WO2022149906A1 - 기압과 자기장을 이용한 사용자가 위치한 층 식별 장치 및 방법 - Google Patents

기압과 자기장을 이용한 사용자가 위치한 층 식별 장치 및 방법 Download PDF

Info

Publication number
WO2022149906A1
WO2022149906A1 PCT/KR2022/000301 KR2022000301W WO2022149906A1 WO 2022149906 A1 WO2022149906 A1 WO 2022149906A1 KR 2022000301 W KR2022000301 W KR 2022000301W WO 2022149906 A1 WO2022149906 A1 WO 2022149906A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
identification
barometric pressure
floor
magnetic field
Prior art date
Application number
PCT/KR2022/000301
Other languages
English (en)
French (fr)
Inventor
최린
배한준
황승규
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2022149906A1 publication Critical patent/WO2022149906A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/06Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels by using barometric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/087Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices the earth magnetic field being modified by the objects or geological structures

Definitions

  • the present invention relates to an indoor positioning system, and more particularly, to an apparatus and method for identifying a floor on which a user is located by using the atmospheric pressure and magnetic field of the floor on which the user is located.
  • the barometric pressure sensor since the barometric pressure sensor has bias and drift depending on the type of sensor module used in the device, the barometric pressure data measured in the same place and at the same time may also be measured differently depending on the measuring device. Therefore, by deriving a relational expression between barometric data measured differently depending on the model and converting the measured barometric data based on the derived relational formula, the barometric pressure data measured in different models is compared with the barometric pressure data measured from the nodes installed for each floor. can be used to The inventor of the present invention has determined that the user will be able to estimate the floor located in the building through the comparison of the atmospheric pressure data measured by the smart phone sensor and the atmospheric pressure data for each floor in the building.
  • the air pressure-based floor identification technique has a lower accuracy depending on the diversity of user devices, so there is a possibility of recognizing it as an adjacent floor in addition to the floor where the user is located. To compensate for this, by comparing the sequence of magnetic field data collected according to the movement of the user with the magnetic field map of the recognition layer and the adjacent layer, it is possible to estimate the floor on which the user is located by searching the floor where the sequence of the user's estimated position appears continuously. is judged to be
  • An object of the present invention is to provide an apparatus and method for identifying a floor on which a user is located by using atmospheric pressure and a magnetic field.
  • Identification device is a device for identifying a floor (floor) on which a user is located in a building composed of a plurality of floors, each measured by a plurality of barometric pressure measuring devices installed on each floor in the building
  • a communication unit for receiving the first barometric pressure value and the second barometric pressure value measured by the user terminal possessed by the user, and a barometric pressure conversion equation corresponding to the user terminal to convert the second barometric pressure value to generate a converted value
  • a control unit that compares the converted value with the first atmospheric pressure value to identify the floor where the user is located.
  • the identification method according to an embodiment of the present invention is performed by an identification device, which is a computing device including at least a processor, and is an identification method for identifying a floor where a user is located in a building composed of a plurality of floors, each of the above Receiving a first barometric pressure value measured by a plurality of barometric pressure measuring devices installed on each floor in a building, receiving a second barometric pressure value measured by a user terminal carried by the user, corresponding to the user terminal generating a converted value by converting the second barometric pressure value using an atmospheric pressure conversion formula, and comparing the converted value with the first barometric pressure value to identify the floor where the user is located
  • an identification device which is a computing device including at least a processor, and is an identification method for identifying a floor where a user is located in a building composed of a plurality of floors, each of the above Receiving a first barometric pressure value measured by a plurality of barometric pressure measuring devices installed on each floor in a building, receiving
  • the floor on which the user is located may be identified using the barometric pressure data measured by the user terminal.
  • the floor on which the user is located can be more accurately identified by using a magnetic field sequence corresponding to the movement of the user in order to supplement the accuracy of the air pressure-based floor identification.
  • FIG. 1 shows a system according to an embodiment of the present invention.
  • Fig. 2 is a functional block diagram of the node shown in Fig. 1;
  • FIG. 3 is a functional block diagram of the server shown in FIG. 1 .
  • 5 is a graph for explaining a conversion formula for changing the atmospheric pressure data measured by the user terminal.
  • FIG. 6 is a table showing an identification result by the control unit shown in FIG. 3 .
  • FIG. 7 is a view for explaining an identification result by the control unit shown in FIG. 3 .
  • FIG. 8 is a view for explaining a first operation among the second identification operations performed by the second identification unit shown in FIG. 3 , and shows results of location estimation for two exemplary floors in a building.
  • FIG. 9 is a diagram for explaining a second operation among the second identification operations performed by the second identification unit illustrated in FIG. 3 , and shows results of location estimation for two exemplary floors in a building.
  • 10A and 10B show a user location estimation result by the third identification unit shown in FIG. 3 .
  • first or second may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another, for example without departing from the scope of the inventive concept, a first component may be termed a second component and similarly a second component A component may also be referred to as a first component.
  • FIG. 1 shows a system according to an embodiment of the present invention.
  • the system shown in FIG. 1 may be named by various names, such as a location estimation system, a floor estimation system, a location identification system, and a floor identification system.
  • the system includes a plurality of nodes, each of which is installed on each floor of a building, a server, and a user terminal.
  • the server may identify (or estimate) the floor where the user is located in the building by comparing the atmospheric pressure data received from the user terminal with the atmospheric pressure data received from each of the nodes.
  • the server identifies the floor where the user is located by using the magnetic field data received from the user terminal, thereby further improving the accuracy of floor identification using the atmospheric pressure data.
  • Each of the plurality of nodes may be installed on each floor of the building.
  • the installation location may be any location or a predetermined location.
  • one node may be installed on each floor, but a plurality of nodes may be installed on one floor according to an embodiment. In this case, an average of atmospheric pressure data measured by a plurality of nodes installed on one floor, etc. may be a comparison target.
  • Each of the plurality of nodes may measure the atmospheric pressure of the installed place in a first predetermined time period, and transmit the barometric pressure data measured in the second predetermined time period to the server.
  • the first time period and the second time period may be the same or different.
  • the node may transmit measured (or generated) barometric pressure data to the server for every measurement.
  • the node may transmit the untransmitted barometric pressure data to the server every second time period.
  • the second time period may be greater than the first time period.
  • the node may transmit the barometric pressure data measured multiple times at once. For example, when the second time period is 5 times the first time period, barometric pressure data measured five times may be transmitted to the server at one time.
  • the user terminal is a computing device equipped with an atmospheric pressure sensor and/or a magnetic field sensor, and may be exemplarily implemented as a smart device such as a smart phone.
  • the user terminal may generate barometric pressure data and/or magnetic field data by measuring the barometric pressure and/or magnetic field of the place where the user is located, and may transmit the generated barometric pressure data and/or the generated magnetic field data to the server.
  • the user terminal may receive information about the floor on which the user is located in the building from the server.
  • the server may identify the floor where the user is located in the building based on data received from each of the plurality of nodes and the user terminal, and transmit information on the identified floor to the user terminal.
  • Fig. 2 is a functional block diagram of the node shown in Fig. 1;
  • the node 100 which may be referred to as a barometric pressure measuring device, a barometric pressure measuring node, a barometric data generating device, a barometric data generating node, or the like, includes a sensor unit 110 , a communication unit 120 , and a storage unit 130 . , and at least one of the control unit 140 may be included.
  • the sensor unit 110 measures the air pressure at the place where the node 100 is installed under the control of the control unit 140 , that is, in response to a control signal output from the control unit 140 , generates air pressure data, and transmits the generated air pressure data. may be transmitted to the control unit 140 .
  • the atmospheric pressure data generated under the control of the controller 140 may be stored in the storage unit 130 .
  • the sensor unit 110 may measure the atmospheric pressure in the first cycle.
  • the communication unit 120 is the air pressure data generated by the sensor unit 110 under the control of the control unit 140 , that is, in response to a control signal output from the control unit 140 , and is generated by the sensor unit 110 and is generated by the control unit 140 . ), or the atmospheric pressure data stored in the storage unit 130 may be transmitted to the server.
  • the communication unit 120 may transmit the atmospheric pressure data to the server through a wired/wireless communication network.
  • the communication unit 120 may transmit the barometric pressure data to the server in the second period.
  • the storage unit 130 may store barometric pressure data generated by the sensor unit 110 , a program code for the operation of the control unit 140 , and the like.
  • the control unit 140 generates and outputs a plurality of control signals for controlling the operations of the components included in the node 100 , that is, the sensor unit 110 , the communication unit 120 , and the storage unit 130 . You can control the action. For example, the control unit 140 generates control signals corresponding to the sensor unit 110 to measure the atmospheric pressure in the first cycle and transmits the generated control signals to the sensor unit 110 , thereby measuring the atmospheric pressure of the sensor unit 110 . You can control the action. In addition, the control unit 140 generates control signals corresponding to the communication unit 120 to transmit the barometric data in the second cycle and transmits the generated control signals to the communication unit 120 , thereby transmitting the barometric pressure data of the communication unit 120 . can be controlled.
  • FIG. 3 is a functional block diagram of the server shown in FIG. 1 .
  • the server shown in FIG. 3 may be named by various names, such as a location estimation server (or device), a floor estimation server (or device), a location identification server (or device), and a floor identification server (or device).
  • the server 300 may include at least one of a communication unit 310 , a storage unit 320 , and a control unit 330 .
  • the communication unit 310 may receive air pressure data of each floor from each of the plurality of nodes under the control of the control unit 330 , for example, in response to a control signal generated by the control unit 330 . In this case, the communication unit 310 may first transmit a request message requesting transmission of the atmospheric pressure data to each of the plurality of nodes. The atmospheric pressure data received by the communication unit 310 may be stored in the storage unit 320 .
  • the communication unit 310 under the control of the control unit 330, for example, in response to a control signal generated by the control unit 330, from the user terminal to receive the barometric pressure data and / or magnetic field data of the place where the user is located. .
  • the communication unit 310 may first transmit a request message requesting transmission of barometric pressure data and/or magnetic field data to the user terminal.
  • the atmospheric pressure data received by the communication unit 310 may be stored in the storage unit 320 .
  • the air pressure data received by the communication unit 310 for example, the atmospheric pressure data collected from each of the plurality of nodes, the atmospheric pressure data and / or magnetic field data collected from the user terminal, the control operation of the control unit 330
  • a program code for, a plurality of conversion equations for converting the atmospheric pressure data received from the user terminal, a magnetic field map of each floor in the building, a location estimation model for estimating the location of the user, etc. may be stored.
  • the control unit 330 can control the operation of each component of the server 300 by generating and outputting a control signal for controlling the operation of each component of the server 300 , for example, the communication unit 310 and the storage unit 320 . have.
  • control unit 330 using the first identification method, for example, by comparing the air pressure data measured by the node and the air pressure data measured by the user terminal, to identify (or determine) the floor on which the user is located in the building.
  • the controller 330 uses the second identification method, for example, the magnetic field data measured by the user terminal and the stored in the storage unit 320 .
  • the magnetic field map can be used to identify (or determine) the floor on which the user is located.
  • the control unit 330 uses the third identification method, for example, by using a pre-trained location estimation model. It is possible to identify (or determine) the floor on which it is located.
  • the third identification method may be performed immediately after performing the first identification method or may be performed after performing the second identification method.
  • the controller 330 may include at least one of a first identification unit performing a first identification operation, a second identification unit performing a second identification operation, and a third identification unit performing a third identification operation. That is, the control unit 330 may include only the first identification unit, include the first identification unit and the second identification unit, include the first identification unit and the third identification unit, or include the first identification unit to the third identification unit. can Specific operations of the first to third identification units will be described later.
  • FIG. 4 is a graph showing the atmospheric pressure data measured for each device
  • FIG. 5 is a graph for explaining a conversion formula for changing the atmospheric pressure data measured by the user terminal
  • FIG. 6 is a table showing the identification result by the control unit shown in FIG.
  • FIG. 7 is a view for explaining an identification result by the control unit shown in FIG. 3 .
  • the graph of FIG. 4 shows barometric pressure data (measured barometric pressure) collected at the same place for about 2 days by each of a plurality of devices.
  • barometric pressure data measured barometric pressure
  • the measured air pressure changes over time, and the measured values for each device are different.
  • the atmospheric pressure measured by the node is the largest
  • the atmospheric pressure measured by the Galaxy s7 is the smallest
  • the atmospheric pressure measured by the Galaxy s10 and the Galaxy note10+ has a similar, intermediate value.
  • the change trend of the measured air pressure according to the passage of time is reflected as the same or similar trend in each device.
