α=α HP,用于计算第二UCI的实际资源单元数中的UCI上限比例为α=α LP
当PUSCH既传输UCI信息,又传输上行数据信息,则第一UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000113
Q' HP-UCI为第一UCI实际资源单元数,O HP-UCI为编码前第一UCI的比特数,L HP-UCI为第一UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000114
为第一UCI的码率偏移因子,
Figure PCTCN2021071585-appb-000115
为上行数据的码率,
Figure PCTCN2021071585-appb-000116
为PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引。
应理解,当第一UCI为高优先级CSI信息时,l 0为0;当第一UCI为高优先级HARQ反馈信息时,l 0为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引
第二UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000117
Q' LP-UCI为第二UCI实际资源单元数,O LP-UCI为编码前第二UCI的比特数,L LP-UCI为第二UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000118
为第二UCI的码率偏移因子,
Figure PCTCN2021071585-appb-000119
为上行数据的码率,
Figure PCTCN2021071585-appb-000120
为PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引。
当PUSCH传输UCI信息,但不传输上行数据信息时,第一UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000121
其中,Q' HP-UCI为第一UCI实际资源单元数,O HP-UCI为编码前第一UCI的比特数,L HP-UCI为第一UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000122
为第一UCI的码率偏移因子,R为PUSCH的码率,Q m为PUSCH的调制阶数,
Figure PCTCN2021071585-appb-000123
为PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引。
第二UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000124
其中,Q' LP-UCI为第二UCI实际资源单元数,O LP-UCI为编码前第二UCI的比特数,L LP-UCI为第二UCI的循环冗余校验CRC比特数,
Figure PCTCN2021071585-appb-000125
为第二UCI的码率偏移因子,R为PUSCH的码率,Q m为PUSCH的调制阶数,
Figure PCTCN2021071585-appb-000126
为PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载该DMRS的第一个符号的符号索引。
例如,当配置信息用于指示第二UCI的资源单元数目的上限比例α LP和第一UCI和第二UCI资源单元数目上限总和的比例α HP+LP时,则用于计算第一UCI的实际资源单元数中的UCI上限比例为α=α HP+LPLP,用于计算第二UCI的实际资源单元数中的UCI上限比例为α=α LP
当PUSCH既传输UCI信息,又传输上行数据信息,则第一UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000127
其中,公式(12)中的参数含义和公式(8)中一致,在此不作赘述。
第二UCI实际资源单元数满足公式(9),在此不作赘述。
当PUSCH传输UCI信息,但不传输上行数据信息时,第一UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000128
其中,公式(13)中的参数含义和公式(10)中一致,在此不作赘述。
第二UCI实际资源单元数满足公式(11),在此不作赘述。
例如,当配置信息用于指示第一UCI和第二UCI资源单元数目上限总和的比例α HP+LP和指示第一UCI资源单元数目上限在第一UCI和第二UCI资源单元数目上限总和的比例p HP时,则用于计算第一UCI的实际资源单元数目中的UCI上限比例为α=p HP·α HP+LP,用于计算第二UCI的实际资源单元数目中的UCI上限比例为α=(1-p HP)·α HP+LP
当PUSCH既传输UCI信息,又传输上行数据信息,则第一UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000129
其中,公式(14)中的参数含义和公式(8)中一致,在此不作赘述。
第二UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000130
其中,公式(15)中的参数含义和公式(9)中一致,在此不作赘述。
当PUSCH传输UCI信息,但不传输上行数据信息时,第一UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000131
其中,公式(16)中的参数含义和公式(10)中一致,在此不作赘述。
第二UCI实际资源单元数满足:
Figure PCTCN2021071585-appb-000132
其中,公式(17)中的参数含义和公式(11)中一致,在此不作赘述。
不同配置信息对应的计算实际资源单元数的情况以此类推,在此不做赘述,本申请实施例对此不作限制。
现有技术中不同优先级的上限比例仅用来控制UCI映射在PUSCH上的实际资源单元数不超过UCI在PUSCH上的资源单元数目上限,在本申请实施例中,上限比例不仅具有该作用,还用来辅助确定第一UCI映射在PUSCH上的资源单元数目的上限以确定第二UCI在PUSCH上开始映射的位置,从而保证第一UCI在编码过程中发生映射错误时,不影响网络设备对第二UCI的译码。
S505,根据第一UCI和第二UCI映射在PUSCH上的起始位置和实际资源单元数在PUSCH上进行资源映射。
对应于图4中的S403,根据该第一UCI在PUSCH上映射的起始位置和第一UCI实际资源单元数在PUSCH上映射第一UCI,根据该第二UCI在PUSCH上映射的起始位置和第二UCI实际资源单元数在PUSCH上映射第二UCI。
