WO2022149613A1 - Pavement mixture and pavement binder - Google Patents
Pavement mixture and pavement binder Download PDFInfo
- Publication number
- WO2022149613A1 WO2022149613A1 PCT/JP2022/000439 JP2022000439W WO2022149613A1 WO 2022149613 A1 WO2022149613 A1 WO 2022149613A1 JP 2022000439 W JP2022000439 W JP 2022000439W WO 2022149613 A1 WO2022149613 A1 WO 2022149613A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- pavement
- parts
- mixture
- polysaccharide
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 135
- 239000011230 binding agent Substances 0.000 title claims abstract description 63
- 229920001282 polysaccharide Polymers 0.000 claims abstract description 83
- 239000005017 polysaccharide Substances 0.000 claims abstract description 83
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 59
- 150000004804 polysaccharides Chemical class 0.000 claims description 82
- 239000007864 aqueous solution Substances 0.000 claims description 77
- 235000010443 alginic acid Nutrition 0.000 claims description 48
- 239000000783 alginic acid Substances 0.000 claims description 48
- 229920000615 alginic acid Polymers 0.000 claims description 48
- 229960001126 alginic acid Drugs 0.000 claims description 48
- 150000004781 alginic acids Chemical class 0.000 claims description 48
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- 229920001277 pectin Polymers 0.000 claims description 23
- 239000001814 pectin Substances 0.000 claims description 23
- 235000010987 pectin Nutrition 0.000 claims description 23
- 238000002156 mixing Methods 0.000 claims description 18
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 9
- 229920002148 Gellan gum Polymers 0.000 claims description 9
- 235000010492 gellan gum Nutrition 0.000 claims description 9
- 239000000216 gellan gum Substances 0.000 claims description 9
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 7
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 7
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 2
- 150000004676 glycans Chemical class 0.000 abstract 1
- 239000010426 asphalt Substances 0.000 description 59
- 238000012360 testing method Methods 0.000 description 40
- 239000000523 sample Substances 0.000 description 29
- 239000000499 gel Substances 0.000 description 24
- 239000003795 chemical substances by application Substances 0.000 description 21
- 238000010276 construction Methods 0.000 description 19
- 238000002474 experimental method Methods 0.000 description 15
- 230000035515 penetration Effects 0.000 description 12
- 239000005060 rubber Substances 0.000 description 11
- 229920001971 elastomer Polymers 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000013068 control sample Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 239000004575 stone Substances 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000049 pigment Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- -1 cation salts Chemical class 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- BMFMQGXDDJALKQ-BYPYZUCNSA-N Argininic acid Chemical compound NC(N)=NCCC[C@H](O)C(O)=O BMFMQGXDDJALKQ-BYPYZUCNSA-N 0.000 description 4
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 4
- AEMOLEFTQBMNLQ-YMDCURPLSA-N D-galactopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-YMDCURPLSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 239000001110 calcium chloride Substances 0.000 description 4
- 229910001628 calcium chloride Inorganic materials 0.000 description 4
- 229910001424 calcium ion Inorganic materials 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 3
- 235000013339 cereals Nutrition 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910001425 magnesium ion Inorganic materials 0.000 description 3
- 238000013112 stability test Methods 0.000 description 3
- CYNYIHKIEHGYOZ-UHFFFAOYSA-N 1-bromopropane Chemical compound CCCBr CYNYIHKIEHGYOZ-UHFFFAOYSA-N 0.000 description 2
- ROGIWVXWXZRRMZ-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1 ROGIWVXWXZRRMZ-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004716 Ethylene/acrylic acid copolymer Substances 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 2
- 235000010418 carrageenan Nutrition 0.000 description 2
- 239000000679 carrageenan Substances 0.000 description 2
- 229920001525 carrageenan Polymers 0.000 description 2
- 229940113118 carrageenan Drugs 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 239000003349 gelling agent Substances 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- 241000512259 Ascophyllum nodosum Species 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 240000000560 Citrus x paradisi Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000199919 Phaeophyceae Species 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000736131 Sphingomonas Species 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 241001261506 Undaria pinnatifida Species 0.000 description 1
- AUNAPVYQLLNFOI-UHFFFAOYSA-L [Pb++].[Pb++].[Pb++].[O-]S([O-])(=O)=O.[O-][Cr]([O-])(=O)=O.[O-][Mo]([O-])(=O)=O Chemical compound [Pb++].[Pb++].[Pb++].[O-]S([O-])(=O)=O.[O-][Cr]([O-])(=O)=O.[O-][Mo]([O-])(=O)=O AUNAPVYQLLNFOI-UHFFFAOYSA-L 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000012615 aggregate Substances 0.000 description 1
- AEMOLEFTQBMNLQ-WAXACMCWSA-N alpha-D-glucuronic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-WAXACMCWSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- UHHXUPJJDHEMGX-UHFFFAOYSA-K azanium;manganese(3+);phosphonato phosphate Chemical compound [NH4+].[Mn+3].[O-]P([O-])(=O)OP([O-])([O-])=O UHHXUPJJDHEMGX-UHFFFAOYSA-K 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- 229910001422 barium ion Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 229960004887 ferric hydroxide Drugs 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229920005555 halobutyl Polymers 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229920002681 hypalon Polymers 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- IEECXTSVVFWGSE-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Fe+3] IEECXTSVVFWGSE-UHFFFAOYSA-M 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- MOUPNEIJQCETIW-UHFFFAOYSA-N lead chromate Chemical compound [Pb+2].[O-][Cr]([O-])(=O)=O MOUPNEIJQCETIW-UHFFFAOYSA-N 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910001427 strontium ion Inorganic materials 0.000 description 1
- PWYYWQHXAPXYMF-UHFFFAOYSA-N strontium(2+) Chemical compound [Sr+2] PWYYWQHXAPXYMF-UHFFFAOYSA-N 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 150000004044 tetrasaccharides Chemical class 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/02—Macromolecular compounds
- C04B26/28—Polysaccharides or derivatives thereof
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/18—Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
- E01C7/24—Binder incorporated as an emulsion or solution
Definitions
- the present invention relates to a pavement mixture and a pavement binder.
- Asphalt pavement is the most widely used pavement and is usually constructed by spreading and compacting a heated asphalt mixture obtained by heating and mixing aggregate and asphalt. When the temperature drops after the heated asphalt mixture is laid, the viscosity of the asphalt contained in the heated asphalt mixture increases and the aggregates are firmly adhered to each other to form a pavement having excellent strength. In this way, asphalt pavement is constructed by skillfully utilizing the temperature-dependent adhesive behavior of asphalt. However, since asphalt has a property that the viscosity increases significantly when the temperature decreases, the handleability of the heated asphalt mixture deteriorates remarkably when the temperature becomes 100 ° C. or lower. Therefore, when constructing using a heated asphalt mixture, the heated asphalt mixture produced in the asphalt plant must be transported to the construction site in a high temperature state or reheated at the construction site before use. It was very laborious and costly.
- Cutback asphalt is made by mixing asphalt with a cutback agent that is a volatile oil (for example, gasoline, kerosene, heavy oil, etc.) to make the asphalt liquid, and has the advantage of being easy to install even at room temperature.
- a cutback agent for example, gasoline, kerosene, heavy oil, etc.
- pavement constructed using a room temperature asphalt mixture cannot exhibit sufficient strength unless the cutback agent, which is a diluting component of asphalt, volatilizes sufficiently, so the strength immediately after construction is higher than that of a heated asphalt mixture.
- the cutback agent which is a diluting component of asphalt
- the present invention has been made to improve the above-mentioned inconveniences of the prior art, and is excellent in workability even at room temperature or lower temperature, and pavement exhibiting excellent strength in a relatively short time after construction. It is an object of the present invention to provide a mixture for pavement and a pavement binder used for such a mixture for pavement.
- binders are known that have the property of binding objects, but they have the property of binding aggregates used for pavement and have extremely high strength to withstand the traffic load of cars and trucks. As far as the applicant knows, little is known other than asphalt. Under these circumstances, the present inventors have made diligent research efforts to solve the above-mentioned problems, and in the process of making diligent research efforts, an aqueous solution of a polysaccharide exhibiting the property of forming a gel by contacting with a metal ion having a valence of two or more is obtained.
- Divalent or higher which can be easily mixed with aggregate even at room temperature or lower, and has an action of gelling the polysaccharide in a mixture obtained by mixing an aqueous solution of the polysaccharide and the aggregate. It was found that when an aqueous solution containing the metal ions of the above was sprayed, the aggregates were quickly bonded to each other and a high-strength molded product was obtained. Surprisingly, they have found that the molded product exhibits strength equal to or higher than that obtained from a normal temperature asphalt mixture using cutback asphalt widely used in the field, and completed the present invention. ..
- the present invention is a pavement mixture containing an aggregate and a binder in one aspect, wherein the binder contains a polysaccharide that comes into contact with a divalent or higher metal ion to form a gel.
- the binder contains a polysaccharide that comes into contact with a divalent or higher metal ion to form a gel.
- the polysaccharide is preferably contained in the binder in the form of an aqueous solution.
- the present invention also provides, in another aspect, a pavement binder used in a pavement mixture, which comprises a polysaccharide that comes into contact with a divalent or higher metal ion to form a gel.
- a pavement binder used in a pavement mixture which comprises a polysaccharide that comes into contact with a divalent or higher metal ion to form a gel.
- the polysaccharide is preferably contained in the pavement binder in the form of an aqueous solution.
- a pavement mixture that is excellent in workability even at room temperature or lower temperature and exhibits excellent strength in a relatively short time after construction, and further, a pavement binder used in such a pavement mixture. Is obtained.
- the pavement binder according to the present invention is a pavement binder used in a pavement mixture and is characterized by containing a polysaccharide that forms a gel in contact with a divalent or higher metal ion. It is a material.
- the binder is a component for binding the aggregates constituting the pavement to solidify the pavement.
- a strong pavement can be obtained by adhering the aggregate by the action of the binder.
- the paving binder according to the present invention contains a polysaccharide that forms a gel in contact with a divalent or higher metal ion, and in one preferred embodiment, the polysaccharide is in the form of an aqueous solution.
- the aqueous solution of polysaccharide means a liquid in which the polysaccharide is dissolved in a solvent containing water as a main component, that is, a solution of the polysaccharide in which the main component of the solvent is water, and the binder is the polysaccharide.
- the inclusion in the form of an aqueous solution means that the binder contains an aqueous solution of polysaccharides.
- the main component of the solvent is water, which means that the solvent is more than 50vachil%, preferably 75v Georgial% or more, more preferably 90vachil% or more, still more preferably 95v Techl% or more, still more preferably 100vschreibl%.
- the paving binder according to one aspect of the present invention which uses an aqueous solution of a polysaccharide containing water as a main component of a solvent, has an advantage of being excellent in workability even at a low temperature because the increase in viscosity is small even when the temperature is lowered. ..
- the polysaccharide is a substance having a structure in which a large number of monosaccharide molecules are polymerized
- the polysaccharide used for the pavement binder according to the present invention is a divalent or higher metal ion among such polysaccharides. It is a polysaccharide that forms a gel in contact with.
- a polysaccharide that forms a gel by contacting with a divalent or higher metal ion is a solution in which the aqueous solution containing the polysaccharide is in a liquid state (sol state) before contact with a divalent or higher metal ion.
- a solution containing a divalent or higher metal ion is mixed with the aqueous solution, and the divalent or higher metal ion is brought into contact with a polysaccharide to form an insoluble gel.
- a polysaccharide having such properties is liquid before the addition of a divalent or higher metal ion that functions as a curing agent, so that it can be easily mixed with aggregates, while it has a divalent function that functions as a curing agent.
- the pavement binder according to one aspect of the present invention containing such a polysaccharide, preferably in the form of an aqueous solution, is mixed with an aggregate to form a pavement mixture, it has a divalent or higher valence that functions as a hardening agent.
- a divalent or higher valence that functions as a hardening agent.
- the type of the polysaccharide that can be used in the paving binder according to the present invention is not particularly limited as long as it is a polysaccharide that forms a gel in contact with divalent or higher metal ions, but for example.
- Alginic acid, hypomethoxyated pectin (LM pectin), carboxymethyl cellulose (CMC), gellan gum, and derivatives thereof are preferably used, more preferably alginic acid and hypomethoxyated pectin (LM pectin), and more preferably.
- Alginic acid can be used.
- These polysaccharides may be used alone or in combination of two or more.
- these polysaccharides may be used in the form of salts thereof, if necessary, and for example, monovalent cation salts of polysaccharides (sodium salt, potassium salt, ammonium salt, etc.) may be used. Since it is highly soluble in water, it can be suitably used for preparing an aqueous solution of a polysaccharide.
- alginic acid is a natural polysaccharide that is abundantly contained in brown algae such as kelp and wakame seaweed and has a structure in which manulonic acid and gluronic acid are polymerized.
- An aqueous solution of alginic acid is a liquid at room temperature, but when it comes into contact with a divalent or higher metal ion, it forms an insoluble gel. That is, alginic acid is a polysaccharide that forms a gel when it comes into contact with a divalent or higher metal ion, and when alginic acid is used as the polysaccharide, a divalent or higher metal ion can be used as a curing agent.
- divalent or higher metal ions that can be used as a curing agent for alginic acid, but for example, calcium ion (Ca 2+ ), magnesium ion (Mg 2+ ), barium ion (Ba 2+ ), aluminum ion. (Al 3+ ), strontium ion (Sr 3+ ), iron ion (Fe 3+ ) and the like are preferably used. These metal ions may be used alone or in combination of two or more.
- LM pectin Low-methoxyated pectin
- the LM pectin is a pectin having a degree of esterification of 50% or less, in other words, a pectin in which methylated galacturonic acid accounts for less than 50% of the total galacturonic acid constituting the pectin.
- LM pectin is a polysaccharide that forms a gel when it comes into contact with a divalent or higher metal ion, and when LM pectin is used as the polysaccharide, a divalent or higher metal ion can be used as a curing agent. ..
- a divalent or higher metal ion can be used as a curing agent. ..
- divalent or higher metal ions there is no particular limitation on the types of divalent or higher metal ions that can be used as a curing agent for LM pectin, but for example, calcium ions (Ca 2+ ) and magnesium ions (Mg 2+ ) are preferably used. These metal ions may be used alone or in combination of two or more.
- Gellan gum is a polysaccharide produced by microorganisms of the genus Pseudomonas and Sphingomonas, and has a structure based on the repeating structure of tetrasaccharides of D-glucose, D-glucuronic acid, D-glucose, and L-ramnorth. ..
- the aqueous solution of gellan gum is liquid at room temperature, whereas it forms an insoluble gel when it comes into contact with divalent or higher metal ions.
- gellan gum is a polysaccharide that forms a gel when it comes into contact with a divalent or higher metal ion
- a divalent or higher metal ion can be used as a curing agent.
- divalent or higher metal ions there is no particular limitation on the types of divalent or higher metal ions that can be used as a curing agent for gellan gum, but for example, calcium ions (Ca 2+ ) and magnesium ions (Mg 2+ ) are preferably used. These metal ions may be used alone or in combination of two or more.
- Carboxymethyl cellulose is a polysaccharide produced from cellulose as a raw material, and has a structure in which a part of the hydroxy group of glucopyranose constituting the cellulose skeleton is carboxymethylated. While the aqueous solution of carboxymethyl cellulose is liquid at room temperature, it forms an insoluble gel when it comes into contact with divalent or higher metal ions. That is, carboxymethyl cellulose is a polysaccharide that forms a gel when it comes into contact with a divalent or higher metal ion, and when carboxymethyl cellulose is used as the polysaccharide, a divalent or higher metal ion can be used as a curing agent. ..
- divalent or higher metal ions that can be used as a curing agent for carboxymethyl cellulose, but for example, calcium ions (Ca 2+ ) and aluminum ions (Al 3+ ) are preferably used. These metal ions may be used alone or in combination of two or more.
- alginic acid, LM pectin, gellan gum, and carboxymethyl cellulose are all polysaccharides that form a gel in contact with divalent or higher metal ions. According to the findings found by the present inventors, when an aqueous solution containing these polysaccharides and an aggregate are mixed and brought into contact with a solution containing divalent or higher metal ions, the aggregates become strong. A pavement showing excellent strength is obtained.
- the concentration of the polysaccharide in the aqueous solution of the polysaccharide contained in the binder is not particularly limited, but from the viewpoint of sufficiently covering the periphery of the aggregate and obtaining the desired adhesive strength.
- the aqueous solution of the polysaccharide preferably contains 0.1 to 20% by mass of the polysaccharide, more preferably 0.5 to 15% by mass of the polysaccharide, and 1 to 10% by mass. It is more preferable that it contains a polysaccharide. If the content of the polysaccharide in the aqueous solution is less than 0.1% by mass, it may be difficult to sufficiently cover the surface of the aggregate and exert sufficient binding force.
- the aqueous solution of such a polysaccharide has a viscosity at 20 ° C. of 300 to 120,000 cp. It is more preferably 750 to 90,000 cp, further preferably 1500 to 60,000 cp, even more preferably 3000 to 30,000 cp, but not limited to these.
- the pavement binder according to the present invention is necessary from the viewpoint of improving the adhesiveness with the aggregate, the plastic deformation resistance, the wear resistance, the bending property, etc. of the obtained pavement in a preferred embodiment.
- one or more modified components such as asphalt emulsion, modified asphalt emulsion, thermoplastic resin or rubber may be contained.
- Ethylene resins such as styrene resin, ethylene / acrylic acid copolymer (EAA), ethylene vinyl acetate copolymer (EVA), ethylene / ethyl acrylate copolymer (EEA), polyester resin, nylon resin, acrylic Examples include based resins.