  • the barometric pressure data measured by the user terminal may be compared with the barometric pressure data measured by the node after being converted using a conversion formula stored in the storage unit 320 of the server 300 .
  • the conversion operation of the atmospheric pressure data may be performed by the first identification unit of the control unit 330 .
  • exemplary conversion equations are the same as in Equations 1 and 2.
  • Equation 1 and Equation 2 is the barometric pressure value received from the user terminal, is the conversion value.
  • gradient of transformation Wow intercept may be a predetermined constant, and may be calculated through the above equation.
  • the relational expression corresponding to each model of the user terminal may be previously stored in the storage unit 320 of the server 300 .
  • the first identification unit of the control unit 330 converts the atmospheric pressure value received from the user terminal using a conversion equation corresponding to the type of the user terminal to generate a converted value, and compares the converted value with measured values measured by each node By doing so, it is possible to identify the floor where the user (or user terminal) is located.
  • the first identification unit may perform the first identification operation by using at least one measurement value received from the user terminal. For example, the first identification unit may convert one measured value received from the user terminal to generate a converted value, or may convert an average of a plurality of measured values received from the user terminal to generate a converted value.
  • the measured values of the node compared with the transformed value may mean an average of the measured values by each node. For example, average values of a plurality of measurement values collected by the node at the point closest to the point in time at which the barometric pressure value is received from the user terminal may be compared. As a result of the comparison, the floor in which the data having the closest value to the converted value is installed may be identified (or determined) as the floor in which the user is located. Information on the layer identified by the first identification unit may be transmitted to the user terminal by the communication unit 310 . However, as shown below, when it is determined that the accuracy of identification is low, information on the determined layer may be transmitted after an additional identification operation is performed.
  • FIG. 6 shows the layer identified by the first identification unit of the control unit 330 and the floor actually located. As shown in FIG. 6 , there is a possibility of erroneous recognition as an adjacent floor in addition to the floor where the user is currently located.
  • a value closest to the barometric pressure value (which may mean a converted value) measured from the user terminal is the barometric pressure value measured by the node installed on the third floor.
  • the identified floor may not be an accurate floor. That is, although the user is located on the fourth floor, it may be determined that the user is located on the third floor due to a measurement error or environmental factors. In this case, the second identification operation by the second identification unit and/or the third identification operation by the third identification unit may be performed.
  • Whether to perform the second identification operation and/or the third identification operation may be variously determined, which is determined by the controller 330 .
  • a threshold may be used.
  • the threshold is the two barometric pressure measurements closest to the conversion value, for example the measurement value closest to the conversion value in FIG. 5 (measured by the node located on the 3rd floor) and the second closest measurement value (the node located on the 4th floor). It may mean a median value, an average value, etc. of the measured value measured by . According to an embodiment, if the conversion value is closer to the threshold than the measured value measured by the node, an additional identification operation may be performed.
  • whether the additional identification operation is performed may be determined based on the degree of difference between the nearest barometric pressure measurement value and the converted value from the converted value. For example, if the difference between the measured value and the converted value (the difference between absolute values and the degree of difference (the ratio of the measured value and the error, etc.)) is greater than a predetermined value, an additional identification operation may be performed.
  • information on one layer identified by the first identification operation may be transmitted to the user terminal through the communication unit 310 .
  • FIG. 8 is a view for explaining a first operation among the second identification operations performed by the second identification unit of the control unit shown in FIG. 3 , and shows results of position estimation for two exemplary floors in a building
  • FIG. FIG. 3 is a diagram for explaining a second operation among the second identification operations performed by the second identification unit of the control unit shown in FIG. 3 , and shows results of location estimation for two exemplary floors in a building.
  • spaces in which the user cannot be located are indicated by hatching. That is, in FIGS. 8 and 9 , the user can move only the space excluding the shaded area.
  • the second identification operation applies a magnetic field-based layer identification technique.
  • a magnetic field map of each layer may be stored in the storage unit 320 of the server 300 .
  • the user terminal may transmit a sequence of magnetic field values (which may mean a magnetic field vector) measured according to the movement of the user (or the movement of the user terminal) to the server 300 .
  • the user terminal may transmit one magnetic field value or transmit a plurality of magnetic field values in one transmission.
  • the user terminal may measure the magnetic field every predetermined time period or measure the magnetic field according to a predetermined standard (eg, measured at every step).
  • the user terminal may also transmit information about the moving distance (size of the stride (step length)) and/or the moving direction (step direction) of the user together.
  • the user's moving direction may mean an exact direction, but according to an embodiment, a rough direction, for example, one of four directions including left, right, upper, and lower, or left, right, upper, lower, upper left. It may mean one of eight directions including side, lower left, upper right, and lower right.
  • the magnetic field value sequence received by the communication unit 310 of the server 300 may be stored in the storage unit 320 .
  • the second identification unit of the control unit 330 may identify the floor in which the user is located by using the sequentially received magnetic field value sequence.
  • the second identification unit may The user can estimate the location of each of the sequentially received magnetic field values using the magnetic field map of the layer and the third layer.
  • the user location estimation operation may be performed for each identified layer (a recognition layer and an adjacent layer).
  • points (a plurality of points may exist) at which a difference from the first magnetic field value received from the user terminal is within a predetermined error range may be set as the user's initial position.
  • the second identification unit may estimate the next position using the second magnetic field value received from the user terminal based on the set initial position.
  • information about the moving direction and moving distance of the user may be used. That is, at least one point where the difference between the magnetic field value of a point separated by a moving distance from the initial position and the second magnetic field value received from the user terminal is within a predetermined error range may be estimated as the next location. Since there are a plurality of initial positions, a plurality of subsequent positions may also exist. Through repetition of the above next location estimation process, coordinates at which the user can be located may converge into one. In this case, the second identification unit may identify (or determine) a floor having coordinates converging into one as a floor in which the user is located.
  • black dots indicate a location estimated as the user's location. It can be seen that a plurality of initial positions set by using the first magnetic field value received from the user terminal in the initial position setting step 1st step exist for each floor. In the case of the third layer, it can be seen that a plurality of points were estimated in the location estimation using the third magnetic field value (the third magnetic field value), but no points were estimated in the location estimation using the fourth magnetic field value (the fourth magnetic field value). On the other hand, in the case of the second floor, it can be seen that only one point is estimated as the user's position in the position estimation using the seventh magnetic field value (the seventh magnetic field value).
  • a third identification operation by the third identification unit may be performed.
  • the third identification operation is performed prior to the second identification operation.
  • a second operation may be performed to further increase the accuracy of the above-described first operation result.
  • the second operation may be performed when a result of performing the first operation converges to one coordinate.
  • the second operation is to set the position converged as a result of the first operation as the initial position and then estimate the next position of the user in the same way.
  • the magnetic field value used may be data newly received from the user terminal after the first operation is performed.
  • the location estimation result of the first step of the second operation is a plurality of points, and the user's location converges to one location after six estimations.
  • a red dot (P) shows a change in the user's position based on the position converged in FIG. 8
  • a black dot is a point where the user can be located using the magnetic field values after the convergence in FIG. Shows the coordinates (estimated positions).
  • the agreement between the estimated position of the user moved based on the position estimated in FIG. 8 and the estimated position of the user converged in FIG. 9 is shown in the sixth step (or estimation using the sixth magnetic field value).
  • the point converging as a result of performing the second operation is a convergence point of a path in which the point converging as a result of performing the first operation is set as the initial location
  • the floor where the current location converges to one is the floor where the user is located.
  • the position estimation result of k times (k is an arbitrary natural number) by the second operation includes the position estimation result after setting the result point of the first operation as the initial position, the position converged in the first operation It is also possible to identify a floor having , as a floor where the user is located.
  • a third identification operation to be described below may be performed.
  • the third identification operation may be performed by the third identification unit of the control unit 330 .
  • a position estimation model for estimating the current position of the user by receiving a continuous magnetic field vector sequence according to the movement of the user as an input may be stored in the storage unit 320, and the position estimation model is layered to correspond to each floor. There may be a plurality as many as the number of .
  • the location estimation model is a model generated by learning a recurrent neural network using a magnetic field vector sequence along a user's movement path and a user's location, and an exemplary artificial neural network may mean a recurrent neural network (RNN).
  • RNN recurrent neural network
  • the third identification unit inputs the magnetic field vector sequence received from the user terminal into the first position estimation model and the second position estimation model corresponding to each of the identification layer and the adjacent layer identified by the first identification operation as input, and the current position of the user can be estimated.
  • 10A and 10B show a user position estimation result by the third identification unit of the control unit shown in FIG. 3 .
  • the third identification unit may identify the first floor corresponding to the first location estimation model showing the result of accurate location estimation as the floor in which the user is located.
  • the discontinuity of the position estimation result may be a criterion. Specifically, it is determined that the floor in which the difference between the estimated previous location and the current location (or the accumulation of the difference) is greater than the reference value is not the floor in which the user is located, or the difference between the estimated previous location and the current location (or the accumulation of the difference) ) is smaller than the reference value, the floor may be determined as the floor on which the user is located, or the floor where the difference (or accumulation of difference) between the previous and current positions estimated among the identification floor and adjacent floors is small may be determined as the floor where the user is located. . As shown in FIG. 10, when the user's location is estimated using a second-floor location estimation model where the user is not actually located, it can be seen that a very unstable and very discontinuous estimation result is derived, and in fact, the user It is impossible to implement.
  • the identification layer by the first identification operation, the identification layer by the first identification operation and the second identification operation, the identification layer by the first identification operation and the third identification operation, or the first identification operation to the third identification operation Information on the identification layer by the identification operation may be transmitted to the user terminal through the communication unit 310 .
  • the device described above may be implemented as a hardware component, a software component, and/or a set of hardware components and software components.
  • the devices and components described in the embodiments may include, for example, a processor, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, a field programmable array (FPA), and a PLU.
  • ALU arithmetic logic unit
  • FPA field programmable array
  • PLU arithmetic logic unit
  • It may be implemented using one or more general purpose computers or special purpose computers, such as a Programmable Logic Unit (Programmable Logic Unit), a microprocessor, or any other device capable of executing and responding to instructions.
  • the processing device may execute an operating system (OS) and one or more software applications executed on the operating system.
  • OS operating system
  • software applications executed on the operating system.
  • the processing device may also access, store, manipulate, process, and generate data in response to execution of the software.
  • the processing device includes a plurality of processing elements and/or a plurality of types of processing elements. It can be seen that may include For example, the processing device may include a plurality of processors or one processor and one controller. Other Processing Configurations are also possible, such as a Parallel Processor.
  • the software may include a computer program, code, instructions, or a combination of one or more of these, and configure the processing device to operate as desired or process it independently or in combination (Collectively) You can command the device.
  • the software and/or data may be any type of machine, component, physical device, virtual equipment, computer storage medium or device, to be interpreted by or provide instructions or data to the processing device. , or may be permanently or temporarily embodied in a transmitted signal wave (Signal Wave).
  • the software may be distributed over networked computer systems and stored or executed in a distributed manner. Software and data may be stored in one or more computer-readable recording media.
  • the method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded in a computer-readable medium.
  • the computer-readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the medium may be specially designed and configured for the embodiment, or may be known and available to those skilled in the art of computer software.
  • Examples of the computer-readable recording medium include magnetic media such as hard disks, floppy disks and magnetic tapes, optical recording media such as CD-ROMs and DVDs, and magnetic media such as floppy disks.
  • Examples of program instructions include not only machine language codes such as those generated by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like.
  • the hardware devices described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Navigation (AREA)

