WO2022151058A1 - 一种用户设备的天线面板切换方法及通信设备 - Google Patents

一种用户设备的天线面板切换方法及通信设备 Download PDF

Info

Publication number
WO2022151058A1
WO2022151058A1 PCT/CN2021/071527 CN2021071527W WO2022151058A1 WO 2022151058 A1 WO2022151058 A1 WO 2022151058A1 CN 2021071527 W CN2021071527 W CN 2021071527W WO 2022151058 A1 WO2022151058 A1 WO 2022151058A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
base station
switching
uplink
transmission
Prior art date
Application number
PCT/CN2021/071527
Other languages
English (en)
French (fr)
Inventor
田茂新
生嘉
黎添
Original Assignee
捷开通讯(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 捷开通讯(深圳)有限公司 filed Critical 捷开通讯(深圳)有限公司
Priority to CN202180090053.5A priority Critical patent/CN116711238A/zh
Priority to PCT/CN2021/071527 priority patent/WO2022151058A1/zh
Publication of WO2022151058A1 publication Critical patent/WO2022151058A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of wireless communication, and in particular, to an antenna panel switching method of a user equipment, a communication device, and a readable storage medium.
  • a user equipment may be equipped with multiple antenna panels (panels), wherein each antenna panel may contain multiple antenna elements. As shown in Figure 1.
  • Each panel can be placed in a different position on the UE side. Therefore, when the UE side establishes the uplink and downlink beam links with the 5G New Radio (NR) base station (gNB), the diversity gain can be increased. If blocking occurs during transmission, the UE can avoid communication interruption caused by beam blocking through panel switching, and better achieve uplink and downlink reception and transmission. Therefore, in order to enhance multi-beam operation in UL transmission, UE terminals configured with multiple panels should be supported.
  • NR 5G New Radio
  • the antenna group (Antenna group) activation/deactivation mechanism does not well support any scheme that enables the UE or the base station to effectively activate/deactivate any antenna group. Lack of coordination mechanism between UE and base station for antenna group activation/deactivation.
  • Multi-panel UE Multi-panel UE
  • MPUE - Assumption 1 Multiple panels are implemented on one UE, only one panel can be activated at a time, and the panel switching/activation delay is [X]ms;
  • MPUE - Assumption 2 Multiple panels are implemented on one UE, multiple panels can be activated at one time, and one or more panels can be used for transmission;
  • MPUE - Assumption 3 Implementing multiple panels on one UE, multiple panels can be activated at a time, but only one panel can be used for transmission.
  • the multi-panel user mechanism for MPUE-Assumption 3 was agreed in Rel-16.
  • the UE selects the appropriate uplink panel through the panel activation/deactivation mechanism. Since panel activation/deactivation may also have an impact on base station transmission or reception, two main solutions are considered for panel selection, namely: base station-driven and UE-driven panel activation/deactivation go activate.
  • the panel selection mechanism initiated by the base station the base station periodically wakes up the panel to perform beam or CSI measurements to select the best transmission panel. Or when the UE detects that it needs to perform uplink panel switching, it sends a request to the base station.
  • the UE measures the panel transmission quality and reports it to the base station, and the base station instructs the UE to select the panel according to the reported information;
  • the panel activation/deactivation mechanism initiated by the UE is when When the UE has an event such as position movement, selection, or MPE problem that requires panel selection, the UE selects a new panel by itself without signaling instructions from the base station. Under this mechanism, the UE can quickly and independently select the panel for transmission. /beam.
  • the panel selection supports the standard transparent mode. If the panel switching event occurs in the UE, the base station is unknown to the panel switching. At this time, the base station continues to use the same uplink receiving beam as before the panel switching to receive the uplink channel/signal. The beam misalignment at the UE side affects the system performance. In addition, the base station also needs to know the panel status information on the UE side (whether it is activated, etc.) and the number of configured panels. Otherwise, the base station may schedule the UE with the beam corresponding to the deactivated panel, resulting in waste of network resources and throughput. reduce. Therefore, the panel status information of the UE and the panel switching event should be reported to the base station in time.
  • Rel-16 it has been agreed to use the identifier (Identifier, ID) to indicate panel-specific uplink transmission, to define a new ID for the UE panel, namely "panel ID", an explicit panel ID is also beneficial in the UE and The panel activation/deactivation information is aligned between the base stations, so that the base station controls the panel activation/deactivation of the UE, and the alignment between the base station and the UE is realized.
  • the base station configures uplink sounding reference signal (Sounding reference signal, SRS) resources for the UE, and the UE associates the SRS resources with the UL panels. is transparent.
  • the selected SRS resource is indicated to the UE through SpatialRelationInfo, which implicitly implements panel-specific uplink transmission.
  • SRS uplink sounding reference signal
  • the uplink and downlink beam indications are implemented respectively through the Transmission configuration indication (TCI) state configured by Radio Resource Control (RRC) and the high-level parameter SpatialrelationInfo.
  • TCI Transmission configuration indication
  • RRC Radio Resource Control
  • SpatialrelationInfo SpatialrelationInfo
  • the separate indication of the uplink and downlink beams requires the base station to configure both uplink and downlink signaling, which will cause delay and signaling overhead.
  • Uplink beam management is based on uplink reference signal SRS resources.
  • the base station configures at least one SRS resource set for beam management.
  • different SRS resource sets are associated with different antenna panels. Different SRS resource sets can be transmitted at the same time, and SRS resources in the same SRS resource set are only transmitted through time division multiplexing (TDM). Therefore, SRS resource set selection can be applied to panel-specific beam selection.
  • TDM time division multiplexing
  • the base station When the UE performs the panel switching mechanism, the base station will also switch the uplink receiving beam and may reschedule the downlink transmission. Therefore, the separate configuration of the uplink and downlink beam indications requires the base station to configure both uplink and downlink signaling, which will cause delay and signaling overhead.
  • Rel-17 a model for the uplink and downlink unified beam indication framework (Unified framework) is proposed. Unlike Rel-15/16, which requires different signaling to configure the uplink and downlink reference signal mechanisms respectively.
  • both the uplink reference signal and the downlink reference signal are configured in the same TCI state, and the UE panel switching mechanism needs to be According to this redesign, in addition, under the framework based on the unified uplink and downlink beam indication, there is still the problem of misalignment between the base station and the UE.
  • the present application provides a method for switching an antenna panel of a user equipment, the method being executed on the user equipment side, including:
  • the current transmission panel is switched to a candidate panel that shares the TCI state with the transmission panel.
  • the present application also provides a method for switching an antenna panel of a user equipment.
  • the method is executed at the base station and includes:
  • the uplink and downlink transmission beams for at least two panels are configured in the same TCI state;
  • the present application also provides a method for switching an antenna panel of a user equipment.
  • the method is executed on the user equipment side, and includes:
  • the SRS corresponding to the target panel is sent to the base station in the time slot corresponding to the target panel after switching, and the first relationship table at least includes the mapping relationship between the index of the target panel and the index of the time slot;
  • the present application also provides a method for switching an antenna panel of a user equipment.
  • the method is executed at the base station and includes:
  • the beneficial effect of the present application is that when the user equipment detects that panel switching is required, it can directly switch the current transmission panel to a candidate panel that shares a TCI state with the transmission panel, and only needs to report a switching event to the base station. After receiving the request, it adjusts its own uplink receiving beam and downlink transmission beam, and the base station does not need to re-measure all panels and reconfigure the TCI state, which reduces the time required for panel switching in the original technology.
  • the present application also solves the problem of dislocation of the base station and the UE during the panel switching process.
  • FIG. 1 is a schematic diagram of a beam between a base station and a multi-panel UE in the prior art
  • FIG. 2 is a schematic structural diagram of an embodiment of a wireless communication system or network of the present application
  • FIG. 3 is a schematic flowchart of a first embodiment of the antenna panel switching method of the present application executed on the user equipment side;
  • FIG. 4 is a schematic flowchart of a first embodiment of a method for switching antenna panels of the present application executed at a base station;
  • FIG. 5 is a schematic flowchart of the second embodiment of the antenna panel switching method of the present application executed on the user equipment side;
  • FIG. 6 is a schematic flowchart of the second embodiment of the antenna panel switching method of the present application executed at the base station;
  • FIG. 7 is a schematic diagram of a plurality of panels sharing the same TCI state in scheme 1;
  • FIG. 9 is a schematic diagram of another embodiment in which a plurality of panels share the same TCI state in solution 2;
  • FIG. 10 is a schematic diagram of a panel switching process in which multiple UE panels are configured with the same TCI state in Schemes 1 and 2;
  • FIG. 11 is the panel switching process when different UE panels of Scheme 3 and Scheme 4 are configured with different TCI states
  • FIG. 12 is a schematic structural diagram of Embodiment 1 of a communication device of the present application.
  • Embodiment 13 is a schematic structural diagram of Embodiment 2 of a communication device of the present application.
  • FIG. 14 is a schematic structural diagram of an embodiment of a readable storage medium of the present application.
  • User equipment in this application may include or represent any portable computing device used for communication.
  • Examples of user equipment that may be used in certain embodiments of the described devices, methods and systems may be wired or wireless devices such as mobile devices, mobile phones, terminals, smart phones, portable computing devices, such as laptop computers , handheld devices, tablets, tablet computers, netbooks, personal digital assistants, music players, and other computing devices capable of wired or wireless communications.
  • FIG. 2 is a wireless communication of multiple network nodes 104a-104m (eg, base stations gNB) including core network 102 (or telecommunications infrastructure) with cells 106a-106m serving multiple wireless communication units 108a-108e (eg, UEs)
  • a schematic diagram of a system or network 100 .
  • a plurality of network nodes 104a-104m are connected to the core network 102 by links. These links may be wired or wireless (eg, radio communication links, fiber optics, etc.).
  • Core network 102 may include multiple core network nodes, network entities, application servers, or any other network or computing device that may communicate with one or more radio access networks including multiple network nodes 104a-104m.
  • network nodes 104a-104m are illustrated as base stations, which may be gNBs in a 5G network, for example but not limited to.
  • Each of the plurality of network nodes 104a-104m (eg, base stations) has a footprint, which is schematically represented in FIG. 2 for serving one or more user equipment for simplicity and by way of example and not limitation
  • UEs 108a-108e can receive services from wireless communication system 100, such as voice, video, audio, or other communication services.