本申请实施例中UCI信息和上行数据信息在PUSCH上映射顺序为第一UCI、第二UCI和上行数据信息,其中,上行数据仅在UCI信息和数据信息需要复用在同一个上行信道总时频资源上时才出现,如果上行信道不需要传输上行数据信息,则PUSCH上无需映射数据信息。
下面结合图9、图10解释本申请实施例的映射规则,图9和10为本申请实施例中另一种第一UCI和第二UCI复用在PUSCH上的映射规则。
根据第二UCI映射在PUSCH中的起始位置的不同,图9示出了第二UCI映射在PUSCH中起始位置位于第一UCI在PUSCH上映射第一UCI资源单元数目上限之后的第N个完整的符号的第一个资源单元的映射方式,其中N为大于等于1的正整数,图10示出了第二UCI在PUSCH上的起始位置位于PUSCH上最后一个符号。
图9的(a)、(b)、(c)和(d)中的第二UCI在PUSCH中起始位置位于第一UCI映射在PUSCH上的资源单元数目上限之后的第一个完整的符号,对应于图7中的位置
S901,确定第一UCI开始映射的位置,其中当第一UCI包括HARQ反馈信息时,第一UCI可以从DMRS符号之后第一个符号开始映射,如图9的(a)所示。
可选的,当第一UCI不包括HARQ反馈信息时,第一UCI还可以从图10的(a)所示的位置开始映射。
S902,根据S504中获得的第一UCI映射在PUSCH上的实际资源单元数以及S502中确定的第一UCI映射在PUSCH上的资源单元数目上限,映射第一UCI,如图9的(b)所示。
应理解,获得第一UCI映射在PUSCH上的实际资源单元数和确定的第一UCI映射在PUSCH上的资源单元数目上限这两步为并列步骤,不分先后。
应理解,第一UCI内部映射规则为现有协议中相同优先级UCI的映射规则,如图2或者如图3所示,在此不做赘述。
可选的,当第一UCI不包括HARQ反馈信息时,第一UCI还可以如图10的(b)映射在PUSCH上。
S903,根据S503确定的第二UCI映射在PUSCH中的起始位置,映射第二UCI,其中,其中第二UCI开始映射的起始位置为第一UCI映射在PUSCH上的资源单元数目的上限之后第N个完整的符号的第一个资源单元,其中N为大于等于1的正整数,如图9的(c)所示。
应理解,第二UCI内部映射规则为现有技术中相同优先级UCI的映射规则,如图2或者图3所示,在此不做赘述。
S904,根据现有技术中相同优先级UCI的映射规则,映射上行数据,如图9的(d)所示,在此不做赘述。
图10的(a)、(b)、(c)和(d)中第二UCI在PUSCH中的起始位置位于PUSCH最后一个符号,对应于图8中的位置。
S1001,确定第一UCI开始映射的位置,其中当第一UCI不包括HARQ反馈信息时,第一UCI可以从DMRS符号之后第一个符号开始映射,如图10的(a)所示。
可选的,当第一UCI包括HARQ反馈信息时,第一UCI还可以从图9的(a)所示的位置开始映射。
S1002,根据S504中获得的第一UCI映射在PUSCH上的实际资源单元数映射第一UCI,如图10的(b)。
可选的,当第一UCI包括HARQ反馈信息时,第一UCI还可以如图9的(b)映射在PUSCH上。
S1003,根据S503确定的第二UCI在PUSCH中开始映射的起始位置,映射第二UCI,其中,图10的(c)第二UCI开始映射的起始位置位于第一UCI位于PUSCH上最后一个符号,具体有两种映射顺序,如图8所示,在此不作赘述。
应理解,第二UCI内部映射规则为现有技术中相同优先级UCI的映射规则,如图2或者图3所示,在此不做赘述。
S1004,根据现有技术中相同优先级UCI的映射规则,映射上行数据,如图10的(d)所示,在此不做赘述。
以上结合图1至图10详细介绍了本申请的信息发送方法和信息接收方法实施例,下面结合图11至图12介绍本申请装置实施例,未详尽描述之处请详见上文方法实施例。
图11为根据本申请实施例的终端设备1100的示意性框图。如图11所示,该终端设备包括:处理单元1101和收发单元1102。
处理单元用于确定第一UCI在PUSCH上映射的起始位置和资源单元数目上限;根据第一UCI在PUSCH上映射的起始位置和资源单元数目上限,确定第二UCI在PUSCH上映射的起始位置,其中,第一UCI的优先级高于第二UCI的优先级;确定第一UCI实际资源单元数和第二UCI实际资源单元数;根据第一UCI在PUSCH上映射的起始位置和第一UCI实际资源单元数在PUSCH上映射第一UCI,根据第二UCI在PUSCH上映射的起始位置和第二UCI实际资源单元数在PUSCH上映射第二UCI。
收发单元用于发送PUSCH。
应理解,终端设备中1100中各单元分别用于执行上述各方法中由终端设备执行的各动作或处理过程,因此也能实现上述方法实施例中的有益效果。这里,为了避免赘述,省略其详细说明。
图12为根据本申请实施例的网络设备1200的示意性框图。如图12所示,该网络设备包括:收发单元1201。
收发单元用于发送配置信息给终端设备,终端设备根据该配置信息确定第一UCI资源单元数目上限,其中该配置信息用于指示第一UCI资源单元数目上限比例,终端设备根据第一UCI资源单元数目上限比例和PUSCH的上可用于传输UCI的资源单元总数,确定第一UCI资源单元数目上限。
收发单元接收PUSCH,PUSCH包括第一UCI、第二UCI和上行数据。
应理解,终端设备中1200中各单元分别用于执行上述各方法中由终端设备执行的各 动作或处理过程,因此也能实现上述方法实施例中的有益效果。这里,为了避免赘述,省略其详细说明。
本申请实施例还提供了一种计算机可读介质,该计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设备执行上述任一方法实施例中的方法。
其中,该芯片系统可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
本申请实施例还提供了一种通信系统,包括:用于执行上述任一实施例中的方法的通信装置。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种信息发送方法,其特征在于,所述方法包括:
    确定第一上行控制信息UCI在上行物理共享信道PUSCH上映射的起始位置和资源单元数目上限;
    根据所述第一UCI在所述PUSCH上映射的起始位置和资源单元数目上限,确定第二上行控制信息UCI在所述PUSCH上映射的起始位置,其中所述第一UCI的优先级高于所述第二UCI的优先级;
    确定所述第一UCI的实际资源单元数和所述第二UCI的实际资源单元数;