Abstract

복수의 층들로 구성된 건물 내에서 사용자가 위치한 층(floor)을 식별하는 식별 장치 및 식별 방법이 개시된다. 상기 식별 장치는 각각이 상기 건물 내의 각 층에 설치된 복수의 기압 측정 장치들에 의해 측정된 제1 기압값과 상기 사용자가 소지하는 사용자 단말에 의해 측정된 제2 기압값을 수신하는 통신부 및 상기 사용자 단말에 대응하는 기압 변환식을 이용하여 상기 제2 기압값을 변환하여 변환값을 생성하고, 상기 변환값과 상기 제1 기압값을 비교하여 상기 사용자가 위치한 층을 식별하는 제어부를 포함한다. 또한, 상기 제어부는 기압에 기반하여 상기 사용자가 위치한 층을 식별하는 제1 식별부, 사용자의 움직임에 대응하는 벡터 시퀀스에 기반하여 상기 사용자가 위치한 층을 식별하는 제2 식별부, 및 학습된 인공 신경망을 이용하여 상기 사용자가 위치한 층을 식별하는 제3 식별부를 포함하여, 보다 정확하게 상기 사용자가 위차한 층을 식별할 수 있다.

Description

기압과 자기장을 이용한 사용자가 위치한 층 식별 장치 및 방법
본 발명은 실내 측위 시스템에 관한 것으로, 특히 사용자가 위치한 층의 기압과 자기장을 이용하여 사용자가 위치한 층을 식별할 수 있는 장치 및 방법에 관한 것이다.
지면으로부터 높이가 높아질수록 기압의 크기는 작아진다. 또한, 대부분의 스마트폰 등의 스마트 기기에는 기압 센서가 구비되어 있다. 따라서 사용자의 스마트폰에서 측정되는 기압의 크기가 작을수록 건물 내에서 높은 층에 위치하고 있다고 볼 수 있다. 하지만 기온, 습도 등에 의하여 측정되는 기압 데이터는 영향을 받을 수 있으며, 눈이나 비와 같은 건물 외부 날씨나 건물 내부의 에어컨 및 히터의 가동 여부에 따라 기압은 변할 수 있다. 이러한 기압 데이터에 영향을 주는 외부 요인을 모두 고려하여 각 층의 기압 데이터를 추정하는 것은 어렵다. 따라서 건물의 각 층별로 기압을 측정하는 노드를 설치하여 이 노드에서 측정하는 기압 데이터를 기반으로 사용자가 위치하는 층을 추정할 수 있다. 반면 기압 센서는 기기에 사용되는 센서 모듈의 종류에 따라 바이어스(bias)와 드리프트(drift)가 존재하여 같은 장소 같은 시간에 측정된 기압 데이터 역시 측정 기기에 따라 다르게 측정될 수 있다. 따라서 기종에 따라 상이하게 측정되는 기압 데이터들 간의 관계식을 도출하고, 도출된 관계식을 기반으로 측정된 기압 데이터를 변환하면 서로 다른 기종에서 측정되는 기압 데이터를 층별로 설치된 노드로부터 측정되는 기압 데이터와 비교하는 데에 사용할 수 있다. 본 발명의 발명자는 스마트폰 센서에서 측정되는 기압 데이터와 건물 내의 층별 기압 데이터의 비교를 통해 사용자가 건물 내 위치한 층을 추정할 수 있을 것이라 판단하였다.
기압 기반의 층 식별 기법은 사용자 기기의 다양성에 따라 그 정확도가 떨어져 사용자가 위치한 층 이외에도 인접한 층으로 인식할 가능성이 있다. 이를 보완하기 위해 사용자의 이동에 따라 수집되는 자기장 데이터의 시퀀스를 인식 층과 인접 층의 자기장 맵과 비교하여 사용자의 추정 위치의 시퀀스가 연속적으로 나타나는 층을 탐색함으로써 사용자가 위치한 층을 추정할 수 있을 것으로 판단된다.
본 발명이 이루고자 하는 기술적인 과제는 기압과 자기장을 이용하여 사용자가 위치한 층을 식별하는 장치 및 방법을 제공하는 것이다.
본 발명의 일 실시예에 따른 식별 장치는 복수의 층들로 구성된 건물 내에서 사용자가 위치한 층(floor)을 식별하는 장치로써, 각각이 상기 건물 내의 각 층에 설치된 복수의 기압 측정 장치들에 의해 측정된 제1 기압값과 상기 사용자가 소지하는 사용자 단말에 의해 측정된 제2 기압값을 수신하는 통신부, 및 상기 사용자 단말에 대응하는 기압 변환식을 이용하여 상기 제2 기압값을 변환하여 변환값을 생성하고, 상기 변환값과 상기 제1 기압값을 비교하여 상기 사용자가 위치한 층을 식별하는 제어부를 포함한다.
또한, 본 발명의 일 실시예에 따른 식별 방법은 적어도 프로세서를 포함하는 컴퓨팅 장치인 식별 장치에 의해 수행되고, 복수의 층들로 구성된 건물 내에서 사용자가 위치한 층을 식별하는 식별 방법으로써, 각각이 상기 건물 내의 각 층에 설치된 복수의 기압 측정 장치들에 의해 측정된 제1 기압값을 수신하는 단계, 상기 사용자가 소지하는 사용자 단말에 의해 측정된 제2 기압값을 수신하는 단계, 상기 사용자 단말에 대응하는 기압 변환식을 이용하여 상기 제2 기압값을 변환하여 변환값을 생성하는 단계, 및 상기 변환값과 상기 제1 기압값을 비교하여 상기 사용자가 위치한 층을 식별하는 단계를 포함한다.
본 발명의 실시 예에 따른 사용자 위치 층 식별 장치 및 방법에 의할 경우, 사용자 단말에 의해 측정된 기압 데이터를 이용하여 사용자가 위치한 층을 식별할 수 있다.
또한, 기압 기반 층 식별의 정확도를 보완하기 위하여 사용자의 이동에 대응하는 자기장 시퀀스를 이용함으로써 사용자가 위치한 층을 보다 정확하게 식별할 수 있다.
도 1은 본 발명의 일 실시예에 따른 시스템을 도시한다.
도 2는 도 1에 도시된 노드의 기능 블럭도이다.
도 3은 도 1에 도시된 서버의 기능 블럭도이다.
도 4는 기기별로 측정된 기압 데이터를 나타낸 그래프이다.
도 5는 사용자 단말에 의해 측정된 기압 데이터를 변화하는 변환식을 설명하기 위한 그래프이다.
도 6은 도 3에 도시된 제어부에 의한 식별 결과를 나타내는 표를 도시한다.
도 7은 도 3에 도시된 제어부에 의한 식별 결과를 설명하기 위한 도면이다.
도 8은 도 3에 도시된 제2 식별부에 의한 제2 식별 동작 중 제1 동작을 설명하기 위한 도면으로, 건물 내의 예시적인 두 개의 층에 대한 위치 추정의 결과를 도시한다.
도 9는 도 3에 도시된 제2 식별부에 의한 제2 식별 동작 중 제2 동작을 설명하기 위한 도면으로, 건물 내의 예시적인 두 개의 층에 대한 위치 추정의 결과를 도시한다.
도 10a와 도 10b는 도 3에 도시된 제3 식별부에 의한 사용자 위치 추정 결과를 도시한다.
본 명세서에 개시되어 있는 본 발명의 개념에 따른 실시 예들에 대해서 특정한 구조적 또는 기능적 설명들은 단지 본 발명의 개념에 따른 실시 예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시 예들은 다양한 형태들로 실시될 수 있으며 본 명세서에 설명된 실시 예들에 한정되지 않는다.
본 발명의 개념에 따른 실시 예들은 다양한 변경들을 가할 수 있고 여러 가지 형태들을 가질 수 있으므로 실시 예들을 도면에 예시하고 본 명세서에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예들을 특정한 개시 형태들에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물, 또는 대체물을 포함한다.
제1 또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 벗어나지 않은 채, 제1 구성 요소는 제2 구성 요소로 명명될 수 있고 유사하게 제2 구성 요소는 제1 구성 요소로도 명명될 수 있다.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성 요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 본 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 본 명세서에 첨부된 도면들을 참조하여 본 발명의 실시 예들을 상세히 설명한다. 그러나, 특허출원의 범위가 이러한 실시 예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
도 1은 본 발명의 일 실시예에 따른 시스템을 도시한다. 도 1에 도시된 시스템은 위치 추정 시스템, 층 추정 시스템, 위치 식별 시스템, 및 층 식별 시스템 등 다양한 명칭으로 명명될 수 있다.
도 1을 참조하면, 시스템은 각각이 건물의 각 층에 설치된 복수의 노드들, 서버, 및 사용자 단말을 포함한다. 서버는 사용자 단말로부터 수신된 기압 데이터와 노드들 각각으로부터 수신된 기압 데이터를 비교하여 건물 내에서 사용자가 위치한 층(floor)을 식별(또는 추정)할 수 있다. 또한, 서버는 사용자 단말로부터 수신된 자기장 데이터를 이용하여 사용자가 위치한 층을 식별함으로써, 기압 데이터를 이용한 층 식별의 정확도를 보다 향상시킬 수 있다.
복수의 노드들 각각은 건물의 각 층에 설치될 수 있다. 설치 장소는 임의의 장소이거나 미리 정해진 장소일 수 있다. 또한, 각 층에는 하나의 노드가 설치될 수도 있으나, 실시예에 따라 복수의 노드들이 하나의 층에 설치될 수도 있다. 이 경우, 하나의 층에 설치된 복수의 노드들에 의해 측정된 기압 데이터의 평균 등이 비교 대상이 될 수 있다.