  • the wireless communication system or network 100 may include or represent any one or more communication networks used for communication between UEs 108a-108e and other devices, content sources, or servers connected to the wireless communication system or network 100.
  • the core network 102 may also include or represent one or more communication networks, one or more network nodes, entities, elements, application servers, servers, base stations or other that are linked, coupled or connected to form the wireless communication system or network 100 Network equipment. Links or couplings between network nodes may be wired or wireless (eg, radio communication links, fiber optics, etc.).
  • the wireless communication system or network 100 and core network 102 may include any suitable combination of a core network and a wireless access network comprising network nodes or entities, base stations, access points, etc. that enable UEs 108a-108e, wireless communication system 100 and Communication between network nodes 104a-104m of core network 102, content sources, and/or other devices connected to system or network 100 is enabled.
  • An example of a wireless communication network 100 may be at least one communication network or a combination thereof including, but not limited to, one or more wired and/or wireless telecommunications networks, a core network(s), radio access network(s), computer network(s), data communication network(s), internet, telephone network, wireless network, such as WiMAX based on the IEEE 802.11 standard by way of example only , WLAN and/or Wi-Fi network, or Internet Protocol (Internet Protocol, IP) network, packet-switched network or enhanced packet-switched network, IP Multimedia Subsystem (IP Multimedia Subsystem, IMS) network or based on wireless, cellular or satellite Technology communication networks, such as mobile networks, Global System for Mobile Communications (GSM), GPRS networks, Wideband Code Division Multiple Access (W-CDMA), CDMA2000 or LTE/Advanced LTE communication network or any 2nd, 3rd, 4th or 5th generation and beyond type of communication network etc.
  • GSM Global System for Mobile Communications
  • W-CDMA Wideband Code Division Multiple Access
  • the wireless communication system 100 may be, by way of example only and not limited to, using cyclic prefix orthogonal frequency division multiplexing (CP- 5G communication network using OFDM) technology.
  • the downlink may include one or more communication channels for transmitting data from one or more gNBs 104a-104m to one or more UEs 108a-108e.
  • a downlink channel is a communication channel used to transmit data, eg, from gNB 104a to UE 108a.
  • each frame may be 10ms in length
  • each frame may be divided into multiple subframes.
  • each frame may include 10 subframes of equal length, where each subframe consists of multiple time slots (eg, 2 time slots) for transmitting data.
  • time slots e.g, 2 time slots
  • a subframe may include several additional special fields or OFDM symbols, which may include, by way of example only, downlink synchronization symbols, broadcast symbols and/or uplink reference symbols.
  • the present application provides a method for switching an antenna panel of a user equipment. As shown in FIG. 3 , the method is executed on the user equipment side, including:
  • Step S100 receives the TCI state sent by the base station, and at least two panels share one described TCI state;
  • TCI Transmission Configuration Indication
  • Downlink reference signal CSI-RS and/or uplink reference signal SRS are configured in the TCI state, wherein the uplink and downlink transmission beams of the UE panel of each reference signal are associated.
  • UE user equipment
  • multiple transmission beams used for the UE panel are all configured in the same TCI state, and for related details examples, please refer to the first solution and the second solution.
  • step S200 when a panel switching event is detected, the current transmission panel is switched to a candidate panel that shares the TCI state with the transmission panel.
  • panel switching events include MPE events requiring panel switching or receiving a power-saving mechanism drive, etc.
  • Panels sharing a TCI state may include a transmission panel and a candidate panel, where the definition, selection and related details of the transmission panel and the candidate panel Examples can be found in Scenario 1 and Scenario 2.
  • the transmission panel and the candidate panel are only defined by names, which are intended to reflect the correlation between at least two panels, which is not limited in the present invention, and the transmission panel and the candidate panel can also use "first panel” and "second panel” to express.
  • the transmission panel and the candidate panel share a TCI state, so that when the UE detects a panel switching event, it can directly switch the current transmission panel to the candidate panel, thereby avoiding the original mechanism. Redundant steps for panel re-measurement and TCI state configuration reduce panel switching time consuming. After the UE performs panel handover, it will report the handover request or handover event to the base station at the same time, and the base station will adjust its own beam to correspond to the candidate panel beam that the UE switches to after receiving the message uploaded by the UE, so as to achieve the best link gain.
  • the panels sharing the TCI state are a transmission panel and a candidate panel.
  • the panels sharing the TCI state are an uplink transmission panel, a downlink receiving panel, and an uplink candidate panel.
  • the panels sharing the TCI state are two transmission panels and two candidate panels.
  • the TCI state is configured by the base station through RRC.
  • the method further includes:
  • the panel switching event is reported to the base station, so that the base station adjusts uplink and downlink transmissions according to the event.
  • the present application also provides a method for switching an antenna panel of a user equipment, as shown in FIG. 4 , the method is executed at the base station, including:
  • Step S300 configures the uplink and downlink transmission beams of at least two panels in the same TCI state
  • Step S400 receives the panel switching event reported by the user equipment, and adjusts its own uplink and downlink transmission according to the panel switching event.
  • the base station side performs steps S300 and S400.
  • the base station cooperates with the user equipment to measure the uplink and downlink transmission of each panel, select the transmission panel and the candidate panel, and configure the transmission panel and the candidate panel to share a TCI state.
  • the base station searches for the beam configuration corresponding to the candidate panel according to the candidate panel index or the transmission panel index, and then adjusts its own beam configuration to achieve the best link gain with the beam of the candidate panel after the UE has switched.
  • the base station searches for the beam configuration corresponding to the candidate panel according to the candidate panel index or the transmission panel index, and then adjusts its own beam configuration to achieve the best link gain with the beam of the candidate panel after the UE has switched.
  • the present application further provides a method for switching an antenna panel of a user equipment, as shown in FIG. 5 , the method is executed on the user equipment side, including:
  • the SRS corresponding to the target panel is sent to the base station in the time slot corresponding to the target panel after the switch, and the first relationship table is at least including the mapping relationship between the index of the target panel and the index of the time slot;
  • Step S600 receives the TCI state reconfigured by the base station and adjusts the uplink and downlink transmission of the target panel according to the TCI state.
  • transmission beams of different UE panels are configured in different TCI states.
  • the preset first relationship table is configured by the base station in the previous stage, and the base station will send the first relationship table to the UE, that is, the first relationship table is the same on the base station side and the UE side.
  • the base station has agreed on the time slot for uploading the SRS of the target panel after switching. As long as the base station receives the SRS in the corresponding time slot, the mapping relationship between the panel index and the time slot index in the first relationship table can be obtained. Knowing which panel the SRS belongs to, that is, knowing which panel is the target panel after the UE is switched. For specific implementation details, please refer to Scheme 3 and Scheme 4.
  • this embodiment is described by taking the target panel as the panel after the UE is switched.
  • the mapping relationship between the time slot and the panel is preset, and the base station can obtain the time slot of the SRS by decoding the UE panel at the same time. And the problem of misalignment of the base station.
  • the first relationship table further includes a mapping relationship among the panel group index, the downlink target panel, the uplink target panel index and the time slot index.
  • the method further includes:
  • the CSI that generates the target panel is measured and sent to the base station.
  • the present application also provides a method for switching an antenna panel of a user equipment, as shown in FIG. 6 , the method is executed at the base station, including:
  • Step S700 obtains the SRS sent by the user equipment, and confirms the switched target panel of the user equipment according to the time slot for receiving the SRS and a preset first relationship table;
  • Step S800 cooperates with the user equipment to measure the transmission channel of the target panel, reconfigures the TCI state according to the measurement result and sends the TCI state to the user equipment, so that the user equipment adjusts the transmission channel of the target panel. Up and down transmission.
  • the base station side performs steps S700 and S800.
  • steps S700 and S800 For specific implementation details, please refer to Schemes 3 and 4.
  • the first relationship table is configured by the base station RRC.
  • the first relationship table is carried by system information SI and sent to the user equipment.
  • the reconfigured TCI state is carried by DCI information.
  • Multiple UE panels are configured with the same TCI state, and the UE uses the same panel for downlink reception and uplink transmission.
  • the transmit beams used for multiple UE panels are all configured in the same TCI state.
  • Downlink reference signals CSI-RS and/or uplink reference signals SRS are configured in the TCI state, wherein each reference signal is related to the uplink and downlink transmission beams of the UE panel.
  • the base station and UE measure all UE panels and their beams to find the best uplink and downlink beams and corresponding panel quality for each UE panel.
  • the panel quality is represented by a panel quality parameter, which may include a signal-to-noise ratio (SINR) of the panel, a reference signal received power (RSRP), and the like.
  • SINR signal-to-noise ratio
  • RSRP reference signal received power
  • the base station sends the CSI-RS corresponding to each beam to the UE, and the UE performs the measurement.
  • the base station performs measurement after receiving the uplink reference signal SRS from the UE.
  • Panel1 is the panel currently used for uplink and downlink transmission.
  • Switch to Panel2 and use the optimal uplink and downlink beams obtained above for transmission, and the uplink and downlink beams of Panel1 and Panel2 are configured in a common TCI state.
  • the panel quality parameter, another sub-optimal candidate panel as the transmission panel, the downlink receive beam and the uplink transmit beam of the transmission panel and the candidate panel are configured in the same TCI state.
  • the criterion for selecting two panels is: UE and base station measure the uplink and downlink beams on the active panel respectively. If the optimal sub-uplink and downlink beams come from the same panel, the panel is the transmission panel, and the next best uplink beam and/or Or the panel corresponding to the downlink beam is used as a candidate panel; if the optimal uplink and downlink beams come from different panels, the panel corresponding to the uplink beam is the transmission panel, and the panel corresponding to the downlink beam is the candidate panel. Alternatively, only the uplink transmission beam may be used as a reference. After the base station measures the SRS signal from the UE, it sends an SRI to indicate the UE and obtains two uplink beams with the best quality.