    根据所述第一UCI在所述PUSCH上映射的起始位置和所述第一UCI实际资源单元数在所述PUSCH上映射所述第一UCI,根据所述第二UCI在所述PUSCH上映射的起始位置和所述第二UCI实际资源单元数在所述PUSCH上映射所述第二UCI;
    发送所述PUSCH。
  2. 如权利要求1所述的方法,其特征在于,确定所述第一UCI资源单元数目上限,包括:
    根据网络设备发送的配置信息,确定所述第一UCI资源单元数目上限,其中,所述配置信息包括用于指示所述第一UCI的资源单元数目上限比例,根据所述第一UCI资源单元数目上限比例和所述PUSCH上可用于传输UCI的资源单元总数,确定所述第一UCI资源单元数目上限。
  3. 如权利要求2所述的方法,其特征在于,所述配置信息包括用于指示所述第一UCI的资源单元数目上限比例α HP和用于指示所述第二UCI的资源单元数目上限比例α LP
    或者,所述配置信息包括用于指示第二UCI资源单元数目上限比例α LP和指示所述第一UCI资源单元数目上限和所述第二UCI资源单元数目上限的总和的比例α HP+LP
    或者,所述配置信息包括所述第一UCI资源单元数目上限和所述第二UCI资源单元数目上限的总和的比例α HP+LP和指示所述第一UCI资源单元数目上限在所述第一UCI资源单元数目上限和所述第二UCI资源单元数目上限总和的比例p HP
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述确定所述第二UCI在所述PUSCH上映射的起始位置,包括:
    所述第二UCI在所述PUSCH上映射的起始位置位于所述第一UCI在所述PUSCH上映射所述第一UCI资源单元数目上限之后的第N个完整符号的第一个资源单元,其中N为大于等于1的正整数。
  5. 如权利要求3所述的方法,其特征在于,包括:
    根据所述第一UCI资源单元数目上限比例和所述第二UCI资源单元数目上限比例,确定所述第一UCI实际资源单元数和所述第二UCI实际资源单元数。
  6. 如权利要求5所述的方法,其特征在于,
    当所述PUSCH既传输第一UCI和所述第二UCI,又传输上行数据时,
    所述第一UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100001
    其中,Q' HP-UCI为所述第一UCI实际资源单元数,O HP-UCI为编码前所述第一UCI的比特数,L HP-UCI为所述第一UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100002
    为所述第一UCI的码率偏移因子,
    Figure PCTCN2021071585-appb-100003
    为上行数据的码率,
    Figure PCTCN2021071585-appb-100004
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,α HP为所述第一UCI资源单元数目上限比例;
    所述第二UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100005
    其中,Q' LP-UCI为所述第二UCI实际资源单元数,O LP-UCI为编码前所述第二UCI的比特数,L LP-UCI为所述第二UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100006
    为所述第二UCI的码率偏移因子,
    Figure PCTCN2021071585-appb-100007
    为上行数据的码率,
    Figure PCTCN2021071585-appb-100008
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,α LP为所述第二UCI资源单元数目上限比例,其中
    Figure PCTCN2021071585-appb-100009
    表示向上取整。
  7. 如权利要求5所述的方法,其特征在于,
    当所述PUSCH传输所述第一UCI和所述第二UCI,但不传输上行数据时,
    所述第一UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100010
    其中,Q' HP-UCI为所述第一UCI实际资源单元数,O HP-UCI为编码前所述第一UCI的比特数,L HP-UCI为所述第一UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100011
    为所述第一UCI的码率偏移因子,R为所述PUSCH的码率,Q m为所述PUSCH的调制阶数,
    Figure PCTCN2021071585-appb-100012
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,α HP为所述第一UCI资源单元数目上限比例;
    所述第二UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100013
    其中,Q' LP-UCI为所述第二UCI实际资源单元数,O LP-UCI为编码前所述第二UCI的比特数,L LP-UCI为所述第二UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100014
    为所述第二UCI的码率偏移因子,R为所述PUSCH的码率,Q m为所述PUSCH的调制阶数,
    Figure PCTCN2021071585-appb-100015
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,α LP为所述第二UCI资源单元数目上限比例,其中
    Figure PCTCN2021071585-appb-100016
    表示向上取整。
  8. 如权利要求5所述的方法,其特征在于,
    当所述PUSCH既传输第一UCI和所述第二UCI,又传输上行数据时,
    所述第一UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100017
    其中,Q' HP-UCI为所述第一UCI实际资源单元数,O HP-UCI为编码前所述第一UCI的比特数,L HP-UCI为所述第一UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100018
    为所述第一UCI的码率偏移因子,
    Figure PCTCN2021071585-appb-100019