복수의 노드들 각각은 미리 정해진 제1 시간 주기로 설치된 장소의 기압을 측정하고, 미리 정해진 제2 시간 주기로 측정된 기압 데이터를 서버로 송신할 수 있다. 이때, 제1 시간 주기와 제2 시간 주기는 동일하거나 상이할 수 있다. 제1 시간 주기와 제2 시간 주기가 동일할 경우, 노드는 매 측정시마다 측정된(또는 생성된) 기압 데이터를 서버로 송신할 수 있다. 제1 시간 주기와 제2 시간 주기가 상이할 경우, 노드는 제2 시간 주기마다 전송되지 않은 기압 데이터를 서버로 송신할 수 있다. 실시예에 따라, 제2 시간 주기는 제1 시간 주기보다 클 수 있다. 이 경우, 노드는 복수회에 걸쳐 측정된 기압 데이터를 한 번에 전송할 수 있다. 일 예로, 제2 시간 주기가 제1 시간 주기의 5배인 경우, 5회에 걸쳐 측정된 기압 데이터가 한 번에 서버로 송신될 수 있다.
사용자 단말은 기압 센서 및/또는 자기장 센서가 구비된 컴퓨팅 장치로써, 예시적으로 스마트폰과 같은 스마트 장치로 구현될 수 있다. 사용자 단말은 사용자가 위치한 장소의 기압 및/또는 자기장을 측정하여 기압 데이터 및/또는 자기장 데이터를 생성하고, 생성된 기압 데이터 및/또는 생성된 자기장 데이터를 서버로 송신할 수 있다. 또한, 사용자 단말은 서버로부터 사용자가 건물 내에서 위치한 층에 대한 정보를 수신할 수 있다.
서버는 복수의 노드들 각각과 사용자 단말로부터 수신된 데이터에 기초하여 건물 내에서 사용자기 위치한 층을 식별하고 식별된 층에 대한 정보를 사용자 단말로 송신할 수 있다.
도 2는 도 1에 도시된 노드의 기능 블럭도이다.
도 2를 참조하면, 기압 측정 장치, 기압 측정 노드, 기압 데이터 생성 장치, 기압 데이터 생성 노드 등으로 명명될 수 있는 노드(100)는 센서부(110), 통신부(120), 저장부(130), 및 제어부(140) 중 적어도 하나 이상을 포함할 수 있다.
센서부(110)는 제어부(140)의 제어 하에, 즉 제어부(140)로부터 출력되는 제어 신호에 응답하여 노드(100)가 설치된 장소의 기압을 측정하여 기압 데이터를 생성하고, 생성된 기압 데이터를 제어부(140)로 송신할 수 있다. 제어부(140)의 제어 하에 생성된 기압 데이터는 저장부(130)에 저장될 수 있다. 실시예에 따라, 센서부(110)는 제1 주기로 기압을 측정할 수 있다.
통신부(120)는 제어부(140)의 제어 하에, 즉 제어부(140)로부터 출력되는 제어 신호에 응답하여 센서부(110)에 의해 생성된 기압 데이터, 센서부(110)에 의해 생성되어 제어부(140)로 송신된 기압 데이터, 또는 저장부(130)에 저장된 기압 데이터를 서버로 송신할 수 있다. 이때, 통신부(120)는 유무선 통신망을 통해 기압 데이터를 서버로 송신할 수 있다. 실시예에 따라, 통신부(120)는 제2 주기로 기압 데이터를 서버로 송신할 수 있다.
저장부(130)에는 센서부(110)에 의해 생성된 기압 데이터, 제어부(140)의 동작을 위한 프로그램 코드 등이 저장될 수 있다.
제어부(140)는 노드(100)에 포함된 구성들, 즉 센서부(110), 통신부(120), 저장부(130)의 동작을 제어하기 위한 복수의 제어 신호들을 생성하고 출력함으로써 각 구성의 동작을 제어할 수 있다. 예컨대, 제어부(140)는 센서부(110)가 제1 주기로 기압을 측정하도록 이에 상응하는 제어 신호들을 생성하고 생성된 제어신호들을 센서부(110)로 송신함으로써, 센서부(110)의 기압 측정 동작을 제어할 수 있다. 또한, 제어부(140)는 통신부(120)가 제2 주기로 기압 데이터를 송신하도록 이에 상응하는 제어 신호들을 생성하고 생성된 제어 신호들을 통신부(120)로 송신함으로써, 통신부(120)의 기압 데이터 송신 동작을 제어할 수 있다.
도 3은 도 1에 도시된 서버의 기능 블럭도이다. 도 3에 도시된 서버는 위치 추정 서버(또는 장치), 층 추정 서버(또는 장치), 위치 식별 서버(또는 장치), 및 층 식별 서버(또는 장치) 등 다양한 명칭으로 명명될 수 있다.
도 3을 참조하면, 서버(300)는 통신부(310), 저장부(320), 및 제어부(330) 중 적어도 하나를 포함할 수 있다.
통신부(310)는 제어부(330)의 제어 하에, 예컨대 제어부(330)에 의해 생성된 제어 신호에 응답하여, 복수의 노드들 각각으로부터 각 층의 기압 데이터를 수신할 수 있다. 이때, 통신부(310)는 복수의 노드들 각각으로 기압 데이터의 송신을 요청하는 요청 메시지를 먼저 송신할 수도 있다. 통신부(310)에 의해 수신된 기압 데이터는 저장부(320)에 저장될 수 있다.
또한, 통신부(310)는 제어부(330)의 제어 하에, 예컨대 제어부(330)에 의해 생성된 제어 신호에 응답하여, 사용자 단말로부터 사용자가 위치한 장소의 기압 데이터 및/또는 자기장 데이터를 수신할 수 있다. 이때, 통신부(310)는 사용자 단말로 기압 데이터 및/또는 자기장 데이터의 송신을 요청하는 요청 메시지를 먼저 송신할 수도 있다. 통신부(310)에 의해 수신된 기압 데이터는 저장부(320)에 저장될 수 있다.
저장부(320)에는 통신부(310)에 의해 수신된 기압 데이터, 예컨대 복수의 노드들 각각으로부터 수집된 기압 데이터, 사용자 단말로부터 수집된 기압 데이터 및/또는 자기장 데이터, 제어부(330)의 제어 동작을 위한 프로그램 코드, 사용자 단말로부터 수신된 기압 데이터를 변환하기 위한 복수의 변환식들, 건물 내의 각 층의 자기장 맵, 사용자의 위치를 추정하기 위한 위치 추정 모델 등이 저장되어 있을 수 있다.
제어부(330)는 서버(300)의 각 구성, 예컨대 통신부(310), 저장부(320)의 동작을 제어하기 위한 제어 신호를 생성하고 출력함으로써 서버(300)의 각 구성의 동작을 제어할 수 있다.
또한, 제어부(330)는 제1 식별 방식을 이용하여, 예컨대 노드에 의해 측정된 기압 데이터와 사용자 단말에 의해 측정된 기압 데이터를 비교함으로써, 건물 내에서 사용자가 위치한 층을 식별(또는 결정)할 수 있다. 또한, 제1 식별 방식에 의한 층 식별이 정확하지 않다고 판단되는 경우, 제어부(330)는 제2 식별 방식을 이용하여, 예컨대 사용자 단말에 의해 측정된 자기장 데이터와 저장부(320)에 저장되어 있는 자기장 맵을 이용하여 사용자가 위치한 층을 식별(또는 결정)할 수 있다. 또한, 제2 식별 방식 및/또는 제1 식별 방식에 의한 층 식별이 정확하지 않다고 판단되는 경우, 제어부(330)는 제3 식별 방식을 이용하여, 예컨대 사전 학습된 위치 추정 모델을 이용하여 사용자가 위치한 층을 식별(또는 결정)할 수 있다. 제3 식별 방식은 제1 식별 방식을 수행한 후에 바로 수행되거나 제2 식별 방식을 수행한 후에 수행될 수 있다.
제어부(330)는 제1 식별 동작을 수행하는 제1 식별부, 제2 식별 동작을 수행하는 제2 식별부, 및 제3 식별 동작을 수행하는 제3 식별부 중 적어도 하나를 포함할 수 있다. 즉, 제어부(330)는 제1 식별부만 포함되거나, 제1 식별부와 제2 식별부를 포함하거나, 제1 식별부와 제3 식별부를 포함하거나, 제1 식별부 내지 제3 식별부를 포함할 수 있다. 제1 식별부 내지 제3 식별부의 구체적인 동작은 후술하기로 한다.
도 4는 기기별로 측정된 기압 데이터를 나타낸 그래프, 도 5는 사용자 단말에 의해 측정된 기압 데이터를 변화하는 변환식을 설명하기 위한 그래프, 도 6은 도 3에 도시된 제어부에 의한 식별 결과를 나타내는 표, 도 7은 도 3에 도시된 제어부에 의한 식별 결과를 설명하기 위한 도면이다.
도 4의 그래프는 복수의 장치들 각각에 의해 약 2일 동안 동일한 장소에서 수집된 기압 데이터(측정 기압)를 나타낸다. 도 4를 참조하면, 시간이 흐름에 따라 측정 기압은 변화하며, 기기별로 측정된 값이 상이함을 알 수 있다. 구체적으로, 노드(node)에 의해 측정된 기압이 가장 크며, 갤럭시 s7에 의해 측정된 기압이 가장 작으며, 갤럭시 s10과 갤럭시 note10+에 의해 측정된 기압은 비슷한 수준으로 중간 정도의 값을 가지는 것을 볼 수 있다. 또한, 시간의 흐름에 따른 측정 기압의 변화 추이는 각 장치에서 동일하거나 유사한 추이로 반영됨을 알 수 있다.
따라서, 서로 다른 장치에서 측정된 기압을 비교하기 위해서는 측정된 기압을 전처리하거나 변환하는 동작이 선행되어야 한다. 즉, 사용자 단말에 의해 측정된 기압 데이터는 서버(300)의 저장부(320)에 저장되어 있는 변환식을 이용하여 변환된 후 노드에 의해 측정된 기압 데이터와 비교될 수 있다. 기압 데이터의 변환 동작은 제어부(330)의 제1 식별부에 의해 수행될 수 있다. 또한, 예시적인 변환식은 수학식 1 및 수학식 2와 같다.