  • the UE also measures the downlink beam. Then, the CSI and panel indices of the two downlink beams corresponding to the two uplink beams with the best quality are respectively selected and reported to the base station to obtain multiple transmission panel and candidate panel index pairs. In addition, the panel quality can also be measured. If by measuring the signal-to-noise ratio (SINR), reference signal received power (RSRP), etc. of the panel, the two panels with the best quality are selected as the transmission panel and the candidate panel respectively, and the two The CSI information of the beams configured by each panel is reported to the base station. The base station uses RRC to configure the TCI state, and instructs the panel to perform uplink and downlink transmission.
  • SINR signal-to-noise ratio
  • RSRP reference signal received power
  • the UE when the UE detects an MPE event requiring panel switching or receives a switching event such as a power saving mechanism drive, it means that the current uplink transmission panel is no longer suitable for uplink transmission and needs to be switched to a new one.
  • the panel performs uplink transmission.
  • the UE Before selecting a new panel, that is, the target panel, the UE needs to send a target panel switching request to the base station according to the event.
  • the base station re-measures all panels, selects the target panel and configures it, and finally re-instructs the uplink and downlink beams . If the UE automatically switches the panel after detecting the switching event, it may cause beam misalignment between the base station and the UE, thereby affecting the communication performance.
  • the UE In order to achieve beam alignment between the base station and the UE, before selecting a panel, the UE needs to send the selected panel to the base station through an uplink reference signal.
  • the above existing solutions all have a certain time delay.
  • the uplink and downlink transmission beams corresponding to the transmission panel and the candidate panel are all configured in the same TCI state.
  • the UE detects that the uplink panel switching is required, it can choose to switch first.
  • the UE To the candidate panel, the UE only needs to report the panel switching event to the base station to notify the base station that the panel is switched, and the base station adjusts its own uplink receiving beam and downlink transmission beam accordingly, and does not need to reconfigure the TCI through RRC.
  • Multiple UE panels are configured with the same TCI state, and the UE uses different panels for downlink reception and uplink transmission.
  • the UE performs downlink reception and uplink transmission respectively on different panels, that is, at least two panels are required to perform one uplink and downlink transmission.
  • the base station or UE measures the configured panels and their corresponding uplink and downlink beams to select the best uplink/downlink beams and corresponding panels. For a communication system with multi-panel UEs, when an event that requires panel selection/switching occurs, that is, the current transmission panel is not suitable for continuous uplink transmission, it is necessary to perform uplink panel selection/switching again.
  • the UE continues to use the receiving panel before the switch for downlink reception.
  • the panel used for downlink reception, the transmission panel used for uplink and the candidate panel used for uplink transmission share a TCI state, as shown in Figure 8 .
  • the downstream receiving panel provides the downstream common beam for the two upstream transmitting panels.
  • the base station measures the SRS from the UE, it sends the SRI to indicate the UE and obtains two uplink beams with the best quality.
  • the UE measures the CSI-RS from the base station, and reports the measured CSI information to the base station, and the base station configures a downlink common beam for the two beams according to the measurement of the uplink and downlink beams.
  • the UE uses a different receiving panel than before the switching for downlink reception, at this time, consider that two UE panel pairs (panel pair) share a TCI state to reduce signaling overhead.
  • two panels for downlink reception and uplink transmission are respectively selected according to certain criteria, among which the downlink reception panel and the uplink transmission panel with the best performance are used as the transmission panel pair, and the other two suboptimal downlink panels are used as the transmission panel pair.
  • the receiving panel and the uplink transmission panel are candidate panel pairs, and the downlink receiving beam and the uplink transmission beam of the transmission panel pair and the candidate panel pair are in the same TCI state.
  • the UE and the base station measure the uplink and downlink beams on the configured panel respectively.
  • the base station measures the SRS from the UE, it obtains the panel information, sends the SRI to indicate the UE, and obtains the two uplink beams with the best quality.
  • the UE also measures the downlink beams. Take measurements. Then the UE selects the two downlink beams with the best quality and reports the corresponding CSI information to the base station.
  • the two panels corresponding to the uplink beam and the downlink beam with the best quality are selected as the transmission panel pair, and the other two panels are selected as the candidate panel pair.
  • Panel1 and Panel2 are the panels corresponding to the two uplink beams obtained by measurement selection
  • Panel4 and Panel3 are the panels corresponding to the two downlink beams obtained by measurement
  • Panel1 and Panel 4 are respectively Panels corresponding to the downlink and uplink optimal beams.
  • the panel switching process of the second solution is the same as that of the first solution, as shown in FIG. 10 .
  • Different UE panels are configured with different TCI states, and the UE uses the same panel for downlink reception and uplink transmission.
  • the UE performs uplink and downlink output through the same panel.
  • the base station needs to know the information of the target panel. Since different panels are configured with different TCI states, the base station needs to measure and reconfigure the target panel after knowing the information of the target panel and instruct the uplink and downlink transmission.
  • the first relationship table may bear the system information SI sent by the base station when the UE determines to access a certain cell.
  • the base station or UE detects an event that needs to perform panel switching, the UE sends an uplink reference signal SRS to the base station in a given time slot. If it is panel 1, then in slot 1 , the SRS corresponding to panel panel 1 is sent to the base station.
  • the base station can know that the target panel of the UE uplink handover is panel 1 by receiving the time slot of the SRS and measure it, and then re-configure the TCI. It avoids the problem of misalignment with the base station caused by the UE switching the uplink transmission panel by itself.
  • Different UE panels are configured with different TCI states, and the UE uses different panels for downlink reception and uplink transmission.
  • the UE uses at least two panels for uplink and downlink transmission, and the base station and the UE respectively measure the panels used for downlink reception and uplink transmission to select the best uplink and downlink beams and corresponding panels.
  • the base station needs to measure and reconfigure the target panel after knowing the information of the target panel for uplink and downlink transmission.
  • K panels are used for uplink transmission
  • L panels are used for downlink reception, which are respectively referred to as downlink panels and uplink panels for convenience of description.
  • slot ⁇ slot 1,slot 2,...,slot K ⁇ L ⁇
  • SRS uplink reference signal
  • the current UE is using the panel whose index group is 1 to perform uplink and downlink transmission, namely uplink panel 1 and downlink panel 1.
  • the UE detects an event that requires panel switching, it switches to the target panel which is panel 2. If, after panel selection/switching, the UE continues to use the receiving panel before switching for downlink reception, that is, downlink panel 1 performs downlink reception, it sends the uplink reference signal SRS to the base station at slot L+1, and the base station receives the SRS signal through the time slot.
  • the UE uses a different receiving panel from that before the handover for downlink reception, and sends the uplink reference signal SRS to the base station from slot L+2 to slot 2 ⁇ L respectively.
  • the target panel to which the UE switches can be known, the target panel and the downlink receiving panel can be measured and the TCI state can be reconfigured.
  • the UE when different panels are configured with different TCI states, if the UE automatically performs panel switching after detecting a handover event, in order to achieve beam alignment between the base station and the UE, the UE needs to pass a certain amount of time before selecting the target panel. way to inform the base station of the switch target panel. If the same target panel is used for uplink and downlink transmission before and after the panel switching, the uplink reference signal is sent to the base station in the time slot corresponding to the target panel according to the mapping relationship in Table 1; For line transmission, the corresponding reference signal is sent to the base station in a given time slot through the mapping method in Table 2.
  • the base station can know the target panel switched by the UE by receiving the time slot of the SRS signal, measure the target panel and the downlink receiving panel, and reconfigure the TCI state.
  • the present application further provides a communication device, comprising: a processor 110 and a memory 120.
  • the processor 110 controls the operation of the communication device, and the processor 110 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 110 may be an integrated circuit chip with processing capability of signal sequence.
  • Processor 110 may also be a general purpose processor, digital signal sequence processor (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components.
  • DSP digital signal sequence processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 120 stores instructions and data required for the operation of the processor 110 .
  • the processor 110 is configured to execute instructions to implement the steps performed by the user equipment in each of the embodiments and solutions 1, 2, 3, and 4 of the present application.
  • the second embodiment of the communication device of the present application includes: a processor 210 and a memory 220.
  • the processor 210 controls the operation of the communication device, and the processor 210 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 210 may be an integrated circuit chip, which has the processing capability of signal sequence.
  • Processor 210 may also be a general purpose processor, digital signal sequence processor (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components.
  • DSP digital signal sequence processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • Memory 220 stores instructions and data required for processor 210 to operate.
  • the processor 210 is configured to execute instructions to implement the methods performed by the base station in the embodiments and solutions 1, 2, 3, and 4 of the present application.
  • an embodiment of the readable storage medium of the present application includes a memory 310, and the memory 310 stores an instruction, when the instruction is executed, the method provided by any embodiment, solution and possible combination of the present application is implemented.
  • the memory 310 may include a read-only memory (ROM), a random access memory (RAM), a flash memory (Flash Memory), a hard disk, an optical disk, and the like.
  • ROM read-only memory
  • RAM random access memory
  • flash memory Flash Memory
  • the disclosed method and apparatus may be implemented in other manners.
  • the device implementations described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other divisions.
  • multiple units or components may be Combinations can either be integrated into another system, or some features can be omitted, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this implementation manner.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may be physically included individually, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art, or all or part of the technical solution, and the computer software product is stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or CDs and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用户设备的天线面板切换方法,所述方法执行于用户设备端,包括:接收基站发送的TCI状态,至少两个面板共用一个所述TCI状态;待检测到面板切换事件时,将当前传输面板切换至与所述传输面板共用TCI状态的候选面板。本申请还公开有另一种用户设备的天线面板切换方法,所述方法执行于用户设备端,包括:待检测到面板切换事件时,根据预置的第一关系表,在与切换后的目标面板所对应的时隙中发送所述目标面板对应的SRS至基站,所述第一关系表至少包括所述目标面板的索引与所述时隙的索引之间的映射关系;接收所述基站重新配置的TCI状态并根据所述TCI状态调整所述目标面板的上下行传输。