    为上行数据的码率,
    Figure PCTCN2021071585-appb-100020
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,α HP+LPLP为所述第一UCI资源单元数目上限比例;
    所述第二UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100021
    其中,Q' LP-UCI为所述第二UCI实际资源单元数,O LP-UCI为编码前所述第二UCI的比特数,L LP-UCI为所述第二UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100022
    为所述第二UCI的码率偏移因子,
    Figure PCTCN2021071585-appb-100023
    为上行数据的码率,
    Figure PCTCN2021071585-appb-100024
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,α LP为所述第二UCI资源单元数目上限比例,其中
    Figure PCTCN2021071585-appb-100025
    表示向上取整。
  9. 如权利要求5所述的方法,其特征在于,
    当所述PUSCH传输所述第一UCI和所述第二UCI,但不传输上行数据时,
    所述第一UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100026
    其中,Q' HP-UCI为所述第一UCI实际资源单元数,O HP-UCI为编码前所述第一UCI的比特数,L HP-UCI为所述第一UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100027
    为所述第一UCI的码率偏移因子,R为所述PUSCH的码率,Q m为所述PUSCH的调制阶数,
    Figure PCTCN2021071585-appb-100028
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,α HP+LPLP为所述第一UCI资源单元数目上限比例;
    所述第二UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100029
    其中,Q' LP-UCI为所述第二UCI实际资源单元数,O LP-UCI为编码前所述第二UCI的比特数,L LP-UCI为所述第二UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100030
    为所述第二UCI的码率偏移因子,R为所述PUSCH的码率,Q m为所述PUSCH的调制阶数,
    Figure PCTCN2021071585-appb-100031
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,α LP为所述第二UCI资源单元数目上限比例,其中
    Figure PCTCN2021071585-appb-100032
    表示向上取整。
  10. 如权利要求5所述的方法,其特征在于,
    当所述PUSCH既传输第一UCI和所述第二UCI,又传输上行数据时,
    所述第一UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100033
    其中,Q' HP-UCI为所述第一UCI实际资源单元数,O HP-UCI为编码前所述第一UCI的比特数,L HP-UCI为所述第一UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100034
    为所述第一UCI的码率偏移因子,
    Figure PCTCN2021071585-appb-100035
    为上行数据的码率,
    Figure PCTCN2021071585-appb-100036
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,p HP·α HP+LP为所述第一UCI资源单元数目上限比例;
    所述第二UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100037
    其中,Q' LP-UCI为所述第二UCI实际资源单元数,O LP-UCI为编码前所述第二UCI的比特数,L LP-UCI为所述第二UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100038
    为所述第二UCI的码率偏移因子,
    Figure PCTCN2021071585-appb-100039
    为上行数据的码率,
    Figure PCTCN2021071585-appb-100040
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,(1-p HP)·α HP+LP为所述第二UCI资源单元数目上限比例,其中
    Figure PCTCN2021071585-appb-100041
    表示向上取整。
  11. 如权利要求5所述的方法,其特征在于,
    当所述PUSCH传输所述第一UCI和所述第二UCI,但不传输上行数据时,
    所述第一UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100042
    其中,Q' HP-UCI为所述第一UCI实际资源单元数,O HP-UCI为编码前所述第一UCI的比特数,L HP-UCI为所述第一UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100043
    为所述第一UCI的码率偏移因子,R为所述PUSCH的码率,Q m为所述PUSCH的调制阶数,
    Figure PCTCN2021071585-appb-100044
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,p HP·α HP+LP为所述第一UCI资源单元数目上限比例;
    所述第二UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100045