Figure PCTKR2022000301-appb-img-000001
Figure PCTKR2022000301-appb-img-000002
수학식 1과 수학식 2에서,
Figure PCTKR2022000301-appb-img-000003
는 사용자 단말로부터 수신된 기압값을 의미하고,
Figure PCTKR2022000301-appb-img-000004
는 변환값을 의미한다. 변환식의 기울기
Figure PCTKR2022000301-appb-img-000005
Figure PCTKR2022000301-appb-img-000006
절편
Figure PCTKR2022000301-appb-img-000007
는 미리 정해진 상수일 수 있으며, 위 수학식을 통하여 계산될 수 있다.
Figure PCTKR2022000301-appb-img-000008
는 사용자 단말에 의해 측정된 n(n은 임의의 자연수)번의 측정값들에 대한 평균을 의미할 수 있고,
Figure PCTKR2022000301-appb-img-000009
는 노드에 의해 측정된 n번의 측정값들에 대한 평균을 의미할 수 있다.
사용자 단말의 측정값과 노드의 측정값의 관계를 나타내는 그래프를 도시하는 도 5를 참조하면, 사용자 단말 갤럭시 s7에 의해 측정된 측정값들과 노드에 의해 측정된 측정값들의 관계는 개략적으로 관계식 y=1.212x-22260로, 사용자 단말 갤럭시 s10에 의해 측정된 측정값들과 노드에 의해 측정된 측정값들의 관계는 개략적으로 관계식 y=0.987x+876.61로, 사용자 단말 갤럭시 note10+에 의해 측정된 측정값들과 노드에 의해 측정된 측정값들의 관계는 개략적으로 관계식 y=0.9438x+5214.6로 나타난다. 상술한 바와 같이, 사용자 단말의 각 기종에 대응하는 관계식은 미리 서버(300)의 저장부(320)에 저장되어 있을 수 있다.
제어부(330)의 제1 식별부는 사용자 단말의 기종에 대응하는 변환식을 이용하여 사용자 단말로부터 수신된 기압값을 변환하여 변환값을 생성하고, 변환값을 각 노드에 의해 측정된 측정값들과 비교함으로써, 사용자(또는 사용자 단말)가 위치한 층을 식별할 수 있다.
실시예에 따라, 제1 식별부는 사용자 단말로부터 수신된 적어도 하나의 측정값을 이용하여 제1 식별 동작을 수행할 수 있다. 예컨대, 제1 식별부는 사용자 단말로부터 수신된 하나의 측정값을 변환하여 변환값을 생성하거나, 사용자 단말로부터 수신된 복수의 측정값들의 평균을 변환하여 변환값을 생성할 수 있다.
또한, 변환값과 비교되는 노드의 측정값들은 각 노드에 의해 측정값들에 대한 평균을 의미할 수도 있다. 예컨대, 사용자 단말로부터 기압값을 수신한 시점과 가장 가까운 시점에 노드에 의해 수집된 복수 개의 측정값들의 평균값들이 비교 대상일 수 있다. 비교 결과, 변환값과 가장 가까운 값을 갖는 데이터가 측정된 노드가 설치된 층이 사용자가 위치한 층으로 식별(또는 결정)될 수 있다. 제1 식별부에 의해 식별된 층에 대한 정보는 통신부(310)에 의해 사용자 단말로 송신될 수 있다. 다만, 아래와 같이, 식별의 정확성이 떨어진다고 판단되는 경우에는 추가적인 식별 동작을 거친 후에 결정된 층에 대한 정보가 송신될 수도 있다.
도 6에는 제어부(330)의 제1 식별부에 의해 식별된 층과 실제 위치한 층을 도시되어 있다. 도 6에서 보듯이 현재 사용자가 위치한 층 이외에도 인접한 층으로 잘못 인식할 가능성이 있다.
도 7에서 사용자 단말로부터 측정된 기압값(변환값을 의미할 수 있음)과 가장 가까운 값은 3층에 설치된 노드에 의해 측정된 기압값이다. 다만, 사용자 단말로부터 측정된 기압값이 임계값(threshold)과 근접한 경우, 식별된 층은 정확한 층이 아닐 수도 있다. 즉, 사용자는 4층에 위치하고 있으나, 측정 오차나 주변 환경 요인으로 인하여 3층에 위치한 것으로 판단될 수도 있다. 이와 같은 경우, 제2 식별부에 의한 제2 식별 동작 및/또는 제3 식별부에 의한 제3 식별 동작이 수행될 수 있다.
제2 식별 동작 및/또는 제3 식별 동작의 수행 여부는 다양하게 결정될 수 있고, 이는 제어부(330)에 의해 결정된다. 우선, 임계값이 이용될 수 있다. 임계값은 변환값과 가장 가까운 두 개의 기압 측정값, 예컨대 도 5에서 변환값과 가장 가까운 측정값(3층에 위치한 노드에 의해 측정된 측정값)과 두번째로 가까운 측정값(4층에 위치한 노드에 의해 측정된 측정값)의 중간값, 평균값 등을 의미할 수 있다. 일 실시예에 따르면, 변환값이 노드에 의해 측정된 측정값보다 임계값에 더 근접하다면 추가적인 식별 동작이 수행될 수 있다.
실시예에 따라, 변환값으로부터 가장 가까운 기압 측정값과 변환값의 차이의 정도를 기준으로 추가 식별 동작 여부가 결정될 수 있다. 일 예로, 측정값과 변환값의 차이(절대적인 수치의 차이, 차이의 정도(측정값과 오차의 비율 등))가 미리 정해진 값보다 크다면 추가 식별 동작이 수행될 수 있다.
추가적인 식별 동작을 수행할 필요가 없다고 판단되는 경우, 제1 식별 동작에 의해 식별된 하나의 층에 대한 정보는 통신부(310)를 통해 사용자 단말로 송신될 수 있다.
이하에서는, 제2 식별부에 의한 제2 식별 동작을 상세히 설명하기로 한다.
도 8은 도 3에 도시된 제어부의 제2 식별부에 의한 제2 식별 동작 중 제1 동작을 설명하기 위한 도면으로, 건물 내의 예시적인 두 개의 층에 대한 위치 추정의 결과를 도시하고, 도 9는 도 3에 도시된 제어부의 제2 식별부에 의한 제2 식별 동작 중 제2 동작을 설명하기 위한 도면으로, 건물 내의 예시적인 두 개의 층에 대한 위치 추정의 결과를 도시한다. 또한, 도 8과 도 9에서 사용자가 위치할 수 없는 공간은 빗금으로 표시되어 있다. 즉, 도 8과 도 9에서 사용자는 빗금친 영역을 제외한 공간만을 이동할 수 있다.
제2 식별 동작은 자기장 기반 층 식별 기법을 적용한다. 이를 위해, 서버(300)의 저장부(320)에는 각 층의 자기장 맵이 저장되어 있을 수 있다.
우선, 사용자 단말은 사용자의 이동(또는 사용자 단말의 이동)에 따라 측정되는 자기장값(자기장 벡터를 의미할 수 있음) 시퀀스를 서버(300)로 송신할 수 있다. 이때, 사용자 단말은 1회의 송신으로 한 개의 자기장값을 송신하거나 복수의 자기장값을 송신할 수 있다. 또한, 사용자 단말은 미리 정해진 시간 주기마다 자기장을 측정하거나 미리 정해진 기준(예컨대, 매 걸음마다 측정)에 따라 자기장을 측정할 수 있다. 또한, 사용자 단말은 사용자의 이동 거리(보폭의 크기(걸음 길이)) 및/또는 이동 방향(걸음 방향)에 관한 정보를 함께 송신할 수도 있다. 사용자의 이동 방향은 정확한 방향을 의미할 수 있으나, 실시예에 따라 개략적인 방향, 예컨대, 좌측, 우측, 상측, 및 하측을 포함하는 4가지 방향 중 하나, 또는 좌측, 우측, 상측, 하측, 좌상측, 좌하측, 우상측, 및 우하측을 포함하는 8가지 방향 중 하나를 의미할 수도 있다.
서버(300)의 통신부(310)에 의해 수신된 자기장값 시퀀스는 저장부(320)에 저장될 수 있다. 또한, 제어부(330)의 제2 식별부는 순차적으로 수신되는 자기장값 시퀀스를 이용하여 사용자가 위치한 층을 식별할 수 있다.
예시적으로, 제1 식별 동작을 통해 식별된 층이 2층과 3층인 경우(여기서, 식별된 층은 2층일 수 있고, 인접한 층은 3층일 수 있음), 제2 식별부는 미리 저장되어 있는 2층과 3층의 자기장 맵을 이용하여 순차적으로 수신된 자기장값들 각각에 대하여 사용자가 위치를 추정할 수 있다. 사용자 위치 추정 동작은 식별된 층(인식 층과 인접 층)별로 수행될 수 있다.
우선, 사용자 단말로부터 수신된 제1 자기장값과의 차이가 미리 정해진 오차 범위 내인 지점들(복수의 지점들이 존재할 수 있음)을 사용자의 초기 위치로 설정할 수 있다. 이후, 제2 식별부는 설정된 초기 위치를 기반으로 사용자 단말로부터 수신된 제2 자기장값을 이용하여 다음 위치를 추정할 수 있다. 이때, 사용자의 이동 방향과 이동 거리에 관한 정보가 이용될 수 있다. 즉, 초기 위치에서 이동 방향으로 이동 거리만큼 떨어진 지점의 자기장값과 사용자 단말로부터 수신된 제2 자기장값의 차이가 미리 정해진 오차 범위 내인 적어도 하나의 지점이 다음 위치로 추정될 수 있다. 초기 위치가 복수개이기 때문에 다음 위치 또한 복수개가 존재할 수 있다. 위의 다음 위치 추정 과정의 반복을 통해 사용자가 위치할 수 있는 좌표가 하나로 수렴할 수 있다. 이때, 제2 식별부는 하나로 수렴하는 좌표를 가진 층을 사용자가 위치한 층으로 식별(또는 결정)할 수 있다.