Description

一种用户设备的天线面板切换方法及通信设备 【技术领域】
本申请涉及无线通信领域,尤其涉及一种用户设备的天线面板切换方法、通信设备及可读存储介质。
【背景技术】
在多输入多输出(Multiple-Input Multiple-Output,MIMO)通信系统中,上下行波束指示增强的目标主要是降低时延和开销。在多波束传输系统中,用户设备(User equipment,UE)可以配备有多个天线面板(panel),其中每个天线面板可以包含多个天线单元。如图1所示。
每个面板可以放置UE端的不同位置。因此UE端与5G新空口(NR)基站(gNB)建立上下行波束链路时,可以增加分集增益。若在传输过程中发生阻塞时,UE可以通过面板切换避免因为波束阻塞造成的通信中断,更好地实现上下行接收和传输。因此,在为了增强UL传输中的多波束操作,应支持配置有多个面板的UE终端。虽然通过使用UE端的多个面板来增强上行传输能获得较大的传输增益,但是给定时隙内,也并不是始终需要同时激活所有的面板,并且多个天线面板同时处于激活状态时十分耗电,即使在某个时刻内,并不是所有激活的面板都用于上行传输。如果在给定时间内,只激活一个UE面板进行上行传输,这种机制需要每隔一段时间对UE的所有面板进行激活并测量,这是因为用于传输的UE面板可能会发生故障而中断上行传输,例如传输过程中有障碍物阻塞,UE发送移动、旋转等。因此,需要动态更新/检测上行传输面板以保持最好的传输性能,这是需要对UE进行面板激活/去激活(Panel activation/deactivation)机制,快速选择上行链路传输的最佳传输面板,同时也能节省发送功率。此外,上行传输受到最大允许排放量(Maximum Permissible Emission,MPE)的限制,UE需要进面板切换。简单地说,最大功率衰减(Maximum Power Reduction,MPR)是为了满足MPE需求而引入的。然而,在具有多面板的UE中,当分配给面板的功率受到MPR的影响时,最初选择的面板可能并非为上行链路传输的最优的选择。因此,需要通过面板激活/去激活的快速选择合适的面板以提供更好的传输。因此对UE进行面板激活/去激活也是解决MPE相关问题的一种解决方案。
在Rel-15中,天线组(Antenna group)激活/去激活机制不能很好地支持任何 使UE或基站能够有效地激活/停用任何天线组的方案。缺乏UE和基站之间在天线组激活/去激活方面的协调机制。
在Rel-16中,确定了三种类型的多面板用户(Multi-panel UE,MPUE),即:
MPUE-假设1:在一个UE上实现多个面板,一次只能激活一个面板,面板切换/激活延迟为[X]ms;
MPUE-假设2:在一个UE上实现多个面板,可以一次激活多个面板,并且可以使用一个或多个面板进行传输;
MPUE-假设3:在一个UE上实现多个面板,一次可以激活多个面板,但只能使用一个面板进行传输。
在Rel-16中就MPUE-假设3的多面板用户机制达成协议。UE通过面板激活/去激活机制,选择合适的上行面板。由于面板激活/去激活也可能对基站发送或接收产生影响,因此考虑两类主要的解决方案来进行面板选择,即:基站发起(基站-driven)和UE发起(UE-driven)的面板激活/去激活。在基站发起的面板选择机制中,基站周期性地唤醒面板进行波束或CSI测量,以选择最佳的传输面板。或者当UE检测需要进行上行面板切换时,向基站发送请求,此时UE测量面板传输质量并上报给基站,基站根据上报的信息指示UE进行面板选择;UE发起的面板激活/去激活机制是当UE发生位置移动、选择或者发生MPE问题等需要进行面板选择的事件时,UE自己选择新的面板而不需要基站的信令指示,该机制下,UE可以快速且独立地选择用于传输的面板/波束。
面板选择支持标准的透明方式,如果UE发生面板切换事件后,基站对于面板切换是未知的,这时基站继续使用与面板切换前相同的上行接收波束接收上行信道/信号,这就导致基站端和UE端的波束错位,影响系统性能。此外,基站还需要知道UE端的面板状态信息(是否被激活等),以及所配置的面板数量,否则,基站可能会用已经去激活的面板所对应的波束调度UE,造成网络资源浪费和吞吐量降低。因此,UE的面板状态信息,面板切换事件应及时上报基站。在Rel-16中,已经达成协议使用标识符(Identifier,ID)来指示面板特定上行传输,为UE面板定义一个新的ID,即“panel ID”,显式的panel ID也有利于在UE和基站之间对齐面板激活/去激活信息,实现基站控制UE的面板激活/去激活,实现基站和UE端的对齐。同样,在Rel-16中,对于基于上行参考信号UL-RS的波束管理,基站为UE配置上行探测参考信号(Sounding reference signal,SRS)资源,UE将SRS资源与UL panels相关联,这对基站是透明的。选择的SRS资源通过 SpatialRelationInfo指示给UE,隐式实现面板特定上行传输。
在Rel-15/16中,上下行波束指示分别通过无线资源控制(Radio resource control,RRC)配置的传输配置指示(Transmission configuration indication,TCI)状态和高层参数SpatialrelationInfo实现。上下行波束单独指示需要基站配置上下行两个信令,这样会导致延时和信令开销。上行波束管理是基于上行参考信号SRS资源,基站至少配置一个用于波束管理的SRS资源集,通常,不同的SRS资源集与不同的天线面板相关联。不同SRS资源集中可以被同时传输,同一SRS资源集中的SRS资源仅仅通过时分复用(TDM)方式传输的。因此,SRS资源集选择可以应用于面板特定的波束选择。当UE进行面板切换机制后,基站也会切换上行接收波束,并可能会重新调度下行传输。因此上下行波束指示单独配置需要基站配置上下行两个信令,这样会导致延时和信令开销。
在Rel-17中,提出了用于上下行统一波束指示框架(Unified framework)的模型。不同于Rel-15/16需要不同的信令分别配置上下行参考信号机制,上下行统一波束指示设计中,上行参考信号和下行参考信号都配置在相同的TCI状态中,UE面板切换的机制需要据此重新设计,另外,在基于上下行统一波束指示框架下,仍存在基站和UE的错位问题。
【发明内容】
为解决上述问题,本申请提供一种用户设备的天线面板切换方法,所述方法执行于用户设备端,包括:
接收基站发送的TCI状态,至少两个面板共用一个所述TCI状态;
待检测到面板切换事件时,将当前传输面板切换至与所述传输面板共用TCI状态的候选面板。
本申请还提供一种用户设备的天线面板切换方法,所述方法执行于基站端,包括:
对至少两个面板的上下行传输波束配置于同一TCI状态中;
接收用户设备所上报的面板切换事件,根据所述面板切换事件调整自身上下行传输。
本申请还提供一种用户设备的天线面板切换方法,所述方法执行于用户设备端,包括:
待检测到面板切换事件时,根据预置的第一关系表,在与切换后的目标面 板所对应的时隙中发送所述目标面板对应的SRS至基站,所述第一关系表至少包括所述目标面板的索引与所述时隙的索引之间的映射关系;
接收所述基站重新配置的TCI状态并根据所述TCI状态调整所述目标面板的上下行传输。
本申请还提供一种用户设备的天线面板切换方法,所述方法执行于基站端,包括:
获得用户设备所发送的SRS,根据接收所述SRS的时隙以及预置的第一关系表确认所述用户设备切换后的目标面板;
协同所述用户设备对所述目标面板的传输信道进行测量,根据测量结果重新配置TCI状态并将所述TCI状态发送至所述用户设备,以使所述用户设备调整所述目标面板的上下行传输。
本申请的有益效果在于,当用户设备检测到需要进行面板切换时,可以直接将当前传输面板切换至与所述传输面板共用一个TCI状态的候选面板,并只需向基站上报一个切换事件,基站在收到请求后调整自身的上行接收波束和下行传输波束,基站无需重新对所有面板进行测量以及重新配置TCI状态,减小了原有技术中面板切换所耗时长。
另外,本申请同时还解决了面板切换过程中基站和UE产生错位的问题。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1为现有技术中基站和多面板UE之间的波束示意图;
图2为本申请无线通信系统或网络一实施方式的结构示意图;
图3为本申请天线面板切换方法实施例一执行于用户设备端的流程示意图;
图4为本申请天线面板切换方法实施例一执行于基站端的流程示意图;
图5为本申请天线面板切换方法实施例二执行于用户设备端的流程示意图;
图6为本申请天线面板切换方法实施例二执行于基站端的流程示意图;
图7为方案一中多个面板共用同一TCI状态的示意图;
图8为方案二中多个面板共用同一TCI状态的示意图;
图9为方案二中多个面板共用同一TCI状态的另一实施方式的示意图;
图10为方案一和方案二的多个UE面板配置相同TCI状态的面板切换流程示意图;
图11为方案三和方案四的不同UE面板配置不同TCI状态时的面板切换流程;
图12为本申请通信设备实施例一的结构示意图;
图13为本申请通信设备实施例二的结构示意图;
图14为本申请可读存储介质一实施例的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,以下各实施例中不冲突的可以相互结合。显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的“用户设备”可以包括或代表用于通信的任何便携式计算设备。在所描述的设备,方法和系统的某些实施例中可使用的用户设备的示例可以是有线或无线设备,例如移动设备,移动电话,终端,智能电话,便携式计算设备,诸如膝上型电脑,手持设备,平板,平板电脑,上网本,个人数字助理,音乐播放器以及能够进行有线或无线通信的其他计算设备。
图2是包括核心网102(或电信基础设施),具有服务于多个无线通信单元108a-108e(例如UE)的小区106a-106m的多个网络节点104a-104m(例如基站gNB)的无线通信系统或网络100的示意图。多个网络节点104a-104m通过链路连接到核心网102。这些链路可以是有线或无线的(例如无线电通信链接、光纤等)。核心网102可包括多个核心网络节点,网络实体,应用服务器或可以与包括多个网络节点104a-104m的一个或多个无线接入网络进行通信的任何其他网络或计算设备。
