WO2022149584A1 - Peptide - Google Patents

Peptide Download PDF

Info

Publication number
WO2022149584A1
WO2022149584A1 PCT/JP2022/000144 JP2022000144W WO2022149584A1 WO 2022149584 A1 WO2022149584 A1 WO 2022149584A1 JP 2022000144 W JP2022000144 W JP 2022000144W WO 2022149584 A1 WO2022149584 A1 WO 2022149584A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
peptide
ome
rfaa
phe
Prior art date
Application number
PCT/JP2022/000144
Other languages
French (fr)
Japanese (ja)
Inventor
王明 柏木
隆 岡添
光介 相川
淳平 森本
信介 山東
峻輝 三上
Original Assignee
Agc株式会社
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社, 国立大学法人東京大学 filed Critical Agc株式会社
Publication of WO2022149584A1 publication Critical patent/WO2022149584A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2/00Peptides of undefined number of amino acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to peptides containing amino acid residues in which a fluoroalkyl group has been introduced into the side chain.
  • Antibody drugs, peptide drugs, nucleic acid drugs, etc. have the advantages of high specificity for target molecules and few side effects. However, all of them have a problem that it is difficult to reach the target molecule existing in the cell. Various methods are being studied to solve this problem. Among them, cell membrane penetrating peptides (CPP) are expected to be promising.
  • CPP cell membrane penetrating peptides
  • Typical examples of the CPP include a peptide derived from the TAT protein of the HIV virus (Patent Document 1) and a peptide having a polyArg sequence (Patent Document 2). This can be combined with the medicinal peptide to transport the medicinal peptide into the cell (for example, Patent Document 3 and Non-Patent Document 1).
  • Non-Patent Document 2 Fluorine-containing amino acids and peptides containing them are expected to be used in the pharmaceutical field as physiologically active substances.
  • Non-Patent Document 4 It is known that a compound having a polyfluoro structure is stable and low in toxicity in vivo, and is excellent in intracellular uptake and escape from endosomes. It has been reported that a peptide dendrimer using lysine in which a side chain amino group is perfluoroacylated can be used for gene delivery by utilizing this property (Non-Patent Document 5). However, since it is a dendrimer, it cannot form a hybrid that is bound to a medicinal active peptide, nucleic acid, or protein that is an antibody drug like CPP.
  • the present inventors have produced a peptide containing an amino acid residue having a fluoroalkyl group introduced into the side chain, and found that the peptide has excellent cell membrane permeability, and completed the present invention.
  • the present invention is as follows.
  • the peptide having an oxygen atom of [1] may be further substituted with a halogen atom other than the fluorine atom.
  • [3] 1 to 5 ether bonds between the carbon atoms of the C 1-30 alkyl group substituted with at least two fluorine atoms or the C 2-30 alkyl group substituted with at least two fluorine atoms.
  • the side chain having a group having an oxygen atom of is the following general formula (f-1) or (f-2).
  • Rf P is between carbon atoms of a fully halogenated C 1-10 alkyl group containing at least two or more fluorine atoms or a fully halogenated C 2-10 alkyl group containing at least two or more fluorine atoms.
  • n1 is an integer of 0 to 10
  • n2 is an integer of 0 to 9, and a black circle means a bond.
  • the peptide of the above [1] or [2] which is a group represented by.
  • [4] The peptide according to any one of [1] to [3] above, wherein the C-terminal or N-terminal may be protected by a protecting group.
  • [5] The peptide according to any one of the above [1] to [4], which is permeable to cell membranes.
  • peptide fluorescence conjugate 1 Alexa-Ala-[(R) -RFAA (C8)]-Phe-OMe, diastereomer A
  • peptide fluorescence conjugate 2 Alexa-Ala- [ (S) -RFAA (C8)]-Phe-OMe, Diasteromer B)
  • PFCJ2 Peptide Fluorescence Conjugate 5
  • PFCJ5 Peptide Fluorescence Conjugate HeLa cells treated at 37 ° C.
  • Test Example 1 the figure which showed the result of the flow cytometry of the HeLa cell treated at 37 degreeC for 4 hours in the sample solution containing peptide fluorescence conjugate 1, peptide fluorescence conjugate 2, or peptide fluorescence conjugate 3. be.
  • Test Example 1 the results of flow cytometry of HeLa cells treated at 4 ° C. for 40 minutes in a sample solution containing peptide fluorescent conjugate 1, peptide fluorescent conjugate 2, peptide fluorescent conjugate 3, or fluorescent dye 1 are shown. It is a figure shown.
  • Test Example 3 in a sample solution containing a peptide fluorescence conjugate 7, a peptide fluorescence conjugate 1, a peptide fluorescence conjugate 2, a peptide fluorescence conjugate 5, a peptide fluorescence conjugate 6, or a fluorescent dye 1, 1 at 37 ° C. It is a figure which compared the average fluorescence intensity in the flow cytometry of the time-treated HeLa cells.
  • C p1-p2 (p1 and p2 are positive integers satisfying p1 ⁇ p2) means that the number of carbon atoms is a group of p1 to p2.
  • C 1-10 alkyl group is an alkyl group having 1 to 10 carbon atoms, and may be a straight chain or a branched chain.
  • the "C 2-10 alkyl group” is an alkyl group having 2 to 10 carbon atoms, and may be a straight chain or a branched chain.
  • C 1-10 alkyl groups are methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Examples thereof include a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group and the like.
  • Docosyl group tricosyl group, tetracosyl group, pentacosyl group, hexacosyl group, heptacosyl group, octacosyl group, nonacosyl group, triacontyl group and the like.
  • C 1-6 alkyl group is an alkyl group having 1 to 6 carbon atoms, and may be a straight chain or a branched chain.
  • Examples of C 1-6 alkyl groups are methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Examples thereof include a pentyl group and a hexyl group.
  • the "C 6-14 aryl group” is an aromatic hydrocarbon group having 6 to 14 carbon atoms, and a C 6-12 aryl group is particularly preferable.
  • Examples of the C 6-14 aryl group include a phenyl group, a naphthyl group, an anthryl group, a 9-fluorenyl group and the like, and a phenyl group is particularly preferable.
  • the "optionally substituted C 6-14 aryl group” is one or more hydrogen atoms bonded to the carbon atom of the C 6-14 aryl group, preferably 1 to 1. Three are groups substituted with other functional groups. When having two or more substituents, the substituents may be the same kind or different from each other.
  • the substituents include a nitro group, a halogen atom (fluorine atom, chlorine atom, bromine atom, or iodine atom), a C 1-6 alkyl group, a C 1-6 alkoxy group, and a methylenedioxy group (-O-CH). 2 -O-) and the like can be mentioned.
  • Examples of “optionally substituted C 6-14 aryl groups” are phenyl group, naphthyl group, anthryl group, 4-nitrophenyl group, 4-methoxyphenyl group, 2,4-dimethoxyphenyl group, 3, Examples thereof include 4-dimethoxyphenyl group, 4-methylphenyl group, 2,6-dimethylphenyl group, 3-chlorophenyl group, 1,3-benzodioxol-5-yl group and the like.
  • the "C 6-14 aryl-C 1-6 alkyl group” is a C 6-14 aryl group in which one hydrogen atom bonded to the carbon atom of the C 1-6 alkyl group is used. It is a group substituted with.
  • Examples of the C 6-14 aryl group in the C 6-14 aryl -C 1-6 alkyl group include a phenyl group, a naphthyl group, an anthryl group, a 9-fluorenyl group and the like, and a phenyl group or a 9-fluorenyl group is particularly preferable. ..
  • C 1-6 alkyl group in the C 6-14 aryl-C 1-6 alkyl group a C 1-4 alkyl group is preferable.
  • Examples of the C 6-14 aryl-C 1-6 alkyl group include a benzyl group, a diphenylmethyl group, a triphenylmethyl group, a 2-phenylethyl group, a 9-anthrylmethyl group, a 9-fluorenylmethyl group and the like. Can be mentioned.
  • halogen atom means a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • the "halogen atom other than the fluorine atom” means a chlorine atom, a bromine atom, or an iodine atom.
  • a chlorine atom or a bromine atom is preferable, and a chlorine atom is particularly preferable.
  • the "ether-bonded oxygen atom” is an oxygen atom that connects carbon atoms, and does not include an oxygen atom in which oxygen atoms are connected in series.
  • the maximum number of ether-bonding oxygen atoms that an alkyl group having Nc carbon atoms (Nc is an integer of 2 or more) can have is Nc-1.
  • compound n means a compound represented by the formula (n).
  • C 1-30 alkyl group substituted with at least two fluorine atoms (the C 1-30 alkyl group is 1 to 5 between carbon atoms when the number of carbon atoms is 2 or more). It may have an ether-bonding oxygen atom) "means" a C 1-30 alkyl group substituted with at least two fluorine atoms, or a C substituted with at least two fluorine atoms. It means "a group having 1 to 5 ether-bonding oxygen atoms between carbon atoms of a 2-30 alkyl group”.
  • a peptide having a C 1-30 alkyl group substituted with at least two fluorine atoms in the side chain may be referred to as "fluoroalkyl group-containing peptide”.
  • fluoroalkyl group-containing peptide a group in which at least two hydrogen atoms bonded to a carbon atom of the C 1-30 alkyl group are substituted with a fluorine atom.
  • Rf examples include trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluorononyl group, perfluorodecyl group, Difluoromethyl group, 1,1-difluoroethyl group, 2,2-difluoroethyl group, 1,1,2,2-tetrafluoroethyl group, 1,1,2,2,3,3-hexafluoropropyl group, 1,1,2,3,3,3-hexafluoropropyl group, 1,1,2,2,3,3-hexafluorohexyl group, 1,1,2,2,3,3-hexafluorooctyl group , 1,1,2,2,3,3-hexafluorodecyl group, 1,1,2,2,3,
  • a group having 0 or 1 trifluoromethyl group is preferable to a group having 2 trifluoromethyl groups such as -2-yl group ((CF 3 ) 2 -CH-).
  • Rf is a group having 4 carbon atoms
  • a linear group is preferable as Rf, and in the case of a branched chain group, a hydrogen atom bonded to a carbon atom constituting an alkylene group portion becomes a fluorine atom. It is preferably a substituted group or a fully fluorinated group.
  • a fully halogenated C 1-10 alkyl group containing at least two or more fluorine atoms (the C 1-10 alkyl group is used between carbon atoms when the number of carbon atoms is two or more.” It may have an ether-bonding oxygen atom) "means" a fully halogenated C 1-10 alkyl group containing at least two or more fluorine atoms, or a completely halogen containing at least two or more fluorine atoms.
  • the two Rf Ps may be groups of the same kind or different groups from each other.
  • Rf P is a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, a perfluoropentyl group, or a perfluoro.
  • a hexyl group, a perfluoroheptyl group, a perfluorooctyl group, a perfluorononyl group, or a perfluorodecyl group preferably a group in which n1 is an integer of 0 to 4, and Rf P is a trifluoromethyl group, a pentafluoroethyl group, or a hepta.
  • Rf P is a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, a perfluoropentyl group, or a perfluorohexyl group, and n1 is an integer of 0 to 2 (where n1 is). 1 and excluding the group in which Rf P is a trifluoromethyl group) is more preferable.
  • Rf P is a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, a perfluoropentyl group, or a perfluoro.
  • a hexyl group, a perfluoroheptyl group, a perfluorooctyl group, a perfluorononyl group, or a perfluorodecyl group preferably a group in which n2 is an integer of 0 to 4, and Rf P is a trifluoromethyl group, a pentafluoroethyl group, or a hepta.
  • Rf P is a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, a perfluoropentyl group, or a perfluorohexyl group, and n2 is an integer of 0 to 2 (where n2 is). (Excluding the group which is 0 or 1 and Rf P is a trifluoromethyl group) is more preferable.
  • Rf are difluoromethyl group, 1,1-difluoroethyl group, 2,2-difluoroethyl group, 1,1,2,2-tetrafluoroethyl group, 1,1,2,2,3,3.
  • -It may be a hexafluoropropyl group, a 1,1,2,3,3,3-hexafluoropropyl group or the like.
  • Examples of the fluoroalkyl group-containing peptide according to the present invention include peptides containing at least one amino acid residue having an Rf side chain.
  • at least one side chain may be Rf, and the side chains of all amino acid residues may be Rf.
  • these plurality of Rfs may be the same species or different from each other.
  • the amino acid residue whose side chain is Rf may be at the N-terminal, at the C-terminal, or at a position other than the C-terminal.
  • the fluoroalkyl group-containing peptide according to the present invention may be a peptide consisting of two or more amino acids, and a peptide consisting of three or more amino acids is also preferable.
  • the fluoroalkyl group-containing peptide according to the present invention is preferably a peptide consisting of 2 to 40 amino acids, and more preferably a peptide consisting of 3 to 20 amino acids.
  • the C-terminus of the fluoroalkyl group-containing peptide according to the present invention may be protected by a protecting group.
  • the C-terminal protecting group the group listed in R 1 below can be used, and a benzyl group is preferable.
  • the N-terminal of the fluoroalkyl group-containing peptide according to the present invention may be protected by a protecting group of an amino group.
  • the N-terminal protecting group the group listed in R2 below can be used, and a Boc group or an Fmoc group is preferable.
  • the amino acid residue having no Rf in the side chain is not particularly limited, and may be an amino acid residue of ⁇ -amino acid, or ⁇ -amino acid. It may be an amino acid residue of ⁇ -amino acid, an amino acid residue of ⁇ -amino acid, or an amino acid residue of ⁇ -amino acid. Further, it may be an amino acid residue of L-amino acid or an amino acid residue of D-amino acid.
  • Amino acid residues that do not have Rf in the side chain contained in the fluoroalkyl group-containing peptide according to the present invention include amino acids constituting proteins, D-forms thereof, and modified amino acids in which these side chains are modified. It is preferably an amino acid residue.
  • amino acids constituting the protein examples include glycine, alanine, valine, leucine, isoleucine, serine, threonine, phenylalanine, tyrosine, tryptophan, aspartic acid, glutamine, proline, aspartic acid, glutamic acid, lysine, arginine, and histidine.
  • modified amino acid in which the amino acids constituting the protein are modified include the hydrogen atom of the amino group of the side chain of lysine, arginine, and histidine, the group mentioned in R2 below, and Pbf (N- ⁇ - (2).
  • Amino acid substituted with a group Amino acids substituted with an alkyl group; amino acids in which the hydrogen atom of the thiol group of cysteine is substituted with a benzyl group can be mentioned.
  • Examples of the fluoroalkyl group-containing peptide according to the present invention include tripeptides represented by the following general formula (101) or (102).
  • R 11 and R 12 are preferably C 1-6 alkyl groups or benzyl groups, respectively, and preferably methyl groups or benzyl groups, respectively. It is particularly preferred that R 11 is a methyl group and R 12 is a benzyl group.
  • X is Fmoc or Boc.
  • Z is a C 1-6 alkoxy group, and a methoxy group is particularly preferable.
  • Rf P , n1 and n2 are the same as those in the general formulas (f-1) and (f-2).
  • Rf P is preferably a fully fluorinated C 1-10 alkyl group
  • n1 or n2 is preferably an integer of 0 to 4, preferably Rf P.
  • Rf P is a nonafluorobutyl group, a perfluoropentyl group, a perfluorohexyl group, a perfluoroheptyl group, or a perfluorooctyl group, and n1 or n2 is an integer of 0 to 2.
  • the fluoroalkyl group-containing peptide according to the present invention may be carried out by a general peptide synthesis method except that a fluoroalkyl group-containing amino acid, which is an amino acid having a fluoroalkyl group introduced into a side chain, is used as a raw material amino acid.
  • a fluoroalkyl group-containing amino acid which is an amino acid having a fluoroalkyl group introduced into a side chain
  • the fluoroalkyl group-containing peptide can be easily synthesized using an automatic peptide synthesizer using an amino acid having a fluoroalkyl group introduced into the side chain as a raw material.
  • an amino acid having an Rf side chain is preferable.
  • a peptide can be produced by sequentially condensing an amino acid having an amino group protected with an amino acid having a C-terminal bonded to a solid phase and desorbing the peptide from the solid phase.
  • the amino acid raw material it is preferable to use one in which the amino group is protected by a Boc group or an Fmoc group.
  • the side chain functional group of the amino acid raw material it is preferable to use one protected by a protecting group. Examples of the protecting group of the side chain functional group include a Boc group, a triphenylmethyl group, a benzyl group, a 2,2,5,7,8-pentamethylchroman-6-sulfonyl (Pmc) group and the like.
  • Examples of the condensing agent forming a peptide bond include N, N-dicyclohexylcarbodiimide (DCC), 1-ethyl-3- (3'-dimethylaminopropyl) carbodiimide (WSC), and benzotriazole-1-yloxy-trisdimethyl.
  • DCC N-dicyclohexylcarbodiimide
  • WSC 1-ethyl-3- (3'-dimethylaminopropyl) carbodiimide
  • benzotriazole-1-yloxy-trisdimethyl benzotriazole-1-yloxy-trisdimethyl.
  • a method of activating the carboxy terminal may be used for the formation of the peptide bond, and examples of the activator include N-hydroxysuccinimide, p-nitrophenyl ester, pentafluorophenyl ester and the like.
  • the base used for forming a peptide bond include triethylamine, diisopropylethylamine (DIPEA) and the like.
  • the solvent used for the peptide bond forming reaction include chloroform, dichloromethane, acetonitrile, N, N-dimethylformamide (DMF), dimethyl sulfoxide and the like.
  • the Boc and Fmoc groups which are the protecting groups for the amino-terminal amino groups of peptides or amino acids, can be removed with trifluoroacetic acid or piperidine, respectively.
  • the protecting group of the side chain functional group of the amino acid residue of the peptide can be removed by, for example, trifluoroacetic acid, hydrogen fluoride (HF), trifluoromethanesulfonic acid or the like.
  • TFA can be used as a method for removing a peptide having a protecting group on the side chain functional group of the peptide or amino acid residue from the peptide solid phase synthetic resin.
  • Desorption of the peptide from the peptide solid phase resin and desorption of the protecting group of the side chain functional group of the amino acid residue can also be performed simultaneously in the same reaction system. Alternatively, each can be done independently.
  • Examples of the peptide solid phase synthetic resin for peptide solid phase synthesis include 4-hydroxymethyl-3-methoxyphenoxybutyic acid-benzhydrylamine-polystyrene resin, p-benzyloxybenzyl alcohol-polystyrene resin, and oxime resin, which are usually commercially available. Can be used.
  • the target peptide or its intermediate is isolated and purified by various methods such as ion chromatography, gel filtration chromatography, reverse phase chromatography, normal phase chromatography, recrystallization, extraction, and fractional crystallization. be able to.
  • the peptide thus obtained can be converted into each salt by a conventional method.
  • the protecting group of the amino group or the carboxy group of the produced fluoroalkyl group-containing peptide can also be deprotected if necessary. Deprotection can be performed by a conventional method depending on the type of protecting group.
  • the fluoroalkyl group-containing amino acid can be produced, for example, by the following synthetic reaction.
  • Rf a group represented by the general formula (f-1) or (f-2) described later is preferable.
  • R 1 is a protecting group for a carboxy group, and specifically, a group represented by the following general formula (p-1), a 2- (9,10-dioxo) anthrylmethyl group, a benzyloxymethyl group, and the like. And a protecting group selected from phenacyl groups.
  • R 3 is a optionally substituted C 6-14 aryl group
  • R 4 and R 5 are independently hydrogen atoms or optionally substituted C. It is a 6-14 aryl group.
  • the black circle means a bond.
  • R 1 is preferably a benzyl group, a triphenylmethyl group, and more preferably a benzyl group in that it can be deprotected under mild conditions.
  • R1 can be deprotected under mild conditions by using an aralkyl protecting group such as a benzyl group or a triphenylmethyl group as the protecting group R1 of the carboxy group, and the functional group of the amino acid is decomposed. It is advantageous in that it is possible to synthesize a fluorine-containing amino acid and a fluorine-containing peptide.
  • an aralkyl protecting group such as a benzyl group or a triphenylmethyl group
  • R6 is a silyl protecting group.
  • R 6 include a trimethylsilyl (TMS) group, a triethylsilyl (TES) group, a triisopropylsilyl (TIPS) group, a tert-butyldimethylsilyl (TBDMS) group, a tert-butyldiphenylsilyl (TBDPS) group and the like.
  • TMS trimethylsilyl
  • TES triethylsilyl
  • TIPS triisopropylsilyl
  • TDMS tert-butyldimethylsilyl
  • TDPS tert-butyldiphenylsilyl
  • R6 is a trimethylsilyl (TMS) group.
  • R 2 is a protecting group for the amino group.
  • R2 is not particularly limited as long as it is a protecting group for an amino group used in peptide synthesis.
  • As the protective group of the amino group tert-butoxycarbonyl (Boc) group, 9-fluorenylmethyloxycarbonyl (Fmoc) group, benzyloxycarbonyl (Cbz) group, allyloxycarbonyl (Allloc) group, 2,2 Examples thereof include a carbamate-based protective group such as a 2-trichloroethoxycarbonyl (Troc) group.
  • R2 is preferably a tert-butoxycarbonyl (Boc) group or a 9-fluorenylmethyloxycarbonyl (Fmoc) group in that it can be deprotected under mild conditions.
  • Step 1 Compound 2-2 can be obtained by reacting compound 2 and compound 8 in the presence of metal fluoride. Since the compound 8 represented by the general formula (8) Rf-R6 can be synthesized from easily available Rf-I (fluoroalkyl iodide) in one step, the range of Rf groups that can be introduced is wide.
  • alkali metal fluorides such as cesium fluoride, lithium fluoride and sodium fluoride can be used, and cesium fluoride is preferable.
  • the reaction can be carried out in a solvent inert to the reaction.
  • the solvent include inert solvents such as tetrahydrofuran (THF), dichloromethane (DCM), acetonitrile, benzene, toluene, diethyl ether, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide and the like.
  • Tetrahydrofuran is preferred.
  • the amount of compound 8 is preferably 0.5 to 10 mol with respect to 1 mol of compound 2.
  • the amount of metal fluoride is preferably 0.01 to 2 mol with respect to 1 mol of compound 2.
  • the reaction in step 1 is preferably carried out at a temperature of 10 ° C. or lower. By carrying out the reaction at a temperature of 10 ° C. or lower, compound 2-2 can be produced in high yield.
  • the reaction temperature is preferably ⁇ 78 ° C. to 10 ° C., more preferably ⁇ 50 ° C. to ⁇ 10 ° C., and particularly preferably ⁇ 40 ° C. to ⁇ 20 ° C.
  • the reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
  • Compound 2 can be produced by diesterizing oxalic acid by a known method, or a commercially available product may be used.
  • Step 1-1 In the reaction of step 1 , compound 2-1 (a compound in which one of the hydroxy groups is protected by R6) or a mixture of compound 2-2 and compound 2-1 may be obtained. In that case, compound 2-2 can be obtained by deprotecting the silyl protecting group R6 of compound 2-1.
  • the reaction of step 1-1 can be carried out in the same manner as in step 1.
  • Compound 2-2 can be obtained by deprotecting the silyl protecting group R6 of compound 2-1. Deprotection can be performed in the presence of fluoride salts such as tetrabutylammonium fluoride (TBAF), cesium fluoride, hydrofluoride salts, or acids such as hydrochloric acid, acetic acid, paratoluenesulfonic acid.
  • fluoride salts such as tetrabutylammonium fluoride (TBAF), cesium fluoride, hydrofluoride salts, or acids such as hydrochloric acid, acetic acid, paratoluenesulfonic acid.
  • the reaction can be carried out in a solvent inert to the reaction.
  • the solvent include inert solvents such as tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, diethyl ether, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, and tetrahydrofuran is preferable. It is preferable to add acetic acid.
  • the amount of the fluoride salt is preferably 0.1 to 10 mol with respect to 1 mol of compound 2-1 (in the case of a mixture of compound 2-2 and compound 2-1).
  • the amount of acid is preferably 0.1 to 10 mol with respect to 1 mol of compound 2-1 (1 mol of the mixture in the case of a mixture of compound 2-2 and compound 2-1).
  • the reaction in step 1-2 is preferably carried out at a temperature of 50 ° C. or lower. By carrying out the reaction at a temperature of 50 ° C. or lower, compound 2-2 can be produced in high yield.
  • the reaction temperature is preferably ⁇ 80 ° C. to 50 ° C., more preferably ⁇ 40 ° C. to 30 ° C., and particularly preferably ⁇ 20 ° C. to 30 ° C.
  • the reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
  • Distillation is preferably carried out at a temperature of 30 ° C to 150 ° C. If the distillation temperature is too high, compound 3 may decompose. If the distillation temperature is too low, compound 3 cannot be condensed and the recovery rate may decrease. Distillation can be carried out at any pressure of reduced pressure, normal pressure and pressure, and can be appropriately determined so that the boiling point of compound 3 falls within the above-mentioned preferable temperature range.
  • the pressure is preferably 0.1 mmHg to 5 atm (3800 mmHg).
  • Compound 4 can be obtained by reacting compound 3 with compound 9 or compound 10.
  • R 2 is a protecting group for an amino group as described above.
  • R 7 , R 8 and R 9 are independently C 6-14 aryl groups. Examples of the C 6-14 aryl group represented by R 7 , R 8 or R 9 include a phenyl group and a naphthyl group. Preferably, R 7 , R 8 and R 9 are phenyl groups, respectively.
  • the reaction can be carried out in a solvent inert to the reaction.
  • the solvent include inert solvents such as diethyl ether, tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, and diethyl ether is preferable.
  • the amount of compound 9 or compound 10 is preferably 0.5 to 10 mol with respect to 1 mol of compound 3.
  • the reaction temperature is preferably ⁇ 78 ° C. to 100 ° C., more preferably 0 ° C. to 40 ° C.
  • the reaction time is preferably 1 minute to 24 hours, more preferably 10 minutes to 4 hours.
  • a carbamate-based protecting group such as a tert-butoxycarbonyl group or a 9-fluorenylmethyloxycarbonyl group is used as the amino group protecting group R2 to deprotect R2 under mild conditions. It is possible to synthesize fluorine-containing amino acids while suppressing the decomposition and racemization of compounds.
  • Compound 5 can be obtained by subjecting compound 4 to a reduction reaction.
  • the reduction reaction can be carried out by a method using a reducing agent or a method of reducing in the presence of a metal catalyst.
  • a reducing agent sodium borohydride, zinc borohydride, sodium borohydride cyanoborohydride, lithium triethylborohydride, lithium borohydride (sec-butyl), lithium borohydride, and hydride tri.
  • a boron borohydride reagent such as potassium boron (sec-butyl), lithium boron borohydride, and sodium triacetoxyborohydride can be used.
  • sodium borohydride or zinc borohydride is preferable, and sodium borohydride is more preferable.
  • the amount of the reducing agent is preferably 0.5 to 10 mol with respect to 1 mol of the compound 4.
  • the reaction can be carried out in a solvent inert to the reaction.
  • Solvents include diethyl ether, dichloromethane, hydrochlorofluorocarbon (HCFC) (eg, Asahiclin® AK-225 (3,3-dichloro-1,1,1,2,2-pentafluoropropane and 1,1). 3-Dichloro-1,1,2,2,3-pentafluoropropane mixture, AGC Co., Ltd.)), dichloromethane, acetonitrile, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, etc.
  • the inert solvent of the above is mentioned, and diethyl ether is preferable.
  • the reaction temperature is preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 10 ° C. to 40 ° C.
  • the reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
  • metal catalyst examples include palladium catalysts (eg, palladium carbon, palladium hydroxide, Pearlman catalyst, Lindler catalyst, silica gel-supported palladium catalyst, alumina-supported palladium catalyst, palladium oxide) and nickel.
  • Catalysts eg, lane nickel
  • platinum catalysts eg, platinum carbon, platinum oxide, silica gel-supported platinum catalysts, alumina-supported platinum catalysts
  • rhodium catalysts eg, rhodium carbon, alumina-supported rhodium catalysts, rhodium oxide
  • ruthenium catalysts eg, rhodium oxide.
  • the amount of the metal catalyst is preferably 0.0001 to 0.1 mol, more preferably 0.0005 to 0.02 mol, based on 1 mol of the compound 4.
  • the reaction can be carried out in a solvent inert to the reaction.
  • the solvent include inert solvents such as methanol, ethanol, isopropanol, diethyl ether, tetrahydrofuran, ethyl acetate, dichloromethane, acetonitrile, 1,4-dioxane, N, N-dimethylformamide and N, N-dimethylacetamide.
  • the reduction reaction is carried out in the presence of hydrogen gas.
  • the reduction reaction may be carried out under normal pressure or under pressure.
  • the pressure of hydrogen gas is preferably 0.5 atm to 10 atm.
  • the reaction temperature is preferably 0 ° C to 100 ° C, more preferably 10 ° C to 50 ° C.
  • the reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
  • Step 5-1 Compound 6-1 can be obtained by deprotecting the protecting group R2 of compound 5. Deprotection can be performed according to the type of protecting group R2 . When R 2 is a Boc group, it can be deprotected under acidic conditions. Examples of the acid used include trifluoroacetic acid (TFA) and hydrochloric acid. The amount of acid is preferably 1 to 1000 mol with respect to 1 mol of compound 5.
  • the reaction can be carried out in a solvent inert to the reaction.
  • the solvent include inert solvents such as diethyl ether, tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, and dichloromethane, N, N. -Dichloromethane amide is preferred.
  • An acid can also be used as a solvent.
  • the solvent include inorganic acids such as hydrochloric acid, acetic acid and trifluoroacetic acid, and organic acids, and trifluoroacetic acid is preferable.
  • the reaction temperature is preferably ⁇ 78 ° C. to 50 ° C., more preferably 0 ° C. to 40 ° C.
  • the reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
  • R 2 When R 2 is an Fmoc group, it can be deprotected under basic conditions.
  • the base used include secondary amines such as piperidine, morpholine and pyrrolidine.
  • the amount of the base is preferably 1 to 100 mol with respect to 1 mol of the compound 5.
  • the reaction can be carried out in a solvent inert to the reaction.
  • the solvent include inert solvents such as diethyl ether, tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, 1,4-dioxane, N, N-dimethylformamide and N, N-dimethylacetamide.
  • the reaction temperature is preferably ⁇ 20 ° C. to 80 ° C., more preferably 0 ° C. to 40 ° C.
  • the reaction time is preferably 1 minute to 24 hours, more preferably 5 minutes to 2 hours.
  • Step 6-1 Compound 7 can be obtained by deprotecting the protecting group R1 of compound 6-1. Deprotection can be performed according to the type of protecting group R1 .
  • R 1 is a benzyl group, a triphenylmethyl group, a 9-anthrylmethyl group, a piperonyl group, a 2- (9,10-dioxo) anthrylmethyl group, a benzyloxymethyl group or a phenacyl group, in the presence of a metal catalyst. It can be deprotected by the method of reducing with. The reduction reaction can be carried out in the same manner as the method of reduction in the presence of the metal catalyst in step 4.
  • Step 5-2 Compound 6-2 can be obtained by deprotecting the protecting group R1 of compound 5. Deprotection can be performed in the same manner as in step 6-1.
  • Step 6-2 Compound 7 can be obtained by deprotecting the protecting group R2 of compound 6-2. Deprotection can be performed in the same manner as in step 5-1.
  • an optically active fluorine-containing amino acid (fluoroalkyl group-containing compound) can be synthesized.
  • an asterisk indicates that the absolute configuration of the asymmetric carbon atom with an asterisk is S or R.
  • Rf, R1 and R2 are as defined above.
  • R1 In the production method, by using an aralkyl protecting group such as a benzyl group or a triphenylmethyl group as the protecting group R1 of the carboxy group, R1 can be deprotected under mild conditions and the optical activity is maintained. It is advantageous in that it is possible to synthesize a fluorine-containing amino acid and a fluorine-containing peptide.
  • an aralkyl protecting group such as a benzyl group or a triphenylmethyl group
  • Compound 5-1 can be obtained by subjecting compound 4 to an asymmetric reduction reaction.
  • the asymmetric reduction reaction can be carried out by reducing compound 4 in the presence of an asymmetric reduction catalyst.
  • a transition metal complex in which an asymmetric ligand is coordinated to the transition metal can be used.
  • the transition metal include palladium, rhodium, ruthenium, iridium, nickel, cobalt, platinum, iron and the like.
  • the transition metal complex include a palladium complex, a rhodium complex, a ruthenium complex, an iridium complex, a nickel complex and the like.
  • Asymmetric ligands include dpen (1,2-diphenylethylenediamine), daipen (1,1-di (4-anicil) -2-isopropyl-1,2-ethylenediamine), and optically active phosphine ligands. Can be mentioned.
  • Optically active phosphinid ligands include 2,2'-bis (diphenylphosphino) -1,1'-binaphthyl (BINAP), 2,2'-bis (diphenylphosphino) -5,5', 6 , 6', 7,7', 8,8'-octahydro-1,1'-binaphthyl (H8-BINAP), 2,2'-bis (di-p-tolylphosphino) -1,1'-binaphthyl (Tol) -BINAP), 2,2'-bis [bis (3,5-dimethylphenyl) phosphino] -1,1'-binaphthyl (Xyl-BINAP), 2,2'-bis [bis (3,5-di-) tert-butyl-4-methoxyphenyl) phosphino] -1,1'-binaphthyl (DTBM-BINAP
  • the amount of the asymmetric reduction catalyst is preferably 0.0001 to 0.1 mol, more preferably 0.0005 to 0.02 mol, based on 1 mol of the compound 4.
  • the reaction can be carried out in a solvent inert to the reaction.
  • the solvent include inert solvents such as methanol, ethanol, isopropanol, diethyl ether, tetrahydrofuran, ethyl acetate, dichloromethane, acetonitrile, 1,4-dioxane, N, N-dimethylformamide and N, N-dimethylacetamide.
  • the reduction reaction is carried out in the presence of hydrogen gas.
  • the reduction reaction may be carried out under normal pressure or under pressure.
  • the pressure of hydrogen gas is preferably 0.5 atm to 10 atm.
  • the reaction temperature is preferably 0 ° C to 100 ° C, more preferably 10 ° C to 50 ° C.
  • the reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
  • Step 8-2 Compound 6-4 can be obtained by deprotecting the protecting group R1 of compound 5-1. Deprotection can be performed in the same manner as in step 6-1.
  • Step 9-2 Compound 7-1 can be obtained by deprotecting the protecting group R2 of compound 6-4. Deprotection can be performed in the same manner as in step 5-1.
  • optically active fluorine-containing amino acids fluoroalkyl group-containing compounds
  • the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R.
  • Rf, R 1 and R 2 are as defined above.
  • Compound 6-3 can be obtained by optically resolving compound 6-1.
  • Optical resolution can be performed by a known method. For example, it can be performed by a method using a chiral column, a method by crystallization, a diastereomer method, or the like.
  • a racemate can be divided into optically active substances by liquid chromatography or supercritical fluid chromatography (SFC) using a chiral column.
  • SFC supercritical fluid chromatography
  • CHIRALPAK registered trademark
  • CHIRALCEL registered trademark
  • a salt of a racemate and an optically active amine or an optically active acid is formed and induced into a crystalline diasteremer salt for fractional crystallization. By repeating recrystallization, a single diastereomer salt can be obtained. If necessary, the diastereomeric salt is neutralized to obtain a free optically active substance.
  • optically active amines include brucine, cinchonidine, cinchonine, 1-phenethylamine and the like.
  • the optically active acid include camphorsulfonic acid, tartaric acid, mandelic acid and the like.
  • Diastereomer method A racemic mixture is reacted with an optically active reagent to obtain a mixture of diastereomers, which is separated by fractional crystallization and chromatography to separate a single diastereomer. The optically active reagent moiety is removed from the obtained single diastereomer to obtain the desired optical isomer.
  • Step 11-1 Compound 7-1 can be obtained by deprotecting the protecting group R1 of compound 6-3. Deprotection can be performed in the same manner as in step 6-1.
  • Step 11-2 Compound 7-1 can be obtained by deprotecting the protecting group R2 of compound 6-4. Deprotection can be performed in the same manner as in step 5-1.
  • Step 12 Compound 7-1 can be obtained by optically resolving compound 7.
  • the optical resolution can be performed by the same method as in step 10-1.
  • the fluoroalkyl group-containing peptide can be produced from an amino acid having a fluoroalkyl group introduced in the side chain as a raw material.
  • a fluoroalkyl group-containing peptide can be produced by using compound 6-1 as a raw material, compound 6-2, compound 6-3, or compound 6-4 as a raw material.
  • compound 6-2 or 6-4 is condensed with a carboxy group-protected amino acid, a carboxy group-protected amino acid, a C-terminal protected fluorinated peptide, or a C-terminal protected peptide.
  • a fluoroalkyl group-containing peptide By allowing the peptide to be produced, a fluoroalkyl group-containing peptide can be produced.
  • the compound 6-1 or the compound 6-3 may be a fluorine-containing amino acid having an amino group protected, an amino acid having an amino group protected, a fluorine-containing peptide having an N-terminal protection, or a peptide having an N-terminal protection. By condensing, a fluoroalkyl group-containing peptide can be produced.
  • a fluoroalkyl group-containing peptide can be produced in the same manner. Specifically, after protecting the amino group with a protective group, a carboxy group-protected amino acid containing a fluorine, an amino acid having a carboxy group protected, a C-terminal protected fluorine-containing peptide, or a C-terminal protected. Condensate with peptide.
  • Fluoroalkyl groups have a high affinity for cell membranes. Therefore, the fluoroalkyl group-containing peptide according to the present invention has excellent cell membrane permeability. Moreover, since the structure is significantly different from that of the natural peptide, it is not easily decomposed by peptidase. Utilizing these properties, the fluoroalkyl group-containing peptide according to the present invention is expected to be used in the pharmaceutical field as a physiologically active substance. For example, the fluoroalkyl group-containing peptide according to the present invention can be expected to be used as a DDS carrier that carries a medicinal ingredient to a target cell.
  • a fluoroalkyl group-containing peptide according to the present invention for example, by adding a fluoroalkyl group-containing peptide according to the present invention to a functional peptide that exhibits some physiological activity by being taken up into a target cell in the living body so as not to impair its function, the functionality thereof.
  • the efficiency of peptide uptake into target cells can be improved.
  • a side chain of a part of the hydrophobic amino acid residues of the functional peptide exhibiting physiological activity is Rf, preferably the general formula (101) or (102), as long as the function of the functional peptide is not impaired.
  • Step 1 Benzyl 3,3,4,4,5,5,6,6-nonafluoro-2-oxohexanoate was added in the same manner as in Steps 1 to 2 except that the temperature in Step 1 was changed to 0 ° C. Obtained as a colorless liquid. The yield from step 1 to step 2 was 69%.
  • AK225 refers to "Asahiclean® AK-225" (3,3-dichloro-1,1,1,2,2-pentafluoropropane and 1,3-dichloro-1,1,1. Amixture of 2,2,3-pentafluoropropane, AGC Co., Ltd.).
  • amino acids may be written in three-letter notation.
  • “Phe” is phenylalanine and "Gly” is glycine.
  • the peptide is described as (N-side protecting group) -amino acid three-letter notation- (C-side protecting group).
  • “H-AA-OMe” means that the N-terminal side is unprotected and the C-terminal side is a methyl ester. When the C-terminal side is unprotected, it is expressed as "OH” instead of "OMe”.
  • Example 1 A dipeptide having a nonafluorobutyl group was synthesized.
  • Example 2 The protecting group on the N-terminal side of the peptide synthesized in Example 1 was deprotected.
  • Example 3 A tripeptide having a nonafluorobutyl group (Fmoc-Gly-RFAA (C4) -Gly-OMe) was synthesized.
  • H-RFAA (C4) -Gly-OMe (10.9 mg, 0.03 mmol), DCM (0.5 mL), DIPEA (0.13 mmol), Fmoc-Gly-OH (0) in an oven-dried NMR test tube. .03 mmol) and benzotriazole-1-yloxy-trisdimethylaminophosphonium salt (0.085 mmol) were added at room temperature. After allowing to stand at room temperature for 24 hours, the solvent was distilled off under reduced pressure, diluted with ethyl acetate, the organic phase was washed with saturated aqueous citrate solution, saturated aqueous sodium carbonate solution, and saturated aqueous sodium carbonate solution, and dried over sodium sulfate. The organic phase was filtered and the filtrate was distilled off under reduced pressure to obtain a crude product of Fmoc-Gly-RFAA-Gly-OMe.
  • Example 5 A tripeptide having a nonafluorobutyl group (H-Ala-[(R) -RFAA (C4)]-Phe-OMe) was synthesized.
  • a stir bar was placed in a 25 mL two-necked flask, and Boc-[(R) -RFAA (C4)]-Phe-OMe (diastereomer A, DR> 95,29 ⁇ mol) and DCM (2 mL) were added to one of them. .. After cooling the reaction mixture to 0 ° C., TFA (0.4 mL) was added and the mixture was warmed to room temperature. After stirring for 4 hours, an aqueous sodium hydrogen carbonate solution was added to terminate the reaction.
  • Example 6 The fluorescent substance Alexa Fluor 647 was fused to the N-terminal of the tripeptide having a nonafluorobutyl group (H-Ala-[(R) -RFAA (C4)]-Phe-OMe) synthesized in Example 5 (Alexa). -Ala-[(R) -RFAA (C4)]-Phe-OMe).
  • AlexaFluor 647 250 ⁇ g
  • dry DMSO 15 ⁇ L
  • H-Ala-[(R) -RFAA (C4)]-Phe dissolved in dry DMSO (15 ⁇ L) in a 1.5 mL black tube.
  • -OMe 1.5 eq
  • DIPEA 1.5 eq
  • the mixture was continuously stirred at room temperature overnight.
  • Boc-Nle-Phe-Ome was synthesized according to the previous report (Chemical and Pharmaceutical Bulletin, 1987, vol.35, p.468) (yield 556 mg, yield 40.2%).
  • Example 7 A dipeptide having a heptadecafluorooctyl group (Boc-RFAA (C8) -Phe-OMe) was synthesized.
  • the solid of RFAA (C8) contained by X-ray structural analysis was determined to be the (S) form.
  • Rigaku's VariMax Dual Saturn was used for the X-ray structure analysis.
  • Boc-[(S) -RFAA (C8)]-Phe-OMe (diastereomer B, 98.7 ⁇ mol) was deprotected in the same manner, and H-[(S) -RFAA (C8)]- Phe-OMe (diastereomer B) was obtained (60.1 ⁇ mol, yield 60.8%).
  • Example 8 A tripeptide having a heptadecafluorooctyl group (Boc-Ala-RFAA (C8) -Phe-OMe) was synthesized.
  • a stir bar was placed in a 20 mL two-necked flask, and Boc-Ala-[(R) -RFAA (C8)]-Phe-OMe (diastereomer A, 0.194 mmol) and DCM (5 mL) were added to one of them. .. After cooling the reaction mixture to 0 ° C., TFA (1 mL) was added, the temperature was raised to room temperature, and the mixture was stirred for 2 hours. Then, an aqueous sodium hydrogen carbonate solution was added to terminate the reaction.
  • Boc-Ala-[(S) -RFAA (C8)]-Phe-OMe (diastereomer B, 45.7 ⁇ mol) was deprotected in the same manner, and H-Ala-[(S) -RFAA ( C8)]-Phe-OMe (diastereomer B) was obtained (21.1 ⁇ mol, yield 46.2%).
  • the fluorescent substance AlexaFluor 647 was bound to the N-terminal of the synthesized deprotected tripeptide (H-Ala-[(R) -RFAA (C8)]-Phe-OMe).
  • Alexa Fluor 647 NHS ester (1.75 mg) dissolved in dry DMSO (175 ⁇ L) and H-Ala-[(R) -RFAA (C8) dissolved in dry DMSO (50 ⁇ L) in a 1.5 mL black tube. )]-Phe-OMe (diastereomer A, 3.0 equivalents), DIPEA dissolved in dry DMSO (71 ⁇ L) (3.0 equivalents), and dried DMSO 124 ⁇ L were added. The mixture was continuously stirred at room temperature overnight.
  • the fluorescence was measured at a emission wavelength of 650 nm using a NanoDrop (registered trademark) spectrophotometer ND-1000.
  • Example 9 A dipeptide having a heptadecafluorooctyl group (Boc-RFAA (C8) -Gly-OMe) was synthesized.
  • Example 10 A dipeptide having a heptadecafluorooctyl group (Boc-RFAA (C8) -Ala-OMe) was synthesized.
  • Example 11 A dipeptide having a heptadecafluorooctyl group (Boc-RFAA (C8) -Leu-OMe) was synthesized.
  • Example 18 A tripeptide having a tridecafluorohexyl group (H-Ala-RFAA (C6) -Phe-OMe) was synthesized.
  • H-RFAA (C6) -Phe-OMe (44.8 ⁇ mol), HOAt (1.2 eq), and DIPEA (1.3 eq) were added to a 25 mL two-necked round bottom flask.
  • HATU (1.2 eq) and Fmoc-AlaOH (1.2 eq) dissolved in DCM (5 mL) were added to the mixture at 0 ° C., the mixture was warmed to room temperature and then stirred for 4 hours. After stopping the reaction by adding HCl (1N), the mixture was partitioned between HCl (1N) and DCM. The combined organic phases were evaporated and then diluted with ethyl acetate.
  • Alexa Fluor 647 NHS ester 500 ⁇ g dissolved in dry DMSO (50 ⁇ L) and H-[(R) -RFAA (C6)] -Phe dissolved in dry DMSO (50 ⁇ L) in a 1.5 mL black tube.
  • -OMe (3.0 eq) and DIPEA (3.0 eq) dissolved in dry DMSO (20 ⁇ L) were added.
  • the mixture was continuously stirred at room temperature overnight.
  • the fluorescence was measured at an emission wavelength of 650 nm using a NanoDrop (registered trademark) spectrophotometer ND-1000.
  • Example 20 A dipeptide having a tridecafluorohexyl group (Phth-RFAA (C6') -Phe-OMe) was synthesized.
  • Example 21 A tetrapeptide having a heptadecafluorooctyl group (Boc-Cys (Trt) -Ala-RFAA (C8) -Phe-OMe) was synthesized.
  • Tripeptide H-Ala-[(R) -RFAA (C8)]-Phe-OMe (diastereomer A, 27.6 ⁇ mol
  • Boc-Cys Trt
  • flask 1.8 eq
  • COMU 1.8 eq
  • the reaction mixture was cooled to 0 ° C. and DIPEA (1.8 eq) was added. After the addition, the temperature was raised to room temperature and the mixture was stirred for 3.5 hours. Then, the reaction mixture was quenched with HCl (1N) and extracted 3 times with DCM.
  • the aqueous phase was extracted with DCM and the combined organic phase was distilled off under reduced pressure to give a crude product of the deprotected H-Cys-Ala-RFAA (C8) -Phe-OMe.
  • the fluorescent substance AlexaFluor 647 was bound to the terminal SH group of the synthesized peptide after deprotection (H-Cys-Ala-RFAA (C8) -Phe-OMe).
  • AlexaFluor 647 C2 maleimide 500 ⁇ g
  • PBS 50 ⁇ L of phosphate saline
  • H-Cys-Ala-RFAA C8 dissolved in dried DMSO (50 ⁇ L) in a 1.5 mL black tube.
  • -Phe-OMe 3.0 equivalents
  • dried DMSO 20 ⁇ L
  • the mixture was continuously stirred at room temperature overnight.
  • the fluorescence was measured at a emission wavelength of 650 nm using a NanoDrop (registered trademark) spectrophotometer ND-1000.
  • the recovered cells were analyzed by measuring and analyzing red 2 fluorescence (661 / 15 nm) for detecting the fluorescent dye (Alexa Fluor 647) introduced into the peptide fluorescence conjugate by flow cytometry (guava easeCyte TM 8). ..
  • the results of flow cytometric analysis of cells cultured at 37 ° C. for 1 hour in the sample solution are shown in FIG.
  • the vertical axis is the number of cells (count), and the horizontal axis is the fluorescence intensity of each cell.
  • the results of comparing the average fluorescence intensities of each sample are shown in FIG.
  • FIG. 3 shows a comparison of average fluorescence intensities in cells cultured at 37 ° C. for 1 hour, 4 hours, and 24 hours.
  • the peptide fluorescent conjugate is referred to as PFCJ
  • the fluorescent dye is referred to as FD.
  • the average value of the fluorescence intensity of Alexa Fluor 647 of the cells is about 9 for the cells treated with the peptide fluorescence conjugate 1 as compared with the cells treated with the peptide fluorescence conjugate 6 or the fluorescent dye 1.
  • the cells treated with the peptide fluorescence conjugate 2 were more than twice as high, and the cells treated with the peptide fluorescence conjugate 5 were more than twice as high. From these results, it was found that peptides having a fluoroalkyl group in the side chain have higher intracellular uptake efficiency and excellent cell membrane permeability as compared with peptides and fluorescent dyes having no fluoroalkyl group. ..
  • peptide fluorescent conjugates 1 and 2 having a large number of carbon atoms and fluorine atoms in the side chain have higher cell membrane permeability than peptide fluorescent conjugate 5 having a relatively small number of carbon atoms and fluorine atoms in the side chain, and are cells.
  • the average value of the fluorescence intensity of Alexa Fluor 647 of the cells was about 4 times that of the cells treated with the peptide fluorescence conjugate 5 as compared with the cells treated with the peptide fluorescence conjugate 5, and the cells treated with the peptide fluorescence conjugate 2 were treated with the peptide fluorescence conjugate 2. It was about 14 times higher in the cells.
  • the peptide fluorescent conjugates 1 and 2 having a heptadecafluorooctyl group were superior in cell membrane permeability to the peptide fluorescent conjugate 5 having a nonafluorobutyl group. Furthermore, by comparing the results of peptide fluorescence conjugates 1 and 2, it was also found that the cell membrane permeability changes depending on the configuration of the asymmetric points present in the fluorine-containing amino acid (RFAA (C8)).
  • the average value of the fluorescence intensity of AlexaFluor 647 of the cells treated with the peptide fluorescence conjugates 1, 2 and 5 containing a fluorine atom in the side chain is the side chain. It was higher than the cells treated with the peptide fluorescent conjugate 6 or the fluorescent dye 1 containing no fluorine atom. From the results shown in FIG. 3, the proportion of cells that emit fluorescence increased over time in the cells treated with any of the peptide fluorescent conjugates, and the amount of peptide fluorescent conjugates taken up by the cells under the test conditions of 37 ° C. was also confirmed to increase over time.
  • the peptide fluorescent conjugate 3 having the same side chain carbon number but a small number of fluorine atoms has a cell membrane permeability equal to or higher than that of the peptide fluorescent conjugate 1 after 1 hour at 37 ° C.
  • the cell membrane permeability was close to that of the peptide fluorescent conjugate 2. From this, it was found that by adjusting the number of carbon atoms in the side chain, the same or higher cell membrane permeability can be obtained even if the number of fluorine atoms is reduced.
  • the average fluorescence intensity of Alexa Fluor 647 of cells after incubation at 37 ° C. for 1 hour, 4 hours, and 24 hours was a fluorescent dye in cells treated with peptide fluorescent conjugates 1 and 4 containing a fluorine atom in the side chain. It was higher than 1 treated cells. Further, in comparison between the peptide fluorescence conjugate 4 derived from the tetrapeptide having the same fluorine-containing alkyl group and the peptide fluorescence conjugate 1 derived from the tripeptide, the peptide fluorescence conjugate was obtained at any of 1 hour, 4 hours and 24 hours. Gate 4 had a higher average fluorescence intensity.
  • Example 22 A tripeptide having a tridecafluorohexyl group (H-Ala-[(R) -RFAA (C6)]-Phe-OMe) was synthesized.
  • the peptide fluorescent conjugate 7 was obtained as a blue solid in the same manner as in Example 8 (calculated by a fluorometer, yield 40% based on the dye).
  • the sample solution was prepared in the same manner as in Test Example 1, and the analysis results by flow cytometry of cells cultured at 37 ° C. for 1 hour in the sample solution are shown in FIG. In addition, the result of comparing the average fluorescence intensity of each sample is shown in FIG.
  • the average fluorescence intensity of Alexa Fluor 647 of cells after incubation at 37 ° C. for 1 hour was 1 for fluorescent dye 1 in all cells treated with peptide fluorescent conjugates 1, 2, 5, and 7 containing a fluorine atom in the side chain. It was higher than the cells treated with the peptide fluorescent conjugate 6 containing no fluorine atom in the side chain.
  • the average fluorescence intensity was higher in the order of peptide fluorescence conjugates 2, 7, and 1.
  • the present invention provides a peptide having an amino acid residue having a fluoroalkyl group in the side chain. Since the peptide according to the present invention has excellent cell membrane permeability, it is expected to be used in the pharmaceutical field as a physiologically active substance such as a carrier for introducing a medicinal ingredient into a target cell.