도 8의 예에서, 검정색의 점들은 사용자의 위치로 추정된 위치를 나타낸다. 초기 위치 설정 단계(1st step)에서 사용자 단말로부터 수신된 제1 자기장값을 이용하여 설정된 초기 위치는 각 층별로 복수 개가 존재함을 알 수 있다. 3층의 경우, 세번째 자기장값(제3 자기장값)을 이용한 위치 추정에서 복수의 지점이 추정되었으나, 네번째 자기장값(제4 자기장값)을 이용한 위치 추정에서는 추정되는 지점이 없음을 알 수 있다. 이에 반하여, 2층의 경우, 7번째 자기장값(제7자기장값)을 이용한 위치 추정에서 하나의 지점만이 사용자의 위치로 추정됨을 알 수 있다.
물론, 미리 정해진 개수의 자기장값들을 이용하여 위치 추정을 수행한 결과, 사용자의 위치는 하나의 지점으로 수렴되지 않을 수도 있다. 이 경우에는 제3 식별부에 의한 제3 식별 동작이 수행될 수 있다. 실시예에 따라, 제3 식별 동작이 제2 식별 동작에 선행하여 수행되는 것도 가능하다.
상술한 제1 동작 결과에 정확도를 보다 높이기 위한 제2 동작이 수행될 수 있다. 제2 동작은 제1 동작을 수행한 결과가 하나의 좌표로 수렴하는 경우에 수행될 수 있다.
제2 동작은 제1 동작의 결과로 수렴된 위치를 초기 위치로 설정한 후 사용자의 다음 위치를 동일한 방식으로 추정하는 것이다. 이때, 이용되는 자기장값은 제1 동작이 수행된 이후에 사용자 단말로부터 새롭게 수신된 데이터일 수 있다.
도 9를 참조하면, 제2 동작의 제1 스텝(1st step)의 위치 추정 결과는 복수의 지점이며, 여섯번의 추정을 거친 후 사용자의 위치는 한 곳으로 수렴됨을 알 수 있다. 도 9에서, 붉은 점(P)은 도 8에서 수렴한 위치를 기반으로 움직인 사용자의 위치 변화를 보여주며, 검은색 점은 도 8에서 수렴한 이후의 자기장값들을 이용해 사용자가 위치할 수 있는 좌표들(추정 위치들)을 보여준다. 결국, 도 8에서 추정된 위치를 기반으로 이동된 사용자의 추정 위치와 도 9에서 수렴된 사용자의 추정 위치의 일치가 여섯번째 걸음(또는 여섯번째 자기장 값을 이용한 추정)에서 보여진다. 이와 같이, 제2 동작의 수행 결과로 수렴한 지점이 제1 동작의 수행 결과로 수렴한 지점을 초기 위치로 설정한 경로의 수렴 지점일 경우, 현재 위치가 하나로 수렴한 층을 사용자가 위치한 층으로 식별할 수 있다. 이와는 다르게, 제2 동작에 의한 k번(k는 임의의 자연수)의 위치 추정 결과에 제1 동작의 결과 지점을 초기 위치로 설정한 후의 위치 추정 결과가 포함되어 있다면, 제1 동작에서 수렴된 위치를 갖는 층을 사용자가 위치한 층으로 식별할 수도 있다.
상술한 제1 동작의 수행 결과로 추정된 사용자의 위치가 하나의 지점으로 수렴되지 않는 경우, 이하에서 설명될 제3 식별 동작이 수행될 수 있다.
제3 식별 동작은 제어부(330)의 제3 식별부에 의해 수행될 수 있다. 이를 위해, 사용자의 이동에 따른 연속적인 자기장 벡터 시퀀스를 입력으로 받아 사용자의 현재 위치를 추정하는 위치 추정 모델이 저장부(320)에 저장되어 있을 수 있으며, 위치 추정 모델은 각 층에 대응되도록 층의 개수만큼 복수 개가 존재할 수 있다. 위치 추정 모델은 사용자의 이동 경로에 따른 자기장 벡터 시퀀스와 사용자의 위치를 이용하여 순환 신경망을 학습함으로써 생성된 모델로써, 예시적인 인공 신경망은 순환 신경망(RNN)을 의미할 수 있다.
제3 식별부는 제1 식별 동작에 의해 식별된 식별 층과 인접 층 각각에 대응하는 제1 위치 추정 모델과 제2 위치 추정 모델에 사용자 단말로부터 수신되는 자기장 벡터 시퀀스를 입력으로 입력하여 사용자의 현재 위치를 추정할 수 있다.
도 10a와 도 10b에는 도 3에 도시된 제어부의 제3 식별부에 의한 사용자 위치 추정 결과가 도시되어 있다. 예시적으로, 식별 층과 인접 층이 1층과 2층인 경우, 1층에 대응하는 제1 위치 추정 모델과 2층에 대응하는 제2 위치 추정 모델을 통한 사용자 위치 추정이 수행될 수 있다. 사용자 단말로부터 수신된 자기장 벡터 시퀀스를 통한 위치 추정의 결과, 제1 위치 추정 모델의 추정 결과와 사용자의 실제 경로는 거의 동일하고, 제2 위치 추정 모델의 추정 결과와 사용자의 실제 경로는 매우 상이함을 알 수 있다. 따라서, 제3 식별부는 정확한 위치 추정의 결과를 보인 제1 위치 추정 모델에 대응하는 1층을 사용자가 위치한 층으로 식별할 수 있다. 다만, 실제 환경에서, 사용자의 실제 이동 경로를 알 수 없기 때문에 사용자가 위치한 층을 결정하기 위한 기준이 필요하다. 예시적으로, 위치 추정 결과의 불연속성이 그 기준이 될 수 있다. 구체적으로, 추정된 이전 위치와 현재 위치의 차이(또는 차이의 누적)가 기준치보다 큰 경우의 층을 사용자가 위치한 층이 아닌 것으로 결정하거나, 추정된 이전 위치와 현재 위치의 차이(또는 차이의 누적)가 기준치보다 작은 경우의 층을 사용자가 위치한 층으로 결정하거나, 식별 층과 인접 층 중에서 추정된 이전 위치와 현재 위치의 차이(또는 차이의 누적)이 작은 층을 사용자가 위치한 층으로 결정할 수 있다. 도 10에서도 보이듯이, 사용자가 실제 위치하지 않은 2층의 위치 추정 모델을 이용하여 사용자의 위치를 추정한 경우, 매우 불안정하며 매우 불연속적인 추정 결과가 도출됨을 알 수 있고, 실제로 사용자가 그러한 움직임을 구현하는 것은 불가능하다.
상술한 바와 같이, 제1 식별 동작에 의한 식별 층, 제1 식별 동작과 제2 식별 동작에 의한 식별 층, 제1 식별 동작과 제3 식별 동작에 의한 식별 층, 또는 제1 식별 동작 내지 제3 식별 동작에 의한 식별 층에 관한 정보는 통신부(310)를 통해 사용자 단말로 전송될 수 있다.
이상에서 설명된 장치는 하드웨어 구성 요소, 소프트웨어 구성 요소, 및/또는 하드웨어 구성 요소 및 소프트웨어 구성 요소의 집합으로 구현될 수 있다. 예를 들어, 실시 예들에서 설명된 장치 및 구성 요소는, 예를 들어, 프로세서, 콘트롤러, ALU(Arithmetic Logic Unit), 디지털 신호 프로세서(Digital Signal Processor), 마이크로컴퓨터, FPA(Field Programmable array), PLU(Programmable Logic Unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(Operation System, OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술 분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(Processing Element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(Parallel Processor)와 같은, 다른 처리 구성(Processing Configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(Computer Program), 코드(Code), 명령(Instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(Collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성 요소(Component), 물리적 장치, 가상 장치(Virtual Equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(Signal Wave)에 영구적으로, 또는 일시적으로 구체화(Embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
실시 예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시 예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(Magnetic Media), CD-ROM, DVD와 같은 광기록 매체(Optical Media), 플롭티컬 디스크(Floptical Disk)와 같은 자기-광 매체(Magneto-optical Media), 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시 예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
본 발명은 도면에 도시된 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성 요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성 요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (11)