在本示例中,网络节点104a-104m被示意为基站,例如但不限于,其在5G网络中可以是gNB。多个网络节点104a-104m(例如,基站)中的每个都具有足迹(footprint),为简化且例如但不限于,其在图2中示意性地表示用于服务于一个或多个用户设备UE 108a-108e的对应的圆形小区106a-106m。UE 108a-108e能够从 无线通信系统100接收服务,例如声音、视频、音频或其他通信服务。
无线通信系统或网络100可以包括或代表用于UE 108a-108e与其他设备、内容源或连接无线通信系统或网络100的服务器之间的通信的任意一个或多个通信网络。核心网102也可以包括或代表链接,耦接或连接以形成无线通信系统或网络100的一个或多个通信网络,一个或多个网络节点,实体,元素,应用程序服务器,服务器,基站或其他网络设备。网络节点之间的链接或耦接可以是有线或无线的(例如无线电通信链接、光纤等)。该无线通信系统或网络100以及核心网102可以包括包含网络节点或实体的核心网络和无线接入网络的任何适当组合,基站,接入点等,其使得UE 108a-108e、无线通信系统100和核心网102的网络节点104a-104m、内容源和/或连接到系统或网络100的其他设备之间能够通信。
可在所描述的设备,方法和系统一些实施例中使用的无线通信网络100的示例可以是至少一个通信网络或其组合,包括但不限于,一个或多个有线和/或无线电信网络,一个或多个核心网,一个或多个无线接入网络,一个或多个计算机网络,一个或多个数据通信网络,互联网,电话网络,无线网络,例如基于仅作为示例的IEEE802.11标准的WiMAX、WLAN和/或Wi-Fi网络,或互联网协议(Internet Protocol,IP)网络,分组交换网络或增强型分组交换网络,IP多媒体子系统(IP Multimedia Subsystem,IMS)网络或基于无线、蜂窝或卫星技术的通信网络,诸如移动网络,全球移动通信系统(Global System for Mobile Communications,GSM),GPRS网络,宽带码分多址接入(Wideband Code Division Multiple Access,W-CDMA),CDMA2000或LTE/高级LTE通信网络或任何第二代,第三代,第四代或第五代和超越类型的通信网络等。
在图2的示例中,该无线通信系统100可以是,仅作为示例但不限于,使用下行链路和上行链路信道的循环前缀正交频分复用(cyclic prefix orthogonal frequency division multiplexing,CP-OFDM)技术的5G通信网络。下行链路可以包括用于将数据从一个或多个gNB 104a-104m传输到一个或多个UE 108a-108e的一个或多个通信信道。通常下行链路信道是用于传输数据的通信信道,例如,从gNB 104a到UE 108a。
用于5G网络的上行链路和下行链路均被分成无线帧(例如,每个帧可以是10ms的长度),其中每个帧可以被分成多个子帧。例如,每个帧可以包括10个长度相等的子帧,其中每个子帧由用于传输数据的多个时隙(例如2个时隙)组成。除了时隙之外,子帧可以包括若干额外的特殊字段或OFDM符号,其可包括,仅作为 示例,下行链路同步符号,广播符号和/或上行链路参考符号。
本申请提供了一种用户设备的天线面板切换方法,如图3所示,所述方法执行于用户设备端,包括:
步骤S100接收基站发送的TCI状态,至少两个面板共用一个所述TCI状态;
TCI(Transmission Configuration Indication),传输配置指示。TCI状态中配置有下行参考信号CSI-RS和/或上行参考信号SRS,其中每一个参考信号的UE面板的上下行传输波束相关联。
为便于描述,下文使用术语“UE”用于指代用户设备。具体的,在本实施例中,多个用于UE面板的传输波束都是配置在相同的TCI状态中,其中,相关细节示例可参见方案一和方案二。
步骤S200待检测到面板切换事件时,将当前传输面板切换至与所述传输面板共用TCI状态的候选面板。
具体的,面板切换事件包括需要进行面板切换的MPE事件或收到节电机制驱动等,共用一个TCI状态的面板可包括传输面板和候选面板,其中传输面板和候选面板的定义、选择以及相关细节示例可参见方案一和方案二。另外,传输面板和候选面板仅为名称定义,旨在体现至少两个面板之间的关联性,本发明对此不作限定,传输面板和候选面板也可用“第一面板”和“第二面板”来表述。
通过实施本实施例,将传输面板和候选面板共用一个TCI状态,使得UE在检测到面板切换事件时,可将当前传输面板直接切换至候选面板,从而避免原有机制中基站再对UE上各个面板重新测量和TCI状态配置的冗余步骤,减小了面板切换的耗费时长。在UE进行面板切换后,同时会向基站上报切换请求或切换事件,基站接收到UE所上传的消息会调整自身波束以跟UE切换到的候选面板波束完成对应,进而达成链路最佳增益。
可选的,共用所述TCI状态的面板为一个传输面板和一个候选面板。
可选的,共用所述TCI状态的面板为一个上行传输面板、下行接收面板以及上行候选面板。
可选的,共用所述TCI状态的面板为两个传输面板和两个候选面板。
可选的,所述TCI状态由所述基站通过RRC配置。
可选的,步骤S200所述待检测到面板切换事件时,将当前传输面板切换至与所述传输面板共用TCI状态的候选面板的步骤之后,还包括:
向所述基站上报所述面板切换事件以使所述基站根据所述事件调整上下行传输。
本申请还提供一种用户设备的天线面板切换方法,如图4所示,所述方法执行于基站端,包括:
步骤S300对至少两个面板的上下行传输波束配置于同一TCI状态中;
步骤S400接收用户设备所上报的面板切换事件,根据所述面板切换事件调整自身上下行传输。
具体的,对应于步骤S100和步骤S200中用户设备所执行的功能,基站端执行有步骤S300和步骤S400。基站协同用户设备对各面板上下行传输进行测量,挑选传输面板和候选面板,配置传输面板和候选面板共用一个TCI状态。
UE所上报切换事件,基站根据候选面板索引或传输面板索引,查找候选面板对应的波束配置,进而调整自身波束配置以和UE切换后的候选面板的波束达成最佳链路增益。另外,相关细节示例可详见方案一和方案二。
本申请还提供一种用户设备的天线面板切换方法,如图5所示,所述方法执行于用户设备端,包括:
步骤S500待检测到面板切换事件时,根据预置的第一关系表,在与切换后的目标面板所对应的时隙中发送所述目标面板对应的SRS至基站,所述第一关系表至少包括所述目标面板的索引与所述时隙的索引之间的映射关系;
步骤S600接收所述基站重新配置的TCI状态并根据所述TCI状态调整所述目标面板的上下行传输。
在本实施例中,不同UE面板的传输波束配置在不同的TCI状态中。预置的第一关系表由前期基站配置,并且基站会将该第一关系表发送给UE,即第一关系表在基站端和UE端是相同的。通过第一关系表基站约定好上传切换后的目标面板的SRS的时隙,基站只要在相应时隙中接收到SRS,通过第一关系表中面板索引和时隙索引的映射关系,便可得知该SRS是哪个面板的,即得知UE切换后的目标面板是哪个面板。具体实施细节可详见方案三与方案四。
需要注意的是,与步骤S100和步骤S200所组成的实施例不同,本实施例以目标面板作为UE切换后的面板进行描述。
通过实施本实施例,预先设置时隙与面板的映射关系,基站通过解码得到SRS的时隙便可同时得知该SRS对应的目标面板是哪个UE面板,解决了因UE自行切换上行传输面板造成和基站端错位的问题。
可选的,所述第一关系表还包括面板组索引、下行目标面板、上行目标面板索引以及时隙索引之间的映射关系。
可选的,所述在与切换后的目标面板所对应的时隙中发送所述目标面板的SRS至基站的步骤之后,还包括:
测量生成所述目标面板的CSI并将所述CSI发送至所述基站。
本申请还提供一种用户设备的天线面板切换方法,如图6所示,所述方法执行于基站端,包括:
步骤S700获得用户设备所发送的SRS,根据接收所述SRS的时隙以及预置的第一关系表确认所述用户设备切换后的目标面板;
步骤S800协同所述用户设备对所述目标面板的传输信道进行测量,根据测量结果重新配置TCI状态并将所述TCI状态发送至所述用户设备,以使所述用户设备调整所述目标面板的上下行传输。
具体的,与UE执行步骤S500和S600所实现的功能相对应的,基站端执行步骤S700和步骤S800。具体实施细节可参见方案三和方案四。
可选的,所述第一关系表由基站RRC进行配置。
可选的,所述第一关系表由系统信息SI承载并发送至所述用户设备。
可选的,所述重新配置的TCI状态由DCI信息承载。
方案一
多个UE面板配置相同的TCI状态,UE使用相同面板进行下行接收和上行传输。
此方案中,用于多个UE面板的传输波束都是配置在相同的TCI状态中。TCI状态中配置有下行参考信号CSI-RS和/或上行参考信号SRS,其中每一个参考信号和UE面板的上下行传输波束相关。
示例性的,UE配置有N个天线面板,例如,当N=4时,所配置面板分别标记为panel1~panel 4,其中,每个UE面板上配置多个波束,而且都包括上行波束和下行波束。基站及UE对所有UE面板及其波束进行测量以找到每个UE面板的最佳上下行波束及相应的面板质量。面板质量由面板质量参数体现,面板质量参数可以包括面板的信噪比(SINR)以及参考信号接收功率(RSRP)等等。具体的,对于下行波束测量,基站向UE发到每一个波束所对应的CSI-RS,UE进行测量。对于上行波束测量,基站收到来自UE的上行参考信号SRS后进 行测量。
本方案中,两个UE面板共用一个公共(common)TCI状态,如图7所示,Panel1当前用于上下行传输的面板,当发生需要进行面板选择/切换的事件时,上行传输由面板Panel1切换到Panel2,并使用前述所得到的最佳上下行波束进行传输,且Panel1和Panel2的上下行波束配置在一个公共的TCI状态中。
在此之前在对上下行波束进行测量时,根据预置的准则选择出两个的UE面板,利用其中性能最优的UE面板作为传输面板,其性能的优劣可参照上文中所提及的面板质量参数,另一个次优的作为传输面板的候选面板,传输面板和候选面板的下行接收波束和上行传输波束配置在相同的TCI状态中。