- EAA ethylene / acrylic acid copolymer
- EVA ethylene vinyl acetate copolymer
- EAA ethylene / ethyl acrylate copolymer
- polyester resin nylon resin
- acrylic Examples include based resins.
- One of these thermoplastic resins may be used alone, or two or more thereof may be used in combination.
- these thermoplastic resins may be blended in
- rubber that can be blended in the paving binder of the present invention
- examples thereof include chloroprene rubber, butyl rubber, halogenated butyl rubber, chlorine-based polyethylene, chlorosulfonated polyethylene, ethylene propylene rubber, EPT rubber, alfin rubber, styrene butadiene block polymer rubber, and styrene isoprene block polymer rubber.
- chloroprene rubber butyl rubber, halogenated butyl rubber, chlorine-based polyethylene, chlorosulfonated polyethylene, ethylene propylene rubber, EPT rubber, alfin rubber, styrene butadiene block polymer rubber, and styrene isoprene block polymer rubber.
- One of these rubbers may be used alone, or two or more of them may be used in combination.
- these rubbers may be blended in the pavement binder of the present invention in whole or in part as an emulsion.
- the pavement mixture according to the present invention can be produced by mixing the pavement binder and the aggregate according to the present invention as described above.
- the pavement mixture is a mixture of an aggregate and a binder in a predetermined mixing ratio, and is a mixture used for construction of a surface layer or a base layer of pavement.
- the aggregate contained in the pavement mixture according to the present invention mainly refers to sand, gravel, crushed sand, crushed stone and the like used for pavement, but the type of aggregate that can be used for the pavement mixture according to the present invention.
- an appropriate aggregate may be selected according to the pavement construction site and construction method.
- the grain size of the aggregate if the thickness of the layer of the pavement to be constructed is relatively thin, an aggregate having a maximum grain size of No. 7 crushed stone (maximum grain size of 5 mm) may be used, while the other is When the thickness of the pavement to be constructed is relatively thick, an aggregate having a maximum particle size of No. 6 crushed stone (maximum particle size 13 mm) or No.
- crushed stone (maximum particle size 20 mm) may be used.
- the aggregate may contain a filler component in addition to sand, gravel, crushed sand, crushed stone and the like.
- filler components include stone powder, clay, talc, fly ash, rubber powder, cork powder, wood powder, resin powder, inorganic fiber, pulp, synthetic fiber, carbon fiber and the like. ..
- the content of the polysaccharide that forms a gel in contact with divalent or higher metal ions is not particularly limited, but from the viewpoint of obtaining a pavement exhibiting excellent strength, the pavement is used. It is preferably 0.125 parts by mass or more, more preferably more than 0.125 parts by mass, and more preferably 0.20 parts by mass or more with respect to 100 parts by mass of the total mass of the aggregate contained in the mixture. It is even more preferably 0.25 parts by mass or more, and even more preferably 0.25 parts by mass or more. If the blending amount of the polysaccharide with respect to 100 parts by mass of the aggregate is less than 0.125 parts by mass, the aggregate may not be sufficiently covered with the polysaccharide and the adhesive strength of the aggregate may be lowered.
- the content of the aqueous solution of the polysaccharide that forms a gel in contact with divalent or higher metal ions contained in the paving mixture according to the present invention is not particularly limited, but has excellent strength.
- the total mass of the aggregate contained in the paving mixture is 2.5 parts by mass or more in terms of the amount of water contained in the aqueous solution. It is more preferably 5 parts by mass or more, and further preferably 4.5 parts by mass or more.
- the content of water derived from the aqueous solution in the pavement mixture is 100 parts by mass of the total mass of the aggregate.
- it is preferably 2.5 parts by mass or more, more preferably 3.5 parts by mass or more, and further preferably 4.5 parts by mass or more.
- the content of the aqueous solution is 20 parts by mass or less in terms of the amount of water contained in the aqueous solution with respect to 100 parts by mass of the aggregate contained in the pavement mixture. It is more preferably 15 parts by mass or less, further preferably 12 parts by mass or less, and further preferably 10 parts by mass or less.
- the pavement mixture according to the present invention contains the polysaccharide in the form of an aqueous solution
- the content of water derived from the aqueous solution in the pavement mixture is 100 parts by mass of the total mass of the aggregate.
- it is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, further preferably 12 parts by mass or less, and further preferably 10 parts by mass or less.
- it is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, further preferably 12 parts by mass or less, and further preferably 10 parts by mass or less.
- the amount of water contained in the pavement mixture of the present invention is too large, and it is preferably 20 parts by mass or less and 15 parts by mass or less with respect to 100 parts by mass of the aggregate. It is more preferably 12 parts by mass or less, and even more preferably 10 parts by mass or less.
- an appropriate pigment may be added to the pavement mixture according to the present invention to color the mixture to a desired color tone.
- pigments include titanium oxide, carbon black, zinc oxide, lead white, graphite, cadmium red, molybdenum orange, ferric hydroxide, iron oxide yellow, chrome yellow, chromium oxide, chrome green, and ultramarine. Examples include navy blue, cobalt blue, and manganese violet.
- a heat-shielding pigment or hollow particles can be added to the pavement mixture according to the present invention, if necessary.
- the heat-shielding pigment any heat-shielding pigment used for pavement can be used.
- the solar reflectance is 10% or more, and the CIE1976L * a * b * color. Those having an L * value of 80 or less in space are preferably used.
- the constructed pavement body is effective in blocking radiant heat from the sun and the like, and particularly in suppressing the heat island phenomenon in summer.
- hollow particles for example, a ceramic balloon having a particle size of 10 to 125 ⁇ m, preferably a particle size of 25 to 80 ⁇ m, a glass balloon, a silas balloon, a balloon using a resin such as polystyrene can be used, and the present invention can be used.
- a ceramic balloon having a particle size of 10 to 125 ⁇ m, preferably a particle size of 25 to 80 ⁇ m a glass balloon, a silas balloon, a balloon using a resin such as polystyrene
- the present invention can be used.
- the road surface to be the construction site is thoroughly cleaned, and then the pavement mixture according to the present invention is manually or mechanically used.
- a predetermined amount of a curing agent that is, a solution containing divalent or higher metal ions may be sprayed at an appropriate timing.
- a solution containing divalent or higher metal ions By spraying a solution containing divalent or higher metal ions, the binder is cured and the pavement mixture layer is cured.
- the layer thickness of the pavement mixture is not particularly limited, but when a fine aggregate is used as the aggregate, it is generally preferable to finish the layer thickness to 1 to 20 mm.
- the amount of the solution containing the curing agent is not particularly limited.
- the amount is preferably 10 to 1000 g, more preferably 20 to 500 g, and even more preferably 50 to 200 g per 1 kg of the aggregate of the mixture.
- the pavement mixture according to the present invention exhibits excellent strength immediately after spraying an aqueous solution containing divalent or higher metal ions as a curing agent, and is therefore particularly preferably used for repairing road surfaces that require early traffic opening. However, it can be widely used for road construction regardless of whether it is new or repaired. It should be noted that the pavement mixture according to the present invention is of course applicable to general roads, but is not limited to general roads, and is not limited to general roads, but is not limited to general roads. Of course, it can also be applied to pavements such as airfields, port facilities, open spaces attached to public halls, and sidewalks.
- test samples 1 to 7 having different amounts of the aqueous alginic acid mixture.
- rice field All of the above work was performed at room temperature (about 20 ° C.).
- a room temperature asphalt mixture using a conventionally widely used cutback asphalt as a binder product name "Rescue Patch (registered trademark)", sold by Nichireki Co., Ltd.) (hereinafter, "Control sample 1") was used.
- test samples 1 to 7 were put into a mold and compacted a predetermined number of times by a martial hammer.
- a 10% by mass calcium chloride aqueous solution was sprayed onto the molded products of the test samples 1 to 7 in the mold so as to have a spraying amount of 100 g per 1 kg of the aggregate.
- Test samples 1 to 7 were taken out from the mold, cured for 3 days, and then used as a specimen for martial stability measurement. An example of the specimen thus obtained is shown in FIG. All the above work was performed at room temperature (about 20 ° C.).
- the specimen of the control sample 1 was prepared in the same manner as the above procedure except that the procedure of spraying the calcium chloride aqueous solution after compaction was not performed.
- the specimen obtained as described above was placed on the lower loading head of the pair of cylindrical loading heads with the side surface of the cylinder horizontal, and the specimen was placed on the loading device by covering it with the upper loading head. ..
- the specimen was sandwiched between the upper and lower loading heads, a load was applied in the radial direction of the specimen, and the maximum load (kN) measured until the load began to decrease was taken as the martial stability.
- the results obtained are shown in Table 2.
- the Marshall stability of the specimen obtained from the pavement mixture (test sample 1) containing 2.5 parts by mass of a 5% by mass arginic acid aqueous solution with respect to 100 parts by mass of the aggregate remained at 0.6 kN, which was a control.
- the Marshall stability of the specimen obtained from Sample 1 was significantly smaller than that of 2.8 kN.
- the test sample in which the blending amount of the 5% by mass alginic acid aqueous solution with respect to 100 parts by mass of the aggregate is 7.5 parts by mass or more and 15 parts by mass or less.
- the specimens obtained from 3 to 6 have a large martial stability of 14 kN or more, and among them, the blending amount of the 5% by mass alginic acid aqueous solution with respect to 100 parts by mass of the aggregate is 7.5 parts by mass or more and 12.5 parts by mass or less.
- the specimens obtained from the test samples 3 to 5 have an even higher martial stability of 15 kN or more, and in particular, the specimens obtained from the test sample 4 in which the blending amount of the 5% by mass alginic acid aqueous solution with respect to 100 parts by mass of the aggregate is 10 parts by mass.
- the specimen had the highest martial stability of 16.8 kN. That is, when the blending amount of the 5% by mass alginic acid aqueous solution with respect to 100 parts by mass of the aggregate is preferably 7.5 parts by mass or more and 15 parts by mass or less, more preferably 7.5 parts by mass or more and 12.5 parts by mass or less. , Shows that excellent Marshall stability can be obtained.
- the above result shows that the amount of alginic acid blended with respect to 100 parts by mass of aggregate is preferably 0.375 parts by mass or more and 0.75 parts by mass or less, and more preferably 0.375 parts by mass or more and 0.625 parts by mass. It is shown that excellent Marshall stability can be obtained when the mass is less than or equal to a part.
- the sprayed divalent or higher metal ions permeate into the test piece, and the inside of the test piece is sufficient.
- the sample is hardened, it is considered that what prevents the metal ions having a divalent value or higher from sufficiently permeating into the inside of the test piece is the amount of water contained in the test piece in the first place. That is, when the amount of the alginic acid aqueous solution to be mixed with the aggregate contained in the pavement mixture is large, and as a result, the amount of water contained in the pavement mixture is too large, the sprayed divalent or higher metal ions are used as the specimen.
- the amount of water contained in the mixture is preferably 19 parts by mass or less, which is the water content of the paving mixture of the test sample 7 with respect to 100 parts by mass of the aggregate, and is the water content of the paving mixture of the test sample 6. It is judged that 15 parts by mass or less including 14.25 parts by mass is more preferable.
- the blending amount of the arginic acid aqueous solution increases with the martial stability of 13.0 of the specimen obtained from the test sample 3 in which 7.5 parts by mass of the 5 mass% arginic acid aqueous solution is blended with respect to 100 parts by mass of the aggregate.
- the Marshall stability gradually decreases, the amount of water contained in the paving mixture is contained in the paving mixture even when the curing period is relatively short, 30 minutes, for the same reason as described in the discussion in Experiment 2. It can be seen that there is a suitable value for.
- the upper limit of the amount of water contained in the paving mixture is preferably 19 parts by mass or less, which is the water content of the paving mixture of the test sample 7, with respect to 100 parts by mass of the aggregate. More preferably, 15 parts by mass or less including 14.25 parts by mass of the water content of the pavement mixture of sample 6, and 12 parts by mass including 11.875 parts by mass of the water content of the pavement mixture of test sample 5. The following is more preferable, and it is judged that 10 parts by mass or less including 9.5 parts by mass of the water content of the paving mixture of the test sample 4 is further preferable.
- the lower limit of the water content in the paving mixture exceeds 2.375 parts by mass, which is the water content of the paving mixture of the test sample 1, with respect to 100 parts by mass of the aggregate2. It is preferably .5 parts by mass or more, more preferably 3.5 parts by mass or more, and further preferably 4.5 parts by mass including 4.75 parts by mass, which is the water content of the pavement mixture of the test sample 2. It is judged that it is preferable to have more than one part.
- LM pectin product name "UNIPECTIN”
- TM OF 100C sold by Unitech Foods Co., Ltd.
- TM OF 100C sold by Unitech Foods Co., Ltd.
- TM OF 100C sold by Unitech Foods Co., Ltd.
- Test sample 8 and comparative sample 1 were prepared in the same manner as test sample 3 in Experiment 1 except that carrageenan (kappa type) (product name " SATIAGE LTM ME22", sold by Unitech Foods Co., Ltd.) was used.
- carrageenan kappa type
- 100 g per 1 kg of aggregate is used for the molded product of the test sample 8 to the comparative sample 1 in the mold in the same manner as in the procedure described in the experiment 2.
- a 10 mass% calcium chloride aqueous solution was sprayed using a mist to prepare a specimen, and the Marshall stability was evaluated.
- Table 4 shows the martial stability of the specimen obtained by using the test sample 8 and the comparative sample 1, as well as the martial stability of the specimen obtained by using the control sample 1 from Table 2. Posted and shown.
- the Marshall stability of the specimen obtained from the test sample 8 using the aqueous solution of LM pectin as a binder was 3.8 kN after 3 days of curing, and cutback asphalt was used as a binder. It was clearly higher than the Marshall stability of 2.8 kN of the specimen obtained from the conventional normal temperature asphalt mixture. This result is as good as or better than the conventional room temperature asphalt mixture even when LM pectin, which is a polysaccharide having the property of contacting with a divalent or higher metal ion and gelling, is used as in alginic acid. It shows that the Marshall stability can be obtained.
- the Marshall stability of the specimen obtained by using the comparative sample 1 using the aqueous solution of carrageenan as a binder was 0.0 kN, and its strength was extremely small.
- caraginan which has the property of gelling due to temperature dependence, that is, when the temperature drops, is used as a binder
- the mixture is prepared and the specimen is prepared at room temperature so as to be reproduced in this experiment. It is presumed that this is because the binder caraginan gelled before the aggregate and the binder were sufficiently mixed, and the aggregate was not sufficiently adhered.
- a large degree of penetration means that a large force is required when piercing the needle into the pavement mixture, and a large force is required when handling the pavement mixture, that is, workability. Means bad.
- a small degree of penetration means that the force required to pierce the pavement mixture is small, and the force required to handle the pavement mixture is small, that is, the workability is good. Means.
- the values of the obtained penetration degree are shown in Table 5.
- test samples 2 to 4 are the same as in Experiment 5 except that the curing temperature is changed from 20 ° C to 0 ° C. And the penetration degree of the control sample 1 was measured. The results are shown in Table 6.
- the penetration degree of the conventional room temperature asphalt mixture using cutback asphalt as a binder was 83.3 N at 0 ° C., which was about three times higher than the penetration degree at 20 ° C. This result indicates that the conventional normal temperature asphalt mixture using cutback asphalt as a binder has a remarkable deterioration in workability in a low temperature environment of about 0 ° C.
- a pavement mixture using a polysaccharide having a property of contacting with a divalent or higher metal ion such as alginic acid and gelling as a binder can be easily applied at a temperature of about 20 ° C.
- a divalent or higher metal ion such as alginic acid and gelling as a binder
- the pavement binder or the pavement mixture according to the present invention since the construction can be performed even in a low temperature environment of normal temperature or lower, there is an advantage that the construction is extremely easy in winter or cold regions. Further, according to the pavement binder or the pavement mixture according to the present invention, a pavement exhibiting excellent strength can be obtained in a relatively short time from the construction, so that the time from the construction to the opening of traffic can be shortened. Therefore, it can be said that the industrial applicability of the present invention is extremely high. Further, the pavement binder or pavement according to the present invention, which can construct a pavement exhibiting excellent strength by using a natural material, polysaccharide, as the main component of the binder, without requiring the use of petroleum resources. Mixtures are considered to contribute significantly to the construction of a sustainable society.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Road Paving Structures (AREA)
Abstract
The present invention addresses the problem of providing: a pavement mixture which can be easily handled at normal temperature or lower and which develops excellent strength in a relatively short time after being laid; and a pavement binder which can be used in this type of pavement mixture. This problem can be solved by providing: a pavement binder which is obtained by being mixed with an aggregate and which is characterized by containing a polysaccharide that forms a gel upon contact with a divalent or higher metal ion; and a pavement mixture which contains an aggregate and the pavement binder.
Description
本発明は、舗装用混合物及び舗装用結合材に関する。
The present invention relates to a pavement mixture and a pavement binder.