Abstract

The present invention provides a peptide having a fluoroalkyl group as a side chain. The present invention pertains to a peptide in which two or more amino acids are peptide-bonded, wherein at least one of the amino acid residues constituting the peptide has, as a side chain, a C1-30 alkyl group substituted with at least two fluorine atoms or a group having 1 to 5 ether-bonding oxygen atoms between carbon atoms in a C2-30 alkyl group substituted with at least two fluorine atoms.

Description

ペプチドpeptide
 本発明は、フルオロアルキル基が側鎖に導入されたアミノ酸残基を含むペプチドに関する。
 本願は、2021年1月6日に日本に出願された特願2021-001145号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to peptides containing amino acid residues in which a fluoroalkyl group has been introduced into the side chain.
This application claims priority based on Japanese Patent Application No. 2021-001145 filed in Japan on January 6, 2021, and the contents thereof are incorporated herein by reference.
 抗体医薬、ペプチド医薬、核酸医薬等は、標的分子に対する特異性が高く、副作用が少ないという優れた点がある。しかし、いずれも細胞内に存在する標的分子に到達させることが困難であるという問題がある。当該問題を解決するために、様々な手法が検討されている。なかでも、細胞膜透過性ペプチド(Cell Penetrating Peptides:CPP)が有望視されている。CPPとしては、HIVウイルスのTATタンパク質に由来するペプチド(特許文献1)や、ポリArg配列のペプチド(特許文献2)が代表的なものとして挙げられる。これを薬効ペプチドと結合させて薬効ペプチドを細胞内に輸送できる(たとえば、特許文献3、非特許文献1)。 Antibody drugs, peptide drugs, nucleic acid drugs, etc. have the advantages of high specificity for target molecules and few side effects. However, all of them have a problem that it is difficult to reach the target molecule existing in the cell. Various methods are being studied to solve this problem. Among them, cell membrane penetrating peptides (CPP) are expected to be promising. Typical examples of the CPP include a peptide derived from the TAT protein of the HIV virus (Patent Document 1) and a peptide having a polyArg sequence (Patent Document 2). This can be combined with the medicinal peptide to transport the medicinal peptide into the cell (for example, Patent Document 3 and Non-Patent Document 1).
 一方、含フッ素アミノ酸は特異な生理活性を示すことが報告され、注目を集めている。例えば、3,3,3-トリフルオロアラニン及びその誘導体は、ピリドキサール酵素の自殺型阻害剤(suicide inhibitor)として作用することが報告されている(非特許文献2)。また、グラム陰性菌Salmonella typhimurium及びグラム陽性菌Bacillus stearothermophilusのアラニンラセマーゼが、3,3,3-トリフルオロアラニンで不活性化されることが報告されている(非特許文献3)。含フッ素アミノ酸及びそれを含有するペプチドは、生理活性物質として、医薬分野での利用が期待される。 On the other hand, fluorine-containing amino acids have been reported to exhibit unique physiological activity and are attracting attention. For example, 3,3,3-trifluoroalanine and its derivatives have been reported to act as a suicide inhibitor of pyridoxal enzyme (Non-Patent Document 2). In addition, it has been reported that alanine racemase of Gram-negative bacterium Salmonella typhimurium and Gram-positive bacterium Bacillus stearothermophilus is inactivated by 3,3,3-trifluoroalanine (Non-Patent Document 3). Fluorine-containing amino acids and peptides containing them are expected to be used in the pharmaceutical field as physiologically active substances.
 ポリフルオロ構造を有する化合物は、生体内で安定かつ毒性が低く、細胞内への取り込みとエンドソームからの脱出に優れていることが知られている(非特許文献4)。この性質を利用して、構成アミノ酸として側鎖のアミノ基をペルフルオロアシル化したリシンを用いたペプチドデンドリマーを遺伝子のデリバリーに用いることができることが報告されている(非特許文献5)。しかし、デンドリマーであるため、CPPのように薬効活性ペプチドや核酸や抗体医薬となるタンパク質と結合させたハイブリッドを形成することができない。 It is known that a compound having a polyfluoro structure is stable and low in toxicity in vivo, and is excellent in intracellular uptake and escape from endosomes (Non-Patent Document 4). It has been reported that a peptide dendrimer using lysine in which a side chain amino group is perfluoroacylated can be used for gene delivery by utilizing this property (Non-Patent Document 5). However, since it is a dendrimer, it cannot form a hybrid that is bound to a medicinal active peptide, nucleic acid, or protein that is an antibody drug like CPP.
米国特許第6,316,003号明細書US Pat. No. 6,316,003 米国特許第6,306,993号明細書US Pat. No. 6,306,993 国際公開第2008/089491号International Publication No. 2008/08491
 特許文献1等に記載されているCPPは、細胞内への輸送効率や、生体内でのペプチダーゼによる分解など様々な問題がある。
 本発明は、フルオロアルキル基が側鎖に導入されたアミノ酸残基を含むペプチド及びその製造方法を提供することを目的とする。
The CPP described in Patent Document 1 and the like has various problems such as intracellular transport efficiency and decomposition by peptidase in a living body.
An object of the present invention is to provide a peptide containing an amino acid residue having a fluoroalkyl group introduced into a side chain and a method for producing the same.
 本発明者らは、フルオロアルキル基が側鎖に導入されたアミノ酸残基を含むペプチドを製造したところ、当該ペプチドが細胞膜透過性に優れていることを見出し、本発明を完成させた。 The present inventors have produced a peptide containing an amino acid residue having a fluoroalkyl group introduced into the side chain, and found that the peptide has excellent cell membrane permeability, and completed the present invention.
 すなわち、本発明は以下の通りである。
[1] 2個以上のアミノ酸がペプチド結合したペプチドであって、
 当該ペプチドを構成するアミノ酸残基の少なくとも1個が、側鎖に、少なくとも2個のフッ素原子で置換されたC1-30アルキル基、又は、少なくとも2個のフッ素原子で置換されたC2-30アルキル基の炭素原子間に1~5個のエーテル結合性の酸素原子を有する基を有している、ペプチド。
[2] 前記少なくとも2個のフッ素原子で置換されたC1-30アルキル基又は少なくとも2個のフッ素原子で置換されたC2-30アルキル基の炭素原子間に1~5個のエーテル結合性の酸素原子を有する基が、フッ素原子以外のハロゲン原子でさらに置換されていてもよい、前記[1]のペプチド。
[3] 前記少なくとも2個のフッ素原子で置換されたC1-30アルキル基又は少なくとも2個のフッ素原子で置換されたC2-30アルキル基の炭素原子間に1~5個のエーテル結合性の酸素原子を有する基を有する側鎖が、下記一般式(f-1)又は(f-2)
That is, the present invention is as follows.
[1] A peptide in which two or more amino acids are peptide-bonded.
At least one of the amino acid residues constituting the peptide is C 1-30 alkyl group substituted with at least two fluorine atoms in the side chain, or C 2- replaced with at least two fluorine atoms. A peptide having a group having 1 to 5 ether-bonding oxygen atoms between carbon atoms of a 30 alkyl group.
[2] 1 to 5 ether bonds between the carbon atoms of the C 1-30 alkyl group substituted with at least two fluorine atoms or the C 2-30 alkyl group substituted with at least two fluorine atoms. The peptide having an oxygen atom of [1] may be further substituted with a halogen atom other than the fluorine atom.
[3] 1 to 5 ether bonds between the carbon atoms of the C 1-30 alkyl group substituted with at least two fluorine atoms or the C 2-30 alkyl group substituted with at least two fluorine atoms. The side chain having a group having an oxygen atom of is the following general formula (f-1) or (f-2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、Rfは、少なくとも2個以上のフッ素原子を含む完全ハロゲン化C1-10アルキル基、又は少なくとも2個以上のフッ素原子を含む完全ハロゲン化C2-10アルキル基の炭素原子間に1~5個のエーテル結合性の酸素原子を有する基を表し、n1は、0~10の整数であり、n2は、0~9の整数であり、黒丸は結合手を意味する)
で表される基である、前記[1]又は[2]のペプチド。
[4] C末端又はN末端が保護基で保護されていてもよい、前記[1]~[3]のいずれかのペプチド。
[5] 細胞膜透過性である、前記[1]~[4]のいずれかのペプチド。
(In the formula, Rf P is between carbon atoms of a fully halogenated C 1-10 alkyl group containing at least two or more fluorine atoms or a fully halogenated C 2-10 alkyl group containing at least two or more fluorine atoms. Represents a group having 1 to 5 ether-bonding oxygen atoms, n1 is an integer of 0 to 10, n2 is an integer of 0 to 9, and a black circle means a bond).
The peptide of the above [1] or [2], which is a group represented by.
[4] The peptide according to any one of [1] to [3] above, wherein the C-terminal or N-terminal may be protected by a protecting group.
[5] The peptide according to any one of the above [1] to [4], which is permeable to cell membranes.
 本発明に係るペプチドは、フルオロアルキル基が側鎖に導入されているため、細胞膜透過性に優れている。このため、当該ペプチドは、生理活性物質として、医薬分野での利用が期待される。 The peptide according to the present invention has excellent cell membrane permeability because a fluoroalkyl group is introduced into the side chain. Therefore, the peptide is expected to be used in the pharmaceutical field as a physiologically active substance.
試験例1において、ペプチド蛍光コンジュゲート1(Alexa-Ala-[(R)-RFAA(C8)]-Phe-OMe、ジアステレオマーA)(PFCJ1)、ペプチド蛍光コンジュゲート2(Alexa-Ala-[(S)-RFAA(C8)]-Phe-OMe、ジアステレオマーB)(PFCJ2)、ペプチド蛍光コンジュゲート5(Alexa-Ala-RFAA(C4)-Phe-OMe)(PFCJ5)、ペプチド蛍光コンジュゲート6(Alexa-Ala-Nle-Phe-OMe)(PFCJ6)、又は蛍光色素1(蛍光物質Alexa Fluoro 647のジエチルアミド体)(FD1)を含むサンプル溶液中で、37℃で1時間処理したHeLa細胞のフローサイトメトリーの結果を示した図である。In Test Example 1, peptide fluorescence conjugate 1 (Alexa-Ala-[(R) -RFAA (C8)]-Phe-OMe, diastereomer A) (PFCJ1), peptide fluorescence conjugate 2 (Alexa-Ala- [ (S) -RFAA (C8)]-Phe-OMe, Diasteromer B) (PFCJ2), Peptide Fluorescence Conjugate 5 (Alexa-Ala-RFAA (C4) -Phe-OMe) (PFCJ5), Peptide Fluorescence Conjugate HeLa cells treated at 37 ° C. for 1 hour in a sample solution containing 6 (Alexa-Ala-Nle-Phe-OMe) (PFCJ6) or fluorescent dye 1 (diethylamide of the fluorescent substance AlexaFluoro647) (FD1). It is a figure which showed the result of flow cytometry. 試験例1において、ペプチド蛍光コンジュゲート1、ペプチド蛍光コンジュゲート2、ペプチド蛍光コンジュゲート5、ペプチド蛍光コンジュゲート6、又は蛍光色素1を含むサンプル溶液中で、37℃で1時間処理したHeLa細胞のフローサイトメトリーにおける平均蛍光強度を比較した図である。In Test Example 1, HeLa cells treated at 37 ° C. for 1 hour in a sample solution containing peptide fluorescence conjugate 1, peptide fluorescence conjugate 2, peptide fluorescence conjugate 5, peptide fluorescence conjugate 6, or fluorescent dye 1 It is a figure which compared the average fluorescence intensity in flow cytometry. 試験例1において、ペプチド蛍光コンジュゲート1、ペプチド蛍光コンジュゲート2、ペプチド蛍光コンジュゲート5、ペプチド蛍光コンジュゲート6、又は蛍光色素1を含むサンプル溶液中で、37℃で1、4、24時間処理したHeLa細胞のフローサイトメトリーにおける平均蛍光強度の経時変化を比較した図である。In Test Example 1, treatment at 37 ° C. for 1, 4, 24 hours in a sample solution containing peptide fluorescence conjugate 1, peptide fluorescence conjugate 2, peptide fluorescence conjugate 5, peptide fluorescence conjugate 6, or fluorescent dye 1. It is a figure which compared the time-dependent change of the average fluorescence intensity in the flow cytometry of the HeLa cell. 試験例1において、ペプチド蛍光コンジュゲート1、ペプチド蛍光コンジュゲート2、又はペプチド蛍光コンジュゲート3(Alexa-RFAA(C6)-Phe-OMe)を含むサンプル溶液中で、37℃で1時間処理したHeLa細胞のフローサイトメトリーの結果を示した図である。In Test Example 1, HeLa treated at 37 ° C. for 1 hour in a sample solution containing peptide fluorescence conjugate 1, peptide fluorescence conjugate 2, or peptide fluorescence conjugate 3 (Alexa-RFAA (C6) -Phe-OMe). It is a figure which showed the result of the flow cytometry of a cell. 試験例1において、ペプチド蛍光コンジュゲート1、ペプチド蛍光コンジュゲート2、又はペプチド蛍光コンジュゲート3を含むサンプル溶液中で、37℃で4時間処理したHeLa細胞のフローサイトメトリーの結果を示した図である。In Test Example 1, the figure which showed the result of the flow cytometry of the HeLa cell treated at 37 degreeC for 4 hours in the sample solution containing peptide fluorescence conjugate 1, peptide fluorescence conjugate 2, or peptide fluorescence conjugate 3. be. 試験例1において、ペプチド蛍光コンジュゲート1、ペプチド蛍光コンジュゲート2、ペプチド蛍光コンジュゲート3、又は蛍光色素1を含むサンプル溶液中で、4℃で40分間処理したHeLa細胞のフローサイトメトリーの結果を示した図である。In Test Example 1, the results of flow cytometry of HeLa cells treated at 4 ° C. for 40 minutes in a sample solution containing peptide fluorescent conjugate 1, peptide fluorescent conjugate 2, peptide fluorescent conjugate 3, or fluorescent dye 1 are shown. It is a figure shown. 試験例3において、ペプチド蛍光コンジュゲート7(Alexa-Ala-[(R)-RFAA(C6)]-Phe-OMe)、ペプチド蛍光コンジュゲート1(Alexa-Ala-[(R)-RFAA(C8)]-Phe-OMe、ジアステレオマーA)、ペプチド蛍光コンジュゲート2(Alexa-Ala-[(S)-RFAA(C8)]-Phe-OMe、ジアステレオマーB)、ペプチド蛍光コンジュゲート5(Alexa-Ala-RFAA(C4)-Phe-OMe)、ペプチド蛍光コンジュゲート6(Alexa-Ala-Nle-Phe-OMe)、又は蛍光物質Alexa Fluoro 647のジエチルアミド体(蛍光色素1)を含むサンプル溶液中で、37℃で1時間処理したHeLa細胞のフローサイトメトリーの結果を示した図である。In Test Example 3, the peptide fluorescence conjugate 7 (Alexa-Ala-[(R) -RFAA (C6)]-Phe-OMe) and the peptide fluorescence conjugate 1 (Alexa-Ala-[(R) -RFAA (C8)) ] -Phe-OMe, Diasteromer A), Peptide Fluorescence Conjugate 2 (Alexa-Ala-[(S) -RFAA (C8)]-Phe-OMe, Diasteromer B), Peptide Fluorescence Conjugate 5 (Alexa) -Ala-RFAA (C4) -Phe-OMe), peptide fluorescent conjugate 6 (Alexa-Ala-Nle-Phe-OMe), or in a sample solution containing a diethylamide (fluorescent dye 1) of the fluorescent substance AlexaFluoro 647. , Is a diagram showing the results of flow cytometry of HeLa cells treated at 37 ° C. for 1 hour. 試験例3において、ペプチド蛍光コンジュゲート7、ペプチド蛍光コンジュゲート1、ペプチド蛍光コンジュゲート2、ペプチド蛍光コンジュゲート5、ペプチド蛍光コンジュゲート6、又は蛍光色素1を含むサンプル溶液中で、37℃で1時間処理したHeLa細胞のフローサイトメトリーにおける平均蛍光強度を比較した図である。In Test Example 3, in a sample solution containing a peptide fluorescence conjugate 7, a peptide fluorescence conjugate 1, a peptide fluorescence conjugate 2, a peptide fluorescence conjugate 5, a peptide fluorescence conjugate 6, or a fluorescent dye 1, 1 at 37 ° C. It is a figure which compared the average fluorescence intensity in the flow cytometry of the time-treated HeLa cells.
 本発明及び本願明細書において、「Cp1-p2」(p1及びp2は、p1<p2を満たす正の整数である)は、炭素数がp1~p2の基であることを意味する。 In the present invention and the present specification, "C p1-p2 " (p1 and p2 are positive integers satisfying p1 <p2) means that the number of carbon atoms is a group of p1 to p2.
 本発明及び本願明細書において、「C1-10アルキル基」は、炭素数1~10のアルキル基であり、直鎖であっても分岐鎖であってもよい。「C2-10アルキル基」は、炭素数2~10のアルキル基であり、直鎖であっても分岐鎖であってもよい。C1-10アルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。 In the present invention and the present specification, the "C 1-10 alkyl group" is an alkyl group having 1 to 10 carbon atoms, and may be a straight chain or a branched chain. The "C 2-10 alkyl group" is an alkyl group having 2 to 10 carbon atoms, and may be a straight chain or a branched chain. Examples of C 1-10 alkyl groups are methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Examples thereof include a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group and the like.
 本発明及び本願明細書において、「C1-30アルキル基」は、炭素数1~30のアルキル基であり、直鎖であっても分岐鎖であってもよい。「C2-30アルキル基」は、炭素数2~30のアルキル基であり、直鎖であっても分岐鎖であってもよい。C1-30アルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、ヘンエイコシル基、ドコシル基、トリコシル基、テトラコシル基、ペンタコシル基、ヘキサコシル基、ヘプタコシル基、オクタコシル基、ノナコシル基、トリアコンチル基等が挙げられる。 In the present invention and the present specification, the "C 1-30 alkyl group" is an alkyl group having 1 to 30 carbon atoms, and may be a straight chain or a branched chain. The "C 2-30 alkyl group" is an alkyl group having 2 to 30 carbon atoms, and may be a straight chain or a branched chain. Examples of C 1-30 alkyl groups are methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group, heneikosyl group. , Docosyl group, tricosyl group, tetracosyl group, pentacosyl group, hexacosyl group, heptacosyl group, octacosyl group, nonacosyl group, triacontyl group and the like.
 本発明及び本願明細書において、「C1-6アルキル基」は、炭素数1~6のアルキル基であり、直鎖であっても分岐鎖であってもよい。C1-6アルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基等が挙げられる。 In the present invention and the present specification, the "C 1-6 alkyl group" is an alkyl group having 1 to 6 carbon atoms, and may be a straight chain or a branched chain. Examples of C 1-6 alkyl groups are methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Examples thereof include a pentyl group and a hexyl group.
 本発明及び本願明細書において、「C6-14アリール基」は、炭素数6~14の芳香族炭化水素基であり、C6-12アリール基が特に好ましい。C6-14アリール基の例としては、フェニル基、ナフチル基、アントリル基、9-フルオレニル基等が挙げられ、フェニル基が特に好ましい。 In the present invention and the present specification, the "C 6-14 aryl group" is an aromatic hydrocarbon group having 6 to 14 carbon atoms, and a C 6-12 aryl group is particularly preferable. Examples of the C 6-14 aryl group include a phenyl group, a naphthyl group, an anthryl group, a 9-fluorenyl group and the like, and a phenyl group is particularly preferable.
 本発明及び本願明細書において、「置換されていてもよいC6-14アリール基」は、C6-14アリール基の炭素原子に結合している水素原子の1又は複数個、好ましくは1~3個が、他の官能基に置換されている基である。2個以上の置換基を有する場合、置換基同士は互いに同種であってもよく、異種であってよい。当該置換基としては、ニトロ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又はヨウ素原子)、C1-6アルキル基、C1-6アルコキシ基、及びメチレンジオキシ基(-O-CH-O-)等が挙げられる。「置換されていてもよいC6-14アリール基」の例としては、フェニル基、ナフチル基、アントリル基、4-ニトロフェニル基、4-メトキシフェニル基、2,4-ジメトキシフェニル基、3,4-ジメトキシフェニル基、4-メチルフェニル基、2,6-ジメチルフェニル基、3-クロロフェニル基、1,3-ベンゾジオキソール-5-イル基等が挙げられる。 In the present invention and the present specification, the "optionally substituted C 6-14 aryl group" is one or more hydrogen atoms bonded to the carbon atom of the C 6-14 aryl group, preferably 1 to 1. Three are groups substituted with other functional groups. When having two or more substituents, the substituents may be the same kind or different from each other. The substituents include a nitro group, a halogen atom (fluorine atom, chlorine atom, bromine atom, or iodine atom), a C 1-6 alkyl group, a C 1-6 alkoxy group, and a methylenedioxy group (-O-CH). 2 -O-) and the like can be mentioned. Examples of "optionally substituted C 6-14 aryl groups" are phenyl group, naphthyl group, anthryl group, 4-nitrophenyl group, 4-methoxyphenyl group, 2,4-dimethoxyphenyl group, 3, Examples thereof include 4-dimethoxyphenyl group, 4-methylphenyl group, 2,6-dimethylphenyl group, 3-chlorophenyl group, 1,3-benzodioxol-5-yl group and the like.
 本発明及び本願明細書において、「C6-14アリール-C1-6アルキル基」は、C1-6アルキル基の炭素原子に結合している1個の水素原子がC6-14アリール基に置換された基である。C6-14アリール-C1-6アルキル基におけるC6-14アリール基としては、フェニル基、ナフチル基、アントリル基、9-フルオレニル基等を例示でき、フェニル基又は9-フルオレニル基が特に好ましい。C6-14アリール-C1-6アルキル基におけるC1-6アルキル基としては、C1-4アルキル基が好ましい。C6-14アリール-C1-6アルキル基の例としては、ベンジル基、ジフェニルメチル基、トリフェニルメチル基、2-フェニルエチル基、9-アントリルメチル基、9-フルオレニルメチル基等が挙げられる。 In the present invention and the present specification, the "C 6-14 aryl-C 1-6 alkyl group" is a C 6-14 aryl group in which one hydrogen atom bonded to the carbon atom of the C 1-6 alkyl group is used. It is a group substituted with. Examples of the C 6-14 aryl group in the C 6-14 aryl -C 1-6 alkyl group include a phenyl group, a naphthyl group, an anthryl group, a 9-fluorenyl group and the like, and a phenyl group or a 9-fluorenyl group is particularly preferable. .. As the C 1-6 alkyl group in the C 6-14 aryl-C 1-6 alkyl group, a C 1-4 alkyl group is preferable. Examples of the C 6-14 aryl-C 1-6 alkyl group include a benzyl group, a diphenylmethyl group, a triphenylmethyl group, a 2-phenylethyl group, a 9-anthrylmethyl group, a 9-fluorenylmethyl group and the like. Can be mentioned.
 本発明及び本願明細書において、「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、又はヨウ素原子をいう。「フッ素原子以外のハロゲン原子」とは、塩素原子、臭素原子、又はヨウ素原子をいう。「フッ素原子以外のハロゲン原子」の例としては、塩素原子又は臭素原子が好ましく、塩素原子が特に好ましい。 In the present invention and the present specification, the "halogen atom" means a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom. The "halogen atom other than the fluorine atom" means a chlorine atom, a bromine atom, or an iodine atom. As an example of the "halogen atom other than the fluorine atom", a chlorine atom or a bromine atom is preferable, and a chlorine atom is particularly preferable.
 本発明及び本願明細書において、「C1-6アルコキシ基」とは、炭素数1~6のC1-6アルキル基の結合末端に酸素原子が結合した基をいう。C1-6アルコキシ基は直鎖であっても分岐鎖であってもよい。C1-6アルコキシ基の例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられる。 In the present invention and the present specification, the "C 1-6 alkoxy group" means a group in which an oxygen atom is bonded to the bond end of a C 1-6 alkyl group having 1 to 6 carbon atoms. The C 1-6 alkoxy group may be a straight chain or a branched chain. Examples of the C 1-6 alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a tert-butoxy group, a pentyloxy group, a hexyloxy group and the like.
 本発明及び本願明細書において、「エーテル結合性の酸素原子」とは、炭素原子間を連結する酸素原子であり、酸素原子同士が直列に連結された酸素原子は含まれない。炭素数Nc(Ncは2以上の整数)のアルキル基が有し得るエーテル結合性の酸素原子は、最大Nc-1個である。 In the present invention and the present specification, the "ether-bonded oxygen atom" is an oxygen atom that connects carbon atoms, and does not include an oxygen atom in which oxygen atoms are connected in series. The maximum number of ether-bonding oxygen atoms that an alkyl group having Nc carbon atoms (Nc is an integer of 2 or more) can have is Nc-1.
 また、以降において、「化合物n」は式(n)で表される化合物を意味する。 Further, hereinafter, "compound n" means a compound represented by the formula (n).
<フルオロアルキル基含有ペプチド>
 本発明に係るペプチドは、2個以上のアミノ酸からなるペプチドであって、当該ペプチドを構成するアミノ酸残基の少なくとも1個が、側鎖に、少なくとも2個のフッ素原子で置換されたC1-30アルキル基を有している。当該C1-30アルキル基が2個以上の炭素原子からなる場合(C2-30アルキル基の場合)に、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい。本発明及び本願明細書において、「少なくとも2個のフッ素原子で置換されたC1-30アルキル基(当該C1-30アルキル基は炭素原子が2以上の場合に、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい)」とは、「少なくとも2個のフッ素原子で置換されたC1-30アルキル基、又は少なくとも2個のフッ素原子で置換されたC2-30アルキル基の炭素原子間に1~5個のエーテル結合性の酸素原子を有する基」を意味する。
 本願発明及び本願明細書において、「少なくとも2個のフッ素原子で置換されたC1-30アルキル基を側鎖に有するペプチド」を、「フルオロアルキル基含有ペプチド」ということがある。以降において、「C1-30アルキル基のうち、炭素原子に結合している水素原子の少なくとも2個がフッ素原子で置換された基」は、「Rf」ということがある。
<Fluoroalkyl group-containing peptide>
The peptide according to the present invention is a peptide consisting of two or more amino acids, and at least one of the amino acid residues constituting the peptide is C 1- in which at least one of the amino acid residues is substituted in the side chain with at least two fluorine atoms. It has 30 alkyl groups. When the C 1-30 alkyl group consists of two or more carbon atoms (in the case of a C 2-30 alkyl group), even if it has 1 to 5 ether-bonding oxygen atoms between the carbon atoms. good. In the present invention and the present specification, "C 1-30 alkyl group substituted with at least two fluorine atoms (the C 1-30 alkyl group is 1 to 5 between carbon atoms when the number of carbon atoms is 2 or more). It may have an ether-bonding oxygen atom) "means" a C 1-30 alkyl group substituted with at least two fluorine atoms, or a C substituted with at least two fluorine atoms. It means "a group having 1 to 5 ether-bonding oxygen atoms between carbon atoms of a 2-30 alkyl group".
In the present invention and the present specification, "a peptide having a C 1-30 alkyl group substituted with at least two fluorine atoms in the side chain" may be referred to as "fluoroalkyl group-containing peptide". Hereinafter, "a group in which at least two hydrogen atoms bonded to a carbon atom of the C 1-30 alkyl group are substituted with a fluorine atom" may be referred to as "Rf".
 Rfは、炭素原子に結合している1個以上の水素原子が、フッ素原子以外のハロゲン原子でさらに置換されていてもよい。ここで、RfのC1-30アルキル基としては、C1-20アルキル基が好ましく、C1-10アルキル基がより好ましく、C2-10アルキル基がさらに好ましく、C2-8アルキル基がよりさらに好ましい。当該C1-30アルキル基がC2-30アルキル基である場合には、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい。Rfにおいて、フッ素原子に置換されている水素原子の数は、2個以上であれば特に限定されるものではなく、例えば、3個以上が好ましく、6個以上がより好ましく、7個以上がさらに好ましい。 In Rf, one or more hydrogen atoms bonded to carbon atoms may be further substituted with halogen atoms other than fluorine atoms. Here, as the C 1-30 alkyl group of Rf, a C 1-20 alkyl group is preferable, a C 1-10 alkyl group is more preferable, a C 2-10 alkyl group is further preferable, and a C 2-8 alkyl group is more preferable. Even more preferable. When the C1-30 alkyl group is a C2-30 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms. In Rf, the number of hydrogen atoms substituted with fluorine atoms is not particularly limited as long as it is 2 or more, for example, 3 or more is preferable, 6 or more is more preferable, and 7 or more is further preferable. preferable.
 Rfの例としては、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ペルフルオロペンチル基、ペルフルオロヘキシル基、ペルフルオロヘプチル基、ペルフルオロオクチル基、ペルフルオロノニル基、ペルフルオロデシル基、ジフルオロメチル基、1,1-ジフルオロエチル基、2,2-ジフルオロエチル基、1,1,2,2-テトラフルオロエチル基、1,1,2,2,3,3-ヘキサフルオロプロピル基、1,1,2,3,3,3-ヘキサフルオロプロピル基、1,1,2,2,3,3-ヘキサフルオロヘキシル基、1,1,2,2,3,3-ヘキサフルオロオクチル基、1,1,2,2,3,3-ヘキサフルオロデシル基、1,1,2,2,3,3-ヘキサフルオロオクタデシル基、1,1,2,2,3,3-ヘキサフルオロヘキサコシル基等が挙げられる。 Examples of Rf include trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluorononyl group, perfluorodecyl group, Difluoromethyl group, 1,1-difluoroethyl group, 2,2-difluoroethyl group, 1,1,2,2-tetrafluoroethyl group, 1,1,2,2,3,3-hexafluoropropyl group, 1,1,2,3,3,3-hexafluoropropyl group, 1,1,2,2,3,3-hexafluorohexyl group, 1,1,2,2,3,3-hexafluorooctyl group , 1,1,2,2,3,3-hexafluorodecyl group, 1,1,2,2,3,3-hexafluorooctadecyl group, 1,1,2,2,3,3-hexafluorohexa Examples include a cosyl group.
 Rfが炭素数2の基である場合、Rfとしては、1,1,1-トリフルオロエチル基(CF-CH-)よりも、ペンタフルオロエチル基のように、炭素原子に結合している水素原子の少なくとも4個以上がフッ素原子に置換されている基が好ましい。また、Rfが炭素数3の基である場合、Rfとしては、直鎖状の基が好ましく、分岐鎖状の基の場合には、1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル基((CF-CH-)のようにトリフルオロメチル基を2個有する基よりも、トリフルオロメチル基は0又は1個である基の方が好ましい。Rfが炭素数4の基である場合、Rfとしては、直鎖状の基が好ましく、分岐鎖状の基の場合には、アルキレン基部分を構成する炭素原子に結合する水素原子がフッ素原子に置換された基、又は完全フッ素化された基であることが好ましい。 When Rf is a group having 2 carbon atoms, the Rf is bonded to a carbon atom like a pentafluoroethyl group rather than a 1,1,1-trifluoroethyl group (CF 3 -CH 2- ). A group in which at least four or more hydrogen atoms are substituted with a fluorine atom is preferable. When Rf is a group having 3 carbon atoms, a linear group is preferable as Rf, and when it is a branched chain group, 1,1,1,3,3,3-hexafluoropropane. A group having 0 or 1 trifluoromethyl group is preferable to a group having 2 trifluoromethyl groups such as -2-yl group ((CF 3 ) 2 -CH-). When Rf is a group having 4 carbon atoms, a linear group is preferable as Rf, and in the case of a branched chain group, a hydrogen atom bonded to a carbon atom constituting an alkylene group portion becomes a fluorine atom. It is preferably a substituted group or a fully fluorinated group.
 Rfとしては、下記一般式(f-1)又は(f-2)で表される基が好ましい。ここで、Rfは、少なくとも2個以上のフッ素原子を含む完全ハロゲン化C1-10アルキル基を表す。Rfは、C1-10アルキル基の水素原子の全てがハロゲン原子に置換されており、これらのハロゲン原子のうち少なくとも2個以上がフッ素原子である基である。Rfが炭素数2以上の場合、すなわち、完全ハロゲン化C2-10アルキル基の場合、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい。本発明及び本願明細書において、「少なくとも2個以上のフッ素原子を含む完全ハロゲン化C1-10アルキル基(当該C1-10アルキル基は、炭素原子が2以上の場合に、炭素原子間にエーテル結合性の酸素原子を有していてもよい)」とは、「少なくとも2個以上のフッ素原子を含む完全ハロゲン化C1-10アルキル基、又は少なくとも2個以上のフッ素原子を含む完全ハロゲン化C2-10アルキル基の炭素原子間に1~5個のエーテル結合性の酸素原子を有する基」を意味する。一般式(f-2)において、2個のRfは、互いに同種の基であってもよく、異種の基であってもよい。 As Rf, a group represented by the following general formula (f-1) or (f-2) is preferable. Here, Rf P represents a fully halogenated C 1-10 alkyl group containing at least two or more fluorine atoms. Rf P is a group in which all the hydrogen atoms of the C 1-10 alkyl group are substituted with halogen atoms, and at least two or more of these halogen atoms are fluorine atoms. When Rf P has 2 or more carbon atoms, that is, when it is a fully halogenated C 2-10 alkyl group, it may have 1 to 5 ether-bonding oxygen atoms between carbon atoms. In the present invention and the present specification, "a fully halogenated C 1-10 alkyl group containing at least two or more fluorine atoms (the C 1-10 alkyl group is used between carbon atoms when the number of carbon atoms is two or more." It may have an ether-bonding oxygen atom) "means" a fully halogenated C 1-10 alkyl group containing at least two or more fluorine atoms, or a completely halogen containing at least two or more fluorine atoms. C 2-10 A group having 1 to 5 ether-bonding oxygen atoms between carbon atoms of an alkyl group. In the general formula (f-2), the two Rf Ps may be groups of the same kind or different groups from each other.
 下記一般式(f-1)又は(f-2)において、n1は、0~10の整数であり、n2は、0~9の整数である。n1及びn2が0の場合、いずれも単結合を表す。すなわち、n1が0の場合、一般式(f-1)で表される基は、Rf-であり、n2が0の場合、一般式(f-2)で表される基は、(Rf-CH-である。 In the following general formula (f-1) or (f-2), n1 is an integer of 0 to 10, and n2 is an integer of 0 to 9. When n1 and n2 are 0, both represent a single bond. That is, when n1 is 0, the group represented by the general formula (f-1) is Rf P −, and when n2 is 0, the group represented by the general formula (f-2) is (Rf). P ) 2 -CH-.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 Rfが一般式(f-1)で表される基である場合、Rfは、Rfが、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ペルフルオロペンチル基、ペルフルオロヘキシル基、ペルフルオロヘプチル基、ペルフルオロオクチル基、ペルフルオロノニル基、又はペルフルオロデシル基であり、n1が0~4の整数である基が好ましく、Rfが、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ペルフルオロペンチル基、ペルフルオロヘキシル基、ペルフルオロヘプチル基、ペルフルオロオクチル基、ペルフルオロノニル基、又はペルフルオロデシル基であり、n1が0~2の整数である基がより好ましく、Rfが、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ペルフルオロペンチル基、又はペルフルオロヘキシル基であり、n1が0~2の整数である基(ただし、n1が1であり、Rfがトリフルオロメチル基である基を除く)がさらに好ましい。 When Rf is a group represented by the general formula (f-1), Rf P is a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, a perfluoropentyl group, or a perfluoro. A hexyl group, a perfluoroheptyl group, a perfluorooctyl group, a perfluorononyl group, or a perfluorodecyl group, preferably a group in which n1 is an integer of 0 to 4, and Rf P is a trifluoromethyl group, a pentafluoroethyl group, or a hepta. A fluoropropyl group, a nonafluorobutyl group, a perfluoropentyl group, a perfluorohexyl group, a perfluoroheptyl group, a perfluorooctyl group, a perfluorononyl group, or a perfluorodecyl group, and a group in which n1 is an integer of 0 to 2 is more preferable. Rf P is a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, a perfluoropentyl group, or a perfluorohexyl group, and n1 is an integer of 0 to 2 (where n1 is). 1 and excluding the group in which Rf P is a trifluoromethyl group) is more preferable.
 Rfが一般式(f-2)で表される基である場合、Rfは、Rfが、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ペルフルオロペンチル基、ペルフルオロヘキシル基、ペルフルオロヘプチル基、ペルフルオロオクチル基、ペルフルオロノニル基、又はペルフルオロデシル基であり、n2が0~4の整数である基が好ましく、Rfが、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ペルフルオロペンチル基、ペルフルオロヘキシル基、ペルフルオロヘプチル基、ペルフルオロオクチル基、ペルフルオロノニル基、又はペルフルオロデシル基であり、n2が0~2の整数である基がより好ましく、Rfが、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ペルフルオロペンチル基、又はペルフルオロヘキシル基であり、n2が0~2の整数である基(ただし、n2が0又は1であり、Rfがトリフルオロメチル基である基を除く)がさらに好ましい。 When Rf is a group represented by the general formula (f-2), Rf P is a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, a perfluoropentyl group, or a perfluoro. A hexyl group, a perfluoroheptyl group, a perfluorooctyl group, a perfluorononyl group, or a perfluorodecyl group, preferably a group in which n2 is an integer of 0 to 4, and Rf P is a trifluoromethyl group, a pentafluoroethyl group, or a hepta. A fluoropropyl group, a nonafluorobutyl group, a perfluoropentyl group, a perfluorohexyl group, a perfluoroheptyl group, a perfluorooctyl group, a perfluorononyl group, or a perfluorodecyl group, and a group in which n2 is an integer of 0 to 2 is more preferable. Rf P is a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, a perfluoropentyl group, or a perfluorohexyl group, and n2 is an integer of 0 to 2 (where n2 is). (Excluding the group which is 0 or 1 and Rf P is a trifluoromethyl group) is more preferable.
 Rfの例としては、ジフルオロメチル基、1,1-ジフルオロエチル基、2,2-ジフルオロエチル基、1,1,2,2-テトラフルオロエチル基、1,1,2,2,3,3-ヘキサフルオロプロピル基、1,1,2,3,3,3-ヘキサフルオロプロピル基等であってもよい。 Examples of Rf are difluoromethyl group, 1,1-difluoroethyl group, 2,2-difluoroethyl group, 1,1,2,2-tetrafluoroethyl group, 1,1,2,2,3,3. -It may be a hexafluoropropyl group, a 1,1,2,3,3,3-hexafluoropropyl group or the like.
 本発明に係るフルオロアルキル基含有ペプチドとしては、側鎖がRfであるアミノ酸残基を少なくとも1個含むペプチドが挙げられる。当該ペプチドを構成するアミノ酸残基のうち、少なくとも1個の側鎖がRfであればよく、全てのアミノ酸残基の側鎖がRfであってもよい。一分子のペプチドに側鎖がRfであるアミノ酸残基が2個以上ある場合、これ等の複数のRfは、互いに同種であってもよく、異種であってもよい。また、ペプチドのうち、側鎖がRfであるアミノ酸残基は、N末端にあってもよく、C末端にあってもよく、末端以外にあってもよい。 Examples of the fluoroalkyl group-containing peptide according to the present invention include peptides containing at least one amino acid residue having an Rf side chain. Of the amino acid residues constituting the peptide, at least one side chain may be Rf, and the side chains of all amino acid residues may be Rf. When a single molecule peptide has two or more amino acid residues having a side chain of Rf, these plurality of Rfs may be the same species or different from each other. Further, among the peptides, the amino acid residue whose side chain is Rf may be at the N-terminal, at the C-terminal, or at a position other than the C-terminal.
 本発明に係るフルオロアルキル基含有ペプチドは、2個以上のアミノ酸からなるペプチドであればよく、3個以上のアミノ酸からなるペプチドも好ましい。本発明に係るフルオロアルキル基含有ペプチドとしては、好ましくは、2~40個のアミノ酸からなるペプチドであり、より好ましくは、3~20個のアミノ酸からなるペプチドである。 The fluoroalkyl group-containing peptide according to the present invention may be a peptide consisting of two or more amino acids, and a peptide consisting of three or more amino acids is also preferable. The fluoroalkyl group-containing peptide according to the present invention is preferably a peptide consisting of 2 to 40 amino acids, and more preferably a peptide consisting of 3 to 20 amino acids.
 本発明に係るフルオロアルキル基含有ペプチドのC末端は、保護基で保護されていてもよい。C末端の保護基としては、下記Rで挙げられる基を用いることができ、好ましくは、ベンジル基である。また、本発明に係るフルオロアルキル基含有ペプチドのN末端は、アミノ基の保護基で保護されていてもよい。N末端の保護基としては、下記Rで挙げられる基を用いることができ、好ましくは、Boc基又はFmoc基である。 The C-terminus of the fluoroalkyl group-containing peptide according to the present invention may be protected by a protecting group. As the C-terminal protecting group, the group listed in R 1 below can be used, and a benzyl group is preferable. Further, the N-terminal of the fluoroalkyl group-containing peptide according to the present invention may be protected by a protecting group of an amino group. As the N-terminal protecting group, the group listed in R2 below can be used, and a Boc group or an Fmoc group is preferable.
 本発明に係るフルオロアルキル基含有ペプチドのうち、側鎖にRfを有さないアミノ酸残基としては、特に限定されるものではなく、α-アミノ酸のアミノ酸残基であってもよく、β-アミノ酸のアミノ酸残基であってもよく、γ-アミノ酸のアミノ酸残基であってもよく、δ-アミノ酸のアミノ酸残基であってもよい。また、L-アミノ酸のアミノ酸残基であってもよく、D-アミノ酸のアミノ酸残基であってもよい。本発明に係るフルオロアルキル基含有ペプチドに含まれている側鎖にRfを有さないアミノ酸残基としては、タンパク質を構成するアミノ酸やそのD体、及びこれらの側鎖が修飾された修飾アミノ酸のアミノ酸残基であることが好ましい。 Among the fluoroalkyl group-containing peptides according to the present invention, the amino acid residue having no Rf in the side chain is not particularly limited, and may be an amino acid residue of α-amino acid, or β-amino acid. It may be an amino acid residue of γ-amino acid, an amino acid residue of δ-amino acid, or an amino acid residue of δ-amino acid. Further, it may be an amino acid residue of L-amino acid or an amino acid residue of D-amino acid. Amino acid residues that do not have Rf in the side chain contained in the fluoroalkyl group-containing peptide according to the present invention include amino acids constituting proteins, D-forms thereof, and modified amino acids in which these side chains are modified. It is preferably an amino acid residue.
 タンパク質を構成するアミノ酸としては、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、スレオニン、フェニルアラニン、チロシン、トリプトファン、アスパラギン、グルタミン、プロリン、アスパラギン酸、グルタミン酸、リシン、アルギニン、ヒスチジン等が挙げられる。また、タンパク質を構成するアミノ酸が修飾された修飾アミノ酸としては、例えば、リジン、アルギニン、ヒスチジンの側鎖のアミノ基の水素原子が、下記Rで挙げられる基やPbf(N-ω-(2,2,4,6,7-Pentamethyldihydrobenzofuran-5-sulfonyl)基に置換されたアミノ酸;アスパラギン酸、グルタミン酸の側鎖のカルボキシ基の水素原子が、下記Rで挙げられる基やtert-ブチル基のアルキル基に置換されたアミノ酸;システインのチオール基の水素原子がベンジル基に置換されたアミノ酸が挙げられる。 Examples of amino acids constituting the protein include glycine, alanine, valine, leucine, isoleucine, serine, threonine, phenylalanine, tyrosine, tryptophan, aspartic acid, glutamine, proline, aspartic acid, glutamic acid, lysine, arginine, and histidine. Examples of the modified amino acid in which the amino acids constituting the protein are modified include the hydrogen atom of the amino group of the side chain of lysine, arginine, and histidine, the group mentioned in R2 below, and Pbf (N-ω- (2). , 2,4,6,7 - Pentamethyldihydrobenzofuran-5-sulfonyl) Amino acid substituted with a group; Amino acids substituted with an alkyl group; amino acids in which the hydrogen atom of the thiol group of cysteine is substituted with a benzyl group can be mentioned.
 本発明に係るフルオロアルキル基含有ペプチドとしては、例えば、下記一般式(101)又は(102)で表されるトリペプチドが挙げられる。一般式(101)及び(102)中、R11及びR12は、それぞれ独立して、C1-6アルキル基又はベンジル基であり、それぞれ独立してメチル基又はベンジル基であることが好ましく、R11がメチル基であり、R12がベンジル基であることが特に好ましい。Xは、Fmoc又はBocである。Zは、C1-6アルコキシ基であり、メトキシ基が特に好ましい。 Examples of the fluoroalkyl group-containing peptide according to the present invention include tripeptides represented by the following general formula (101) or (102). In the general formulas (101) and (102), R 11 and R 12 are preferably C 1-6 alkyl groups or benzyl groups, respectively, and preferably methyl groups or benzyl groups, respectively. It is particularly preferred that R 11 is a methyl group and R 12 is a benzyl group. X is Fmoc or Boc. Z is a C 1-6 alkoxy group, and a methoxy group is particularly preferable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(101)及び(102)中、Rf、n1、及びn2は、一般式(f-1)及び(f-2)と同様である。前記一般式(101)又は(102)で表される基としては、Rfが完全フッ素化C1-10アルキル基であり、n1又はn2が0~4の整数であることが好ましく、Rfがトリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ペルフルオロペンチル基、ペルフルオロヘキシル基、ペルフルオロヘプチル基、又はペルフルオロオクチル基であり、n1又はn2が0~2の整数であることがより好ましく、Rfがノナフルオロブチル基、ペルフルオロペンチル基、ペルフルオロヘキシル基、ペルフルオロヘプチル基、又はペルフルオロオクチル基であり、n1又はn2が0~2の整数であることがさらに好ましい。 In the general formulas (101) and (102), Rf P , n1 and n2 are the same as those in the general formulas (f-1) and (f-2). As the group represented by the general formula (101) or (102), Rf P is preferably a fully fluorinated C 1-10 alkyl group, and n1 or n2 is preferably an integer of 0 to 4, preferably Rf P. Is a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, a perfluoropentyl group, a perfluorohexyl group, a perfluoroheptyl group, or a perfluorooctyl group, and n1 or n2 is an integer of 0 to 2. It is more preferable that Rf P is a nonafluorobutyl group, a perfluoropentyl group, a perfluorohexyl group, a perfluoroheptyl group, or a perfluorooctyl group, and n1 or n2 is an integer of 0 to 2.
 本発明に係るフルオロアルキル基含有ペプチドは、原料のアミノ酸として、少なくともフルオロアルキル基が側鎖に導入されたアミノ酸であるフルオロアルキル基含有アミノ酸を用いる以外は、一般的なペプチド合成法により行うことができる。例えば、ペプチド固相合成法により行うことができる。フルオロアルキル基含有ペプチドは、側鎖にフルオロアルキル基が導入されたアミノ酸を原料として、ペプチド自動合成機を用いて容易に合成できる。フルオロアルキル基含有アミノ酸としては、側鎖がRfであるアミノ酸が好ましい。 The fluoroalkyl group-containing peptide according to the present invention may be carried out by a general peptide synthesis method except that a fluoroalkyl group-containing amino acid, which is an amino acid having a fluoroalkyl group introduced into a side chain, is used as a raw material amino acid. can. For example, it can be carried out by a peptide solid phase synthesis method. The fluoroalkyl group-containing peptide can be easily synthesized using an automatic peptide synthesizer using an amino acid having a fluoroalkyl group introduced into the side chain as a raw material. As the fluoroalkyl group-containing amino acid, an amino acid having an Rf side chain is preferable.
 C末端を固相に結合したアミノ酸に、アミノ基を保護したアミノ酸を順次縮合させ、ペプチドを固相から脱離させることにより、ペプチドを製造できる。アミノ酸原料は、アミノ基がBoc基又はFmoc基で保護されたものを使用することが好ましい。アミノ酸原料の側鎖官能基は、保護基で保護されているものを使用することが好ましい。側鎖官能基の保護基としては、Boc基、トリフェニルメチル基、ベンジル基、2,2,5,7,8-ペンタメチルクロマン-6-スルホニル(Pmc)基等が挙げられる。 A peptide can be produced by sequentially condensing an amino acid having an amino group protected with an amino acid having a C-terminal bonded to a solid phase and desorbing the peptide from the solid phase. As the amino acid raw material, it is preferable to use one in which the amino group is protected by a Boc group or an Fmoc group. As the side chain functional group of the amino acid raw material, it is preferable to use one protected by a protecting group. Examples of the protecting group of the side chain functional group include a Boc group, a triphenylmethyl group, a benzyl group, a 2,2,5,7,8-pentamethylchroman-6-sulfonyl (Pmc) group and the like.
 ペプチド結合を形成する縮合剤としては、例えば、N,N-ジシクロヘキシルカルボジイミド(DCC)、1-エチル-3-(3’-ジメチルアミノプロピル)カルボジイミド(WSC)、ベンゾトリアゾール-1-イルオキシ-トリスジメチルアミノホスホニウムヘキサフルオロリン酸塩(BOP)、ベンゾトリアゾール-1-イルオキシトリスピロリジノホスホニウムヘキサフルオロリン酸塩(pyBOP)、2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロリン酸塩(HBTU)、2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムテトラフルオロボレート、1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノモルフォリノカルベニウムヘキサフルオロホスファート(COMU)等が挙げられる。また、N-ヒドロキシベンゾトリアゾール(HOBt)、(ヒドロキシイミノ)シアノ酢酸エチル(oxyma)と上記縮合剤とを、好ましい割合で混合して用いることもできる。 Examples of the condensing agent forming a peptide bond include N, N-dicyclohexylcarbodiimide (DCC), 1-ethyl-3- (3'-dimethylaminopropyl) carbodiimide (WSC), and benzotriazole-1-yloxy-trisdimethyl. Aminophosphonium hexafluorophosphate (BOP), benzotriazole-1-yloxytrispyrrolidinophosphonium hexafluorophosphate (pyBOP), 2- (1H-benzotriazole-1-yl) -1,1,3 3-Tetramethyluronium hexafluorophosphate (HBTU), 2- (1H-benzotriazole-1-yl) -1,1,3,3-tetramethyluronium tetrafluoroborate, 1-cyano-2- Ethoxy-2-oxoethylideneaminooxy) dimethylaminomorpholinocarbenium hexafluorophosphate (COMU) and the like can be mentioned. Further, N-hydroxybenzotriazole (HOBt), ethyl (hydroxyimino) cyanoacetate (oxyma) and the above condensing agent can be mixed and used in a preferable ratio.