    其中,Q' LP-UCI为所述第二UCI实际资源单元数,O LP-UCI为编码前所述第二UCI比特数,L LP-UCI为所述第二UCI循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100046
    为所述第二UCI码率偏移因子,R为所述PUSCH的码率,Q m为所述PUSCH的调制阶数,
    Figure PCTCN2021071585-appb-100047
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,(1-p HP)·α HP+LP为所述第二UCI资源单元数目上限比例,其中
    Figure PCTCN2021071585-appb-100048
    表示向上取整。
  12. 如权利要求1至11中任一项所述的方法,其特征在于,所述第一UCI表示高优先级混合自动重传反馈信息HARQ-ACK,所述第二UCI表示低优先级HARQ-ACK。
  13. 一种信息接收的方法,其特征在于,所述方法包括:
    发送配置信息,根据所述配置信息确定第一UCI的资源单元数目上限,其中所述配置信息用于指示所述第一UCI的资源单元数目上限比例,根据所述第一UCI资源单元数目上限比例和物理上行共享信道PUSCH的上可用于传输UCI的资源单元总数,确定所述第一UCI资源单元数目上限;
    接收所述PUSCH,所述PUSCH包括所述第一UCI、第二UCI和上行数据。
  14. 如权利要求13所述的方法,其特征在于,所述配置信息包括用于指示所述第一UCI的资源单元数目上限比例α HP和用于指示所述第二UCI的资源单元数目上限比例α LP
    或者,所述配置信息包括用于指示第二UCI资源单元数目上限比例α LP和指示所述第一UCI资源单元数目上限和所述第二UCI资源单元数目上限的总和的比例α HP+LP
    或者,所述配置信息包括所述第一UCI资源单元数目上限和所述第二UCI资源单元数目上限的总和的比例α HP+LP和指示所述第一UCI资源单元数目上限在所述第一UCI资源单元数目上限和所述第二UCI资源单元数目上限总和的比例p HP
  15. 一种终端设备,其特征在于,所述终端设备包括处理单元和收发单元,
    所述处理单元用于:
    确定第一上行控制信息UCI在上行物理共享信道PUSCH上映射的起始位置和资源单元数目上限;
    根据所述第一UCI在所述PUSCH上映射的起始位置和资源单元数目上限,确定第二上行控制信息UCI在所述PUSCH上映射的起始位置,其中所述第一UCI的优先级高于所述第二UCI的优先级;
    确定所述第一UCI的实际资源单元数和所述第二UCI的实际资源单元数;
    根据所述第一UCI在所述PUSCH上映射的起始位置和所述第一UCI实际资源单元数在所述PUSCH上映射所述第一UCI,根据所述第二UCI在所述PUSCH上映射的起始位置和所述第二UCI实际资源单元数在所述PUSCH上映射所述第二UCI;
    所述收发单元用于发送所述PUSCH。
  16. 如权利要求15所述的终端设备,其特征在于,确定所述第一UCI资源单元数目上限,包括:
    所述处理单元根据网络设备发送的配置信息,确定所述第一UCI资源单元数目上限,其中,所述配置信息包括用于指示所述第一UCI的资源单元数目上限比例,根据所述第一UCI资源单元数目上限比例和所述PUSCH的上可用于传输UCI的资源单元总数,确定所述第一UCI资源单元数目上限。
  17. 如权利要求16所述的终端设备,其特征在于,所述配置信息包括用于指示所述第一UCI的资源单元数目上限比例α HP和用于指示所述第二UCI的资源单元数目上限比例α LP
    或者,所述配置信息包括用于指示第二UCI资源单元数目上限比例α LP和指示所述第一UCI资源单元数目上限和所述第二UCI资源单元数目上限的总和的比例α HP+LP
    或者,所述配置信息包括所述第一UCI资源单元数目上限和所述第二UCI资源单元数目上限的总和的比例α HP+LP和指示所述第一UCI资源单元数目上限在所述第一UCI资源单元数目上限和所述第二UCI资源单元数目上限总和的比例p HP
  18. 如权利要求15至17中任一项所述的终端设备,其特征在于,所述确定所述第二UCI在所述PUSCH上映射的起始位置,包括:
    所述第二UCI在所述PUSCH上映射的起始位置位于所述第一UCI在所述PUSCH上映射所述第一UCI资源单元数目上限之后的第N个完整符号的第一个资源单元,其中N为大于等于1的正整数。
  19. 如权利要求17所述的终端设备,其特征在于,
    所述处理单元还用于:根据所述第一UCI资源单元数目上限比例和所述第二UCI资源单元数目上限比例,确定所述第一UCI实际资源单元数和所述第二UCI实际资源单元数。
  20. 如权利要求19所述的终端设备,其特征在于,
    当所述PUSCH既传输第一UCI和所述第二UCI,又传输上行数据时,
    所述第一UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100049
    其中,Q' HP-UCI为所述第一UCI实际资源单元数,O HP-UCI为编码前所述第一UCI的比特数,L HP-UCI为所述第一UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100050
    为所述第一UCI的码率偏移因子,
    Figure PCTCN2021071585-appb-100051
    为上行数据的码率,
    Figure PCTCN2021071585-appb-100052
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,α HP为所述第一UCI资源单元数目上限比例;
    所述第二UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100053
    其中,Q' LP-UCI为所述第二UCI实际资源单元数,O LP-UCI为编码前所述第二UCI的比特数,L LP-UCI为所述第二UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100054
    为所述第二UCI的码率偏移因子,
    Figure PCTCN2021071585-appb-100055
    为上行数据的码率,
    Figure PCTCN2021071585-appb-100056
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,α LP为所述第二UCI资源单元数目上限比例,其中