アスファルト舗装は最も広く用いられている舗装であり、通常、骨材とアスファルトを加熱、混合することにより得られる加熱アスファルト混合物を敷き均し、締固めることによって構築される。加熱アスファルト混合物を舗設した後に温度が低下すると、加熱アスファルト混合物に含まれるアスファルトの粘度が増大するとともに骨材同士が強固に接着され、優れた強度を有する舗装が形成される。このようにアスファルト舗装はアスファルトの温度依存的な接着挙動を巧に利用して構築されている。しかしながら、アスファルトは温度が低下すると粘度が大幅に増大する性質があるため、加熱アスファルト混合物は100℃以下の温度になると著しく取り扱い性が悪化する。したがって、加熱アスファルト混合物を用いて施工する場合、アスファルトプラントにおいて製造された加熱アスファルト混合物を高温状態のまま施工場所まで運搬するか、又は、施工場所にて再加熱して使用しなければならず、大変な手間とコストを要するものであった。
Asphalt pavement is the most widely used pavement and is usually constructed by spreading and compacting a heated asphalt mixture obtained by heating and mixing aggregate and asphalt. When the temperature drops after the heated asphalt mixture is laid, the viscosity of the asphalt contained in the heated asphalt mixture increases and the aggregates are firmly adhered to each other to form a pavement having excellent strength. In this way, asphalt pavement is constructed by skillfully utilizing the temperature-dependent adhesive behavior of asphalt. However, since asphalt has a property that the viscosity increases significantly when the temperature decreases, the handleability of the heated asphalt mixture deteriorates remarkably when the temperature becomes 100 ° C. or lower. Therefore, when constructing using a heated asphalt mixture, the heated asphalt mixture produced in the asphalt plant must be transported to the construction site in a high temperature state or reheated at the construction site before use. It was very laborious and costly.
一方、100℃以下の温度でも施工できるアスファルト混合物として、カットバックアスファルトを用いた常温アスファルト混合物が提案されている。カットバックアスファルトとは、アスファルトと揮発性の油分であるカットバック剤(例えば、ガソリン、ケロシン、重油など)を混合することでアスファルトを液状にしたものであり、常温でも施工が容易であるというメリットがある。しかしながら、常温アスファルト混合物を用いて施工された舗装は、アスファルトの希釈成分であるカットバック剤が十分に揮発しなければ十分な強度を発揮できないため、加熱アスファルト混合物と比較して施工直後の強度に劣るという欠点が存在する。ところが、早期の交通開放が求められる現実の施工現場において、施工後に十分な養生時間を確保することは必ずしも容易ではない。
On the other hand, as an asphalt mixture that can be constructed even at a temperature of 100 ° C. or lower, a room temperature asphalt mixture using cutback asphalt has been proposed. Cutback asphalt is made by mixing asphalt with a cutback agent that is a volatile oil (for example, gasoline, kerosene, heavy oil, etc.) to make the asphalt liquid, and has the advantage of being easy to install even at room temperature. There is. However, pavement constructed using a room temperature asphalt mixture cannot exhibit sufficient strength unless the cutback agent, which is a diluting component of asphalt, volatilizes sufficiently, so the strength immediately after construction is higher than that of a heated asphalt mixture. There is a drawback of being inferior. However, it is not always easy to secure sufficient curing time after construction at an actual construction site where early traffic opening is required.
これに対して、早期に十分な強度を発揮するための常温アスファルト混合物は種々開発されており、例えば、特許文献1には、骨材と、アスファルト、及び、カットバック剤として、灯油と1-ブロモプロパンを含む常温アスファルト混合物が開示されている。特許文献1によれば、1-ブロモプロパンを混合することによりカットバック剤の揮発性が向上するので、当該常温アスファルト混合物は早期に十分な強度を発現できるとされている。しかしながら、特許文献1に記載の常温アスファルト混合物は、強度発現までに比較的長い期間を必要とするものであり、その硬化速度が十分であるとは言い難い。
On the other hand, various room temperature asphalt mixtures have been developed to exhibit sufficient strength at an early stage. For example, in Patent Document 1, an aggregate, asphalt, and kerosene and 1- as a cutback agent are used. A room temperature asphalt mixture containing bromopropane is disclosed. According to Patent Document 1, since the volatility of the cutback agent is improved by mixing 1-bromopropane, it is said that the room temperature asphalt mixture can exhibit sufficient strength at an early stage. However, the room temperature asphalt mixture described in Patent Document 1 requires a relatively long period of time to develop its strength, and it cannot be said that its curing rate is sufficient.
また、前述したとおり、アスファルトは温度が低下すると粘度が増加するため、骨材を接着する結合材の主成分としてアスファルトを用いる常温アスファルト混合物は、常温よりも更に低温の環境下、例えば、冬場や寒冷地等においては粘度の増加が顕著であり、施工性が悪いという欠点があった。カットバック剤の添加量を増すことにより常温アスファルト混合物の流動性を高めることが試みられているが、カットバック剤の量が増すと、それだけ長い揮発時間が必要となってしまう。本発明者らが知る限りにおいて、常温よりも低い低温でも優れた施工性を示し、且つ、施工後に短時間で十分な強度を発揮する舗装用混合物は知られていない。
Further, as described above, since the viscosity of asphalt increases as the temperature decreases, a normal temperature asphalt mixture using asphalt as the main component of the binder for adhering the aggregate is used in an environment lower than normal temperature, for example, in winter. In cold regions and the like, the increase in viscosity is remarkable, and there is a drawback that the workability is poor. Attempts have been made to increase the fluidity of the room temperature asphalt mixture by increasing the amount of the cutback agent added, but as the amount of the cutback agent increases, a longer volatilization time is required. As far as the present inventors know, there is no known pavement mixture that exhibits excellent workability even at a low temperature lower than normal temperature and exhibits sufficient strength in a short time after construction.
本発明は、上記のような従来技術の不都合を改善するために為されたものであり、常温又はそれ以下の低温でも施工性に優れ、施工から比較的短時間で優れた強度を発揮する舗装用混合物、及び、そのような舗装用混合物に用いられる舗装用結合材を提供することを課題とする。
The present invention has been made to improve the above-mentioned inconveniences of the prior art, and is excellent in workability even at room temperature or lower temperature, and pavement exhibiting excellent strength in a relatively short time after construction. It is an object of the present invention to provide a mixture for pavement and a pavement binder used for such a mixture for pavement.
物を結合する性質を示す結合材としては種々のもの知られているが、舗装に用いられる骨材同士を結合する性質を示し、しかも、車やトラックなどの交通荷重に耐える程の極めて高い強度を有する舗装を得ることができる結合材は、出願人が知る限りにおいてアスファルト以外に殆ど知られていない。このような状況のもと、本発明者らは上記課題を解決しようと鋭意研究努力を重ねる過程において、二価以上の金属イオンと接触することによりゲルを形成する性質を示す多糖類の水溶液は、常温又はそれ以下の温度においても骨材と容易に混合することができるとともに、当該多糖類の水溶液と骨材を混合して得られる混合物に前記多糖類をゲル化する作用を有する二価以上の金属イオンを含む水溶液を散布してみると速やかに骨材同士が結合され、強度の高い成形物が得られることを見出した。そして、驚くべきことに、当該成形物は、斯界で広く用いられているカットバックアスファルトを用いた常温アスファルト混合物から得られる成形物と同等以上の強度を発揮することを見出し、本発明を完成した。
Various binders are known that have the property of binding objects, but they have the property of binding aggregates used for pavement and have extremely high strength to withstand the traffic load of cars and trucks. As far as the applicant knows, little is known other than asphalt. Under these circumstances, the present inventors have made diligent research efforts to solve the above-mentioned problems, and in the process of making diligent research efforts, an aqueous solution of a polysaccharide exhibiting the property of forming a gel by contacting with a metal ion having a valence of two or more is obtained. Divalent or higher, which can be easily mixed with aggregate even at room temperature or lower, and has an action of gelling the polysaccharide in a mixture obtained by mixing an aqueous solution of the polysaccharide and the aggregate. It was found that when an aqueous solution containing the metal ions of the above was sprayed, the aggregates were quickly bonded to each other and a high-strength molded product was obtained. Surprisingly, they have found that the molded product exhibits strength equal to or higher than that obtained from a normal temperature asphalt mixture using cutback asphalt widely used in the field, and completed the present invention. ..
すなわち、本発明は、ある一側面において、骨材と結合材を含む舗装用混合物であって、前記結合材は、二価以上の金属イオンと接触してゲルを形成する多糖類を含む、舗装用混合物を提供することにより上記課題を解決するものである。好適な一態様において、前記多糖類は水溶液の形態で前記結合材に含まれているのが好ましい。
That is, the present invention is a pavement mixture containing an aggregate and a binder in one aspect, wherein the binder contains a polysaccharide that comes into contact with a divalent or higher metal ion to form a gel. The above problem is solved by providing a mixture for use. In a preferred embodiment, the polysaccharide is preferably contained in the binder in the form of an aqueous solution.
また、本発明は、他の一側面において、舗装用混合物に用いられる舗装用結合材であって、二価以上の金属イオンと接触してゲルを形成する多糖類を含む舗装用結合材を提供することにより上記課題を解決するものである。好適な一態様において、前記多糖類は水溶液の形態で舗装用結合材に含まれているのが好ましい。
The present invention also provides, in another aspect, a pavement binder used in a pavement mixture, which comprises a polysaccharide that comes into contact with a divalent or higher metal ion to form a gel. By doing so, the above problem is solved. In a preferred embodiment, the polysaccharide is preferably contained in the pavement binder in the form of an aqueous solution.
本発明によれば、常温又はそれ以下の低温でも施工性に優れ、施工から比較的短時間で優れた強度を発揮する舗装用混合物、さらにはそのような舗装用混合物に用いられる舗装用結合材が得られる。
According to the present invention, a pavement mixture that is excellent in workability even at room temperature or lower temperature and exhibits excellent strength in a relatively short time after construction, and further, a pavement binder used in such a pavement mixture. Is obtained.
以下、本発明について、より詳細に説明する。
Hereinafter, the present invention will be described in more detail.
本発明に係る舗装用結合材は、舗装用混合物に用いられる舗装用結合材であって、二価以上の金属イオンと接触してゲルを形成する多糖類を含むことを特徴とする舗装用結合材である。
The pavement binder according to the present invention is a pavement binder used in a pavement mixture and is characterized by containing a polysaccharide that forms a gel in contact with a divalent or higher metal ion. It is a material.
結合材とは、舗装体を構成する骨材同士を結合し、舗装体を固めるための成分である。結合材の働きにより骨材が接着されることによって強度のある舗装体が得られる。
The binder is a component for binding the aggregates constituting the pavement to solidify the pavement. A strong pavement can be obtained by adhering the aggregate by the action of the binder.
上述したとおり、本発明に係る舗装用結合材は、二価以上の金属イオンと接触してゲルを形成する多糖類を含んでおり、ある好適な一態様において、当該多糖類は水溶液の形態で舗装用結合材に含まれている。ここで多糖類の水溶液とは、多糖類が水を主成分とする溶媒に溶解した液体のこと、すなわち、溶媒の主成分が水である多糖類の溶液を意味し、結合材が多糖類を水溶液の形態で含んでいるとは、結合材が多糖類の水溶液を含んでいることを意味している。なお、本明細書において、溶媒の主成分が水であるとは、溶媒の50vоl%超、好ましくは75vоl%以上、より好ましくは90vоl%以上、さらに好ましくは95vоl%以上、よりさらに好ましくは100vоl%が水であることを意味する。水を溶媒の主成分として含む多糖類の水溶液を用いる本発明の一態様に係る舗装用結合材は、温度が低下しても粘性の増加が小さいため、低温でも施工性に優れるという利点がある。
As described above, the paving binder according to the present invention contains a polysaccharide that forms a gel in contact with a divalent or higher metal ion, and in one preferred embodiment, the polysaccharide is in the form of an aqueous solution. Included in paving binders. Here, the aqueous solution of polysaccharide means a liquid in which the polysaccharide is dissolved in a solvent containing water as a main component, that is, a solution of the polysaccharide in which the main component of the solvent is water, and the binder is the polysaccharide. The inclusion in the form of an aqueous solution means that the binder contains an aqueous solution of polysaccharides. In the present specification, the main component of the solvent is water, which means that the solvent is more than 50vоl%, preferably 75vоl% or more, more preferably 90vоl% or more, still more preferably 95vоl% or more, still more preferably 100vоl%. Means that is water. The paving binder according to one aspect of the present invention, which uses an aqueous solution of a polysaccharide containing water as a main component of a solvent, has an advantage of being excellent in workability even at a low temperature because the increase in viscosity is small even when the temperature is lowered. ..
一方、多糖類とは、単糖分子が多数重合した構造を有する物質であり、本発明に係る舗装用結合材に用いられる多糖類は、このような多糖類の中でも、二価以上の金属イオンと接触してゲルを形成する多糖類である。二価以上の金属イオンと接触してゲルを形成する多糖類とは、その多糖類を含む水溶液が、二価以上の金属イオンと接触する前には液状(ゾル状態)にあるのに対し、二価以上の金属イオンと接触後、例えば、前記水溶液に二価以上の金属イオンを含有する溶液を混合し、二価以上の金属イオンと多糖類とを接触させると、不溶性のゲルを形成することを意味する。このような性質を有する多糖類の水溶液は、硬化剤として機能する二価以上の金属イオンの添加前は液状であるため骨材との混合が容易である一方で、硬化剤として機能する二価以上の金属イオンと接触させることによりゲル化して骨材同士を速やかに、かつ強固に結合する。したがって、このような多糖類を、好ましくは水溶液の形態で含む本発明の一態様に係る舗装用結合材を骨材と混合して舗装用混合物とすれば、硬化剤として機能する二価以上の金属イオンとの接触時期をコントロールすることによって舗装用混合物の硬化開始時期をコントロールすることができるので、低温における優れた施工性の確保と、早期の強度発現の双方を同時に達成することができる。
On the other hand, the polysaccharide is a substance having a structure in which a large number of monosaccharide molecules are polymerized, and the polysaccharide used for the pavement binder according to the present invention is a divalent or higher metal ion among such polysaccharides. It is a polysaccharide that forms a gel in contact with. A polysaccharide that forms a gel by contacting with a divalent or higher metal ion is a solution in which the aqueous solution containing the polysaccharide is in a liquid state (sol state) before contact with a divalent or higher metal ion. After contact with a divalent or higher metal ion, for example, a solution containing a divalent or higher metal ion is mixed with the aqueous solution, and the divalent or higher metal ion is brought into contact with a polysaccharide to form an insoluble gel. Means that. An aqueous solution of a polysaccharide having such properties is liquid before the addition of a divalent or higher metal ion that functions as a curing agent, so that it can be easily mixed with aggregates, while it has a divalent function that functions as a curing agent. By contacting with the above metal ions, they gel and bond the aggregates quickly and firmly. Therefore, if the pavement binder according to one aspect of the present invention containing such a polysaccharide, preferably in the form of an aqueous solution, is mixed with an aggregate to form a pavement mixture, it has a divalent or higher valence that functions as a hardening agent. By controlling the contact time with the metal ions, it is possible to control the curing start time of the pavement mixture, so that both excellent workability at low temperature and early strength development can be achieved at the same time.
本発明に係る舗装用結合材に用いることができる多糖類は、二価以上の金属イオンと接触してゲルを形成する多糖類である限りにおいて、その種類に特段の制限はないが、例えば、アルギン酸、低メトキシ化ペクチン(LMペクチン)、カルボキシメチルセルロース(CMC)、ジェランガム、及び、それらの誘導体が好適に用いられ、より好適には、アルギン酸及び低メトキシ化ペクチン(LMペクチン)、さらに好適には、アルギン酸が用いられ得る。これらの多糖類は、単独で用いても良いし、2種以上を併用しても良い。また、これらの多糖類は、必要に応じて、その塩の形態で用いられても良いことは言うまでもなく、例えば、多糖類の一価のカチオン塩(ナトリウム塩、カリウム塩、アンモニウム塩など)は水に対する溶解性が高いため、多糖類の水溶液を調製する上で好適に用いることができる。
The type of the polysaccharide that can be used in the paving binder according to the present invention is not particularly limited as long as it is a polysaccharide that forms a gel in contact with divalent or higher metal ions, but for example. Alginic acid, hypomethoxyated pectin (LM pectin), carboxymethyl cellulose (CMC), gellan gum, and derivatives thereof are preferably used, more preferably alginic acid and hypomethoxyated pectin (LM pectin), and more preferably. , Alginic acid can be used. These polysaccharides may be used alone or in combination of two or more. Needless to say, these polysaccharides may be used in the form of salts thereof, if necessary, and for example, monovalent cation salts of polysaccharides (sodium salt, potassium salt, ammonium salt, etc.) may be used. Since it is highly soluble in water, it can be suitably used for preparing an aqueous solution of a polysaccharide.
ちなみに、アルギン酸とは、昆布やワカメなどの褐藻類等に豊富に含まれ、マヌロン酸及びグルロン酸が重合した構造を有する天然の多糖類である。アルギン酸の水溶液は常温で液体であるのに対し、二価以上の金属イオンと接触すると不溶性のゲルを形成する。すなわち、アルギン酸は、二価以上の金属イオンと接触するとゲルを形成する多糖類であり、多糖類としてアルギン酸を用いる場合には、硬化剤として、二価以上の金属イオンを用いることができる。アルギン酸の硬化剤として用いることができる二価以上の金属イオンの種類に特段の制限はないが、例えば、カルシウムイオン(Ca2+)、マグネシウムイオン(Mg2+)、バリウムイオン(Ba2+)、アルミニウムイオン(Al3+)、ストロンチウムイオン(Sr3+)、鉄イオン(Fe3+)などが好適に用いられる。なお、これらの金属イオンは、単独で用いても良いし、2種以上を併用しても良い。
By the way, alginic acid is a natural polysaccharide that is abundantly contained in brown algae such as kelp and wakame seaweed and has a structure in which manulonic acid and gluronic acid are polymerized. An aqueous solution of alginic acid is a liquid at room temperature, but when it comes into contact with a divalent or higher metal ion, it forms an insoluble gel. That is, alginic acid is a polysaccharide that forms a gel when it comes into contact with a divalent or higher metal ion, and when alginic acid is used as the polysaccharide, a divalent or higher metal ion can be used as a curing agent. There are no particular restrictions on the types of divalent or higher metal ions that can be used as a curing agent for alginic acid, but for example, calcium ion (Ca 2+ ), magnesium ion (Mg 2+ ), barium ion (Ba 2+ ), aluminum ion. (Al 3+ ), strontium ion (Sr 3+ ), iron ion (Fe 3+ ) and the like are preferably used. These metal ions may be used alone or in combination of two or more.