 ペプチド結合の形成にはカルボキシ末端を活性化する方法を用いてもよく、その活性化剤としては、例えば、N-ヒドロキシスクシンイミド、p-ニトロフェニルエステル、ペンタフルオロフェニルエステル等が挙げられる。ペプチド結合を形成する際に用いる塩基としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン(DIPEA)等が挙げられる。ペプチド結合形成反応に用いる溶媒としては、例えば、クロロホルム、ジクロロメタン、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド等が挙げられる。 A method of activating the carboxy terminal may be used for the formation of the peptide bond, and examples of the activator include N-hydroxysuccinimide, p-nitrophenyl ester, pentafluorophenyl ester and the like. Examples of the base used for forming a peptide bond include triethylamine, diisopropylethylamine (DIPEA) and the like. Examples of the solvent used for the peptide bond forming reaction include chloroform, dichloromethane, acetonitrile, N, N-dimethylformamide (DMF), dimethyl sulfoxide and the like.
 ペプチド又はアミノ酸のアミノ末端アミノ基の保護基であるBoc基及びFmoc基は、それぞれトリフルオロ酢酸又はピペリジンにより除去できる。ペプチドのアミノ酸残基の側鎖官能基の保護基は、例えば、トリフルオロ酢酸、フッ化水素(HF)、トリフルオロメタンスルホン酸等により除去できる。 The Boc and Fmoc groups, which are the protecting groups for the amino-terminal amino groups of peptides or amino acids, can be removed with trifluoroacetic acid or piperidine, respectively. The protecting group of the side chain functional group of the amino acid residue of the peptide can be removed by, for example, trifluoroacetic acid, hydrogen fluoride (HF), trifluoromethanesulfonic acid or the like.
 また、ペプチド固相合成法において、ペプチド又はアミノ酸残基の側鎖官能基に保護基が付いているペプチドをペプチド固相合成樹脂より脱離させる方法としては、例えば、TFAを用いることができる。ペプチド固相樹脂からのペプチドの脱離と、アミノ酸残基の側鎖官能基の保護基の脱離は、それぞれ同一反応系内で同時に行うこともできる。あるいは、それぞれ独立に行うこともできる。ペプチド固相合成用のペプチド固相合成樹脂としては、例えば、4-ヒドロキシメチル-3-メトキシフェノキシ酪酸-ベンズヒドリルアミン-ポリスチレン樹脂、p-ベンジルオキシベンジルアルコール-ポリスチレン樹脂、オキシム樹脂等の通常市販されているものを用いることができる。 Further, in the peptide solid phase synthesis method, for example, TFA can be used as a method for removing a peptide having a protecting group on the side chain functional group of the peptide or amino acid residue from the peptide solid phase synthetic resin. Desorption of the peptide from the peptide solid phase resin and desorption of the protecting group of the side chain functional group of the amino acid residue can also be performed simultaneously in the same reaction system. Alternatively, each can be done independently. Examples of the peptide solid phase synthetic resin for peptide solid phase synthesis include 4-hydroxymethyl-3-methoxyphenoxybutyic acid-benzhydrylamine-polystyrene resin, p-benzyloxybenzyl alcohol-polystyrene resin, and oxime resin, which are usually commercially available. Can be used.
 目的のペプチド又はその中間体は、例えば、イオンクロマトグラフィー、ゲル濾過クロマトグラフィー、逆相クロマトグラフィー、順相クロマトグラフィー、再結晶、抽出、分別結晶化等、種々の方法により単離、精製を行うことができる。また、こうして得られたペプチドは、常法によってそれぞれの塩に変換できる。 The target peptide or its intermediate is isolated and purified by various methods such as ion chromatography, gel filtration chromatography, reverse phase chromatography, normal phase chromatography, recrystallization, extraction, and fractional crystallization. be able to. In addition, the peptide thus obtained can be converted into each salt by a conventional method.
 製造されたフルオロアルキル基含有ペプチドのアミノ基又はカルボキシ基の保護基は、必要に応じて脱保護することもできる。脱保護は、保護基の種類に応じて常法により行うことができる。 The protecting group of the amino group or the carboxy group of the produced fluoroalkyl group-containing peptide can also be deprotected if necessary. Deprotection can be performed by a conventional method depending on the type of protecting group.
<フルオロアルキル基含有アミノ酸の合成反応>
 フルオロアルキル基含有アミノ酸は、例えば、下記の合成反応により製造できる。
<Synthetic reaction of amino acid containing fluoroalkyl group>
The fluoroalkyl group-containing amino acid can be produced, for example, by the following synthetic reaction.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 Rfとしては、具体的には、後記の一般式(f-1)又は(f-2)で表される基が好ましい。 Specifically, as Rf, a group represented by the general formula (f-1) or (f-2) described later is preferable.
 Rは、カルボキシ基の保護基であり、具体的には、下記一般式(p-1)で表される基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、及びフェナシル基から選ばれる保護基である。一般式(p-1)中、Rは、置換されていてもよいC6-14アリール基であり、R及びRは、それぞれ独立して、水素原子又は置換されていてもよいC6-14アリール基である。また、黒丸は結合手を意味する。 R 1 is a protecting group for a carboxy group, and specifically, a group represented by the following general formula (p-1), a 2- (9,10-dioxo) anthrylmethyl group, a benzyloxymethyl group, and the like. And a protecting group selected from phenacyl groups. In the general formula (p-1), R 3 is a optionally substituted C 6-14 aryl group, and R 4 and R 5 are independently hydrogen atoms or optionally substituted C. It is a 6-14 aryl group. The black circle means a bond.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 Rで表されるカルボキシ基の保護基としては、ベンジル基、ジフェニルメチル基、トリフェニルメチル基、4-ニトロベンジル基、4-メトキシベンジル基、2,4-ジメトキシベンジル基、3,4-ジメトキシベンジル基、4-メチルベンジル基、2,6-ジメチルベンジル基、3-クロロベンジル基、9-アントリルメチル基、ピペロニル基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、フェナシル基等が挙げられる。穏やかな条件で脱保護できる点で、Rは、好ましくはベンジル基、トリフェニルメチル基であり、より好ましくはベンジル基である。 Benzyl group, diphenylmethyl group, triphenylmethyl group, 4 - nitrobenzyl group, 4-methoxybenzyl group, 2,4-dimethoxybenzyl group, 3,4- Dimethoxybenzyl group, 4-methylbenzyl group, 2,6-dimethylbenzyl group, 3-chlorobenzyl group, 9-anthrylmethyl group, piperonyl group, 2- (9,10-dioxo) anthrylmethyl group, benzyloxy Examples thereof include a methyl group and a phenylyl group. R 1 is preferably a benzyl group, a triphenylmethyl group, and more preferably a benzyl group in that it can be deprotected under mild conditions.
 当該製造方法は、カルボキシ基の保護基Rとして、ベンジル基、トリフェニルメチル基等のアラルキル保護基を使用することにより、穏やかな条件でR1を脱保護でき、アミノ酸の官能基を分解することなく、含フッ素アミノ酸の合成や含フッ素ペプチドの合成を行うことができる点で有利である。 In the production method, R1 can be deprotected under mild conditions by using an aralkyl protecting group such as a benzyl group or a triphenylmethyl group as the protecting group R1 of the carboxy group, and the functional group of the amino acid is decomposed. It is advantageous in that it is possible to synthesize a fluorine-containing amino acid and a fluorine-containing peptide.
 Rは、シリル保護基である。Rとしては、トリメチルシリル(TMS)基、トリエチルシリル(TES)基、トリイソプロピルシリル(TIPS)基、tert-ブチルジメチルシリル(TBDMS)基、tert-ブチルジフェニルシリル(TBDPS)基等が挙げられる。好ましくは、Rは、トリメチルシリル(TMS)基である。 R6 is a silyl protecting group. Examples of R 6 include a trimethylsilyl (TMS) group, a triethylsilyl (TES) group, a triisopropylsilyl (TIPS) group, a tert-butyldimethylsilyl (TBDMS) group, a tert-butyldiphenylsilyl (TBDPS) group and the like. Preferably, R6 is a trimethylsilyl (TMS) group.
 Rは、アミノ基の保護基である。Rとしては、ペプチド合成で使用されるアミノ基の保護基であれば、特に限定されない。アミノ基の保護基としては、tert-ブトキシカルボニル(Boc)基、9-フルオレニルメチルオキシカルボニル(Fmoc)基、ベンジルオキシカルボニル(Cbz)基、アリルオキシカルボニル(Alloc)基、2,2,2-トリクロロエトキシカルボニル(Troc)基等のカルバメート系保護基が挙げられる。穏やかな条件で脱保護できる点で、R2は、好ましくは、tert-ブトキシカルボニル(Boc)基又は9-フルオレニルメチルオキシカルボニル(Fmoc)基である。 R 2 is a protecting group for the amino group. R2 is not particularly limited as long as it is a protecting group for an amino group used in peptide synthesis. As the protective group of the amino group, tert-butoxycarbonyl (Boc) group, 9-fluorenylmethyloxycarbonyl (Fmoc) group, benzyloxycarbonyl (Cbz) group, allyloxycarbonyl (Allloc) group, 2,2 Examples thereof include a carbamate-based protective group such as a 2-trichloroethoxycarbonyl (Troc) group. R2 is preferably a tert-butoxycarbonyl (Boc) group or a 9-fluorenylmethyloxycarbonyl (Fmoc) group in that it can be deprotected under mild conditions.
[工程1]
 化合物2と化合物8を、金属フッ化物の存在下で反応させることにより、化合物2-2を得ることができる。一般式(8)であるRf-R6で表される化合物8は、入手容易なRf-I(フルオロアルキルヨージド)から1工程で合成できるため、導入できるRf基の範囲が広い。
[Step 1]
Compound 2-2 can be obtained by reacting compound 2 and compound 8 in the presence of metal fluoride. Since the compound 8 represented by the general formula (8) Rf-R6 can be synthesized from easily available Rf-I (fluoroalkyl iodide) in one step, the range of Rf groups that can be introduced is wide.
 金属フッ化物としては、フッ化セシウム、フッ化リチウム、フッ化ナトリウム等のアルカリ金属フッ化物を使用することができ、フッ化セシウムが好ましい。
 反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、テトラヒドロフラン(THF)、ジクロロメタン(DCM)、アセトニトリル、ベンゼン、トルエン、ジエチルエーテル、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられ、テトラヒドロフランが好ましい。
As the metal fluoride, alkali metal fluorides such as cesium fluoride, lithium fluoride and sodium fluoride can be used, and cesium fluoride is preferable.
The reaction can be carried out in a solvent inert to the reaction. Examples of the solvent include inert solvents such as tetrahydrofuran (THF), dichloromethane (DCM), acetonitrile, benzene, toluene, diethyl ether, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide and the like. , Tetrahydrofuran is preferred.
 化合物8の量は、1モルの化合物2に対して、0.5~10モルが好ましい。金属フッ化物の量は、1モルの化合物2に対して、0.01~2モルが好ましい。工程1の反応は、10℃以下の温度で行うことが好ましい。10℃以下の温度で反応を行うことにより、高収率で化合物2-2を製造できる。反応温度は、好ましくは-78℃~10℃、より好ましくは-50℃~-10℃、特に好ましくは-40℃~-20℃である。反応時間は、好ましくは1~48時間、より好ましくは6~36時間である。 The amount of compound 8 is preferably 0.5 to 10 mol with respect to 1 mol of compound 2. The amount of metal fluoride is preferably 0.01 to 2 mol with respect to 1 mol of compound 2. The reaction in step 1 is preferably carried out at a temperature of 10 ° C. or lower. By carrying out the reaction at a temperature of 10 ° C. or lower, compound 2-2 can be produced in high yield. The reaction temperature is preferably −78 ° C. to 10 ° C., more preferably −50 ° C. to −10 ° C., and particularly preferably −40 ° C. to −20 ° C. The reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
 化合物2は、シュウ酸を公知の方法でジエステル化することにより製造することができ、又は市販品を使用してもよい。 Compound 2 can be produced by diesterizing oxalic acid by a known method, or a commercially available product may be used.
[工程1-1]
 工程1の反応において、化合物2-1(ヒドロキシ基の一方がRで保護された化合物)、又は化合物2-2と化合物2-1の混合物が得られることがある。その場合、化合物2-1のシリル保護基Rを脱保護することにより、化合物2-2を得ることができる。
 工程1-1の反応は、工程1と同様の方法で行うことができる。
[Step 1-1]
In the reaction of step 1 , compound 2-1 (a compound in which one of the hydroxy groups is protected by R6) or a mixture of compound 2-2 and compound 2-1 may be obtained. In that case, compound 2-2 can be obtained by deprotecting the silyl protecting group R6 of compound 2-1.
The reaction of step 1-1 can be carried out in the same manner as in step 1.
[工程1-2]
 化合物2-1のシリル保護基Rを脱保護することにより、化合物2-2を得ることができる。
 脱保護は、フッ化テトラブチルアンモニウム(TBAF)、フッ化セシウム、フッ化水素酸塩等のフッ化物塩、又は塩酸、酢酸、パラトルエンスルホン酸等の酸の存在下で行うことができる。
[Step 1-2]
Compound 2-2 can be obtained by deprotecting the silyl protecting group R6 of compound 2-1.
Deprotection can be performed in the presence of fluoride salts such as tetrabutylammonium fluoride (TBAF), cesium fluoride, hydrofluoride salts, or acids such as hydrochloric acid, acetic acid, paratoluenesulfonic acid.
 反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、テトラヒドロフラン、ジクロロメタン、アセトニトリル、ベンゼン、トルエン、ジエチルエーテル、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられ、テトラヒドロフランが好ましい。酢酸を添加して行うことが好ましい。 The reaction can be carried out in a solvent inert to the reaction. Examples of the solvent include inert solvents such as tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, diethyl ether, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, and tetrahydrofuran is preferable. It is preferable to add acetic acid.
 フッ化物塩の量は、1モルの化合物2-1(化合物2-2と化合物2-1の混合物の場合は、混合物1モル)に対して、0.1~10モルが好ましい。酸の量は、1モルの化合物2-1(化合物2-2と化合物2-1の混合物の場合は、混合物1モル)に対して、0.1~10モルが好ましい。工程1-2の反応は、50℃以下の温度で行うことが好ましい。50℃以下の温度で反応を行うことにより、高収率で化合物2-2を製造できる。反応温度は、好ましくは-80℃~50℃、より好ましくは-40℃~30℃、特に好ましくは-20℃~30℃である。反応時間は、好ましくは1~48時間、より好ましくは6~36時間である。 The amount of the fluoride salt is preferably 0.1 to 10 mol with respect to 1 mol of compound 2-1 (in the case of a mixture of compound 2-2 and compound 2-1). The amount of acid is preferably 0.1 to 10 mol with respect to 1 mol of compound 2-1 (1 mol of the mixture in the case of a mixture of compound 2-2 and compound 2-1). The reaction in step 1-2 is preferably carried out at a temperature of 50 ° C. or lower. By carrying out the reaction at a temperature of 50 ° C. or lower, compound 2-2 can be produced in high yield. The reaction temperature is preferably −80 ° C. to 50 ° C., more preferably −40 ° C. to 30 ° C., and particularly preferably −20 ° C. to 30 ° C. The reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
[工程2]
 化合物2-2を脱水反応に付すことにより、化合物3を得ることができる。
 脱水反応は、五酸化二リン、濃硫酸、塩化カルシウム、硫酸ナトリウム、硫酸マグネシウム、硫酸カルシウム、モレキュラーシーブ(合成ゼオライト)、シリカゲル等の脱水剤の存在下で、行うことができる。脱水剤としては、五酸化二リンが好ましい。脱水剤の量は、化合物2-2の100重量%に対して、10~100重量%が好ましい。脱水反応は、化合物2-2を、脱水剤の存在下で蒸留することにより行うことができる。蒸留は、30℃~150℃の温度で行うことが好ましい。蒸留温度が高すぎると、化合物3が分解する可能性がある。蒸留温度が低すぎると、化合物3を凝縮できず、回収率が低下する可能性がある。蒸留は、減圧、常圧、加圧のいずれの圧力でも実施でき、化合物3の沸点が上記の好ましい温度の範囲に入るように適宜決定できる。圧力は、好ましくは0.1mmHgから5気圧(3800mmHg)である。
[Step 2]
Compound 3 can be obtained by subjecting compound 2-2 to a dehydration reaction.
The dehydration reaction can be carried out in the presence of a dehydrating agent such as diphosphorus pentoxide, concentrated sulfuric acid, calcium chloride, sodium sulfate, magnesium sulfate, calcium sulfate, molecular sieve (synthetic zeolite), and silica gel. As the dehydrating agent, diphosphorus pentoxide is preferable. The amount of the dehydrating agent is preferably 10 to 100% by weight based on 100% by weight of compound 2-2. The dehydration reaction can be carried out by distilling compound 2-2 in the presence of a dehydrating agent. Distillation is preferably carried out at a temperature of 30 ° C to 150 ° C. If the distillation temperature is too high, compound 3 may decompose. If the distillation temperature is too low, compound 3 cannot be condensed and the recovery rate may decrease. Distillation can be carried out at any pressure of reduced pressure, normal pressure and pressure, and can be appropriately determined so that the boiling point of compound 3 falls within the above-mentioned preferable temperature range. The pressure is preferably 0.1 mmHg to 5 atm (3800 mmHg).
[工程3]
 化合物3を、化合物9又は化合物10と反応させることにより、化合物4を得ることができる。
[Step 3]
Compound 4 can be obtained by reacting compound 3 with compound 9 or compound 10.
 一般式(9)中、Rは、前記の通り、アミノ基の保護基である。R、R及びRは、それぞれ独立して、C6-14アリール基である。R、R又はRで表されるC6-14アリール基としては、フェニル基、ナフチル基等が挙げられる。好ましくは、R、R及びRは、それぞれフェニル基である。 In the general formula (9), R 2 is a protecting group for an amino group as described above. R 7 , R 8 and R 9 are independently C 6-14 aryl groups. Examples of the C 6-14 aryl group represented by R 7 , R 8 or R 9 include a phenyl group and a naphthyl group. Preferably, R 7 , R 8 and R 9 are phenyl groups, respectively.
 反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、ジエチルエーテル、テトラヒドロフラン、ジクロロメタン、アセトニトリル、ベンゼン、トルエン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられ、ジエチルエーテルが好ましい。 The reaction can be carried out in a solvent inert to the reaction. Examples of the solvent include inert solvents such as diethyl ether, tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, and diethyl ether is preferable.
 化合物9又は化合物10の量は、1モルの化合物3に対して、0.5~10モルが好ましい。反応温度は、好ましくは-78℃~100℃、より好ましくは0℃~40℃である。反応時間は、好ましくは1分間~24時間、より好ましくは10分間~4時間である。 The amount of compound 9 or compound 10 is preferably 0.5 to 10 mol with respect to 1 mol of compound 3. The reaction temperature is preferably −78 ° C. to 100 ° C., more preferably 0 ° C. to 40 ° C. The reaction time is preferably 1 minute to 24 hours, more preferably 10 minutes to 4 hours.
 好適な態様において、アミノ基の保護基Rとして、tert-ブトキシカルボニル基、9-フルオレニルメチルオキシカルボニル基等のカルバメート系保護基を使用することにより、穏やかな条件でRを脱保護でき、化合物の分解やラセミ化を抑制しながら含フッ素アミノ酸の合成を行うことができる。 In a preferred embodiment, a carbamate-based protecting group such as a tert-butoxycarbonyl group or a 9-fluorenylmethyloxycarbonyl group is used as the amino group protecting group R2 to deprotect R2 under mild conditions. It is possible to synthesize fluorine-containing amino acids while suppressing the decomposition and racemization of compounds.
[工程4]
 化合物4を還元反応に付すことにより、化合物5を得ることができる。
 還元反応は、還元剤を使用する方法、又は金属触媒の存在下で還元する方法で行うことができる。
[Step 4]
Compound 5 can be obtained by subjecting compound 4 to a reduction reaction.
The reduction reaction can be carried out by a method using a reducing agent or a method of reducing in the presence of a metal catalyst.
(1)還元剤を使用する方法
 還元剤としては、水素化ホウ素ナトリウム、水素化ホウ素亜鉛、シアノ水素化ホウ素ナトリウム、水素化トリエチルホウ素リチウム、水素化トリ(sec-ブチル)ホウ素リチウム、水素化トリ(sec-ブチル)ホウ素カリウム、水素化ホウ素リチウム、トリアセトキシ水素化ホウ素ナトリウム等の水素化ホウ素試薬を使用できる。還元剤としては、水素化ホウ素ナトリウム又は水素化ホウ素亜鉛が好ましく、水素化ホウ素ナトリウムがより好ましい。還元剤の量は、1モルの化合物4に対して、0.5~10モルが好ましい。
(1) Method using a reducing agent As the reducing agent, sodium borohydride, zinc borohydride, sodium borohydride cyanoborohydride, lithium triethylborohydride, lithium borohydride (sec-butyl), lithium borohydride, and hydride tri. A boron borohydride reagent such as potassium boron (sec-butyl), lithium boron borohydride, and sodium triacetoxyborohydride can be used. As the reducing agent, sodium borohydride or zinc borohydride is preferable, and sodium borohydride is more preferable. The amount of the reducing agent is preferably 0.5 to 10 mol with respect to 1 mol of the compound 4.
 反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、ジエチルエーテル、テトラヒドロフラン、ハイドロクロロフルオロカーボン(HCFC)(例、アサヒクリン(登録商標)AK-225(3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパンと1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパンの混合物、AGC株式会社))、ジクロロメタン、アセトニトリル、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられ、ジエチルエーテルが好ましい。
 反応温度は、好ましくは-78℃~100℃、より好ましくは-10℃~40℃である。反応時間は、好ましくは1~48時間、より好ましくは6~36時間である。
The reaction can be carried out in a solvent inert to the reaction. Solvents include diethyl ether, dichloromethane, hydrochlorofluorocarbon (HCFC) (eg, Asahiclin® AK-225 (3,3-dichloro-1,1,1,2,2-pentafluoropropane and 1,1). 3-Dichloro-1,1,2,2,3-pentafluoropropane mixture, AGC Co., Ltd.)), dichloromethane, acetonitrile, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, etc. The inert solvent of the above is mentioned, and diethyl ether is preferable.
The reaction temperature is preferably −78 ° C. to 100 ° C., more preferably −10 ° C. to 40 ° C. The reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
(2)金属触媒の存在下で還元する方法
 金属触媒としては、パラジウム触媒(例、パラジウム炭素、水酸化パラジウム、パールマン触媒、リンドラー触媒、シリカゲル担持パラジウム触媒、アルミナ担持パラジウム触媒、酸化パラジウム)、ニッケル触媒(例、ラネーニッケル)、白金触媒(例、白金炭素、酸化白金、シリカゲル担持白金触媒、アルミナ担持白金触媒)、ロジウム触媒(例、ロジウム炭素、アルミナ担持ロジウム触媒、酸化ロジウム)、ルテニウム触媒(例、ルテニウム炭素、アルミナ担持ルテニウム触媒、酸化ルテニウム)、コバルト触媒(例、ラネーコバルト)等が挙げられ、パラジウム触媒が好ましい。金属触媒の量は、1モルの化合物4に対して、0.0001~0.1モルが好ましく、0.0005~0.02モルがより好ましい。
(2) Method of reduction in the presence of a metal catalyst Examples of the metal catalyst include palladium catalysts (eg, palladium carbon, palladium hydroxide, Pearlman catalyst, Lindler catalyst, silica gel-supported palladium catalyst, alumina-supported palladium catalyst, palladium oxide) and nickel. Catalysts (eg, lane nickel), platinum catalysts (eg, platinum carbon, platinum oxide, silica gel-supported platinum catalysts, alumina-supported platinum catalysts), rhodium catalysts (eg, rhodium carbon, alumina-supported rhodium catalysts, rhodium oxide), ruthenium catalysts (eg, rhodium oxide). , Luthenium carbon, alumina-supported ruthenium catalyst, ruthenium oxide), cobalt catalyst (eg, lane cobalt) and the like, and palladium catalyst is preferable. The amount of the metal catalyst is preferably 0.0001 to 0.1 mol, more preferably 0.0005 to 0.02 mol, based on 1 mol of the compound 4.
 反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、メタノール、エタノール、イソプロパノール、ジエチルエーテル、テトラヒドロフラン、酢酸エチル、ジクロロメタン、アセトニトリル、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられる。 The reaction can be carried out in a solvent inert to the reaction. Examples of the solvent include inert solvents such as methanol, ethanol, isopropanol, diethyl ether, tetrahydrofuran, ethyl acetate, dichloromethane, acetonitrile, 1,4-dioxane, N, N-dimethylformamide and N, N-dimethylacetamide.
 還元反応は、水素ガスの存在下で行われる。還元反応は常圧で行っても、加圧下で行ってもよい。水素ガスの圧力は、好ましくは0.5気圧~10気圧である。反応温度は、好ましくは0℃~100℃、より好ましくは10℃~50℃である。反応時間は、好ましくは1~48時間、より好ましくは6~36時間である。 The reduction reaction is carried out in the presence of hydrogen gas. The reduction reaction may be carried out under normal pressure or under pressure. The pressure of hydrogen gas is preferably 0.5 atm to 10 atm. The reaction temperature is preferably 0 ° C to 100 ° C, more preferably 10 ° C to 50 ° C. The reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
[工程5-1]
 化合物5の保護基Rを脱保護することにより、化合物6-1を得ることができる。
 脱保護は、保護基Rの種類に応じて行うことができる。
 RがBoc基の場合、酸性条件下で脱保護できる。使用する酸としては、トリフルオロ酢酸(TFA)、塩酸等が挙げられる。酸の量は、1モルの化合物5に対して、1~1000モルが好ましい。
[Step 5-1]
Compound 6-1 can be obtained by deprotecting the protecting group R2 of compound 5.
Deprotection can be performed according to the type of protecting group R2 .
When R 2 is a Boc group, it can be deprotected under acidic conditions. Examples of the acid used include trifluoroacetic acid (TFA) and hydrochloric acid. The amount of acid is preferably 1 to 1000 mol with respect to 1 mol of compound 5.
 反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、ジエチルエーテル、テトラヒドロフラン、ジクロロメタン、アセトニトリル、ベンゼン、トルエン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられ、ジクロロメタン、N,N-ジメチルホルムアミドが好ましい。酸を溶媒として使用することもできる。溶媒としては、塩酸、酢酸、トリフルオロ酢酸等の無機酸、有機酸が挙げられ、トリフルオロ酢酸が好ましい。反応温度は、好ましくは-78℃~50℃、より好ましくは0℃~40℃である。反応時間は、好ましくは1~48時間、より好ましくは6~36時間である。 The reaction can be carried out in a solvent inert to the reaction. Examples of the solvent include inert solvents such as diethyl ether, tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, and dichloromethane, N, N. -Dichloromethane amide is preferred. An acid can also be used as a solvent. Examples of the solvent include inorganic acids such as hydrochloric acid, acetic acid and trifluoroacetic acid, and organic acids, and trifluoroacetic acid is preferable. The reaction temperature is preferably −78 ° C. to 50 ° C., more preferably 0 ° C. to 40 ° C. The reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
 RがFmoc基の場合、塩基性条件下で脱保護できる。使用する塩基としては、ピペリジン、モルホリン、ピロリジン等の二級アミンが挙げられる。塩基の量は、1モルの化合物5に対して、1~100モルが好ましい。
 反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、ジエチルエーテル、テトラヒドロフラン、ジクロロメタン、アセトニトリル、ベンゼン、トルエン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられる。反応温度は、好ましくは-20℃~80℃、より好ましくは0℃~40℃である。反応時間は、好ましくは1分間~24時間、より好ましくは5分間~2時間である。
When R 2 is an Fmoc group, it can be deprotected under basic conditions. Examples of the base used include secondary amines such as piperidine, morpholine and pyrrolidine. The amount of the base is preferably 1 to 100 mol with respect to 1 mol of the compound 5.
The reaction can be carried out in a solvent inert to the reaction. Examples of the solvent include inert solvents such as diethyl ether, tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, 1,4-dioxane, N, N-dimethylformamide and N, N-dimethylacetamide. The reaction temperature is preferably −20 ° C. to 80 ° C., more preferably 0 ° C. to 40 ° C. The reaction time is preferably 1 minute to 24 hours, more preferably 5 minutes to 2 hours.
[工程6-1]
 化合物6-1の保護基Rを脱保護することにより、化合物7を得ることができる。
 脱保護は、保護基Rの種類に応じて行うことができる。Rがベンジル基、トリフェニルメチル基、9-アントリルメチル基、ピペロニル基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、フェナシル基の場合、金属触媒の存在下で還元する方法により、脱保護できる。還元反応は、工程4の金属触媒の存在下で還元する方法と同様の方法で行うことができる。
[Step 6-1]
Compound 7 can be obtained by deprotecting the protecting group R1 of compound 6-1.
Deprotection can be performed according to the type of protecting group R1 . When R 1 is a benzyl group, a triphenylmethyl group, a 9-anthrylmethyl group, a piperonyl group, a 2- (9,10-dioxo) anthrylmethyl group, a benzyloxymethyl group or a phenacyl group, in the presence of a metal catalyst. It can be deprotected by the method of reducing with. The reduction reaction can be carried out in the same manner as the method of reduction in the presence of the metal catalyst in step 4.
[工程5-2]
 化合物5の保護基Rを脱保護することにより、化合物6-2を得ることができる。脱保護は、工程6-1と同様の方法で行うことができる。
[Step 5-2]
Compound 6-2 can be obtained by deprotecting the protecting group R1 of compound 5. Deprotection can be performed in the same manner as in step 6-1.
[工程6-2]
 化合物6-2の保護基Rを脱保護することにより、化合物7を得ることができる。脱保護は、工程5-1と同様の方法で行うことができる。
[Step 6-2]
Compound 7 can be obtained by deprotecting the protecting group R2 of compound 6-2. Deprotection can be performed in the same manner as in step 5-1.
 一般式(4)で表されるイミン(化合物4)の不斉還元を行うことにより、光学活性な含フッ素アミノ酸(フルオロアルキル基含有化合物)を合成できる。下記反応式中、アスタリスク(*)は、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表す。また、Rf、R1、及びR2は、前記で定義した通りである。 By performing asymmetric reduction of imine (compound 4) represented by the general formula (4), an optically active fluorine-containing amino acid (fluoroalkyl group-containing compound) can be synthesized. In the following reaction formula, an asterisk (*) indicates that the absolute configuration of the asymmetric carbon atom with an asterisk is S or R. Further, Rf, R1 and R2 are as defined above.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 当該製造方法においては、カルボキシ基の保護基Rとして、ベンジル基、トリフェニルメチル基等のアラルキル保護基を使用することにより、穏やかな条件でRを脱保護でき、光学活性を保持したまま含フッ素アミノ酸の合成や含フッ素ペプチドの合成を行うことができる点で有利である。 In the production method, by using an aralkyl protecting group such as a benzyl group or a triphenylmethyl group as the protecting group R1 of the carboxy group, R1 can be deprotected under mild conditions and the optical activity is maintained. It is advantageous in that it is possible to synthesize a fluorine-containing amino acid and a fluorine-containing peptide.
[工程7]
 化合物4を不斉還元反応に付すことにより、化合物5-1を得ることができる。
 不斉還元反応は、化合物4を不斉還元触媒の存在下で還元することにより、行うことができる。
[Step 7]
Compound 5-1 can be obtained by subjecting compound 4 to an asymmetric reduction reaction.
The asymmetric reduction reaction can be carried out by reducing compound 4 in the presence of an asymmetric reduction catalyst.
 不斉還元触媒としては、遷移金属に不斉配位子が配位した遷移金属錯体を使用できる。遷移金属としては、パラジウム、ロジウム、ルテニウム、イリジウム、ニッケル、コバルト、白金、鉄等が挙げられる。遷移金属錯体としては、パラジウム錯体、ロジウム錯体、ルテニウム錯体、イリジウム錯体、ニッケル錯体等が挙げられる。 As the asymmetric reduction catalyst, a transition metal complex in which an asymmetric ligand is coordinated to the transition metal can be used. Examples of the transition metal include palladium, rhodium, ruthenium, iridium, nickel, cobalt, platinum, iron and the like. Examples of the transition metal complex include a palladium complex, a rhodium complex, a ruthenium complex, an iridium complex, a nickel complex and the like.
 不斉配位子としては、dpen(1,2-ジフェニルエチレンジアミン)、daipen(1,1-ジ(4-アニシル)-2-イソプロピル-1,2-エチレンジアミン)、光学活性なホスフィン配位子が挙げられる。光学活性なホスフィン配位子としては、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル(BINAP)、2,2’-ビス(ジフェニルホスフィノ)-5,5’,6,6’,7,7’,8,8’-オクタヒドロ-1,1’-ビナフチル(H8-BINAP)、2,2’-ビス(ジ-p-トリルホスフィノ)-1,1’-ビナフチル(Tol-BINAP)、2,2’-ビス[ビス(3,5-ジメチルフェニル)ホスフィノ]-1,1’-ビナフチル(Xyl-BINAP)、2,2’-ビス[ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィノ]-1,1’-ビナフチル(DTBM-BINAP)、1,2-ビス(アニシルホスフィノ)エタン(DIPAMP)、2,3-ビス(ジフェニルホスフィノ)ブタン(CHIRAPHOS)、1-シクロヘキシル-1,2-ビス(ジフェニルホスフィノ)エタン(CYCPHOS)、1,2-ビス(ジフェニルホスフィノ)プロパン(PROPHOS)、2,3-ビス(ジフェニルホスフィノ)-5-ノルボルネン(NORPHOS)、2,3-O-イソプロピリデン-2,3-ジヒドロキシ-1,4-ビス(ジフェニルホスフィノ)ブタン(DIOP)、1-[1’,2-ビス(ジフェニルホスフィノ)フェロセニル]エチルアミン(BPPFA)、1-[1’,2-ビス(ジフェニルホスフィノ)フェロセニル]エチルアルコール(BPPFOH)、2,4-ビス-(ジフェニルホスフィノ)ペンタン(SKEWPHOS)、1,2-ビス(置換ホスホラノ)ベンゼン(DuPHOS)、5,5’-ビス(ジフェニルホスフィノ)-4,4’-ビ-1,3-ベンゾジオキソール(SEGPHOS)、5,5’-ビス[ジ(3,5-キシリル)ホスフィノ]-4,4’-ビ-1,3-ベンゾジオキソール(DM-SEGPHOS)、5,5’-ビス[ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィノ]-4,4’-ビ-1,3-ベンゾジオキソール(DTBM-SEGPHOS)、1-[2-(2置換ホスフィノ)フェロセニル]エチル-2置換ホスフィン(Josiphos)、1-[2-(2’-2置換ホスフィノフェニル)フェロセニル]エチル-2置換ホスフィン(Walphos)等が挙げられる。 Asymmetric ligands include dpen (1,2-diphenylethylenediamine), daipen (1,1-di (4-anicil) -2-isopropyl-1,2-ethylenediamine), and optically active phosphine ligands. Can be mentioned. Optically active phosphinid ligands include 2,2'-bis (diphenylphosphino) -1,1'-binaphthyl (BINAP), 2,2'-bis (diphenylphosphino) -5,5', 6 , 6', 7,7', 8,8'-octahydro-1,1'-binaphthyl (H8-BINAP), 2,2'-bis (di-p-tolylphosphino) -1,1'-binaphthyl (Tol) -BINAP), 2,2'-bis [bis (3,5-dimethylphenyl) phosphino] -1,1'-binaphthyl (Xyl-BINAP), 2,2'-bis [bis (3,5-di-) tert-butyl-4-methoxyphenyl) phosphino] -1,1'-binaphthyl (DTBM-BINAP), 1,2-bis (anisylphosphino) ethane (DIPAMP), 2,3-bis (diphenylphosphino) Butane (CHIRAPHOS), 1-cyclohexyl-1,2-bis (diphenylphosphino) ethane (CYCPHOS), 1,2-bis (diphenylphosphino) propane (PROPHOS), 2,3-bis (diphenylphosphino)- 5-Norbornene (NORPHOS), 2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis (diphenylphosphino) butane (DIOP), 1- [1', 2-bis (diphenylphosphino) ) Ferrosenyl] ethylamine (BPPFA), 1- [1', 2-bis (diphenylphosphino) ferrosenyl] ethyl alcohol (BPPFOH), 2,4-bis- (diphenylphosphino) pentane (SKEWPHOS), 1,2- Bis (substituted phosphorano) benzene (DuPHOS), 5,5'-bis (diphenylphosphino) -4,4'-bi-1,3-benzodioxol (SEGPHOS), 5,5'-bis [di (di (di (diphenylphosphino)) 3,5-kisilyl) phosphino] -4,4'-bi-1,3-benzodioxol (DM-SEGPHOS), 5,5'-bis [bis (3,5-di-tert-butyl-4) - -[2- (2'-2-substituted phosphinophenyl) ferrosenyl] ethyl-2-substituted phosphin (Walphos) and the like can be mentioned.
 不斉還元触媒の量は、1モルの化合物4に対して、0.0001~0.1モルが好ましく、0.0005~0.02モルがより好ましい。
 反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、メタノール、エタノール、イソプロパノール、ジエチルエーテル、テトラヒドロフラン、酢酸エチル、ジクロロメタン、アセトニトリル、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられる。
 還元反応は、水素ガスの存在下で行われる。還元反応は常圧で行ってもよく、加圧下で行ってもよい。水素ガスの圧力は、好ましくは0.5気圧~10気圧である。反応温度は、好ましくは0℃~100℃、より好ましくは10℃~50℃である。反応時間は、好ましくは1~48時間、より好ましくは6~36時間である。
The amount of the asymmetric reduction catalyst is preferably 0.0001 to 0.1 mol, more preferably 0.0005 to 0.02 mol, based on 1 mol of the compound 4.
The reaction can be carried out in a solvent inert to the reaction. Examples of the solvent include inert solvents such as methanol, ethanol, isopropanol, diethyl ether, tetrahydrofuran, ethyl acetate, dichloromethane, acetonitrile, 1,4-dioxane, N, N-dimethylformamide and N, N-dimethylacetamide.
The reduction reaction is carried out in the presence of hydrogen gas. The reduction reaction may be carried out under normal pressure or under pressure. The pressure of hydrogen gas is preferably 0.5 atm to 10 atm. The reaction temperature is preferably 0 ° C to 100 ° C, more preferably 10 ° C to 50 ° C. The reaction time is preferably 1 to 48 hours, more preferably 6 to 36 hours.
[工程8-1]
 化合物5-1の保護基R2を脱保護することにより、化合物6-3を得ることができる。脱保護は、工程5-1と同様の方法で行うことができる。
[Step 8-1]
Compound 6-3 can be obtained by deprotecting the protecting group R2 of compound 5-1. Deprotection can be performed in the same manner as in step 5-1.
[工程9-1]
 化合物6-3の保護基R1を脱保護することにより、化合物7-1を得ることができる。脱保護は、工程6-1と同様の方法で行うことができる。
[Step 9-1]
Compound 7-1 can be obtained by deprotecting the protecting group R1 of compound 6-3. Deprotection can be performed in the same manner as in step 6-1.
[工程8-2]
 化合物5-1の保護基R1を脱保護することにより、化合物6-4を得ることができる。脱保護は、工程6-1と同様の方法で行うことができる。
[Step 8-2]
Compound 6-4 can be obtained by deprotecting the protecting group R1 of compound 5-1. Deprotection can be performed in the same manner as in step 6-1.
[工程9-2]
 化合物6-4の保護基R2を脱保護することにより、化合物7-1を得ることができる。脱保護は、工程5-1と同様の方法で行うことができる。
[Step 9-2]
Compound 7-1 can be obtained by deprotecting the protecting group R2 of compound 6-4. Deprotection can be performed in the same manner as in step 5-1.
 光学活性な含フッ素アミノ酸(フルオロアルキル基含有化合物)の合成は、下記反応によっても行うことができる。下記反応式中、アスタリスクは、アスタリスクを付した不斉炭素原子の絶対配置がS又はRであることを表す。また、Rf、R、及びRは、前記で定義した通りである。 The synthesis of optically active fluorine-containing amino acids (fluoroalkyl group-containing compounds) can also be carried out by the following reaction. In the following reaction formula, the asterisk indicates that the absolute configuration of the asymmetric carbon atom with the asterisk is S or R. Further, Rf, R 1 and R 2 are as defined above.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[工程10-1]
 化合物6-1を光学分割することにより、化合物6-3を得ることができる。
 光学分割は、公知の手法で行うことができる。例えば、キラルカラムを使用する方法、結晶化による方法、ジアステレオマー法等で行うことができる。
[Step 10-1]
Compound 6-3 can be obtained by optically resolving compound 6-1.
Optical resolution can be performed by a known method. For example, it can be performed by a method using a chiral column, a method by crystallization, a diastereomer method, or the like.
(1)キラルカラムを使用する方法
 キラルカラムを使用する液体クロマトグラフィー、超臨界流体クロマトグラフィー(SFC)により、ラセミ体を光学活性体に分割できる。キラルカラムは、CHIRALPAK(登録商標)(株式会社ダイセル)、CHIRALCEL(登録商標)(株式会社ダイセル)等を使用できる。
(1) Method using a chiral column A racemate can be divided into optically active substances by liquid chromatography or supercritical fluid chromatography (SFC) using a chiral column. As the chiral column, CHIRALPAK (registered trademark) (Daicel Co., Ltd.), CHIRALCEL (registered trademark) (Daicel Co., Ltd.) and the like can be used.
(2)結晶化による方法
 ラセミ体と光学活性なアミン又は光学活性な酸との塩を形成させ、結晶性のジアステレマー塩に誘導して分別結晶する。再結晶を繰り返すことにより、単一のジアステレマー塩を得ることができる。必要に応じて、ジアステレオマー塩を中和して、遊離体の光学活性体を得る。光学活性なアミンとしては、ブルシン、シンコニジン、シンコニン、1-フェネチルアミン等が挙げられる。光学活性な酸としては、カンファースルホン酸、酒石酸、マンデル酸等が挙げられる。
(2) Method by crystallization A salt of a racemate and an optically active amine or an optically active acid is formed and induced into a crystalline diasteremer salt for fractional crystallization. By repeating recrystallization, a single diastereomer salt can be obtained. If necessary, the diastereomeric salt is neutralized to obtain a free optically active substance. Examples of optically active amines include brucine, cinchonidine, cinchonine, 1-phenethylamine and the like. Examples of the optically active acid include camphorsulfonic acid, tartaric acid, mandelic acid and the like.
(3)ジアステレオマー法
 ラセミ体に光学活性な試薬を反応させて、ジアステオマーの混合物を得て、これを分別結晶、クロマトグラフィーにより、単一のジアステオマーを分離する。得られた単一のジアステレオマーから光学活性な試薬部分を除去して、目的の光学異性体を得る。
(3) Diastereomer method A racemic mixture is reacted with an optically active reagent to obtain a mixture of diastereomers, which is separated by fractional crystallization and chromatography to separate a single diastereomer. The optically active reagent moiety is removed from the obtained single diastereomer to obtain the desired optical isomer.
[工程11-1]
 化合物6-3の保護基R1を脱保護することにより、化合物7-1を得ることができる。脱保護は、工程6-1と同様の方法で行うことができる。
[Step 11-1]
Compound 7-1 can be obtained by deprotecting the protecting group R1 of compound 6-3. Deprotection can be performed in the same manner as in step 6-1.
[工程10-2]
 化合物6-2を光学分割することにより、化合物6-4を得ることができる。光学分割は、工程10-1と同様の方法で行うことができる。
[Step 10-2]
Compound 6-4 can be obtained by optically resolving compound 6-2. The optical resolution can be performed by the same method as in step 10-1.
[工程11-2]
 化合物6-4の保護基Rを脱保護することにより、化合物7-1を得ることができる。脱保護は、工程5-1と同様の方法で行うことができる。
[Step 11-2]
Compound 7-1 can be obtained by deprotecting the protecting group R2 of compound 6-4. Deprotection can be performed in the same manner as in step 5-1.
[工程12]
 化合物7を光学分割することにより、化合物7-1を得ることができる。光学分割は、工程10-1と同様の方法で行うことができる。
[Step 12]
Compound 7-1 can be obtained by optically resolving compound 7. The optical resolution can be performed by the same method as in step 10-1.
<フルオロアルキル基含有ペプチドの製造方法>
 フルオロアルキル基含有ペプチドは、側鎖にフルオロアルキル基が導入されたアミノ酸を原料として製造できる。例えば、化合物6-1、化合物6-2、化合物6-3、又は化合物6-4を原料とすることにより、フルオロアルキル基含有ペプチドを製造できる。
<Method for producing fluoroalkyl group-containing peptide>
The fluoroalkyl group-containing peptide can be produced from an amino acid having a fluoroalkyl group introduced in the side chain as a raw material. For example, a fluoroalkyl group-containing peptide can be produced by using compound 6-1 as a raw material, compound 6-2, compound 6-3, or compound 6-4 as a raw material.
 例えば、化合物6-2又は6-4を、カルボキシ基が保護された含フッ素アミノ酸、カルボキシ基が保護されたアミノ酸、C末端が保護された含フッ素ペプチド、又はC末端が保護されたペプチドと縮合させることにより、フルオロアルキル基含有ペプチドを製造できる。また、化合物6-1又は化合物6-3を、アミノ基が保護された含フッ素アミノ酸、アミノ基が保護されたアミノ酸、N末端が保護された含フッ素ペプチド、又はN末端が保護されたペプチドと縮合させることにより、フルオロアルキル基含有ペプチドを製造できる。 For example, compound 6-2 or 6-4 is condensed with a carboxy group-protected amino acid, a carboxy group-protected amino acid, a C-terminal protected fluorinated peptide, or a C-terminal protected peptide. By allowing the peptide to be produced, a fluoroalkyl group-containing peptide can be produced. Further, the compound 6-1 or the compound 6-3 may be a fluorine-containing amino acid having an amino group protected, an amino acid having an amino group protected, a fluorine-containing peptide having an N-terminal protection, or a peptide having an N-terminal protection. By condensing, a fluoroalkyl group-containing peptide can be produced.
 また、化合物7又は化合物7-1を、そのアミノ基又はカルボキシ基を保護した後、同様にしてフルオロアルキル基含有ペプチドを製造できる。具体的には、アミノ基を保護基で保護した後、カルボキシ基が保護された含フッ素アミノ酸、カルボキシ基が保護されたアミノ酸、C末端が保護された含フッ素ペプチド、又はC末端が保護されたペプチドと縮合させる。また、カルボキシ基を保護基で保護した後、アミノ基が保護された含フッ素アミノ酸、アミノ基が保護されたアミノ酸、N末端が保護された含フッ素ペプチド、又はN末端が保護されたペプチドと縮合させることもできる。 Further, after protecting the amino group or carboxy group of compound 7 or compound 7-1, a fluoroalkyl group-containing peptide can be produced in the same manner. Specifically, after protecting the amino group with a protective group, a carboxy group-protected amino acid containing a fluorine, an amino acid having a carboxy group protected, a C-terminal protected fluorine-containing peptide, or a C-terminal protected. Condensate with peptide. In addition, after protecting the carboxy group with a protective group, it is condensed with a fluorine-containing amino acid having an amino group protected, an amino acid having an amino group protected, a fluorine-containing peptide having an N-terminal protected, or a peptide having an N-terminal protected. You can also let it.
 フルオロアルキル基は、細胞膜への親和性が高い。このため、本発明に係るフルオロアルキル基含有ペプチドは、細胞膜透過性に優れている。また、天然ペプチドと構造が大幅に異なるため、ペプチターゼにより分解されにくい。これらの性質を利用して、本発明に係るフルオロアルキル基含有ペプチドは、生理活性物質として、医薬分野での利用が期待される。例えば、本発明に係るフルオロアルキル基含有ペプチドは、薬効成分を標的細胞へ運ぶDDSキャリアとしての利用が期待できる。例えば、生体内の標的細胞内に取り込まれることにより何等かの生理活性を示す機能性ペプチドに、その機能を損なわないように本発明に係るフルオロアルキル基含有ペプチドを付加することにより、当該機能性ペプチドの標的細胞への取り込み効率を改善できる。また、生理活性を示す機能性ペプチドの疎水性アミノ酸残基のうちの一部の側鎖を、当該機能性ペプチドの機能を損なわない範囲で、Rf、好ましくは前記一般式(101)又は(102)で表される基に置換することにより、当該機能性ペプチドの細胞膜透過性や細胞内での滞留時間を改善できる。 Fluoroalkyl groups have a high affinity for cell membranes. Therefore, the fluoroalkyl group-containing peptide according to the present invention has excellent cell membrane permeability. Moreover, since the structure is significantly different from that of the natural peptide, it is not easily decomposed by peptidase. Utilizing these properties, the fluoroalkyl group-containing peptide according to the present invention is expected to be used in the pharmaceutical field as a physiologically active substance. For example, the fluoroalkyl group-containing peptide according to the present invention can be expected to be used as a DDS carrier that carries a medicinal ingredient to a target cell. For example, by adding a fluoroalkyl group-containing peptide according to the present invention to a functional peptide that exhibits some physiological activity by being taken up into a target cell in the living body so as not to impair its function, the functionality thereof. The efficiency of peptide uptake into target cells can be improved. Further, a side chain of a part of the hydrophobic amino acid residues of the functional peptide exhibiting physiological activity is Rf, preferably the general formula (101) or (102), as long as the function of the functional peptide is not impaired. By substituting with the group represented by), the cell membrane permeability of the functional peptide and the residence time in the cell can be improved.
 以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。 Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples.