  1. 복수의 층들로 구성된 건물 내에서 사용자가 위치한 층(floor)을 식별하는 식별 장치에 있어서,
    각각이 상기 건물 내의 각 층에 설치된 복수의 기압 측정 장치들에 의해 측정된 제1 기압값과 상기 사용자가 소지하는 사용자 단말에 의해 측정된 제2 기압값을 수신하는 통신부; 및
    상기 사용자 단말에 대응하는 기압 변환식을 이용하여 상기 제2 기압값을 변환하여 변환값을 생성하고, 상기 변환값과 상기 제1 기압값을 비교하여 상기 사용자가 위치한 층을 식별하는 제어부를 포함하는 식별 장치.
  2. 제1항에 있어서,
    상기 식별 장치는 상기 기압 변환식이 저장된 저장부를 더 포함하고,
    상기 기압 변환식은 상기 사용자 단말에 의해 측정되는 기압값과 상기 복수의 기압 측정 장치들에 의해 측정되는 기압값과의 관계를 나타내는 1차 방정식인,
    식별 장치.
  3. 제1항에 있어서,
    상기 제어부는 제1 식별 동작을 수행하는 제1 식별부를 포함하고,
    상기 제1 식별부는 상기 복수의 기압 측정 장치들 각각에 의해 측정된 제1 기압값들 중 상기 변환값과 가장 차이가 적은 제1 기압값을 측정한 기압 측정 장치가 설치된 층을 상기 사용자가 위치한 층인 식별 층으로 결정하는,
    식별 장치.
  4. 제3항에 있어서,
    상기 변환값이, 상기 가장 차이가 적은 제1 기압값, 상기 제1 기압값들 중 상기 변환값과 두번째로 차이가 적은 제1 기압값, 및 상기 가장 차이가 적은 제1 기압값과 상기 두번째로 차이가 적은 제1 기압값의 평균값 중에서 상기 평균값과의 차이가 가장 작은 경우, 상기 제어부는 제2 식별 동작을 수행하는,
    식별 장치.
  5. 제4항에 있어서,
    상기 제어부는 상기 제2 식별 동작을 수행하는 제2 식별부를 더 포함하고,
    상기 통신부는 상기 사용자 단말로부터 상기 사용자의 이동에 따라 변화하는 자기장 벡터 시퀀스를 수신하고,
    상기 제2 식별부는 상기 자기장 벡터 시퀀스, 상기 식별 층의 자기장 맵, 및 상기 두번째로 차이가 적은 제1 기압값을 측정한 기압 측정 장치가 설치된 층인 인접층의 자기장 맵을 이용하여, 상기 식별 층과 상기 인접 층에서 상기 사용자의 위치를 추정하는,
    식별 장치.
  6. 제5항에 있어서,
    상기 제2 식별부는 상기 사용자의 위치가 하나의 지점으로 수렴하는 자기장 맵에 대응하는 층을 상기 사용자가 위치하는 층으로 결정하는,
    식별 장치.
  7. 제5항에 있어서,
    상기 제2 식별부에 의한 상기 사용자의 위치 추정의 결과가 하나의 지점으로 수렴하지 않는 경우, 상기 제어부는 제3 식별 동작을 수행하고,
    상기 제어부는 상기 제3 식별 동작을 수행하는 제3 식별부를 더 포함하는,
    식별 장치.
  8. 제7항에 있어서,
    상기 통신부는 상기 사용자 단말로부터 상기 사용자의 이동에 따라 변화하는 제2 자기장 벡터 시퀀스를 수신하고,
    상기 제3 식별부는 상기 제2 자기장 시쿼스를 입력으로 하는 제1 위치 추정 모델과 제2 위치 추정 모델을 이용하여 상기 사용자의 위치를 추정하고,
    상기 제1 위치 추정 모델은 상기 인식 층에 대응하는 위치 추정 모델로써, 상기 사용자의 이동에 따른 자기장 벡터의 시퀀스와 상기 사용자의 위치를 이용하여 인공 신경망을 학습하여 생성되고,
    상기 제2 위치 추정 모델은 상기 두번째로 차이가 적은 제1 기압값을 측정한 기압 측정 장치가 설치된 층인 인접 층에 대응하는 위치 추정 모델로써, 상기 사용자의 이동에 따른 자기장 벡터의 시퀀스와 상기 사용자의 위치를 이용하여 인공 신경망을 학습하여 생성되는,
    식별 장치.
  9. 제8항에 있어서,
    상기 제3 식별부는 상기 제1 위치 추정 모델의 위치 추정의 결과의 불연속성과 상기 제2 위치 추정 모델의 위치 추정의 결과의 불연속성을 기초로 상기 사용자가 위치한 층을 결정하는,
    식별 장치.
  10. 적어도 프로세서를 포함하는 컴퓨팅 장치인 식별 장치에 의해 수행되는, 복수의 층들로 구성된 건물 내에서 사용자가 위치한 층을 식별하는 식별 방법에 있어서,
    각각이 상기 건물 내의 각 층에 설치된 복수의 기압 측정 장치들에 의해 측정된 제1 기압값을 수신하는 단계;
    상기 사용자가 소지하는 사용자 단말에 의해 측정된 제2 기압값을 수신하는 단계;
    상기 사용자 단말에 대응하는 기압 변환식을 이용하여 상기 제2 기압값을 변환하여 변환값을 생성하는 단계; 및
    상기 변환값과 상기 제1 기압값을 비교하여 상기 사용자가 위치한 층을 식별하는 단계를 포함하는 식별 방법.
  11. 제10항에 있어서,
    상기 기압 변환식은 상기 사용자 단말에 의해 측정되는 기압값과 상기 복수의 기압 측정 장치들에 의해 측정되는 기압값과의 관계를 나타내는 1차 방정식이고,
    상기 식별하는 단계는, 상기 복수의 기압 측정 장치들 각각에 의해 측정된 제1 기압값들 중 상기 변환값과 가장 차이가 적은 제1 기압값을 측정한 기압 측정 장치가 설치된 층을 상기 사용자가 위치한 층인 식별 층으로 결정하는 단계를 포함하는,
    식별 방법.
PCT/KR2022/000301 2021-01-11 2022-01-07 기압과 자기장을 이용한 사용자가 위치한 층 식별 장치 및 방법 WO2022149906A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210003480A KR102507196B1 (ko) 2021-01-11 2021-01-11 기압과 자기장을 이용한 사용자가 위치한 층 식별 장치 및 방법
KR10-2021-0003480 2021-01-11