低メトキシ化ペクチン(LMペクチン)とは、主に、レモン、オレンジ、グレープフルーツ、リンゴなどの果実から抽出される多糖類であり、ガラクツロン酸とそのメチルエステルであるメチル化ガラクツロン酸が重合した構造を有するペクチンの一種である。LMペクチンとはペクチンの中でもエステル化度が50%以下、換言すれば、ペクチンを構成する全ガラクツロン酸のうち、メチル化ガラクツロン酸の占める割合が50%未満のものをいう。LMペクチンの水溶液は常温で液体であるのに対し、二価以上の金属イオンと接触すると不溶性のゲルを形成する。すなわち、LMペクチンは、二価以上の金属イオンと接触するとゲルを形成する多糖類であり、多糖類としてLMペクチンを用いる場合には、硬化剤として、二価以上の金属イオンを用いることができる。LMペクチンの硬化剤として用いることができる二価以上の金属イオンの種類に特段の制限はないが、例えば、カルシウムイオン(Ca2+)やマグネシウムイオン(Mg2+)などが好適に用いられる。これらの金属イオンは、単独で用いても良いし、2種以上を併用しても良い。
Low-methoxyated pectin (LM pectin) is a polysaccharide mainly extracted from fruits such as lemon, orange, grapefruit, and apple, and has a structure in which galacturonic acid and its methyl ester, methylated galacturonic acid, are polymerized. It is a kind of pectin that has. The LM pectin is a pectin having a degree of esterification of 50% or less, in other words, a pectin in which methylated galacturonic acid accounts for less than 50% of the total galacturonic acid constituting the pectin. An aqueous solution of LM pectin is a liquid at room temperature, whereas when it comes into contact with a divalent or higher metal ion, it forms an insoluble gel. That is, LM pectin is a polysaccharide that forms a gel when it comes into contact with a divalent or higher metal ion, and when LM pectin is used as the polysaccharide, a divalent or higher metal ion can be used as a curing agent. .. There is no particular limitation on the types of divalent or higher metal ions that can be used as a curing agent for LM pectin, but for example, calcium ions (Ca 2+ ) and magnesium ions (Mg 2+ ) are preferably used. These metal ions may be used alone or in combination of two or more.
ジェランガムとは、Pseudomonas属やSphingomonas属の微生物により産生される多糖類であり、D-グルコース、D-グルクロン酸、D-グルコース、L-ラムノースの四糖の繰り返し構造を基本単位とする構造を有する。アルギン酸やLMペクチンと同様、ジェランガムの水溶液は常温で液体であるのに対し、二価以上の金属イオンと接触すると不溶性のゲルを形成する。すなわち、ジェランガムは、二価以上の金属イオンと接触するとゲルを形成する多糖類であり、多糖類としてジェランガムを用いる場合には、硬化剤として、二価以上の金属イオンを用いることができる。ジェランガムの硬化剤として用いることができる二価以上の金属イオンの種類に特段の制限はないが、例えば、カルシウムイオン(Ca2+)やマグネシウムイオン(Mg2+)などが好適に用いられる。これらの金属イオンは、単独で用いても良いし、2種以上を併用しても良い。
Gellan gum is a polysaccharide produced by microorganisms of the genus Pseudomonas and Sphingomonas, and has a structure based on the repeating structure of tetrasaccharides of D-glucose, D-glucuronic acid, D-glucose, and L-ramnorth. .. Like alginic acid and LM pectin, the aqueous solution of gellan gum is liquid at room temperature, whereas it forms an insoluble gel when it comes into contact with divalent or higher metal ions. That is, gellan gum is a polysaccharide that forms a gel when it comes into contact with a divalent or higher metal ion, and when gellan gum is used as the polysaccharide, a divalent or higher metal ion can be used as a curing agent. There is no particular limitation on the types of divalent or higher metal ions that can be used as a curing agent for gellan gum, but for example, calcium ions (Ca 2+ ) and magnesium ions (Mg 2+ ) are preferably used. These metal ions may be used alone or in combination of two or more.
カルボキシメチルセルロース(CMC)とは、セルロースを原料として製造される多糖類であり、セルロース骨格を構成するグルコピラノースのヒドロキシ基の一部がカルボキシメチル化された構造を有する。カルボキシメチルセルロースの水溶液は常温で液体であるのに対し、二価以上の金属イオンと接触すると不溶性のゲルを形成する。すなわち、カルボキシメチルセルロースは、二価以上の金属イオンと接触するとゲルを形成する多糖類であり、多糖類としてカルボキシメチルセルロースを用いる場合には、硬化剤として、二価以上の金属イオンを用いることができる。カルボキシメチルセルロースの硬化剤として用いることができる二価以上の金属イオンの種類に特段の制限はないが、例えば、カルシウムイオン(Ca2+)やアルミニウムイオン(Al3+)などが好適に用いられる。これらの金属イオンは、単独で用いても良いし、2種以上を併用しても良い。
Carboxymethyl cellulose (CMC) is a polysaccharide produced from cellulose as a raw material, and has a structure in which a part of the hydroxy group of glucopyranose constituting the cellulose skeleton is carboxymethylated. While the aqueous solution of carboxymethyl cellulose is liquid at room temperature, it forms an insoluble gel when it comes into contact with divalent or higher metal ions. That is, carboxymethyl cellulose is a polysaccharide that forms a gel when it comes into contact with a divalent or higher metal ion, and when carboxymethyl cellulose is used as the polysaccharide, a divalent or higher metal ion can be used as a curing agent. .. There is no particular limitation on the types of divalent or higher metal ions that can be used as a curing agent for carboxymethyl cellulose, but for example, calcium ions (Ca 2+ ) and aluminum ions (Al 3+ ) are preferably used. These metal ions may be used alone or in combination of two or more.
以上のとおり、アルギン酸、LMペクチン、ジェランガム、及びカルボキシメチルセルロースはいずれも二価以上の金属イオンと接触してゲルを形成する多糖類である。本発明者らが見出した知見によれば、これらの多糖類を溶解した水溶液と骨材とが混合された状態で、二価以上の金属イオンを含む溶液と接触させると、骨材同士が強固に結合され、優れた強度を示す舗装が得られる。
As described above, alginic acid, LM pectin, gellan gum, and carboxymethyl cellulose are all polysaccharides that form a gel in contact with divalent or higher metal ions. According to the findings found by the present inventors, when an aqueous solution containing these polysaccharides and an aggregate are mixed and brought into contact with a solution containing divalent or higher metal ions, the aggregates become strong. A pavement showing excellent strength is obtained.
なお、好適な一態様において、結合材に含まれる多糖類の水溶液における多糖類の濃度に特段の制限はないが、骨材の周囲を十分に被覆し、所望の接着強度を得るという観点から、多糖類の水溶液は0.1乃至20質量%の多糖類を含有していることが好ましく、0.5乃至15質量%の多糖類を含有していることがより好ましく、1乃至10質量%の多糖類を含有していることがさらに好ましい。水溶液中の多糖類の含量が0.1質量%未満になると、骨材の表面を十分に被覆して、十分な結合力を発揮することが難しくなる恐れがある。一方、水溶液中の多糖類の含量が20質量%を超えると、多糖類を含む水溶液自体の粘度が大きすぎ、骨材との混合が困難になるという不都合が生じる。また、同様に、骨材の周囲を十分に被覆し、所望の接着強度を得るという観点から、このような多糖類の水溶液は、20℃における粘度が300乃至120,000cpであることが好ましく、750乃至90,000cpであることがより好ましく、1500乃至60,000cpであることがさらに好ましく、3000乃至30,000cpであることがよりさらに好ましいが、これらに限られることはない。多糖類の水溶液の粘度が小さすぎると骨材との付着性が良好ではなく、その一方で、多糖類の水溶液の粘度が大きすぎると骨材との混合が困難になる。
In one preferred embodiment, the concentration of the polysaccharide in the aqueous solution of the polysaccharide contained in the binder is not particularly limited, but from the viewpoint of sufficiently covering the periphery of the aggregate and obtaining the desired adhesive strength. The aqueous solution of the polysaccharide preferably contains 0.1 to 20% by mass of the polysaccharide, more preferably 0.5 to 15% by mass of the polysaccharide, and 1 to 10% by mass. It is more preferable that it contains a polysaccharide. If the content of the polysaccharide in the aqueous solution is less than 0.1% by mass, it may be difficult to sufficiently cover the surface of the aggregate and exert sufficient binding force. On the other hand, if the content of the polysaccharide in the aqueous solution exceeds 20% by mass, the viscosity of the aqueous solution itself containing the polysaccharide is too high, which causes a disadvantage that it becomes difficult to mix with the aggregate. Similarly, from the viewpoint of sufficiently covering the periphery of the aggregate and obtaining a desired adhesive strength, it is preferable that the aqueous solution of such a polysaccharide has a viscosity at 20 ° C. of 300 to 120,000 cp. It is more preferably 750 to 90,000 cp, further preferably 1500 to 60,000 cp, even more preferably 3000 to 30,000 cp, but not limited to these. If the viscosity of the aqueous solution of the polysaccharide is too small, the adhesion to the aggregate is not good, while if the viscosity of the aqueous solution of the polysaccharide is too high, it becomes difficult to mix with the aggregate.
本発明に係る舗装用結合材は、好適な一態様において、骨材との接着性の向上、得られる舗装体の塑性変形抵抗性、摩耗抵抗性、たわみ性等を改善するという観点から、必要に応じて、アスファルト乳剤、改質アスファルト乳剤、熱可塑性樹脂又はゴム等の改質成分の1種又は2種以上を含んでいても良い。
The pavement binder according to the present invention is necessary from the viewpoint of improving the adhesiveness with the aggregate, the plastic deformation resistance, the wear resistance, the bending property, etc. of the obtained pavement in a preferred embodiment. Depending on the situation, one or more modified components such as asphalt emulsion, modified asphalt emulsion, thermoplastic resin or rubber may be contained.
本発明に係る舗装用結合材に配合され得る熱可塑性樹脂の種類に特段の制限はないが、例えば、スチレン・ブタジエンブロック共重合体(SBS)、スチレン・イソプレンブロック共重合体(SIS)などのスチレン系樹脂、エチレン・アクリル酸共重合体(EAA)、エチレン酢酸ビニル共重合体(EVA)、エチレン・エチルアクリレート共重合体(EEA)などのエチレン系樹脂、ポリエステル系樹脂、ナイロン系樹脂、アクリル系樹脂などが挙げられる。これらの熱可塑性樹脂は、そのいずれか1種を単独で使用しても良いし、2種以上を併用しても良い。また、これらの熱可塑性樹脂は、その全部又は一部を乳剤として、本発明の舗装用結合材に配合しても良い。
The type of thermoplastic resin that can be blended in the paving binder according to the present invention is not particularly limited, but for example, styrene / butadiene block copolymer (SBS), styrene / isoprene block copolymer (SIS), and the like. Ethylene resins such as styrene resin, ethylene / acrylic acid copolymer (EAA), ethylene vinyl acetate copolymer (EVA), ethylene / ethyl acrylate copolymer (EEA), polyester resin, nylon resin, acrylic Examples include based resins. One of these thermoplastic resins may be used alone, or two or more thereof may be used in combination. In addition, these thermoplastic resins may be blended in the pavement binder of the present invention in whole or in part as an emulsion.
一方、本発明の舗装用結合材に配合され得るゴムの種類に特段の制限はないが、例えば、天然ゴム、ガタバーチャ、環化ゴム、スチレンブタジエンゴム、スチレンイソプレンゴム、ポリイソプレンゴム、ブタジエンゴム、クロロプレンゴム、ブチルゴム、ハロゲン化ブチルゴム、塩素系ポリエチレン、クロロスルホン化ポリエチレン、エチレンプロピレンゴム、EPTゴム、アルフィンゴム、スチレンブタジエンブロック重合ゴム、スチレンイソプレンブロック重合ゴムなどが挙げられる。これらのゴムは、そのいずれか1種を単独で使用しても良いし、2種以上を併用しても良い。また、これらのゴムは、その全部又は一部を乳剤として、本発明の舗装用結合材に配合しても良い。
On the other hand, there is no particular limitation on the types of rubber that can be blended in the paving binder of the present invention, and for example, natural rubber, backlash, cyclized rubber, styrene butadiene rubber, styrene isoprene rubber, polyisoprene rubber, butadiene rubber, etc. Examples thereof include chloroprene rubber, butyl rubber, halogenated butyl rubber, chlorine-based polyethylene, chlorosulfonated polyethylene, ethylene propylene rubber, EPT rubber, alfin rubber, styrene butadiene block polymer rubber, and styrene isoprene block polymer rubber. One of these rubbers may be used alone, or two or more of them may be used in combination. In addition, these rubbers may be blended in the pavement binder of the present invention in whole or in part as an emulsion.
<舗装用混合物>
本発明に係る舗装用混合物は、上記のような本発明に係る舗装用結合材と骨材とを混合することによって製造することができる。なお、舗装用混合物とは、骨材と結合材などを所定の配合割合で混合したものであり、舗装の表層あるいは基層などの施工に用いられる混合物である。 <Pavement mixture>
The pavement mixture according to the present invention can be produced by mixing the pavement binder and the aggregate according to the present invention as described above. The pavement mixture is a mixture of an aggregate and a binder in a predetermined mixing ratio, and is a mixture used for construction of a surface layer or a base layer of pavement.
本発明に係る舗装用混合物は、上記のような本発明に係る舗装用結合材と骨材とを混合することによって製造することができる。なお、舗装用混合物とは、骨材と結合材などを所定の配合割合で混合したものであり、舗装の表層あるいは基層などの施工に用いられる混合物である。 <Pavement mixture>
The pavement mixture according to the present invention can be produced by mixing the pavement binder and the aggregate according to the present invention as described above. The pavement mixture is a mixture of an aggregate and a binder in a predetermined mixing ratio, and is a mixture used for construction of a surface layer or a base layer of pavement.
本発明に係る舗装用混合物が含有する骨材とは、主に、舗装に用いられる砂、砂利、砕砂、砕石等を指すが、本発明に係る舗装用混合物に用いることができる骨材の種類に特段の制限はなく、舗装の施工場所、施工方法に応じて適宜の骨材を選択すれば良い。例えば、骨材の粒径に関して言えば、構築する舗装の層の厚みが比較的薄い場合には、7号砕石(最大粒径5mm)を最大粒径とする骨材を用いても良く、他方で、構築する舗装の厚みが比較的厚い場合には、6号砕石(最大粒径13mm)や5号砕石(最大粒径20mm)を最大粒径とする骨材を用いても良い。また、骨材は、砂、砂利、砕砂、砕石等に加えてフィラー成分を含んでいても良い。このようなフィラー成分としては、例えば、石粉、クレー、タルク、フライアッシュ、ゴム粉粒、コルク粉粒、木質粉粒、樹脂粉粒、無機繊維、パルプ、合成繊維、炭素繊維等などが挙げられる。
The aggregate contained in the pavement mixture according to the present invention mainly refers to sand, gravel, crushed sand, crushed stone and the like used for pavement, but the type of aggregate that can be used for the pavement mixture according to the present invention. There are no particular restrictions on the above, and an appropriate aggregate may be selected according to the pavement construction site and construction method. For example, regarding the grain size of the aggregate, if the thickness of the layer of the pavement to be constructed is relatively thin, an aggregate having a maximum grain size of No. 7 crushed stone (maximum grain size of 5 mm) may be used, while the other is When the thickness of the pavement to be constructed is relatively thick, an aggregate having a maximum particle size of No. 6 crushed stone (maximum particle size 13 mm) or No. 5 crushed stone (maximum particle size 20 mm) may be used. Further, the aggregate may contain a filler component in addition to sand, gravel, crushed sand, crushed stone and the like. Examples of such filler components include stone powder, clay, talc, fly ash, rubber powder, cork powder, wood powder, resin powder, inorganic fiber, pulp, synthetic fiber, carbon fiber and the like. ..
本発明に係る舗装用混合物において、二価以上の金属イオンと接触してゲルを形成する前記多糖類の含量に特段の制限はないが、優れた強度を示す舗装体を得るという観点から、舗装用混合物が含む骨材の総質量100質量部に対して0.125質量部以上であることが好ましく、0.125質量部超であることがより好ましく、0.20質量部以上であることがさらに好ましく、0.25質量部以上であることがよりさらに好ましい。骨材100質量部に対する多糖類の配合量が0.125質量部未満であると、骨材が十分に前記多糖類によって被覆されず、骨材の接着強度が低くなる恐れがある。
In the pavement mixture according to the present invention, the content of the polysaccharide that forms a gel in contact with divalent or higher metal ions is not particularly limited, but from the viewpoint of obtaining a pavement exhibiting excellent strength, the pavement is used. It is preferably 0.125 parts by mass or more, more preferably more than 0.125 parts by mass, and more preferably 0.20 parts by mass or more with respect to 100 parts by mass of the total mass of the aggregate contained in the mixture. It is even more preferably 0.25 parts by mass or more, and even more preferably 0.25 parts by mass or more. If the blending amount of the polysaccharide with respect to 100 parts by mass of the aggregate is less than 0.125 parts by mass, the aggregate may not be sufficiently covered with the polysaccharide and the adhesive strength of the aggregate may be lowered.