 実施例、比較例の分析に使用したNMR装置は日本電子製JNM-ECZ400S(400MHz)であり、H NMRではテトラメチルシランを0PPM、19F NMRではCを-162PPMの基準値とした。 The NMR apparatus used for the analysis of Examples and Comparative Examples was JEM-ECZ400S (400 MHz) manufactured by JEOL Ltd., and Tetramethylsilane was used as a reference value of 0PPM in 1 H NMR and C 6 F 6 was used as a reference value of -162 PPM in 19 F NMR. did.
 本願明細書において、以下の略号を使用する。
Bn:ベンジル
Boc:t-ブトキシカルボニル
All:アリル
Phth:フタロイル
EtO:ジエチルエーテル
Fmoc:9-フルオレニルメチルオキシカルボニル
THF:テトラヒドロフラン
TMS:トリメチルシリル
:1,1,2,2,3,3,4,4,4-ノナフルオロブチル
13:1,1,2,2,3,3,4,4,5,5,6,6,6-トリデカフルオロヘキシル
17:1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-ヘプタデカフルオロオクチル
COMU:1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノモルフォリノカルベニウムヘキサフルオロホスファート(CAS RN:1075198-30-9)
oxyma:(ヒドロキシイミノ)シアノ酢酸エチル(CAS RN:3849-21-6)
DIPEA:ジイソプロピルエチルアミン
The following abbreviations are used herein.
Bn: BenzylBoc: t-butoxycarbonyl All: Allyl Phth: Phthalroyl Et 2 O: Diethyl ether Fmoc: 9-Fluorenylmethyloxycarbonyl THF: Tetrahydrofuran TMS: Trimethylsilyl C 4 F 9 : 1,1,2,2 3,3,4,4,4-Nonafluorobutyl C 6 F 13 : 1,1,2,2,3,3,4,4,5,6,6,6-tridecafluorohexyl C 8 F 17 : 1,1,2,2,3,3,4,5,5,6,6,7,7,8,8,8-Heptadecafluorooctyl COMU: 1-cyano-2-ethoxy -2-oxoethylideneaminooxy) dimethylaminomorpholinocarbenium hexafluorophosphate (CAS RN: 1075198-30-9)
oxyma: (Hydroxyimino) Ethyl cyanoacetate (CAS RN: 3849-21-6)
DIPEA: Diisopropylethylamine
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[製造例1]
 トリメチル(ノナフルオロブチル)シランとシュウ酸ジベンジルから、2-((t-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸を合成した。
[Manufacturing Example 1]
2-((T-butoxycarbonyl) amino) -3,3,4,4,5,5,6,6-nonafluorocaproic acid was synthesized from trimethyl (nonafluorobutyl) silane and dibenzyl oxalate. ..
[工程1] [Step 1]
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 オーブンで乾燥した100mL容の二口フラスコに撹拌子を入れ、窒素雰囲気下、シュウ酸ジベンジル(5.41g,20.0mmol)、フッ化セシウム(255mg,1.68mmol)、及びTHF(54mL)を加えて撹拌し、-30℃に冷却してからトリメチル(ノナフルオロブチル)シラン(4.50mL,20.2mmol)を加えて-30℃で24時間撹拌を続けた。反応液に飽和塩化アンモニウム水溶液(30mL)を加えて、酢酸エチル(3×50mL)で抽出した。合わせた有機相を硫酸ナトリウムで乾燥した後、濾別し、濾液を減圧留去して2-(ベンジロキシ)-3,3,4,4,5,5,6,6,6-ノナフルオロ-2-((トリメチルシリル)オキシ)ヘキサン酸ベンジルと3,3,4,4,5,5,6,6,6-ノナフルオロ-2,2-ジヒドロキシヘキサン酸ベンジルの混合粗体を得た。得られた粗体は精製することなく次工程に用いた。 Place the stir bar in an oven-dried 100 mL two-necked flask and add dibenzyl oxalate (5.41 g, 20.0 mmol), cesium fluoride (255 mg, 1.68 mmol), and THF (54 mL) under a nitrogen atmosphere. The mixture was further stirred, cooled to −30 ° C., trimethyl (nonafluorobutyl) silane (4.50 mL, 20.2 mmol) was added, and stirring was continued at −30 ° C. for 24 hours. A saturated aqueous ammonium chloride solution (30 mL) was added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 50 mL). The combined organic phases are dried over sodium sulfate, filtered off, and the filtrate is distilled off under reduced pressure to 2- (benzyloxy) -3,3,4,4,5,5,6,6-nonafluoro-2. -A mixed crude product of benzyl ((trimethylsilyl) oxy) caproic acid and benzyl 3,3,4,4,5,5,6,6-nonafluoro-2,2-dihydroxycaproate was obtained. The obtained crude product was used in the next step without purification.
[工程1-2] [Step 1-2]
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 オーブンで乾燥した100mL容の二口フラスコに撹拌子を入れ、窒素雰囲気下、工程1で得られた粗体全量とフッ化テトラブチルアンモニウム(TBAF)1mol/L THF溶液(10.5mL,10.5mmol)、酢酸(1mL)、及びTHF(50mL)を加えて0℃で撹拌した。その後、室温に昇温して24時間撹拌後に飽和重曹水(30mL)を加えてクエンチし、酢酸エチル(3×50mL)で抽出した。合わせた有機相を水(50mL)及び飽和食塩水(50mL)で洗浄後に硫酸ナトリウムで乾燥した後、濾別し、濾液を減圧留去して3,3,4,4,5,5,6,6,6-ノナフルオロ-2,2-ジヒドロキシヘキサン酸ベンジルの粗体を得た。得られた粗体は精製することなく次工程に用いた。 Put the stir bar in a 100 mL two-necked flask dried in an oven, and under a nitrogen atmosphere, the total amount of the crude material obtained in step 1 and tetrabutylammonium fluoride (TBAF) 1 mol / L THF solution (10.5 mL, 10. 5 mmol), acetic acid (1 mL), and THF (50 mL) were added and stirred at 0 ° C. Then, the temperature was raised to room temperature, and after stirring for 24 hours, saturated aqueous sodium hydrogen carbonate (30 mL) was added for quenching, and the mixture was extracted with ethyl acetate (3 × 50 mL). The combined organic phase was washed with water (50 mL) and saturated brine (50 mL), dried over sodium sulfate, filtered off, and the filtrate was distilled off under reduced pressure to 3,3,4,4,5,5,6. , 6,6-Nonafluoro-2,2-Dihydroxyhexanoate benzyl crude was obtained. The obtained crude product was used in the next step without purification.
H NMR(400MHz,CDCl) δ7.39(brs,5H),5.37(s,2H).
19F NMR(376MHz,CDCl) δ-80.79(brs,3F),-121.09(brs,2F),-121.24-121.26(m,2F),-126.12-126.21(m,2F).
1 1 H NMR (400 MHz, CDCl 3 ) δ7.39 (brs, 5H), 5.37 (s, 2H).
19 F NMR (376 MHz, CDCl 3 ) δ-80.79 (brs, 3F), -121.09 (brs, 2F), -121.24-121.26 (m, 2F), -126.12-126 .21 (m, 2F).
[工程2] [Step 2]
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 オーブンで乾燥した20mL容のフラスコに撹拌子を入れ、窒素雰囲気下、工程2で得られた粗体全量と五酸化リン(粗体の22重量%)を加え、減圧蒸留を行った。2mmHg、77℃で得られた留分を集め、3,3,4,4,5,5,6,6,6-ノナフルオロ-2-オキソヘキサン酸ベンジルを無色の液体として得た(工程1から工程3まで通して収率73%)。 The stirrer was placed in a 20 mL flask dried in an oven, the total amount of the crude material obtained in step 2 and phosphorus pentoxide (22% by weight of the crude material) were added under a nitrogen atmosphere, and distillation was performed under reduced pressure. Fractions obtained at 2 mmHg, 77 ° C. were collected to give benzyl 3,3,4,4,5,5,6,6,6-nonafluoro-2-oxohexanoate as a colorless liquid (from step 1). Yield 73% through step 3).
H NMR(400MHz,CDCl) δ7.41(brs,5H),5.40(s,2H).
19F NMR(376MHz,CDCl) δ-80.79(brs,3F),-117.78-117.850(t,2F,JF-F=13Hz),-122.01(brs,2F),-125.58(brs,2F).
1 1 H NMR (400 MHz, CDCl 3 ) δ7.41 (brs, 5H), 5.40 (s, 2H).
19 F NMR (376 MHz, CDCl 3 ) δ-80.79 (brs, 3F), 117.78-117.850 (t, 2F, JF-F = 13 Hz), -122.01 (brs, 2F), -125.58 (brs, 2F).
 工程1の温度を0℃に変更した以外は、工程1~工程2と同様にして、3,3,4,4,5,5,6,6,6-ノナフルオロ-2-オキソヘキサン酸ベンジルを無色の液体として得た。工程1から工程2まで通しての収率は69%であった。 Benzyl 3,3,4,4,5,5,6,6-nonafluoro-2-oxohexanoate was added in the same manner as in Steps 1 to 2 except that the temperature in Step 1 was changed to 0 ° C. Obtained as a colorless liquid. The yield from step 1 to step 2 was 69%.
[工程3] [Step 3]
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 オーブンで乾燥した30mL容のシュレンクフラスコに撹拌子を入れ、窒素雰囲気下、3,3,4,4,5,5,6,6,6-ノナフルオロ-2-オキソヘキサン酸ベンジル(1g,2.6mmol)、t-ブチル(トリフェニルホスファネイリデン)カルバメート(2.6mmol)、及びEt2O(10mL)を加えた。反応液を室温で1時間撹拌後に濾過し、ろ物をEt2O(2×2mL)で洗浄した。合わせた有機相を減圧留去して2-((t-ブトキシカルボニル)イミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸ベンジルの粗体を得た。得られた粗体をシリカゲルクロマトグラフィー(EtO/ヘキサン=1/4)で精製し、2-((t-ブトキシカルボニル)イミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸ベンジルを無色液体として得た(収率87%)。 Place the stir bar in a 30 mL Schlenk flask dried in an oven and place it in a nitrogen atmosphere under a nitrogen atmosphere. 6 mmol), t-butyl (triphenylphosphaneilidene) carbamate (2.6 mmol), and Et2O (10 mL) were added. The reaction mixture was stirred at room temperature for 1 hour, filtered, and the filtrate was washed with Et2O (2 × 2 mL). The combined organic phases were distilled off under reduced pressure to obtain a crude product of 2-((t-butoxycarbonyl) imino) -3,3,4,4,5,5,6,6,6-benzyl nonafluorohexanoate. rice field. The obtained crude product was purified by silica gel chromatography (Et 2 O / hexane = 1/4) and 2-((t-butoxycarbonyl) imino) -3,3,4,4,5,5,6. Benzyl 6,6-nonafluorohexaneate was obtained as a colorless liquid (yield 87%).
H NMR(400MHz,CDCl) δ7.410-7.352(m,5H),5.350(s,2H),1.504(s,9H).
19F NMR(376MHz,CDCl) δ-80.76-80.78(t,3F,JF-F=9Hz),-112.37(brs,2F),-121.0(brs,2F),-125.36(brs,2F).
1 1 H NMR (400 MHz, CDCl 3 ) δ7.410-7.352 (m, 5H), 5.350 (s, 2H), 1.504 (s, 9H).
19 F NMR (376 MHz, CDCl 3 ) δ-80.76-80.78 (t, 3F, JF-F = 9 Hz), -112.37 (brs, 2F), -121.0 (brs, 2F), -125.36 (brs, 2F).
[工程4] [Step 4]
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 オーブンで乾燥した30mL容のシュレンクフラスコに撹拌子を入れ、窒素雰囲気下、2-((t-ブトキシカルボニル)イミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸ベンジル(0.2g,0.42mmol)をEt2O(15mL)に溶解して0℃で撹拌した。水素化ホウ素ナトリウム(0.46mmol)を3回に分けて0℃で加え、その後、室温に昇温して24時間撹拌した。氷水を加えてクエンチし、1mol/Lの塩酸を加えてpHを7未満にした。水相をEt2O(2×10mL)で抽出し、合わせた有機相を減圧留去して2-((t-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸ベンジルの粗体を得た。得られた粗体をシリカゲルクロマトグラフィー(酢酸エチル/ヘキサン=1/4)で精製し、2-((t-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸ベンジルを無色液体として得た(収率61%)。 Put the stir bar in a 30 mL Schlenk flask dried in an oven, and under a nitrogen atmosphere, 2-((t-butoxycarbonyl) imino) -3,3,4,4,5,5,6,6-nona Benzyl fluorohexanoate (0.2 g, 0.42 mmol) was dissolved in Et2O (15 mL) and stirred at 0 ° C. Sodium borohydride (0.46 mmol) was added in 3 portions at 0 ° C., then the temperature was raised to room temperature and the mixture was stirred for 24 hours. Ice water was added for quenching, and 1 mol / L hydrochloric acid was added to bring the pH to less than 7. The aqueous phase was extracted with Et2O (2 × 10 mL), and the combined organic phase was distilled off under reduced pressure to 2-((t-butoxycarbonyl) amino) -3,3,4,4,5,5,6,6. , A crude material of benzyl 6-nonafluorocaproate was obtained. The obtained crude product was purified by silica gel chromatography (ethyl acetate / hexane = 1/4) and 2-((t-butoxycarbonyl) amino) -3,3,4,4,5,5,6,6. , Benzyl 6-Nonafluorohexaneate was obtained as a colorless liquid (yield 61%).
H NMR(400MHz,CDCl) δ7.40-7.33(m,5H),5.41-5.39(d,2H,JH-H=10Hz),5.28-5.20(m,3H),1.45(s,9H).
19F NMR(376MHz,CDCl) δ-80.86-80.89(t,3F,JF-F=9Hz),-115.36-118.55(m,2F),-121.50-123.17(m,2F),-125.00-126.77(m,2F).
1 1 H NMR (400 MHz, CDCl 3 ) δ7.40-7.33 (m, 5H), 5.41-5.39 (d, 2H, JH-H = 10 Hz), 5.28-5.20 (m) , 3H), 1.45 (s, 9H).
19 F NMR (376 MHz, CDCl 3 ) δ-80.86-80.89 (t, 3F, JF-F = 9 Hz), 115.36-118.55 (m, 2F), -121.50-123 .17 (m, 2F), -125.00-126.77 (m, 2F).
 EtO及び水素化ホウ素ナトリウムの代わりに、表1に記載の溶媒及び還元剤(当量)を使用して、前記工程4と同様の反応を行った。収率を表1に示す。表中、「AK225」は、「アサヒクリン(登録商標)AK-225」(3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパンと1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパンの混合物、AGC株式会社)である。 The same reaction as in Step 4 was carried out using the solvent and reducing agent (equivalent) shown in Table 1 instead of Et 2 O and sodium borohydride. The yields are shown in Table 1. In the table, "AK225" refers to "Asahiclean® AK-225" (3,3-dichloro-1,1,1,2,2-pentafluoropropane and 1,3-dichloro-1,1,1. Amixture of 2,2,3-pentafluoropropane, AGC Co., Ltd.).
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
[工程5-2] [Step 5-2]
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 オーブンで乾燥した25mL容の二口フラスコに撹拌子を入れ、2-((t-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸ベンジル(73.6mg,0.15mmol)、パラジウム/炭素(Pd5%、約55%水湿潤品、20mg)、酢酸エチル(1mL)、及びエタノール(7mL)を加え、常圧の水素雰囲気下、室温で撹拌した。室温で24時間撹拌後にセライト濾過を行い、濾物をエタノール(3×5mL)で洗浄し、合わせた有機相を減圧留去して2-((t-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸の粗体を得た。得られた粗体をシリカゲルクロマトグラフィー(酢酸エチル/ヘキサン=1/1)で精製し、2-((t-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸を無色液体として得た(収率86%)。 Place the stirrer in an oven-dried 25 mL two-necked flask and place 2-((t-butoxycarbonyl) amino) -3,3,4,4,5,5,6,6-nonafluorohexanoic acid. Add benzyl (73.6 mg, 0.15 mmol), palladium / carbon (Pd 5%, about 55% water wet product, 20 mg), ethyl acetate (1 mL), and ethanol (7 mL), and add room temperature under normal pressure hydrogen atmosphere. Was stirred with. After stirring at room temperature for 24 hours, cerite filtration is performed, the filtrate is washed with ethanol (3 × 5 mL), and the combined organic phase is distilled off under reduced pressure to 2-((t-butoxycarbonyl) amino) -3,3. A crude product of 4,4,5,5,6,6,6-nonafluorohexanoic acid was obtained. The obtained crude product was purified by silica gel chromatography (ethyl acetate / hexane = 1/1) and 2-((t-butoxycarbonyl) amino) -3,3,4,4,5,5,6,6. , 6-Nonafluorohexaneic acid was obtained as a colorless liquid (yield 86%).
H NMR(400MHz,CDCl) δ7.72(br,1H),5.49-5.47(d,2H,JH-H=10Hz),5.24-5.15(m,1H),1.45(s,9H).
19F NMR(376MHz,CDCl) δ-80.30(brs,3F),-114.64-118.03(m,2F),-120.70-122.40(m,2F),-124.52-126.22(m,2F).
1 1 H NMR (400 MHz, CDCl 3 ) δ7.72 (br, 1H), 5.49-5.47 (d, 2H, JH-H = 10 Hz), 5.24-5.15 (m, 1H), 1.45 (s, 9H).
19 F NMR (376 MHz, CDCl 3 ) δ-80.30 (brs, 3F), 114.64-118.03 (m, 2F), -120.70-122.40 (m, 2F), -124 .52-126.22 (m, 2F).
[工程5-1] [Step 5-1]
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 オーブンで乾燥した25mL容の二口フラスコに撹拌子を入れ、Boc-RFAA-OBn(376mg,0.78mmol)、4M HCl、1,4-ジオキサン溶液(3mL)を0℃で加えた。室温で18時間撹拌後に飽和炭酸ナトリウム水溶液を加えてpHを7より大きくなるように調整し、酢酸エチルで抽出した。有機相を飽和食塩水で洗浄して硫酸ナトリウムで乾燥した。有機相を濾過し、濾液を減圧留去してH-RFAA-OBnの塩酸塩を白色固体として得た(収率78%)。 The stir bar was placed in a 25 mL two-necked flask dried in an oven, and Boc-RFAA-OBn (376 mg, 0.78 mmol), 4M HCl, and 1,4-dioxane solution (3 mL) were added at 0 ° C. After stirring at room temperature for 18 hours, a saturated aqueous sodium carbonate solution was added to adjust the pH to be higher than 7, and the mixture was extracted with ethyl acetate. The organic phase was washed with saturated brine and dried over sodium sulfate. The organic phase was filtered and the filtrate was distilled off under reduced pressure to obtain a hydrochloride of H-RFAA-OBn as a white solid (yield 78%).
H NMR(400MHz,D2O) δ7.31(brs,2H),6.81‐6.77(m,5H),5.27(m,1H),3.71‐3.67(m、2H).
19F NMR(376MHz,D2O) δ-80.38(t,3F),-118.29-121.00(m,2F),-121.00-123.80(m,2F),-126.12-128.12(m,2F).
1 1 H NMR (400MHz, D2O) δ7.31 (brs, 2H), 6.81-6.77 (m, 5H), 5.27 (m, 1H), 3.71-3.67 (m, 2H) ).
19 F NMR (376 MHz, D2O) δ-80.38 (t, 3F), 118.29-121.00 (m, 2F), -121.00-123.80 (m, 2F), -126. 12-128.12 (m, 2F).
 以降において、アミノ酸は、三文字表記で表記することがある。例えば、「Phe」はフェニルアラニン、「Gly」はグリシンである。また、ペプチドは、(N側保護基)-アミノ酸三文字表記-(C側保護基)と表記する。「H-AA-OMe」は、N末端側が未保護であり、C末端側はメチルエステルであることを意味する。C末端側が未保護の場合は、「OMe」にかえて「OH」と表す。 From now on, amino acids may be written in three-letter notation. For example, "Phe" is phenylalanine and "Gly" is glycine. Further, the peptide is described as (N-side protecting group) -amino acid three-letter notation- (C-side protecting group). "H-AA-OMe" means that the N-terminal side is unprotected and the C-terminal side is a methyl ester. When the C-terminal side is unprotected, it is expressed as "OH" instead of "OMe".
[実施例1]
 ノナフルオロブチル基を有するジペプチドを合成した。
[Example 1]
A dipeptide having a nonafluorobutyl group was synthesized.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 オーブンで乾燥した25mL容の二口フラスコに撹拌子を入れ、2-((t-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,6-ノナフルオロヘキサン酸(33.4mg,0.085mmol)、DIPEA(0.13mmol)、DCM(3mL)、L-フェニルアラニンメチルエステル(0.13mmol)、及びベンゾトリアゾール-1-オール・一水和物(0.085mmol)を室温で加え、0℃に冷却後にBOP(0.085mmol)を加えた。室温で24時間撹拌後に溶媒を減圧留去し、酢酸エチルで希釈し、有機相を飽和クエン酸水溶液、飽和炭酸ナトリウム水溶液、及び飽和食塩水で洗浄して硫酸ナトリウムで乾燥した。有機相を濾過し、濾液を減圧留去してBoc-RFAA(C4)-Phe-OMeの粗体を得た。得られた粗体をシリカゲルクロマトグラフィー(酢酸エチル/ヘキサン=1/4)で精製し、2種類のBoc-RFAA(C4)-Phe-OMeジアステレオマーをそれぞれ無色液体として得た(2種類のジアステレオマーを合わせて収率22%)。 Place the stirrer in an oven-dried 25 mL two-necked flask and place 2-((t-butoxycarbonyl) amino) -3,3,4,4,5,5,6,6-nonafluorohexanoic acid. (33.4 mg, 0.085 mmol), DIPEA (0.13 mmol), DCM (3 mL), L-phenylalanine methyl ester (0.13 mmol), and benzotriazole-1-ol monohydrate (0.085 mmol). Was added at room temperature, cooled to 0 ° C., and then BOP (0.085 mmol) was added. After stirring at room temperature for 24 hours, the solvent was distilled off under reduced pressure, diluted with ethyl acetate, the organic phase was washed with saturated aqueous citrate solution, saturated aqueous sodium carbonate solution, and saturated aqueous sodium carbonate solution, and dried over sodium sulfate. The organic phase was filtered and the filtrate was distilled off under reduced pressure to obtain a crude product of Boc-RFAA (C4) -Phe-OMe. The obtained crude product was purified by silica gel chromatography (ethyl acetate / hexane = 1/4) to obtain two types of Boc-RFAA (C4) -Phe-OMe diastereomers as colorless liquids (two types). 22% yield including diastereomers).
ジアステレオマーA
H NMR(400MHz,CDCl) δ7.31-7.25(m,5H),6.41-6.40(d,N-H,JH-H=7Hz),5.48-5.46(d,1H,JH-H=9Hz),4.99-4.91(m,1H),4.91-4.86(m,1H),3.75(s,3H),3.23-3.10(m,2H),1.47(s,9H).
19F NMR(376MHz,CDCl) δ-80.98(t,3F,JF-F=7Hz),-114.56-119.80(m,2F),-121.40-123.22(m,2F),-125.03-127.15(m,2F).
Diastereomer A
1 1 H NMR (400 MHz, CDCl 3 ) δ7.31-7.25 (m, 5H), 6.41-6.40 (d, NH, JH-H = 7 Hz), 5.48-5.46 (D, 1H, JH-H = 9Hz), 4.99-4.91 (m, 1H), 4.91-4.86 (m, 1H), 3.75 (s, 3H), 3.23 -3.10 (m, 2H), 1.47 (s, 9H).
19 F NMR (376 MHz, CDCl 3 ) δ-80.98 (t, 3F, JF-F = 7 Hz), 114.56-119.80 (m, 2F), -121.40-1323.22 (m) , 2F), -125.03-127.15 (m, 2F).
ジアステレオマーB
H NMR(400MHz,CDCl) δ7.30-7.07(m,5H),6.42-6.40(d,N-H,JH-H=9Hz),5.51-5.48(d,1H,JH-H=8Hz),5.00-4.95(m,1H),4.93-4.88(m,1H),3.74(s,3H),3.15-3.13(m,2H),1.44(s,9H).
19F NMR(376MHz,CDCl) δ-80.77(t,3F,JF-F=9Hz),-113.74-119.30(m,2F),-121.22-122.94(m,2F),-124.82-127.05(m,2F).
Diastereomer B
1 1 H NMR (400 MHz, CDCl 3 ) δ7.30-7.07 (m, 5H), 6.42-6.40 (d, NH, JH-H = 9 Hz), 5.51-5.54 (D, 1H, JH-H = 8Hz), 5.00-4.95 (m, 1H), 4.93-4.88 (m, 1H), 3.74 (s, 3H), 3.15 -3.13 (m, 2H), 1.44 (s, 9H).
19 F NMR (376 MHz, CDCl 3 ) δ-80.77 (t, 3F, JF-F = 9 Hz), 113.74-119.30 (m, 2F), -121.22-122.94 (m) , 2F), -124.82-127.05 (m, 2F).
 ここで、ジアステレオマーBの結晶を用いて、X線構造解析により含まれるRFAA(C4)の立体を(S)体と決定した。X線構造解析には、リガク製VariMax Dual Saturnを使用した。 Here, using the crystal of diastereomer B, the solid of RFAA (C4) contained by X-ray structural analysis was determined to be the (S) form. Rigaku's VariMax Dual Saturn was used for the X-ray structure analysis.
 L-フェニルアラニンメチルエステルの代わりに、表2に記載のアミノ酸メチルエステルを使用して、同様の反応を行った。収率を表2に示す。表中、「DCM」はジクロロメタン、「BOP」はベンゾトリアゾール-1-イルオキシ-トリスジメチルアミノホスホニウムヘキサフルオロリン酸塩、「EDC」は1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩を表す。 The same reaction was carried out using the amino acid methyl esters shown in Table 2 instead of the L-phenylalanine methyl ester. The yields are shown in Table 2. In the table, "DCM" is dichloromethane, "BOP" is benzotriazole-1-yloxy-trisdimethylaminophosphonium hexafluorophosphate, and "EDC" is 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride. Represents.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
[実施例2]
 実施例1で合成したペプチドのN末端側の保護基を脱保護した。
[Example 2]
The protecting group on the N-terminal side of the peptide synthesized in Example 1 was deprotected.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 オーブンで乾燥した25mL容の二口フラスコに撹拌子を入れ、Boc-RFAA(C4)-Gly-OMe(21.2mg,0.05mmol)、DCM(1.5mL)、及びTFA(0.4mL)を加えた。室温で24時間撹拌後に飽和炭酸ナトリウム水溶液を加えてpHを7より大きくなるように調整し、DCMで抽出した。有機相を飽和食塩水で洗浄して、硫酸ナトリウムで乾燥した。有機相を濾過し、濾液を減圧留去してH-RFAA-Gly-OMeの粗体を得た(収率66%)。 Place the stir bar in an oven-dried 25 mL two-necked flask and place Boc-RFAA (C4) -Gly-OMe (21.2 mg, 0.05 mmol), DCM (1.5 mL), and TFA (0.4 mL). Was added. After stirring at room temperature for 24 hours, saturated aqueous sodium carbonate solution was added to adjust the pH to be higher than 7, and the mixture was extracted with DCM. The organic phase was washed with saturated brine and dried over sodium sulfate. The organic phase was filtered, and the filtrate was distilled off under reduced pressure to obtain a crude product of H-RFAA-Gly-OMe (yield 66%).
H NMR(400MHz,CDCl) δ7.08(brs,1H),4.15-4.07(m,2H),3.79(s,3H).
19F NMR(376MHz,CDCl) δ-80.71(t,3F,JF-F=7Hz),-115.13-119.94(m,2F),-119.94-121.93(m,2F),-125.02-126.82(m,2F).
1 1 H NMR (400 MHz, CDCl 3 ) δ7.08 (brs, 1H), 4.15-4.07 (m, 2H), 3.79 (s, 3H).
19 F NMR (376 MHz, CDCl 3 ) δ-80.71 (t, 3F, JF-F = 7 Hz), -115.13-119.94 (m, 2F), 119.94-121.93 (m) , 2F), -125.02-1269.82 (m, 2F).
[実施例3]
 ノナフルオロブチル基を有するトリペプチド(Fmoc-Gly-RFAA(C4)-Gly-OMe)を合成した。
[Example 3]
A tripeptide having a nonafluorobutyl group (Fmoc-Gly-RFAA (C4) -Gly-OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 オーブンで乾燥したNMR試験管に、H-RFAA(C4)-Gly-OMe(10.9mg,0.03mmol)、DCM(0.5mL)、DIPEA(0.13mmol)、Fmoc-Gly-OH(0.03mmol)、及びベンゾトリアゾール-1-イルオキシ-トリスジメチルアミノホスホニウム塩(0.085mmol)を室温で加えた。室温で24時間静置後に溶媒を減圧留去し、酢酸エチルで希釈し、有機相を飽和クエン酸水溶液、飽和炭酸ナトリウム水溶液、及び飽和食塩水で洗浄して硫酸ナトリウムで乾燥した。有機相を濾過し、濾液を減圧留去してFmoc-Gly-RFAA-Gly-OMeの粗体を得た。 H-RFAA (C4) -Gly-OMe (10.9 mg, 0.03 mmol), DCM (0.5 mL), DIPEA (0.13 mmol), Fmoc-Gly-OH (0) in an oven-dried NMR test tube. .03 mmol) and benzotriazole-1-yloxy-trisdimethylaminophosphonium salt (0.085 mmol) were added at room temperature. After allowing to stand at room temperature for 24 hours, the solvent was distilled off under reduced pressure, diluted with ethyl acetate, the organic phase was washed with saturated aqueous citrate solution, saturated aqueous sodium carbonate solution, and saturated aqueous sodium carbonate solution, and dried over sodium sulfate. The organic phase was filtered and the filtrate was distilled off under reduced pressure to obtain a crude product of Fmoc-Gly-RFAA-Gly-OMe.
H NMR(400MHz,CDCl) δ7.78-7.27(m,8H),δ7.30(brs,1H),7.13(brs,1H),5.63-5.61(d,1H,JH-H=7Hz),5.64-5.54(m,1H),4.42-4.41(d,2H,JH-H=7Hz),4.24-4.20(m,1H),4.08-3.98(m,4H),3.74(s,3H).
19F NMR(376MHz,CDCl) δ-80.78(t,3F,JF-F=10Hz),-114.61-118.74(m,2F),-121.22-123.09(m,2F),-124.89-126.90(m,2F).
1 1 H NMR (400 MHz, CDCl 3 ) δ7.78-7.27 (m, 8H), δ7.30 (brs, 1H), 7.13 (brs, 1H), 5.63-5.61 (d, 1H, JH-H = 7Hz), 5.64-5.54 (m, 1H), 4.42-4.41 (d, 2H, JH-H = 7Hz), 4.24-4.20 (m) , 1H), 4.08-3.98 (m, 4H), 3.74 (s, 3H).
19 F NMR (376 MHz, CDCl 3 ) δ-80.78 (t, 3F, JF-F = 10 Hz), -114.61-118.74 (m, 2F), -121.22-123.09 (m) , 2F), -124.89-126.90 (m, 2F).
[実施例4]
 ノナフルオロブチル基を有するトリペプチド(Boc-Ala-[(R)-RFAA(C4)]-Phe-OMe)を合成した。
[Example 4]
A tripeptide having a nonafluorobutyl group (Boc-Ala-[(R) -RFAA (C4)]-Phe-OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 25mL容の二口フラスコに撹拌子を入れ、一方にBoc-[(R)-RFAA(C4)]-Phe-OMe(ジアステレオマーA、DR>95,0.11mmol)とDCM(5mL)を加えた。この反応混合物を0℃に冷却した後、TFA(1.25mL)を添加し、室温まで温めた。4時間攪拌した後、炭酸水素ナトリウム水溶液を添加して反応を終了させた。水相をDCMで抽出し、合わせた有機相を減圧留去して、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル:トリエチルアミン=2:1:1%)により精製して、H-[(R)-RFAA(C4)]-Phe-OMeを得た(33.9mg、収率70.0%)。 Place the stir bar in a 25 mL two-necked flask, and add Boc-[(R) -RFAA (C4)]-Phe-OMe (diastereomer A, DR> 95, 0.11 mmol) and DCM (5 mL) to one side. added. After cooling the reaction mixture to 0 ° C., TFA (1.25 mL) was added and the mixture was warmed to room temperature. After stirring for 4 hours, an aqueous sodium hydrogen carbonate solution was added to terminate the reaction. The aqueous phase was extracted with DCM, the combined organic phase was distilled off under reduced pressure, purified by silica gel column chromatography (hexane: ethyl acetate: triethylamine = 2: 1: 1%), and H-[(R)-. RFAA (C4)]-Phe-OMe was obtained (33.9 mg, yield 70.0%).
H NMR(400MHz,CDCl) δ=7.27(m,5H),6.81-6.83(d,NH),4.90-4.95(dd,1H),3.93-3.99(dd,1H),3.74(s,3H),3.10-3.14(m,2H),1.77(br s,2H)
19F NMR(376MHz,CDCl) δ=-80.7(t,3F),-120.5-114.4(m,2F),-121.2-119.7(m,2F),-126.2-125.7(m,2F)
1 1 H NMR (400 MHz, CDCl 3 ) δ = 7.27 (m, 5H), 6.81-6.83 (d, NH), 4.90-4.95 (dd, 1H), 3.93- 3.99 (dd, 1H), 3.74 (s, 3H), 3.10-3.14 (m, 2H), 1.77 (br s, 2H)
19 F NMR (376 MHz, CDCl 3 ) δ = -80.7 (t, 3F), -120.5-114.4 (m, 2F), -121.2-119.7 (m, 2F),- 126.2-125.7 (m, 2F)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 25mL容の二口フラスコに撹拌子を入れ、一方に、3mLのDCMに、Boc-Ala-OH(1.1等量)と1-ヒドロキシ-7-アザベンゾトリアゾール(HOAt、1.1等量)、DIPEA(1.3等量)、1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo〔4,5-b〕pyridinium 3-Oxide Hexafluorophosphate(HATU、1.1等量)、及びジペプチド(H-[(R)-RFAA(C4)]-Phe-OMe、dr>95:5,38μmol)を添加し、0℃とした。この混合物を室温まで温めた後、1.5時間攪拌した。その後、HCl(1N)を添加して反応を終了させた。反応液を、HCl(1N)とDCMで分液し、合わせた有機相を減圧留去して、次いで酢酸エチル希釈した。有機相を、HCl(1N)、飽和NaHCO水溶液、及びブラインで洗浄し、NaSOで乾燥し、蒸発させて白色固体を得た。粗混合物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)で精製して、トリペプチドを得た(dr>95:5、18.2mg、収率75.1%)。 Place the stir bar in a 25 mL two-necked flask, while adding Boc-Ala-OH (1.1 equal volume) and 1-hydroxy-7-azabenzotriazole (HOAt, 1.1 equal volume) to 3 mL DCM. ), DIPEA (1.3 equal amount), 1- [Bis (dimethylamino) methylene] -1H-1,2,3-triazole [4,5-b] pyridinium 3-Oxide Hexafluorophosphate (HATU, 1.1 equal amount) ) And a dipeptide (H-[(R) -RFAA (C4)]-Phe-OMe, dr> 95: 5,38 μmol) were added to bring the temperature to 0 ° C. The mixture was warmed to room temperature and then stirred for 1.5 hours. Then, HCl (1N) was added to terminate the reaction. The reaction mixture was separated by HCl (1N) and DCM, the combined organic phase was distilled off under reduced pressure, and then the mixture was diluted with ethyl acetate. The organic phase was washed with HCl (1N), saturated aqueous NaHCO 3 solution, and brine, dried over Na 2 SO 4 and evaporated to give a white solid. The crude mixture was purified by silica gel column chromatography (hexane: ethyl acetate = 2: 1) to give a tripeptide (dr> 95: 5, 18.2 mg, yield 75.1%).
H NMR(400MHz,Acetone d6) δ=8.30(d,N-H),7.82(d,N-H),7.19-7.29(m,5H),6.23(d,N-H),5.53-5.61(m,1H),4.68-4.77(m,1H),4.26-4.29(m,1H),3.66(s,3H),3.04-3.16(m,2H),1.38(s,9H),1.30(d,3H)
19F NMR(376MHz,Acetone d6) δ=-81.5(t,3F),-120.1-115.0(m,2F),-123.1-121.9(m,2F),-126.9-126.3(m,2F)
1 1 H NMR (400 MHz, Deuterated d6) δ = 8.30 (d, NH), 7.82 (d, NH), 7.19-7.29 (m, 5H), 6.23 ( d, NH), 5.53-5.61 (m, 1H), 4.68-4.77 (m, 1H), 4.26-4.29 (m, 1H), 3.66 ( s, 3H), 3.04-3.16 (m, 2H), 1.38 (s, 9H), 1.30 (d, 3H)
19 F NMR (376 MHz, Deuterated d6) δ = -81.5 (t, 3F), -120.1-115.0 (m, 2F),-123.1-121.9 (m, 2F),- 126.9-126.3 (m, 2F)
[実施例5]
 ノナフルオロブチル基を有するトリペプチド(H-Ala-[(R)-RFAA(C4)]-Phe-OMe)を合成した。
[Example 5]
A tripeptide having a nonafluorobutyl group (H-Ala-[(R) -RFAA (C4)]-Phe-OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 25mL容の二口フラスコに撹拌子を入れ、一方にBoc-[(R)-RFAA(C4)]-Phe-OMe(ジアステレオマーA、DR>95,29μmol)とDCM(2mL)を加えた。この反応混合物を0℃に冷却した後、TFA(0.4mL)を添加し、室温まで温めた。4時間攪拌した後、炭酸水素ナトリウム水溶液を添加して反応を終了させた。水相をDCMで抽出し、合わせた有機相を減圧留去して、シリカゲルカラムクロマトグラフィー(CHCl:MeOH=10:1)により精製して、H-Ala-[(R)-RFAA(C4)]-Phe-OMeを得た(dr>95、13.8mg、収率90.6%)。 A stir bar was placed in a 25 mL two-necked flask, and Boc-[(R) -RFAA (C4)]-Phe-OMe (diastereomer A, DR> 95,29 μmol) and DCM (2 mL) were added to one of them. .. After cooling the reaction mixture to 0 ° C., TFA (0.4 mL) was added and the mixture was warmed to room temperature. After stirring for 4 hours, an aqueous sodium hydrogen carbonate solution was added to terminate the reaction. The aqueous phase was extracted with DCM, the combined organic phase was distilled off under reduced pressure, purified by silica gel column chromatography (CHCl 3 : MeOH = 10: 1), and H-Ala-[(R) -RFAA (C4). )]-Phe-OMe (dr> 95, 13.8 mg, yield 90.6%).
H NMR(400MHz,Acetone d6) δ=8.33(d,N-H),8.16(d,N-H),7.19-7.27(m,5H),5.49-5.56(m,1H),4.68-4.74(m,1H),3.94-3.99(m,1H),3.67(s,3H),3.00-3.14(m,2H),2.81(br s,2H),1.16(d,3H)
19F NMR(376MHz,Acetone d6) δ=-81.7(t,3F),-120.0-115.3(m,2F),-123.1-122.1(m,2F),-126.9-125.6(m,2F)
1 1 H NMR (400 MHz, Deuterated d6) δ = 8.33 (d, NH), 8.16 (d, NH), 7.19-7.27 (m, 5H), 5.49- 5.56 (m, 1H), 4.68-4.74 (m, 1H), 3.94-3.99 (m, 1H), 3.67 (s, 3H), 3.00-3. 14 (m, 2H), 2.81 (br s, 2H), 1.16 (d, 3H)
19 F NMR (376 MHz, Deuterated d6) δ = -81.7 (t, 3F), -120.0-115.3 (m, 2F),-123.1-122.1 (m, 2F),- 126.9-125.6 (m, 2F)
[実施例6]
 実施例5で合成したノナフルオロブチル基を有するトリペプチド(H-Ala-[(R)-RFAA(C4)]-Phe-OMe)のN末端に、蛍光物質Alexa Fluor 647を融合させた(Alexa-Ala-[(R)-RFAA(C4)]-Phe-OMe)。
[Example 6]
The fluorescent substance Alexa Fluor 647 was fused to the N-terminal of the tripeptide having a nonafluorobutyl group (H-Ala-[(R) -RFAA (C4)]-Phe-OMe) synthesized in Example 5 (Alexa). -Ala-[(R) -RFAA (C4)]-Phe-OMe).
 1.5mL容の黒色チューブに、乾燥DMSO(15μL)に溶解させたAlexa Fluor 647(250μg)、乾燥DMSO(15μL)に溶解させたH-Ala-[(R)-RFAA(C4)]-Phe-OMe(1.5当量)、及びDIPEA(1.5当量)を加えた。混合物を室温で一晩撹拌し続けた。当該混合物を逆相クロマトグラフィー(アセトニトリル/水/TFA=30:70:0.1~95:5:0.1)で精製し、凍結乾燥してAlexa-Ala-[(R)-RFAA(C4)]-Phe-OMeを青色固体として得た(蛍光計で計算して収率32.3%)。なお、蛍光は、Nano Drop(登録商標)分光光度計ND-1000を用い、発光波長=650nmで測定した。 AlexaFluor 647 (250 μg) dissolved in dry DMSO (15 μL) and H-Ala-[(R) -RFAA (C4)]-Phe dissolved in dry DMSO (15 μL) in a 1.5 mL black tube. -OMe (1.5 eq) and DIPEA (1.5 eq) were added. The mixture was continuously stirred at room temperature overnight. The mixture is purified by reverse phase chromatography (acetonitrile / water / TFA = 30: 70: 0.1 to 95: 5: 0.1), freeze-dried and Alexa-Ala-[(R) -RFAA (C4). )]-Phe-OMe was obtained as a blue solid (yield 32.3% calculated with a fluorometer). The fluorescence was measured at an emission wavelength of 650 nm using a NanoDrop (registered trademark) spectrophotometer ND-1000.
MALDI-TOF MS
[M]:m/z calcd.for C556317- 1364.2964,found 1364.7252
MALDI-TOF MS
[M] - : m / z calcd. for C 55 H 63 F 9 N 5 O 17 S 4-1364.2964 , found 1364.7252
[比較例1]
 ブチル基を有するジペプチド(H-Nle-Phe-OMe)を合成した。
[Comparative Example 1]
A dipeptide having a butyl group (H-Nle-Phe-OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 既報(Chemical and Pharmaceutical Bulletin, 1987, vol.35, p.468)に従って、Boc-Nle-Phe-Omeを合成した(収量556mg、収率40.2%)。 Boc-Nle-Phe-Ome was synthesized according to the previous report (Chemical and Pharmaceutical Bulletin, 1987, vol.35, p.468) (yield 556 mg, yield 40.2%).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 25mL容の二口フラスコに撹拌子を入れ、一方にBoc-Nle-Phe-OMe(1.42mmol)とDCM(10mL)を加えた。この反応混合物を0℃に冷却した後、TFA(2mL)を添加し、室温まで温めた。4時間攪拌した後、炭酸水素ナトリウム水溶液を添加して反応を終了させた。水相をDCMで抽出し、合わせた有機相を減圧留去して、化学量論量のH-Nle-Phe-OMeを得た。生成物は、それ以上精製せずに使用した。 A stir bar was placed in a 25 mL two-necked flask, and Boc-Nle-Phe-OMe (1.42 mmol) and DCM (10 mL) were added to one of them. After cooling the reaction mixture to 0 ° C., TFA (2 mL) was added and the mixture was warmed to room temperature. After stirring for 4 hours, an aqueous sodium hydrogen carbonate solution was added to terminate the reaction. The aqueous phase was extracted with DCM, and the combined organic phase was distilled off under reduced pressure to obtain a stoichiometric amount of H-Nle-Phe-OMe. The product was used without further purification.
H NMR(400MHz,ACETONE-D6)
Rotamer A
Δ8.09-7.88(m,1H),7.42-7.04(m,5H),4.67(dd,J=11.0,4.6Hz,1H),4.59(t,J=7.5Hz,1H),3.69(s,3H),3.22(dd,J=13.7,4.6Hz,1H),3.00(dd,J=14.0,10.7Hz,1H),2.00-1.80(m,2H),1.48-1.18(m,2H),0.83-0.73(m,3H)
Rotamer B
7.60(t,J=7.8Hz,1H),7.42-7.04(m,5H),4.75(t,J=6.9Hz,1H),4.25(t,J=6.4Hz,1H),3.64(s,3H),3.10(t,J=7.3Hz,2H),2.00-1.80(m,2H),1.48-1.18(m,2H),0.86(t,J=7.3Hz,3H)
1 1 H NMR (400 MHz, ACETONE-D6)
Conformater A
Δ8.09-7.88 (m, 1H), 7.42-7.04 (m, 5H), 4.67 (dd, J = 11.0, 4.6Hz, 1H), 4.59 (t) , J = 7.5Hz, 1H), 3.69 (s, 3H), 3.22 (dd, J = 13.7, 4.6Hz, 1H), 3.00 (dd, J = 14.0, 10.7Hz, 1H), 2.00-1.80 (m, 2H), 1.48-1.18 (m, 2H), 0.83-0.73 (m, 3H)
Conformater B
7.60 (t, J = 7.8Hz, 1H), 7.42-7.04 (m, 5H), 4.75 (t, J = 6.9Hz, 1H), 4.25 (t, J) = 6.4Hz, 1H), 3.64 (s, 3H), 3.10 (t, J = 7.3Hz, 2H), 2.00-1.80 (m, 2H), 1.48-1 .18 (m, 2H), 0.86 (t, J = 7.3Hz, 3H)
[比較例2]
 ブチル基を有するトリペプチド(H-Ala-Nle-Phe-OMe)を合成した。
[Comparative Example 2]
A tripeptide having a butyl group (H-Ala-Nle-Phe-OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 50mL容の二口丸底フラスコに、Fmoc-Ala-OH(1.1当量)、HOAt(1.1当量)、及びDIPEA(1.3当量)を加えた。20mLのDCMに溶解させたHATU(1.1当量)及びジペプチド(H-N1-Phe-OMe、1.42mmol)を0℃で混合物に添加した。当該混合物を室温まで温め、次いで1.5時間撹拌した後、HCl(1N)を加えて反応を停止させた。 当該混合物をHCl(1N)とDCMとの間で分配した。合わせた有機相を減圧留去させ、次いで酢酸エチルで希釈した。有機相をHCl(1N)、飽和NaHCO水溶液、及びブラインで洗浄し、NaSOで乾燥し、蒸発させて白色固体を得た。粗混合物に、25mLの20%ピペリジンDMF溶液を加え、室温で1時間撹拌した。 溶媒を真空乾燥により除去して白色固体を得、これをシリカゲルカラムクロマトグラフィー(Et2O:DCM=1:3)により精製して、H-Ala-Nle-Phe-OMeを得た(dr>95、116mg、収率23.0%)。 Fmoc-Ala-OH (1.1 eq), HOAt (1.1 eq), and DIPEA (1.3 eq) were added to a 50 mL two-necked round bottom flask. HATU (1.1 eq) and a dipeptide (H-N1-Phe-OMe, 1.42 mmol) dissolved in 20 mL of DCM were added to the mixture at 0 ° C. The mixture was warmed to room temperature, then stirred for 1.5 hours, and then HCl (1N) was added to terminate the reaction. The mixture was partitioned between HCl (1N) and DCM. The combined organic phases were distilled off under reduced pressure and then diluted with ethyl acetate. The organic phase was washed with HCl (1N), saturated aqueous NaHCO 3 solution, and brine, dried over Na 2 SO 4 and evaporated to give a white solid. To the crude mixture was added 25 mL of a 20% piperidine DMF solution and stirred at room temperature for 1 hour. The solvent was removed by vacuum drying to give a white solid, which was purified by silica gel column chromatography (Et2O: DCM = 1: 3) to give H-Ala-Nle-Phe-OMe (dr> 95, 116 mg, yield 23.0%).
MALDI-TOF MS
[M+H]:m/z calcd.for 364.22,found 364.07
[M+H]:m/z calcd.for 386.21,found 386.06
MALDI-TOF MS
[M + H] + : m / z calcd. for 364.22, found 364.07
[M + H] + : m / z calcd. for 386.21, found 386.06
[比較例3]
 比較例2で合成したブチル基を有するトリペプチド(H-Ala-Nle-Phe-OMe)のN末端に、蛍光物質Alexa Fluor 647を融合させた(Alexa-Ala-Nle-Phe-OMe)。
[Comparative Example 3]
The fluorescent substance Alexa Fluor 647 was fused to the N-terminal of the butyl group-containing tripeptide (H-Ala-Nle-Phe-OMe) synthesized in Comparative Example 2 (Alexa-Ala-Nle-Phe-OMe).
 1.5mL容の黒色チューブに、乾燥DMSO(15μL)に溶解させたAlexa Fluor 647(250μg)、乾燥DMSO(15μL)に溶解させたH-Ala-Nle-Phe-OMe(1.5当量)、及びDIPEA(1.5当量)を加えた。混合物を室温で一晩撹拌し続けた。当該混合物を逆相クロマトグラフィー(アセトニトリル/水/TFA=30:70:0.1~95:5:0.1)で精製し、凍結乾燥して、Alexa-Ala-Nle-Phe-OMeを青色固体として得た(蛍光計で計算して収率74.5%、発光波長=650nm)。 AlexaFluor 647 (250 μg) dissolved in dry DMSO (15 μL), H-Ala-Nle-Phe-OMe (1.5 eq) dissolved in dry DMSO (15 μL), in a 1.5 mL black tube. And DIPEA (1.5 eq) were added. The mixture was continuously stirred at room temperature overnight. The mixture is purified by reverse phase chromatography (acetonitrile / water / TFA = 30: 70: 0.1-95: 5: 0.1), lyophilized and made Alexa-Ala-Nle-Phe-OMe blue. Obtained as a solid (yield 74.5% calculated by a fluorometer, emission wavelength = 650 nm).
MALDI-TOF MS
[M]:m/z calcd.for C557217- 1202.3812,found 1202.1449
MALDI-TOF MS
[M] - : m / z calcd. for C 55 H 72 N 5 O 17 S 4-1202.3812 , found 1202.1449
[製造例2]
 ヘプタデカフルオロオクチルヨージドとシュウ酸ジベンジルから、2-((t-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,7,7,8,8,9,9、10,10,10-ヘプタデカフルオロドデカン酸ベンジルを合成した。
[Manufacturing Example 2]
From heptadecafluorooctyliodide and dibenzyl oxalate, 2-((t-butoxycarbonyl) amino) -3,3,4,4,5,5,6,6,7,8,8,9, Benzyl 9,10,10,10-heptadecafluorododecanoate was synthesized.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 ペルフルオロアルキル化反応は、既報(Journal of Fluorine Chemistry,1984, vol.26, p.341-358)に従って実施した。
 得られた粗生成物を昇華(72℃、0.5mmHg)により精製した。得られた白色固体を100mL容の三口丸底フラスコに直接移し、Et2O(10mL)で溶解し、tert-ブチル(トリフェニルホスファニリデン)カルバメート(5.5mmol)と室温で1時間反応させた。粗生成物を濾過し、濾液を蒸発させた。得られた白色固体をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1w/ 0.4% NEt3)で精製し、α-イミノエステル(311mg、3工程収率:8.2%)を得た。
The perfluoroalkylation reaction was carried out according to the previous report (Journal of Fluorine Chemistry, 1984, vol.26, p.341-358).
The obtained crude product was purified by sublimation (72 ° C., 0.5 mmHg). The obtained white solid was directly transferred to a 100 mL volumetric round-bottom flask, dissolved in Et2O (10 mL), and reacted with tert-butyl (triphenylphosphinelidene) carbamate (5.5 mmol) at room temperature for 1 hour. The crude product was filtered and the filtrate was evaporated. The obtained white solid was purified by silica gel column chromatography (hexane: ethyl acetate = 10: 1w / 0.4% NEt3) to obtain α-imino ester (311 mg, 3 step yield: 8.2%). ..
H NMR(400MHz、CDCl3) δ=7.36-7.38(m,5H),5.36(s,2H),1.50(s,9H)
19F NMR(376MHz,CDCl3) δ=-81.0(t,3F),-112.6(m,2F),-120.2(m,2F),-121.2(m,2F),-121.8-122.0(m,4F),-122.8(m,2F),-126.3(m,2F)
1 1 H NMR (400 MHz, CDCl3) δ = 7.36-7.38 (m, 5H), 5.36 (s, 2H), 1.50 (s, 9H)
19 F NMR (376 MHz, CDCl3) δ = -81.0 (t, 3F), -112.6 (m, 2F), -120.2 (m, 2F), -121.2 (m, 2F), -121.8-122.0 (m, 4F), -122.8 (m, 2F), -126.3 (m, 2F)
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 25mL容の二口丸底フラスコに撹拌子を入れ、α-イミノエステル(311mg、0.47mmol)及びTHF(5mL)を加えた。この反応混合物にナトリウムトリアセトキシボロヒドリド(0.59mmol)を0℃で加え、次いで室温で24時間攪拌した。反応混合物を直接蒸発させ、水とDCMの間で分配した。合わせた有機相を減圧留去して粗混合物を得た。粗混合物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1:10)により精製して、白色固体(Boc-RFAA(C8)-OBn)を得た(収率49.6%)。 A stir bar was placed in a 25 mL two-necked round bottom flask, and α-imino ester (311 mg, 0.47 mmol) and THF (5 mL) were added. Sodium triacetoxyborohydride (0.59 mmol) was added to the reaction mixture at 0 ° C. and then stirred at room temperature for 24 hours. The reaction mixture was evaporated directly and partitioned between water and DCM. The combined organic phases were distilled off under reduced pressure to obtain a crude mixture. The crude mixture was purified by silica gel column chromatography (ethyl acetate / hexane = 1:10) to give a white solid (Boc-RFAA (C8) -OBn) (yield 49.6%).
H NMR(400MHz CDCl) δ=7.18(m,5H),5.137(m,1H),5.07(s,2H),1.28(s,9H)
19F NMR(376MHz CDCl) δ=-81.0(t,3F),-115.3-118.8(m,2F),-121.5-122.1(m,8F),-122.9(m,2F),-126.3(m,2F)
1 1 H NMR (400 MHz CDCl 3 ) δ = 7.18 (m, 5H), 5.137 (m, 1H), 5.07 (s, 2H), 1.28 (s, 9H)
19 F NMR (376MHz CDCl 3 ) δ = -81.0 (t, 3F), -115.3118.8 (m, 2F), -121.5-122.1 (m, 8F), -122 .9 (m, 2F), -126.3 (m, 2F)
[製造例3]
 ヘプタデカフルオロオクチルヨージドとシュウ酸ジアリルから、2-((t-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,7,7,8,8,9,9、10,10,10-ヘプタデカフルオロドデカン酸を合成した。
[Manufacturing Example 3]
From heptadecafluorooctyliodide and diallyl oxalate, 2-((t-butoxycarbonyl) amino) -3,3,4,4,5,5,6,6,7,8,8,9, 9,10,10,10-heptadecafluorododecanoic acid was synthesized.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 シュウ酸ジベンジルの代わりにシュウ酸ジアリル(3.4g)を用いた以外は製造例2と同様にして、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘキサデカフルオロ-2,2-ジヒドロデカン酸アリルの粗生成物を、収率80.9%で得た。得られた生成物は、精製することなく、次工程に用いた。 3,3,4,4,5,5,6,6,7,7,8,8 in the same manner as in Production Example 2 except that diallyl oxalate (3.4 g) was used instead of dibenzyl oxalate. , 9,9,10,10,10-A crude product of allyl hexadecafluoro-2,2-dihydrodecanoate was obtained in a yield of 80.9%. The obtained product was used in the next step without purification.
H NMR(400MHz Acetone-d6) δ=6.25-5.71(m,1H),5.65-5.03(m,2H),4.97-4.52(m,2H)
19F NMR(376MHz Acetone-d6) δ=81.72(m,3F),-120.30(s,4F),-122.24(s,6F),-123.26(s,2F),-126.79(d,J=54.5Hz,2F)
1 1 H NMR (400MHz Deuterated-d6) δ = 6.25-5.71 (m, 1H), 5.65-5.03 (m, 2H), 4.97-4.52 (m, 2H)
19 F NMR (376MHz Deuterated-d6) δ = 81.72 (m, 3F), -120.30 (s, 4F), -122.24 (s, 6F), -123.26 (s, 2F), -126.79 (d, J = 54.5Hz, 2F)
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 得られた粗生成物を、64℃、2.2mmHgで昇華精製した以外は実施例7と同様にして、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘキサデカフルオロ-2-オキソデカン酸アリルを、収率60.3%で得た。 The obtained crude product was sublimated and purified at 64 ° C. and 2.2 mmHg in the same manner as in Example 7, with 3,3,4,4,5,5,6,6,7,7,8, Allyl 8,9,9,10,10,10-hexadecafluoro-2-oxodecanoate was obtained in a yield of 60.3%.
H NMR(400MHz,CDCl) δ=6.08-5.79(m,1H),5.59-5.13(m,2H),4.89-4.80(m,2H)
19F NMR(376MHz,CDCl) δ=-81.03(t,J=10.0Hz,3F),-117.88(t,J=12.9Hz,2F),-121.25(m,4F),-121.96(m4F),-122.85(s,2F),-126.31(d,J=5.7Hz,2F)
1 1 H NMR (400 MHz, CDCl 3 ) δ = 6.08-5.79 (m, 1H), 5.59-5.13 (m, 2H), 4.89-4.80 (m, 2H)
19 F NMR (376 MHz, CDCl 3 ) δ = -81.03 (t, J = 10.0 Hz, 3F), 117.88 (t, J = 12.9 Hz, 2F), -121.25 (m, 4F), -121.96 (m4F), -122.85 (s, 2F), -126.31 (d, J = 5.7Hz, 2F)
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 次に、シリカゲルクロマトグラフィーにおいてヘキサン:酢酸エチル=9:1に対して1%のトリエチルアミンを加えたものを溶離液とした以外は実施例7と同様にして、α-イミノエステルを、収率95.1%で得た。 Next, in silica gel chromatography, the α-imino ester yield was 95 in the same manner as in Example 7 except that the eluent was prepared by adding 1% triethylamine to hexane: ethyl acetate = 9: 1. Obtained at 1%.
H NMR(400MHz,CDCl) δ=6.01-5.82(m,1H),5.49-5.30(m,2H),4.81(d,J=5.9Hz,2H),1.63-1.49(m,9H)
19F NMR(376MHz,CDCl) δ=-79.98~-82.00(m,3F),-112.58(m,2F),-120.10(s,2F),-121.11(s,2F),-121.80(m,4F),-122.71(s,2F),-126.38(m,2F)