    Figure PCTCN2021071585-appb-100057
    表示向上取整。
  21. 如权利要求19所述的终端设备,其特征在于,
    当所述PUSCH传输所述第一UCI和所述第二UCI,但不传输上行数据时,
    所述第一UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100058
    其中,Q' HP-UCI为所述第一UCI实际资源单元数,O HP-UCI为编码前所述第一UCI的比特数,L HP-UCI为所述第一UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100059
    为所述第一UCI的码率偏移因子,R为所述PUSCH的码率,Q m为所述PUSCH的调制阶数,
    Figure PCTCN2021071585-appb-100060
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,α HP为所述第一UCI资源单元数目上限比例;
    所述第二UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100061
    其中,Q' LP-UCI为所述第二UCI实际资源单元数,O LP-UCI为编码前所述第二UCI的比特数,L LP-UCI为所述第二UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100062
    为所述第二UCI的码率偏移因子,R为所述PUSCH的码率,Q m为所述PUSCH的调制阶数,
    Figure PCTCN2021071585-appb-100063
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,α LP为所述第二UCI资源单元数目上限比例,其中
    Figure PCTCN2021071585-appb-100064
    表示向上取整。
  22. 如权利要求19所述的终端设备,其特征在于,
    当所述PUSCH既传输第一UCI和所述第二UCI,又传输上行数据时,
    所述第一UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100065
    其中,Q' HP-UCI为所述第一UCI实际资源单元数,O HP-UCI为编码前所述第一UCI的比特数,L HP-UCI为所述第一UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100066
    为所述第一UCI的码率偏移因子,
    Figure PCTCN2021071585-appb-100067
    为上行数据的码率,
    Figure PCTCN2021071585-appb-100068
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,α HP+LPLP为所述第一UCI资源单元数目上限比例;
    所述第二UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100069
    其中,Q' LP-UCI为所述第二UCI实际资源单元数,O LP-UCI为编码前所述第二UCI的比特数,L LP-UCI为所述第二UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100070
    为所述第二UCI的码率偏移因子,
    Figure PCTCN2021071585-appb-100071
    为上行数据的码率,
    Figure PCTCN2021071585-appb-100072
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,α LP为所述第二UCI资源单元数目上限比例,其中
    Figure PCTCN2021071585-appb-100073
    表示向上取整。
  23. 如权利要求19所述的终端设备,其特征在于,
    当所述PUSCH传输所述第一UCI和所述第二UCI,但不传输上行数据时,
    所述第一UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100074
    其中,Q' HP-UCI为所述第一UCI实际资源单元数,O HP-UCI为编码前所述第一UCI的比特数,L HP-UCI为所述第一UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100075
    为所述第一UCI的码率偏移因子,R为所述PUSCH的码率,Q m为所述PUSCH的调制阶数,
    Figure PCTCN2021071585-appb-100076
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,α HP+LPLP为所述第一UCI资源单元数目上限比例;
    所述第二UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100077
    其中,Q' LP-UCI为所述第二UCI实际资源单元数,O LP-UCI为编码前所述第二UCI的比特数,L LP-UCI为所述第二UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100078
    为所述第二UCI的码率偏移因子,R为所述PUSCH的码率,Q m为所述PUSCH的调制阶数,
    Figure PCTCN2021071585-appb-100079
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,α LP为所述第二UCI资源单元数目上限比例,其中
    Figure PCTCN2021071585-appb-100080
    表示向上取整。
  24. 如权利要求19所述的终端设备,其特征在于,
    当所述PUSCH既传输第一UCI和所述第二UCI,又传输上行数据时,
    所述第一UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100081
    其中,Q' HP-UCI为所述第一UCI实际资源单元数,O HP-UCI为编码前所述第一UCI的比特数,L HP-UCI为所述第一UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100082