一方、好適な一態様において、本発明に係る舗装用混合物に含まれる二価以上の金属イオンと接触してゲルを形成する多糖類の前記水溶液の含量に特段の制限はないが、優れた強度を示す舗装を得るという観点から、舗装用混合物が含む骨材の総質量100質量部に対して、前記水溶液に含まれる水分量換算で、2.5質量部以上であることが好ましく、3.5質量部以上であることがより好ましく、4.5質量部以上であることがさらに好ましい。換言すれば、本発明に係る舗装用混合物に、前記多糖類が水溶液の形態で含まれる場合には、前記舗装用混合物における前記水溶液に由来する水分の含量は、骨材の総質量100質量部に対して、2.5質量部以上であることが好ましく、3.5質量部以上であることがより好ましく、4.5質量部以上であることがさらに好ましいということになる。前記水溶液の含量が前記水溶液に含まれる水分量換算で2.5質量部未満であると、骨材が十分に前記多糖類を含んだ水溶液によって被覆されず、骨材同士の接着強度が低くなる恐れがある。
On the other hand, in a preferred embodiment, the content of the aqueous solution of the polysaccharide that forms a gel in contact with divalent or higher metal ions contained in the paving mixture according to the present invention is not particularly limited, but has excellent strength. From the viewpoint of obtaining the pavement showing the above, it is preferable that the total mass of the aggregate contained in the paving mixture is 2.5 parts by mass or more in terms of the amount of water contained in the aqueous solution. It is more preferably 5 parts by mass or more, and further preferably 4.5 parts by mass or more. In other words, when the pavement mixture according to the present invention contains the polysaccharide in the form of an aqueous solution, the content of water derived from the aqueous solution in the pavement mixture is 100 parts by mass of the total mass of the aggregate. On the other hand, it is preferably 2.5 parts by mass or more, more preferably 3.5 parts by mass or more, and further preferably 4.5 parts by mass or more. When the content of the aqueous solution is less than 2.5 parts by mass in terms of the amount of water contained in the aqueous solution, the aggregate is not sufficiently covered with the aqueous solution containing the polysaccharide, and the adhesive strength between the aggregates becomes low. There is a fear.
一方、同様に優れた強度を示す舗装を得るという観点から、前記水溶液の含量は、舗装用混合物が含む骨材100質量部に対して、前記水溶液に含まれる水分量換算で、20質量部以下であることが好ましく、15質量部以下であることがより好ましく、12質量部以下であることがさらに好ましく、10質量部以下であることがよりさらに好ましい。換言すれば、本発明に係る舗装用混合物に、前記多糖類が水溶液の形態で含まれる場合には、前記舗装用混合物における前記水溶液に由来する水分の含量は、骨材の総質量100質量部に対して、20質量部以下であることが好ましく、15質量部以下であることがより好ましく、12質量部以下であることがさらに好ましく、10質量部以下であることがよりさらに好ましいということになる。後述する実験例で示されるとおり、本発明者らが得た知見によれば、前記水溶液に含まれる水分量換算で、舗装用混合物における前記水溶液の含量が大きくなりすぎると、得られる舗装体の強度が小さくなる傾向にある。その理由は完全には明らかではないが、舗装用混合物中に含まれる前記水溶液に由来する水分の含量が大きすぎると、その分、舗装用混合物中に含まれる水分量が多くなるため、舗装用混合物を敷き均し、転圧した後に、二価以上の金属イオンを含む硬化剤を散布しても、散布された二価以上の金属イオンが舗装用混合物の内部まで浸透しづらくなり、舗装用混合物の内部において骨材が十分に接着されなくなるからであると推測される。すなわち、本発明の舗装用混合物に含まれる水の量が多すぎることは好ましくなく、骨材100質量部に対して、20質量部以下であることが好ましく、15質量部以下であることがより好ましく、12質量部以下であることがさらに好ましく、10質量部以下であることがよりさらに好ましい。
On the other hand, from the viewpoint of obtaining a pavement showing similarly excellent strength, the content of the aqueous solution is 20 parts by mass or less in terms of the amount of water contained in the aqueous solution with respect to 100 parts by mass of the aggregate contained in the pavement mixture. It is more preferably 15 parts by mass or less, further preferably 12 parts by mass or less, and further preferably 10 parts by mass or less. In other words, when the pavement mixture according to the present invention contains the polysaccharide in the form of an aqueous solution, the content of water derived from the aqueous solution in the pavement mixture is 100 parts by mass of the total mass of the aggregate. On the other hand, it is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, further preferably 12 parts by mass or less, and further preferably 10 parts by mass or less. Become. As shown in the experimental examples described later, according to the findings obtained by the present inventors, when the content of the aqueous solution in the pavement mixture becomes too large in terms of the amount of water contained in the aqueous solution, the obtained pavement is obtained. The strength tends to decrease. The reason is not completely clear, but if the content of the water derived from the aqueous solution contained in the pavement mixture is too large, the amount of water contained in the pavement mixture will increase accordingly, so that the pavement mixture will be used. Even if a curing agent containing divalent or higher metal ions is sprayed after the mixture is spread and leveled and compacted, the sprayed divalent or higher metal ions are difficult to penetrate into the pavement mixture, and the pavement is used. It is presumed that this is because the aggregate is not sufficiently adhered inside the mixture. That is, it is not preferable that the amount of water contained in the pavement mixture of the present invention is too large, and it is preferably 20 parts by mass or less and 15 parts by mass or less with respect to 100 parts by mass of the aggregate. It is more preferably 12 parts by mass or less, and even more preferably 10 parts by mass or less.
なお、本発明に係る舗装用混合物には、必要に応じて、適宜の顔料を添加して、所望の色調に着色しても良い。このような顔料としては、例えば、酸化チタン、カーボンブラック、酸化亜鉛、鉛白、黒鉛、カドミウムレッド、モリブデンオレンジ、水酸化第二鉄、酸化鉄黄、黄鉛、酸化クロム、クロムグリーン、群青、紺青、コバルトブルー、マンガンバイオレットなどが挙げられる。
If necessary, an appropriate pigment may be added to the pavement mixture according to the present invention to color the mixture to a desired color tone. Examples of such pigments include titanium oxide, carbon black, zinc oxide, lead white, graphite, cadmium red, molybdenum orange, ferric hydroxide, iron oxide yellow, chrome yellow, chromium oxide, chrome green, and ultramarine. Examples include navy blue, cobalt blue, and manganese violet.
また、本発明に係る舗装用混合物には、必要に応じて、遮熱顔料や中空粒子を添加することもできる。遮熱顔料としては、舗装用に用いられている遮熱顔料であればどのようなものでも使用することができるが、例えば、日射反射率が10%以上であり、CIE1976L*a*b*色空間におけるL*値が80以下のものが好適に用いられる。本発明の舗装用混合物に遮熱顔料を配合する場合には、構築された舗装体は、太陽からの輻射熱等を良く遮断し、特に夏季におけるヒートアイランド現象の抑制に効果がある。また、中空粒子としては、例えば、粒径が10~125μm、好ましくは粒径が25~80μmのセラミックバルーン、ガラスバルーン、シラスバルーン、ポリスチレン等の樹脂を用いたバルーンを用いることができ、本発明の舗装用混合物にこれら中空粒子を配合する場合には、その高い断熱性、反射性、及び照射性によって、形成される舗装体の遮熱効果が向上するという利点がある。
Further, a heat-shielding pigment or hollow particles can be added to the pavement mixture according to the present invention, if necessary. As the heat-shielding pigment, any heat-shielding pigment used for pavement can be used. For example, the solar reflectance is 10% or more, and the CIE1976L * a * b * color. Those having an L * value of 80 or less in space are preferably used. When the heat-shielding pigment is blended in the pavement mixture of the present invention, the constructed pavement body is effective in blocking radiant heat from the sun and the like, and particularly in suppressing the heat island phenomenon in summer. Further, as the hollow particles, for example, a ceramic balloon having a particle size of 10 to 125 μm, preferably a particle size of 25 to 80 μm, a glass balloon, a silas balloon, a balloon using a resin such as polystyrene can be used, and the present invention can be used. When these hollow particles are blended in the pavement mixture, there is an advantage that the heat-shielding effect of the formed pavement is improved due to its high heat insulating property, reflectivity, and irradiation property.
<舗装体の構築方法>
上記のような本発明に係る舗装用混合物を用いて舗装体を構築するには、まず、施工場所となる路面を十分に清掃したのち、本発明に係る舗装用混合物を、人力若しくは機械力によって、路面上に敷き均し、転圧した後に、適宜のタイミングで、所定量の硬化剤、すなわち二価以上の金属イオンを含む溶液を散布すれば良い。二価以上の金属イオンを含む溶液を散布することにより、結合材が硬化し、舗装用混合物層が硬化する。ここで、舗装用混合物の層厚に特に制限はないが、骨材として細骨材を使用する場合には、一般的に1~20mmの層厚に仕上げるのが好ましい。層厚をさらに厚く形成しても良いことは勿論であり、その場合には、粒径の大きな粗骨材を使用することができる。また、硬化剤を含む溶液の散布量に特段の制限はないが、例えば、多糖類としてアルギン酸、二価以上の金属イオンを含む水溶液として10質量%の塩化カルシウム水溶液を用いる場合には、舗装用混合物の骨材1kgに対して10乃至1000gとすることが好ましく、20乃至500gとすることがより好ましく、50乃至200gとすることがさらに好ましい。 <How to build a pavement>
In order to construct a pavement body using the pavement mixture according to the present invention as described above, first, the road surface to be the construction site is thoroughly cleaned, and then the pavement mixture according to the present invention is manually or mechanically used. After spreading on the road surface and rolling, a predetermined amount of a curing agent, that is, a solution containing divalent or higher metal ions may be sprayed at an appropriate timing. By spraying a solution containing divalent or higher metal ions, the binder is cured and the pavement mixture layer is cured. Here, the layer thickness of the pavement mixture is not particularly limited, but when a fine aggregate is used as the aggregate, it is generally preferable to finish the layer thickness to 1 to 20 mm. It goes without saying that the layer thickness may be further increased, and in that case, a coarse aggregate having a large particle size can be used. The amount of the solution containing the curing agent is not particularly limited. For example, when using alginic acid as the polysaccharide and 10% by mass of the calcium chloride aqueous solution as the aqueous solution containing divalent or higher metal ions, it is used for paving. The amount is preferably 10 to 1000 g, more preferably 20 to 500 g, and even more preferably 50 to 200 g per 1 kg of the aggregate of the mixture.
上記のような本発明に係る舗装用混合物を用いて舗装体を構築するには、まず、施工場所となる路面を十分に清掃したのち、本発明に係る舗装用混合物を、人力若しくは機械力によって、路面上に敷き均し、転圧した後に、適宜のタイミングで、所定量の硬化剤、すなわち二価以上の金属イオンを含む溶液を散布すれば良い。二価以上の金属イオンを含む溶液を散布することにより、結合材が硬化し、舗装用混合物層が硬化する。ここで、舗装用混合物の層厚に特に制限はないが、骨材として細骨材を使用する場合には、一般的に1~20mmの層厚に仕上げるのが好ましい。層厚をさらに厚く形成しても良いことは勿論であり、その場合には、粒径の大きな粗骨材を使用することができる。また、硬化剤を含む溶液の散布量に特段の制限はないが、例えば、多糖類としてアルギン酸、二価以上の金属イオンを含む水溶液として10質量%の塩化カルシウム水溶液を用いる場合には、舗装用混合物の骨材1kgに対して10乃至1000gとすることが好ましく、20乃至500gとすることがより好ましく、50乃至200gとすることがさらに好ましい。 <How to build a pavement>
In order to construct a pavement body using the pavement mixture according to the present invention as described above, first, the road surface to be the construction site is thoroughly cleaned, and then the pavement mixture according to the present invention is manually or mechanically used. After spreading on the road surface and rolling, a predetermined amount of a curing agent, that is, a solution containing divalent or higher metal ions may be sprayed at an appropriate timing. By spraying a solution containing divalent or higher metal ions, the binder is cured and the pavement mixture layer is cured. Here, the layer thickness of the pavement mixture is not particularly limited, but when a fine aggregate is used as the aggregate, it is generally preferable to finish the layer thickness to 1 to 20 mm. It goes without saying that the layer thickness may be further increased, and in that case, a coarse aggregate having a large particle size can be used. The amount of the solution containing the curing agent is not particularly limited. For example, when using alginic acid as the polysaccharide and 10% by mass of the calcium chloride aqueous solution as the aqueous solution containing divalent or higher metal ions, it is used for paving. The amount is preferably 10 to 1000 g, more preferably 20 to 500 g, and even more preferably 50 to 200 g per 1 kg of the aggregate of the mixture.
本発明に係る舗装用混合物は、硬化剤である二価以上の金属イオンを含む水溶液の散布後速やかに優れた強度を発揮するため、早期の交通開放が求められる路面の補修に特に好適に用いることができるが、新設、補修を問わず広く道路の施工に用いることができる。なお、本発明に係る舗装用混合物は一般道路に適用可能なことは勿論であるが、一般道路に限られず、自動車専用道路、構内道路、公園内道路、散策路、自転車道、運動場、駐車場、飛行場、港湾施設、公会堂等に付帯する広場、歩道等の舗装にも適用することができることは勿論である。
The pavement mixture according to the present invention exhibits excellent strength immediately after spraying an aqueous solution containing divalent or higher metal ions as a curing agent, and is therefore particularly preferably used for repairing road surfaces that require early traffic opening. However, it can be widely used for road construction regardless of whether it is new or repaired. It should be noted that the pavement mixture according to the present invention is of course applicable to general roads, but is not limited to general roads, and is not limited to general roads, but is not limited to general roads. Of course, it can also be applied to pavements such as airfields, port facilities, open spaces attached to public halls, and sidewalks.
以下、実験例を用いて本発明に係る舗装用結合材、及び、舗装用混合物について更に詳細に説明するが、本発明は以下の実験例によって何ら限定されるものでないことは言うまでもない。
Hereinafter, the pavement binder and the pavement mixture according to the present invention will be described in more detail using experimental examples, but it goes without saying that the present invention is not limited to the following experimental examples.
<実験1.舗装用混合物の調製>
アルギン酸ナトリウム(粘度200cp以下、株式会社舞昆のこうはら販売)を常温の水に溶解し、アルギン酸濃度5質量%のアルギン酸水溶液を調製した。得られたアルギン酸水溶液は適度な粘り気を示すものであり、骨材との混合が容易であるとともに骨材への付着性も良好であった。なお、当該アルギン酸水溶液の粘度を、常法に従ってB型粘度計(製品名「デジタル粘度計DV-3T」、AMETEK Brookfield社製)を用いて測定したところ、その粘度は20℃において15,000cpであった。次に、以下の表1に示す配合量にしたがって、7号砕石(茨城県笠間市産)、細砂(茨城県笠間市産)、及び石粉(炭酸カルシウム、菱光石灰工業株式会社販売)を混合した。得られた混合物100質量部に、表1に示す配合量にしたがって、先に調製した5質量%アルギン酸水溶液を、2.5質量部、5質量部、7.5質量部、10質量部、12.5質量部、15質量部、又は20質量部加え、骨材がアルギン酸水溶液によって十分被覆されるまで良く混合し、それぞれアルギン酸水溶液の混合量が異なる舗装用混合物(被験試料1乃至7)を得た。なお、以上の作業は全て室温(20℃程度)にて行った。また、以下の実験において、比較対象としては、従来から汎用されているカットバックアスファルトを結合材として用いた常温アスファルト混合物(製品名「レスキューパッチ(登録商標)」、ニチレキ株式会社販売)(以下、「対照試料1」ということもある)を用いた。 <Experiment 1. Preparation of pavement mixture>
Sodium alginate (viscosity 200 cp or less, sold by Maikon Kohara Co., Ltd.) was dissolved in water at room temperature to prepare an alginic acid aqueous solution having an alginic acid concentration of 5% by mass. The obtained aqueous alginic acid solution showed an appropriate stickiness, was easily mixed with the aggregate, and had good adhesion to the aggregate. The viscosity of the alginic acid aqueous solution was measured using a B-type viscometer (product name "Digital Viscometer DV-3T", manufactured by AMETEK Brookfield) according to a conventional method, and the viscosity was 15,000 cp at 20 ° C. there were. Next, according to the blending amount shown in Table 1 below, No. 7 crushed stone (produced in Kasama City, Ibaraki Prefecture), fine sand (produced in Kasama City, Ibaraki Prefecture), and stone powder (calcium carbonate, sold by Ryoko Lime Industry Co., Ltd.) Mixed. To 100 parts by mass of the obtained mixture, 2.5 parts by mass, 5 parts by mass, 7.5 parts by mass, 10 parts by mass, and 12 parts of the previously prepared 5% by mass alginic acid aqueous solution were added according to the blending amounts shown in Table 1. Add 5 parts by mass, 15 parts by mass, or 20 parts by mass and mix well until the aggregate is sufficiently covered with the aqueous alginic acid solution to obtain a paving mixture (test samples 1 to 7) having different amounts of the aqueous alginic acid mixture. rice field. All of the above work was performed at room temperature (about 20 ° C.). In the following experiments, as a comparison target, a room temperature asphalt mixture using a conventionally widely used cutback asphalt as a binder (product name "Rescue Patch (registered trademark)", sold by Nichireki Co., Ltd.) (hereinafter, "Control sample 1") was used.