1 1 H NMR (400 MHz, CDCl 3 ) δ = 6.01-5.82 (m, 1H), 5.49-5.30 (m, 2H), 4.81 (d, J = 5.9 Hz, 2H) ), 1.63-1.49 (m, 9H)
19 F NMR (376 MHz, CDCl 3 ) δ = -79.98 to -82.00 (m, 3F), -112.58 (m, 2F), -120.10 (s, 2F), -121.11 (S, 2F), -121.80 (m, 4F), -122.71 (s, 2F), -126.38 (m, 2F)
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 得られたイミノエステル(2.0g,3.2mmol)の乾燥ジエチルエーテル(30mL)溶液に、攪拌しながら、2-ピコリンボラン(1当量)を0℃で加えた。反応混合物を室温で1.5時間攪拌した後、HCl(1N)(20mL)で希釈した。有機相をHCl(1N)で2回洗浄し、減圧濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=9:1)で精製して、α-ブトキシカルボニルアミノエステルを黄色固体として得た(収率54%)。 2-Picoline borane (1 equivalent) was added to a solution of the obtained imino ester (2.0 g, 3.2 mmol) in dry diethyl ether (30 mL) at 0 ° C. with stirring. The reaction mixture was stirred at room temperature for 1.5 hours and then diluted with HCl (1N) (20 mL). The organic phase was washed twice with HCl (1N) and concentrated under reduced pressure, and the obtained crude product was purified by silica gel column chromatography (hexane: ethyl acetate = 9: 1) to obtain α-butoxycarbonylamino ester. Obtained as a yellow solid (yield 54%).
H NMR(400MHz,CDCl) δ6.01-5.79(m,1H),5.51-4.97(m,4H),4.84-4.62(m,2H),1.57-1.35(m,9H)
19F NMR(376MHz,CDCl) δ-80.96(t,J=10.0Hz,3F),-115.81(d,J=280Hz,1F),-118.10(d,J=281Hz,1F),-120.88~-123.39(m,10F),-126.23(m,2F)
1 1 H NMR (400 MHz, CDCl 3 ) δ6.01-5.79 (m, 1H), 5.51-4.97 (m, 4H), 4.84-4.62 (m, 2H), 1. 57-1.35 (m, 9H)
19 F NMR (376MHz, CDCl 3 ) δ-80.96 (t, J = 10.0Hz, 3F), -115.81 (d, J = 280Hz, 1F), -118.10 (d, J = 281Hz) , 1F), -120.88 to -123.39 (m, 10F), -126.23 (m, 2F)
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 得られたα-ブトキシカルボニルアミノエステル(1.2g、1.9mmol)のTHF(18mL)溶液に、フェニルシラン(2当量)とテトラキストリフェニルホスフィンパラジウム(5mol%)を0℃で加えて、室温で2時間攪拌した。反応混合物をHCl(1N)(10mL)で希釈し、DCMで2回抽出した。有機相を減圧濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=6:1/1%酢酸)で精製して、2-((tert-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロドデカン酸を淡黄色液体として得た(収率74%)。 Phenylsilane (2 equivalents) and tetrakistriphenylphosphine palladium (5 mol%) were added to a solution of the obtained α-butoxycarbonylamino ester (1.2 g, 1.9 mmol) in THF (18 mL) at 0 ° C. to room temperature. Was stirred for 2 hours. The reaction mixture was diluted with HCl (1N) (10 mL) and extracted twice with DCM. The organic phase was concentrated under reduced pressure, and the obtained crude product was purified by silica gel column chromatography (chloroform: methanol = 6: 1/1% acetic acid) to 2-((tert-butoxycarbonyl) amino) -3, 3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorododecanoic acid was obtained as a pale yellow liquid (yield 74%). ..
H NMR(400MHz,CDCl) δ=5.03(m,J=8.4Hz,1H),1.38(s,9H)
19F NMR(376MHz,CDCl) δ=-80.87(t,J=10.0Hz,3F),-115.78(d,J=281.1Hz,1F),-118.12(d,J=281.1Hz,1F),-120.16~-123.43(m,10F),-126.19(s,2F)
1 1 H NMR (400 MHz, CDCl 3 ) δ = 5.03 (m, J = 8.4 Hz, 1H), 1.38 (s, 9H)
19 F NMR (376 MHz, CDCl 3 ) δ = -80.87 (t, J = 10.0 Hz, 3F), -115.78 (d, J = 281.1 Hz, 1F), -118.12 (d, J = 281.1Hz, 1F), -120.16 to -123.43 (m, 10F), -126.19 (s, 2F)
[実施例7]
 ヘプタデカフルオロオクチル基を有するジペプチド(Boc-RFAA(C8)-Phe-OMe)を合成した。
[Example 7]
A dipeptide having a heptadecafluorooctyl group (Boc-RFAA (C8) -Phe-OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 まず、製造例3と同様にして、2-((tert-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロドデカン酸を合成した。次いで、乾燥させた300mL容の三つ口なすフラスコ中で、2-((tert-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロドデカン酸(994.4mg、1.68mmol)、DCM(99mL)、フェニルアラニンメチルエステル塩酸塩(1.84mmol)、及びoxyma(1.84mmol)を混合して攪拌した。反応混合物を0℃に冷却し、COMU(1.84mmol)及びDIPEA(3.69mmol)を加え、室温で20.5時間攪拌した。その後、反応混合物をHCl(1N)でクエンチし、DCMで3回抽出した。合わせた有機相を減圧濃縮した後、酢酸エチルで希釈し、HCl(1N)、飽和重曹水、及び飽和食塩水で洗浄した。洗浄後の有機相を硫酸ナトリウムで乾燥し、濾過した後、減圧濃縮してBoc-RFAA(C8)-Phe-OMeの粗生成物を得た。粗生成物をシリカゲルクロマトグラフィー(酢酸エチル/ヘキサン=1/4)で精製して、Boc-[(R)-RFAA(C8)]-Phe-OMe(ジアステレオマーA、383.3mg、0.508mmol)、及びBoc-[(S)-RFAA(C8)]-Phe-OMe(ジアステレオマーB、417.1mg、0.553mmol)の合計807.3mg(1.07mmol、収率63.8%)を得た。 First, in the same manner as in Production Example 3, 2-((tert-butoxycarbonyl) amino) -3,3,4,4,5,5,6,6,7,7,8,8,9,9, 10,10,10-Heptadecafluorododecanoic acid was synthesized. Then, in a dried 300 mL three-necked flask, 2-((tert-butoxycarbonyl) amino) -3,3,4,4,5,5,6,6,7,7,8, 8,9,9,10,10,10-heptadecafluorododecanoic acid (994.4 mg, 1.68 mmol), DCM (99 mL), phenylalanine methyl ester hydrochloride (1.84 mmol), and oxyma (1.84 mmol). Was mixed and stirred. The reaction mixture was cooled to 0 ° C., COMU (1.84 mmol) and DIPEA (3.69 mmol) were added, and the mixture was stirred at room temperature for 20.5 hours. The reaction mixture was then quenched with HCl (1N) and extracted 3 times with DCM. The combined organic phases were concentrated under reduced pressure, diluted with ethyl acetate, and washed with HCl (1N), saturated aqueous sodium hydrogen carbonate, and saturated brine. The washed organic phase was dried over sodium sulfate, filtered, and concentrated under reduced pressure to give a crude product of Boc-RFAA (C8) -Phe-OMe. The crude product was purified by silica gel chromatography (ethyl acetate / hexane = 1/4) and Boc-[(R) -RFAA (C8)]-Phe-OMe (diastereomer A, 383.3 mg, 0. 508 mmol) and Boc-[(S) -RFAA (C8)]-Phe-OMe (diastereomer B, 417.1 mg, 0.553 mmol) total 807.3 mg (1.07 mmol, yield 63.8%). ) Was obtained.
 ここで、ジアステレオマーBの結晶を用いて、X線構造解析により含まれるRFAA(C8)の立体を(S)体と決定した。X線構造解析には、リガク製VariMax Dual Saturnを使用した。 Here, using the crystal of diastereomer B, the solid of RFAA (C8) contained by X-ray structural analysis was determined to be the (S) form. Rigaku's VariMax Dual Saturn was used for the X-ray structure analysis.
Boc-[(R)-RFAA(C8)]-Phe-OMe(ジアステレオマーA)
H NMR(500MHz,CDCl) δ=7.30-7.25(m,3H),7.07-7.05(m,2H),6.40(d,1H),5.46(m,1H),5.00-4.87(m,2H),3.77(s,3H),3.20-3.11(m,2H),1.47(s,9H)
19F NMR(470MHz,CDCl) δ=-80.86(t,3F),-114.89(d,J=281Hz,1F),-119.11(d,J=279Hz,1F),-120.40~-123.10(m,10F),-126.23(m,2F)
Boc-RFAA(C8)-Phe-OMe
Boc-[(R) -RFAA (C8)]-Phe-OMe (Diastereomer A)
1 1 H NMR (500 MHz, CDCl 3 ) δ = 7.30-7.25 (m, 3H), 7.07-7.05 (m, 2H), 6.40 (d, 1H), 5.46 ( m, 1H), 5.00-4.87 (m, 2H), 3.77 (s, 3H), 3.20-3.11 (m, 2H), 1.47 (s, 9H)
19 F NMR (470MHz, CDCl 3 ) δ = -80.86 (t, 3F), -114.89 (d, J = 281Hz, 1F), -119.11 (d, J = 279Hz, 1F),- 120.40 to -123.10 (m, 10F), -126.23 (m, 2F)
Boc-RFAA (C8) -Phe-OMe
Boc-[(S)-RFAA(C8)]-Phe-OMe(ジアステレオマーB)H NMR(500MHz,CDCl) δ=7.28-7.26(m,3H),7.10-7.04(m,2H),6.35(d,1H),5.48(m,1H),5.00-4.87(m,2H),3.74(s,3H),3.15-3.13(m,2H),1.47(s,9H)
19F NMR(470MHz,CDCl) -80.86(t,3F),-114.21(d,J=275Hz,1F),-118.78(d,J=279Hz,1F),-120.35~-123.00(m,10F),-126.23(m,2F)
Boc-[(S) -RFAA (C8)]-Phe-OMe (Diastereomer B) 1 1 H NMR (500MHz, CDCl 3 ) δ = 7.28-7.26 (m, 3H), 7.10- 7.04 (m, 2H), 6.35 (d, 1H), 5.48 (m, 1H), 5.00-4.87 (m, 2H), 3.74 (s, 3H), 3 .15-3.13 (m, 2H), 1.47 (s, 9H)
19 F NMR (470 MHz, CDCl 3 ) -80.86 (t, 3F), -114.21 (d, J = 275 Hz, 1F), -118.78 (d, J = 279 Hz, 1F), -120. 35 to -123.00 (m, 10F), -126.23 (m, 2F)
 合成したペプチドのN末端側の保護基を脱保護し、H-RFAA(C8)-Phe-OMeを得た。 The protecting group on the N-terminal side of the synthesized peptide was deprotected to obtain H-RFAA (C8) -Phe-OMe.
 50mL容の二口フラスコに撹拌子を入れ、Boc-[(R)-RFAA(C8)]-Phe-OMe(ジアステレオマーA、0.508mmol)とDCM(17mL)を加えた。この反応混合物を0℃に冷却した後、TFA(3.4mL)を添加し、室温まで昇温した。1.5時間攪拌した後、炭酸水素ナトリウム水溶液を添加して反応を終了させた。水相をDCMで抽出し、合わせた有機相を減圧留去して、脱保護体H-[(R)-RFAA(C8)]-Phe-OMeの粗生成物を得た。粗生成物をシリカゲルクロマトグラフィー(酢酸エチル/ヘキサン=2/5)で精製して、H-[(R)-RFAA(C8)]-Phe-OMe(ジアステレオマーA)を得た(0.393mmol、収率67.7%)。 A stir bar was placed in a 50 mL two-necked flask, and Boc-[(R) -RFAA (C8)]-Phe-OMe (diastereomer A, 0.508 mmol) and DCM (17 mL) were added. After cooling the reaction mixture to 0 ° C., TFA (3.4 mL) was added and the temperature was raised to room temperature. After stirring for 1.5 hours, an aqueous sodium hydrogen carbonate solution was added to terminate the reaction. The aqueous phase was extracted with DCM and the combined organic phase was distilled off under reduced pressure to obtain a crude product of the deprotected H-[(R) -RFAA (C8)]-Phe-OMe. The crude product was purified by silica gel chromatography (ethyl acetate / hexane = 2/5) to give H-[(R) -RFAA (C8)]-Phe-OMe (diastereomers A) (0. 393 mmol, yield 67.7%).
H-[(R)-RFAA(C8)]-Phe-OMe(ジアステレオマーA)
H NMR(500MHz,ACETONE-D6) δ=7.95(br,1H),7.30-7.22(m,5H),4.82-4.77(m,1H),4.40-4.25(m,1H),3.67(s,3H),3.20-3.07(m,2H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(t,3F),-115.00(d,J=277Hz,1F),-117.20(d,J=275Hz,1F),-120.00~-122.70(m,10F),-125.95(s,2F)
H-[(R) -RFAA (C8)]-Phe-OMe (Diastereomer A)
1 1 H NMR (500 MHz, ACETONE-D6) δ = 7.95 (br, 1H), 7.30-7.22 (m, 5H), 4.82-4.77 (m, 1H), 4.40 -4.25 (m, 1H), 3.67 (s, 3H), 3.20-3.07 (m, 2H)
19 F NMR (470MHz, ACETONE-D6) δ = -80.86 (t, 3F), -115.00 (d, J = 277Hz, 1F), -117.20 (d, J = 275Hz, 1F), -120.00 to -122.70 (m, 10F), -125.95 (s, 2F)
 Boc-[(S)-RFAA(C8)]-Phe-OMe(ジアステレオマーB、98.7μmol)について、同様の方法で脱保護を行い、H-[(S)-RFAA(C8)]-Phe-OMe(ジアステレオマーB)を得た(60.1μmol、収率60.8%)。 Boc-[(S) -RFAA (C8)]-Phe-OMe (diastereomer B, 98.7 μmol) was deprotected in the same manner, and H-[(S) -RFAA (C8)]- Phe-OMe (diastereomer B) was obtained (60.1 μmol, yield 60.8%).
H-[(S)-RFAA(C8)]-Phe-OMe(ジアステレオマーB)
H NMR(500MHz,ACETONE-D6) δ=7.31-7.19(m,5H),4.82-4.79(m,1H),4.70-4.64(m,1H),3.72(s,3H),3.22-3.06(m,2H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(t,3F),-114.76(d,J=267Hz,1F),-117.31(d,J=275Hz,1F),-120.00~-122.70(m,10F),-125.94(s,2F)
H-[(S) -RFAA (C8)]-Phe-OMe (Diastereomer B)
1 1 H NMR (500 MHz, ACETONE-D6) δ = 7.31-7.19 (m, 5H), 4.82-4.79 (m, 1H), 4.70-4.64 (m, 1H) , 3.72 (s, 3H), 3.22-3.06 (m, 2H)
19 F NMR (470MHz, ACETONE-D6) δ = -80.86 (t, 3F), -114.76 (d, J = 267Hz, 1F), -117.31 (d, J = 275Hz, 1F), -120.00 to -122.70 (m, 10F), -125.94 (s, 2F)
[実施例8]
 ヘプタデカフルオロオクチル基を有するトリペプチド(Boc-Ala-RFAA(C8)-Phe-OMe)を合成した。
[Example 8]
A tripeptide having a heptadecafluorooctyl group (Boc-Ala-RFAA (C8) -Phe-OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 25mL容の二口丸底フラスコに、ジペプチド(H-[(R)-RFAA(C8)]-Phe-OMe、ジアステレオマーA)(0.24mmol)、Boc-Ala-OH(1.2当量)、及びoxyma(1.2当量)を3.4mLのDCMに溶解し、攪拌した。反応混合物を0℃に冷却し、COMU(1.2当量)及びDIPEA(1.2当量)を加え、室温にして24時間攪拌した。その後、反応混合物をHCl(1N)でクエンチし、DCMで3回抽出した。合わせた有機相を減圧濃縮した後、酢酸エチルで希釈し、HCl(1N)、飽和重曹水、及び飽和食塩水で洗浄した。洗浄後の有機相を硫酸ナトリウムで乾燥し、濾過した後、減圧濃縮してBoc-Ala-[(R)-RFAA(C8)]-Phe-OMeの粗生成物を得た。粗生成物をDCMに溶解した後、ヘキサンで再沈殿させ、濾過することで純粋なBoc-Ala-[(R)-RFAA(C8)]-Phe-OMeを得た(0.20mmol、収率85.4%)。 Dipeptide (H-[(R) -RFAA (C8)]-Phe-OMe, diastereomer A) (0.24 mmol), Boc-Ala-OH (1.2 eq) in a 25 mL two-necked round bottom flask. ) And oxyma (1.2 eq) were dissolved in 3.4 mL of DCM and stirred. The reaction mixture was cooled to 0 ° C., COMU (1.2 eq) and DIPEA (1.2 eq) were added, and the mixture was stirred at room temperature for 24 hours. The reaction mixture was then quenched with HCl (1N) and extracted 3 times with DCM. The combined organic phases were concentrated under reduced pressure, diluted with ethyl acetate, and washed with HCl (1N), saturated aqueous sodium hydrogen carbonate, and saturated brine. The washed organic phase was dried over sodium sulfate, filtered, and concentrated under reduced pressure to give a crude product of Boc-Ala-[(R) -RFAA (C8)]-Phe-OMe. The crude product was dissolved in DCM, reprecipitated with hexane and filtered to give pure Boc-Ala-[(R) -RFAA (C8)]-Phe-OMe (0.20 mmol, yield). 85.4%).
Boc-Ala-[(R)-RFAA(C8)]-Phe-OMe(ジアステレオマーA)
H NMR(500MHz,ACETONE-D6) δ=8.29(br,1H),7.72(br,1H),7.28-7.17(m,5H),6.38(br,1H),5.67-5.60(m,1H),4.80-4.76(m,1H),4.23-4.18(m,1H),3.67(s,3H),3.20-3.00(m,2H),1.43(s,9H)1.30(t,3H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(t,3F),-114.57(d,J=282Hz,1F),-119.31(d,J=281Hz,1F),-120.00~-122.70(m,10F),-125.96(m,2F)
Boc-Ala-[(R) -RFAA (C8)]-Phe-OMe (Diastereomer A)
1 1 H NMR (500 MHz, ACETONE-D6) δ = 8.29 (br, 1H), 7.72 (br, 1H), 7.28-7.17 (m, 5H), 6.38 (br, 1H) ), 5.67-5.60 (m, 1H), 4.80-4.76 (m, 1H), 4.23-4.18 (m, 1H), 3.67 (s, 3H), 3.20-3.00 (m, 2H), 1.43 (s, 9H) 1.30 (t, 3H)
19 F NMR (470MHz, ACETONE-D6) δ = -80.86 (t, 3F), -114.57 (d, J = 282Hz, 1F), 119.31 (d, J = 281Hz, 1F), -120.00 to -122.70 (m, 10F), -125.96 (m, 2F)
 H-[(S)-RFAA(C8)]-Phe-OMe(ジアステレオマーB、46.1μmol)について、同様の方法でBoc-Ala-OHとの縮合を行い、Boc-Ala-[(S)-RFAA(C8)]-Phe-OMe(ジアステレオマーB)を得た(45.7μmol、収率99%)。 H-[(S) -RFAA (C8)]-Phe-OMe (diastereomers B, 46.1 μmol) was condensed with Boc-Ala-OH by the same method, and Boc-Ala-[(S). ) -RFAA (C8)]-Phe-OMe (diastereomer B) was obtained (45.7 μmol, 99% yield).
Boc-Ala-[(S)-RFAA(C8)]-Phe-OMe(ジアステレオマーB)
H NMR(500MHz,ACETONE-D6) δ=8.33(br,1H),7.85(br,1H),7.30-7.22(m,5H),6.30(br,1H),5.63-5.53(m,1H),4.72-4.67(m,1H),4.32-4.25(m,1H),3.66(s,3H),3.18-3.02(m,2H),1.40(s,9H)1.32(d,3H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(t,3F),-114.50(d,J=287Hz,1F),-118.77(d,J=277Hz,1F),-120.75~-122.53(m,10F),-125.93(m,2F)
Boc-Ala-[(S) -RFAA (C8)]-Phe-OMe (Diastereomer B)
1 1 H NMR (500 MHz, ACETONE-D6) δ = 8.33 (br, 1H), 7.85 (br, 1H), 7.30-7.22 (m, 5H), 6.30 (br, 1H) ), 5.63-5.53 (m, 1H), 4.72-4.67 (m, 1H), 4.32-4.25 (m, 1H), 3.66 (s, 3H), 3.18-3.02 (m, 2H), 1.40 (s, 9H) 1.32 (d, 3H)
19 F NMR (470MHz, ACETONE-D6) δ = -80.86 (t, 3F), -114.50 (d, J = 287Hz, 1F), -118.77 (d, J = 277Hz, 1F), -120.75 to -122.53 (m, 10F), -125.93 (m, 2F)
 合成したペプチドのN末端側の保護基を脱保護し、H-Ala-[(R)-RFAA(C8)]-Phe-OMeを得た。 The protecting group on the N-terminal side of the synthesized peptide was deprotected to obtain H-Ala-[(R) -RFAA (C8)]-Phe-OMe.
 20mL容の二口フラスコに撹拌子を入れ、一方にBoc-Ala-[(R)-RFAA(C8)]-Phe-OMe(ジアステレオマーA、0.194mmol)とDCM(5mL)を加えた。この反応混合物を0℃に冷却した後、TFA(1mL)を添加し、室温まで昇温し、2時間攪拌した。その後、炭酸水素ナトリウム水溶液を添加して反応を終了させた。当該反応混合物の水相をDCMで抽出し、合わせた有機相を減圧留去して、脱保護体H-[(R)-RFAA(C8)]-Phe-OMeの粗生成物を得た。粗生成物をシリカゲルクロマトグラフィー(クロロホルム/メタノール=15/1)で精製して、H-Ala-[(R)-RFAA(C8)]-Phe-OMe(ジアステレオマーA)を得た(0.147mmol、収率75.6%)。 A stir bar was placed in a 20 mL two-necked flask, and Boc-Ala-[(R) -RFAA (C8)]-Phe-OMe (diastereomer A, 0.194 mmol) and DCM (5 mL) were added to one of them. .. After cooling the reaction mixture to 0 ° C., TFA (1 mL) was added, the temperature was raised to room temperature, and the mixture was stirred for 2 hours. Then, an aqueous sodium hydrogen carbonate solution was added to terminate the reaction. The aqueous phase of the reaction mixture was extracted with DCM and the combined organic phase was distilled off under reduced pressure to obtain a crude product of the deprotected H-[(R) -RFAA (C8)]-Phe-OMe. The crude product was purified by silica gel chromatography (chloroform / methanol = 15/1) to give H-Ala-[(R) -RFAA (C8)]-Phe-OMe (diastereomer A) (0). .147 mmol, yield 75.6%).
H-Ala-[(R)-RFAA(C8)]-Phe-OMe(ジアステレオマーA)
H NMR(500MHz,ACETONE-D6) δ=8.30,8.20(m,NH),7.28-7.19(m,5H),6.38(br,1H),5.68-5.53(m,1H),4.79-4.76(m,1H),3.97-3.47(m,1H),3.67(s,3H),1.26,1.17(s,3H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(t,3F),-114.50(d,J=282Hz,1F),-119.48(d,J=281Hz,1F),-120.40~-122.65(m,10F),-125.92(m,2F)
H-Ala-[(R) -RFAA (C8)]-Phe-OMe (Diastereomer A)
1 1 H NMR (500 MHz, ACETONE-D6) δ = 8.30, 8.20 (m, NH), 7.28-7.19 (m, 5H), 6.38 (br, 1H), 5.68 -5.53 (m, 1H), 4.79-4.76 (m, 1H), 3.97-3.47 (m, 1H), 3.67 (s, 3H), 1.26,1 .17 (s, 3H)
19 F NMR (470 MHz, ACETONE-D6) δ = -80.86 (t, 3F), -114.50 (d, J = 282 Hz, 1F), 119.48 (d, J = 281 Hz, 1F), -120.40 to -122.65 (m, 10F), -125.92 (m, 2F)
 Boc-Ala-[(S)-RFAA(C8)]-Phe-OMe(ジアステレオマーB、45.7μmol)について、同様の方法で脱保護を行い、H-Ala-[(S)-RFAA(C8)]-Phe-OMe(ジアステレオマーB)を得た(21.1μmol、収率 46.2%)。 Boc-Ala-[(S) -RFAA (C8)]-Phe-OMe (diastereomer B, 45.7 μmol) was deprotected in the same manner, and H-Ala-[(S) -RFAA ( C8)]-Phe-OMe (diastereomer B) was obtained (21.1 μmol, yield 46.2%).
H-Ala-[(S)-RFAA(C8)]-Phe-OMe(ジアステレオマーB)
H NMR(500MHz,ACETONE-D6) δ=8.38,8.21(m,NH),7.31-7.21(m,5H),5.59-5.54(m,1H),4.76-4.72(m,1H),4.06-3.97(m,1H),3.67(s,3H),3.20-3.04(m,2H),1.19,1.17(s,3H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(t,3F),-114.82(d,J=282Hz,1F),-118.68(d,J=284Hz,1F),-120.80~-122.70(m,10F),-125.98(m,2F)
H-Ala-[(S) -RFAA (C8)]-Phe-OMe (Diastereomer B)
1 1 H NMR (500 MHz, ACETONE-D6) δ = 8.38, 8.21 (m, NH), 7.31-7.21 (m, 5H), 5.59-5.54 (m, 1H) , 4.76-4.72 (m, 1H), 4.06-3.97 (m, 1H), 3.67 (s, 3H), 3.20-3.04 (m, 2H), 1 .19, 1.17 (s, 3H)
19 F NMR (470MHz, ACETONE-D6) δ = -80.86 (t, 3F), -114.82 (d, J = 282Hz, 1F), 118.68 (d, J = 284Hz, 1F), -120.80 to -122.70 (m, 10F), -125.98 (m, 2F)
 合成した脱保護後のトリペプチド(H-Ala-[(R)-RFAA(C8)]-Phe-OMe)のN末端に、蛍光物質Alexa Fluor 647を結合させた。 The fluorescent substance AlexaFluor 647 was bound to the N-terminal of the synthesized deprotected tripeptide (H-Ala-[(R) -RFAA (C8)]-Phe-OMe).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 1.5mL容の黒色チューブに、乾燥DMSO(175μL)に溶解させたAlexa Fluor 647 NHSエステル(1.75mg)、乾燥DMSO(50μL)に溶解させたH-Ala-[(R)-RFAA(C8)]-Phe-OMe(ジアステレオマーA、3.0当量)、乾燥DMSO(71μL)に溶解させたDIPEA(3.0当量)、及び乾燥DMSO 124μLを加えた。混合物を室温で一晩撹拌し続けた。当該混合物を逆相クロマトグラフィー(アセトニトリル/水/TFA=25:75:0.1~99:1:0.1)で精製し、凍結乾燥して蛍光コンジュゲート1を青色固体として得た(蛍光計で計算して収率52.0%)。なお、蛍光は、Nano Drop(登録商標)分光光度計ND-1000を用い、発光波長=650nmで測定した。 Alexa Fluor 647 NHS ester (1.75 mg) dissolved in dry DMSO (175 μL) and H-Ala-[(R) -RFAA (C8) dissolved in dry DMSO (50 μL) in a 1.5 mL black tube. )]-Phe-OMe (diastereomer A, 3.0 equivalents), DIPEA dissolved in dry DMSO (71 μL) (3.0 equivalents), and dried DMSO 124 μL were added. The mixture was continuously stirred at room temperature overnight. The mixture was purified by reverse phase chromatography (acetonitrile / water / TFA = 25: 75: 0.1 to 99: 1: 0.1) and lyophilized to give fluorescent conjugate 1 as a blue solid (fluorescence). Calculated in total, yield 52.0%). The fluorescence was measured at a emission wavelength of 650 nm using a NanoDrop (registered trademark) spectrophotometer ND-1000.
MALDI-TOF MS
[M+2]:m/z calcd for C59631717-1564.2825,found1564.3501
MALDI-TOF MS
[M + 2] - : m / z calcd for C 59 H 63 F 17 N 5 O 17 S 4-1564.2825 , found1564.3501
 H-Ala-[(S)-RFAA(C8)]-Phe-OMe(ジアステレオマーB、1.241μmol)について、同様の方法でAlexa Fluor 647との結合を行い、H-Ala-[(S)-RFAA(C8)]-Phe-OMe(ジアステレオマーB)の蛍光コンジュゲート2を青色固体として得た(蛍光計で計算して収率54.3% 色素基準)。 H-Ala-[(S) -RFAA (C8)]-Phe-OMe (diastereomer B, 1.241 μmol) was bound to AlexaFluor 647 in the same manner, and H-Ala-[(S). ) -RFAA (C8)]-Phe-OMe (diastereomer B) fluorescence conjugate 2 was obtained as a blue solid (calculated with a fluorometer, yield 54.3%, dye standard).
MALDI-TOF MS
[M+4]:m/z calcd for C59641717-1566.3935,found1566.3679
MALDI-TOF MS
[M + 4] + : m / z calcd for C 59 H 64 F 17 N 5 O 17 S 4-1566.3935 , found1566.3679
[実施例9]
 ヘプタデカフルオロオクチル基を有するジペプチド(Boc-RFAA(C8)-Gly-OMe)を合成した。
[Example 9]
A dipeptide having a heptadecafluorooctyl group (Boc-RFAA (C8) -Gly-OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 乾燥させた25mL容の二つ口なすフラスコ中で、2-((tert-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロドデカン酸(15.4mg、26.0μmol)、DCM(2mL)、DIPEA(57μmol)、グリシン メチルエステル塩酸塩(29μmol)、及びoxyma(29μmol)を、混合して攪拌した。反応混合物を0℃に冷却し、COMU(29μmol)を加え、室温にして1.5時間攪拌した。その後、反応混合物をHCl(1N)でクエンチし、DCMで3回抽出した。合わせた有機相を減圧濃縮した後、酢酸エチルで希釈し、HCl(1N)、飽和重曹水、及び飽和食塩水で洗浄した。洗浄後の有機相を硫酸ナトリウムで乾燥し、濾過した後、減圧濃縮してBoc-RFAA(C8)-Gly-OMeの粗生成物を得た。粗生成物をシリカゲルクロマトグラフィー(酢酸エチル/ヘキサン=1/3)で精製して、Boc-RFAA(C8)-Gly-OMeを得た。(収率92%) In a dried 25 mL two-necked flask, 2-((tert-butoxycarbonyl) amino) -3,3,4,4,5,5,6,6,7,7,8,8, 9,9,10,10,10-heptadecafluorododecanoic acid (15.4 mg, 26.0 μmol), DCM (2 mL), DIPEA (57 μmol), glycine methyl ester hydrochloride (29 μmol), and oxyma (29 μmol). , Mixed and stirred. The reaction mixture was cooled to 0 ° C., COMU (29 μmol) was added, and the mixture was stirred at room temperature for 1.5 hours. The reaction mixture was then quenched with HCl (1N) and extracted 3 times with DCM. The combined organic phases were concentrated under reduced pressure, diluted with ethyl acetate, and washed with HCl (1N), saturated aqueous sodium hydrogen carbonate, and saturated brine. The washed organic phase was dried over sodium sulfate, filtered, and concentrated under reduced pressure to give a crude product of Boc-RFAA (C8) -Gly-OMe. The crude product was purified by silica gel chromatography (ethyl acetate / hexane = 1/3) to give Boc-RFAA (C8) -Gly-OMe. (Yield 92%)
H NMR(400MHz,Acetone-d6) δ=8.25(t,J=5.3Hz,1H),6.66(d,J=9.6Hz,1H),5.44-5.19(m,1H),4.07(d,J=5.5Hz,2H),3.68(s,3H),1.42(s,9H)
19F NMR(376MHz,Acetone-d6) δ=-81.53(s,3F),-115.31(d,J=281.1Hz,1F),-119.15~-120.92(m,1F),-120.92~-124.38(10F),-125.54~-127.82(m,2F)
1 1 H NMR (400 MHz, Deuterated-d6) δ = 8.25 (t, J = 5.3 Hz, 1H), 6.66 (d, J = 9.6 Hz, 1H), 5.44-5.19 ( m, 1H), 4.07 (d, J = 5.5Hz, 2H), 3.68 (s, 3H), 1.42 (s, 9H)
19 F NMR (376 MHz, Deuterated-d6) δ = -81.53 (s, 3F), -115.31 (d, J = 281.1 Hz, 1F), 119.15 to -120.92 (m, 1F), -120.92 to -124.38 (10F), 125.54 to -127.82 (m, 2F)
[実施例10]
 ヘプタデカフルオロオクチル基を有するジペプチド(Boc-RFAA(C8)-Ala-OMe)を合成した。
[Example 10]
A dipeptide having a heptadecafluorooctyl group (Boc-RFAA (C8) -Ala-OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 グリシン メチルエステル塩酸塩に代えてアラニン メチルエステル塩酸塩を用いた以外は実施例9と同様にして、2-((tert-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロドデカン酸(15μmol)からBoc-RFAA(C8)-Ala-OMe(ジアステレオマーAとジアステレオマーBの47:53混合物)を得た(収率74%)。 2-((tert-butoxycarbonyl) amino) -3,3,4,5,5,5 in the same manner as in Example 9 except that alanine methyl ester hydrochloride was used instead of glycine methyl ester hydrochloride. From 6,6,7,7,8,8,9,9,10,10,10-heptadecafluorododecanoic acid (15 μmol) to Boc-RFAA (C8) -Ala-OMe (diasteromer A and diastereomer) A 47:53 mixture of B) was obtained (yield 74%).
H NMR(400MHz,Acetone-d6) δ=8.22-8.27(d,J=7.1Hz,1H),6.82-6.43(m,1H),5.44-5.19(m,1H),4.64-4.40(m,1H),3.68(s,3H),1.42(s,9H),1.38-1.40(d,3H)
19F NMR(376MHz,Acetone-d6) δ=-80.91(t,J=10.0Hz,3F),-113.87~-115.77(m,1F),-119.22~-119.98(m,1F),-120.67~-121.35(m,2F),-121.48(m,6F),-122.03~-122.81(m,2F),-126.00(m,2F)
1 1 H NMR (400 MHz, Deuterated-d6) δ = 8.22-8.27 (d, J = 7.1 Hz, 1H), 6.82-6.43 (m, 1H), 5.44-5. 19 (m, 1H), 4.64-4.40 (m, 1H), 3.68 (s, 3H), 1.42 (s, 9H), 1.38-1.40 (d, 3H)
19 F NMR (376MHz, Deuterated-d6) δ = -80.91 (t, J = 10.0Hz, 3F), -113.87 to -115.77 (m, 1F), 119.22 to 119 .98 (m, 1F), -120.67 to -121.35 (m, 2F), -121.48 (m, 6F), -122.03 to -122.81 (m, 2F), -126 .00 (m, 2F)
[実施例11]
 ヘプタデカフルオロオクチル基を有するジペプチド(Boc-RFAA(C8)-Leu-OMe)を合成した。
[Example 11]
A dipeptide having a heptadecafluorooctyl group (Boc-RFAA (C8) -Leu-OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 グリシン メチルエステル塩酸塩に代えてロイシン メチルエステル塩酸塩を用い、かつシリカゲルクロマトグラフィーを行わなかった以外は実施例9と同様にして、2-((tert-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロドデカン酸(15μmol)からBoc-RFAA(C8)-Leu-OMe(ジアステレオマーAとジアステレオマーBの49:51混合物)を得た(収率83%)。 2-((tert-butoxycarbonyl) amino) -3,3, in the same manner as in Example 9 except that leucine methyl ester hydrochloride was used instead of glycine methyl ester hydrochloride and silica gel chromatography was not performed. From 4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorododecanoic acid (15 μmol) to Boc-RFAA (C8) -Leu-OMe ( A 49:51 mixture of diastereomers A and diastereomers B) was obtained (83% yield).
H NMR(400MHz,Acetone-d6) δ=8.19(d,J=7.5Hz,1H),6.64(d,J=10.1Hz,1H),5.45-5.13(m,1H),4.68-4.47(m,1H),3.68(s,3H),1.81-1.66(m,1H),1.42(s,9H),0.96-0.88(m,6H)
19F NMR(376MHz,Acetone-d6) δ=-81.56(t,J=10.0Hz,3F),-115.49(m,J=272.51F),-119.40~-120.88(m,1F),-121.33~-123.04(m,10F),-126.63(m,2F)
1 1 H NMR (400 MHz, Deuterated-d6) δ = 8.19 (d, J = 7.5 Hz, 1H), 6.64 (d, J = 10.1 Hz, 1H), 5.45-5.13 ( m, 1H), 4.68-4.47 (m, 1H), 3.68 (s, 3H), 1.81-1.66 (m, 1H), 1.42 (s, 9H), 0 .96-0.88 (m, 6H)
19 F NMR (376 MHz, Deuterated-d6) δ = -81.56 (t, J = 10.0 Hz, 3F), -115.49 (m, J = 272.51F), 119.40 to -120. 88 (m, 1F), -121.33 to -123.04 (m, 10F), -126.63 (m, 2F)
[実施例12]
 ヘプタデカフルオロオクチル基を有するジペプチド(Boc-RFAA(C8)-Lys(Boc)-OMe)を合成した。
[Example 12]
A dipeptide having a heptadecafluorooctyl group (Boc-RFAA (C8) -Lys (Boc) -OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 グリシン メチルエステル塩酸塩に代えてリジン(Boc)メチルエステル塩酸塩を用いた以外は実施例9と同様にして、Boc-RFAA(C8)-Lys(Boc)-OMeを得た(収率69%)。 Boc-RFAA (C8) -Lys (Boc) -OMe was obtained in the same manner as in Example 9 except that lysine (Boc) methyl ester hydrochloride was used instead of glycine methyl ester hydrochloride (yield 69%). ).
H NMR(400MHz,CDCl) δ 7.71(d,J=3.7Hz,1H),7.51-7.54(m,1H),6.94(d,J=8.2Hz,1H),5.67(d,J=10.1Hz,1H),5.13(s,1H),4.57-4.62(m,2H),3.75(s,3H),1.45(s,18H),1.10-1.90(m,6H)
19F NMR(376MHz,CDCl) δ -80.63(s,3F),-114.56(d,J=281.1Hz,1F),-119.10(d,J=284.0Hz,1F),-122.61―-120.86(m,10F),-126.02(s,2F)
1 1 H NMR (400 MHz, CDCl 3 ) δ 7.71 (d, J = 3.7 Hz, 1H), 7.51-7.54 (m, 1H), 6.94 (d, J = 8.2 Hz, 1H), 5.67 (d, J = 10.1Hz, 1H), 5.13 (s, 1H), 4.57-4.62 (m, 2H), 3.75 (s, 3H), 1 .45 (s, 18H), 1.10-1.90 (m, 6H)
19 F NMR (376 MHz, CDCl 3 ) δ-80.63 (s, 3F), -114.56 (d, J = 281.1 Hz, 1F), 119.10 (d, J = 284.0 Hz, 1F) ), -122.61-120.86 (m, 10F), -126.02 (s, 2F)
LRMS(ESI-TOF)
[M+Na]:calcd.for C273417NaO 858.20,found 858.03
LRMS (ESI-TOF)
[M + Na] + : calcd. for C 27 H 34 F 17 N 3 NaO 7 858.20, found 858.03
[実施例13]
 ヘプタデカフルオロオクチル基を有するジペプチド(Boc-RFAA(C8)-Cys(Bn)-OMe)を合成した。
[Example 13]
A dipeptide having a heptadecafluorooctyl group (Boc-RFAA (C8) -Cys (Bn) -OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 フェニルアラニンメチルエステル塩酸塩に代えてS-ベンジル-L-システインメチルエステル塩酸塩を用いた以外は実施例9と同様にして、2-((tert-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロドデカン酸(36.4μmol)から、Boc-RFAA(C8)-Cys(Bn)-OMe(ジアステレオマーA:10.6μmol、ジアステレオマーB:9.4μmol、合計収率55%)を得た。 2-((tert-butoxycarbonyl) amino) -3,3,4 in the same manner as in Example 9 except that S-benzyl-L-cysteine methyl ester hydrochloride was used instead of phenylalanine methyl ester hydrochloride. From 4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorododecanoic acid (36.4 μmol), Boc-RFAA (C8) -Cys (Bn) ) -OMe (diastereomer A: 10.6 μmol, diastereomer B: 9.4 μmol, total yield 55%) was obtained.
Boc-RFAA(C8)-Cys(Bn)-OMeのジアステレオマーA
H NMR(500MHz,ACETONE-D6) δ=8.39(br,1H),7.35-7.24(m,5H),6.75(br,1H),5.44-5.38(m,1H),4.81-4.77(m,1H),3.80(s,2H),3.71(s,3H),2.96-2.82(m,2H),1.41(s,9H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(t,3F),-114.59(d,J=288Hz,1F),-119.49(d,J=277Hz,1F),-120.70~-122.50(m,10F),-126.01(s,2F)
Boc-RFAA (C8) -Cys (Bn) -OMe diastereomer A
1 1 H NMR (500 MHz, ACETONE-D6) δ = 8.39 (br, 1H), 7.35-7.24 (m, 5H), 6.75 (br, 1H), 5.44-5.38 (M, 1H), 4.81-4.77 (m, 1H), 3.80 (s, 2H), 3.71 (s, 3H), 2.96-2.82 (m, 2H), 1.41 (s, 9H)
19 F NMR (470MHz, ACETONE-D6) δ = -80.86 (t, 3F), -114.59 (d, J = 288Hz, 1F), 119.49 (d, J = 277Hz, 1F), -120.70 to -122.50 (m, 10F), -126.01 (s, 2F)
Boc-RFAA(C8)-Cys(Bn)-OMeのジアステレオマーB
H NMR(500MHz,ACETONE-D6) δ=8.40(br,1H),7.36-7.24(m,5H),6.74(br,1H),5.42-5.35(m,1H),4.76-4.72(m,1H),3.80(s,2H),3.70(s,3H),2.98-2.82(m,2H),1.42(s,9H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(t,3F),-114.44(d,J=279Hz,1F),-119.51(d,J=271Hz,1F),-120.65~-122.65(m,10F),-125.96(s,2F)
Boc-RFAA (C8) -Cys (Bn) -OMe diastereomer B
1 1 H NMR (500 MHz, ACETONE-D6) δ = 8.40 (br, 1H), 7.36-7.24 (m, 5H), 6.74 (br, 1H), 5.42-5.35 (M, 1H), 4.76-4.72 (m, 1H), 3.80 (s, 2H), 3.70 (s, 3H), 2.98-2.82 (m, 2H), 1.42 (s, 9H)
19 F NMR (470MHz, ACETONE-D6) δ = -80.86 (t, 3F), -114.44 (d, J = 279Hz, 1F), -119.51 (d, J = 271Hz, 1F), -120.65 to -122.65 (m, 10F), -125.96 (s, 2F)
[実施例14]
 ヘプタデカフルオロオクチル基を有するジペプチド(Boc-RFAA(C8)-Asp(OtBu)-OMe)を合成した。
[Example 14]
A dipeptide having a heptadecafluorooctyl group (Boc-RFAA (C8) -Asp (OtBu) -OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 フェニルアラニンメチルエステル塩酸塩に代えてO-t-ブチル-L-アスパラギン酸メチルエステル塩酸塩を用いた以外は実施例9と同様にして、2-((tert-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロドデカン酸(18.7μmol)から、Boc-RFAA(C8)-Asp(OtBu)-OMe(ジアステレオマーAとジアステレオマーBの混合物)を得た(ジアステレオマーAとジアステレオマーBの合計で13.8μmol、合計収率74%)。 2-((tert-butoxycarbonyl) amino) -3,3 in the same manner as in Example 9 except that Ot-butyl-L-aspartic acid methyl ester hydrochloride was used instead of phenylalanine methyl ester hydrochloride. , 4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-from heptadecafluorododecanoic acid (18.7 μmol), Boc-RFAA (C8)- Asp (OtBu) -OMe (a mixture of diastereomers A and diastereomers B) was obtained (total of diastereomers A and diastereomers B was 13.8 μmol, total yield was 74%).
Boc-RFAA(C8)-Asp(OtBu)-OMeのジアステレオマーA
H NMR(500MHz,ACETONE-D6) δ=8.30-8.27(m,1H),6.74-6.72(m,1H),5.37-5.30(m,1H),4.84-4.82(m,1H),3.70(s,3H),2.97-2.82(m,2H),1.41(s,18H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(t,3F),-114.55(d,J=273Hz,1F),-119.39(d,J=286Hz,1F),-120.70~-122.50(m,10F),-125.95(s,2F)
Boc-RFAA (C8) -Asp (OtBu) -OMe diastereomer A
1 1 H NMR (500 MHz, ACETONE-D6) δ = 8.30-8.27 (m, 1H), 6.74-6.72 (m, 1H), 5.37-5.30 (m, 1H) , 4.84-4.82 (m, 1H), 3.70 (s, 3H), 2.97-2.82 (m, 2H), 1.41 (s, 18H)
19 F NMR (470MHz, ACETONE-D6) δ = -80.86 (t, 3F), -114.55 (d, J = 273Hz, 1F), 119.39 (d, J = 286Hz, 1F), -120.70 to -122.50 (m, 10F), -125.95 (s, 2F)
Boc-RFAA(C8)-Asp(OtBu)-OMeのジアステレオマーB
H NMR(500MHz,ACETONE-D6) δ=8.34(br,1H),6.68(br,1H),5.45-5.38(m,1H),4.84-4.78(m,1H),3.71(s,3H),2.89-2.76(m,2H),1.43(s,9H),1.41(s,9H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(t,3F),-114.57(d,J=275Hz,1F),-119.35(d,J=275Hz,1F),-120.61~-122.60(m,10F),-125.97(s,2F)
Boc-RFAA (C8) -Asp (OtBu) -OMe diastereomer B
1 1 H NMR (500 MHz, ACETONE-D6) δ = 8.34 (br, 1H), 6.68 (br, 1H), 5.45-5.38 (m, 1H), 4.84-4.78 (M, 1H), 3.71 (s, 3H), 2.89-2.76 (m, 2H), 1.43 (s, 9H), 1.41 (s, 9H)
19 F NMR (470MHz, ACETONE-D6) δ = -80.86 (t, 3F), 114.57 (d, J = 275Hz, 1F), 119.35 (d, J = 275Hz, 1F), -120.61 to -122.60 (m, 10F), -125.97 (s, 2F)
[実施例15]
 ヘプタデカフルオロオクチル基を有するジペプチド(Boc-RFAA(C8)-Tyr(OBn)-OMe)を合成した。
[Example 15]
A dipeptide having a heptadecafluorooctyl group (Boc-RFAA (C8) -Tyr (OBn) -OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 フェニルアラニンメチルエステル塩酸塩に代えてO-ベンジル-L-チロシンメチルエステル塩酸塩を用いた以外は実施例9と同様にして、2-((tert-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロドデカン酸(17.7μmol)から、Boc-RFAA(C8)-Tyr(OBn)-OMe(ジアステレオマーA:2.9μmol、ジアステレオマーB:2.9μmol、合計収率32%)を得た。 2-((tert-butoxycarbonyl) amino) -3,3,4 in the same manner as in Example 9 except that O-benzyl-L-tyrosine methyl ester hydrochloride was used instead of phenylalanine methyl ester hydrochloride. From 4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorododecanoic acid (17.7 μmol), Boc-RFAA (C8) -Tyr (OBn) ) -OMe (diastereomer A: 2.9 μmol, diastereomer B: 2.9 μmol, total yield 32%) was obtained.
Boc-RFAA(C8)-Tyr(OBn)-OMeのジアステレオマーA
H NMR(500MHz,ACETONE-D6) δ=8.21(br,1H),7.47-7.32(m,5H),7.02(dd,4H),6.63(br,1H),5.38-5.27(m,1H),5.08(s,2H),4.75-4.70(m,1H),3.67(s,3H),3.12-2.94(m,2H),1.43(s,9H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(t,3F),-114.65(d,J=284Hz,1F),-119.33(d,J=273Hz,1F),-120.30~-122.60(m,10F),-125.96(s,2F)
Boc-RFAA (C8) -Tyr (OBn) -OMe diastereomer A
1 1 H NMR (500 MHz, ACETONE-D6) δ = 8.21 (br, 1H), 7.47-7.32 (m, 5H), 7.02 (dd, 4H), 6.63 (br, 1H) ), 5.38-5.27 (m, 1H), 5.08 (s, 2H), 4.75-4.70 (m, 1H), 3.67 (s, 3H), 3.12- 2.94 (m, 2H), 1.43 (s, 9H)
19 F NMR (470MHz, ACETONE-D6) δ = -80.86 (t, 3F), -114.65 (d, J = 284Hz, 1F), -119.33 (d, J = 273Hz, 1F), -120.30 to -122.60 (m, 10F), -125.96 (s, 2F)
Boc-RFAA(C8)-Tyr(OBn)-OMeのジアステレオマーB
H NMR(500MHz,ACETONE-D6) δ=8.23(br,1H),7.47-7.30(m,5H),7.04(dd,4H),6.65(br,1H),5.34-5.25(m,1H),5.08(s,2H),4.72-4.68(m,1H),3.66(s,3H),3.10-2.97(m,2H),1.42(s,9H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(t,3F),-114.66(d,J=284Hz,1F),-119.30(d,J=281Hz,1F),-120.00~-122.60(m,10F),-125.95(s,2F)
Boc-RFAA (C8) -Tyr (OBn) -OMe diastereomer B
1 1 H NMR (500 MHz, ACETONE-D6) δ = 8.23 (br, 1H), 7.47-7.30 (m, 5H), 7.04 (dd, 4H), 6.65 (br, 1H) ), 5.34-5.25 (m, 1H), 5.08 (s, 2H), 4.72-4.68 (m, 1H), 3.66 (s, 3H), 3.10- 2.97 (m, 2H), 1.42 (s, 9H)
19 F NMR (470 MHz, ACETONE-D6) δ = -80.86 (t, 3F), -114.66 (d, J = 284 Hz, 1F), 119.30 (d, J = 281 Hz, 1F), -120.00 to -122.60 (m, 10F), -125.95 (s, 2F)
[実施例16]
 ヘプタデカフルオロオクチル基を有するジペプチド(Boc-RFAA(C8)-Glu(OBn)-OMe)を合成した。
[Example 16]
A dipeptide having a heptadecafluorooctyl group (Boc-RFAA (C8) -Glu (OBn) -OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 フェニルアラニンメチルエステル塩酸塩に代えてO-ベンジル-L-グルタミン酸メチルエステル塩酸塩を用いた以外は実施例9と同様にして、2-((tert-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロドデカン酸(35.2μmol)から、Boc-RFAA(C8)-Glu(OBn)-OMe(ジアステレオマーAとジアステレオマーBの混合物)を得た(ジアステレオマーAとジアステレオマーBの合計で27.1μmol、合計収率76.9%)。 2-((tert-butoxycarbonyl) amino) -3,3,4 in the same manner as in Example 9 except that O-benzyl-L-glutamic acid methyl ester hydrochloride was used instead of phenylalanine methyl ester hydrochloride. From 4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorododecanoic acid (35.2 μmol), Boc-RFAA (C8) -Glu (OBn) ) -OMe (a mixture of diastereomers A and diastereomers B) was obtained (total of diastereomers A and diastereomers B was 27.1 μmol, total yield was 76.9%).
Boc-RFAA(C8)-Glu(OBn)-OMeのジアステレオマーA
H NMR(500MHz,ACETONE-D6) δ=8.24(br,1H),7.38-7.30(m,5H),6.74(br,1H),5.32-5.26(m,1H),5.11(s,2H),4.62-4.58(m,1H),3.69(s,3H),2.51-2.48(m,2H),3.69(s,3H),2.28-1.90(m,2H),1.41(s,9H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(t,3F),-114.50(d,J=293Hz,1F),-119.43(d,J=295Hz,1F),-120.05~-122.70(m,10F),-125.93(s,2F)
Boc-RFAA (C8) -Glu (OBn) -OMe diastereomer A
1 1 H NMR (500 MHz, ACETONE-D6) δ = 8.24 (br, 1H), 7.38-7.30 (m, 5H), 6.74 (br, 1H), 5.32-5.26 (M, 1H), 5.11 (s, 2H), 4.62-4.58 (m, 1H), 3.69 (s, 3H), 2.51-2.48 (m, 2H), 3.69 (s, 3H), 2.28-1.90 (m, 2H), 1.41 (s, 9H)
19 F NMR (470MHz, ACETONE-D6) δ = -80.86 (t, 3F), -114.50 (d, J = 293Hz, 1F), -119.43 (d, J = 295Hz, 1F), -120.05 to -122.70 (m, 10F), -125.93 (s, 2F)
Boc-RFAA(C8)-Glu(OBn)-OMeのジアステレオマーB
H NMR(500MHz,ACETONE-D6) δ=8.33(br,1H),7.39-7.30(m,5H),6.70(br,1H),5.37-5.29(m,1H),5.11(s,2H),4.61-4.57(m,1H),3.70(s,3H),2.62-2.51(m,2H),2.25-1.95(m,2H),1.40(s,9H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(t,3F),-114.80(d,J=273Hz,1F),-119.62(d,J=279Hz,1F),-120.05~-122.50(m,10F),-125.97(s,2F)
Boc-RFAA (C8) -Glu (OBn) -OMe diastereomer B
1 1 H NMR (500 MHz, ACETONE-D6) δ = 8.33 (br, 1H), 7.39-7.30 (m, 5H), 6.70 (br, 1H), 5.37-5.29 (M, 1H), 5.11 (s, 2H), 4.61-4.57 (m, 1H), 3.70 (s, 3H), 2.62-2.51 (m, 2H), 2.25-1.95 (m, 2H), 1.40 (s, 9H)
19 F NMR (470MHz, ACETONE-D6) δ = -80.86 (t, 3F), -114.80 (d, J = 273Hz, 1F), -119.62 (d, J = 279Hz, 1F), -120.05 to -122.50 (m, 10F), -125.97 (s, 2F)
[実施例17]
 ヘプタデカフルオロオクチル基を有するジペプチド(Boc-RFAA(C8)-Arg(Pbf)-OMe)を合成した。
[Example 17]
A dipeptide having a heptadecafluorooctyl group (Boc-RFAA (C8) -Arg (Pbf) -OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 フェニルアラニンメチルエステル塩酸塩に代えてN-Pbf-L-アルギニンメチルエステル塩酸塩を用いた以外は実施例9と同様にして、2-((tert-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロドデカン酸(17.3μmol)から、Boc-RFAA(C8)-Arg(Pbf)-OMe(ジアステレオマーAとジアステレオマーBの混合物)を得た(ジアステレオマーAとジアステレオマーBの合計で13.2μmol、合計収率76.3%) 2-((tert-butoxycarbonyl) amino) -3,3,4 in the same manner as in Example 9 except that N-Pbf-L-arginine methyl ester hydrochloride was used instead of phenylalanine methyl ester hydrochloride. From 4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorododecanoic acid (17.3 μmol), Boc-RFAA (C8) -Arg (Pbf) )-OMe (mixture of diastereomer A and diastereomer B) was obtained (total of diastereomer A and diastereomer B 13.2 μmol, total yield 76.3%).
Boc-[RFAA(C8)-Arg(Pbf)-OMeのジアステレオマーAとジアステレオマーBの混合物
H NMR(500MHz,ACETONE-D6) δ=8.35,8.27(m,1H(NH)),6.76-6.72(m,1H(NH)),6.60-6.30(br,3H(NH)),4.50-4.45(m,1H),3.67(s,3H),3.30-3.15(m,2H),2.99(s,2H),2,56,2.49(s2本,9H),1.80-1.50(m,2H),1.44(s,6H),1.41(s,9H),1.45-1.38(m,2H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(t,3F),-114.20-114.98(m,1F),-119.00-120.20(m,1H),-120.72~-122.52(m,10F),-125.98(s,2F)
Boc- [RFAA (C8) -Arg (Pbf) -OMe diastereomer A and diastereomer B mixture
1 1 H NMR (500 MHz, ACETONE-D6) δ = 8.35, 8.27 (m, 1H (NH)), 6.76-6.72 (m, 1H (NH)), 6.60-6. 30 (br, 3H (NH)), 4.50-4.45 (m, 1H), 3.67 (s, 3H), 3.30-3.15 (m, 2H), 2.99 (s) , 2H), 2,56, 2.49 (s2, 9H), 1.80-1.50 (m, 2H), 1.44 (s, 6H), 1.41 (s, 9H), 1 .45-1.38 (m, 2H)
19 F NMR (470 MHz, ACETONE-D6) δ = -80.86 (t, 3F), 114.20-114.98 (m, 1F), 119.00-120.20 (m, 1H), -120.72 to -122.52 (m, 10F), -125.98 (s, 2F)
[比較例4]
 オクチル基を有するトリペプチド(Boc-Ala-nOctyl-Phe-OMe)を合成した。
[Comparative Example 4]
A tripeptide having an octyl group (Boc-Ala-nOctyl-Phe-OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 Boc-nOctyl-Phe-OMeは、既報(Liebigs Annalen der Chemie,1990, 12p, p. 1175-1183)に記載の方法で製造した。当該ジペプチドのBoc脱保護は、上記と同じ標準的手順で行った(歩留まり100%)。また、トリペプチドの合成は、前述の手順に従って行った。 Boc-nOctyl-Phe-OMe was manufactured by the method described in the previous report (Liebigs Annalen der Chemie, 1990, 12p, p. 1175-1183). Boc deprotection of the dipeptide was performed by the same standard procedure as above (yield 100%). In addition, the synthesis of tripeptide was carried out according to the above-mentioned procedure.
ESI-MS
[M+H]:m/z calcd.for 420.29,found 420.72
ESI-MS
[M + H] + : m / z calcd. for 420.29, found 420.72
[製造例4]
 3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクチルヨージドと下記化合物1から、2-アミノ-5,5,6,6,7,7,8,8,9,9、10,10,10-トリデカフルオロオクタン酸(塩酸塩)を合成した。
[Manufacturing Example 4]
From 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyliodide and compound 1 below, 2-amino-5,5,6,6 7,7,8,8,9,9,10,10,10-tridecafluorooctanoic acid (hydrochloride) was synthesized.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 THF(1mL)に溶解させた化合物1(200mg)をLDA(2.2当量)に添加し、得られた混合物をアルゴン下で30分間、乾燥THF(1mL)中で-78℃に保った。次いで、RFCHCHI(1.1当量)を当該混合物に添加して、3時間撹拌した。その後、当該混合物をゆっくりと-30℃にし、一晩撹拌した後、0℃で当該混合物に水(5mL)を加えて反応を停止させた。次いで、当該混合物をCHCl(200mL×3)で抽出した。生成物をアルミナ上で、カラムによって白色の固体を得た(収率54.1%)。 Compound 1 (200 mg) dissolved in THF (1 mL) was added to LDA (2.2 eq) and the resulting mixture was kept at −78 ° C. in dry THF (1 mL) for 30 minutes under argon. RFCH 2 CH 2 I (1.1 eq) was then added to the mixture and stirred for 3 hours. Then, the mixture was slowly brought to −30 ° C., stirred overnight, and then water (5 mL) was added to the mixture at 0 ° C. to stop the reaction. The mixture was then extracted with CH 2 Cl 2 (200 mL x 3). The product was cast on alumina to give a white solid (yield 54.1%).
H NMR(400MHz CDCl) δ=7.2-7.7(m,10H),4.03(t,1H),3.23-3.27(m,2H),2.78-2.66(m,2H),1.45(s,9H)
19F NMR(376MHz CDCl) δ=-80.8(t,3F),-114.2(m,1F),-114.9(m,1F),-121.9(m,2F),-122.9(m,2F),-123.4(m,2F),-126.2(m,2F)
1 1 H NMR (400MHz CDCl 3 ) δ = 7.2-7.7 (m, 10H), 4.03 (t, 1H), 3.23-3.27 (m, 2H), 2.78-2 .66 (m, 2H), 1.45 (s, 9H)
19 F NMR (376MHz CDCl 3 ) δ = -80.8 (t, 3F), -114.2 (m, 1F), -114.9 (m, 1F), -121.9 (m, 2F), -122.9 (m, 2F), -123.4 (m, 2F), -126.2 (m, 2F)
 HCl(6M、50mL)及び1,4-ジオキサン(200mL)に溶解した化合物2(50.8mmol)の溶液を、80℃で24時間加熱した。当該溶液を濾過し、沈殿物をアセトンで数回洗浄した。得られた白色固体は、さらに精製することなく次の工程で使用するのに十分な純度であった(収率50.2%)。 A solution of compound 2 (50.8 mmol) dissolved in HCl (6M, 50 mL) and 1,4-dioxane (200 mL) was heated at 80 ° C. for 24 hours. The solution was filtered and the precipitate was washed with acetone several times. The resulting white solid was of sufficient purity for use in the next step without further purification (yield 50.2%).
H NMR(400MHz MeOH-d4) δ=3.68(m,1H),2.52(m,1H),2.35(m,1H),2.11(m,2H)
19F NMR(376MHz MeOH-d4) δ=-82.3(t,3F),-115.7(m,2F),-122.8(m,2F),-123.8(m,2F),-124.4(m,2F),-127.2(m,2F)
1 1 H NMR (400MHz MeOH-d4) δ = 3.68 (m, 1H), 2.52 (m, 1H), 2.35 (m, 1H), 2.11 (m, 2H)
19 F NMR (376MHz MeOH-d4) δ = -82.3 (t, 3F), -115.7 (m, 2F), -122.8 (m, 2F), -123.8 (m, 2F) , -124.4 (m, 2F), -127.2 (m, 2F)