    为所述第一UCI的码率偏移因子,
    Figure PCTCN2021071585-appb-100083
    为上行数据的码率,
    Figure PCTCN2021071585-appb-100084
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,p HP·α HP+LP为所述第一UCI资源单元数目上限比例;
    所述第二UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100085
    其中,Q' LP-UCI为所述第二UCI实际资源单元数,O LP-UCI为编码前所述第二UCI的比特数,L LP-UCI为所述第二UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100086
    为所述第二UCI的码率偏移因子,
    Figure PCTCN2021071585-appb-100087
    为上行数据的码率,
    Figure PCTCN2021071585-appb-100088
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,(1-p HP)·α HP+LP为所述第二UCI资源单元数目上限比例,其中
    Figure PCTCN2021071585-appb-100089
    表示向上取整。
  25. 如权利要求19所述的终端设备,其特征在于,
    当所述PUSCH传输所述第一UCI和所述第二UCI,但不传输上行数据时,
    所述第一UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100090
    其中,Q' HP-UCI为所述第一UCI实际资源单元数,O HP-UCI为编码前所述第一UCI的比特数,L HP-UCI为所述第一UCI的循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100091
    为所述第一UCI的码率偏移因子,R为所述PUSCH的码率,Q m为所述PUSCH的调制阶数,
    Figure PCTCN2021071585-appb-100092
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,p HP·α HP+LP为所述第一UCI资源单元数目上限比例;
    所述第二UCI实际资源单元数满足:
    Figure PCTCN2021071585-appb-100093
    其中,Q' LP-UCI为所述第二UCI实际资源单元数,O LP-UCI为编码前所述第二UCI比特数,L LP-UCI为所述第二UCI循环冗余校验CRC比特数,
    Figure PCTCN2021071585-appb-100094
    为所述第二UCI码率偏移因子,R为所述PUSCH的码率,Q m为所述PUSCH的调制阶数,
    Figure PCTCN2021071585-appb-100095
    为所述PUSCH上可用于传输UCI的资源单元总数,其中l 0为0或者为第一个解调参考信号DMRS的符号之后不承载所述DMRS的第一个符号的符号索引,(1-p HP)·α HP+LP为所述第二UCI资源单元数目上限比例,其中
    Figure PCTCN2021071585-appb-100096
    表示向上取整。
  26. 如权利要求15至25中任一项所述的终端设备,其特征在于,所述第一UCI表示高优先级混合自动重传反馈信息HARQ-ACK,所述第二UCI表示低优先级HARQ-ACK。
  27. 一种网络设备,其特征在于,所述网络设备包括收发单元,
    所述收发单元用于:
    发送配置信息给终端设备,终端设备根据所述配置信息确定第一UCI的资源单元数目上限,其中所述配置信息用于指示所述第一UCI的资源单元数目上限比例,终端设备根据所述第一UCI资源单元数目上限比例和物理上行共享信道PUSCH的上可用于传输UCI的资源单元总数,确定所述第一UCI资源单元数目上限;
    接收所述PUSCH,所述PUSCH包括所述第一UCI、第二UCI和上行数据。
  28. 如权利要求27所述的网络设备,其特征在于,所述配置信息包括用于指示所述第一UCI的资源单元数目上限比例α HP和用于指示所述第二UCI的资源单元数目上限比例α LP
    或者,所述配置信息包括用于指示第二UCI资源单元数目上限比例α LP和指示所述第一UCI资源单元数目上限和所述第二UCI资源单元数目上限的总和的比例α HP+LP
    或者,所述配置信息包括所述第一UCI资源单元数目上限和所述第二UCI资源单元数目上限的总和的比例α HP+LP和指示所述第一UCI资源单元数目上限在所述第一UCI资源单元数目上限和所述第二UCI资源单元数目上限总和的比例p HP
  29. 一种芯片系统,其特征在于,包括:
    处理器与数据接口,处理器通过所述数据接口从存储器调用并运行计算机程序,使得安装所述芯片系统的设备执行如权利要求1至14中任一项所述的方法。
  30. 一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求1-14中任一项所述的方法。
  31. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至14中任一项所述的方法。
  32. 一种通信系统,其特征在于,包括:
    如权利要求15至26中任一项所述的终端设备以及如权利要求27至28中任一项所述的网络设备。
PCT/CN2021/071585 2021-01-13 2021-01-13 信息发送方法、信息接收方法及通信装置 WO2022151091A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/071585 WO2022151091A1 (zh) 2021-01-13 2021-01-13 信息发送方法、信息接收方法及通信装置
CN202180077581.7A CN116547936A (zh) 2021-01-13 2021-01-13 信息发送方法、信息接收方法及通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071585 WO2022151091A1 (zh) 2021-01-13 2021-01-13 信息发送方法、信息接收方法及通信装置