アルギン酸ナトリウム(粘度200cp以下、株式会社舞昆のこうはら販売)を常温の水に溶解し、アルギン酸濃度5質量%のアルギン酸水溶液を調製した。得られたアルギン酸水溶液は適度な粘り気を示すものであり、骨材との混合が容易であるとともに骨材への付着性も良好であった。なお、当該アルギン酸水溶液の粘度を、常法に従ってB型粘度計(製品名「デジタル粘度計DV-3T」、AMETEK Brookfield社製)を用いて測定したところ、その粘度は20℃において15,000cpであった。次に、以下の表1に示す配合量にしたがって、7号砕石(茨城県笠間市産)、細砂(茨城県笠間市産)、及び石粉(炭酸カルシウム、菱光石灰工業株式会社販売)を混合した。得られた混合物100質量部に、表1に示す配合量にしたがって、先に調製した5質量%アルギン酸水溶液を、2.5質量部、5質量部、7.5質量部、10質量部、12.5質量部、15質量部、又は20質量部加え、骨材がアルギン酸水溶液によって十分被覆されるまで良く混合し、それぞれアルギン酸水溶液の混合量が異なる舗装用混合物(被験試料1乃至7)を得た。なお、以上の作業は全て室温(20℃程度)にて行った。また、以下の実験において、比較対象としては、従来から汎用されているカットバックアスファルトを結合材として用いた常温アスファルト混合物(製品名「レスキューパッチ(登録商標)」、ニチレキ株式会社販売)(以下、「対照試料1」ということもある)を用いた。 <Experiment 1. Preparation of pavement mixture>
Sodium alginate (viscosity 200 cp or less, sold by Maikon Kohara Co., Ltd.) was dissolved in water at room temperature to prepare an alginic acid aqueous solution having an alginic acid concentration of 5% by mass. The obtained aqueous alginic acid solution showed an appropriate stickiness, was easily mixed with the aggregate, and had good adhesion to the aggregate. The viscosity of the alginic acid aqueous solution was measured using a B-type viscometer (product name "Digital Viscometer DV-3T", manufactured by AMETEK Brookfield) according to a conventional method, and the viscosity was 15,000 cp at 20 ° C. there were. Next, according to the blending amount shown in Table 1 below, No. 7 crushed stone (produced in Kasama City, Ibaraki Prefecture), fine sand (produced in Kasama City, Ibaraki Prefecture), and stone powder (calcium carbonate, sold by Ryoko Lime Industry Co., Ltd.) Mixed. To 100 parts by mass of the obtained mixture, 2.5 parts by mass, 5 parts by mass, 7.5 parts by mass, 10 parts by mass, and 12 parts of the previously prepared 5% by mass alginic acid aqueous solution were added according to the blending amounts shown in Table 1. Add 5 parts by mass, 15 parts by mass, or 20 parts by mass and mix well until the aggregate is sufficiently covered with the aqueous alginic acid solution to obtain a paving mixture (test samples 1 to 7) having different amounts of the aqueous alginic acid mixture. rice field. All of the above work was performed at room temperature (about 20 ° C.). In the following experiments, as a comparison target, a room temperature asphalt mixture using a conventionally widely used cutback asphalt as a binder (product name "Rescue Patch (registered trademark)", sold by Nichireki Co., Ltd.) (hereinafter, "Control sample 1") was used.
<実験2.マーシャル安定度試験-その1->
実験1にて得られた舗装用混合物(被験試料1乃至7)を用いて供試体を作製し、マーシャル安定度を測定した。マーシャル安定度の測定は、「舗装調査・試験法便覧」、平成31年度版、5~16頁(社団法人日本道路協会)に記載されたマーシャル安定度試験法に一部改変を加え、次のようにして行った。 <Experiment 2. Marshall Stability Test-Part 1->
Specimens were prepared using the pavement mixture (test samples 1 to 7) obtained in Experiment 1, and the martial stability was measured. For the measurement of Marshall stability, the following is a partial modification of the Marshall stability test method described in "Pavement Survey / Test Method Handbook", 2019 edition, pp. 5-16 (Japan Road Association). I went like this.
実験1にて得られた舗装用混合物(被験試料1乃至7)を用いて供試体を作製し、マーシャル安定度を測定した。マーシャル安定度の測定は、「舗装調査・試験法便覧」、平成31年度版、5~16頁(社団法人日本道路協会)に記載されたマーシャル安定度試験法に一部改変を加え、次のようにして行った。 <Experiment 2. Marshall Stability Test-Part 1->
Specimens were prepared using the pavement mixture (test samples 1 to 7) obtained in Experiment 1, and the martial stability was measured. For the measurement of Marshall stability, the following is a partial modification of the Marshall stability test method described in "Pavement Survey / Test Method Handbook", 2019 edition, pp. 5-16 (Japan Road Association). I went like this.
常法に従って、所定量の被験試料1乃至7をモールドへ投入し、マーシャルハンマにより所定の回数突き固めた。次に、モールド内にある被験試料1乃至7の成形物に対して、骨材1kgに対して100gの散布量となるように10質量%塩化カルシウム水溶液を、霧吹きを用いて散布した。モールドから被験試料1乃至7を取り出し、3日間養生後、マーシャル安定度測定に供する供試体とした。このようにして得られた供試体の一例を図1に示す。以上の作業は全て室温(20℃程度)にて行った。ちなみに、対照試料1の供試体は、突き固め後に塩化カルシウム水溶液を散布する手順を行わなかったこと以外は上記の手順と同様にして作製した。
According to a conventional method, a predetermined amount of test samples 1 to 7 were put into a mold and compacted a predetermined number of times by a martial hammer. Next, a 10% by mass calcium chloride aqueous solution was sprayed onto the molded products of the test samples 1 to 7 in the mold so as to have a spraying amount of 100 g per 1 kg of the aggregate. Test samples 1 to 7 were taken out from the mold, cured for 3 days, and then used as a specimen for martial stability measurement. An example of the specimen thus obtained is shown in FIG. All the above work was performed at room temperature (about 20 ° C.). Incidentally, the specimen of the control sample 1 was prepared in the same manner as the above procedure except that the procedure of spraying the calcium chloride aqueous solution after compaction was not performed.
以上のようにして得られた供試体を、その円筒側面を水平にして、一対の円筒形の載荷ヘッドのうち下側の載荷ヘッド上に載せ、上側の載荷ヘッドをかぶせて載荷装置に設置した。上下の載荷ヘッドにより供試体を挟み込んで供試体の直径方向に荷重を加え、荷重が減少を始めるまでに測定された最大荷重(kN)をマーシャル安定度とした。得られた結果を表2に示す。
The specimen obtained as described above was placed on the lower loading head of the pair of cylindrical loading heads with the side surface of the cylinder horizontal, and the specimen was placed on the loading device by covering it with the upper loading head. .. The specimen was sandwiched between the upper and lower loading heads, a load was applied in the radial direction of the specimen, and the maximum load (kN) measured until the load began to decrease was taken as the martial stability. The results obtained are shown in Table 2.
表2に示すとおり、骨材100質量部に対して、5質量%アルギン酸水溶液を5質量部、7.5質量部、10質量部、12.5質量部、15質量部、又は20質量部配合した舗装用混合物(被験試料2乃至7)から得られた供試体のマーシャル安定度は、それぞれ10.2kN、15.1kN、16.8kN、15.1kN、14.2kN、又は11.9kNであり、カットバックアスファルトを用いた従来の常温アスファルト混合物である対照試料1のマーシャル安定度2.8kNと比較して顕著に大きかった。一方、骨材100質量部に対して、5質量%アルギン酸水溶液を2.5質量部配合した舗装用混合物(被験試料1)から得られた供試体のマーシャル安定度は0.6kNにとどまり、対照試料1から得られた供試体のマーシャル安定度2.8kNと比較して顕著に小さかった。以上の結果は、骨材100質量部に対して5質量部以上の5質量%アルギン酸水溶液、換言すれば、0.25質量部(=5質量部×0.05)以上のアルギン酸を配合した舗装用混合物から得られる供試体は、従来より用いられてきた常温アスファルト混合物から得られる供試体を上回る優れた強度を発揮することを示している。
As shown in Table 2, 5 parts by mass, 7.5 parts by mass, 10 parts by mass, 12.5 parts by mass, 15 parts by mass, or 20 parts by mass of a 5 mass% asphalt aqueous solution is blended with respect to 100 parts by mass of aggregate. The Marshall stability of the specimens obtained from the pavement mixture (test samples 2 to 7) was 10.2 kN, 15.1 kN, 16.8 kN, 15.1 kN, 14.2 kN, or 11.9 kN, respectively. The marshall stability of control sample 1, which is a conventional normal temperature asphalt mixture using cutback asphalt, was significantly higher than that of 2.8 kN. On the other hand, the Marshall stability of the specimen obtained from the pavement mixture (test sample 1) containing 2.5 parts by mass of a 5% by mass arginic acid aqueous solution with respect to 100 parts by mass of the aggregate remained at 0.6 kN, which was a control. The Marshall stability of the specimen obtained from Sample 1 was significantly smaller than that of 2.8 kN. The above results show that the pavement contains 5 parts by mass or more of a 5 mass% asphalt aqueous solution with respect to 100 parts by mass of aggregate, in other words, 0.25 parts by mass (= 5 parts by mass x 0.05) or more of asphalt. It has been shown that the specimens obtained from the mixture for use exhibit superior strength over the specimens obtained from the conventionally used normal temperature asphalt mixture.
一方、被験試料2乃至7から得られた供試体のマーシャル安定度を比較すると、骨材100質量部に対する5質量%アルギン酸水溶液の配合量が7.5質量部以上15質量部以下である被験試料3乃至6から得られた供試体はマーシャル安定度が14kN以上と大きく、その中でも骨材100質量部に対する5質量%アルギン酸水溶液の配合量が7.5質量部以上12.5質量部以下である被験試料3乃至5から得られた供試体はマーシャル安定度が15kN以上とさらに大きく、特に、骨材100質量部に対する5質量%アルギン酸水溶液の配合量が10質量部である被験試料4から得られた供試体はマーシャル安定度が16.8kNと最も大きかった。すなわち、骨材100質量部に対する5質量%アルギン酸水溶液の配合量が、好ましくは7.5質量部以上15質量部以下、より好ましくは7.5質量部以上12.5質量部以下である場合に、優れたマーシャル安定度が得られることを示している。骨材100質量部に対する5質量%アルギン酸水溶液の配合量が7.5質量部以上15質量部以下は、アルギン酸量でいえば、0.375質量部(=7.5質量部×0.05)以上0.75質量部(=15質量部×0.05)以下に相当し、7.5質量部以上12.5質量部以下は、アルギン酸量でいえば、0.375質量部(=7.5質量部×0.05)以上0.625質量部(=12.5質量部×0.05)以下に相当する。したがって、上記の結果は、換言すれば、骨材100質量部に対するアルギン酸の配合量が好ましくは0.375質量部以上0.75質量部以下、より好ましくは0.375質量部以上0.625質量部以下である場合に、優れたマーシャル安定度が得られることを示している。
On the other hand, when the Marshall stability of the specimens obtained from the test samples 2 to 7 is compared, the test sample in which the blending amount of the 5% by mass alginic acid aqueous solution with respect to 100 parts by mass of the aggregate is 7.5 parts by mass or more and 15 parts by mass or less. The specimens obtained from 3 to 6 have a large martial stability of 14 kN or more, and among them, the blending amount of the 5% by mass alginic acid aqueous solution with respect to 100 parts by mass of the aggregate is 7.5 parts by mass or more and 12.5 parts by mass or less. The specimens obtained from the test samples 3 to 5 have an even higher martial stability of 15 kN or more, and in particular, the specimens obtained from the test sample 4 in which the blending amount of the 5% by mass alginic acid aqueous solution with respect to 100 parts by mass of the aggregate is 10 parts by mass. The specimen had the highest martial stability of 16.8 kN. That is, when the blending amount of the 5% by mass alginic acid aqueous solution with respect to 100 parts by mass of the aggregate is preferably 7.5 parts by mass or more and 15 parts by mass or less, more preferably 7.5 parts by mass or more and 12.5 parts by mass or less. , Shows that excellent Marshall stability can be obtained. When the blending amount of the 5% by mass alginic acid aqueous solution with respect to 100 parts by mass of the aggregate is 7.5 parts by mass or more and 15 parts by mass or less, the amount of alginic acid is 0.375 parts by mass (= 7.5 parts by mass × 0.05). The above is equivalent to 0.75 parts by mass (= 15 parts by mass × 0.05) or less, and 7.5 parts by mass or more and 12.5 parts by mass or less is 0.375 parts by mass (= 7.) in terms of the amount of alginic acid. It corresponds to 5 parts by mass × 0.05) or more and 0.625 parts by mass (= 12.5 parts by mass × 0.05) or less. Therefore, in other words, the above result shows that the amount of alginic acid blended with respect to 100 parts by mass of aggregate is preferably 0.375 parts by mass or more and 0.75 parts by mass or less, and more preferably 0.375 parts by mass or more and 0.625 parts by mass. It is shown that excellent Marshall stability can be obtained when the mass is less than or equal to a part.
以上の結果は、本発明者らにとって意外な知見であった。アルギン酸が単純に結合材として機能すると考えると、舗装用混合物におけるアルギン酸水溶液の配合量が増えると、その分、結合材として機能するアルギン酸の配合量が増すため、骨材がより強固に接着されると考えられたからである。ところが、表2に示す結果は、アルギン酸の量が一定量を超えると、硬化後の舗装用混合物の強度が逆に低下することを示している。そこで、以上の結果の原因を究明すべく、マーシャル安定度試験を実施した後に被験試料7を用いて得られた供試体の内部を観察してみると、意外なことに、アルギン酸水溶液の配合量が多い被験試料7を用いて得られた供試体においては、供試体の表面近傍では骨材が強固に接着されているものの、供試体の内部では骨材の接着が比較的弱いことが明らかとなった。このような場所による接着力の違いが発生した原因としては、供試体の表面近傍は、結合材に含まれるアルギン酸が、散布された二価以上の金属イオンと速やかに接触し、いち早くゲル化するのに対し、供試体の内部までは散布された二価以上の金属イオンが浸透し難く、アルギン酸のゲル化が完全には進行しなかったことが考えられる。しかしながら、アルギン酸水溶液の配合量がより少ない被験試料3~5を用いて得られた供試体においては、散布された二価以上の金属イオンが供試体内部にまで浸透し、供試体内部までが十分に硬化していることを考慮すると、供試体の内部まで二価以上の金属イオンが十分に浸透することを妨げているものは、供試体がそもそも含有する水分量ではないかと考えられる。すなわち、舗装用混合物中に含まれる骨材に対するアルギン酸水溶液の配合量が多く、結果として、舗装用混合物中に含まれる水分量が多すぎる場合には、散布した二価以上の金属イオンが供試体の内部まで十分に浸透せず、アルギン酸のゲル化が十分に進行せず、十分な硬化が得られなかったのではないかと推定される。この十分に合理性のある推定と、被験試料7を用いて得られた供試体においても、対照試料1よりも大きく、10kNを上回るマーシャル安定度が得られていることを併せ考えると、舗装用混合物に含まれる水分量は、骨材100質量部に対し、被験試料7の舗装用混合物の水分含量である19質量部以下であるのが好ましく、被験試料6の舗装用混合物の水分含量である14.25質量部を包含する15質量部以下がより好ましいと判断される。
The above results were surprising findings for the present inventors. Considering that alginic acid simply functions as a binder, as the amount of the aqueous alginic acid solution in the paving mixture increases, the amount of alginic acid that functions as a binder increases by that amount, so that the aggregate is adhered more firmly. Because it was thought. However, the results shown in Table 2 show that when the amount of alginic acid exceeds a certain amount, the strength of the pavement mixture after curing decreases conversely. Therefore, in order to investigate the cause of the above results, when observing the inside of the specimen obtained by using the test sample 7 after conducting the Marshall stability test, surprisingly, the blending amount of the arginic acid aqueous solution was observed. In the specimen obtained by using the test sample 7 having a large amount of water, it is clear that the aggregate is firmly adhered near the surface of the specimen, but the adhesion of the aggregate is relatively weak inside the specimen. became. The cause of the difference in adhesive strength depending on the location is that alginic acid contained in the binder rapidly comes into contact with the sprayed divalent or higher metal ions in the vicinity of the surface of the specimen and gels quickly. On the other hand, it is considered that the sprayed metal ions having a divalent value or more were difficult to penetrate into the inside of the specimen, and the gelation of alginic acid did not completely proceed. However, in the test piece obtained by using the test samples 3 to 5 in which the amount of the alginic acid aqueous solution is smaller, the sprayed divalent or higher metal ions permeate into the test piece, and the inside of the test piece is sufficient. Considering that the sample is hardened, it is considered that what prevents the metal ions having a divalent value or higher from sufficiently permeating into the inside of the test piece is the amount of water contained in the test piece in the first place. That is, when the amount of the alginic acid aqueous solution to be mixed with the aggregate contained in the pavement mixture is large, and as a result, the amount of water contained in the pavement mixture is too large, the sprayed divalent or higher metal ions are used as the specimen. It is presumed that the alginic acid did not sufficiently penetrate into the inside of the pavement, the gelation of alginic acid did not proceed sufficiently, and sufficient curing could not be obtained. Considering this sufficiently rational estimation and the fact that the specimen obtained by using the test sample 7 is larger than the control sample 1 and has a martial stability of more than 10 kN, it is used for paving. The amount of water contained in the mixture is preferably 19 parts by mass or less, which is the water content of the paving mixture of the test sample 7 with respect to 100 parts by mass of the aggregate, and is the water content of the paving mixture of the test sample 6. It is judged that 15 parts by mass or less including 14.25 parts by mass is more preferable.