选择两个面板的准则为:UE和基站分别对激活面板上的上下行波束测量,如果最优的分上下行波束来自同一面板,则该面板为传输面板,此时选择次优上行波束和/或下行波束的所对应面板作为候选面板;如果最优上下行波束来自不同面板,则这上行波束对应的面板为传输面板,下行波束对应的面板为候选面板。也可以只以上行传输波束为基准,基站对来自UE的SRS信号进行测量之后,发送SRI指示UE并得到质量最好的两个上行波束,同时UE也对下行波束进行测量。然后分别选择质量最好的两个上行波束所对应的两个下行波束的CSI及面板索引上报给基站,得到多个传输面板和候选面板索引对。此外,也可以测量面板质量,如果通过测量面板的信噪比(SINR),参考信号接收功率(RSRP)等,选择质量最好的两个面板分别作为传输面板和候选面板,并将测量得到两个面板配置的波束的CSI信息上报基站。基站利用RRC配置TCI状态,并指示面板进行上下行传输。
在现有技术中,当UE检测到需要进行面板切换的MPE事件或者收到省电机制驱动等切换事件时,这意味着当前上行传输面板不再适合用于上行传输,需要切换到一个新的面板进行上行传输,在选择新的面板即目标面板之前,UE需要根据发生的事件向基站发出目标面板切换请求,基站重新对所有面板进行测量后选择目标面板并进行配置,最后重新指示上下行波束。如果UE在检测到切换事件之后自动进行面板切换,可能会导致基站和UE之间波束错位,从而影响通信性能。为了实现基站和UE之间的波束对齐,UE在进行面板选择之前,需要将选择的面板通过上行参考信号发送给基站,基站通过测量进行面板选择并配置后重新指示上下行传输。以上现有方案都存在一定时延。而在本实施例方案中将传输面板和候选面板所对应的上下行传输波束都配置在相同的TCI状态 中,如图10所示,当UE检测到需要进行上行面板切换时,可以选择先行切换到候选面板,UE只需向基站上报面板切换事件,通知基站面板发生切换,基站随之调整自身的上行接收波束和下行传输波束,不需要通过RRC重新配置TCI。
方案二
多个UE面板配置相同的TCI状态,UE使用不同面板进行下行接收和上行传输。
本方案中,UE在不同面板上分别执行下行接收和上行传输,即执行一次上下行传输至少需要使用两个面板。该方案中,基站或UE对所配置面板及其相应的上下行波束进行测量,以选择最佳上行/下行波束及相应的面板。对于具有多面板UE的通信系统,当发生需要进行面板选择/切换的事件时,即当前的传输面板不适合继续用于上行传输,此时需要进行重新上行面板选择/切换。
如果面板切换后,UE继续使用切换前的接收面板进行下行接收,此时用于下行接收的面板,用于上行的传输面板以及用于上行传输的候选面板共用一个TCI状态,如图8所示。下行接收面板为两个上行传输面板提供下行公共波束(common beam)。基站对来自UE的SRS测量之后,发送SRI指示UE并得到质量最好的两个上行波束。同时UE对来自基站的CSI-RS进行测量,并将测量的CSI信息上报基站,基站根据对上下行波束的测量为两个波束配置下行公共波束。
另外如果面板切换后,UE使用与切换前不同的接收面板进行下行接收,此时考虑两个UE面板对(panel pair)共用一个TCI状态进而减少信令开销。在对上下行波束进行测量时,根据一定准则分别选择出两个用于下行接收和上行传输的面板,其中性能最优的下行接收面板和上行传输面板作为传输面板对,另外两个次优下行接收面板和上行传输面板为候选面板对,传输面板对和候选面板对的下行接收波束和上行传输波束相同的TCI状态中。UE和基站分别对所配置面板上的上下行波束进行测量,基站对来自UE的SRS测量之后,获得面板信息,发送SRI指示UE并得到质量最好的两个上行波束,同时UE也对下行波束进行测量。然后UE选择质量最好的两个下行波束并将相应的CSI信息上报给基站。选择质量最好的上行波束和下行波束所对应的两个面板作为传输面板对,另外两个面板作为候选面板对。如图9所示,假如Panel1和Panel2是通过测量选择得到的两个上行波束所对应的面板,Panel4和Panel3分别为测量得到的两个下行两个波束所对应的面板,其中Panel1和Panel 4分别为下行和上行最优波束对应 的面板。
另外,方案二的面板切换流程与方案一相同,可参见图10。
方案三
不同UE面板配置不同的TCI状态,UE使用相同面板进行下行接收和上行传输。
本方案中UE配置N个天线面板,例如,当N=4时,分别标记为panel1~panel4,每个UE面板上配置多个波束,而且都包括上行波束和下行波束。该方案中,UE通过相同面板进行上下行输出,当UE检测到MPE事件或者其它需要进行上行面板切换的事件时,为了使基站和UE端的上下行传输波束对齐,基站需要知道目标面板的信息。由于不同的面板配置不同的TCI状态,基站在知道目标面板的信息后还需要对其进行测量并重新配置后指示上下行传输。如表1所示,基站预先定义slot={slot 1,slot 2,......,slot N},并通过将面板索引与slot之间建立映射关系,将面板与slot进行关联,生成如表1所示的第一关系表。第一关系表可以在UE确定要接入某个小区时基站所发送的系统信息SI承载。当基站或者UE检测到需要进行面板切换的事件时,UE在某给定的时隙给基站发送上行参考信号SRS,例如,对于UE发起(UE-Driven)的面板选择,所切换到的目标面板是panel 1,则在是slot 1发送面板panel 1所对应的SRS给基站,基站通过接收到SRS的时隙就可以知道UE上行切换的目标面板是panel 1并进行测量,然后重新进行TCI配置,避免了因UE自行切换上行传输面板造成和基站端错位的问题。
面板索引 时隙索引
panel 1 slot 1
panel 2 slot 2
panel 3 slot 3
panel 4 slot 4
表1
方案四
不同UE面板配置不同的TCI状态,UE使用不同面板进行下行接收和上行传输。
本方案中,UE至少使用两个面板用于上下行传输,基站和UE分别对用于 下行接收和上行传输的面板进行测量以选择最佳上行和下行波束及相应的面板。对于具有多面板UE的通信系统,当发生需要进行面板选择/切换的事件时,即当前的传输面板不适合继续用于上行传输,这需要进行重新上行面板选择/切换。由于不同的面板配置不同的TCI状态,基站在知道目标面板的信息后还需要对其进行测量并重新配置后进行上下行传输。假设所配置的N个面板中,K个面板用于上行传输,L个面板用于下行接收,为了方便叙述,分别称为下行面板和上行面板。如表2所示,定义slot={slot 1,slot 2,......,slot K×L},并通过将面板上下行面板索引与slot之间映射关系。UE检测到需要进行面板切换的事件时,UE在某给定的时隙给基站发送上行参考信号SRS。
示例性的,当前UE正利用索引组为1的面板进行上下行传输,即上行panel 1和下行panel 1,当UE检测到需要进行面板切换的事件,切换到目标面板是panel 2。如果面板选择/切换后,UE继续使用切换前的接收面板进行下行接收,即下行面板1进行下行接收,则在slot L+1给基站发送上行参考信号SRS,基站通过接收到SRS信号的时隙就可以知道UE上行切换的目标面板panel 2并对目标面板测量并配置TCI状态。如果执行面板选择/切换后,UE使用与切换前不同的接收面板进行下行接收,则分别从slot L+2到slot 2×L分别向基站发送上行参考信号SRS,基站通过接收到SRS信号的时隙就可以知道UE切换的目标面板,对目标面板和下行接收面板进行测量并重新配置TCI状态。
Figure PCTCN2021071527-appb-000001
表2
如图11所示,不同面板配置不同TCI状态情况下,如果UE在检测到切换事件之后自动进行面板切换,为了实现基站和UE之间的波束对齐,UE在进行目标面板选择之前,需要通过一定的方式告知基站所切换的目标面板。如果面板切换前后都是用相同的目标面板进行上下行传输,则通过表1中的映射关系,在目标面板对应的时隙发送上行参考信号给基站;如果面板切换前后使用不同的目标面板进行上下行传输,则通过表2中的映射方式,在给定的时隙发送相应的参考信号给基站。基站通过接收到SRS信号的时隙就可以知道UE切换的目标面板,对目标面板和下行接收面板进行测量并重新配置TCI状态。
如图12所示,本申请还提供一种通信设备,包括:处理器110和存储器120。
处理器110控制通信设备的操作,处理器110还可以称为CPU(Central Processing Unit,中央处理单元)。处理器110可能是一种集成电路芯片,具有信号序列的处理能力。处理器110还可以是通用处理器、数字信号序列处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器120存储处理器110工作所需要的指令和数据。
处理器110用于执行指令以实现本申请各实施例及方案一、二、三、四中用户设备所执行步骤。
如图13所示,本申请通信设备第二实施例包括:处理器210和存储器220。
处理器210控制通信设备的操作,处理器210还可以称为CPU(Central Processing Unit,中央处理单元)。处理器210可能是一种集成电路芯片,具有信号序列的处理能力。处理器210还可以是通用处理器、数字信号序列处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器220存储处理器210工作所需要的指令和数据。
处理器210用于执行指令以实现本申请各实施例及方案一、二、三、四中基站端所执行的方法。
如图14所示,本申请可读存储介质一实施例包括存储器310,存储器310存储有指令,该指令被执行时实现本申请任一实施例、方案及可能的组合所提供的方法。
存储器310可以包括只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(Flash Memory)、硬盘、光盘等。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施方式仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置 等)或处理器(processor)执行本申请各个实施方式所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (17)