[実施例18]
 トリデカフルオロヘキシル基を有するトリペプチド(H-Ala-RFAA(C6)-Phe-OMe)を合成した。
[Example 18]
A tripeptide having a tridecafluorohexyl group (H-Ala-RFAA (C6) -Phe-OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 50mL容の二口丸底フラスコに撹拌子を添加し、化合物3(100mg、0.22mmol)及びDCM(10mL)を加えた。Fmoc-OSn(0.24mmol)及びDIPEA(1.3当量)を室温で加え、次いで反応混合物を室温で20時間撹拌した。反応混合物を直接蒸発させ、シリカゲルカラムクロマトグラフィー(MeOH/CHCl=1/9)により白色固体として精製した(64.2%収率)。 A stir bar was added to a 50 mL two-necked round bottom flask, and compound 3 (100 mg, 0.22 mmol) and DCM (10 mL) were added. Fmoc-OSn (0.24 mmol) and DIPEA (1.3 eq) were added at room temperature, then the reaction mixture was stirred at room temperature for 20 hours. The reaction mixture was directly evaporated and purified by silica gel column chromatography (MeOH / CHCl 3 = 1/9) as a white solid (64.2% yield).
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 25mL容の二口丸底フラスコに、Fmoc-RFAA(C6)-OH(90.4mg、0.14mmol)、HOAt(1.2当量)、及びDIPEA(1.3当量)を加えた。当該混合物に、DCM(5mL)に溶解させたHATU(1.2当量)及びH-Phe-OMe(HCl塩、1.2当量)を0℃で添加し、当該混合物を室温まで温め、次いで4時間撹拌した。次いで、HCl(1N)を加えて反応を停止させた後、混合物をHCl(1N)とDCMとの間で分配した。合わせた有機相を蒸発させ、次いで酢酸エチルで希釈した。有機相をHCl(1N)、飽和NaHCO水溶液、及びブラインで洗浄し、vで乾燥し、蒸発させて白色固体を得た。 粗混合物に、20%ピペリジンDMF溶液(25mL)を加え、室温で1時間撹拌した。溶媒を真空乾燥により除去して白色固体を得、これをシリカゲルカラムクロマトグラフィー(CHCl:MeOH=10:1)により精製してH-RFAA(C6)-Phe-OMe(41.4mg、収率64.8%)を得た。 Fmoc-RFAA (C6) -OH (90.4 mg, 0.14 mmol), HOAt (1.2 eq), and DIPEA (1.3 eq) were added to a 25 mL two-necked round bottom flask. HATU (1.2 eq) and H-Phe-OMe (HCl salt, 1.2 eq) dissolved in DCM (5 mL) were added to the mixture at 0 ° C. to warm the mixture to room temperature, then 4 Stir for hours. The reaction was then stopped by adding HCl (1N) and then the mixture was partitioned between HCl (1N) and DCM. The combined organic phases were evaporated and then diluted with ethyl acetate. The organic phase was washed with HCl (1N), saturated aqueous NaHCO 3 solution, and brine, dried over v and evaporated to give a white solid. A 20% piperidine DMF solution (25 mL) was added to the crude mixture, and the mixture was stirred at room temperature for 1 hour. The solvent was removed by vacuum drying to give a white solid, which was purified by silica gel column chromatography (CHCl 3 : MeOH = 10: 1) and H-RFAA (C6) -Phe-OMe (41.4 mg, yield). 64.8%) was obtained.
H NMR(400MHz Acetone-d6) δ=7.2-7.7(m,5H),4.71(m,1H),4.05(t,1H),3.15(s,3H),2.99-3.15(m,2H),2.81(br s,NH),2.32(m,2H),1.96(m,2H)
19F NMR(376MHz Acetone-d6) δ=-81.4(t,3F),-114.6(m,2F),-122.4(m,2F),-123.4(m,2F),-123.8(m,2F),-126.7(m,2F)
1 1 H NMR (400MHz Deuterated-d6) δ = 7.2-7.7 (m, 5H), 4.71 (m, 1H), 4.05 (t, 1H), 3.15 (s, 3H) , 2.99-3.15 (m, 2H), 2.81 (br s, NH 2 ), 2.32 (m, 2H), 1.96 (m, 2H)
19 F NMR (376MHz Deuterated-d6) δ = -81.4 (t, 3F), -114.6 (m, 2F), -122.4 (m, 2F), -123.4 (m, 2F) , -123.8 (m, 2F), -126.7 (m, 2F)
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 25mL容の二口丸底フラスコに、H-RFAA(C6)-Phe-OMe(44.8μmol)、HOAt(1.2当量)、及びDIPEA(1.3当量)を加えた。DCM(5mL)に溶解させたHATU(1.2当量)、及びFmoc-AlaOH(1.2当量)を0℃で混合物に添加した後、混合物を室温まで温め、次いで4時間撹拌した。HCl(1N)を加えて反応を停止させた後、当該混合物をHCl(1N)とDCMとの間で分配した。合わせた有機相を蒸発させ、次いで酢酸エチルで希釈した。有機相をHCl(1N)、飽和NaHCO水溶液、及びブラインで洗浄し、NaSOで乾燥し、蒸発させて白色固体を得た。 粗混合物に5mLの20%ピペリジンDMF溶液を加え、室温で1時間撹拌した。溶媒を減圧留去して白色固体を得て、それをHPLCにより精製した。 H-RFAA (C6) -Phe-OMe (44.8 μmol), HOAt (1.2 eq), and DIPEA (1.3 eq) were added to a 25 mL two-necked round bottom flask. HATU (1.2 eq) and Fmoc-AlaOH (1.2 eq) dissolved in DCM (5 mL) were added to the mixture at 0 ° C., the mixture was warmed to room temperature and then stirred for 4 hours. After stopping the reaction by adding HCl (1N), the mixture was partitioned between HCl (1N) and DCM. The combined organic phases were evaporated and then diluted with ethyl acetate. The organic phase was washed with HCl (1N), saturated aqueous NaHCO 3 solution, and brine, dried over Na 2 SO 4 and evaporated to give a white solid. 5 mL of a 20% piperidine DMF solution was added to the crude mixture, and the mixture was stirred at room temperature for 1 hour. The solvent was distilled off under reduced pressure to obtain a white solid, which was purified by HPLC.
ESI-MS
[M+H]:m/z calcd.for 754.16,found 654.52
ESI-MS
[M + H] + : m / z calcd. for 754.16, found 654.52
[実施例19]
 トリデカフルオロオクチル基を有するジペプチド(Fmoc-RFAA(C6)-Phe-OMe)を合成した。
[Example 19]
A dipeptide having a tridecafluorooctyl group (Fmoc-RFAA (C6) -Phe-OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 2-((tert-ブトキシカルボニル)アミノ)-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロドデカン酸に代えて2-((9-フルオレニルメチルオキシカルボニル)アミノ)-5,5,6,6,7,7,8,8,9,9,10,10,10-トリデカフルオロドデカン酸(以下、Fmoc-RFAA(C6)-OHと称する)を用いた以外は実施例18と同様にして、Fmoc-RFAA(C6)-OH(314.7μmol)から、Fmoc-[(R)-RFAA(C6)]-Phe-OMe(ジアステレオマーA)(110.9μmol)とFmoc-[(S)-RFAA(C6)]-Phe-OMe(ジアステレオマーB)(137.3μmol)を得た(合計収率78.9%)。 2-((tert-butoxycarbonyl) amino) -3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorododecane 2-((9-Fluorenylmethyloxycarbonyl) amino) -5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorododecane instead of acid Fmoc-[(R)- RFAA (C6)]-Phe-OMe (diastereomer A) (110.9 μmol) and Fmoc-[(S) -RFAA (C6)]-Phe-OMe (diastereomer B) (137.3 μmol) are obtained. (Total yield 78.9%).
 ここで、ジアステレオマーBの結晶を用いて、X線構造解析により含まれるRFAA(C6)の立体を(S)体と決定した。X線構造解析には、リガク製VariMax Dual Saturnを使用した。 Here, using the crystal of diastereomer B, the solid of RFAA (C6) contained by X-ray structural analysis was determined to be the (S) form. Rigaku's VariMax Dual Saturn was used for the X-ray structure analysis.
Fmoc-[(R)-RFAA(C6)]-Phe-OMe(ジアステレオマーA)
H NMR(500MHz,ACETONE-D6) δ=8.03(t,2H),7.87(d,2H)7.72-7.68(m,2H),7.42(t,2H),7.32(t,2H),7.28-7.14(m,5H),4.74-4.68(m,1H),4.40-4.35(m,2H),4.36-4.28(m,1H),4.28-4.20(m,1H),3.66(s,3H),3.20-3.00(m,2H),2.40-2.00(m,4H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(s,3F),-114.00(s,2F),-121.66(s,2F),-122.64(s,2F),-123.13,-126.00(s,2F)
Fmoc-[(R) -RFAA (C6)]-Phe-OMe (Diastereomer A)
1 1 H NMR (500 MHz, ACETONE-D6) δ = 8.03 (t, 2H), 7.87 (d, 2H) 7.72-7.68 (m, 2H), 7.42 (t, 2H) , 7.32 (t, 2H), 7.28-7.14 (m, 5H), 4.74-4.68 (m, 1H), 4.40-4.35 (m, 2H), 4 .36-4.28 (m, 1H), 4.28-4.20 (m, 1H), 3.66 (s, 3H), 3.20-3.00 (m, 2H), 2.40 -2.00 (m, 4H)
19 F NMR (470MHz, ACETONE-D6) δ = -80.86 (s, 3F), -114.00 (s, 2F), -121.66 (s, 2F), -122.64 (s, 2F) ), -123.13, -126.00 (s, 2F)
Fmoc-[(S)-RFAA(C6)]-Phe-OMe(ジアステレオマーB)
H NMR(500MHz,ACETONE-D6) δ=8.03(s,2H),7.87(d,2H)7.72-7.66(m,2H),7.41(t,2H),7.31(t,2H),7.26-7.16(m,5H),4.75-4.70(m,1H),4.40-4.28(m,3H),4.25-4.20(m,1H),3.67(s,3H),3.23-2.95(m,2H),2.33-1.79(m,4H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(t,3F),-113.89(s,2F),-121.67(s,2F),-122.64(s,2F),-123.02,-126.00(s,2F)
Fmoc-[(S) -RFAA (C6)]-Phe-OMe (Diastereomer B)
1 1 H NMR (500 MHz, ACETONE-D6) δ = 8.03 (s, 2H), 7.87 (d, 2H) 7.72-7.66 (m, 2H), 7.41 (t, 2H) , 7.31 (t, 2H), 7.26-7.16 (m, 5H), 4.75-4.70 (m, 1H), 4.40-4.28 (m, 3H), 4 .25-4.20 (m, 1H), 3.67 (s, 3H), 3.23-2.95 (m, 2H), 2.33-1.79 (m, 4H)
19 F NMR (470MHz, ACETONE-D6) δ = -80.86 (t, 3F), -113.89 (s, 2F), -121.67 (s, 2F), -122.64 (s, 2F) ), -123.02, 126.00 (s, 2F)
 合成したペプチドのN末端側の保護基を脱保護し、H-[(R)-RFAA(C6)]-Phe-OMeを得た。 The protecting group on the N-terminal side of the synthesized peptide was deprotected to obtain H-[(R) -RFAA (C6)]-Phe-OMe.
 5mL容の試験管に撹拌子を入れ、Fmoc-[(R)-RFAA(C6)]-Phe-OMe(ジアステレオマーA、0.111mmol)と、ジメチルホルムアミド(2.6mL)、ピぺリジン0.6mLの混合溶液を加えた。この反応混合物を室温で1時間攪拌した後、低沸と溶媒を減圧留去した。残渣にヘキサンを加えて洗い、不溶固体を濾過した後、濾液を減圧濃縮して粗生成物を得た。粗生成物をシリカゲルクロマトグラフィー(クロロホルム/メタノール=10/1)で精製して、H-[(R)-RFAA(C6)]-Phe-OMe(ジアステレオマーA)を得た(0.053mmol、収率47.4%)。 Place the stir bar in a 5 mL test tube, and add Fmoc-[(R) -RFAA (C6)]-Phe-OMe (diastereomer A, 0.111 mmol), dimethylformamide (2.6 mL), and piperidine. 0.6 mL of the mixed solution was added. The reaction mixture was stirred at room temperature for 1 hour, then low boiling and the solvent was distilled off under reduced pressure. Hexane was added to the residue, washed, and the insoluble solid was filtered. Then, the filtrate was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel chromatography (chloroform / methanol = 10/1) to give H-[(R) -RFAA (C6)]-Phe-OMe (diastereomer A) (0.053 mmol). , Yield 47.4%).
H-[(R)-RFAA(C6)]-Phe-OMe(ジアステレオマーA)
H NMR(500MHz,ACETONE-D6) δ=7.90(br,1H),7.50(br,1H),7.30-7.20(m,5H),4.76-4.71(m,1H),3.69(d,3H),3.40-3.29(m,1H),3.22-3.04(m,2H),2.40-1.66(m,4H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(t,3F),-113.90(s,2F),-121.69(s,2F),-122.65(s,2F),-123.15(s,2F),-125.98(s,2F)
H-[(R) -RFAA (C6)]-Phe-OMe (Diastereomer A)
1 1 H NMR (500MHz, ACETONE-D6) δ = 7.90 (br, 1H), 7.50 (br, 1H), 7.30-7.20 (m, 5H), 4.76-4.71 (M, 1H), 3.69 (d, 3H), 3.40-3.29 (m, 1H), 3.22-3.04 (m, 2H), 2.40-1.66 (m) , 4H)
19 F NMR (470MHz, ACETONE-D6) δ = -80.86 (t, 3F), -113.90 (s, 2F), -121.69 (s, 2F), -122.65 (s, 2F) ), -123.15 (s, 2F), -125.98 (s, 2F)
 合成した脱保護後のペプチド(H-[(R)-RFAA(C6)]-Phe-OMe、ジアステレオマーA)のN末端に、蛍光物質Alexa Fluor 647を結合させた。 The fluorescent substance AlexaFluor 647 was bound to the N-terminal of the synthesized peptide after deprotection (H-[(R) -RFAA (C6)]-Phe-OMe, diastereomer A).
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 1.5mL容の黒色チューブに、乾燥DMSO(50μL)に溶解させたAlexa Fluor 647 NHSエステル(500μg)、乾燥DMSO(50μL)に溶解させたH-[(R)-RFAA(C6)]-Phe-OMe(3.0当量)、乾燥DMSO(20μL)に溶解させたDIPEA(3.0当量)を加えた。混合物を室温で一晩撹拌し続けた。当該混合物を逆相クロマトグラフィー(アセトニトリル/水/TFA=25:75:0.1~99:1:0.1)で精製し、凍結乾燥して蛍光コンジュゲート3を青色固体として得た(蛍光計で計算して収率53.4% 色素基準)。なお、蛍光は、Nano Drop(登録商標)分光光度計ND-1000を用い、発光波長=650nmで測定した。 Alexa Fluor 647 NHS ester (500 μg) dissolved in dry DMSO (50 μL) and H-[(R) -RFAA (C6)] -Phe dissolved in dry DMSO (50 μL) in a 1.5 mL black tube. -OMe (3.0 eq) and DIPEA (3.0 eq) dissolved in dry DMSO (20 μL) were added. The mixture was continuously stirred at room temperature overnight. The mixture was purified by reverse phase chromatography (acetonitrile / water / TFA = 25: 75: 0.1 to 99: 1: 0.1) and lyophilized to give the fluorescent conjugate 3 as a blue solid (fluorescence). Yield 53.4% calculated by total (based on dye). The fluorescence was measured at an emission wavelength of 650 nm using a NanoDrop (registered trademark) spectrophotometer ND-1000.
MALDI-TOF MS
[M+2]:m/z calcd for C56611316-1421.3369,found1421.4965
MALDI-TOF MS
[M + 2] - : m / z calcd for C 56 H 61 F 13 N 4 O 16 S 4-1421.3369 , found 1421.4965
[製造例5]
 1,1,2,2,3,3,4,4,5,5,6,6,6-トリデカフルオロヘキシルヨージドとプロピオル酸エチル、フタルイミドから、2-(1,3-ジオキソイソインドリン-2-イル)-3-ペルフルオロヘキシルプロパン酸を合成した。
[Manufacturing Example 5]
From 1,1,2,2,3,3,4,5,5,6,6,6-tridecafluorohexyl iodide and ethyl propiolate, phthalimide, 2- (1,3-dioxoiso) Indoline-2-yl) -3-perfluorohexylpropanoic acid was synthesized.
 既報(Chemical Communications,2015, vol.51, p.12451、及び、Journal of Fluorine Chemistry, 2013, vol.150, p.1-7)に従って、下記に記載の反応にて合成した。 Synthesized by the reaction described below according to the previous report (Chemical Communications, 2015, vol.51, p.12451, and Journal of Fluorine Chemistry, 2013, vol.150, p.1-7).
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
[実施例20]
 トリデカフルオロヘキシル基を有するジペプチド(Phth-RFAA(C6’)-Phe-OMe)を合成した。
[Example 20]
A dipeptide having a tridecafluorohexyl group (Phth-RFAA (C6') -Phe-OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 10mL容の二口丸底フラスコにL-L-フェニルアラニンメチルエステル塩酸塩53.7 mg(0.10 mmol)、oxymaの14.2mg(0.10mmol),COMUの42.8mg(0.10mmol)、2-(1,3-ジオキソイソインドリン-2-イル)-3-ペルフルオロヘキシルプロパン酸の53.7mg(0.10mmol)を加えて、脱水したジメチルホルムアミド3.0mLに溶かした。続いて、当該混合物に、ジイソプロピルアミン25.8mg(0.20mmol)を滴下して、室温で1時間攪拌した。反応終了後、酢酸エチル20mLにて希釈した後、1N 塩酸20mL、飽和炭酸水素ナトリウム水溶液20mLで処理して分液した後、飽和塩化ナトリウム水溶液で有機層を洗浄した。得られた有機層を硫酸ナトリウムで脱水して、溶媒を留去した。得られた粗生成物は、HPLC分取にて精製し、Phth-RFAA(C6’)-Phe-OMeを得た(23mg、0.030mmol、収率33%)。 L-L-phenylalanine methyl ester hydrochloride 53.7 mg (0.10 mmol), oxyma 14.2 mg (0.10 mmol), COMU 42.8 mg (0.10 mmol) in a 10 mL two-necked round-bottom flask. , 2- (1,3-Dioxoisoindoline-2-yl) -3-perfluorohexyl propanoic acid (53.7 mg, 0.10 mmol) was added and dissolved in 3.0 mL of dehydrated dimethylformamide. Subsequently, 25.8 mg (0.20 mmol) of diisopropylamine was added dropwise to the mixture, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, the mixture was diluted with 20 mL of ethyl acetate, treated with 20 mL of 1N hydrochloric acid and 20 mL of saturated aqueous sodium hydrogen carbonate solution, separated, and then the organic layer was washed with saturated aqueous sodium chloride solution. The obtained organic layer was dehydrated with sodium sulfate, and the solvent was distilled off. The obtained crude product was purified by HPLC fractionation to obtain Phth-RFAA (C6') -Phe-OMe (23 mg, 0.030 mmol, yield 33%).
HNMR(400MHz,CDCl)δ 7.90-7.87(m,2H),7.82-7.77(m,2H),7.27-7.10,7.00-6.93(m,5H),6.40,6.20(d,J=7.8Hz,1H),5.22(td,J=7.0,3.7Hz,1H),4.87-4.79(m,1H),3.72,3.68(s,3H),3.25-3.00(m,4H)
19F NMR(376MHz,CDCl)δ -80.67(s,3F),-114.80(brs,2F),-121.71(s,2F),-122.77(s,2F),-123.40(s,2F),-126.06(s,2F)
1 1 HNMR (400MHz, CDCl 3 ) δ 7.90-7.87 (m, 2H), 7.82-7.77 (m, 2H), 7.27-7.10, 7.00-6.93 (M, 5H), 6.40, 6.20 (d, J = 7.8Hz, 1H), 5.22 (td, J = 7.0, 3.7Hz, 1H), 4.87-4. 79 (m, 1H), 3.72, 3.68 (s, 3H), 3.25-3.00 (m, 4H)
19 F NMR (376 MHz, CDCl 3 ) δ-80.67 (s, 3F), -114.80 (brs, 2F), -121.71 (s, 2F), -122.77 (s, 2F), -123.40 (s, 2F), -126.06 (s, 2F)
[実施例21]
 ヘプタデカフルオロオクチル基を有するテトラペプチド(Boc-Cys(Trt)-Ala-RFAA(C8)-Phe-OMe)を合成した。
[Example 21]
A tetrapeptide having a heptadecafluorooctyl group (Boc-Cys (Trt) -Ala-RFAA (C8) -Phe-OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 25mL容の二口丸底フラスコに、トリペプチド(H-Ala-[(R)-RFAA(C8)]-Phe-OMe(ジアステレオマーA、27.6μmol)、Boc-Cys(Trt)-OH(1.8当量)、oxyma(1.8当量)、及びCOMU(1.8当量)を600μLのDCMに溶解し攪拌した。反応混合物を0℃に冷却し、DIPEA(1.8当量)を加えた後、室温に昇温して3.5時間攪拌した。その後、反応混合物をHCl(1N)でクエンチし、DCMで3回抽出した。合わせた有機相を減圧濃縮した後、酢酸エチルで希釈し、HCl(1N)、飽和重曹水、及び飽和食塩水で洗浄した。洗浄後の有機相を硫酸ナトリウムで乾燥し、濾過した後、減圧濃縮してBoc-Cys(Trt)-Ala-RFAA(C8)-Phe-OMeの粗生成物を得た。続いて粗生成物をシリカゲルクロマトグラフィー(クロロホルム/メタノール=10/1)で精製して、Boc-Cys(Trt)-Ala-[(R)-RFAA(C8)]-Phe-OMe(ジアステレオマーA)を得た(20.6μmol、収率74.6%)。 Tripeptide (H-Ala-[(R) -RFAA (C8)]-Phe-OMe (diastereomer A, 27.6 μmol), Boc-Cys (Trt) -OH in a 25 mL two-necked round bottom flask. (1.8 eq), flask (1.8 eq), and COMU (1.8 eq) were dissolved in 600 μL DCM and stirred. The reaction mixture was cooled to 0 ° C. and DIPEA (1.8 eq) was added. After the addition, the temperature was raised to room temperature and the mixture was stirred for 3.5 hours. Then, the reaction mixture was quenched with HCl (1N) and extracted 3 times with DCM. The combined organic phases were concentrated under reduced pressure and then with ethyl acetate. It was diluted and washed with HCl (1N), saturated aqueous sodium hydrogen carbonate, and saturated brine. The washed organic phase was dried over sodium sulfate, filtered, and then concentrated under reduced pressure to Boc-Cys (Trt) -Ala-RFAA. A crude product of (C8) -Phe-OMe was obtained. Subsequently, the crude product was purified by silica gel chromatography (chloroform / methanol = 10/1) to obtain Boc-Cys (Trt) -Ala-[(R). ) -RFAA (C8)]-Phe-OMe (diastereomer A) was obtained (20.6 μmol, yield 74.6%).
Boc-Cys(Trt)-Ala-[(R)-RFAA(C8)]-Phe-OMe(ジアステレオマーA)
H NMR(500MHz,ACETONE-D6) δ=8.18,7.86(br,2H),7.43-7.14(m,20H),6.09(br,1H),5.65-5.57(m,1H),4.77(t,1H),4.50-4.43(m,1H),4.00-3.92(m,1H),3.68(s,3H),3.20-3.00(m,2H),2.65-2.57(m,2H)1.41(s,9H),1.26(d,3H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(t,3F),-114.51(d,J=289Hz,1F),-118.48(d,J=293Hz,1F),-120.00~-122.60(m,10F),-125.88(s,2F)
Boc-Cys (Trt) -Ala-[(R) -RFAA (C8)]-Phe-OMe (Diastereomer A)
1 1 H NMR (500MHz, ACETONE-D6) δ = 8.18, 7.86 (br, 2H), 7.43-7.14 (m, 20H), 6.09 (br, 1H), 5.65 -5.57 (m, 1H), 4.77 (t, 1H), 4.50-4.43 (m, 1H), 4.00-3.92 (m, 1H), 3.68 (s) , 3H), 3.20-3.00 (m, 2H), 2.65-2.57 (m, 2H) 1.41 (s, 9H), 1.26 (d, 3H)
19 F NMR (470 MHz, ACETONE-D6) δ = -80.86 (t, 3F), -114.51 (d, J = 289 Hz, 1F), -118.48 (d, J = 293 Hz, 1F), -120.00 to -122.60 (m, 10F), -125.88 (s, 2F)
 合成したペプチドのN末端側の保護基を脱保護し、H-Cys(Trt)-Ala-RFAA(C8)-Phe-OMeを得た。 The protecting group on the N-terminal side of the synthesized peptide was deprotected to obtain H-Cys (Trt) -Ala-RFAA (C8) -Phe-OMe.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 25mL容の二口フラスコに撹拌子を入れ、Boc-Cys(Trt)-Ala-[(R)-RFAA(C8)]-Phe-OMe(ジアステレオマーA、20.2μmol)とDCM(3mL)を加えた。この反応混合物を0℃に冷却した後、トリイソプロピルシラン(53μL)とTFA(1mL)をDCM3mLに溶解したものを添加し、室温まで昇温した。3時間攪拌した後、炭酸水素ナトリウム水溶液を添加して反応を終了させた。水相をDCMで抽出し、合わせた有機相を減圧留去して、脱保護体H-Cys-Ala-RFAA(C8)-Phe-OMeの粗生成物を得た。粗生成物をシリカゲルクロマトグラフィー(クロロホルム/メタノール=20/1)で精製して、H-Cys-Ala-[(R)-RFAA(C8)]-Phe-OMe(ジアステレオマーA)を得た(13.4μmol、収率66.5%)。 Place the stir bar in a 25 mL two-necked flask and place Boc-Cys (Trt) -Ala-[(R) -RFAA (C8)] -Phe-OMe (diastereomer A, 20.2 μmol) and DCM (3 mL). Was added. After cooling this reaction mixture to 0 ° C., a solution of triisopropylsilane (53 μL) and TFA (1 mL) in 3 mL of DCM was added, and the temperature was raised to room temperature. After stirring for 3 hours, an aqueous sodium hydrogen carbonate solution was added to terminate the reaction. The aqueous phase was extracted with DCM and the combined organic phase was distilled off under reduced pressure to give a crude product of the deprotected H-Cys-Ala-RFAA (C8) -Phe-OMe. The crude product was purified by silica gel chromatography (chloroform / methanol = 20/1) to obtain H-Cys-Ala-[(R) -RFAA (C8)]-Phe-OMe (diastereomer A). (13.4 μmol, yield 66.5%).
H-Cys-Ala-[(R)-RFAA(C8)]-Phe-OMe(ジアステレオマーA)
H NMR(500MHz,ACETONE-D6) δ=8.34(d,1H),7.98-7.93(br,2H),7.28-7.18(m,5H),5.68-5.60(m,1H),4.80-4.75(m,1H),4.61-4.55(m,1H),4.30-4.22(m,1H),3.68(s,3H),3.36-3.15(m,2H),1.35(d,3H)
19F NMR(470MHz,ACETONE-D6) δ=-80.86(s,3F),-114.58(d,J=286Hz,1F),-118.99(d,J=281Hz,1F),-120.00~-122.46(m,10F),-125.89(s,2F)
H-Cys-Ala-[(R) -RFAA (C8)]-Phe-OMe (Diastereomer A)
1 1 H NMR (500 MHz, ACETONE-D6) δ = 8.34 (d, 1H), 7.98-7.93 (br, 2H), 7.28-7.18 (m, 5H), 5.68 -5.60 (m, 1H), 4.80-4.75 (m, 1H), 4.61-4.55 (m, 1H), 4.30-4.22 (m, 1H), 3 .68 (s, 3H), 3.36-3.15 (m, 2H), 1.35 (d, 3H)
19 F NMR (470 MHz, ACETONE-D6) δ = -80.86 (s, 3F), 114.58 (d, J = 286 Hz, 1F), -118.99 (d, J = 281 Hz, 1F), -120.00 to -122.46 (m, 10F), -125.89 (s, 2F)
 合成した脱保護後のペプチド(H-Cys-Ala-RFAA(C8)-Phe-OMe)の末端SH基に、蛍光物質Alexa Fluor 647を結合させた。 The fluorescent substance AlexaFluor 647 was bound to the terminal SH group of the synthesized peptide after deprotection (H-Cys-Ala-RFAA (C8) -Phe-OMe).
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 1.5mL容の黒色チューブに、PBS(リン酸生理食塩水 50μL)に溶解させたAlexa Fluor 647 C2マレイミド(500μg)、乾燥DMSO(50μL)に溶解させたH-Cys-Ala-RFAA(C8)-Phe-OMe(3.0当量)、乾燥DMSO(20μL)を加えた。混合物を室温で一晩撹拌し続けた。当該混合物を逆相クロマトグラフィー(アセトニトリル/水/TFA=25:75:0.1~99:1:0.1)で精製し、凍結乾燥して蛍光コンジュゲート4を青色固体として得た(蛍光計で計算して収率18.6% 色素基準)。なお、蛍光は、Nano Drop(登録商標)分光光度計ND-1000を用い、発光波長=650nmで測定した。 AlexaFluor 647 C2 maleimide (500 μg) dissolved in PBS (50 μL of phosphate saline) and H-Cys-Ala-RFAA (C8) dissolved in dried DMSO (50 μL) in a 1.5 mL black tube. -Phe-OMe (3.0 equivalents), dried DMSO (20 μL) was added. The mixture was continuously stirred at room temperature overnight. The mixture was purified by reverse phase chromatography (acetonitrile / water / TFA = 25: 75: 0.1 to 99: 1: 0.1) and lyophilized to give the fluorescent conjugate 4 as a blue solid (fluorescence). Yield 18.6% calculated by total (based on dye). The fluorescence was measured at a emission wavelength of 650 nm using a NanoDrop (registered trademark) spectrophotometer ND-1000.
MALDI-TOF MS
[M+3]:m/z calcd for C68771720-1809.6745,found1809.6536
MALDI-TOF MS
[M + 3] - : m / z calcd for C 68 H 77 F 17 N 8 O 20 S 5-1809.6745 , found1809.6536
[試験例1]
 実施例8で合成したペプチド蛍光コンジュゲート1(Alexa-Ala-[(R)-RFAA(C8)]-Phe-OMe、ジアステレオマーA)及びペプチド蛍光コンジュゲート2(Alexa-Ala-[(S)-RFAA(C8)]-Phe-OMe、ジアステレオマーB)、実施例19で合成したペプチド蛍光コンジュゲート3(Alexa-[(R)-RFAA(C6)]-Phe-OMe)、実施例6で合成したペプチド蛍光コンジュゲート5(Alexa-Ala-[(R)-RFAA(C4)]-Phe-OMe)、比較例3で合成したペプチド蛍光コンジュゲート6(Alexa-Ala-Nle-Phe-OMe)、並びに蛍光物質Alexa Fluor 647のジエチルアミド体(蛍光色素1)について、細胞内への取り込み効率を調べた。
[Test Example 1]
Peptide fluorescent conjugate 1 (Alexa-Ala-[(R) -RFAA (C8)]-Phe-OMe, diastereomeric A) and peptide fluorescent conjugate 2 (Alexa-Ala-[(S)) synthesized in Example 8 ) -RFAA (C8)]-Phe-OMe, Diasteromer B), Peptide Fluorescence Conjugate 3 (Exa-[(R) -RFAA (C6)]-Phe-OMe) synthesized in Example 19, Example. Peptide fluorescence conjugate 5 synthesized in 6 (Alexa-Ala-[(R) -RFAA (C4)]-Phe-OMe), peptide fluorescence conjugate 6 synthesized in Comparative Example 3 (Alexa-Ala-Nle-Phe-) The efficiency of intracellular uptake of OMe) and the diethylamide (fluorescent dye 1) of the fluorescent substance Alexa Fluor 647 was investigated.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
(サンプル溶液の調整)
・ 37℃ DMEM培地条件向け
 合成したペプチド蛍光コンジュゲート1、2、3、5、6、及び蛍光色素1のDMSO溶液を、濃度1.5μMになるようにDMEM低グルコース培養液を用いて希釈したものを、37℃試験用サンプル溶液とした。各サンプル溶液には、0.15%のDMSOが含まれるため、ブランク測定用には、0.15%のDMSOを含むDMEM低グルコース液体培地を使用した。 
(Preparation of sample solution)
The DMSO solutions of the synthesized peptide fluorescent conjugates 1, 2, 3, 5, 6 and fluorescent dye 1 for 37 ° C. DMEM medium conditions were diluted with DMEM low glucose culture medium to a concentration of 1.5 μM. This was used as a sample solution for testing at 37 ° C. Since each sample solution contains 0.15% DMSO, DMEM low glucose liquid medium containing 0.15% DMSO was used for blank measurement.
・ 4℃緩衝液条件向け
 合成したペプチド蛍光コンジュゲート1、2、3、及び蛍光色素1のDMSO溶液を、濃度1.5μMになるように25mM HEPES緩衝液を用いて希釈したものを、4℃試験用サンプル溶液とした。ブランク測定用には、0.15%のDMSOを含む25mM HEPES緩衝液を使用した。
-For 4 ° C buffer conditions A DMSO solution of the synthesized peptide fluorescent conjugates 1, 2, 3 and fluorescent dye 1 diluted with 25 mM HEPES buffer to a concentration of 1.5 μM was diluted at 4 ° C. It was used as a test sample solution. For blank measurements, 25 mM HEPES buffer containing 0.15% DMSO was used.
(細胞膜透過性の評価)
・ 37℃ DMEM培地条件における経時的変化
1.ペプチド蛍光コンジュゲート1、2、5、6及び蛍光色素1の比較
 37℃で24時間前培養したHeLa細胞の培地をペプチド蛍光コンジュゲート1、2、5、6、及び蛍光色素1のサンプル溶液に置換し、37℃で1時間、4時間、及び24時間培養した後の細胞膜透過性を評価した。各所定時間の培養後、PBS(リン酸生理食塩水)で細胞表面の洗浄を3回行い、Trypsin-EDTA 0.05%(Gibco社製)で細胞を剥がして回収した。回収した細胞を、フローサイトメトリー(guava easyCyte(商標)8)により、ペプチド蛍光コンジュゲートに導入している蛍光色素(Alexa Fluor647)を検出する赤色2蛍光(661/15nm)を測定して分析した。サンプル溶液中、37℃で1時間培養した細胞のフローサイトメトリーによる分析結果を図1に示した。縦軸が細胞数(count)、横軸が各細胞の蛍光強度である。また、各サンプルの平均蛍光強度を比較した結果を図2に示した。さらに37℃で1時間、4時間、24時間培養した細胞における平均蛍光強度を比較したものを図3に示した。なお各図中では、ペプチド蛍光コンジュゲートをPFCJ、蛍光色素をFDと表記して示した。
(Evaluation of cell membrane permeability)
-Changes over time in DMEM medium conditions at 37 ° C. 1. Comparison of Peptide Fluorescent Conjugates 1, 2, 5, 6 and Fluorescent Dye 1 A medium of HeLa cells precultured at 37 ° C. for 24 hours was used as a sample solution of peptide fluorescent conjugates 1, 2, 5, 6 and fluorescent dye 1. After substitution and culturing at 37 ° C. for 1 hour, 4 hours, and 24 hours, the cell membrane permeability was evaluated. After culturing for each predetermined time, the cell surface was washed 3 times with PBS (phosphate saline), and the cells were peeled off and collected with Trypin-EDTA 0.05% (manufactured by Gibco). The recovered cells were analyzed by measuring and analyzing red 2 fluorescence (661 / 15 nm) for detecting the fluorescent dye (Alexa Fluor 647) introduced into the peptide fluorescence conjugate by flow cytometry (guava easeCyte ™ 8). .. The results of flow cytometric analysis of cells cultured at 37 ° C. for 1 hour in the sample solution are shown in FIG. The vertical axis is the number of cells (count), and the horizontal axis is the fluorescence intensity of each cell. The results of comparing the average fluorescence intensities of each sample are shown in FIG. Further, FIG. 3 shows a comparison of average fluorescence intensities in cells cultured at 37 ° C. for 1 hour, 4 hours, and 24 hours. In each figure, the peptide fluorescent conjugate is referred to as PFCJ, and the fluorescent dye is referred to as FD.
2.ペプチド蛍光コンジュゲート1、2、3の比較
 ペプチド蛍光コンジュゲート1、2、3のサンプル溶液を用いた以外は前述と同様にしてフローサイトメトリーにより、赤色2蛍光(661/15nm)を測定して分析した。
 サンプル溶液中、37℃で1時間及び4時間培養した細胞のフローサイトメトリーによる分析結果を図4、図5に示した。各図中では、ペプチド蛍光コンジュゲートをPFCJ、蛍光色素をFDと表記して示した。
2. 2. Comparison of peptide fluorescence conjugates 1, 2 and 3 Red 2 fluorescence (661 / 15 nm) was measured by flow cytometry in the same manner as above except that the sample solutions of peptide fluorescence conjugates 1, 2 and 3 were used. analyzed.
The analysis results by flow cytometry of the cells cultured at 37 ° C. for 1 hour and 4 hours in the sample solution are shown in FIGS. 4 and 5. In each figure, the peptide fluorescent conjugate is shown as PFCJ, and the fluorescent dye is shown as FD.
・ 4℃緩衝液条件
 37℃で24時間前培養したHeLa細胞の培地を、予め4℃に冷やしておいた25mM HEPES緩衝液で置換し、4℃で1時間培養した後、さらに4℃試験用サンプル溶液で置換し、4℃で40分間培養した。培養後の細胞を、37℃の条件で実施した手順と同じ手順にてフローサイトメトリーによる分析を、サンプルの温度が上昇しない条件で行った。その結果を図6に示した。
・ 4 ° C buffer condition The medium of HeLa cells pre-cultured at 37 ° C for 24 hours was replaced with 25 mM HEPES buffer previously cooled to 4 ° C, cultured at 4 ° C for 1 hour, and then further tested at 4 ° C. It was replaced with a sample solution and cultured at 4 ° C. for 40 minutes. The cultured cells were analyzed by flow cytometry in the same procedure as that performed under the condition of 37 ° C. under the condition that the temperature of the sample did not rise. The results are shown in FIG.
 図1に示すように、37℃、1時間のインキュベート後の細胞のAlexa Fluor 647の蛍光強度について、側鎖にフッ素原子を含まないペプチド蛍光コンジュゲート6で処理した細胞は、蛍光色素1で処理した細胞とほぼ同程度であったのに対して、側鎖にフッ素原子を含むペプチド蛍光コンジュゲート1、2及び5で処理した細胞では、いずれも蛍光色素1やペプチド蛍光コンジュゲート6で処理した細胞よりも高かった。図2に示すように、細胞のAlexa Fluor 647の蛍光強度の平均値は、ペプチド蛍光コンジュゲート6や蛍光色素1で処理した細胞と比較して、ペプチド蛍光コンジュゲート1で処理した細胞はおよそ9倍以上、ペプチド蛍光コンジュゲート2で処理した細胞は30倍以上、ペプチド蛍光コンジュゲート5で処理した細胞でも2倍以上高かった。これらの結果から、側鎖にフルオロアルキル基を有するペプチドは、フルオロアルキル基を有さないペプチドや蛍光色素と比較して、細胞内への取り込み効率が高く、細胞膜透過性に優れることがわかった。 As shown in FIG. 1, regarding the fluorescence intensity of AlexaFluor 647 of cells after incubation at 37 ° C. for 1 hour, cells treated with a peptide fluorescent conjugate 6 containing no fluorine atom in the side chain were treated with fluorescent dye 1. The cells treated with the peptide fluorescent conjugates 1, 2 and 5 containing a fluorine atom in the side chain were all treated with the fluorescent dye 1 or the peptide fluorescent conjugate 6 while the cells were treated with the fluorescent dye 1 or the peptide fluorescent conjugate 6. It was higher than the cells. As shown in FIG. 2, the average value of the fluorescence intensity of Alexa Fluor 647 of the cells is about 9 for the cells treated with the peptide fluorescence conjugate 1 as compared with the cells treated with the peptide fluorescence conjugate 6 or the fluorescent dye 1. The cells treated with the peptide fluorescence conjugate 2 were more than twice as high, and the cells treated with the peptide fluorescence conjugate 5 were more than twice as high. From these results, it was found that peptides having a fluoroalkyl group in the side chain have higher intracellular uptake efficiency and excellent cell membrane permeability as compared with peptides and fluorescent dyes having no fluoroalkyl group. ..
 特に、側鎖の炭素数及びフッ素原子数の多いペプチド蛍光コンジュゲート1、2は、側鎖の炭素数及びフッ素原子数が比較的少ないペプチド蛍光コンジュゲート5よりもより細胞膜透過性が高く、細胞に効率よく取り込まれた。細胞のAlexa Fluor 647の蛍光強度の平均値は、ペプチド蛍光コンジュゲート5で処理した細胞と比較しても、ペプチド蛍光コンジュゲート1で処理した細胞でおよそ4倍程度、ペプチド蛍光コンジュゲート2で処理した細胞でおよそ14倍程度高かった。すなわち、ヘプタデカフルオロオクチル基を有するペプチド蛍光コンジュゲート1及び2は、ノナフルオロブチル基を有するペプチド蛍光コンジュゲート5よりも、細胞膜透過性に優れていた。
 更には、ペプチド蛍光コンジュゲート1と2の結果を比較することにより、含フッ素アミノ酸(RFAA(C8))に存在する不斉点の立体配置により細胞膜透過性が変化することもわかった。
In particular, peptide fluorescent conjugates 1 and 2 having a large number of carbon atoms and fluorine atoms in the side chain have higher cell membrane permeability than peptide fluorescent conjugate 5 having a relatively small number of carbon atoms and fluorine atoms in the side chain, and are cells. Was taken in efficiently. The average value of the fluorescence intensity of Alexa Fluor 647 of the cells was about 4 times that of the cells treated with the peptide fluorescence conjugate 5 as compared with the cells treated with the peptide fluorescence conjugate 5, and the cells treated with the peptide fluorescence conjugate 2 were treated with the peptide fluorescence conjugate 2. It was about 14 times higher in the cells. That is, the peptide fluorescent conjugates 1 and 2 having a heptadecafluorooctyl group were superior in cell membrane permeability to the peptide fluorescent conjugate 5 having a nonafluorobutyl group.
Furthermore, by comparing the results of peptide fluorescence conjugates 1 and 2, it was also found that the cell membrane permeability changes depending on the configuration of the asymmetric points present in the fluorine-containing amino acid (RFAA (C8)).
 また、図3の結果でも、図2の結果と同様に、側鎖にフッ素原子を含むペプチド蛍光コンジュゲート1、2及び5で処理した細胞のAlexa Fluor 647の蛍光強度の平均値は、側鎖にフッ素原子を含まないペプチド蛍光コンジュゲート6や蛍光色素1で処理した細胞よりも高かった。図3の結果から、いずれのペプチド蛍光コンジュゲートで処理した細胞でも、蛍光を発する細胞の割合が経時的に増加しており、37℃の試験条件では、細胞に取り込まれるペプチド蛍光コンジュゲートの量が経時的に増加することも確認された。 Further, also in the result of FIG. 3, similarly to the result of FIG. 2, the average value of the fluorescence intensity of AlexaFluor 647 of the cells treated with the peptide fluorescence conjugates 1, 2 and 5 containing a fluorine atom in the side chain is the side chain. It was higher than the cells treated with the peptide fluorescent conjugate 6 or the fluorescent dye 1 containing no fluorine atom. From the results shown in FIG. 3, the proportion of cells that emit fluorescence increased over time in the cells treated with any of the peptide fluorescent conjugates, and the amount of peptide fluorescent conjugates taken up by the cells under the test conditions of 37 ° C. Was also confirmed to increase over time.
 図4に示すように、側鎖の炭素数は同じであるがフッ素原子数が少ないペプチド蛍光コンジュゲート3では、37℃1時間後ではペプチド蛍光コンジュゲート1と同等以上の細胞膜透過性を、また、図5に示すように、4時間後ではペプチド蛍光コンジュゲート2に近い細胞膜透過性を示した。このことから側鎖の炭素数を合わせることにより、フッ素原子数を減らしても同等以上の細胞膜透過性が得られることがわかった。 As shown in FIG. 4, the peptide fluorescent conjugate 3 having the same side chain carbon number but a small number of fluorine atoms has a cell membrane permeability equal to or higher than that of the peptide fluorescent conjugate 1 after 1 hour at 37 ° C. As shown in FIG. 5, after 4 hours, the cell membrane permeability was close to that of the peptide fluorescent conjugate 2. From this, it was found that by adjusting the number of carbon atoms in the side chain, the same or higher cell membrane permeability can be obtained even if the number of fluorine atoms is reduced.
 図6に示すように、4℃、40分間のインキュベート後の細胞においても、側鎖にフッ素原子を含むペプチド蛍光コンジュゲート1~3で処理した細胞のAlexa Fluor 647の蛍光強度及びその平均値は、蛍光色素1で処理した細胞よりも明らかに高く、これらのペプチドが4℃でも細胞内に効率よく取り込まれることが確認された。4℃の条件では、細胞外から細胞内への能動輸送が停止し、受動輸送のみになることから、フルオロアルキル基を有するペプチドは、受動輸送と能動輸送の両方において細胞透過性を高めるという優れた性質を持つことがわかった。 As shown in FIG. 6, even in the cells after incubation at 4 ° C. for 40 minutes, the fluorescence intensity and the average value of AlexaFluor 647 of the cells treated with peptide fluorescent conjugates 1 to 3 containing a fluorine atom in the side chain are shown. , It was clearly higher than the cells treated with the fluorescent dye 1, and it was confirmed that these peptides were efficiently taken up into the cells even at 4 ° C. Since active transport from the outside of the cell to the inside of the cell is stopped and only passive transport is performed under the condition of 4 ° C., the peptide having a fluoroalkyl group is excellent in that it enhances cell permeability in both passive transport and active transport. It turned out to have the property.
[試験例2]
 実施例21で合成したペプチド蛍光コンジュゲート4(Alexa-Cys-Ala-RFAA(C8)-Phe-OMe)及びペプチド蛍光コンジュゲート1(Alexa-Ala-[(R)-RFAA(C8)]-Phe-OMe、ジアステレオマーA)と蛍光物質Alexa Fluoro 647のジエチルアミド体(蛍光色素1)とについて、細胞内への取り込み効率を調べた。試験例1と同様の方法にてサンプル溶液を調整し、サンプル溶液中、37℃で1時間、4時間、24時間培養した細胞のフローサイトメトリーによる分析を行い、平均蛍光強度を比較した。
[Test Example 2]
The peptide fluorescent conjugate 4 (Alexa-Cys-Ala-RFAA (C8) -Phe-OMe) and the peptide fluorescent conjugate 1 (Alexa-Ala-[(R) -RFAA (C8)]-Phe synthesized in Example 21). -OMe, diastereomer A) and the diethylamide form (fluorescent dye 1) of the fluorescent substance Alexa Fluoro 647 were examined for their uptake efficiency into cells. The sample solution was prepared in the same manner as in Test Example 1, and the cells cultured at 37 ° C. for 1 hour, 4 hours, and 24 hours were analyzed by flow cytometry, and the average fluorescence intensity was compared.
 37℃、1時間、4時間、24時間のインキュベート後の細胞のAlexa Fluor 647の平均蛍光強度は、側鎖にフッ素原子を含むペプチド蛍光コンジュゲート1及び4で処理した細胞では、いずれも蛍光色素1処理した細胞よりも高かった。また、同じ含フッ素アルキル基を有するテトラペプチド由来のペプチド蛍光コンジュゲート4とトリペプチド由来のペプチド蛍光コンジュゲート1との比較では、1時間、4時間、24時間のいずれの結果でも、ペプチド蛍光コンジュゲート4の方が、平均蛍光強度は高かった。このことから、炭素原子数・フッ素原子数が同じ含フッ素アルキル基を側鎖にもつペプチドでは、結合するアミノ酸数が多くなるほど細胞膜透過性が向上する傾向があることがわかった。 The average fluorescence intensity of Alexa Fluor 647 of cells after incubation at 37 ° C. for 1 hour, 4 hours, and 24 hours was a fluorescent dye in cells treated with peptide fluorescent conjugates 1 and 4 containing a fluorine atom in the side chain. It was higher than 1 treated cells. Further, in comparison between the peptide fluorescence conjugate 4 derived from the tetrapeptide having the same fluorine-containing alkyl group and the peptide fluorescence conjugate 1 derived from the tripeptide, the peptide fluorescence conjugate was obtained at any of 1 hour, 4 hours and 24 hours. Gate 4 had a higher average fluorescence intensity. From this, it was found that in peptides having a fluorine-containing alkyl group having the same number of carbon atoms and fluorine atoms in the side chain, the cell membrane permeability tends to improve as the number of bound amino acids increases.
[実施例22]
 トリデカフルオロヘキシル基を有するトリペプチド(H-Ala-[(R)-RFAA(C6)]-Phe-OMe)を合成した。
[Example 22]
A tripeptide having a tridecafluorohexyl group (H-Ala-[(R) -RFAA (C6)]-Phe-OMe) was synthesized.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 実施例19で合成したH-[(R)-RFAA(C6)]-Phe-OMe(ジアステレオマーA、23mg)を用いて、実施例8と同様にしてBoc-Ala-OHと縮合させ、N末端側の保護基を脱保護することにより、実施例18で得たものと同じH-Ala-[(R)-RFAA(C6)]-Phe-OMe(9mg、収率41%)を得た(2step収率)。 Using H-[(R) -RFAA (C6)]-Phe-OMe (diastereomer A, 23 mg) synthesized in Example 19, it was condensed with Boc-Ala-OH in the same manner as in Example 8. By deprotecting the protecting group on the N-terminal side, the same H-Ala-[(R) -RFAA (C6)]-Phe-OMe (9 mg, 41% yield) as that obtained in Example 18 was obtained. (2step yield).
Boc-Ala-[(R)-RFAA(C6)]-Phe-OMe(ジアステレオマーA)
H NMR(500MHz,CHLOROFORM-D) δ=7.30-7.09(m,5H),6.87(br,1H),6.55(br,1H)4.93(br,1H),4.85(m,1H),4.09(m,1H),3.73(s,3H),3.15-3.09(m,2H),2.18-1.89(m,4H)1.43(s,9H)1.30(d,3H)
19F NMR(470MHz,ACETONE-D6) δ=-80.68(s,3F),-114.16(s,2F),-121.87~-123.11(m,6F),-126.06(s,2F)
Boc-Ala-[(R) -RFAA (C6)]-Phe-OMe (Diastereomer A)
1 1 H NMR (500 MHz, CHLOROFORM-D) δ = 7.30-7.09 (m, 5H), 6.87 (br, 1H), 6.55 (br, 1H) 4.93 (br, 1H) , 4.85 (m, 1H), 4.09 (m, 1H), 3.73 (s, 3H), 3.15-3.09 (m, 2H), 2.18-1.89 (m) , 4H) 1.43 (s, 9H) 1.30 (d, 3H)
19 F NMR (470 MHz, ACETONE-D6) δ = -80.68 (s, 3F), -114.16 (s, 2F), -121.87 to -123.11 (m, 6F), -126. 06 (s, 2F)
H-Ala-[(R)-RFAA(C6)]-Phe-OMe(ジアステレオマーA)
1H-NMR(500 MHz,CHLOROFORM-D)7.07-7.43 (m, 5H), 4.81-4.89 (m, 1H), 4.28 (m,1H), 3.72(s,3H),3.41-3.35(m1H),3.17(dd,J=14.0,5.4 Hz,1H),3.07(J=14.0,5.4 Hz,1H),2.28-2.09(m,2H), 2.05-1.93(m,2H),1.32-1.28(m,3H)
19F NMR(470MHz,CHLOROFORM-D) δ=-80.68(s,3F),-114.31(s,2F),-121.58(s,2F),-120.40~-123.26(m,4F),-126.06(s,2F)
H-Ala-[(R) -RFAA (C6)]-Phe-OMe (Diastereomer A)
1H-NMR (500 MHz, CHLOROFORM-D) 7.07-7.43 (m, 5H), 4.81-4.89 (m, 1H), 4.28 (m, 1H), 3.72 ( s, 3H), 3.41-3.35 (m1H), 3.17 (dd, J = 14.0, 5.4 Hz, 1H), 3.07 (J = 14.0, 5.4 Hz) , 1H), 2.28-2.09 (m, 2H), 2.05-1.93 (m, 2H), 1.32-1.28 (m, 3H)
19 F NMR (470 MHz, CHLOROFORM-D) δ = -80.68 (s, 3F), -114.31 (s, 2F), -121.58 (s, 2F), -120.40 to -123. 26 (m, 4F), -126.06 (s, 2F)
 続いて、合成した脱保護後のペプチド(H-Ala-[(R)-RFAA(C6)]-Phe-OMe、ジアステレオマーA)のN末端に、蛍光物質Alexa Fluor 647を結合させた。 Subsequently, the fluorescent substance AlexaFluor 647 was bound to the N-terminal of the synthesized deprotected peptide (H-Ala-[(R) -RFAA (C6)]-Phe-OMe, diastereomer A).
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 Alexa Fluor 647 NHSエステル(250μg)を用いて、実施例8と同様にして、ペプチド蛍光コンジュゲート7を青色固体として得た(蛍光計で計算して収率40% 色素基準)。 Using Alexa Fluor 647 NHS ester (250 μg), the peptide fluorescent conjugate 7 was obtained as a blue solid in the same manner as in Example 8 (calculated by a fluorometer, yield 40% based on the dye).
MALDI-TOF MS
[M+4]:m/z calcd for C60701317+:1493.34,found:1494.28
MALDI-TOF MS
[M + 4] + : m / z calcd for C 60 H 70 F 13 N 4 O 17 S 4 +: 1493.34, found: 1494.28
[試験例3]
 実施例22で合成したペプチド蛍光コンジュゲート7(Alexa-Ala-[(R)-RFAA(C6)]-Phe-OMe)と、実施例8で合成したペプチド蛍光コンジュゲート1(Alexa-Ala-[(R)-RFAA(C8)]-Phe-OMe、ジアステレオマーA)及びペプチド蛍光コンジュゲート2(Alexa-Ala-[(S)-RFAA(C8)]-Phe-OMe、ジアステレオマーB)と、実施例6で合成したペプチド蛍光コンジュゲート5(Alexa-Ala-[(R)-RFAA(C4)]-Phe-OMe)と、比較例3で合成したペプチド蛍光コンジュゲート6(Alexa-Ala-Nle-Phe-OMe)と、蛍光物質Alexa Fluoro 647のジエチルアミド体(蛍光色素1)とについて、細胞内への取り込み効率を調べた。
[Test Example 3]
The peptide fluorescence conjugate 7 (Alexa-Ala-[(R) -RFAA (C6)]-Phe-OMe) synthesized in Example 22 and the peptide fluorescence conjugate 1 (Alexa-Ala- [] synthesized in Example 8). (R) -RFAA (C8)]-Phe-OMe, diastereomers A) and peptide fluorescence conjugate 2 (Alexa-Ala-[(S) -RFAA (C8)]-Phe-OMe, diastereomers B) And the peptide fluorescence conjugate 5 (Alexa-Ala-[(R) -RFAA (C4)]-Phe-OMe) synthesized in Example 6 and the peptide fluorescence conjugate 6 (Alexa-Ala) synthesized in Comparative Example 3. -Nle-Phe-OMe) and the diethylamide form (fluorescent dye 1) of the fluorescent substance Alexa Fluoro 647 were examined for their uptake efficiency into cells.
 試験例1と同様の方法にてサンプル溶液を調整し、サンプル溶液中、37℃で1時間培養した細胞のフローサイトメトリーによる分析結果を図7に示した。また、各サンプルの平均蛍光強度を比較した結果を図8に示した。 The sample solution was prepared in the same manner as in Test Example 1, and the analysis results by flow cytometry of cells cultured at 37 ° C. for 1 hour in the sample solution are shown in FIG. In addition, the result of comparing the average fluorescence intensity of each sample is shown in FIG.
 37℃、1時間のインキュベート後の細胞のAlexa Fluor 647の平均蛍光強度は、側鎖にフッ素原子を含むペプチド蛍光コンジュゲート1、2、5、及び7で処理した細胞ではいずれも、蛍光色素1や側鎖にフッ素原子を含まないペプチド蛍光コンジュゲート6で処理した細胞よりも高かった。側鎖の炭素数で同じであり、かつ側鎖にフッ素原子を含むペプチド蛍光コンジュゲート1、2、7の比較では、ペプチド蛍光コンジュゲート2、7、1の順で平均蛍光強度が高かった。 The average fluorescence intensity of Alexa Fluor 647 of cells after incubation at 37 ° C. for 1 hour was 1 for fluorescent dye 1 in all cells treated with peptide fluorescent conjugates 1, 2, 5, and 7 containing a fluorine atom in the side chain. It was higher than the cells treated with the peptide fluorescent conjugate 6 containing no fluorine atom in the side chain. In the comparison of peptide fluorescence conjugates 1, 2, and 7 having the same number of carbon atoms in the side chain and containing a fluorine atom in the side chain, the average fluorescence intensity was higher in the order of peptide fluorescence conjugates 2, 7, and 1.
 本発明は、フルオロアルキル基を側鎖に備えるアミノ酸残基を有するペプチドを提供する。本発明に係るペプチドは、細胞膜透過性に優れているため、例えば、薬効成分を標的細胞へ導入するためのキャリア等、生理活性物質として、医薬分野での利用が期待される。 The present invention provides a peptide having an amino acid residue having a fluoroalkyl group in the side chain. Since the peptide according to the present invention has excellent cell membrane permeability, it is expected to be used in the pharmaceutical field as a physiologically active substance such as a carrier for introducing a medicinal ingredient into a target cell.