<実験3.マーシャル安定度試験-その2->
次に、本発明の一態様に係る舗装用混合物を用いて施工された舗装の施工直後の強度に関する知見を得るため、養生時間を3日間から30分に変更した以外は、実験2と同様の手順にてマーシャル安定度試験を行った。その結果を表3に示す。 <Experiment 3. Marshall Stability Test-Part 2->
Next, in order to obtain knowledge about the strength of the pavement constructed using the pavement mixture according to one aspect of the present invention immediately after construction, the same as in Experiment 2 except that the curing time was changed from 3 days to 30 minutes. A Marshall stability test was performed according to the procedure. The results are shown in Table 3.
次に、本発明の一態様に係る舗装用混合物を用いて施工された舗装の施工直後の強度に関する知見を得るため、養生時間を3日間から30分に変更した以外は、実験2と同様の手順にてマーシャル安定度試験を行った。その結果を表3に示す。 <Experiment 3. Marshall Stability Test-Part 2->
Next, in order to obtain knowledge about the strength of the pavement constructed using the pavement mixture according to one aspect of the present invention immediately after construction, the same as in Experiment 2 except that the curing time was changed from 3 days to 30 minutes. A Marshall stability test was performed according to the procedure. The results are shown in Table 3.
表3に示すとおり、骨材100質量部に対して、5質量%アルギン酸水溶液を5質量部、7.5質量部、10質量部、12.5質量部、15質量部、又は20質量部配合した舗装用混合物(被験試料2乃至7)から得られた供試体のマーシャル安定度は、30分の養生後において、既に、9.0kN、13.0kN、7.4kN、4.6kN、4.4kN、又は3.3kNまで高まっており、カットバックアスファルトを用いた従来の常温アスファルト混合物である対照試料1から得られた供試体のマーシャル安定度0.9kNと比較して明らかに大きく、対照試料1から得られた供試体の3日間の養生後におけるマーシャル安定度2.8kN(表2)と比較しても大きいものであった。この結果は、3日間養生した場合と同様に、骨材100質量部に対して5質量部以上の5質量%アルギン酸水溶液、換言すれば、0.25質量部(=5質量部×0.05)以上のアルギン酸を配合した舗装用混合物から得られる供試体によれば、従来の常温アスファルト混合物から得られる供試体を遥かに上回るスピードで所望の強度が発揮されることを示している。
As shown in Table 3, 5 parts by mass, 7.5 parts by mass, 10 parts by mass, 12.5 parts by mass, 15 parts by mass, or 20 parts by mass of a 5 mass% asphalt aqueous solution is blended with respect to 100 parts by mass of the aggregate. The Marshall stability of the specimens obtained from the pavement mixture (test samples 2 to 7) was already 9.0 kN, 13.0 kN, 7.4 kN, 4.6 kN, and 4. It has increased to 4 kN or 3.3 kN, which is clearly larger than the Marshall stability of 0.9 kN of the specimen obtained from the control sample 1 which is a conventional normal temperature asphalt mixture using cutback asphalt, and is a control sample. The Marshall stability of the specimen obtained from No. 1 after 3 days of curing was 2.8 kN (Table 2), which was also large. This result is the same as the case of curing for 3 days, 5 parts by mass or more of a 5 mass% asphalt aqueous solution with respect to 100 parts by mass of the aggregate, in other words, 0.25 parts by mass (= 5 parts by mass × 0.05). ) According to the specimen obtained from the pavement mixture containing the above alginic acid, it is shown that the desired strength is exhibited at a speed far higher than that of the specimen obtained from the conventional normal temperature asphalt mixture.
また、骨材100質量部に対し、5質量%アルギン酸水溶液を7.5質量部配合した被験試料3から得られた供試体のマーシャル安定度13.0を頂点に、アルギン酸水溶液の配合量が増えるにつれて、マーシャル安定度が徐々に低下していることを考えると、実験2における考察で述べたと同様の理由により、養生期間が30分と比較的短い場合にも、舗装用混合物に含まれる水分量には好適値があることがわかる。表3の結果からは、舗装用混合物に含まれる水分量の上限は、骨材100質量部に対し、被験試料7の舗装用混合物の水分含量である19質量部以下であるのが好ましく、被験試料6の舗装用混合物の水分含量である14.25質量部を包含する15質量部以下がより好ましく、被験試料5の舗装用混合物の水分含量である11.875質量部を包含する12質量部以下がより好ましく、被験試料4の舗装用混合物の水分含量である9.5質量部を包含する10質量部以下がさらに好ましいと判断される。一方、同じく表3の結果から、舗装用混合物に含まれる水分の含量の下限は、骨材100質量部に対し、被験試料1の舗装用混合物の水分含量である2.375質量部を上回る2.5質量部以上であるのが好ましく、より好ましくは3.5質量部以上、さらに好ましくは、被験試料2の舗装用混合物の水分含量である4.75質量部を包含する、4.5質量部以上であることが好ましいと判断される。
Further, the blending amount of the arginic acid aqueous solution increases with the martial stability of 13.0 of the specimen obtained from the test sample 3 in which 7.5 parts by mass of the 5 mass% arginic acid aqueous solution is blended with respect to 100 parts by mass of the aggregate. Considering that the Marshall stability gradually decreases, the amount of water contained in the paving mixture is contained in the paving mixture even when the curing period is relatively short, 30 minutes, for the same reason as described in the discussion in Experiment 2. It can be seen that there is a suitable value for. From the results in Table 3, the upper limit of the amount of water contained in the paving mixture is preferably 19 parts by mass or less, which is the water content of the paving mixture of the test sample 7, with respect to 100 parts by mass of the aggregate. More preferably, 15 parts by mass or less including 14.25 parts by mass of the water content of the pavement mixture of sample 6, and 12 parts by mass including 11.875 parts by mass of the water content of the pavement mixture of test sample 5. The following is more preferable, and it is judged that 10 parts by mass or less including 9.5 parts by mass of the water content of the paving mixture of the test sample 4 is further preferable. On the other hand, also from the results in Table 3, the lower limit of the water content in the paving mixture exceeds 2.375 parts by mass, which is the water content of the paving mixture of the test sample 1, with respect to 100 parts by mass of the aggregate2. It is preferably .5 parts by mass or more, more preferably 3.5 parts by mass or more, and further preferably 4.5 parts by mass including 4.75 parts by mass, which is the water content of the pavement mixture of the test sample 2. It is judged that it is preferable to have more than one part.
<実験4.アルギン酸以外の多糖類の検討>
結合材としてアルギン酸に代えて、一般的にゲル化剤として用いられる多糖類であり、アルギン酸と同様に二価以上の金属イオンと接触してゲルを形成する性質を示すLMペクチン(製品名「UNIPECTINTM OF 100C」、ユニテックフーズ株式会社販売)、又は、同じく一般的にゲル化剤として用いられる多糖類であるが、アルギン酸やLMペクチンとは対照的に温度依存的にゲルを形成する性質を示すカラギナン(カッパタイプ)(製品名「SATIAGELTM ME22」、ユニテックフーズ株式会社販売)を用いた以外は、実験1における被験試料3と同様にして、被験試料8及び比較試料1を調製した。得られた被験試料8及び比較試料1を用いて、実験2に記載した手順と同様にして、モールド内にある被験試料8乃至比較試料1の成形物に対して、骨材1kgに対して100gの散布量となるように10質量%塩化カルシウム水溶液を、霧吹きを用いて散布して供試体を作製し、マーシャル安定度を評価した。得られた結果を表4に示す。なお、比較のため、表4には被験試料8及び比較試料1を用いて得られた供試体のマーシャル安定度とともに、表2から対照試料1を用いて得られた供試体のマーシャル安定度を転記して示した。 <Experiment 4. Examination of polysaccharides other than alginic acid>
LM pectin (product name "UNIPECTIN"), which is a polysaccharide generally used as a gelling agent instead of alginic acid as a binder and has the property of forming a gel by contacting with a metal ion having a divalent value or higher like alginic acid. TM OF 100C ”, sold by Unitech Foods Co., Ltd.), or a polysaccharide that is also commonly used as a gelling agent, but exhibits the property of forming a gel in a temperature-dependent manner in contrast to alginic acid and LM pectin. Test sample 8 and comparative sample 1 were prepared in the same manner as test sample 3 in Experiment 1 except that carrageenan (kappa type) (product name " SATIAGE LTM ME22", sold by Unitech Foods Co., Ltd.) was used. Using the obtained test sample 8 and comparative sample 1, 100 g per 1 kg of aggregate is used for the molded product of the test sample 8 to the comparative sample 1 in the mold in the same manner as in the procedure described in the experiment 2. A 10 mass% calcium chloride aqueous solution was sprayed using a mist to prepare a specimen, and the Marshall stability was evaluated. The results obtained are shown in Table 4. For comparison, Table 4 shows the martial stability of the specimen obtained by using the test sample 8 and the comparative sample 1, as well as the martial stability of the specimen obtained by using the control sample 1 from Table 2. Posted and shown.
結合材としてアルギン酸に代えて、一般的にゲル化剤として用いられる多糖類であり、アルギン酸と同様に二価以上の金属イオンと接触してゲルを形成する性質を示すLMペクチン(製品名「UNIPECTINTM OF 100C」、ユニテックフーズ株式会社販売)、又は、同じく一般的にゲル化剤として用いられる多糖類であるが、アルギン酸やLMペクチンとは対照的に温度依存的にゲルを形成する性質を示すカラギナン(カッパタイプ)(製品名「SATIAGELTM ME22」、ユニテックフーズ株式会社販売)を用いた以外は、実験1における被験試料3と同様にして、被験試料8及び比較試料1を調製した。得られた被験試料8及び比較試料1を用いて、実験2に記載した手順と同様にして、モールド内にある被験試料8乃至比較試料1の成形物に対して、骨材1kgに対して100gの散布量となるように10質量%塩化カルシウム水溶液を、霧吹きを用いて散布して供試体を作製し、マーシャル安定度を評価した。得られた結果を表4に示す。なお、比較のため、表4には被験試料8及び比較試料1を用いて得られた供試体のマーシャル安定度とともに、表2から対照試料1を用いて得られた供試体のマーシャル安定度を転記して示した。 <Experiment 4. Examination of polysaccharides other than alginic acid>
LM pectin (product name "UNIPECTIN"), which is a polysaccharide generally used as a gelling agent instead of alginic acid as a binder and has the property of forming a gel by contacting with a metal ion having a divalent value or higher like alginic acid. TM OF 100C ”, sold by Unitech Foods Co., Ltd.), or a polysaccharide that is also commonly used as a gelling agent, but exhibits the property of forming a gel in a temperature-dependent manner in contrast to alginic acid and LM pectin. Test sample 8 and comparative sample 1 were prepared in the same manner as test sample 3 in Experiment 1 except that carrageenan (kappa type) (product name " SATIAGE LTM ME22", sold by Unitech Foods Co., Ltd.) was used. Using the obtained test sample 8 and comparative sample 1, 100 g per 1 kg of aggregate is used for the molded product of the test sample 8 to the comparative sample 1 in the mold in the same manner as in the procedure described in the experiment 2. A 10 mass% calcium chloride aqueous solution was sprayed using a mist to prepare a specimen, and the Marshall stability was evaluated. The results obtained are shown in Table 4. For comparison, Table 4 shows the martial stability of the specimen obtained by using the test sample 8 and the comparative sample 1, as well as the martial stability of the specimen obtained by using the control sample 1 from Table 2. Posted and shown.
表4に示すとおり、LMペクチンの水溶液を結合材として用いた被験試料8から得られた供試体のマーシャル安定度は3日の養生後において3.8kNであり、カットバックアスファルトを結合材として用いた従来の常温アスファルト混合物から得られた供試体のマーシャル安定度2.8kNと比較して明らかに大きかった。この結果は、アルギン酸と同様に、二価以上の金属イオンと接触してゲル化する性質を有する多糖類であるLMペクチンを用いた場合であっても、従来の常温アスファルト混合物と同等以上の優れたマーシャル安定度が得られることを示している。
As shown in Table 4, the Marshall stability of the specimen obtained from the test sample 8 using the aqueous solution of LM pectin as a binder was 3.8 kN after 3 days of curing, and cutback asphalt was used as a binder. It was clearly higher than the Marshall stability of 2.8 kN of the specimen obtained from the conventional normal temperature asphalt mixture. This result is as good as or better than the conventional room temperature asphalt mixture even when LM pectin, which is a polysaccharide having the property of contacting with a divalent or higher metal ion and gelling, is used as in alginic acid. It shows that the Marshall stability can be obtained.
これに対して、カラギナンの水溶液を結合材とする比較試料1を用いて得られた供試体のマーシャル安定度は0.0kNであり、その強度は極めて小さいものであった。この結果は、温度依存的に、すなわち温度低下によってゲル化する性質を有するカラギナンを結合材として用いると、本実験で再現されるように室温で混合物の調製及び供試体の作製を行う際に、骨材と結合材が十分に混ざり合う前に結合材であるカラギナンがゲル化してしまい十分に骨材が接着されなかったためであると推定される。
On the other hand, the Marshall stability of the specimen obtained by using the comparative sample 1 using the aqueous solution of carrageenan as a binder was 0.0 kN, and its strength was extremely small. This result shows that when caraginan, which has the property of gelling due to temperature dependence, that is, when the temperature drops, is used as a binder, the mixture is prepared and the specimen is prepared at room temperature so as to be reproduced in this experiment. It is presumed that this is because the binder caraginan gelled before the aggregate and the binder were sufficiently mixed, and the aggregate was not sufficiently adhered.
<実験5.施工性の評価-その1->
次に、本発明の一態様に係る舗装用混合物を用いた場合の施工性に関する知見を得るため、以下の試験を行った。まず、舗装用混合物として、実験1で調製した被験試料2乃至4のいずれか1000gを、それぞれ、直径8.5cm、深さ10.8cmの円筒状の容器(製品名「天切缶 小」、有限会社近藤製缶所製)に入れ20℃で養生した。その後、プッシュプルゲージ(製品名「RX-50」、アイコーエンジニアリング株式会社製)を使用し、容器中の舗装用混合物に対して垂直に約1cm/5sの速度でニードルを2~3cm突き刺した。その際に測定された貫入抵抗値(N)を貫入度とした。ここで、貫入度が大きいということは、舗装用混合物に対してニードルを突き刺す際に大きな力を必要とするということであり、舗装用混合物を取り扱う際に大きな力を必要とする、すなわち施工性が悪いことを意味する。一方、貫入度が小さいということは、舗装用混合物に対してニードルを突き刺す際に必要な力が小さいということであり、舗装用混合物を取り扱う際に必要な力が小さい、すなわち施工性が良いことを意味する。得られた貫入度の値を表5に示す。 <Experiment 5. Evaluation of workability-Part 1->
Next, in order to obtain knowledge on workability when the pavement mixture according to one aspect of the present invention was used, the following tests were conducted. First, as a mixture for paving, 1000 g of any of the test samples 2 to 4 prepared in Experiment 1 is placed in a cylindrical container having a diameter of 8.5 cm and a depth of 10.8 cm (product name "Tenkiri Can Small", respectively). It was placed in a Kondo Can Manufacturing Co., Ltd.) and cured at 20 ° C. Then, using a push-pull gauge (product name "RX-50", manufactured by Aiko Engineering Co., Ltd.), the needle was pierced by 2 to 3 cm at a speed of about 1 cm / 5 s perpendicularly to the pavement mixture in the container. The penetration resistance value (N) measured at that time was taken as the penetration degree. Here, a large degree of penetration means that a large force is required when piercing the needle into the pavement mixture, and a large force is required when handling the pavement mixture, that is, workability. Means bad. On the other hand, a small degree of penetration means that the force required to pierce the pavement mixture is small, and the force required to handle the pavement mixture is small, that is, the workability is good. Means. The values of the obtained penetration degree are shown in Table 5.
次に、本発明の一態様に係る舗装用混合物を用いた場合の施工性に関する知見を得るため、以下の試験を行った。まず、舗装用混合物として、実験1で調製した被験試料2乃至4のいずれか1000gを、それぞれ、直径8.5cm、深さ10.8cmの円筒状の容器(製品名「天切缶 小」、有限会社近藤製缶所製)に入れ20℃で養生した。その後、プッシュプルゲージ(製品名「RX-50」、アイコーエンジニアリング株式会社製)を使用し、容器中の舗装用混合物に対して垂直に約1cm/5sの速度でニードルを2~3cm突き刺した。その際に測定された貫入抵抗値(N)を貫入度とした。ここで、貫入度が大きいということは、舗装用混合物に対してニードルを突き刺す際に大きな力を必要とするということであり、舗装用混合物を取り扱う際に大きな力を必要とする、すなわち施工性が悪いことを意味する。一方、貫入度が小さいということは、舗装用混合物に対してニードルを突き刺す際に必要な力が小さいということであり、舗装用混合物を取り扱う際に必要な力が小さい、すなわち施工性が良いことを意味する。得られた貫入度の値を表5に示す。 <Experiment 5. Evaluation of workability-Part 1->
Next, in order to obtain knowledge on workability when the pavement mixture according to one aspect of the present invention was used, the following tests were conducted. First, as a mixture for paving, 1000 g of any of the test samples 2 to 4 prepared in Experiment 1 is placed in a cylindrical container having a diameter of 8.5 cm and a depth of 10.8 cm (product name "Tenkiri Can Small", respectively). It was placed in a Kondo Can Manufacturing Co., Ltd.) and cured at 20 ° C. Then, using a push-pull gauge (product name "RX-50", manufactured by Aiko Engineering Co., Ltd.), the needle was pierced by 2 to 3 cm at a speed of about 1 cm / 5 s perpendicularly to the pavement mixture in the container. The penetration resistance value (N) measured at that time was taken as the penetration degree. Here, a large degree of penetration means that a large force is required when piercing the needle into the pavement mixture, and a large force is required when handling the pavement mixture, that is, workability. Means bad. On the other hand, a small degree of penetration means that the force required to pierce the pavement mixture is small, and the force required to handle the pavement mixture is small, that is, the workability is good. Means. The values of the obtained penetration degree are shown in Table 5.