  1. 一种用户设备的天线面板切换方法,其特征在于,所述方法执行于用户设备端,包括:
    接收基站发送的TCI状态,至少两个面板共用一个所述TCI状态;
    待检测到面板切换事件时,将当前传输面板切换至与所述传输面板共用TCI状态的候选面板。
  2. 根据权利要求1所述的天线面板切换方法,其特征在于,共用所述TCI状态的面板为一个传输面板和一个候选面板。
  3. 根据权利要求1所述的天线面板切换方法,其特征在于,共用所述TCI状态的面板为一个上行传输面板、下行接收面板以及上行候选面板。
  4. 根据权利要求1所述的天线面板切换方法,其特征在于,共用所述TCI状态的面板为两个传输面板和两个候选面板。
  5. 根据权利要求1所述的天线面板切换方法,其特征在于,所述TCI状态由所述基站通过RRC配置。
  6. 根据权利要求1所述的天线面板切换方法,其特征在于,所述待检测到面板切换事件时,将当前传输面板切换至与所述传输面板共用TCI状态的候选面板的步骤之后,还包括:
    向所述基站上报所述面板切换事件以使所述基站根据所述事件调整上下行传输。
  7. 一种用户设备的天线面板切换方法,其特征在于,所述方法执行于基站端,包括:
    对至少两个面板的上下行传输波束配置于同一TCI状态中;
    接收用户设备所上报的面板切换事件,根据所述面板切换事件调整自身上下行传输。
  8. 一种用户设备的天线面板切换方法,其特征在于,所述方法执行于用户设备端,包括:
    待检测到面板切换事件时,根据预置的第一关系表,在与切换后的目标面板所对应的时隙中发送所述目标面板对应的SRS至基站,所述第一关系表至少包括所述目标面板的索引与所述时隙的索引之间的映射关系;
    接收所述基站重新配置的TCI状态并根据所述TCI状态调整所述目标面板 的上下行传输。
  9. 根据权利要求8所述的天线面板切换方法,其特征在于,所述第一关系表还包括面板组索引、下行目标面板、上行目标面板索引以及时隙索引之间的映射关系。
  10. 根据权利要求8所述的天线面板切换方法,其特征在于,所述在与切换后的目标面板所对应的时隙中发送所述目标面板的SRS至基站的步骤之后,还包括:
    测量生成所述目标面板的CSI并将所述CSI发送至所述基站。
  11. 一种用户设备的天线面板切换方法,其特征在于,所述方法执行于基站端,包括:
    获得用户设备所发送的SRS,根据接收所述SRS的时隙以及预置的第一关系表确认所述用户设备切换后的目标面板;
    协同所述用户设备对所述目标面板的传输信道进行测量,根据测量结果重新配置TCI状态并将所述TCI状态发送至所述用户设备,以使所述用户设备调整所述目标面板的上下行传输。
  12. 根据权利要求11所述的天线面板切换方法,其特征在于,所述第一关系表由基站RRC进行配置。
  13. 根据权利要求11所述的天线面板切换方法,其特征在于,所述第一关系表由系统信息SI承载并发送至所述用户设备。
  14. 根据权利要求11所述的天线面板切换方法,其特征在于,所述重新配置的TCI状态由DCI信息承载。
  15. 一种通信设备,其特征在于,包括:处理器和通信电路,所述处理器连接所述通信电路;
    所述处理器用于执行指令以实现如权利要求1-6以及8-10任一项所述的方法。
  16. 一种通信设备,其特征在于,包括:处理器和通信电路,所述处理器连接所述通信电路;
    所述处理器用于执行指令以实现如权利要求7以及11-14任一项所述的方法。
  17. 一种可读存储介质,存储有指令,其特征在于,所述指令被执行时实现如权 利要求1-14任一项所述的方法。
PCT/CN2021/071527 2021-01-13 2021-01-13 一种用户设备的天线面板切换方法及通信设备 WO2022151058A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180090053.5A CN116711238A (zh) 2021-01-13 2021-01-13 一种用户设备的天线面板切换方法及通信设备
PCT/CN2021/071527 WO2022151058A1 (zh) 2021-01-13 2021-01-13 一种用户设备的天线面板切换方法及通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071527 WO2022151058A1 (zh) 2021-01-13 2021-01-13 一种用户设备的天线面板切换方法及通信设备