Claims (5)

  1.  2個以上のアミノ酸がペプチド結合したペプチドであって、
     当該ペプチドを構成するアミノ酸残基の少なくとも1個が、側鎖に、少なくとも2個のフッ素原子で置換されたC1-30アルキル基、又は、少なくとも2個のフッ素原子で置換されたC2-30アルキル基の炭素原子間に1~5個のエーテル結合性の酸素原子を有する基を有している、ペプチド。
    A peptide in which two or more amino acids are peptide-bonded,
    At least one of the amino acid residues constituting the peptide is C 1-30 alkyl group substituted with at least two fluorine atoms in the side chain, or C 2- replaced with at least two fluorine atoms. A peptide having a group having 1 to 5 ether-bonding oxygen atoms between carbon atoms of a 30 alkyl group.
  2.  前記少なくとも2個のフッ素原子で置換されたC1-30アルキル基又は少なくとも2個のフッ素原子で置換されたC2-30アルキル基の炭素原子間に1~5個のエーテル結合性の酸素原子を有する基が、フッ素原子以外のハロゲン原子でさらに置換されていてもよい、請求項1に記載のペプチド。 1 to 5 ether-bonded oxygen atoms between the carbon atoms of the C 1-30 alkyl group substituted with at least two fluorine atoms or the C 2-30 alkyl group substituted with at least two fluorine atoms. The peptide according to claim 1, wherein the group having is further substituted with a halogen atom other than the fluorine atom.
  3.  前記少なくとも2個のフッ素原子で置換されたC1-30アルキル基又は少なくとも2個のフッ素原子で置換されたC2-30アルキル基の炭素原子間に1~5個のエーテル結合性の酸素原子を有する基を有する側鎖が、下記一般式(f-1)又は(f-2)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rfは、少なくとも2個以上のフッ素原子を含む完全ハロゲン化C1-10アルキル基、又は少なくとも2個以上のフッ素原子を含む完全ハロゲン化C2-10アルキル基の炭素原子間に1~5個のエーテル結合性の酸素原子を有する基を表し、n1は、0~10の整数であり、n2は、0~9の整数であり、黒丸は結合手を意味する)
    で表される基である、請求項1又は2に記載のペプチド。
    1 to 5 ether-bonded oxygen atoms between the carbon atoms of the C 1-30 alkyl group substituted with at least two fluorine atoms or the C 2-30 alkyl group substituted with at least two fluorine atoms. The side chain having a group having the following general formula (f-1) or (f-2)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, Rf P is between carbon atoms of a fully halogenated C 1-10 alkyl group containing at least two or more fluorine atoms or a fully halogenated C 2-10 alkyl group containing at least two or more fluorine atoms. Represents a group having 1 to 5 ether-bonding oxygen atoms, n1 is an integer of 0 to 10, n2 is an integer of 0 to 9, and a black circle means a bond).
    The peptide according to claim 1 or 2, which is a group represented by.
  4.  C末端又はN末端が保護基で保護されていてもよい、請求項1~3のいずれか一項に記載のペプチド。 The peptide according to any one of claims 1 to 3, wherein the C-terminal or N-terminal may be protected with a protecting group.
  5.  細胞膜透過性である、請求項1~4のいずれか一項に記載のペプチド。 The peptide according to any one of claims 1 to 4, which is cell membrane permeable.
PCT/JP2022/000144 2021-01-06 2022-01-05 Peptide WO2022149584A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021001145A JP2024020674A (en) 2021-01-06 2021-01-06 peptide
JP2021-001145 2021-01-06