表5に示すとおり、20℃の温度環境において、骨材100質量部に対して、5質量%アルギン酸水溶液を5質量部、7.5質量部、又は10質量部配合した舗装用混合物(被験試料2乃至4)の貫入度は、それぞれ11.8N、11.8N、又は10.8Nであり、カットバックアスファルトを結合材として用いた従来の常温アスファルト混合物である対照試料1の貫入度29.4Nと比較して明らかに小さかった。この結果は、アルギン酸などの二価以上の金属イオンと接触してゲル化する性質を有する多糖類を結合材として用いた舗装用混合物は、20℃程度の常温環境下での施工性に極めて優れていることを示している。
As shown in Table 5, in a temperature environment of 20 ° C., a pavement mixture containing 5 parts by mass, 7.5 parts by mass, or 10 parts by mass of a 5% by mass asphalt aqueous solution with respect to 100 parts by mass of aggregate (test sample). The penetration degree of 2 to 4) is 11.8N, 11.8N, or 10.8N, respectively, and the penetration degree of the control sample 1 which is a conventional normal temperature asphalt mixture using cutback asphalt as a binder is 29.4N. It was clearly smaller than that. The results show that the paving mixture using a polysaccharide that has the property of gelling in contact with divalent or higher metal ions such as alginic acid as a binder is extremely excellent in workability in a room temperature environment of about 20 ° C. It shows that it is.
<実験6.施工性の評価-その2->
次に、本発明の一態様に係る舗装用混合物のさらに低温での施工性を評価するため、養生温度を20℃から0℃に代えた以外は、実験5と同様にして被験試料2乃至4及び対照試料1の貫入度を測定した。その結果を表6に示す。 <Experiment 6. Evaluation of workability-Part 2->
Next, in order to evaluate the workability of the paving mixture according to one aspect of the present invention at a lower temperature, the test samples 2 to 4 are the same as in Experiment 5 except that the curing temperature is changed from 20 ° C to 0 ° C. And the penetration degree of the control sample 1 was measured. The results are shown in Table 6.
次に、本発明の一態様に係る舗装用混合物のさらに低温での施工性を評価するため、養生温度を20℃から0℃に代えた以外は、実験5と同様にして被験試料2乃至4及び対照試料1の貫入度を測定した。その結果を表6に示す。 <Experiment 6. Evaluation of workability-Part 2->
Next, in order to evaluate the workability of the paving mixture according to one aspect of the present invention at a lower temperature, the test samples 2 to 4 are the same as in Experiment 5 except that the curing temperature is changed from 20 ° C to 0 ° C. And the penetration degree of the control sample 1 was measured. The results are shown in Table 6.
表6に示すとおり、骨材100質量部に対して、5質量%アルギン酸水溶液を5質量部、7.5質量部、又は10質量部配合した舗装用混合物(被験試料2乃至4)の0℃における貫入度は、それぞれ9.8N、7.8N、又は9.8Nであり、20℃における貫入度と殆ど変わらなかった。この結果は、アルギン酸などの二価以上の金属イオンと接触してゲル化する性質を有する多糖類を結合材として用いた舗装用混合物は、0℃程度の低温環境下においても施工性に優れていることを示している。これに対して、カットバックアスファルトを結合材として用いた従来の常温アスファルト混合物の0℃における貫入度は83.3Nであり、20℃における貫入度と比較して3倍程度増大していた。この結果は、カットバックアスファルトを結合材として用いた従来の常温アスファルト混合物は、0℃程度の低温環境において施工性の悪化が顕著であることを示している。
As shown in Table 6, 0 ° C. of a pavement mixture (test samples 2 to 4) containing 5 parts by mass, 7.5 parts by mass, or 10 parts by mass of a 5% by mass alginic acid aqueous solution with respect to 100 parts by mass of aggregate. The degree of penetration in was 9.8N, 7.8N, or 9.8N, respectively, which was almost the same as the degree of penetration at 20 ° C. The results show that the paving mixture using a polysaccharide having the property of gelling in contact with divalent or higher metal ions such as alginic acid as a binder has excellent workability even in a low temperature environment of about 0 ° C. It shows that there is. On the other hand, the penetration degree of the conventional room temperature asphalt mixture using cutback asphalt as a binder was 83.3 N at 0 ° C., which was about three times higher than the penetration degree at 20 ° C. This result indicates that the conventional normal temperature asphalt mixture using cutback asphalt as a binder has a remarkable deterioration in workability in a low temperature environment of about 0 ° C.
以上のとおり、アルギン酸などの二価以上の金属イオンと接触してゲル化する性質を有する多糖類を結合材として用いた舗装用混合物は、20℃程度の温度で容易に施工可能であるのみならず、例えば、冬場や寒冷地において想定されるような低温環境下においても優れた施工性を有するものである。
As described above, if a pavement mixture using a polysaccharide having a property of contacting with a divalent or higher metal ion such as alginic acid and gelling as a binder can be easily applied at a temperature of about 20 ° C. However, it has excellent workability even in a low temperature environment as expected in winter or cold regions, for example.
本発明に係る舗装用結合材又は舗装用混合物によれば、常温又はそれ以下の低温環境でも施工が可能となるため、冬場や寒冷地などでの施工が極めて容易となるという利点が得られる。また、本発明に係る舗装用結合材又は舗装用混合物によれば、施工から比較的短時間で優れた強度を発揮する舗装が得られるため、施工から交通開放までの時間を短縮することができるので、本発明の産業上の利用可能性は極めて大きいと言える。また、天然素材である多糖類を結合材の主成分として用い、石油資源の使用を必須とすることなく優れた強度を示す舗装を構築することができる本発明に係る舗装用結合材又は舗装用混合物は、持続可能な社会の構築に大きく寄与するものと考えられる。
According to the pavement binder or the pavement mixture according to the present invention, since the construction can be performed even in a low temperature environment of normal temperature or lower, there is an advantage that the construction is extremely easy in winter or cold regions. Further, according to the pavement binder or the pavement mixture according to the present invention, a pavement exhibiting excellent strength can be obtained in a relatively short time from the construction, so that the time from the construction to the opening of traffic can be shortened. Therefore, it can be said that the industrial applicability of the present invention is extremely high. Further, the pavement binder or pavement according to the present invention, which can construct a pavement exhibiting excellent strength by using a natural material, polysaccharide, as the main component of the binder, without requiring the use of petroleum resources. Mixtures are considered to contribute significantly to the construction of a sustainable society.
According to the pavement binder or the pavement mixture according to the present invention, since the construction can be performed even in a low temperature environment of normal temperature or lower, there is an advantage that the construction is extremely easy in winter or cold regions. Further, according to the pavement binder or the pavement mixture according to the present invention, a pavement exhibiting excellent strength can be obtained in a relatively short time from the construction, so that the time from the construction to the opening of traffic can be shortened. Therefore, it can be said that the industrial applicability of the present invention is extremely high. Further, the pavement binder or pavement according to the present invention, which can construct a pavement exhibiting excellent strength by using a natural material, polysaccharide, as the main component of the binder, without requiring the use of petroleum resources. Mixtures are considered to contribute significantly to the construction of a sustainable society.
Claims (10)
- 骨材と結合材を含む舗装用混合物であって、
前記結合材は、二価以上の金属イオンと接触してゲルを形成する多糖類を含むことを特徴とする舗装用混合物。 A paving mixture containing aggregates and binders
The binder is a pavement mixture comprising a polysaccharide that forms a gel in contact with a divalent or higher metal ion. - 前記多糖類がアルギン酸、低メトキシ化ペクチン、ジェランガム、カルボキシメチルセルロース及び、それらの誘導体から選ばれる1種又は2種以上を含む、請求項1に記載の舗装用混合物。 The pavement mixture according to claim 1, wherein the polysaccharide comprises one or more selected from alginic acid, hypomethoxyated pectin, gellan gum, carboxymethyl cellulose and derivatives thereof.
- 前記骨材100質量部に対する前記多糖類の含量が0.125質量部以上であることを特徴とする請求項1又は2に記載の舗装用混合物。 The pavement mixture according to claim 1 or 2, wherein the content of the polysaccharide with respect to 100 parts by mass of the aggregate is 0.125 parts by mass or more.
- 前記多糖類が水溶液の形態で含まれることを特徴とする請求項1乃至3のいずれかに記載の舗装用混合物。 The pavement mixture according to any one of claims 1 to 3, wherein the polysaccharide is contained in the form of an aqueous solution.
- 前記骨材100質量部に対する前記水溶液の含量が、前記水溶液の水分量換算で20質量部以下であることを特徴とする請求項4に記載の舗装用混合物。 The pavement mixture according to claim 4, wherein the content of the aqueous solution with respect to 100 parts by mass of the aggregate is 20 parts by mass or less in terms of the water content of the aqueous solution.
- 舗装用混合物に用いられる舗装用結合材であって、二価以上の金属イオンと接触してゲルを形成する多糖類を含むことを特徴とする舗装用結合材。 A pavement binder used in a pavement mixture, which is characterized by containing a polysaccharide that forms a gel in contact with a divalent or higher metal ion.
- 前記多糖類がアルギン酸、低メトキシ化ペクチン、ジェランガム、カルボキシメチルセルロース及び、それらの誘導体から選ばれる1種又は2種以上を含む、請求項6に記載の舗装用結合材。 The pavement binder according to claim 6, wherein the polysaccharide comprises one or more selected from alginic acid, hypomethoxyated pectin, gellan gum, carboxymethyl cellulose, and derivatives thereof.
- 前記骨材100質量部に対する前記多糖類の配合量が0.125質量部以上となるように用いられることを特徴とする請求項6又は7に記載の舗装用結合材。 The pavement binder according to claim 6 or 7, wherein the polysaccharide is used so that the blending amount of the polysaccharide is 0.125 parts by mass or more with respect to 100 parts by mass of the aggregate.
- 前記多糖類が水溶液の形態で含まれることを特徴とする請求項6乃至8のいずれかに記載の舗装用結合材。 The pavement binder according to any one of claims 6 to 8, wherein the polysaccharide is contained in the form of an aqueous solution.
- 前記骨材100質量部に対する前記水溶液の配合量が、前記水溶液の水分量換算で20質量部以下となるように用いられることを特徴とする請求項6乃至9のいずれかに記載の舗装用結合材。
The pavement bond according to any one of claims 6 to 9, wherein the aqueous solution is used so that the blending amount of the aqueous solution with respect to 100 parts by mass of the aggregate is 20 parts by mass or less in terms of the water content of the aqueous solution. Material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022574080A JPWO2022149613A1 (en) | 2021-01-08 | 2022-01-07 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021002449 | 2021-01-08 | ||
JP2021-002449 | 2021-01-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022149613A1 true WO2022149613A1 (en) | 2022-07-14 |
Family
ID=82357936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/000439 WO2022149613A1 (en) | 2021-01-08 | 2022-01-07 | Pavement mixture and pavement binder |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2022149613A1 (en) |
TW (1) | TW202241827A (en) |
WO (1) | WO2022149613A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07118626A (en) * | 1993-10-22 | 1995-05-09 | Seiki Tokyu Kogyo Kk | Antifreezing agent for paved road surface and freezeproofing method for paved road surface using the same |
JP2006070563A (en) * | 2004-09-02 | 2006-03-16 | Yamaguchi Prefecture | Composition for paving material, paving structure using this composition, composition for pavement repairing material and repairing method of paving structure |
JP2008111099A (en) * | 2006-10-02 | 2008-05-15 | Katogumi:Kk | Water retention-improving agent, method for producing water retention-improving agent, water-retentive structure, method for manufacturing water-retentive structure, and water-retaining agent |
JP2020079347A (en) * | 2018-11-12 | 2020-05-28 | 株式会社日本触媒 | Method of fixing water absorbent resin, method of producing water retention pavement, and water retention agent for porous pavement body |
JP2021031927A (en) * | 2019-08-22 | 2021-03-01 | 株式会社日本触媒 | Water retentivity imparting agent for porous pavement body and water retentive pavement manufacturing method |
-
2022
- 2022-01-07 WO PCT/JP2022/000439 patent/WO2022149613A1/en active Application Filing
- 2022-01-07 JP JP2022574080A patent/JPWO2022149613A1/ja active Pending
- 2022-01-10 TW TW111100954A patent/TW202241827A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07118626A (en) * | 1993-10-22 | 1995-05-09 | Seiki Tokyu Kogyo Kk | Antifreezing agent for paved road surface and freezeproofing method for paved road surface using the same |
JP2006070563A (en) * | 2004-09-02 | 2006-03-16 | Yamaguchi Prefecture | Composition for paving material, paving structure using this composition, composition for pavement repairing material and repairing method of paving structure |
JP2008111099A (en) * | 2006-10-02 | 2008-05-15 | Katogumi:Kk | Water retention-improving agent, method for producing water retention-improving agent, water-retentive structure, method for manufacturing water-retentive structure, and water-retaining agent |
JP2020079347A (en) * | 2018-11-12 | 2020-05-28 | 株式会社日本触媒 | Method of fixing water absorbent resin, method of producing water retention pavement, and water retention agent for porous pavement body |
JP2021031927A (en) * | 2019-08-22 | 2021-03-01 | 株式会社日本触媒 | Water retentivity imparting agent for porous pavement body and water retentive pavement manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
TW202241827A (en) | 2022-11-01 |
JPWO2022149613A1 (en) | 2022-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11072708B2 (en) | Asphalt concrete composition having improved waterproof performance by comprising SIS, recycled asphalt aggregate, and fine powder aggregate with improved particle size, and construction method using the same | |
CA2797305C (en) | Rubber asphalt and preparation method thereof | |
CA2992496C (en) | Biobased asphalt rejuvenating emulsion | |
US4822425A (en) | Aggregate stabilization | |
KR102040532B1 (en) | Modified-Asphalt Concrete Composition for Paving Road Using Petroleum Resin Added Hydrogen and Stylene Isoprene Stylene and Constructing Methods Using Thereof | |
US11046612B2 (en) | Water-impermeable waterproof asphalt concrete composition comprising styrene isoprene styrene and method of constructing integrated water-impermeable waterproof asphalt concrete pavement using the method and mixing/feeding system | |
DK2303950T3 (en) | Clear synthetic binder emulsion | |
KR101924799B1 (en) | Middle Temperature Asphalt Concrete Composition Which Comprising SIS, SBS and Aggregate-powder of Improved Grain Size for Improving Waterproof and Constructing Methods Using Thereof | |
KR102188825B1 (en) | Waterproof Asphalt Concrete Composition for Overlay Pavement Having Petroleum Resin Added Hydrogen, Stylene Isoprene Stylene and Aggregate-powder of Improved Grain Size and Constructing Methods Using Thereof | |
KR102146981B1 (en) | Highly Rut-Resistant and Water-Impermeable Modified-Asphalt Concrete Composition Using Stylene Isoprene Stylene and Petroleum Resin Added Hydrogen and Constructing Methods Using Thereof | |
JP2017523274A (en) | Asphalt coating for roofing waterproof membrane, waterproof membrane including asphalt coating, and method for making asphalt coating | |
KR102058674B1 (en) | Modified-Asphalt Concrete Composition and Constructing Methods Using Thereof | |
CN106316218B (en) | A kind of bituminous paving permanent seal cooling high-impermeable mist sealing material and preparation method thereof | |
KR102054820B1 (en) | Waterproof Asphalt Concrete Composition for Overlay Pavement Using Petroleum Resin Added Hydrogen, Stylene Isoprene Stylene and Stylene Butadien Stylene and Constructing Methods of Entire Type Waterproof for Cracks of Surface Using Thereof | |
KR102052402B1 (en) | Binder Compositions for Asphalt Concrete Using Petroleum Resin Added Hydrogen and Stylene Isoprene Stylene and Constructing Methods Using Thereof | |
JP2019163451A (en) | Asphalt coating for roofing waterproof film, waterproof film containing asphalt coating, and method for manufacturing asphalt coating | |
KR102058680B1 (en) | Modified-Asphalt Concrete Composition for Improving Waterproof and Constructing Methods Using Thereof | |
WO2022149613A1 (en) | Pavement mixture and pavement binder | |
KR101688834B1 (en) | Soil building material using biopolymer | |
CN104837898B (en) | Redispersible polymer powder | |
JP6904961B2 (en) | Foamed asphalt composition, recycled asphalt composition containing it, asphalt pavement material containing it, and method for forming asphalt pavement material using it. | |
KR102077055B1 (en) | Middle Temperature Modified-Asphalt Concrete Compositions Using Stylene Isoprene Stylene and Aggregate-powder of Improved Grain Size and Constructing Methods Using Thereof | |
KR102059837B1 (en) | Half-Elastic Modified Asphalt Concrete Composition Using Petroleum Resin Added Hydrogen and Stylene Isoprene Stylene and Constructing Repairing Method of Entire Type Waterproof for Cracks of Surface Using Thereof | |
KR102007726B1 (en) | Water-Impermeable Waterproof Asphalt Concrete Composition Comprising SIS And SBS And Constructing Methods Using Mixing System Device | |
Sun et al. | Preparation and performance evaluation of cold mix asphaltic liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22736781 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022574080 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22736781 Country of ref document: EP Kind code of ref document: A1 |