Publications (1)

Publication Number Publication Date
WO2022151058A1 true WO2022151058A1 (zh) 2022-07-21

Family

ID=82446579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071527 WO2022151058A1 (zh) 2021-01-13 2021-01-13 一种用户设备的天线面板切换方法及通信设备

Country Status (2)

Country Link
CN (1) CN116711238A (zh)
WO (1) WO2022151058A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220338045A1 (en) * 2021-04-14 2022-10-20 Nokia Technologies Oy User equipment indication for adaptive scheduling restrictions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110868231A (zh) * 2018-08-10 2020-03-06 华为技术有限公司 管理天线面板的方法、网络设备和终端设备
EP3696991A1 (en) * 2019-02-14 2020-08-19 Comcast Cable Communications LLC Transmission/reception management in wireless communication
CN112075029A (zh) * 2018-04-06 2020-12-11 诺基亚技术有限公司 用于多面板ue的波束指示

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112075029A (zh) * 2018-04-06 2020-12-11 诺基亚技术有限公司 用于多面板ue的波束指示
CN110868231A (zh) * 2018-08-10 2020-03-06 华为技术有限公司 管理天线面板的方法、网络设备和终端设备
EP3696991A1 (en) * 2019-02-14 2020-08-19 Comcast Cable Communications LLC Transmission/reception management in wireless communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussion on multi-beam enhancement", 3GPP DRAFT; R1-2005363, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917388 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220338045A1 (en) * 2021-04-14 2022-10-20 Nokia Technologies Oy User equipment indication for adaptive scheduling restrictions
US11582631B2 (en) * 2021-04-14 2023-02-14 Nokia Technologies Oy User equipment indication for adaptive scheduling restrictions

Also Published As

Publication number Publication date
CN116711238A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
RU2441345C2 (ru) Способ управления измерениями для конфигурирования сети
US11265892B2 (en) Data transmission method and device
US20110281586A1 (en) Method and apparatus for mobility management, and user equipment
US9814019B2 (en) Methods and systems for configuring overlapping MBMS configurations on multiple carriers
US20220385427A1 (en) Ptrs to dmrs port association
CN111742518B (zh) 确定或指示网络中的服务小区操作状态的方法和设备
US20220408237A1 (en) Beacon and Probe-Response Frame Type Information for Out-Of-Band Discovery
US20230171656A1 (en) Electronic device, method and storage medium for radio link measurement
US20170265054A1 (en) Uplink detection-based processing method, network device, and terminal
US20220264448A1 (en) A method, a user equipment, and a radio station for optimizing user equipment power consumption on activated secondary cells
US20190230565A1 (en) Communication method, base station, and terminal
WO2022151058A1 (zh) 一种用户设备的天线面板切换方法及通信设备
JP2023546939A (ja) グループに基づくビーム報告
WO2022141417A1 (zh) 一种信息上报方法及装置
US20220329984A1 (en) Resource configuration method, terminal device, and non-transitory computer readable storage medium
US20240064856A1 (en) Information indication method and apparatus, and terminal
WO2015062478A1 (zh) 一种进行通信的方法、系统和设备
US20230379943A1 (en) Bwp configuration method, device, network side device and terminal
US20230060444A1 (en) System Information Message Transmission Indication
WO2022154749A1 (en) Control channel monitoring
WO2023000334A1 (zh) Pdcch监听方法、装置、设备及存储介质
WO2024027506A1 (zh) 一种通信传输处理方法、装置及通信设备
WO2022104652A1 (zh) 一种通信方法及装置
WO2021022887A1 (zh) 一种同步信号/物理广播信道块发送功率配置方法及装置
WO2022241738A1 (en) Apparatus, method, and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918274

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180090053.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918274

Country of ref document: EP

Kind code of ref document: A1