Publications (1)

Publication Number Publication Date
WO2022151091A1 true WO2022151091A1 (zh) 2022-07-21

Family

ID=82446685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071585 WO2022151091A1 (zh) 2021-01-13 2021-01-13 信息发送方法、信息接收方法及通信装置

Country Status (2)

Country Link
CN (1) CN116547936A (zh)
WO (1) WO2022151091A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202068A1 (en) * 2019-04-02 2020-10-08 Telefonaktiebolaget Lm Ericsson (Publ) Priority-dependent uci resource determination
CN111835480A (zh) * 2019-07-05 2020-10-27 维沃移动通信有限公司 一种uci传输方法、接收方法、终端和网络设备
CN111953456A (zh) * 2019-05-14 2020-11-17 大唐移动通信设备有限公司 一种信令传输的方法、用户终端、基站及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202068A1 (en) * 2019-04-02 2020-10-08 Telefonaktiebolaget Lm Ericsson (Publ) Priority-dependent uci resource determination
CN111953456A (zh) * 2019-05-14 2020-11-17 大唐移动通信设备有限公司 一种信令传输的方法、用户终端、基站及存储介质
CN111835480A (zh) * 2019-07-05 2020-10-27 维沃移动通信有限公司 一种uci传输方法、接收方法、终端和网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on Intra-UE multiplexing/prioritization", 3GPP DRAFT; R1-2008060, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946562 *
SONY: "Considerations in intra-UE UL multiplexing", 3GPP DRAFT; R1-2008358, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946644 *

Also Published As

Publication number Publication date
CN116547936A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
CN105393485B (zh) 无线通信系统中的方法和节点
EP3459195B1 (en) Systems and methods for frequency-division duplex transmission time interval operation
CN113348642B (zh) 执行发送和接收操作的用户设备和系统
CN109802750B (zh) 信息传输方法及装置
JP2020506594A (ja) 上りリンク・チャネル電力割り当て方法および装置
CN107682128B (zh) 数据传输方法、装置、设备及存储介质
CN108809541B (zh) 上行数据的传输方法和装置
CN110637433B (zh) 用于管理无准予上行链路传输的harq过程的方法、无线装置、网络节点
CN108886754B (zh) 用于指示反馈消息的传输时间偏移的方法
EP3751763A1 (en) Indication method, network device and user equipment
US11705992B2 (en) Infrastructure equipment, wireless telecommunications system and method
WO2017143837A1 (zh) 一种信息传输方法及装置
WO2018082424A1 (zh) 数据传输的方法和装置
US20230354370A1 (en) Data receiving method and apparatus and data sending method and apparatus
WO2022000318A1 (en) Harq feedback transmission method, base station and user equipment
WO2020228542A1 (zh) 一种发送和接收harq-ack消息的方法及装置
US11974287B2 (en) Communication method and apparatus
US20230050066A1 (en) Telecommunications apparatus and methods
JP7297678B2 (ja) データが破損しているかどうかを判断するための方法および装置
WO2019095971A1 (zh) 一种通信方法及设备
CN108737042B (zh) 用于无线通信网络中的数据传输的方法和设备
WO2022151091A1 (zh) 信息发送方法、信息接收方法及通信装置
CN117751539A (zh) 方法、通信装置和基础设施设备
WO2023011121A1 (zh) 上行控制信息的传输方法及装置
EP4277186A1 (en) Communication method and apparatus, and computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918306

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180077581.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918306

Country of ref document: EP

Kind code of ref document: A1