Publications (1)

Publication Number Publication Date
WO2022149906A1 true WO2022149906A1 (ko) 2022-07-14

Family

ID=82358243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000301 WO2022149906A1 (ko) 2021-01-11 2022-01-07 기압과 자기장을 이용한 사용자가 위치한 층 식별 장치 및 방법

Country Status (2)

Country Link
KR (1) KR102507196B1 (ko)
WO (1) WO2022149906A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015158396A (ja) * 2014-02-24 2015-09-03 Kddi株式会社 携帯端末の位置するフロアレベルを推定する管理装置、プログラム、システム及び方法
KR101600561B1 (ko) * 2015-01-14 2016-03-07 순천향대학교 산학협력단 스마트폰을 이용한 실내 위치추적 장치 및 방법
US20170225921A1 (en) * 2014-07-28 2017-08-10 Otis Elevator Company Elevator car location sensing system
JP2019113461A (ja) * 2017-12-25 2019-07-11 太陽誘電株式会社 測位装置、測位システム、測位方法
JP2019178996A (ja) * 2018-03-30 2019-10-17 西日本電信電話株式会社 高所推定装置、高所推定方法及びコンピュータープログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10480945B2 (en) * 2012-07-24 2019-11-19 Qualcomm Incorporated Multi-level location disambiguation
KR101405894B1 (ko) 2012-10-15 2014-06-12 에스케이 텔레콤주식회사 기압 정보를 이용한 측위 방법과 그를 위한 측위 장치
KR102356954B1 (ko) 2016-01-05 2022-01-28 삼성전자주식회사 단말의 위치 추정 방법 및 장치
KR101784399B1 (ko) 2017-02-13 2017-10-17 (주)씨프로 대기압 및 가속도센서를 이용한 승강기 카메라의 층 운행정보 인지시스템
KR20190017454A (ko) 2017-08-11 2019-02-20 고려대학교 산학협력단 인공 신경망을 이용한 자기장 기반 위치 추정 모델 생성 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015158396A (ja) * 2014-02-24 2015-09-03 Kddi株式会社 携帯端末の位置するフロアレベルを推定する管理装置、プログラム、システム及び方法
US20170225921A1 (en) * 2014-07-28 2017-08-10 Otis Elevator Company Elevator car location sensing system
KR101600561B1 (ko) * 2015-01-14 2016-03-07 순천향대학교 산학협력단 스마트폰을 이용한 실내 위치추적 장치 및 방법
JP2019113461A (ja) * 2017-12-25 2019-07-11 太陽誘電株式会社 測位装置、測位システム、測位方法
JP2019178996A (ja) * 2018-03-30 2019-10-17 西日本電信電話株式会社 高所推定装置、高所推定方法及びコンピュータープログラム

Also Published As

Publication number Publication date
KR20220101447A (ko) 2022-07-19
KR102507196B1 (ko) 2023-03-07

Similar Documents

Publication Publication Date Title
KR102450374B1 (ko) 데이터 인식 및 트레이닝 장치 및 방법
WO2017007089A1 (ko) 실내 환경에서 이동 로봇의 리로케이션 방법 및 장치
WO2017164478A1 (ko) 미세 얼굴 다이나믹의 딥 러닝 분석을 통한 미세 표정 인식 방법 및 장치
WO2019212069A1 (ko) 딥-러닝을 통한 무선신호 전파 채널 해석을 이용한 실내공간의 구조를 예측하는 방법
WO2021125578A1 (ko) 시각 정보 처리 기반의 위치 인식 방법 및 시스템
KR102333520B1 (ko) 도로 상 객체 검출 방법, 장치 및 시스템
WO2021075772A1 (ko) 복수 영역 검출을 이용한 객체 탐지 방법 및 그 장치
WO2018139882A1 (ko) 레이더를 이용한 거리 측정 방법 및 장치
WO2020231080A1 (ko) 이동로봇의 센서 데이터를 활용한 교차점 패턴 인식모델 생성 방법 및 교차점 패턴 인식 시스템
WO2020256517A2 (ko) 전방위 화상정보 기반의 자동위상 매핑 처리 방법 및 그 시스템
WO2022131525A1 (ko) 파라미터 서버 기반 비대칭 분산 학습 기법
WO2022149906A1 (ko) 기압과 자기장을 이용한 사용자가 위치한 층 식별 장치 및 방법
WO2022260227A1 (ko) 데이터 증강 기반 인공지능을 이용한 n치 예측 장치 및 방법
WO2018004081A1 (ko) 테스트 노드 기반의 무선 측위 방법 및 그 장치
WO2019112385A1 (ko) 비디오 인식을 위한 영상 세그먼트 프레임별 특징점의 시간 정보 인코딩 방법
CN114241272A (zh) 基于深度学习的异构信息融合定位方法
WO2024090786A1 (ko) 레이더 데이터에 기반한 낙상 감지 모델의 학습 방법
WO2017030233A1 (ko) 모바일 컴퓨팅 장치의 위치 검출 방법 및 이를 수행하는 모바일 컴퓨팅 장치
WO2023096133A1 (ko) 경량화된 자세 추정 모델 제공 장치 및 방법
WO2012077909A2 (ko) 근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치
WO2021182793A1 (ko) 단일 체커보드를 이용하는 이종 센서 캘리브레이션 방법 및 장치
WO2018131729A1 (ko) 단일 카메라를 이용한 영상에서 움직이는 객체 검출 방법 및 시스템
WO2021107231A1 (ko) 계층적 단어 정보를 이용한 문장 인코딩 방법 및 장치
WO2021075701A1 (ko) 인터랙션 검출 방법 및 그 장치
WO2022149811A1 (ko) 골프 스윙에 관한 정보를 추정하기 위한 방법, 디바이스 및 비일시성의 컴퓨터 판독 가능한 기록 매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22736883

Country of ref document: EP

Kind code of ref document: A1