Publications (1)

Publication Number Publication Date
WO2022149584A1 true WO2022149584A1 (en) 2022-07-14

Family

ID=82357769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000144 WO2022149584A1 (en) 2021-01-06 2022-01-05 Peptide

Country Status (2)

Country Link
JP (1) JP2024020674A (en)
WO (1) WO2022149584A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504736A (en) * 1996-02-23 2000-04-18 シェリング アクチェンゲゼルシャフト Pharmaceuticals containing perfluoroalkyl-containing metal complexes and their application to cancer treatment and therapeutic radiology
CN104447951A (en) * 2014-11-18 2015-03-25 上海应用技术学院 Insect allatotropin antagonist and application thereof
JP2020529427A (en) * 2017-08-04 2020-10-08 バイスクルテクス・リミテッド Bicyclic peptide ligand specific for CD137
WO2021002408A1 (en) * 2019-07-02 2021-01-07 Agc株式会社 Peptide and method for manufacturing same
WO2021177336A1 (en) * 2020-03-04 2021-09-10 Agc株式会社 Peptide and cell membrane permeation agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504736A (en) * 1996-02-23 2000-04-18 シェリング アクチェンゲゼルシャフト Pharmaceuticals containing perfluoroalkyl-containing metal complexes and their application to cancer treatment and therapeutic radiology
CN104447951A (en) * 2014-11-18 2015-03-25 上海应用技术学院 Insect allatotropin antagonist and application thereof
JP2020529427A (en) * 2017-08-04 2020-10-08 バイスクルテクス・リミテッド Bicyclic peptide ligand specific for CD137
WO2021002408A1 (en) * 2019-07-02 2021-01-07 Agc株式会社 Peptide and method for manufacturing same
WO2021177336A1 (en) * 2020-03-04 2021-09-10 Agc株式会社 Peptide and cell membrane permeation agent

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
DATABASE REGISTRY 30 January 2018 (2018-01-30), ANONYMOUS : "INDEX NAME NOT YET ASSIGNED", XP055949825, retrieved from STN Database accession no. 2171539-93-6 *
DATABASE REGISTRY 31 January 2018 (2018-01-31), ANONYMOUS : "INDEX NAME NOT YET ASSIGNED ", XP055949821, retrieved from STN Database accession no. 2171681-52-8 *
DATABASE REGISTRY 31 January 2018 (2018-01-31), ANONYMOUS : "INDEX NAME NOT YET ASSIGNED ", XP055949823, retrieved from STN Database accession no. 2171647-18-8 *
GUO YONG, FUJIWARA KANA, UNEYAMA KENJI: "A Novel Route to Dipeptides via Noncondensation of Amino Acids: 2-Aminoperfluoropropene as a Synthon for Trifluoroalanine Dipeptides", ORGANIC LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 8, no. 5, 2 March 2006 (2006-03-02), US , pages 827 - 829, XP055949813, ISSN: 1523-7060, DOI: 10.1021/ol0526726 *
MUTHAS, DANIEL; LEK, PER M.; NURBO, JOHANNA; KARLEN, ANDERS; LUNDSTEDT, TORBJOERN: "Focused hierarchical design of peptide libraries-follow the lead", JOURNAL OF CHEMOMETRICS, WILEY, NEW YORK, NY, US, vol. 21, no. 10-11, 1 October 2007 (2007-10-01), US , pages 486 - 495, XP009120014, ISSN: 1099-128X, DOI: 10.1002/cem.1069 *
ONO TAKAHIRO, AIKAWA KOHSUKE, OKAZOE TAKASHI, MORIMOTO JUMPEI, SANDO SHINSUKE: "Methyl to trifluoromethyl substitution as a strategy to increase the membrane permeability of short peptides", ORGANIC & BIOMOLECULAR CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, vol. 19, no. 43, 10 November 2021 (2021-11-10), pages 9386 - 9389, XP055949826, ISSN: 1477-0520, DOI: 10.1039/D1OB01565F *
PELZER H, REUTER W: "INHIBITION OF PEPTIDOGLYCAN SYNTHESIS IN ETHER-PERMEABILIZED ESCHERICHIA COLI CELLS BY STRUCTURAL ANALOGS OF D-ANALYL-D-ALANINE", ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 18, no. 06, 1 December 1980 (1980-12-01), US , pages 887 - 892, XP009054946, ISSN: 0066-4804 *
SHUNKI MIKAMI , KOSUKE AIKAWA, JUNPEI MORIMOTO, SHINSUKE SHANDONG, KYOKO NOZAKI,TAKASHI: "Synthesis of novel fluorine-containing amino acids and application to cell membrane permeable peptides", LECTURE ABSTRACTS OF THE 42ND FLUORINE CONFERENCE OF JAPAN; NOVEMBER 21-22, 2019, SOCIETY OF FLUORINE CHEMISTRY, vol. 42, 21 November 2019 (2019-11-21) - 22 November 2019 (2019-11-22), JP, pages 142 - 143, XP009532711, ISSN: 2436-0260 *
TOSHIKI MIKAMI, KOSUKE AIKAWA, JUMPEI MORIMOTO, SHINSUKE SANDO, KYOKO NOZAKI, TAKASHI OKAZOE: "P-151 Development of fluorine-containing, cell-penetrating peptide", PEPTIDE SCIENCE 2019 : PROCEEDINGS OF THE 56TH JAPANESE PEPTIDE SYMPOSIUM; OCTOBER 23-25, 2019, vol. 56, 1 January 2019 (2019-01-01) - 25 October 2019 (2019-10-25), pages 159, XP009538411 *
WEYGAND FRIEDRICH, ET AL. : "Fluorinated amino acids. V. Reactions of 3,3,3-trifluoroalanine and its use for peptide syntheses", CHEMISCHE BERICHTE, vol. 103, no. 6, 1 January 1970 (1970-01-01), pages 1655 - 1663, XP055949816, DOI: 10.1002/cber.19701030602 *

Also Published As

Publication number Publication date
JP2024020674A (en) 2024-02-15

Similar Documents

Publication Publication Date Title
Capone et al. Electrophilic S‐Trifluoromethylation of Cysteine Side Chains in α‐and β‐Peptides: Isolation of Trifluoro‐methylated Sandostatin®(Octreotide) Derivatives
WO2021002408A1 (en) Peptide and method for manufacturing same
JP2015518821A (en) Lysine-glutamic acid dipeptide derivative
US9278997B2 (en) Processes for the manufacture of macrocyclic depsipeptides and new intermediates
US8987413B2 (en) Aldehyde acetal based processes for the manufacture of macrocyclic depsipeptides and new intermediates
Vivet et al. Synthesis of silaproline, a new proline surrogate
WO2021177336A1 (en) Peptide and cell membrane permeation agent
WO2022149584A1 (en) Peptide
EP3625243B1 (en) Tailored cyclodepsipeptides as potent non-covalent serine protease inhibitors
KR101493554B1 (en) Indolesulfonyl protecting groups for protection of guanidino and amino groups
JP2021130656A (en) Peptide synthesis
US5478809A (en) TAN-1511, its derivatives, production and use thereof
CN109517032B (en) Tetrapeptide compound and preparation method and application thereof
US8981049B2 (en) Aziridine mediated native chemical ligation
Lange et al. Efficient Synthesis of Differentially Protected (S, S)‐2, 7‐Diaminooctanedioic Acid, the Dicarba Analogue of Cystine
WO2023048236A1 (en) Peptide
WO2024090491A1 (en) Cell-membrane-permeable peptide for conjugation
CA2779949A1 (en) Peptidomimetics comprising n-amino cyclic urea residues and uses thereof
JP7302847B2 (en) Novel fluorodinitrophenyl compound and use thereof
JP5097104B2 (en) New isodipeptide
FR2864830A1 (en) Solid-phase synthesis of peptides, useful as labeled protease substrates or therapeutic inhibitors of nitric oxide synthase, includes reaction of an amino acid isothiocyanate with amino-resin
Balducci et al. Stereoselective synthesis of a new chiral synthon: a cyclic pseudodipeptide containing an aspartic acid derivative and l-valine
SONTISIRI et al. Design, syntheses and anti-multidrug resistant bacteria analyses of derived lugdunin cyclic peptide
Deniau et al. Preparation of N‐Fmoc‐Protected (S)‐5‐Amino‐4, 4‐difluoro‐7‐methyloctanoic Acid, a Possible Dipeptide Isostere
KR20210102200A (en) Synthesis of (S)-6-hydroxytryptophan and its derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22736752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP