WO2021177336A1 - Peptide and cell membrane permeation agent - Google Patents

Peptide and cell membrane permeation agent Download PDF

Info

Publication number
WO2021177336A1
WO2021177336A1 PCT/JP2021/008075 JP2021008075W WO2021177336A1 WO 2021177336 A1 WO2021177336 A1 WO 2021177336A1 JP 2021008075 W JP2021008075 W JP 2021008075W WO 2021177336 A1 WO2021177336 A1 WO 2021177336A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
peptide
substituent
compound
solution
Prior art date
Application number
PCT/JP2021/008075
Other languages
French (fr)
Japanese (ja)
Inventor
淳平 森本
信介 山東
高広 小野
光介 相川
岡添 隆
Original Assignee
Agc株式会社
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社, 国立大学法人東京大学 filed Critical Agc株式会社
Publication of WO2021177336A1 publication Critical patent/WO2021177336A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/05Dipeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06078Dipeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to peptides containing amino acid residues in which a fluorine atom has been introduced into the side chain.
  • the present application claims priority based on Japanese Patent Application No. 2020-037194 filed in Japan on March 4, 2020 and Japanese Patent Application No. 2020-185438 filed in Japan on November 5, 2020. The contents are used here.
  • Antibody drugs, peptide drugs, nucleic acid drugs, etc. have the advantages of high specificity for target molecules and few side effects. However, all of them have a problem that it is difficult to reach the target molecule existing in the cell. Various methods are being studied to solve this problem. Among them, cell-penetrating peptides (CPP) are promising.
  • CPP cell-penetrating peptides
  • Typical examples of the CPP include a peptide derived from the TAT protein of the HIV virus (Patent Document 1) and a peptide having a polyArg sequence (Patent Document 2). This can be combined with a medicinal peptide to transport the medicinal peptide into cells (for example, Patent Document 3 and Non-Patent Document 1).
  • Non-Patent Document 2 Fluorine-containing amino acids and peptides containing them are expected to be used in the pharmaceutical field as physiologically active substances.
  • Non-Patent Document 4 It is known that a compound having a polyfluoro structure is stable and low in toxicity in vivo, and is excellent in intracellular uptake and escape from endosomes. It has been reported that a peptide dendrimer using lysine in which a side chain amino group is perfluoroacylated can be used for gene delivery by utilizing this property (Non-Patent Document 5). However, since it is a dendrimer, it cannot form a hybrid that is bound to a medicinal active peptide, nucleic acid, or protein that is an antibody drug like CPP.
  • An object of the present invention is to provide a peptide containing an amino acid residue in which a fluorine atom is introduced into a side chain.
  • the present inventors have prepared a peptide containing an amino acid residue in which a fluorine atom is introduced into a side chain, and a partial structure containing the fluorine atom in the side chain constitutes a hydrogen bond in the molecule together with -NH in the peptide bond.
  • the peptide was found to have excellent cell membrane permeability, and the present invention was completed.
  • the present invention is as follows. [1] A peptide in which two or more amino acids are peptide-bonded. At least one of the amino acid residues constituting the peptide is placed in the side chain in the following general formulas (g-1) to (g-3).
  • R 1 and R 2 may have a hydrogen atom, a halogen atom, a carboxy group, a C 6-14 aryl group, and a substituent, which may have a substituent, independently of each other. It is a C 5-14 heteroaryl group or an amino group which may have a substituent; R 3 to R 6 may have a hydrogen atom, a halogen atom and a substituent independently of each other. It has a C 1-30 alkyl group (the C 1-30 alkyl group may have an ether-bonding oxygen atom between carbon atoms when the number of carbon atoms is 2 or more), and a substituent.
  • the peptide of the above [1] wherein the R 1 is a hydrogen atom and the R 2 is a C 6-14 aryl group which may have a substituent.
  • At least one of the amino acid residues constituting the peptide has a group represented by the general formula (g-1) in the side chain.
  • the peptide of the above [1], wherein R 1 and R 2 are independently hydrogen atoms or fluorine atoms, respectively.
  • At least one of the amino acid residues constituting the peptide has a group represented by the general formula (g-2) in the side chain.
  • the peptide of the above [1] wherein R 1 and R 2 are independently hydrogen atoms or fluorine atoms, and R 3 and R 4 are hydrogen atoms, respectively.
  • At least one of the amino acid residues constituting the peptide has a group represented by the general formula (g-2) in the side chain.
  • R 1 and R 2 are independently hydrogen atoms or fluorine atoms
  • R 3 is a hydrogen atom
  • R 4 is a trifluoromethyl group.
  • At least one of the amino acid residues constituting the peptide has a group represented by the general formula (g-3) in the side chain.
  • the R 1 , R 2 , R 3 and R 4 are linked to each other and have a C 6-14 aryl group or a substituent which may have a substituent. It constitutes a C 5-14 heteroaryl group which may be present.
  • R 5 and R 6 are hydrogen atoms.
  • the peptide according to any one of [1] to [6] above, wherein the C-terminal or N-terminal may be protected by a protecting group.
  • R 11 and R 12 are independently C 1-6 alkyl groups or C 6-14 aryl-C 1-6 alkyl groups; Z 1 is a hydroxy group, C 1-6 alkyl groups, C. 1-6 Alkoxy group, or carboxyl group protective group; Z 2 and Z 3 are independent hydrogen atoms, C 1-6 alkyl groups, C 6-14 aryl-C 1-6 alkyl groups, respectively. Alternatively, it is a protective group for an amino group; Rg is a general formula (g-1) to (g-3) below.
  • R 1 and R 2 may have a hydrogen atom, a halogen atom, a carboxy group, a substituent, and a C 6-14 aryl group, which may have a substituent, independently of each other. It is a C 5-14 heteroaryl group or an amino group which may have a substituent; R 3 to R 6 may have a hydrogen atom, a halogen atom and a substituent independently of each other. It has a C 1-30 alkyl group (the C 1-30 alkyl group may have an ether-bonding oxygen atom between carbon atoms when the number of carbon atoms is 2 or more), and a substituent.
  • the peptide according to the present invention has excellent cell membrane permeability because a fluorine atom is introduced into the side chain. Therefore, the peptide is expected to be used in the pharmaceutical field as a physiologically active substance.
  • fluorine-containing amino acid means an amino acid containing at least one fluorine atom in the side chain.
  • fluorine-containing peptide means a peptide containing an amino acid containing at least one fluorine atom in the side chain.
  • cyclic peptide means a peptide having a cyclic structure formed by 4 or more amino acid residues.
  • the cyclic structure is not limited to the bond between the N-terminal amino acid residue and the C-terminal amino acid residue of the linear peptide, and the bond between the terminal amino acid residue and the amino acid residue other than the terminal, or the amino acid other than the terminal. It may be formed by binding the residues together.
  • C p1-p2 (p1 and p2 are positive integers satisfying p1 ⁇ p2) means that the group has p1 to p2 carbon atoms.
  • C 1-10 alkyl group is an alkyl group having 1 to 10 carbon atoms, and may be a straight chain or a branched chain.
  • the "C 2-10 alkyl group” is an alkyl group having 2 to 10 carbon atoms, and may be a straight chain or a branched chain.
  • C 1-10 alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Examples thereof include a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group and the like.
  • C 1-30 alkyl group is an alkyl group having 1 to 30 carbon atoms, and may be a straight chain or a branched chain.
  • the "C 2-30 alkyl group” is an alkyl group having 2 to 30 carbon atoms, and may be a straight chain or a branched chain.
  • C 1-30 alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecil group, eicosyl group, heneicosyl group.
  • Docosyl group tricosyl group, tetracosyl group, pentacosyl group, hexacosyl group, heptacosyl group, octacosyl group, nonacosyl group, triacontyl group and the like.
  • C 1-6 alkyl group is an alkyl group having 1 to 6 carbon atoms, and may be a straight chain or a branched chain.
  • Examples of C 1-6 alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Examples include a pentyl group and a hexyl group.
  • the "C 6-14 aryl group” is an aromatic hydrocarbon group having 6 to 14 carbon atoms, and a C 6-12 aryl group is particularly preferable.
  • Examples of the C 6-14 aryl group include a phenyl group, a naphthyl group, an anthryl group, a 9-fluorenyl group and the like, and a phenyl group is particularly preferable.
  • the "optionally substituted C 6-14 aryl group” is one or more hydrogen atoms bonded to the carbon atom of the C 6-14 aryl group, preferably 1 to 1.
  • the substituents may be the same kind or different from each other. Examples of the substituent include a nitro group, a halogen atom (fluorine atom, chlorine atom, bromine atom, or iodine atom), a C 1-6 alkyl group, a C 1-6 alkoxy group, and a methylenedioxy group (-O-CH). 2- O-) and the like can be mentioned.
  • Examples of “optionally substituted C 6-14 aryl groups” are phenyl group, naphthyl group, anthryl group, 4-nitrophenyl group, 4-methoxyphenyl group, 2,4-dimethoxyphenyl group, 3, Examples thereof include 4-dimethoxyphenyl group, 4-methylphenyl group, 2,6-dimethylphenyl group, 3-chlorophenyl group, 1,3-benzodioxol-5-yl group and the like.
  • the "C 6-14 aryl-C 1-6 alkyl group” is a C 6-14 aryl group in which one hydrogen atom bonded to the carbon atom of the C 1-6 alkyl group is a C 6-14 aryl group. It is a group substituted with.
  • the C 6-14 aryl group in the C 6-14 aryl -C 1-6 alkyl group, a phenyl group, a naphthyl group, an anthryl group can be exemplified a 9-fluorenyl group, a phenyl group or a 9-fluorenyl group is particularly preferred ..
  • C 1-6 alkyl group in the C 6-14 aryl -C 1-6 alkyl group C 1-4 alkyl groups are preferred.
  • Examples of C 6-14 aryl-C 1-6 alkyl groups include benzyl group, diphenylmethyl group, triphenylmethyl group, 2-phenylethyl group, 9-anthrylmethyl group, 9-fluorenylmethyl group and the like. Can be mentioned.
  • the "heteroaryl group” is a cyclic group having aromaticity, and the ring is a group composed of a carbon atom and an atom other than the carbon atom.
  • the heteroaryl group may be a group containing a nitrogen atom (nitrogen-containing heteroaryl group), a group containing an oxygen atom (oxygen-containing heteroaryl group), or a group containing a sulfur atom (sulfur-containing heteroaryl group). It may be a heteroaryl group). Further, the number of atoms other than the carbon atom constituting the aromatic ring may be two or more.
  • Examples of the C 5-14 nitrogen-containing heteroaryl group include a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a pyridyl group, a pyrazinyl group, a pyrimidinyl group, a pyridadinyl group, an indolyl group, an isoindryl group, a benzoimidazolyl group and a benzotriazolyl group.
  • Examples thereof include a quinolyl group, an isoquinolyl group, a quinazolyl group and a carbazolyl group.
  • Examples of the C 5-14 oxygen-containing heteroaryl group include a furanyl group, a pyranyl group, a benzopyranyl group, and a xanthenyl group.
  • Examples of the C 5-14 sulfur-containing heteroaryl group include a thienyl group and the like.
  • Examples of the C 5-14 heteroaryl group containing two or more heteroatoms include an oxazolyl group, an isooxazolyl group, a thiazolyl group, an isothiazolyl group and the like.
  • the "optionally substituted heteroaryl group” is one or more hydrogen atoms bonded to atoms constituting the aromatic ring of the heteroaryl group, preferably 1 to 3 hydrogen atoms. Is a group substituted with another functional group.
  • the substituents may be the same kind or different from each other. Examples of the substituent include a C 1-6 alkyl group, a C 1-6 alkoxy group, a methylenedioxy group (-O-CH 2- O-), a halogen atom (fluorine atom, chlorine atom, bromine atom, or iodine atom). ), Trihalomethyl group, cyano group, nitro group and the like.
  • halogen atom means a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • the "halogen atom other than the fluorine atom” means a chlorine atom, a bromine atom, or an iodine atom.
  • a chlorine atom or a bromine atom is preferable, and a chlorine atom is particularly preferable.
  • C 1-6 alkoxy group refers to a group in which an oxygen atom is bonded to the bond end of a C 1-6 alkyl group having 1 to 6 carbon atoms.
  • the C 1-6 alkoxy group may be a straight chain or a branched chain.
  • Examples of the C 1-6 alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a tert-butoxy group, a pentyloxy group, a hexyloxy group and the like.
  • the "amino group which may have a substituent” means that one or two hydrogen atoms bonded to the nitrogen atom of the amino group are replaced with other functional groups. It is a group that has been. When having two substituents, the substituents may be the same kind or different from each other. Examples of the substituent include a C 1-6 alkyl group, a C 1-6 alkoxy group, a halogen atom (fluorine atom, chlorine atom, bromine atom, or iodine atom), a trihalomethyl group and the like.
  • the "ether-bonded oxygen atom” is an oxygen atom that connects carbon atoms, and does not include an oxygen atom in which oxygen atoms are connected in series.
  • the maximum number of ether-bonded oxygen atoms that an alkyl group having Nc carbon atoms (Nc is an integer of 2 or more) can have is Nc-1.
  • Compound n means a compound represented by the formula (n).
  • the peptide according to the present invention is a peptide consisting of two or more amino acids, and at least one of the amino acid residues constituting the peptide has the following general formulas (g-1) to (g-3) in the side chain. ) Is a fluorine-containing peptide having a group represented by any of).
  • Rg the group represented by any of the general formulas (g-1) to (g-3) is referred to as Rg.
  • the black circle means a bond.
  • R 1 and R 2 may have a hydrogen atom, a halogen atom, a carboxy group, and a substituent independently of each other.
  • C 6-14 aryl A C 5-14 heteroaryl group which may have a group, a substituent, or an amino group which may have a substituent.
  • R 1 and R 2 are independent of each other and may have a hydrogen atom, a halogen atom, a carboxy group, a C 6-14 aryl group which may have a substituent, or C 5 which may have a substituent.
  • C 6-14 aryl groups which may have hydrogen atoms, halogen atoms, or substituents independently of each other, are more preferred; independent of each other, hydrogen atoms, fluorine atoms, Alternatively, a phenyl group which may have a substituent is further preferable; a hydrogen atom, a fluorine atom, or a phenyl group is further preferable independently of each other.
  • R 3 and R 4 have a hydrogen atom, a halogen atom, a C 1-30 alkyl group which may have a substituent, and a substituent, which are independent of each other. It may be a C 6-14 aryl group, or a C 5-14 heteroaryl group which may have a substituent.
  • R 3 and R 4 are C 1-30 alkyl groups which may have a substituent, the C 1-30 alkyl group has an ether-bonding oxygen between carbon atoms when the number of carbon atoms is 2 or more. It may have an atom.
  • a hydrogen atom, a halogen atom, a C 1-6 alkyl group which may have a substituent, or a phenyl group which may have a substituent are preferable as independent of each other; More preferably, a C 1-4 alkyl group, which may be substituted with a hydrogen atom, a halogen atom, a halogen atom, or a phenyl group, which may have a substituent, independently of each other; , Fluorine atom, methyl group, trihalomethyl group, or phenyl group; independent of each other, hydrogen atom, fluorine atom, methyl group, or trihalomethyl group is even more preferable.
  • R 3 to R 6 have a hydrogen atom, a halogen atom, a C 1-30 alkyl group which may have a substituent, and a substituent independently of each other. It may be a C 6-14 aryl group, or a C 5-14 heteroaryl group which may have a substituent.
  • R 3 to R 6 are C 1-30 alkyl groups which may have a substituent, the C 1-30 alkyl group has an ether-bonding oxygen between carbon atoms when the number of carbon atoms is 2 or more. It may have an atom.
  • a hydrogen atom, a halogen atom, a C 1-6 alkyl group which may have a substituent, or a phenyl group which may have a substituent are preferable as independent of each other; More preferably, a C 1-4 alkyl group, which may be substituted with a hydrogen atom, a halogen atom, a halogen atom, or a phenyl group, which may have a substituent, independently of each other; , Fluorine atom, methyl group, trihalomethyl group, or phenyl group; independently of each other, hydrogen atom, fluorine atom, methyl group, or trihalomethyl group is even more preferred.
  • R 1 , R 2 , R 3 and R 4 are linked to each other and have a C 6-14 aryl group, which may have a substituent, or a substituent. It may constitute a C 5-14 heteroaryl group.
  • a phenyl group which may have a substituent or a C 5-14 heteroaryl group which may have a substituent is preferable.
  • a phenyl group which may have a substituent or a C 5-14 nitrogen-containing heteroaryl group which may have a substituent is more preferable, and a phenyl group, a pyrrolyl group or an indolyl group is further preferable.
  • a partial structure containing a fluorine atom of Rg constitutes an intramolecular ring structure via a hydrogen bond together with -NH in the peptide bond.
  • Rg is a group represented by the general formula (g-1)
  • the fluorine atom the fluorine atom at the ⁇ -position
  • the hydrogen atom bonded to the nitrogen atom in the peptide bond
  • the hydrogen bonds between them form an intramolecular 6-membered ring structure.
  • Rg is a group represented by the general formula (g-2), the fluorine atom (fluorine atom at the ⁇ position) in the general formula (g-2) and the hydrogen atom bonded to the nitrogen atom in the peptide bond The hydrogen bonds between them form an intramolecular 6-membered ring structure.
  • Rg is a group represented by the general formula (g-3) it is formed by a hydrogen bond between the terminal fluorine atom in the general formula (g-3) and the hydrogen atom bonded to the nitrogen atom in the peptide bond.
  • Form an intramolecular 7-membered ring structure A schematic diagram of the intramolecular ring structure is shown below. It should be noted that these intramolecular ring structures are not ordinary ring structures but contain hydrogen bonds.
  • the fluorine-containing peptide according to the present invention has excellent cell membrane permeability due to this intramolecular ring structure. Although the relationship between the intramolecular ring structure and cell membrane permeability is not clear, -NH in the peptide bond is suppressed from hydrogen bonding with water molecules in the environment, and the hydrophilicity of the entire peptide molecule is reduced. It is presumed that this is because of it.
  • Rg is a group represented by the general formula (g-1)
  • R 1 and R 2 are independently hydrogen atoms or fluorine atoms, respectively; from the viewpoint of easily forming an intramolecular structure; A group in which one of 1 and R 2 is a fluorine atom and the other is a hydrogen atom, or a group in which both R 1 and R 2 are fluorine atoms is more preferable, and both R 1 and R 2 are fluorine atoms. Groups are particularly preferred.
  • Rg is a group represented by the general formula (g-1), a group in which R 1 is a hydrogen atom and R 2 is a C 6-14 aryl group which may have a substituent is also preferable.
  • R 1 is hydrogen atom, group are preferable
  • R 2 is a phenyl group which may have a substituent;
  • R 1 is hydrogen atom, group R 2 is a phenyl group is more preferable.
  • Rg is a group represented by the general formula (g-2), at least one of R 1 and R 2 is a hydrogen atom or a fluorine atom, and R 3 is a hydrogen atom because it is easy to form an intramolecular structure.
  • R 4 is a hydrogen atom or a trifluoromethyl group; at least one of R 1 and R 2 is a hydrogen atom, the other is a fluorine atom, R 3 is a hydrogen atom, and R 4 More preferably a group in which is a hydrogen atom or a trifluoromethyl group; a group in which both R 1 and R 2 are fluorine atoms, R 3 is a hydrogen atom and R 4 is a hydrogen atom or a trifluoromethyl group. More preferably; a group in which both R 1 and R 2 are fluorine atoms, R 3 is a hydrogen atom and R 4 is a trifluoromethyl group is particularly preferred.
  • Rg is a group represented by the general formula (g-3), at least one of R 1 and R 2 is a hydrogen atom or a fluorine atom, and R 3 is a hydrogen atom because it is easy to form an intramolecular structure.
  • R 4 is a hydrogen atom or a trifluoromethyl group and R 5 and R 6 are hydrogen atoms; at least one of R 1 and R 2 is a hydrogen atom and the remaining one is a fluorine atom.
  • R 3 is a hydrogen atom
  • R 4 is a hydrogen atom or a trifluoromethyl group
  • R 5 and R 6 are hydrogen atoms, more preferably; both R 1 and R 2 are fluorine atoms.
  • R 3 is a hydrogen atom
  • R 4 is a hydrogen atom or a trifluoromethyl group
  • R 5 and R 6 are hydrogen atoms
  • both R 1 and R 2 are fluorine atoms and R A group in which 3 is a hydrogen atom, R 4 is a trifluoromethyl group, and R 5 and R 6 are hydrogen atoms is particularly preferable.
  • R 1 , R 2 , R 3 and R 4 may be linked to each other and have a substituent C 6-14 aryl group, Alternatively, groups constituting a C 5-14 heteroaryl group which may have a substituent and where R 5 and R 6 are hydrogen atoms are also preferable; R 1 , R 2 , R 3 and R 4 are each other. It is linked to form a phenyl group which may have a substituent, or a pyrrolyl group or an indrill group which may have a substituent, and a group in which R 5 and R 6 are hydrogen atoms is more.
  • R 1 , R 2 , R 3 and R 4 are linked to each other to form a phenyl group, pyrrolyl group, or indolyl group, more preferably a group in which R 5 and R 6 are hydrogen atoms; R A group in which 1 , R 2 , R 3 and R 4 are linked to each other to form a phenyl group or an indrill group, and R 5 and R 6 are hydrogen atoms is even more preferable.
  • the amino acid residues constituting the peptide at least one side chain may be Rg, and two or more side chains may be Rg, and all amino acids.
  • the side chain of the residue may be Rg.
  • the Rg may be the same kind or different from each other.
  • these plurality of Rg may be the same species or different from each other.
  • the amino acid residue whose side chain is Rg may be at the N-terminal, at the C-terminal, or at a position other than the terminal.
  • the fluorine-containing peptide according to the present invention can be produced using an amino acid [HOOC-CH (Rg) -NH 2] in which the side chain is replaced with Rg as a raw material.
  • amino acids in which the side chain is replaced with Rg include 2-fluoro-L-phenylalanine (CAS No: 19883-78-4), (2S, 4R) -4-fluoroglutamic acid, (2S, 4S) -4.
  • the fluorine-containing peptide according to the present invention may be a peptide consisting of two or more amino acids, preferably a peptide consisting of 2 to 40 amino acids, more preferably a peptide consisting of 2 to 20 amino acids, or 2 or 3. Peptides consisting of a single amino acid are more preferred.
  • the fluorine-containing peptide according to the present invention may be a cyclic peptide.
  • the number of amino acid residues forming the cyclic structure is preferably 4 to 31 residues, more preferably 4 to 11 residues, and even more preferably 6 to 7 residues.
  • the fluorine-containing peptide according to the present invention is a cyclic peptide
  • at least one side chain of the amino acid residues forming the cyclic structure may be Rg, and two or more side chains may be Rg.
  • the side chains of all amino acid residues may be Rg.
  • these plurality of Rg may be the same kind or different from each other.
  • the amino acid residue having an Rg side chain may be at the N-terminal, at the C-terminal, or at a position other than the terminal.
  • Peptide can be produced by a general peptide synthesis method. For example, it can be carried out by a peptide solid phase synthesis method.
  • the fluorine-containing peptide can be easily synthesized using an automatic peptide synthesizer using an amino acid having a fluorine atom introduced into the side chain as a raw material.
  • Cyclic peptides can also be produced by general peptide synthesis methods.
  • a peptide can be produced by sequentially condensing an amino acid having an amino group protected with an amino acid having a C-terminal bonded to a solid phase and desorbing the peptide from the solid phase.
  • the amino acid raw material it is preferable to use one in which the amino group is protected by a tert-butoxycarbonyl (Boc) group or a 9-fluorenylmethyloxycarbonyl (Fmoc) group.
  • the side chain functional group of the amino acid raw material it is preferable to use one protected by a protecting group.
  • Examples of the protecting group for the side chain functional group include a Boc group, a triphenylmethyl group, a benzyl group, a 2,2,5,7,8-pentamethylchroman-6-sulfonyl (Pmc) group and the like.
  • Examples of the condensing agent that forms a peptide bond include N, N-dicyclohexylcarbodiimide (DCC), 1-ethyl-3- (3'-dimethylaminopropyl) carbodiimide (WSC), and benzotriazole-1-yloxy-trisdimethyl.
  • DCC N-dicyclohexylcarbodiimide
  • WSC 1-ethyl-3- (3'-dimethylaminopropyl) carbodiimide
  • benzotriazole-1-yloxy-trisdimethyl benzotriazole-1-yloxy-trisdimethyl.
  • Aminophosphonium hexafluorophosphate BOP
  • benzotriazole-1-yloxytrispyrrolidinophosphonium hexafluorophosphate pyBOP
  • 2- (1H-benzotriazole-1-yl) -1,1,3 Examples thereof include 3-tetramethyluronium hexafluorophosphate (HBTU) and 2- (1H-benzotriazole-1-yl) -1,1,3,3-tetramethyluronium tetrafluorobolate.
  • N-hydroxybenzotriazole (HOBt) and the above condensing agent can be mixed and used in a preferable ratio.
  • a method of activating the carboxyl terminus may be used for the formation of the peptide bond, and examples of the activator include N-hydroxysuccinimide, p-nitrophenyl ester, pentafluorophenyl ester and the like.
  • the base used for forming a peptide bond include triethylamine, diisopropylethylamine (DIEA) and the like.
  • the solvent used in the peptide bond formation reaction include chloroform, dichloromethane, acetonitrile, N, N-dimethylformamide (DMF), dimethyl sulfoxide and the like.
  • the Boc and Fmoc groups which are the protecting groups for the amino-terminal amino groups of peptides or amino acids, can be removed with trifluoroacetic acid (TFA) or piperidine, respectively.
  • TFA trifluoroacetic acid
  • the protecting group of the side chain functional group of the amino acid residue of the peptide can be removed by, for example, TFA, hydrogen fluoride (HF), trifluoromethanesulfonic acid or the like.
  • TFA can be used as a method for removing a peptide having a protecting group on the side chain functional group of the peptide or amino acid residue from the peptide solid phase synthetic resin.
  • Desorption of the peptide from the peptide solid phase resin and desorption of the protecting group of the side chain functional group of the amino acid residue can also be performed simultaneously in the same reaction system. Alternatively, each can be performed independently.
  • Examples of the peptide solid phase synthetic resin for peptide solid phase synthesis include 4-hydroxymethyl-3-methoxyphenoxybutyric acid-benzhydrylamine-polystyrene resin, p-benzyloxybenzyl alcohol-polystyrene resin, and oxime resin, which are usually commercially available. Can be used.
  • the target peptide or its intermediate is isolated and purified by various methods such as ion chromatography, gel filtration chromatography, reverse phase chromatography, normal phase chromatography, recrystallization, extraction, and fractional crystallization. be able to.
  • the peptide thus obtained can be converted into each salt by a conventional method.
  • the protective group of the amino group or the carboxyl group of the produced fluorine-containing peptide can be deprotected if necessary. Deprotection can be performed by a conventional method depending on the type of protecting group.
  • the terminal amino group or carboxyl group may be protected by a protecting group, or may be substituted by a substituent other than the protecting group.
  • the carboxyl group protecting group include an acetyl group, a benzyl group, a diphenylmethyl group, a triphenylmethyl group, a 4-nitrobenzyl group, a 4-methoxybenzyl group, a 2,4-dimethoxybenzyl group, and a 3,4-dimethoxy group.
  • Benzyl group 4-methylbenzyl group, 2,6-dimethylbenzyl group, 3-chlorobenzyl group, 9-anthrylmethyl group, piperonyl group, 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl Benzyl group and the like can be mentioned.
  • the amino-protecting group include carbamate-based protecting groups such as Boc group, Fmoc group, benzyloxycarbonyl (Cbz) group, allyloxycarbonyl (Alloc) group, and 2,2,2-trichloroethoxycarbonyl (Troc) group. The group is mentioned.
  • Examples of the fluorine-containing peptide according to the present invention include the following general formula (p2-1) or general formula (p3-1).
  • Rg is a group represented by the general formula (g-1), the general formula (g-2), or the general formula (g-3).
  • R 11 and R 12 are independently C 1-6 alkyl groups or C 6-14 aryl-C 1-6 alkyl groups, respectively.
  • Z 1 is a protecting group for a hydroxy group, a C 1-6 alkyl group, a C 1-6 alkoxy group, or a carboxyl group
  • Z 2 and Z 3 are independent hydrogen atoms and C 1-6 alkyl, respectively.
  • R 11 and R 12 are independently C 1-6 alkyl groups or phenyl-C 1-6 alkyl groups, respectively.
  • Z 1 is a hydroxy group, a C 1-6 alkyl group, or a C 1-6 alkoxy group
  • Z 2 is a hydrogen atom or a C 1-6 alkyl group
  • Z 3 is a hydrogen atom, a Boc group.
  • Fmoc group, C 1-6 alkyl group, or phenyl-C 1-6 alkyl group are preferred
  • R 11 and R 12 are independently C 1-6 alkyl or benzyl groups, respectively.
  • Z 1 is a hydroxy group, C 1-6 alkyl group, or C 1-6 alkoxy group
  • Z 2 is a hydrogen atom or C 1-6 alkyl group
  • Z 3 is a hydrogen atom, Boc group, Peptides that are Fmoc groups, C 1-6 alkyl groups, benzyl groups, or phenylethyl groups are more preferred.
  • the fluorine-containing peptide according to the present invention has excellent cell membrane permeability. Although the reason is not clear, the fluorine-containing peptide according to the present invention has an inner ring structure in which -NH in the peptide bond is suppressed from hydrogen-bonding to a water molecule in the environment, and the entire peptide molecule is suppressed. It is presumed that this is due to the decrease in hydrophilicity. In addition, since the structure is significantly different from that of natural peptides, it is not easily decomposed by peptidase. Utilizing these properties, the fluorine-containing peptide according to the present invention is expected to be used in the pharmaceutical field as a physiologically active substance.
  • the fluorine-containing peptide according to the present invention can be expected to be used as an active ingredient of a cell membrane penetrating agent or a DDS carrier that carries a medicinal ingredient to a target cell.
  • a fluorine-containing peptide according to the present invention to a functional peptide that exhibits some physiological activity by being taken up into a target cell in a living body so as not to impair its function, the functional peptide can be obtained. The efficiency of uptake into target cells can be improved.
  • some side chains of the hydrophobic amino acid residues of the functional peptide exhibiting physiological activity are Rg, preferably the general formula (g-1) or the above, as long as the function of the functional peptide is not impaired. By substituting with the group represented by (g-2), the cell membrane permeability of the functional peptide and the residence time in the cell can be improved.
  • the NMR apparatus used for the analysis of Examples and Comparative Examples was JNM-ECZ400S (400 MHz) manufactured by JEOL Ltd., and tetramethylsilane was set to 0 PPM in 1 H NMR and C 6 F 6 was set to 162 PPM in 19 F NMR. bottom.
  • DCM dichloromethane
  • DMF N, N-dimethylformamide
  • NMP N-methylpyrrolidone
  • EDC ⁇ HCl: 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride
  • HOBt 1-hydroxybenzotriazole monohydrate
  • HOAt 1-Hydroxy-7-azabenzotriazole
  • Oxyma Ethyl cyano (hydroxyimino) acetate
  • DIC N, N'-diisopropylcarbodiimide DIPEA: N, N-diisopropylethylamine
  • TFA Trifluoroacetate
  • DMTMM 4- (4,6-dimethoxy- 1,3,5-triazin-2-yl) -4-methylmorpholinium chloride
  • THF tetrahydrofuran
  • PAMPA Parallel artificial membrane permeability assay MDCK: Madin-Darby canine kidney WBSS: Han
  • Preparative HPLC was performed on a Prominence HPLC system (manufactured by Shimadzu Corporation) equipped with a 5C18-MS-II column (manufactured by Nacalai Tesque, catalog number: 34355-91, inner diameter 10 mm ⁇ 150 mm). However, in Example 10, Comparative Example 11 and Example 12, a 5C18-AS-II column (manufactured by Nacalai Tesque, catalog number: 34355-91, inner diameter 10 mm ⁇ 150 mm) was used.
  • amino acids may be written in three-letter notation, and if the side chain contains a fluorine atom, "(F)” is added after the three-letter notation.
  • “Phe” is phenylalanine and "Gly” is glycine.
  • L-Phe is L-phenylalanine, and
  • Phe (F)” is phenylalanine containing a fluorine atom in the side chain.
  • the peptide is described as (N-side protecting group) -amino acid three-letter notation- (C-side protecting group).
  • H-AA-OMe means that the N-terminal side is unprotected and the C-terminal side is a methyl ester. When the C-terminal side is unprotected, it is expressed as "OH” instead of "OMe”.
  • 300 ⁇ L of PBS containing 5% DMSO was added to each well of an acceptor plate (MultiScreen 96-well transport receiver plate, manufactured by Merck).
  • a 150 ⁇ L peptide solution (20 ⁇ M) dissolved in 5% DMSO / PBS was then added to each well of the donor plate (MultiScreen-IP filter plate, 0.45 ⁇ m, manufactured by Merck).
  • a dodecane solution of 1% lecithin (derived from soybean) was sonicated for 30 minutes prior to use and 5 ⁇ L of the solution was applied to the membrane support (PVDF) of each well of the donor plate.
  • the donor plate was placed on the acceptor plate and the plate was left in the incubator at 25 ° C. for 18 hours.
  • the peptide concentration was determined using LC / MS.
  • the experiment was repeated 3 times.
  • the transmittance value ( Pe ) was calculated using the following equation.
  • A Filter area (0.3 cm 2 )
  • VD Donor well volume (0.15 cm 3 )
  • VA Acceptor well volume (0.3 cm 3 )
  • MDCK-II Assay Five days after seeding MDCK-II cells in a cell culture insert (manufactured by Falcon) at 5.04 ⁇ 10 4 cells / mL, a cell monolayer assay (MDCK-II assay) was performed.
  • the peptide stock solution is prepared at 2 mM in DMSO solution, diluted with HBSS containing 20 mM HEPES and pH 7.5, and used as a donor solution in a 2 ⁇ M peptide solution using 0.1% DMSO / HBSS (+) as a solvent.
  • the acceptor solution was a 0.1% DMSO solution using HBSS (+) containing 20 mM HEPES and pH 7.5 as a solvent.
  • Apparent permeability was determined by apical to lateral bottom incubation in peptide solution at 37 ° C., 5% CO 2 for 2 hours. Peptide concentration was analyzed by LC / MS. The experiment was repeated 3 times. The transmittance value ( Papp ) was calculated using the following formula.
  • N-Carbobenzoxyl-L-valine (Compound 56) (60 mg, 0.24 mmol) and Compound 13 (33 mg) were dissolved in 2.2 mL of methanol, and DMTMM 1.3H 2 O (91 mg) was added to the solution. added. The reaction mixture was stirred at room temperature overnight and evaporated in vacuo. DCM was added to the reaction mixture, and the resulting solution was washed with 1M Na 2 CO 3 aqueous solution, water, 1M HCl aqueous solution, water, and brine. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo to give compound 57 (75 mg, 89% yield).
  • N-Carbobenzoxioxysuccinimide (72) (245 mg, 0.98 mmol) and TEA (272 ⁇ L, 1.96 mmol) were dissolved in 3 mL of THF.
  • D L-trifluoroalanine hydrochloride (71) (160 mg, 0.89 mmol) was dissolved in 6 mL of water and added dropwise at 0 ° C. The reaction mixture was stirred at 0 ° C. for 10 minutes, warmed to room temperature over 7 hours, then N-carbobenzoxoxysuccinimide (72) (222 mg, 0.89 mmol) was added to add 17 to the reaction mixture. Stir for hours.
  • Non-Patent Document 7 Fmoc-Tyr-Oallyl was synthesized according to the method of Morimoto et al.
  • Coupling reactions other than Cbz-L-Ala (F3) -OH use DMF (3 equivalents), Fmoc-protected amino acids (3 equivalents), HATU (3 equivalents), HOAt (3 equivalents), and DIPEA (3 equivalents). It was reacted with Fmoc-protected amino acids in 0.2 M) for 1 to 3 hours. The resin after the coupling reaction was washed with DMF three times each.
  • the coupling reaction of Cbz-L-Ala (F3) -OH was carried out using Cbz-L-Ala (F3) -OH (2 eq), Oxyma (2 eq), and DIC (2 eq) using DMF (2 eq). It was reacted with Cbz-L-Ala (F3) -OH in 0.1 M). The resin after the coupling reaction was washed with DMF three times each.
  • the resin was washed 3 times each with DMF. Coupling and deprotection were repeated up to the 6th residue.
  • the synthesized peptide was cleaved from the resin by incubating the resin with 30% HFIP in DCM for 15 minutes three times. All filtrates containing the synthesized peptides were collected in recovery flasks. The resin was washed with DCM and MeOH. All filtrates and washings were combined and the solvent evaporated under reduced pressure to give compound 78.
  • the coupling reaction used Fmoc-protected amino acids (4 eq), HATU (3.8 eq), HOAt (3.8 eq), and DIPEA (6 eq) to 0.
  • the reaction was carried out in 1M) for 1 to 3 hours. After the reaction, the resin was washed 3 times each with DMF. Coupling and deprotection were repeated up to the 6th residue.
  • the allyl group of the C-terminal Tyr residue was removed by incubating the resin with tetrakis (triphenylphosphine) palladium (1 eq) and triphenylphosphine (3 eq) in anhydrous DCM for 1 hour at room temperature.
  • the resin was washed 3 times each with 0.5% sodium diethyldithiocarbamate in DMF, 0.5% DIPEA in DMF, and DMF.
  • the resin was incubated with 20% piperidine / DMF for 3 minutes and then with 20% piperidine / DMF for 12 minutes to deprotect the N-terminal Fmoc of the peptide on the resin.
  • This resin was applied to the peptide synthesis of the second and subsequent residues. DFmoc deprotection was performed by incubating the resin with 20% piperidine in DMF for 15 minutes. After the reaction, the resin was washed 3 times with DMF.
  • the coupling reaction was 1 in DMF (0.2 M eq for Fmoc protected amino acids) using Fmoc protected amino acids (4 eq), HATU (4 eq), HOAt (4 eq) and DIPEA (4 eq). It was allowed to react for ⁇ 3 hours. After the reaction, the resin was washed with DMF three times each. Coupling and deprotection were repeated up to the 7th residue.
  • the synthesized peptide was cleaved from the resin by incubating the resin with 30% HFIP in DCM for 15 minutes three times. All filtrates containing the synthesized peptides were collected in recovery flasks. The resin was then washed with DCM and MeOH. All filtrates and washings were combined and the solvent evaporated under reduced pressure to give compound 83.
  • Coupling reactions other than Cbz-L-Ala (F3) -OH use DMF (Fmoc) using Fmoc-protected amino acids (3 equivalents), HATU (3 equivalents), HOAt (3 equivalents) and DIPEA (3 equivalents). It was reacted with the protected amino acid in 0.2 M) for 1 to 3 hours.
  • the coupling reaction of Cbz-L-Ala (F3) -OH was carried out using Cbz-L-Ala (F3) -OH (2 eq), Oxyma (2 eq), and DIC (2 eq) using DMF (2 eq). It was reacted with Cbz-L-Ala (F3) -OH in 0.1 M).
  • the resin was washed 3 times each with DMF. Coupling and deprotection were repeated up to the 6th residue.
  • the synthesized peptide was cleaved from the resin by incubating the resin with 30% HFIP in DCM for 15 minutes three times. All filtrates containing the synthesized peptides were collected in recovery flasks. The resin was then washed with DCM and MeOH. All filtrates and washings were combined and the solvent evaporated under reduced pressure to give compound 86.
  • Boc-Ala-OH 52 mg
  • compound 92 64 mg
  • DMTMM ⁇ nH 2 O 92 mg
  • the reaction mixture was stirred at room temperature for 5 hours and evaporated in vacuo.
  • DCM was added to the reaction mixture and the resulting solution was washed 3 times with water.
  • the organic phase was dried over Na 2 SO 4 and evaporated in vacuo.
  • Fmoc deprotection was performed by incubating the resin in 20% piperidine / DMF for 15 minutes. After the deprotection reaction, the resin was washed 3 times with DMF.
  • the condensation reaction was carried out using Fmoc-Ala-OH (4 equivalents), Oxyma (4 equivalents), and DIC (4 equivalents) in 4 mL of DMF for 1 to 13 hours. After the condensation reaction, the resin was washed 3 times with DMF.
  • the synthesized peptide was cleaved from the resin by incubating the resin in 30% HFIP / DCM three times for 15 minutes each. The filtrate was collected in a flask. The resin was then washed with DCM and MeOH. All filtrates and washings were combined and the solvent evaporated under reduced pressure to give compound 98.
  • compound 100 (Cbz-L-Ala (F) -OH) (50 mg, 207 ⁇ mol) and isobutylamine (22.7 ⁇ L) were dissolved in 3 mL of methanol and stirred at room temperature.
  • DMTMM (68 mg) was added to the solution, and the mixture was stirred at room temperature for 6 hours.
  • the solvent was removed under reduced pressure, DCM was added to the obtained residue, and the mixture was washed once with water. After drying the organic phase with Na 2 SO 4 , the solvent was removed under reduced pressure to give compound 101 (54 mg).
  • Fmoc deprotection was performed by incubating the resin in 20% piperidine / DMF for 15 minutes. After the deprotection reaction, the resin was washed 3 times with DMF.
  • the synthesized peptide was cleaved from the resin by incubating the resin in 30% HFIP / DCM three times for 15 minutes each. All filtrates containing the synthesized peptides were collected in recovery flasks. The resin was washed with CM and MeOH. All filtrates and washings were combined and the solvent evaporated under reduced pressure to give compound 107.
  • the present invention provides a peptide containing an amino acid residue in which a fluorine atom is introduced into a side chain. Since the peptide according to the present invention has excellent cell membrane permeability, it is expected to be used in the pharmaceutical field as a physiologically active substance such as a carrier for introducing a medicinal ingredient into a target cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention provides a peptide including an amino acid residue having a fluorine atom introduced in the side chain thereof. A peptide according to the present invention includes two or more amino acids forming a peptide bond. At least one amino acid residue forming the peptide has, in a side chain thereof, a group represented by any one of general formulae (g-1)-(g-3) [in the formulae, R1 and R2 each independently represent a hydrogen atom, a halogen atom, a carboxy group, a C6-14 aryl group, a C5-14 heteroaryl group, or an amino group, R3-R6 each independently represent a hydrogen atom, a halogen atom, a C1-30 alkyl group, a C6-14 aryl group, or a C5-14 heteroaryl group, R1, R2, R3, and R4 are optionally linked to form a C6-14 aryl group or a C5-14 heteroaryl group, and each black circle represent a bond].

Description

ペプチド及び細胞膜透過剤Peptides and cell membrane penetrants
 本発明は、フッ素原子が側鎖に導入されたアミノ酸残基を含むペプチドに関する。
 本願は、2020年3月4日に日本に出願された特願2020-037194号、及び2020年11月5日に日本に出願された特願2020-185438号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to peptides containing amino acid residues in which a fluorine atom has been introduced into the side chain.
The present application claims priority based on Japanese Patent Application No. 2020-037194 filed in Japan on March 4, 2020 and Japanese Patent Application No. 2020-185438 filed in Japan on November 5, 2020. The contents are used here.
 抗体医薬、ペプチド医薬、核酸医薬等は、標的分子に対する特異性が高く、副作用が少ないという優れた点がある。しかし、いずれも細胞内に存在する標的分子に到達させることが困難であるという問題がある。当該問題を解決するために、様々な手法が検討されている。なかでも、細胞膜透過性ペプチド(Cell Penetrating Peptides:CPP)が有望視されている。CPPとしては、HIVウイルスのTATタンパク質に由来するペプチド(特許文献1)や、ポリArg配列のペプチド(特許文献2)が代表的なものとして挙げられる。これを薬効ペプチドと結合させて薬効ペプチドを細胞内に輸送できる(たとえば、特許文献3、非特許文献1)。 Antibody drugs, peptide drugs, nucleic acid drugs, etc. have the advantages of high specificity for target molecules and few side effects. However, all of them have a problem that it is difficult to reach the target molecule existing in the cell. Various methods are being studied to solve this problem. Among them, cell-penetrating peptides (CPP) are promising. Typical examples of the CPP include a peptide derived from the TAT protein of the HIV virus (Patent Document 1) and a peptide having a polyArg sequence (Patent Document 2). This can be combined with a medicinal peptide to transport the medicinal peptide into cells (for example, Patent Document 3 and Non-Patent Document 1).
 一方、含フッ素アミノ酸は特異な生理活性を示すことが報告され、注目を集めている。例えば、3,3,3-トリフルオロアラニン及びその誘導体は、ピリドキサール酵素の自殺型阻害剤(suicide inhibitor)として作用することが報告されている(非特許文献2)。また、グラム陰性菌Salmonella typhimurium及びグラム陽性菌Bacillus stearothermophilusのアラニンラセマーゼが、3,3,3-トリフルオロアラニンで不活性化されることが報告されている(非特許文献3)。含フッ素アミノ酸及びそれを含有するペプチドは、生理活性物質として、医薬分野での利用が期待される。 On the other hand, fluorine-containing amino acids have been reported to exhibit unique bioactivity and are attracting attention. For example, 3,3,3-trifluoroalanine and its derivatives have been reported to act as a suicide inhibitor of pyridoxal enzyme (Non-Patent Document 2). In addition, it has been reported that alanine racemase of Gram-negative bacteria Salmonella typhimurium and Gram-positive bacteria Bacillus stearothermophilus is inactivated by 3,3,3-trifluoroalanine (Non-Patent Document 3). Fluorine-containing amino acids and peptides containing them are expected to be used in the pharmaceutical field as physiologically active substances.
 ポリフルオロ構造を有する化合物は、生体内で安定かつ毒性が低く、細胞内への取り込みとエンドソームからの脱出に優れていることが知られている(非特許文献4)。この性質を利用して、構成アミノ酸として側鎖のアミノ基をペルフルオロアシル化したリシンを用いたペプチドデンドリマーを遺伝子のデリバリーに用いることができることが報告されている(非特許文献5)。しかし、デンドリマーであるため、CPPのように薬効活性ペプチドや核酸や抗体医薬となるタンパク質と結合させたハイブリッドを形成することができない。 It is known that a compound having a polyfluoro structure is stable and low in toxicity in vivo, and is excellent in intracellular uptake and escape from endosomes (Non-Patent Document 4). It has been reported that a peptide dendrimer using lysine in which a side chain amino group is perfluoroacylated can be used for gene delivery by utilizing this property (Non-Patent Document 5). However, since it is a dendrimer, it cannot form a hybrid that is bound to a medicinal active peptide, nucleic acid, or protein that is an antibody drug like CPP.
米国特許第6,316,003号明細書U.S. Pat. No. 6,316,003 米国特許第6,306,993号明細書U.S. Pat. No. 6,306,993 国際公開第2008/089491号International Publication No. 2008/089491
 特許文献1等に記載されているCPPは、細胞内への輸送効率や、生体内でのペプチダーゼによる分解など様々な問題がある。
 本発明は、フッ素原子が側鎖に導入されたアミノ酸残基を含むペプチドを提供することを目的とする。
The CPP described in Patent Document 1 and the like has various problems such as intracellular transport efficiency and decomposition by peptidase in vivo.
An object of the present invention is to provide a peptide containing an amino acid residue in which a fluorine atom is introduced into a side chain.
 本発明者らは、フッ素原子が側鎖に導入されたアミノ酸残基を含み、当該側鎖のフッ素原子を含む部分構造が、ペプチド結合中の-NHと共に分子内で水素結合を構成するペプチドを製造したところ、当該ペプチドが細胞膜透過性に優れていることを見出し、本発明を完成させた。 The present inventors have prepared a peptide containing an amino acid residue in which a fluorine atom is introduced into a side chain, and a partial structure containing the fluorine atom in the side chain constitutes a hydrogen bond in the molecule together with -NH in the peptide bond. Upon production, the peptide was found to have excellent cell membrane permeability, and the present invention was completed.
 すなわち、本発明は以下の通りである。
[1] 2個以上のアミノ酸がペプチド結合したペプチドであって、
 当該ペプチドを構成するアミノ酸残基の少なくとも1個が、側鎖に、下記一般式(g-1)~(g-3)
That is, the present invention is as follows.
[1] A peptide in which two or more amino acids are peptide-bonded.
At least one of the amino acid residues constituting the peptide is placed in the side chain in the following general formulas (g-1) to (g-3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[式中、R及びRは、互いに独立して、水素原子、ハロゲン原子、カルボキシ基、置換基を有していてもよいC6-14アリール基、置換基を有していてもよいC5-14ヘテロアリール基、又は置換基を有していてもよいアミノ基であり;R~Rは、互いに独立して、水素原子、ハロゲン原子、置換基を有していてもよいC1-30アルキル基(当該C1-30アルキル基は炭素原子が2以上の場合に、炭素原子間にエーテル結合性の酸素原子を有していてもよい)、置換基を有していてもよいC6-14アリール基、又は置換基を有していてもよいC5-14ヘテロアリール基であり;R、R、R及びRは、互いに連結して、置換基を有していてもよいC6-14アリール基、又は置換基を有していてもよいC5-14ヘテロアリール基を構成していてもよく;黒丸は結合手を意味する]
のいずれかで表される基を有している、ペプチド。
[2] 前記ペプチドを構成するアミノ酸残基の少なくとも1個が、側鎖に、前記一般式(g-1)で表される基を有しており、
 前記一般式(g-1)中、前記Rが水素原子であり、前記Rが置換基を有していてもよいC6-14アリール基である、前記[1]のペプチド。
[3] 前記ペプチドを構成するアミノ酸残基の少なくとも1個が、側鎖に、前記一般式(g-1)で表される基を有しており、
 前記一般式(g-1)中、前記R及びRが、それぞれ独立して水素原子又はフッ素原子である、前記[1]のペプチド。
[4] 前記ペプチドを構成するアミノ酸残基の少なくとも1個が、側鎖に、前記一般式(g-2)で表される基を有しており、
 前記一般式(g-2)中、前記R及びRが、それぞれ独立して水素原子又はフッ素原子であり、前記R及びRが水素原子である、前記[1]のペプチド。
[5] 前記ペプチドを構成するアミノ酸残基の少なくとも1個が、側鎖に、前記一般式(g-2)で表される基を有しており、
 前記一般式(g-2)中、前記R及びRが、それぞれ独立して水素原子又はフッ素原子であり、前記Rが水素原子であり、前記Rがトリフルオロメチル基である、前記[1]のペプチド。
[6] 前記ペプチドを構成するアミノ酸残基の少なくとも1個が、側鎖に、前記一般式(g-3)で表される基を有しており、
 前記一般式(g-3)中、前記R、R、R及びRが互いに連結して、置換基を有していてもよいC6-14アリール基、又は置換基を有していてもよいC5-14ヘテロアリール基を構成しており、
前記R及びRが水素原子である、前記[1]のペプチド。
[7] C末端又はN末端が保護基で保護されていてもよい、前記[1]~[6]のいずれかのペプチド。
[8] 下記一般式(p2-1)又は一般式(p3-1)
[In the formula, R 1 and R 2 may have a hydrogen atom, a halogen atom, a carboxy group, a C 6-14 aryl group, and a substituent, which may have a substituent, independently of each other. It is a C 5-14 heteroaryl group or an amino group which may have a substituent; R 3 to R 6 may have a hydrogen atom, a halogen atom and a substituent independently of each other. It has a C 1-30 alkyl group (the C 1-30 alkyl group may have an ether-bonding oxygen atom between carbon atoms when the number of carbon atoms is 2 or more), and a substituent. May be a C 6-14 aryl group, or a C 5-14 heteroaryl group which may have a substituent; R 1 , R 2 , R 3 and R 4 are linked to each other to form a substituent. It may constitute a C 6-14 aryl group which may have, or a C 5-14 heteroaryl group which may have a substituent; black circles mean binders].
A peptide having a group represented by any of.
[2] At least one of the amino acid residues constituting the peptide has a group represented by the general formula (g-1) in the side chain.
In the general formula (g-1), the peptide of the above [1] , wherein the R 1 is a hydrogen atom and the R 2 is a C 6-14 aryl group which may have a substituent.
[3] At least one of the amino acid residues constituting the peptide has a group represented by the general formula (g-1) in the side chain.
In the general formula (g-1), the peptide of the above [1], wherein R 1 and R 2 are independently hydrogen atoms or fluorine atoms, respectively.
[4] At least one of the amino acid residues constituting the peptide has a group represented by the general formula (g-2) in the side chain.
In the general formula (g-2), the peptide of the above [1] , wherein R 1 and R 2 are independently hydrogen atoms or fluorine atoms, and R 3 and R 4 are hydrogen atoms, respectively.
[5] At least one of the amino acid residues constituting the peptide has a group represented by the general formula (g-2) in the side chain.
In the general formula (g-2), R 1 and R 2 are independently hydrogen atoms or fluorine atoms, R 3 is a hydrogen atom, and R 4 is a trifluoromethyl group. The peptide of the above [1].
[6] At least one of the amino acid residues constituting the peptide has a group represented by the general formula (g-3) in the side chain.
In the general formula (g-3), the R 1 , R 2 , R 3 and R 4 are linked to each other and have a C 6-14 aryl group or a substituent which may have a substituent. It constitutes a C 5-14 heteroaryl group which may be present.
The peptide of [1] above, wherein R 5 and R 6 are hydrogen atoms.
[7] The peptide according to any one of [1] to [6] above, wherein the C-terminal or N-terminal may be protected by a protecting group.
[8] The following general formula (p2-1) or general formula (p3-1)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[R11及びR12は、それぞれ独立して、C1-6アルキル基又はC6-14アリール-C1-6アルキル基であり;Zは、ヒドロキシ基、C1-6アルキル基、C1-6アルコキシ基、又はカルボキシル基の保護基であり;Z及びZは、それぞれ独立して、水素原子、C1-6アルキル基、C6-14アリール-C1-6アルキル基、又はアミノ基の保護基であり;Rgは、下記一般式(g-1)~(g-3) [R 11 and R 12 are independently C 1-6 alkyl groups or C 6-14 aryl-C 1-6 alkyl groups; Z 1 is a hydroxy group, C 1-6 alkyl groups, C. 1-6 Alkoxy group, or carboxyl group protective group; Z 2 and Z 3 are independent hydrogen atoms, C 1-6 alkyl groups, C 6-14 aryl-C 1-6 alkyl groups, respectively. Alternatively, it is a protective group for an amino group; Rg is a general formula (g-1) to (g-3) below.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、R及びRは、互いに独立して、水素原子、ハロゲン原子、カルボキシ基、置換基を有していてもよいC6-14アリール基、置換基を有していてもよいC5-14ヘテロアリール基、又は置換基を有していてもよいアミノ基であり;R~Rは、互いに独立して、水素原子、ハロゲン原子、置換基を有していてもよいC1-30アルキル基(当該C1-30アルキル基は炭素原子が2以上の場合に、炭素原子間にエーテル結合性の酸素原子を有していてもよい)、置換基を有していてもよいC6-14アリール基、又は置換基を有していてもよいC5-14ヘテロアリール基であり;R、R、R及びRは、互いに連結して、置換基を有していてもよいC6-14アリール基、又は置換基を有していてもよいC5-14ヘテロアリール基を構成していてもよく;黒丸は結合手を意味する)
のいずれかで表される基である]
で表される、前記[1]~[7]のいずれかのペプチド。
[9] 環状ペプチドである、前記[1]~[6]のいずれかのペプチド。
[10] 前記環状ペプチドの環状構造を構成するアミノ酸残基の数が、4~31残基である、前記[9]のペプチド。
[11] 細胞膜透過性である、前記[1]~[10]のいずれかのペプチド。
[12] 前記[1]~[10]のいずれかのペプチドを有効成分とする、細胞膜透過剤。
(In the formula, R 1 and R 2 may have a hydrogen atom, a halogen atom, a carboxy group, a substituent, and a C 6-14 aryl group, which may have a substituent, independently of each other. It is a C 5-14 heteroaryl group or an amino group which may have a substituent; R 3 to R 6 may have a hydrogen atom, a halogen atom and a substituent independently of each other. It has a C 1-30 alkyl group (the C 1-30 alkyl group may have an ether-bonding oxygen atom between carbon atoms when the number of carbon atoms is 2 or more), and a substituent. May be a C 6-14 aryl group, or a C 5-14 heteroaryl group which may have a substituent; R 1 , R 2 , R 3 and R 4 are linked to each other to form a substituent. It may constitute a C 6-14 aryl group which may have a C 6-14 aryl group or a C 5-14 heteroaryl group which may have a substituent; a black circle means a bonder).
It is a group represented by any of]
The peptide according to any one of the above [1] to [7], which is represented by.
[9] The peptide according to any one of the above [1] to [6], which is a cyclic peptide.
[10] The peptide of [9], wherein the number of amino acid residues constituting the cyclic structure of the cyclic peptide is 4 to 31 residues.
[11] The peptide according to any one of the above [1] to [10], which is cell membrane permeable.
[12] A cell membrane penetrant containing the peptide according to any one of [1] to [10] as an active ingredient.
 本発明に係るペプチドは、フッ素原子が側鎖に導入されているため、細胞膜透過性に優れている。このため、当該ペプチドは、生理活性物質として、医薬分野での利用が期待される。 The peptide according to the present invention has excellent cell membrane permeability because a fluorine atom is introduced into the side chain. Therefore, the peptide is expected to be used in the pharmaceutical field as a physiologically active substance.
 本発明及び本願明細書において、「含フッ素アミノ酸」とは、側鎖に少なくとも1個のフッ素原子を含有するアミノ酸を意味する。「含フッ素ペプチド」とは、側鎖に少なくとも1個のフッ素原子を含有するアミノ酸を含有するペプチドを意味する。 In the present invention and the present specification, the "fluorine-containing amino acid" means an amino acid containing at least one fluorine atom in the side chain. The "fluorine-containing peptide" means a peptide containing an amino acid containing at least one fluorine atom in the side chain.
 本発明及び本願明細書において、「環状ペプチド」とは、4以上のアミノ酸残基により形成される環状構造を有するペプチドを意味する。前記環状構造は、直鎖状ペプチドのN末端のアミノ酸残基とC末端のアミノ酸残基の結合に限られず、末端のアミノ酸残基と末端以外のアミノ酸残基との結合、又は末端以外のアミノ酸残基同士の結合により形成されてもよい。 In the present invention and the present specification, the "cyclic peptide" means a peptide having a cyclic structure formed by 4 or more amino acid residues. The cyclic structure is not limited to the bond between the N-terminal amino acid residue and the C-terminal amino acid residue of the linear peptide, and the bond between the terminal amino acid residue and the amino acid residue other than the terminal, or the amino acid other than the terminal. It may be formed by binding the residues together.
 本発明及び本願明細書において、「Cp1-p2」(p1及びp2は、p1<p2を満たす正の整数である)は、炭素数がp1~p2の基であることを意味する。 In the present invention and the present specification, "C p1-p2 " (p1 and p2 are positive integers satisfying p1 <p2) means that the group has p1 to p2 carbon atoms.
 本発明及び本願明細書において、「C1-10アルキル基」は、炭素数1~10のアルキル基であり、直鎖であっても分岐鎖であってもよい。「C2-10アルキル基」は、炭素数2~10のアルキル基であり、直鎖であっても分岐鎖であってもよい。C1-10アルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。 In the present invention and the present specification, the "C 1-10 alkyl group" is an alkyl group having 1 to 10 carbon atoms, and may be a straight chain or a branched chain. The "C 2-10 alkyl group" is an alkyl group having 2 to 10 carbon atoms, and may be a straight chain or a branched chain. Examples of C 1-10 alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Examples thereof include a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group and the like.
 本発明及び本願明細書において、「C1-30アルキル基」は、炭素数1~30のアルキル基であり、直鎖であっても分岐鎖であってもよい。「C2-30アルキル基」は、炭素数2~30のアルキル基であり、直鎖であっても分岐鎖であってもよい。C1-30アルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、ヘンエイコシル基、ドコシル基、トリコシル基、テトラコシル基、ペンタコシル基、ヘキサコシル基、ヘプタコシル基、オクタコシル基、ノナコシル基、トリアコンチル基等が挙げられる。 In the present invention and the present specification, the "C 1-30 alkyl group" is an alkyl group having 1 to 30 carbon atoms, and may be a straight chain or a branched chain. The "C 2-30 alkyl group" is an alkyl group having 2 to 30 carbon atoms, and may be a straight chain or a branched chain. Examples of C 1-30 alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecil group, eicosyl group, heneicosyl group. , Docosyl group, tricosyl group, tetracosyl group, pentacosyl group, hexacosyl group, heptacosyl group, octacosyl group, nonacosyl group, triacontyl group and the like.
 本発明及び本願明細書において、「C1-6アルキル基」は、炭素数1~6のアルキル基であり、直鎖であっても分岐鎖であってもよい。C1-6アルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基等が挙げられる。 In the present invention and the present specification, the "C 1-6 alkyl group" is an alkyl group having 1 to 6 carbon atoms, and may be a straight chain or a branched chain. Examples of C 1-6 alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Examples include a pentyl group and a hexyl group.
 本発明及び本願明細書において、「C6-14アリール基」は、炭素数6~14の芳香族炭化水素基であり、C6-12アリール基が特に好ましい。C6-14アリール基の例としては、フェニル基、ナフチル基、アントリル基、9-フルオレニル基等が挙げられ、フェニル基が特に好ましい。 In the present invention and the present specification, the "C 6-14 aryl group" is an aromatic hydrocarbon group having 6 to 14 carbon atoms, and a C 6-12 aryl group is particularly preferable. Examples of the C 6-14 aryl group include a phenyl group, a naphthyl group, an anthryl group, a 9-fluorenyl group and the like, and a phenyl group is particularly preferable.
 本発明及び本願明細書において、「置換されていてもよいC6-14アリール基」は、C6-14アリール基の炭素原子に結合している水素原子の1又は複数個、好ましくは1~3個が、他の官能基に置換されている基である。2個以上の置換基を有する場合、置換基同士は互いに同種であってもよく、異種であってもよい。当該置換基としては、ニトロ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又はヨウ素原子)、C1-6アルキル基、C1-6アルコキシ基、及びメチレンジオキシ基(-O-CH-O-)等が挙げられる。「置換されていてもよいC6-14アリール基」の例としては、フェニル基、ナフチル基、アントリル基、4-ニトロフェニル基、4-メトキシフェニル基、2,4-ジメトキシフェニル基、3,4-ジメトキシフェニル基、4-メチルフェニル基、2,6-ジメチルフェニル基、3-クロロフェニル基、1,3-ベンゾジオキソール-5-イル基等が挙げられる。 In the present invention and the present specification, the "optionally substituted C 6-14 aryl group" is one or more hydrogen atoms bonded to the carbon atom of the C 6-14 aryl group, preferably 1 to 1. Three are groups substituted with other functional groups. When having two or more substituents, the substituents may be the same kind or different from each other. Examples of the substituent include a nitro group, a halogen atom (fluorine atom, chlorine atom, bromine atom, or iodine atom), a C 1-6 alkyl group, a C 1-6 alkoxy group, and a methylenedioxy group (-O-CH). 2- O-) and the like can be mentioned. Examples of "optionally substituted C 6-14 aryl groups" are phenyl group, naphthyl group, anthryl group, 4-nitrophenyl group, 4-methoxyphenyl group, 2,4-dimethoxyphenyl group, 3, Examples thereof include 4-dimethoxyphenyl group, 4-methylphenyl group, 2,6-dimethylphenyl group, 3-chlorophenyl group, 1,3-benzodioxol-5-yl group and the like.
 本発明及び本願明細書において、「C6-14アリール-C1-6アルキル基」は、C1-6アルキル基の炭素原子に結合している1個の水素原子がC6-14アリール基に置換された基である。C6-14アリール-C1-6アルキル基におけるC6-14アリール基としては、フェニル基、ナフチル基、アントリル基、9-フルオレニル基等を例示でき、フェニル基又は9-フルオレニル基が特に好ましい。C6-14アリール-C1-6アルキル基におけるC1-6アルキル基としては、C1-4アルキル基が好ましい。C6-14アリール-C1-6アルキル基の例としては、ベンジル基、ジフェニルメチル基、トリフェニルメチル基、2-フェニルエチル基、9-アントリルメチル基、9-フルオレニルメチル基等が挙げられる。 In the present invention and the present specification, the "C 6-14 aryl-C 1-6 alkyl group" is a C 6-14 aryl group in which one hydrogen atom bonded to the carbon atom of the C 1-6 alkyl group is a C 6-14 aryl group. It is a group substituted with. The C 6-14 aryl group in the C 6-14 aryl -C 1-6 alkyl group, a phenyl group, a naphthyl group, an anthryl group, can be exemplified a 9-fluorenyl group, a phenyl group or a 9-fluorenyl group is particularly preferred .. As the C 1-6 alkyl group in the C 6-14 aryl -C 1-6 alkyl group, C 1-4 alkyl groups are preferred. Examples of C 6-14 aryl-C 1-6 alkyl groups include benzyl group, diphenylmethyl group, triphenylmethyl group, 2-phenylethyl group, 9-anthrylmethyl group, 9-fluorenylmethyl group and the like. Can be mentioned.
 本発明及び本願明細書において、「ヘテロアリール基」は、芳香族性を備える環式基であり、当該環が炭素原子と炭素原子以外の原子によって構成されている基である。ヘテロアリール基としては、窒素原子を含む基(含窒素ヘテロアリール基)であってもよく、酸素原子を含む基(含酸素ヘテロアリール基)であってもよく、硫黄原子を含む基(含硫ヘテロアリール基)であってもよい。また、芳香環を構成する炭素原子以外の原子が2種以上であってもよい。 In the present invention and the specification of the present application, the "heteroaryl group" is a cyclic group having aromaticity, and the ring is a group composed of a carbon atom and an atom other than the carbon atom. The heteroaryl group may be a group containing a nitrogen atom (nitrogen-containing heteroaryl group), a group containing an oxygen atom (oxygen-containing heteroaryl group), or a group containing a sulfur atom (sulfur-containing heteroaryl group). It may be a heteroaryl group). Further, the number of atoms other than the carbon atom constituting the aromatic ring may be two or more.
 C5-14含窒素ヘテロアリール基としては、例えば、ピロリル基、イミダゾリル基、ピラゾリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、インドリル基、イソインドリル基、ベンゾイミダゾリル基、ベンゾトリアゾリル基、キノリル基、イソキノリル基、キナゾリル基、カルバゾリル基等が挙げられる。C5-14含酸素ヘテロアリール基としては、例えば、フラニル基、ピラニル基、ベンゾピラニル基、キサンテニル基等が挙げられる。C5-14含硫ヘテロアリール基としては、例えば、チエニル基等が挙げられる。2種以上のヘテロ原子を含むC5-14ヘテロアリール基としては、例えば、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基等が挙げられる。 Examples of the C 5-14 nitrogen-containing heteroaryl group include a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a pyridyl group, a pyrazinyl group, a pyrimidinyl group, a pyridadinyl group, an indolyl group, an isoindryl group, a benzoimidazolyl group and a benzotriazolyl group. Examples thereof include a quinolyl group, an isoquinolyl group, a quinazolyl group and a carbazolyl group. Examples of the C 5-14 oxygen-containing heteroaryl group include a furanyl group, a pyranyl group, a benzopyranyl group, and a xanthenyl group. Examples of the C 5-14 sulfur-containing heteroaryl group include a thienyl group and the like. Examples of the C 5-14 heteroaryl group containing two or more heteroatoms include an oxazolyl group, an isooxazolyl group, a thiazolyl group, an isothiazolyl group and the like.
 本発明及び本願明細書において、「置換されていてもよいヘテロアリール基」は、ヘテロアリール基の芳香環を構成する原子に結合している水素原子の1又は複数個、好ましくは1~3個が、他の官能基に置換されている基である。2個以上の置換基を有する場合、置換基同士は互いに同種であってもよく、異種であってよい。当該置換基としては、C1-6アルキル基、C1-6アルコキシ基、メチレンジオキシ基(-O-CH-O-)、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又はヨウ素原子)、トリハロメチル基、シアノ基、及びニトロ基等が挙げられる。 In the present invention and the present specification, the "optionally substituted heteroaryl group" is one or more hydrogen atoms bonded to atoms constituting the aromatic ring of the heteroaryl group, preferably 1 to 3 hydrogen atoms. Is a group substituted with another functional group. When having two or more substituents, the substituents may be the same kind or different from each other. Examples of the substituent include a C 1-6 alkyl group, a C 1-6 alkoxy group, a methylenedioxy group (-O-CH 2- O-), a halogen atom (fluorine atom, chlorine atom, bromine atom, or iodine atom). ), Trihalomethyl group, cyano group, nitro group and the like.
 本発明及び本願明細書において、「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、又はヨウ素原子をいう。「フッ素原子以外のハロゲン原子」とは、塩素原子、臭素原子、又はヨウ素原子をいう。「フッ素原子以外のハロゲン原子」の例としては、塩素原子又は臭素原子が好ましく、塩素原子が特に好ましい。 In the present invention and the present specification, the "halogen atom" means a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom. The "halogen atom other than the fluorine atom" means a chlorine atom, a bromine atom, or an iodine atom. As an example of the "halogen atom other than the fluorine atom", a chlorine atom or a bromine atom is preferable, and a chlorine atom is particularly preferable.
 本発明及び本願明細書において、「C1-6アルコキシ基」とは、炭素数1~6のC1-6アルキル基の結合末端に酸素原子が結合した基をいう。C1-6アルコキシ基は直鎖であっても分岐鎖であってもよい。C1-6アルコキシ基の例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられる。 In the present invention and the present specification, the "C 1-6 alkoxy group" refers to a group in which an oxygen atom is bonded to the bond end of a C 1-6 alkyl group having 1 to 6 carbon atoms. The C 1-6 alkoxy group may be a straight chain or a branched chain. Examples of the C 1-6 alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a tert-butoxy group, a pentyloxy group, a hexyloxy group and the like.
 本発明及び本願明細書において、「置換基を有していてもよいアミノ基」とは、アミノ基の窒素原子に結合している1個又は2個の水素原子が、他の官能基に置換されている基である。2個の置換基を有する場合、置換基同士は互いに同種であってもよく、異種であってよい。当該置換基としては、C1-6アルキル基、C1-6アルコキシ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又はヨウ素原子)、トリハロメチル基等が挙げられる。 In the present invention and the present specification, the "amino group which may have a substituent" means that one or two hydrogen atoms bonded to the nitrogen atom of the amino group are replaced with other functional groups. It is a group that has been. When having two substituents, the substituents may be the same kind or different from each other. Examples of the substituent include a C 1-6 alkyl group, a C 1-6 alkoxy group, a halogen atom (fluorine atom, chlorine atom, bromine atom, or iodine atom), a trihalomethyl group and the like.
 本発明及び本願明細書において、「エーテル結合性の酸素原子」とは、炭素原子間を連結する酸素原子であり、酸素原子同士が直列に連結された酸素原子は含まれない。炭素数Nc(Ncは2以上の整数)のアルキル基が有し得るエーテル結合性の酸素原子は、最大Nc-1個である。 In the present invention and the specification of the present application, the "ether-bonded oxygen atom" is an oxygen atom that connects carbon atoms, and does not include an oxygen atom in which oxygen atoms are connected in series. The maximum number of ether-bonded oxygen atoms that an alkyl group having Nc carbon atoms (Nc is an integer of 2 or more) can have is Nc-1.
 また、以降において、「化合物n」は式(n)で表される化合物を意味する。 In the following, "Compound n" means a compound represented by the formula (n).
<含フッ素ペプチド>
 本発明に係るペプチドは、2個以上のアミノ酸からなるペプチドであって、当該ペプチドを構成するアミノ酸残基の少なくとも1個が、側鎖に、下記一般式(g-1)~(g-3)のいずれかで表される基を有している、含フッ素ペプチドである。以降において、一般式(g-1)~(g-3)のいずれかで表される基を、Rgという。また、一般式(g-1)~(g-3)中、黒丸は結合手を意味する。
<Fluorine-containing peptide>
The peptide according to the present invention is a peptide consisting of two or more amino acids, and at least one of the amino acid residues constituting the peptide has the following general formulas (g-1) to (g-3) in the side chain. ) Is a fluorine-containing peptide having a group represented by any of). Hereinafter, the group represented by any of the general formulas (g-1) to (g-3) is referred to as Rg. Further, in the general formulas (g-1) to (g-3), the black circle means a bond.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(g-1)~(g-3)中、R及びRは、互いに独立して、水素原子、ハロゲン原子、カルボキシ基、置換基を有していてもよいC6-14アリール基、置換基を有していてもよいC5-14ヘテロアリール基、又は置換基を有していてもよいアミノ基である。R及びRとしては、互いに独立して、水素原子、ハロゲン原子、カルボキシ基、置換基を有していてもよいC6-14アリール基、又は置換基を有していてもよいC5-14ヘテロアリール基が好ましく;互いに独立して、水素原子、ハロゲン原子、又は置換基を有していてもよいC6-14アリール基がより好ましく;互いに独立して、水素原子、フッ素原子、又は置換基を有していてもよいフェニル基がさらに好ましく;互いに独立して、水素原子、フッ素原子、又はフェニル基がよりさらに好ましい。 In the general formulas (g-1) to (g-3), R 1 and R 2 may have a hydrogen atom, a halogen atom, a carboxy group, and a substituent independently of each other. C 6-14 aryl A C 5-14 heteroaryl group which may have a group, a substituent, or an amino group which may have a substituent. R 1 and R 2 are independent of each other and may have a hydrogen atom, a halogen atom, a carboxy group, a C 6-14 aryl group which may have a substituent, or C 5 which may have a substituent. -14 heteroaryl groups are preferred; C 6-14 aryl groups, which may have hydrogen atoms, halogen atoms, or substituents independently of each other, are more preferred; independent of each other, hydrogen atoms, fluorine atoms, Alternatively, a phenyl group which may have a substituent is further preferable; a hydrogen atom, a fluorine atom, or a phenyl group is further preferable independently of each other.
 一般式(g-2)中、R及びRは、互いに独立して、水素原子、ハロゲン原子、置換基を有していてもよいC1-30アルキル基、置換基を有していてもよいC6-14アリール基、又は置換基を有していてもよいC5-14ヘテロアリール基である。R及びRが置換基を有していてもよいC1-30アルキル基の場合、当該C1-30アルキル基は炭素原子が2以上の場合に、炭素原子間にエーテル結合性の酸素原子を有していてもよい。R及びRとしては、互いに独立して、水素原子、ハロゲン原子、置換基を有していてもよいC1-6アルキル基、又は置換基を有していてもよいフェニル基が好ましく;互いに独立して、水素原子、ハロゲン原子、ハロゲン原子で置換されていてもよいC1-4アルキル基、又は置換基を有していてもよいフェニル基がより好ましく;互いに独立して、水素原子、フッ素原子、メチル基、トリハロメチル基、又はフェニル基がさらに好ましく;互いに独立して、水素原子、フッ素原子、メチル基、又はトリハロメチル基がよりさらに好ましい。 In the general formula (g-2), R 3 and R 4 have a hydrogen atom, a halogen atom, a C 1-30 alkyl group which may have a substituent, and a substituent, which are independent of each other. It may be a C 6-14 aryl group, or a C 5-14 heteroaryl group which may have a substituent. When R 3 and R 4 are C 1-30 alkyl groups which may have a substituent, the C 1-30 alkyl group has an ether-bonding oxygen between carbon atoms when the number of carbon atoms is 2 or more. It may have an atom. As R 3 and R 4 , a hydrogen atom, a halogen atom, a C 1-6 alkyl group which may have a substituent, or a phenyl group which may have a substituent are preferable as independent of each other; More preferably, a C 1-4 alkyl group, which may be substituted with a hydrogen atom, a halogen atom, a halogen atom, or a phenyl group, which may have a substituent, independently of each other; , Fluorine atom, methyl group, trihalomethyl group, or phenyl group; independent of each other, hydrogen atom, fluorine atom, methyl group, or trihalomethyl group is even more preferable.
 一般式(g-3)中、R~Rは、互いに独立して、水素原子、ハロゲン原子、置換基を有していてもよいC1-30アルキル基、置換基を有していてもよいC6-14アリール基、又は置換基を有していてもよいC5-14ヘテロアリール基である。R~Rが置換基を有していてもよいC1-30アルキル基の場合、当該C1-30アルキル基は炭素原子が2以上の場合に、炭素原子間にエーテル結合性の酸素原子を有していてもよい。R~Rとしては、互いに独立して、水素原子、ハロゲン原子、置換基を有していてもよいC1-6アルキル基、又は置換基を有していてもよいフェニル基が好ましく;互いに独立して、水素原子、ハロゲン原子、ハロゲン原子で置換されていてもよいC1-4アルキル基、又は置換基を有していてもよいフェニル基がより好ましく;互いに独立して、水素原子、フッ素原子、メチル基、トリハロメチル基、又はフェニル基がさらに好ましく;互いに独立して、水素原子、フッ素原子、メチル基、又はトリハロメチル基がよりさらに好ましい。 In the general formula (g-3), R 3 to R 6 have a hydrogen atom, a halogen atom, a C 1-30 alkyl group which may have a substituent, and a substituent independently of each other. It may be a C 6-14 aryl group, or a C 5-14 heteroaryl group which may have a substituent. When R 3 to R 6 are C 1-30 alkyl groups which may have a substituent, the C 1-30 alkyl group has an ether-bonding oxygen between carbon atoms when the number of carbon atoms is 2 or more. It may have an atom. As R 3 to R 6 , a hydrogen atom, a halogen atom, a C 1-6 alkyl group which may have a substituent, or a phenyl group which may have a substituent are preferable as independent of each other; More preferably, a C 1-4 alkyl group, which may be substituted with a hydrogen atom, a halogen atom, a halogen atom, or a phenyl group, which may have a substituent, independently of each other; , Fluorine atom, methyl group, trihalomethyl group, or phenyl group; independently of each other, hydrogen atom, fluorine atom, methyl group, or trihalomethyl group is even more preferred.
 一般式(g-3)中、R、R、R及びRは、互いに連結して、置換基を有していてもよいC6-14アリール基、又は置換基を有していてもよいC5-14ヘテロアリール基を構成していてもよい。R、R、R及びRにより構成される環構造としては、置換基を有していてもよいフェニル基又は置換基を有していてもよいC5-14ヘテロアリール基が好ましく、置換基を有していてもよいフェニル基又は置換基を有していてもよいC5-14含窒素ヘテロアリール基がより好ましく、フェニル基、ピロリル基又はインドリル基がさらに好ましい。 In the general formula (g-3), R 1 , R 2 , R 3 and R 4 are linked to each other and have a C 6-14 aryl group, which may have a substituent, or a substituent. It may constitute a C 5-14 heteroaryl group. As the ring structure composed of R 1 , R 2 , R 3 and R 4 , a phenyl group which may have a substituent or a C 5-14 heteroaryl group which may have a substituent is preferable. , A phenyl group which may have a substituent or a C 5-14 nitrogen-containing heteroaryl group which may have a substituent is more preferable, and a phenyl group, a pyrrolyl group or an indolyl group is further preferable.
 本発明に係る含フッ素ペプチドは、Rgのフッ素原子を含む部分構造が、ペプチド結合中の-NHと共に水素結合を介して分子内環構造を構成する。Rgが一般式(g-1)で表される基の場合、一般式(g-1)中のフッ素原子(β位のフッ素原子)と、ペプチド結合中の窒素原子と結合する水素原子との間の水素結合により、分子内6員環構造を形成する。Rgが一般式(g-2)で表される基の場合、一般式(g-2)中のフッ素原子(γ位のフッ素原子)と、ペプチド結合中の窒素原子と結合する水素原子との間の水素結合により、分子内6員環構造を形成する。Rgが一般式(g-3)で表される基の場合、一般式(g-3)中の末端のフッ素原子と、ペプチド結合中の窒素原子と結合する水素原子との間の水素結合により、分子内7員環構造を形成する。分子内環構造の模式図を下記に示す。なお、これらの分子内環構造は、通常の環構造ではなく水素結合を含むものである。 In the fluorine-containing peptide according to the present invention, a partial structure containing a fluorine atom of Rg constitutes an intramolecular ring structure via a hydrogen bond together with -NH in the peptide bond. When Rg is a group represented by the general formula (g-1), the fluorine atom (the fluorine atom at the β-position) in the general formula (g-1) and the hydrogen atom bonded to the nitrogen atom in the peptide bond The hydrogen bonds between them form an intramolecular 6-membered ring structure. When Rg is a group represented by the general formula (g-2), the fluorine atom (fluorine atom at the γ position) in the general formula (g-2) and the hydrogen atom bonded to the nitrogen atom in the peptide bond The hydrogen bonds between them form an intramolecular 6-membered ring structure. When Rg is a group represented by the general formula (g-3), it is formed by a hydrogen bond between the terminal fluorine atom in the general formula (g-3) and the hydrogen atom bonded to the nitrogen atom in the peptide bond. , Form an intramolecular 7-membered ring structure. A schematic diagram of the intramolecular ring structure is shown below. It should be noted that these intramolecular ring structures are not ordinary ring structures but contain hydrogen bonds.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 本発明に係る含フッ素ペプチドは、この分子内環構造をとることにより、細胞膜透過性に優れている。分子内環構造をとることと細胞膜透過性との関係は明らかではないが、ペプチド結合中の-NHが環境中の水分子と水素結合することが抑制され、ペプチド分子全体の親水性が低下するためではないかと推察される。 The fluorine-containing peptide according to the present invention has excellent cell membrane permeability due to this intramolecular ring structure. Although the relationship between the intramolecular ring structure and cell membrane permeability is not clear, -NH in the peptide bond is suppressed from hydrogen bonding with water molecules in the environment, and the hydrophilicity of the entire peptide molecule is reduced. It is presumed that this is because of it.
 Rgが一般式(g-1)で表される基の場合、分子内構造を形成しやすい点から、R及びRが、それぞれ独立して水素原子又はフッ素原子である基が好ましく;R及びRの一方がフッ素原子であり、他方が水素原子である基、又はR及びRの両方がフッ素原子である基がより好ましく、R及びRの両方がフッ素原子である基が特に好ましい。 When Rg is a group represented by the general formula (g-1), it is preferable that R 1 and R 2 are independently hydrogen atoms or fluorine atoms, respectively; from the viewpoint of easily forming an intramolecular structure; A group in which one of 1 and R 2 is a fluorine atom and the other is a hydrogen atom, or a group in which both R 1 and R 2 are fluorine atoms is more preferable, and both R 1 and R 2 are fluorine atoms. Groups are particularly preferred.
 Rgが一般式(g-1)で表される基の場合、Rが水素原子であり、Rが置換基を有していてもよいC6-14アリール基である基も好ましい。中でも、Rが水素原子であり、Rが置換基を有していてもよいフェニル基である基が好ましく;Rが水素原子であり、Rがフェニル基である基がより好ましい。 When Rg is a group represented by the general formula (g-1), a group in which R 1 is a hydrogen atom and R 2 is a C 6-14 aryl group which may have a substituent is also preferable. Among them, R 1 is hydrogen atom, group are preferable R 2 is a phenyl group which may have a substituent; R 1 is hydrogen atom, group R 2 is a phenyl group is more preferable.
 Rgが一般式(g-2)で表される基の場合、分子内構造を形成しやすい点から、R及びRの少なくとも一方が水素原子又はフッ素原子であり、Rが水素原子であり、Rが水素原子又はトリフルオロメチル基である基が好ましく;R及びRの少なくとも一方が水素原子であり、残る他方がフッ素原子であり、Rが水素原子であり、Rが水素原子又はトリフルオロメチル基である基がより好ましく;R及びRの両方がフッ素原子であり、Rが水素原子であり、Rが水素原子又はトリフルオロメチル基である基がさらに好ましく;R及びRの両方がフッ素原子であり、Rが水素原子であり、Rがトリフルオロメチル基である基が特に好ましい。 When Rg is a group represented by the general formula (g-2), at least one of R 1 and R 2 is a hydrogen atom or a fluorine atom, and R 3 is a hydrogen atom because it is easy to form an intramolecular structure. There, preferably a group in which R 4 is a hydrogen atom or a trifluoromethyl group; at least one of R 1 and R 2 is a hydrogen atom, the other is a fluorine atom, R 3 is a hydrogen atom, and R 4 More preferably a group in which is a hydrogen atom or a trifluoromethyl group; a group in which both R 1 and R 2 are fluorine atoms, R 3 is a hydrogen atom and R 4 is a hydrogen atom or a trifluoromethyl group. More preferably; a group in which both R 1 and R 2 are fluorine atoms, R 3 is a hydrogen atom and R 4 is a trifluoromethyl group is particularly preferred.
 Rgが一般式(g-3)で表される基の場合、分子内構造を形成しやすい点から、R及びRの少なくとも一方が水素原子又はフッ素原子であり、Rが水素原子であり、Rが水素原子又はトリフルオロメチル基であり、R及びRが水素原子である基が好ましく;R及びRの少なくとも一方が水素原子であり、残る他方がフッ素原子であり、Rが水素原子であり、Rが水素原子又はトリフルオロメチル基であり、R及びRが水素原子である基がより好ましく;R及びRの両方がフッ素原子であり、Rが水素原子であり、Rが水素原子又はトリフルオロメチル基であり、R及びRが水素原子である基がさらに好ましく;R及びRの両方がフッ素原子であり、Rが水素原子であり、Rがトリフルオロメチル基であり、R及びRが水素原子である基が特に好ましい。 When Rg is a group represented by the general formula (g-3), at least one of R 1 and R 2 is a hydrogen atom or a fluorine atom, and R 3 is a hydrogen atom because it is easy to form an intramolecular structure. There, preferably a group in which R 4 is a hydrogen atom or a trifluoromethyl group and R 5 and R 6 are hydrogen atoms; at least one of R 1 and R 2 is a hydrogen atom and the remaining one is a fluorine atom. , R 3 is a hydrogen atom, R 4 is a hydrogen atom or a trifluoromethyl group, and R 5 and R 6 are hydrogen atoms, more preferably; both R 1 and R 2 are fluorine atoms. More preferably, R 3 is a hydrogen atom, R 4 is a hydrogen atom or a trifluoromethyl group, and R 5 and R 6 are hydrogen atoms; both R 1 and R 2 are fluorine atoms and R A group in which 3 is a hydrogen atom, R 4 is a trifluoromethyl group, and R 5 and R 6 are hydrogen atoms is particularly preferable.
 Rgが一般式(g-3)で表される基の場合、R、R、R及びRが互いに連結して、置換基を有していてもよいC6-14アリール基、又は置換基を有していてもよいC5-14ヘテロアリール基を構成しており、R及びRが水素原子である基も好ましく;R、R、R及びRが互いに連結して、置換基を有していてもよいフェニル基、又は置換基を有していてもよいピロリル基若しくはインドリル基を構成しており、R及びRが水素原子である基がより好ましく;R、R、R及びRが互いに連結して、フェニル基、ピロリル基、又はインドリル基を構成しており、R及びRが水素原子である基がさらに好ましく;R、R、R及びRが互いに連結してフェニル基又はインドリル基を構成しており、R及びRが水素原子である基がよりさらに好ましい。 When Rg is a group represented by the general formula (g-3), R 1 , R 2 , R 3 and R 4 may be linked to each other and have a substituent C 6-14 aryl group, Alternatively, groups constituting a C 5-14 heteroaryl group which may have a substituent and where R 5 and R 6 are hydrogen atoms are also preferable; R 1 , R 2 , R 3 and R 4 are each other. It is linked to form a phenyl group which may have a substituent, or a pyrrolyl group or an indrill group which may have a substituent, and a group in which R 5 and R 6 are hydrogen atoms is more. Preferably; R 1 , R 2 , R 3 and R 4 are linked to each other to form a phenyl group, pyrrolyl group, or indolyl group, more preferably a group in which R 5 and R 6 are hydrogen atoms; R A group in which 1 , R 2 , R 3 and R 4 are linked to each other to form a phenyl group or an indrill group, and R 5 and R 6 are hydrogen atoms is even more preferable.
 本発明に係る含フッ素ペプチドは、当該ペプチドを構成するアミノ酸残基のうち、少なくとも1個の側鎖がRgであればよく、2個以上の側鎖がRgであってもよく、全てのアミノ酸残基の側鎖がRgであってもよい。一分子中、2個以上のRgがある場合、Rg同士は互いに同種であってもよく、異種であってよい。一分子のペプチドに側鎖がRgであるアミノ酸残基が2個以上ある場合、これ等の複数のRgは、互いに同種であってもよく、異種であってもよい。また、ペプチドのうち、側鎖がRgであるアミノ酸残基は、N末端にあってもよく、C末端にあってもよく、末端以外にあってもよい。 In the fluorine-containing peptide according to the present invention, among the amino acid residues constituting the peptide, at least one side chain may be Rg, and two or more side chains may be Rg, and all amino acids. The side chain of the residue may be Rg. When there are two or more Rg in one molecule, the Rg may be the same kind or different from each other. When one molecule of peptide has two or more amino acid residues having a side chain of Rg, these plurality of Rg may be the same species or different from each other. Further, among the peptides, the amino acid residue whose side chain is Rg may be at the N-terminal, at the C-terminal, or at a position other than the terminal.
 本発明に係る含フッ素ペプチドは、側鎖がRgに置換されたアミノ酸[HOOC-CH(Rg)-NH]を原料として製造できる。側鎖がRgに置換されたアミノ酸としては、例えば、2-フルオロ-L-フェニルアラニン(CAS No:19883-78-4)、(2S,4R)-4-フルオログルタミン酸、(2S,4S)-4-フルオログルタミン酸、4,4-ジフルオロ-L-グルタミン酸(CAS No:130835-20-0)、2-アミノ-4,4,4-トリフルオロ酪酸(CAS No:15959-93-0)、3-フルオロバリン(CAS No:43163-94-6)、5’,5’,5’-トリフルオロロイシン(CAS No:372-22-5)、4,4-ジフルオロ-DL-オルニチン、β-フルオロ-DL-アラニン(CAS No:43163-93-5)、ヘキサフルオロ-DL-バリン(CAS No:16063-80-2)、α-ジフルオロメチル-DL-オルニチン(CAS No:70052-12-9)等が挙げられる。 The fluorine-containing peptide according to the present invention can be produced using an amino acid [HOOC-CH (Rg) -NH 2] in which the side chain is replaced with Rg as a raw material. Examples of amino acids in which the side chain is replaced with Rg include 2-fluoro-L-phenylalanine (CAS No: 19883-78-4), (2S, 4R) -4-fluoroglutamic acid, (2S, 4S) -4. -Fluoroglutamic acid, 4,4-difluoro-L-glutamic acid (CAS No: 130835-20-0), 2-amino-4,4,4-trifluorobutyric acid (CAS No: 15959-93-0), 3- Fluorovaline (CAS No: 43163-94-6), 5', 5', 5'-trifluoroleucine (CAS No: 372-22-5), 4,4-difluoro-DL-ornithine, β-fluoro- DL-alanine (CAS No: 43163-93-5), hexafluoro-DL-valine (CAS No: 16063-80-2), α-difluoromethyl-DL-ornithin (CAS No: 70052-12-9), etc. Can be mentioned.
 本発明に係る含フッ素ペプチドは、2個以上のアミノ酸からなるペプチドであればよく、2~40個のアミノ酸からなるペプチドが好ましく、2~20個のアミノ酸からなるペプチドがより好ましく、2又は3個のアミノ酸からなるペプチドがさらに好ましい。 The fluorine-containing peptide according to the present invention may be a peptide consisting of two or more amino acids, preferably a peptide consisting of 2 to 40 amino acids, more preferably a peptide consisting of 2 to 20 amino acids, or 2 or 3. Peptides consisting of a single amino acid are more preferred.
 本発明に係る含フッ素ペプチドは、環状ペプチドであってもよい。環状構造を形成するアミノ酸残基の数は、4~31残基であるのが好ましく、4~11残基であるのがより好ましく、6~7残基であるのがさらに好ましい。 The fluorine-containing peptide according to the present invention may be a cyclic peptide. The number of amino acid residues forming the cyclic structure is preferably 4 to 31 residues, more preferably 4 to 11 residues, and even more preferably 6 to 7 residues.
 本発明に係る含フッ素ペプチドが環状ペプチドの場合、環状構造を形成するアミノ酸残基のうち、少なくとも1個の側鎖がRgであればよく、2個以上の側鎖がRgであってもよく、全てのアミノ酸残基の側鎖がRgであってもよい。本発明に係る含フッ素ペプチドが、一分子中に2個以上のRgを有する場合、これ等の複数のRgは、互いに同種であってもよく、異種であってもよい。また、本発明に係る含フッ素ペプチドのうち、側鎖がRgであるアミノ酸残基は、N末端にあってもよく、C末端にあってもよく、末端以外にあってもよい。 When the fluorine-containing peptide according to the present invention is a cyclic peptide, at least one side chain of the amino acid residues forming the cyclic structure may be Rg, and two or more side chains may be Rg. , The side chains of all amino acid residues may be Rg. When the fluorine-containing peptide according to the present invention has two or more Rg in one molecule, these plurality of Rg may be the same kind or different from each other. Further, among the fluorine-containing peptides according to the present invention, the amino acid residue having an Rg side chain may be at the N-terminal, at the C-terminal, or at a position other than the terminal.
 ペプチドの製造は、一般的なペプチド合成法により行うことができる。例えば、ペプチド固相合成法により行うことができる。含フッ素ペプチドは、側鎖にフッ素原子が導入されたアミノ酸を原料として、ペプチド自動合成機を用いて容易に合成できる。環状ペプチドも、一般的なペプチド合成法により製造することができる。 Peptide can be produced by a general peptide synthesis method. For example, it can be carried out by a peptide solid phase synthesis method. The fluorine-containing peptide can be easily synthesized using an automatic peptide synthesizer using an amino acid having a fluorine atom introduced into the side chain as a raw material. Cyclic peptides can also be produced by general peptide synthesis methods.
 C末端を固相に結合したアミノ酸に、アミノ基を保護したアミノ酸を順次縮合させ、ペプチドを固相から脱離させることにより、ペプチドを製造できる。アミノ酸原料は、アミノ基がtert-ブトキシカルボニル(Boc)基又は9-フルオレニルメチルオキシカルボニル(Fmoc)基で保護されたものを使用することが好ましい。アミノ酸原料の側鎖官能基は、保護基で保護されているものを使用することが好ましい。側鎖官能基の保護基としては、Boc基、トリフェニルメチル基、ベンジル基、2,2,5,7,8-ペンタメチルクロマン-6-スルホニル(Pmc)基等が挙げられる。 A peptide can be produced by sequentially condensing an amino acid having an amino group protected with an amino acid having a C-terminal bonded to a solid phase and desorbing the peptide from the solid phase. As the amino acid raw material, it is preferable to use one in which the amino group is protected by a tert-butoxycarbonyl (Boc) group or a 9-fluorenylmethyloxycarbonyl (Fmoc) group. As the side chain functional group of the amino acid raw material, it is preferable to use one protected by a protecting group. Examples of the protecting group for the side chain functional group include a Boc group, a triphenylmethyl group, a benzyl group, a 2,2,5,7,8-pentamethylchroman-6-sulfonyl (Pmc) group and the like.
 ペプチド結合を形成する縮合剤としては、例えば、N,N-ジシクロヘキシルカルボジイミド(DCC)、1-エチル-3-(3’-ジメチルアミノプロピル)カルボジイミド(WSC)、ベンゾトリアゾール-1-イルオキシ-トリスジメチルアミノホスホニウムヘキサフルオロリン酸塩(BOP)、ベンゾトリアゾール-1-イルオキシトリスピロリジノホスホニウムヘキサフルオロリン酸塩(pyBOP)、2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロリン酸塩(HBTU)、2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムテトラフルオロボレート等が挙げられる。また、N-ヒドロキシベンゾトリアゾール(HOBt)と上記縮合剤を好ましい割合で混合して用いることもできる。 Examples of the condensing agent that forms a peptide bond include N, N-dicyclohexylcarbodiimide (DCC), 1-ethyl-3- (3'-dimethylaminopropyl) carbodiimide (WSC), and benzotriazole-1-yloxy-trisdimethyl. Aminophosphonium hexafluorophosphate (BOP), benzotriazole-1-yloxytrispyrrolidinophosphonium hexafluorophosphate (pyBOP), 2- (1H-benzotriazole-1-yl) -1,1,3 Examples thereof include 3-tetramethyluronium hexafluorophosphate (HBTU) and 2- (1H-benzotriazole-1-yl) -1,1,3,3-tetramethyluronium tetrafluorobolate. Further, N-hydroxybenzotriazole (HOBt) and the above condensing agent can be mixed and used in a preferable ratio.
 ペプチド結合の形成にはカルボキシル末端を活性化する方法を用いてもよく、その活性化剤としては、例えば、N-ヒドロキシスクシンイミド、p-ニトロフェニルエステル、ペンタフルオロフェニルエステル等が挙げられる。ペプチド結合を形成する際に用いる塩基としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン(DIEA)等が挙げられる。ペプチド結合形成反応に用いる溶媒としては、例えば、クロロホルム、ジクロロメタン、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド等が挙げられる。 A method of activating the carboxyl terminus may be used for the formation of the peptide bond, and examples of the activator include N-hydroxysuccinimide, p-nitrophenyl ester, pentafluorophenyl ester and the like. Examples of the base used for forming a peptide bond include triethylamine, diisopropylethylamine (DIEA) and the like. Examples of the solvent used in the peptide bond formation reaction include chloroform, dichloromethane, acetonitrile, N, N-dimethylformamide (DMF), dimethyl sulfoxide and the like.
 ペプチド又はアミノ酸のアミノ末端アミノ基の保護基であるBoc基及びFmoc基は、それぞれトリフルオロ酢酸(TFA)又はピペリジンにより除去できる。ペプチドのアミノ酸残基の側鎖官能基の保護基は、例えば、TFA、フッ化水素(HF)、トリフルオロメタンスルホン酸等により除去できる。 The Boc and Fmoc groups, which are the protecting groups for the amino-terminal amino groups of peptides or amino acids, can be removed with trifluoroacetic acid (TFA) or piperidine, respectively. The protecting group of the side chain functional group of the amino acid residue of the peptide can be removed by, for example, TFA, hydrogen fluoride (HF), trifluoromethanesulfonic acid or the like.
 また、ペプチド固相合成法において、ペプチド又はアミノ酸残基の側鎖官能基に保護基が付いているペプチドをペプチド固相合成樹脂より脱離させる方法としては、例えば、TFAを用いることができる。ペプチド固相樹脂からのペプチドの脱離と、アミノ酸残基の側鎖官能基の保護基の脱離は、それぞれ同一反応系内で同時に行うこともできる。あるいは、それぞれ独立に行うこともできる。ペプチド固相合成用のペプチド固相合成樹脂としては、例えば、4-ヒドロキシメチル-3-メトキシフェノキシ酪酸-ベンズヒドリルアミン-ポリスチレン樹脂、p-ベンジルオキシベンジルアルコール-ポリスチレン樹脂、オキシム樹脂等の通常市販されているものを用いることができる。 Further, in the peptide solid phase synthesis method, for example, TFA can be used as a method for removing a peptide having a protecting group on the side chain functional group of the peptide or amino acid residue from the peptide solid phase synthetic resin. Desorption of the peptide from the peptide solid phase resin and desorption of the protecting group of the side chain functional group of the amino acid residue can also be performed simultaneously in the same reaction system. Alternatively, each can be performed independently. Examples of the peptide solid phase synthetic resin for peptide solid phase synthesis include 4-hydroxymethyl-3-methoxyphenoxybutyric acid-benzhydrylamine-polystyrene resin, p-benzyloxybenzyl alcohol-polystyrene resin, and oxime resin, which are usually commercially available. Can be used.
 目的のペプチド又はその中間体は、例えば、イオンクロマトグラフィー、ゲル濾過クロマトグラフィー、逆相クロマトグラフィー、順相クロマトグラフィー、再結晶、抽出、分別結晶化等、種々の方法により単離、精製を行うことができる。また、こうして得られたペプチドは、常法によってそれぞれの塩に変換できる。 The target peptide or its intermediate is isolated and purified by various methods such as ion chromatography, gel filtration chromatography, reverse phase chromatography, normal phase chromatography, recrystallization, extraction, and fractional crystallization. be able to. In addition, the peptide thus obtained can be converted into each salt by a conventional method.
 製造された含フッ素ペプチドのアミノ基又はカルボキシル基の保護基は、必要に応じて脱保護することもできる。脱保護は、保護基の種類に応じて常法により行うことができる。 The protective group of the amino group or the carboxyl group of the produced fluorine-containing peptide can be deprotected if necessary. Deprotection can be performed by a conventional method depending on the type of protecting group.
 本発明に係る含フッ素ペプチドは、末端のアミノ基又はカルボキシル基が、保護基によって保護されていてもよく、保護基以外の置換基によって置換されていてもよい。カルボキシル基の保護基としては、例えば、アセチル基、ベンジル基、ジフェニルメチル基、トリフェニルメチル基、4-ニトロベンジル基、4-メトキシベンジル基、2,4-ジメトキシベンジル基、3,4-ジメトキシベンジル基、4-メチルベンジル基、2,6-ジメチルベンジル基、3-クロロベンジル基、9-アントリルメチル基、ピペロニル基、2-(9,10-ジオキソ)アントリルメチル基、ベンジルオキシメチル基、フェナシル基等が挙げられる。アミノ基の保護基としては、例えば、Boc基、Fmoc基、ベンジルオキシカルボニル(Cbz)基、アリルオキシカルボニル(Alloc)基、2,2,2-トリクロロエトキシカルボニル(Troc)基等のカルバメート系保護基が挙げられる。 In the fluorine-containing peptide according to the present invention, the terminal amino group or carboxyl group may be protected by a protecting group, or may be substituted by a substituent other than the protecting group. Examples of the carboxyl group protecting group include an acetyl group, a benzyl group, a diphenylmethyl group, a triphenylmethyl group, a 4-nitrobenzyl group, a 4-methoxybenzyl group, a 2,4-dimethoxybenzyl group, and a 3,4-dimethoxy group. Benzyl group, 4-methylbenzyl group, 2,6-dimethylbenzyl group, 3-chlorobenzyl group, 9-anthrylmethyl group, piperonyl group, 2- (9,10-dioxo) anthrylmethyl group, benzyloxymethyl Benzyl group and the like can be mentioned. Examples of the amino-protecting group include carbamate-based protecting groups such as Boc group, Fmoc group, benzyloxycarbonyl (Cbz) group, allyloxycarbonyl (Alloc) group, and 2,2,2-trichloroethoxycarbonyl (Troc) group. The group is mentioned.
 本発明に係る含フッ素ペプチドとしては、下記一般式(p2-1)又は一般式(p3-1)が挙げられる。一般式(p2-1)又は一般式(p3-1)中、Rgは、前記一般式(g-1)、一般式(g-2)、又は一般式(g-3)で表される基であり、R11及びR12は、それぞれ独立して、C1-6アルキル基又はC6-14アリール-C1-6アルキル基である。Zは、ヒドロキシ基、C1-6アルキル基、C1-6アルコキシ基、又はカルボキシル基の保護基であり、Z及びZは、それぞれ独立して、水素原子、C1-6アルキル基、C6-14アリール-C1-6アルキル基、又はアミノ基の保護基である。 Examples of the fluorine-containing peptide according to the present invention include the following general formula (p2-1) or general formula (p3-1). In the general formula (p2-1) or the general formula (p3-1), Rg is a group represented by the general formula (g-1), the general formula (g-2), or the general formula (g-3). R 11 and R 12 are independently C 1-6 alkyl groups or C 6-14 aryl-C 1-6 alkyl groups, respectively. Z 1 is a protecting group for a hydroxy group, a C 1-6 alkyl group, a C 1-6 alkoxy group, or a carboxyl group, and Z 2 and Z 3 are independent hydrogen atoms and C 1-6 alkyl, respectively. A group, a C 6-14 aryl-C 1-6 alkyl group, or an amino protecting group.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(p2-1)又は一般式(p3-1)のぺプチドとしては、R11及びR12が、それぞれ独立して、C1-6アルキル基又はフェニル-C1-6アルキル基であり、Zが、ヒドロキシ基、C1-6アルキル基、又はC1-6アルコキシ基であり、Zが、水素原子又はC1-6アルキル基であり、Zが、水素原子、Boc基、Fmoc基、C1-6アルキル基、又はフェニル-C1-6アルキル基であるペプチドが好ましく;R11及びR12が、それぞれ独立して、C1-6アルキル基又はベンジル基であり、Zが、ヒドロキシ基、C1-6アルキル基、又はC1-6アルコキシ基であり、Zが、水素原子又はC1-6アルキル基であり、Zが、水素原子、Boc基、Fmoc基、C1-6アルキル基、ベンジル基、又はフェニルエチル基であるペプチドがより好ましい。 As the peptides of the general formula (p2-1) or the general formula (p3-1), R 11 and R 12 are independently C 1-6 alkyl groups or phenyl-C 1-6 alkyl groups, respectively. , Z 1 is a hydroxy group, a C 1-6 alkyl group, or a C 1-6 alkoxy group, Z 2 is a hydrogen atom or a C 1-6 alkyl group, and Z 3 is a hydrogen atom, a Boc group. , Fmoc group, C 1-6 alkyl group, or phenyl-C 1-6 alkyl group are preferred; R 11 and R 12 are independently C 1-6 alkyl or benzyl groups, respectively. Z 1 is a hydroxy group, C 1-6 alkyl group, or C 1-6 alkoxy group, Z 2 is a hydrogen atom or C 1-6 alkyl group, and Z 3 is a hydrogen atom, Boc group, Peptides that are Fmoc groups, C 1-6 alkyl groups, benzyl groups, or phenylethyl groups are more preferred.
 本発明に係る含フッ素ペプチドは、細胞膜透過性に優れている。理由は定かではないが、本発明に係る含フッ素ペプチドは、分子内環構造をとることにより、ペプチド結合中の-NHが環境中の水分子と水素結合することが抑制され、ペプチド分子全体の親水性が低下するためではないかと推察される。また、天然ペプチドと構造が大幅に異なるため、ペプチターゼにより分解されにくい。これらの性質を利用して、本発明に係る含フッ素ペプチドは、生理活性物質として、医薬分野での利用が期待される。例えば、本発明に係る含フッ素ペプチドは、細胞膜透過剤の有効成分や、薬効成分を標的細胞へ運ぶDDSキャリアとしての利用が期待できる。例えば、生体内の標的細胞内に取り込まれることにより何等かの生理活性を示す機能性ペプチドに、その機能を損なわないように本発明に係る含フッ素ペプチドを付加することにより、当該機能性ペプチドの標的細胞への取り込み効率を改善できる。また、生理活性を示す機能性ペプチドの疎水性アミノ酸残基のうちの一部の側鎖を、当該機能性ペプチドの機能を損なわない範囲で、Rg、好ましくは前記一般式(g-1)又は(g-2)で表される基に置換することにより、当該機能性ペプチドの細胞膜透過性や細胞内での滞留時間を改善できる。 The fluorine-containing peptide according to the present invention has excellent cell membrane permeability. Although the reason is not clear, the fluorine-containing peptide according to the present invention has an inner ring structure in which -NH in the peptide bond is suppressed from hydrogen-bonding to a water molecule in the environment, and the entire peptide molecule is suppressed. It is presumed that this is due to the decrease in hydrophilicity. In addition, since the structure is significantly different from that of natural peptides, it is not easily decomposed by peptidase. Utilizing these properties, the fluorine-containing peptide according to the present invention is expected to be used in the pharmaceutical field as a physiologically active substance. For example, the fluorine-containing peptide according to the present invention can be expected to be used as an active ingredient of a cell membrane penetrating agent or a DDS carrier that carries a medicinal ingredient to a target cell. For example, by adding a fluorine-containing peptide according to the present invention to a functional peptide that exhibits some physiological activity by being taken up into a target cell in a living body so as not to impair its function, the functional peptide can be obtained. The efficiency of uptake into target cells can be improved. In addition, some side chains of the hydrophobic amino acid residues of the functional peptide exhibiting physiological activity are Rg, preferably the general formula (g-1) or the above, as long as the function of the functional peptide is not impaired. By substituting with the group represented by (g-2), the cell membrane permeability of the functional peptide and the residence time in the cell can be improved.
 以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。 Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples.
 実施例、比較例の分析に使用したNMR装置は日本電子製JNM-ECZ400S(400MHz)であり、H NMRではテトラメチルシランを0PPM、19F NMRではCを-162PPMの基準値とした。 The NMR apparatus used for the analysis of Examples and Comparative Examples was JNM-ECZ400S (400 MHz) manufactured by JEOL Ltd., and tetramethylsilane was set to 0 PPM in 1 H NMR and C 6 F 6 was set to 162 PPM in 19 F NMR. bottom.
 本願明細書において、以下の略号を使用する。
DCM:ジクロロメタン
DMF:N,N-ジメチルホルムアミド
NMP:N-メチルピロリドン
EDC・HCl:1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩
HOBt:1-ヒドロキシベンゾトリアゾール一水和物
HOAt:1-ヒドロキシ-7-アザベンゾトリアゾール
Oxyma:エチルシアノ(ヒドロキシイミノ)アセテート
DIC:N,N’-ジイソプロピルカルボジイミド
DIPEA:N,N-ジイソプロピルエチルアミン
TFA:トリフルオロ酢酸
DMTMM:4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド
THF:テトラヒドロフラン
PAMPA:パラレル人工膜透過性アッセイ
MDCK:Mardin-Darby canine kidney
HBSS:Hank’s balanced salt solution
Boc:tert-ブトキシカルボニル基
Cbz:ベンジルオキシカルボニル基
Ac:アセチル基
Me:メチル基
Bn:ベンジル基
EPh:フェニルエチル基 (-CHCH-Ph)
HATU:1-[ビス(ジメチルアミノ)メチレン]-1H-1,2,3-トリアゾロ[4,5-b]ピリジニウム 3-オキシド ヘキサフルオロホスファート
PyAOP:ヘキサフルオロリン酸(7-アザベンゾトリアゾール-1-イルオキシ)トリスピロリジノホスホニウム
PyBOP:ヘキサフルオロリン酸(ベンゾトリアゾール-1-イルオキシ)トリスピロリジノホスホニウム
HFIP:1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール
TIPS:トリイソプロピルシラン
The following abbreviations are used herein.
DCM: dichloromethane DMF: N, N-dimethylformamide NMP: N-methylpyrrolidone EDC · HCl: 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride HOBt: 1-hydroxybenzotriazole monohydrate HOAt: 1-Hydroxy-7-azabenzotriazole Oxyma: Ethyl cyano (hydroxyimino) acetate DIC: N, N'-diisopropylcarbodiimide DIPEA: N, N-diisopropylethylamine TFA: Trifluoroacetate DMTMM: 4- (4,6-dimethoxy- 1,3,5-triazin-2-yl) -4-methylmorpholinium chloride THF: tetrahydrofuran PAMPA: Parallel artificial membrane permeability assay MDCK: Madin-Darby canine kidney
WBSS: Hank's balanced salt solution
Boc: tert-butoxycarbonyl group Cbz: benzyloxycarbonyl group Ac: acetyl group Me: methyl group Bn: benzyl group EPh: phenylethyl group (-CH 2 CH 2- Ph)
HATU: 1- [bis (dimethylamino) methylene] -1H-1,2,3-triazolo [4,5-b] pyridinium 3-oxide hexafluorophosphate PyAOP: hexafluorophosphoric acid (7-azabenzotriazole- 1-Iloxy) Trispyrrolidinophosphonium PyBOP: Hexafluorophosphoric acid (benzotriazole-1-yloxy) Trispyrrolidinophosphonium HFIP: 1,1,1,3,3,3-hexafluoro-2-propanol TIPS: Triisopropyl Silane
 この研究で使用した化学物質と溶媒は、商業的な供給業者から購入し、さらに精製することなく使用した。分取HPLCは、5C18-MS-IIカラム(ナカライテスク社製、カタログ番号:34355-91、内径10mm×150mm)を備えたProminence HPLCシステム(島津製作所製)で行った。ただし、実施例10、比較例11及び実施例12では、5C18-AS-IIカラム(ナカライテスク社製、カタログ番号:34355-91、内径10mm×150mm)を使用した。全てのHPLCは、2種の溶媒(溶媒A:0.1%TFA含有HO、溶媒B:0.1%TFA含有アセトニトリル)を使用して実行した。NMRスペクトルは、ECS-400(JEOL社製)を使用して記録した。LC-MSは、InertSustain AQ-C18(GL Science社製、内径2.1mm×50mm)を用い、ACQUITYUPLC H-Class/SQD2(Waters社製)で実施した。МALDI-TOF-MSはautoflex maX(Bruker社製)で行った。MDCK-II細胞は、Authenticated Cell CulturesのEuropean Collectionのものを、DS Pharma Biomedicalから購入した。 The chemicals and solvents used in this study were purchased from commercial suppliers and used without further purification. Preparative HPLC was performed on a Prominence HPLC system (manufactured by Shimadzu Corporation) equipped with a 5C18-MS-II column (manufactured by Nacalai Tesque, catalog number: 34355-91, inner diameter 10 mm × 150 mm). However, in Example 10, Comparative Example 11 and Example 12, a 5C18-AS-II column (manufactured by Nacalai Tesque, catalog number: 34355-91, inner diameter 10 mm × 150 mm) was used. All HPLC are two solvents (solvent A: 0.1% TFA-containing H 2 O, solvent B: 0.1% TFA-containing acetonitrile) were performed using. The NMR spectrum was recorded using ECS-400 (manufactured by JEOL Ltd.). LC-MS was carried out using INTSstein AQ-C18 (manufactured by GL Sciences, inner diameter 2.1 mm × 50 mm) and ACQUITYUPLC H-Class / SQD2 (manufactured by Waters). МALDI-TOF-MS was performed by autoflex maX (manufactured by Bruker). MDCK-II cells were purchased from the European Collection of Authenticated Cell Cultures from DS Pharma Biomedical.
 以降において、アミノ酸は、三文字表記で表記することがあり、側鎖にフッ素原子を含む場合、三文字表記の後ろに「(F)」を付す。例えば、「Phe」はフェニルアラニン、「Gly」はグリシンである。「L-Phe」はL-フェニルアラニンであり、「Phe(F)」は側鎖にフッ素原子を含むフェニルアラニンである。また、ペプチドは、(N側保護基)-アミノ酸三文字表記-(C側保護基)と表記する。「H-AA-OMe」は、N末端側が未保護であり、C末端側はメチルエステルであることを意味する。C末端側が未保護の場合は、「OMe」にかえて「OH」と表す。 In the following, amino acids may be written in three-letter notation, and if the side chain contains a fluorine atom, "(F)" is added after the three-letter notation. For example, "Phe" is phenylalanine and "Gly" is glycine. "L-Phe" is L-phenylalanine, and "Phe (F)" is phenylalanine containing a fluorine atom in the side chain. In addition, the peptide is described as (N-side protecting group) -amino acid three-letter notation- (C-side protecting group). "H-AA-OMe" means that the N-terminal side is unprotected and the C-terminal side is a methyl ester. When the C-terminal side is unprotected, it is expressed as "OH" instead of "OMe".
<PAMPAアッセイ>
 ペプチドの透過性は、PAMPAによって測定した。PAMPAアッセイでは、300μLの5% DMSO含有PBSをアクセプタープレート(MultiScreen 96ウェルトランスポートレシーバープレート、Merck社製)の各ウェルに加えた。次いで、5% DMSO/PBSに溶解した150μLのペプチド溶液(20μM)をドナープレート(MultiScreen-IPフィルタープレート、0.45μm、Merck社製)の各ウェルに加えた。1% レシチン(大豆由来)のドデカン液を使用前に30分間超音波処理し、5μLの当該溶液をドナープレートの各ウェルの膜支持体(PVDF)に塗布した。ドナープレートをアクセプタープレート上に置き、当該プレートをインキュベーター内で、25℃で18時間放置した。ペプチドの濃度は、LC/MSを用いて決定した 。実験は3回繰り返して実施した。透過率値(P)は、次の式を使用して計算された。
<PAMPA assay>
Peptide permeability was measured by PAMPA. In the PAMPA assay, 300 μL of PBS containing 5% DMSO was added to each well of an acceptor plate (MultiScreen 96-well transport receiver plate, manufactured by Merck). A 150 μL peptide solution (20 μM) dissolved in 5% DMSO / PBS was then added to each well of the donor plate (MultiScreen-IP filter plate, 0.45 μm, manufactured by Merck). A dodecane solution of 1% lecithin (derived from soybean) was sonicated for 30 minutes prior to use and 5 μL of the solution was applied to the membrane support (PVDF) of each well of the donor plate. The donor plate was placed on the acceptor plate and the plate was left in the incubator at 25 ° C. for 18 hours. The peptide concentration was determined using LC / MS. The experiment was repeated 3 times. The transmittance value ( Pe ) was calculated using the following equation.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
A:フィルター面積(0.3cm
VD:ドナーウェルの体積(0.15cm
VA:アクセプターウェルの体積(0.3cm
t:インキュベーション時間(s)(18時間=64800s)
CD(t):時間tでのドナーウェルの化合物濃度
CA(t):時間tにおけるアクセプターウェルの化合物濃度
A: Filter area (0.3 cm 2 )
VD: Donor well volume (0.15 cm 3 )
VA: Acceptor well volume (0.3 cm 3 )
t: Incubation time (s) (18 hours = 64800s)
CD (t): Donor well compound concentration at time t CA (t): Acceptor well compound concentration at time t
<MDCK-IIアッセイ>
 細胞培養インサート(Falcon社製)にMDCK-II細胞を5.04×10細胞/mLで播種してから5日後に、細胞単層アッセイ(MDCK-IIアッセイ)を実施した。ペプチドのストック溶液は、DMSO溶液中に2mMで調製し、20mM HEPES、pH7.5を含むHBSSによって希釈して、ドナー溶液として、0.1%DMSO/HBSS(+)を溶媒とした2μM ペプチド溶液を調製した。アクセプター溶液は、20mM HEPES、pH 7.5を含むHBSS(+)を溶媒とした0.1% DMSO溶液とした。見かけの透過性(Papp)は、37℃、5% COで2時間、ペプチド溶液で、頂端から側底へのインキュベーションにおいて決定された。ペプチド濃度は、LC/MSで分析した。実験は3回繰り返して実施した。透過率値(Papp)は、次の式を用いて算出された。
<MDCK-II Assay>
Five days after seeding MDCK-II cells in a cell culture insert (manufactured by Falcon) at 5.04 × 10 4 cells / mL, a cell monolayer assay (MDCK-II assay) was performed. The peptide stock solution is prepared at 2 mM in DMSO solution, diluted with HBSS containing 20 mM HEPES and pH 7.5, and used as a donor solution in a 2 μM peptide solution using 0.1% DMSO / HBSS (+) as a solvent. Was prepared. The acceptor solution was a 0.1% DMSO solution using HBSS (+) containing 20 mM HEPES and pH 7.5 as a solvent. Apparent permeability ( Papp ) was determined by apical to lateral bottom incubation in peptide solution at 37 ° C., 5% CO 2 for 2 hours. Peptide concentration was analyzed by LC / MS. The experiment was repeated 3 times. The transmittance value ( Papp ) was calculated using the following formula.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
A:フィルター面積(0.3cm
VB:側底ウェル容積(0.75cm
t:インキュベーション時間(s)(2時間=7200s)
C0:頂端チャンバーの初期濃度(2μM)
CB(t):時間tでの側底の化合物濃度
A: Filter area (0.3 cm 2 )
VB: Side bottom well volume (0.75 cm 3 )
t: Incubation time (s) (2 hours = 7200s)
C0: Initial concentration of apical chamber (2 μM)
CB (t): Compound concentration at the bottom at time t
[比較例1]
 Ac-L-Phe-L-Ala-NHMeを合成した。
[Comparative Example 1]
Ac-L-Phe-L-Ala-NHMe was synthesized.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 化合物1(62mg、0.2mmol)、HN-Ala-NHMe・HCl(35mg)、及びDIPEA(41μL)を2mLのメタノールに溶解させ、得られた溶液を室温で攪拌した。当該溶液に、DMTMM・1.6HO(74mg)を加えた。得られた反応混合物を室温で一晩撹拌し、真空で蒸発させた。次いで、DCMを反応混合物に加え、得られた溶液を、1M NaCO水溶液、水、1M HCl水溶液、水、及びブラインで洗浄した。得られた有機相をNaSOで乾燥させ、真空で蒸発させた。得られた残渣をシリカゲルカラムクロマトグラフィー(DCM/メタノール=9:1(体積比))で精製し、化合物2を得た(31mg、収率40%)。 Compound 1 (62mg, 0.2mmol), H 2 N-Ala-NHMe · HCl (35mg), and DIPEA (41 [mu] L) was dissolved in methanol 2 mL, the resulting solution was stirred at room temperature. DMTMM 1.6H 2 O (74 mg) was added to the solution. The resulting reaction mixture was stirred at room temperature overnight and evaporated in vacuo. DCM was then added to the reaction mixture and the resulting solution was washed with 1M Na 2 CO 3 aqueous solution, water, 1M HCl aqueous solution, water and brine. The resulting organic phase was dried over Na 2 SO 4 and evaporated in vacuo. The obtained residue was purified by silica gel column chromatography (DCM / methanol = 9: 1 (volume ratio)) to obtain Compound 2 (31 mg, yield 40%).
 回収フラスコに、化合物2(30mg、78μmol)、10% パラジウム炭素(6.8mg)、3mLのメタノールを加えた。当該フラスコにHを導入し、混合物を室温で37.5時間撹拌した。得られた反応混合物をセライトで濾過した。溶媒を減圧下で除去した後、残渣を6mLの10% アセトニトリル水溶液に溶解させた。HPLCの逆相カラムを使用して精製し、化合物3を得た(18mg、収率93%)。 Compound 2 (30 mg, 78 μmol), 10% palladium carbon (6.8 mg), and 3 mL of methanol were added to the recovery flask. H 2 was introduced into the flask and the mixture was stirred at room temperature for 37.5 hours. The resulting reaction mixture was filtered through Celite. After removing the solvent under reduced pressure, the residue was dissolved in 6 mL of 10% aqueous acetonitrile solution. Purification using an HPLC reverse phase column gave compound 3 (18 mg, 93% yield).
 1mL DCM及び1mL THFに溶解させた化合物3(6.3mg、25μmol)に、DIPEA(8.6μL)及び無水酢酸(46μL)を加えた。当該反応混合物を室温で19時間撹拌し、次いで真空で蒸発させた。残渣を4mLの10% アセトニトリル水溶液に溶解させた。HPLCの逆相カラムを使用して精製し、化合物4(Ac-L-Phe-L-Ala-NHMe)を白色固体として得た(3.7mg、収率51%)。 DIPEA (8.6 μL) and acetic anhydride (46 μL) were added to Compound 3 (6.3 mg, 25 μmol) dissolved in 1 mL DCM and 1 mL THF. The reaction mixture was stirred at room temperature for 19 hours and then evaporated in vacuo. The residue was dissolved in 4 mL of 10% aqueous acetonitrile solution. Purification using an HPLC reverse phase column gave compound 4 (Ac-L-Phe-L-Ala-NHMe) as a white solid (3.7 mg, 51% yield).
H NMR(DMSO-d6,400MHz):δ8.04-7.98(m,2H),7.52(d,J=4.1Hz,1H),7.24-7.12(m,5H),4.48-4.42(m,1H),4.15(dq,J=7.3,6.9Hz,1H),2.96(dd,J=4.6,13.7Hz,1H),2.67(dd,J=9.6,13.3Hz,1H),2.52(d,J=4.6Hz,3H),1.70(s,1H),1.14(d,J=7.3Hz,3H).
MS(LC/ESI-MS.m/z):calcd.for C1522(M+H):292.17,found:292.20.
1 1 H NMR (DMSO-d 6,400 MHz): δ8.04-7.98 (m, 2H), 7.52 (d, J = 4.1 Hz, 1H), 7.24-7.12 (m, 5H) ), 4.48-4.42 (m, 1H), 4.15 (dq, J = 7.3, 6.9Hz, 1H), 2.96 (dd, J = 4.6, 13.7Hz, 1H), 2.67 (dd, J = 9.6, 13.3Hz, 1H), 2.52 (d, J = 4.6Hz, 3H), 1.70 (s, 1H), 1.14 ( d, J = 7.3Hz, 3H).
MS (LC / ESI-MS.m / z): calcd. for C 15 H 22 N 3 O 3 (M + H) + : 292.17, found: 292.20.
[実施例1]
 Ac-L-Phe(F)-L-Ala-NHMeを合成した。
[Example 1]
Ac-L-Phe (F) -L-Ala-NHMe was synthesized.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 窒素雰囲気下で、10mLの無水DCM、2.4mLの無水DMF、4.6mLのDIPEAを、N-カルボベンゾキシ-L-アラニン(化合物5)(1.5g、6.7mmol)、EDC・HCl(2.6g)及びHOBt(1.8g)に加えた。反応混合物を室温で10分間撹拌した。THF中の2M メチルアミン(5.1μL)を加え、混合物を一晩撹拌した。当該反応混合物を真空蒸発させた後、水を残渣に加え、得られた溶液を酢酸エチルで5回抽出した。有機相を飽和NaHCOで2回、1M HCl水溶液、及びブラインで洗浄した。得られた有機相をNaSOで乾燥させ、真空で蒸発させた。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1:4(体積比))で精製し、化合物6を得た(819mg、収率49%)。 Under a nitrogen atmosphere, 10 mL anhydrous DCM, 2.4 mL anhydrous DMF, 4.6 mL DIPEA, N-carbobenzoxi-L-alanine (Compound 5) (1.5 g, 6.7 mmol), EDC / HCl. It was added to (2.6 g) and HOBt (1.8 g). The reaction mixture was stirred at room temperature for 10 minutes. 2M Methylamine (5.1 μL) in THF was added and the mixture was stirred overnight. After vacuum evaporation of the reaction mixture, water was added to the residue and the resulting solution was extracted 5 times with ethyl acetate. The organic phase was washed twice with saturated NaHCO 3 with 1M aqueous HCl and brine. The resulting organic phase was dried over Na 2 SO 4 and evaporated in vacuo. The obtained residue was purified by silica gel column chromatography (hexane / ethyl acetate = 1: 4 (volume ratio)) to obtain Compound 6 (819 mg, yield 49%).
 回収フラスコに、化合物6(819mg、3.47mmol)、パラジウム炭素10%(84mg)、及び23mLのメタノールを加えた。当該フラスコにHを導入し、混合物を室温で2日間撹拌した。当該反応混合物をセライトで濾過した。溶媒を減圧下で除去して、化合物7を得た(368mg、定量的収率)。 Compound 6 (819 mg, 3.47 mmol), palladium carbon 10% (84 mg), and 23 mL of methanol were added to the recovery flask. H 2 was introduced into the flask and the mixture was stirred at room temperature for 2 days. The reaction mixture was filtered through Celite. The solvent was removed under reduced pressure to give compound 7 (368 mg, quantitative yield).
 化合物8は、Miao等の方法(非特許文献6)に従って合成された。化合物8(40mg、0.13mmol)及び化合物7(13mg)を1mLのメタノールに溶解させ、当該溶液に、DMTMM・3.2HO(53mg)を加えた。当該反応混合物を室温で18時間撹拌し、真空で蒸発させた。当該反応混合物にDCMを加え、えられた溶液を1M NaCO水溶液、水、1M HCl水溶液、水、及びブラインで洗浄した。有機相をNaSOで乾燥させ、真空で蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(DCM/メタノール=19:1(体積比))で精製し、化合物9を得た(15mg、収率37%)。 Compound 8 was synthesized according to the method of Miao et al. (Non-Patent Document 6). Compound 8 (40 mg, 0.13 mmol) and compound 7 (13 mg) were dissolved in 1 mL of methanol, and DMTMM 3.2H 2 O (53 mg) was added to the solution. The reaction mixture was stirred at room temperature for 18 hours and evaporated in vacuo. DCM was added to the reaction mixture, and the resulting solution was washed with 1M Na 2 CO 3 aqueous solution, water, 1M HCl aqueous solution, water, and brine. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (DCM / methanol = 19: 1 (volume ratio)) to give compound 9 (15 mg, 37% yield).
 化合物9(15mg、47μmol)を2.9mLのメタノール及び2.9mLのエタノールに溶解させた。得られた溶液を0℃で撹拌した。当該溶液に、ヒドラジン一水和物(28μL)を加え、反応混合物を0℃で13分間攪拌した。得られた混合物を50分間かけて室温まで温めた。溶媒を減圧下で除去し、残渣を5mLの1% アセトニトリル水溶液に溶解させた。HPLCの逆相カラムを使用して精製し、化合物10を得た(8.9mg、収率63%)。 Compound 9 (15 mg, 47 μmol) was dissolved in 2.9 mL of methanol and 2.9 mL of ethanol. The resulting solution was stirred at 0 ° C. Hydrazine monohydrate (28 μL) was added to the solution, and the reaction mixture was stirred at 0 ° C. for 13 minutes. The resulting mixture was warmed to room temperature over 50 minutes. The solvent was removed under reduced pressure and the residue was dissolved in 5 mL of 1% aqueous acetonitrile solution. Purification using an HPLC reversed-phase column gave compound 10 (8.9 mg, 63% yield).
 0.9mLのDCM中の化合物10(8.9mg、23μmol)に、DIPEA(4μL)及び無水酢酸(22μL)を加えた。当該反応混合物を室温で14時間撹拌し、次いで真空で蒸発させた。残渣を5mLの20% アセトニトリル水溶液に溶解させた。HPLCの逆相カラムを使用して精製し、化合物11(Ac-L-Phe(F)-L-Ala-NHMe)を白色固体として得た(0.4mg、収率4%)。 DIPEA (4 μL) and acetic anhydride (22 μL) were added to Compound 10 (8.9 mg, 23 μmol) in 0.9 mL of DCM. The reaction mixture was stirred at room temperature for 14 hours and then evaporated in vacuo. The residue was dissolved in 5 mL of 20% aqueous acetonitrile solution. Purification using an HPLC reverse phase column gave compound 11 (Ac-L-Phe (F) -L-Ala-NHMe) as a white solid (0.4 mg, 4% yield).
H NMR(DMSO-d6,400MHz):δ7.33-7.20(m,5H),4.42-4.33(m,3H),4.29(q,J=6.9Hz,1H),1.96(s,3H),1.38(d,J=6.87Hz,3H),1.33(d,J=7.3Hz,3H).
MS(MALDI-TOF MS.m/z):calcd.for C1520FNNa(M+Na):332.14,found:332.14.
1 1 H NMR (DMSO-d 6,400 MHz): δ7.33-7.20 (m, 5H), 4.42-4-33 (m, 3H), 4.29 (q, J = 6.9 Hz, 1H) ), 1.96 (s, 3H), 1.38 (d, J = 6.87Hz, 3H), 1.33 (d, J = 7.3Hz, 3H).
MS (MALDI-TOF MS.m / z): calcd. for C 15 H 20 FN 3 O 3 Na (M + Na) + : 332.14, found: 332.14.
[比較例2]
 Ac-L-Phe-L-Ala-NMeを合成した。
[Comparative Example 2]
Ac-L-Phe-L-Ala-NMe 2 was synthesized.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 化合物5(805mg、3.60mmol)及びTHF(2.0mL)中の2M ジメチルアミンを、36mLのメタノールに溶解させ、次いで当該溶液に、DMTMM・3.2HO(1.32g)を加えた。反応混合物を室温で15時間撹拌した後、真空で蒸発させた。当該反応混合物にDCMを加え、溶液を1M NaCO水溶液、水、1M HCl水溶液、水、及びブラインで洗浄した。得られた有機相をNaSOで乾燥させ、真空で蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(DCM/メタノール=15:1(体積比))で精製し、化合物12を得た(773mg、収率86%)。 2M dimethylamine in compound 5 (805 mg, 3.60 mmol) and THF (2.0 mL) was dissolved in 36 mL of methanol, then DMTMM 3.2H 2 O (1.32 g) was added to the solution. .. The reaction mixture was stirred at room temperature for 15 hours and then evaporated in vacuo. DCM was added to the reaction mixture and the solution was washed with 1M Na 2 CO 3 aqueous solution, water, 1M HCl aqueous solution, water and brine. The resulting organic phase was dried over Na 2 SO 4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (DCM / methanol = 15: 1 (volume ratio)) to give compound 12 (773 mg, 86% yield).
 50mL容の回収フラスコに、化合物12(773mg、3.10mmol)、パラジウム炭素10%(77mg)、及び10mLのメタノールを加えた。当該フラスコにHを導入し、混合物を室温で37時間撹拌した。反応混合物をセライトで濾過した。溶媒を減圧下で除去して、化合物13を得た(277mg、収率63%)。 Compound 12 (773 mg, 3.10 mmol), palladium carbon 10% (77 mg), and 10 mL of methanol were added to a 50 mL recovery flask. H 2 was introduced into the flask and the mixture was stirred at room temperature for 37 hours. The reaction mixture was filtered through Celite. The solvent was removed under reduced pressure to give compound 13 (277 mg, 63% yield).
 化合物1(65mg、0.2mmol)及び化合物13(28mg)を2mLのメタノールに溶解させ、得られた溶液を室温で撹拌した。DMTMM・1.6HO(75mg)を溶液に加えた。当該反応混合物を室温で30時間撹拌し、真空で蒸発させた。当該反応混合物にDCMを加え、溶液を1M NaCO水溶液、水、1M HCl水溶液、水、及びブラインで洗浄した。得られた有機相をNaSOで乾燥させ、真空で蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1:4(体積比))で精製し、化合物14を得た(37mg、収率46%)。 Compound 1 (65 mg, 0.2 mmol) and compound 13 (28 mg) were dissolved in 2 mL of methanol and the resulting solution was stirred at room temperature. DMTMM 1.6H 2 O (75 mg) was added to the solution. The reaction mixture was stirred at room temperature for 30 hours and evaporated in vacuo. DCM was added to the reaction mixture and the solution was washed with 1M Na 2 CO 3 aqueous solution, water, 1M HCl aqueous solution, water and brine. The resulting organic phase was dried over Na 2 SO 4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 1: 4 (volume ratio)) to obtain compound 14 (37 mg, yield 46%).
 回収フラスコに、化合物14(37mg、93μmol)、10% 炭素上のパラジウム(8.8mg)、2mLのメタノールを加えた。当該フラスコにHを導入し、混合物を室温で37.5時間撹拌した。 反応混合物をセライトで濾過した。溶媒を減圧下で除去し、残渣を6mLの10% アセトニトリル水溶液に溶解させた。HPLCの逆相カラムを使用して精製し、化合物15を得た(23mg、収率96%)。 Compound 14 (37 mg, 93 μmol), palladium on 10% carbon (8.8 mg), and 2 mL of methanol were added to the recovery flask. H 2 was introduced into the flask and the mixture was stirred at room temperature for 37.5 hours. The reaction mixture was filtered through Celite. The solvent was removed under reduced pressure and the residue was dissolved in 6 mL of 10% aqueous acetonitrile solution. Purification using an HPLC reverse phase column gave compound 15 (23 mg, 96% yield).
 1mL DCM及び1mL THF中の化合物15(12mg、44μmol)に、無水酢酸(46μL)を加えた。当該反応混合物を室温で19.5時間撹拌し、次いで真空で蒸発させた。残渣を4mLの10%アセトニトリル水溶液に溶解させた。HPLCの逆相カラムを使用して精製し、化合物16(Ac-L-Phe-L-Ala-NMe)を白色の固体として得た(11.5mg、収率85%)。 Acetic anhydride (46 μL) was added to compound 15 (12 mg, 44 μmol) in 1 mL DCM and 1 mL THF. The reaction mixture was stirred at room temperature for 19.5 hours and then evaporated in vacuo. The residue was dissolved in 4 mL of 10% aqueous acetonitrile solution. Purification using an HPLC reverse phase column gave compound 16 (Ac-L-Phe-L-Ala-NMe 2 ) as a white solid (11.5 mg, 85% yield).
H NMR(DMSO-d6,400MHz):δ8.11(d,J=7.8Hz,1H),8.01(d,J=8.7Hz,1H),7.23-7.11(m,5H),4.64(dq,J=6.9,7.3Hz,1H),4.49-4.43(m,1H),2.96-2.89(m,4H),2.77(s,3H),2.68-2.65(m,1H),1.12(d,J=6.4Hz,3H).
MS(LC/ESI-MS.m/z):calcd.for C1624(M+H):306.18,found:306.20.
1 1 H NMR (DMSO-d 6,400 MHz): δ8.11 (d, J = 7.8 Hz, 1H), 8.01 (d, J = 8.7 Hz, 1H), 7.23-7.11 (m) , 5H), 4.64 (dq, J = 6.9, 7.3Hz, 1H), 4.49-4.43 (m, 1H), 2.96-2.89 (m, 4H), 2 .77 (s, 3H), 2.68-2.65 (m, 1H), 1.12 (d, J = 6.4Hz, 3H).
MS (LC / ESI-MS.m / z): calcd. for C 16 H 24 N 3 O 3 (M + H) + : 306.18, found: 306.20.
[実施例2]
 Ac-L-Phe(F)-L-Ala-NMeを合成した。
[Example 2]
Ac-L-Phe (F) -L-Ala-NMe 2 was synthesized.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 化合物8(40mg、0.13mmol)及び化合物13(15mg)を、1.3mLのメタノールに溶解させ、当該溶液にDMTMM・3.2HO(55mg)を加えた。当該反応混合物を室温で12.5時間撹拌した後、真空で蒸発させた。当該反応混合物にDCMを加え、溶液を1M NaCO水溶液、水、1M HCl水溶液、水、及びブラインで洗浄した。有機相をNaSOで乾燥させ、真空で蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1:1(体積比))で精製し、化合物17を得た(20mg、収率38%)。 Compound 8 (40 mg, 0.13 mmol) and compound 13 (15 mg) were dissolved in 1.3 mL of methanol, and DMTMM 3.2H 2 O (55 mg) was added to the solution. The reaction mixture was stirred at room temperature for 12.5 hours and then evaporated in vacuo. DCM was added to the reaction mixture and the solution was washed with 1M Na 2 CO 3 aqueous solution, water, 1M HCl aqueous solution, water and brine. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 1: 1 (volume ratio)) to give compound 17 (20 mg, 38% yield).
 化合物17(21mg、51μmol)を1mLのメタノールと1mLのエタノールに溶解させた。当該溶液を0℃で撹拌し、当該溶液にヒドラジン一水和物(30μL)を加え、反応混合物を0℃で13分間攪拌した。当該混合物を50分間かけて室温まで温めた後、溶媒を減圧下で除去した。残渣を5mLの4%アセトニトリル水溶液に溶解させた。HPLCの逆相カラムを使用して精製し、化合物18を得た(9.0mg、収率63%)。 Compound 17 (21 mg, 51 μmol) was dissolved in 1 mL of methanol and 1 mL of ethanol. The solution was stirred at 0 ° C., hydrazine monohydrate (30 μL) was added to the solution and the reaction mixture was stirred at 0 ° C. for 13 minutes. The mixture was warmed to room temperature over 50 minutes and then the solvent was removed under reduced pressure. The residue was dissolved in 5 mL of 4% aqueous acetonitrile solution. Purification using an HPLC reversed-phase column gave compound 18 (9.0 mg, 63% yield).
 DCM(0.95mL)中の化合物18(9.0mg、23μmol)に、DIPEA(3.9μL)及び無水酢酸(21μL)を加えた。反応混合物を室温で14時間撹拌し、次いで真空で蒸発させた。残渣を5mLの20% アセトニトリル水溶液に溶解させた。HPLCの逆相カラムを使用して精製し、化合物19(Ac-L-Phe(F)-L-Ala-NMe)を得た(2.1mg、収率28%)。 DIPEA (3.9 μL) and acetic anhydride (21 μL) were added to compound 18 (9.0 mg, 23 μmol) in DCM (0.95 mL). The reaction mixture was stirred at room temperature for 14 hours and then evaporated in vacuo. The residue was dissolved in 5 mL of 20% aqueous acetonitrile solution. Purification using an HPLC reverse phase column gave compound 19 (Ac-L-Phe (F) -L-Ala-NMe 2 ) (2.1 mg, 28% yield).
H NMR(CDCl,400MHz):δ7.41-7.34(m,5H),6.78(d,J=6.4Hz,1H),6.20(d,J=8.2Hz,1H),5.83(dd,J=4.6,45.8Hz,1H),4.99(ddd,J=5.0,8.2,17.9Hz,1H),4.77(dq,J=6.4,6.9Hz,1H),3.17-3.10(m,1H),3.04(s,1H),2.94(s,1H),2.00(s,1H),1.26(d,J=6.9Hz,1H).
MS(MALDI-TOF MS.m/z):calcd.for C1622FNNa(M+Na):346.15,found:346.14.
1 H NMR (CDCl 3, 400MHz ): δ7.41-7.34 (m, 5H), 6.78 (d, J = 6.4Hz, 1H), 6.20 (d, J = 8.2Hz, 1H), 5.83 (dd, J = 4.6, 45.8Hz, 1H), 4.99 (ddd, J = 5.0, 8.2, 17.9Hz, 1H), 4.77 (dq) , J = 6.4, 6.9Hz, 1H), 3.17-3.10 (m, 1H), 3.04 (s, 1H), 2.94 (s, 1H), 2.00 (s) , 1H), 1.26 (d, J = 6.9Hz, 1H).
MS (MALDI-TOF MS.m / z): calcd. for C 16 H 22 FN 3 O 3 Na (M + Na) + : 346.15, found: 346.14.
[比較例3]
 Ac-L-Phe-L-Ala-NHBnを合成した。
[Comparative Example 3]
Ac-L-Phe-L-Ala-NHBn was synthesized.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 窒素雰囲気下で、3mLの無水DCM、DIPEA(184μL)、及びベンジルアミンを、N-Boc-L-アラニン(化合物20)(135mg、0.71mmol)及びHOAt(116mg)に加えた。当該溶液を0℃で撹拌した。当該溶液に、HATU(324mg)を加え、反応混合物を17時間かけて室温まで温めた。当該反応混合物に1M HCl水溶液を加え、得られた溶液をDCMで3回抽出した。溶媒を減圧下で除去し、酢酸エチルを残渣に加えた。当該溶液を1M HCl水溶液、飽和NaHCO、及びブラインで洗浄した。有機相をNaSOで乾燥させた後、真空で蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(DCM/メタノール=19:1(体積比))で精製し、化合物21を得た(156mg、収率79%)。 Under a nitrogen atmosphere, 3 mL anhydrous DCM, DIPEA (184 μL), and benzylamine were added to N-Boc-L-alanine (Compound 20) (135 mg, 0.71 mmol) and HOAt (116 mg). The solution was stirred at 0 ° C. HATU (324 mg) was added to the solution and the reaction mixture was warmed to room temperature over 17 hours. A 1M aqueous HCl solution was added to the reaction mixture, and the resulting solution was extracted 3 times with DCM. The solvent was removed under reduced pressure and ethyl acetate was added to the residue. The solution was washed with 1M aqueous HCl, saturated NaHCO 3 , and brine. The organic phase was dried over Na 2 SO 4 and then evaporated in vacuo. The residue was purified by silica gel column chromatography (DCM / methanol = 19: 1 (volume ratio)) to give compound 21 (156 mg, 79% yield).
 化合物21(156mg、0.56mmol)を4mL DCMに溶解させた。当該溶液に1mLのTFAを0℃で滴下し、混合物を5分間撹拌した。当該反応混合物を室温まで温め、1時間撹拌した。飽和NaHCO水溶液をpHが8になるまで添加した。この混合物をDCMで3回抽出した。有機相をNaSOで乾燥させ、真空で蒸発させて、化合物22を得た(73mg、収率73%)。 Compound 21 (156 mg, 0.56 mmol) was dissolved in 4 mL DCM. 1 mL of TFA was added dropwise to the solution at 0 ° C. and the mixture was stirred for 5 minutes. The reaction mixture was warmed to room temperature and stirred for 1 hour. A saturated aqueous solution of NaHCO 3 was added until the pH reached 8. The mixture was extracted 3 times with DCM. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo to give compound 22 (73 mg, 73% yield).
 窒素雰囲気下で、1mLの無水DCMを化合物23(22mg、0.70mmol)及びHOAt(12mg)に加えた。当該溶液を0℃で撹拌した。当該溶液に、DIPEA(18μL)、化合物22(15mg)及びHATU(32mg)を加えた。当該溶液を24時間かけて室温まで温めた。1M HCl水溶液を当該反応混合物に加え、当該溶液をDCMで3回抽出した。 溶媒を減圧下で除去し、酢酸エチルを残渣に加えた。当該溶液を1M HCl水溶液、飽和NaHCO、及びブラインで洗浄した。有機相をNaSOで乾燥させた後、真空で蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(DCM/メタノール=19:1(体積比))で精製し、化合物24を得た(23mg、収率72%)。 Under a nitrogen atmosphere, 1 mL of anhydrous DCM was added to Compound 23 (22 mg, 0.70 mmol) and HOAt (12 mg). The solution was stirred at 0 ° C. DIPEA (18 μL), compound 22 (15 mg) and HATU (32 mg) were added to the solution. The solution was warmed to room temperature over 24 hours. A 1M aqueous HCl solution was added to the reaction mixture and the solution was extracted 3 times with DCM. The solvent was removed under reduced pressure and ethyl acetate was added to the residue. The solution was washed with 1M aqueous HCl, saturated NaHCO 3 , and brine. The organic phase was dried over Na 2 SO 4 and then evaporated in vacuo. The residue was purified by silica gel column chromatography (DCM / methanol = 19: 1 (volume ratio)) to give compound 24 (23 mg, 72% yield).
 化合物24(9.4mg、21μmol)を0.6mLのメタノール0.6mLのエタノールに溶解させた。当該溶液にヒドラジン一水和物(12μL)を加え、反応混合物を室温で40分間撹拌した。溶媒を減圧下で除去し、酢酸エチルを残渣に加え、当該溶液を1M HCl水溶液で2回抽出した。飽和NaHCO水溶液をpHが8になるまで添加し、当該溶液を酢酸エチルで抽出した。溶媒を減圧下で除去し、残渣を6.4mLの34% アセトニトリル水溶液に溶解させ、HPLCの逆相カラムを用いて精製し、化合物25を得た(3.5mg、収率52%)。 Compound 24 (9.4 mg, 21 μmol) was dissolved in 0.6 mL of methanol and 0.6 mL of ethanol. Hydrazine monohydrate (12 μL) was added to the solution, and the reaction mixture was stirred at room temperature for 40 minutes. The solvent was removed under reduced pressure, ethyl acetate was added to the residue and the solution was extracted twice with 1M aqueous HCl. A saturated aqueous solution of NaHCO 3 was added until the pH reached 8, and the solution was extracted with ethyl acetate. The solvent was removed under reduced pressure and the residue was dissolved in 6.4 mL of 34% aqueous acetonitrile solution and purified using an HPLC reversed phase column to give compound 25 (3.5 mg, 52% yield).
 1mL DCMと0.5mL THFに溶解させた化合物25(3.5mg、11μmol)に、無水酢酸(34μL)を加えた。当該反応混合物を室温で17時間撹拌し、次いで真空で蒸発させた。残渣を3mLの20% アセトニトリル水溶液に溶解させ、HPLCの逆相カラムを用いて精製し、化合物26(Ac-L-Phe-L-Ala-NHBn)を得た(2.0mg、収率49%)。 Acetic anhydride (34 μL) was added to compound 25 (3.5 mg, 11 μmol) dissolved in 1 mL DCM and 0.5 mL THF. The reaction mixture was stirred at room temperature for 17 hours and then evaporated in vacuo. The residue was dissolved in 3 mL of 20% aqueous acetonitrile solution and purified using an HPLC reversed-phase column to give compound 26 (Ac-L-Phe-L-Ala-NHBn) (2.0 mg, 49% yield). ).
H NMR(CDOD,400MHz):δ8.2(d,J=7.6Hz,1H),7.3(d,J=7.3Hz,1H),8.02(s,1H),7.33-7.15(m,10H),4.63-4.57(m,1H),4.40-4.30(m,1H),3.11(dd,J=6.0,13.7Hz,1H),2.88(dd,J= 8.7,14.2Hz,1H),1.89(s,3H),1.35(d,J=6.9Hz,3H).
MS(LC/ESI-MS.m/z):calcd.for C2126(M+H):368.20,found:368.33.
1 1 H NMR (CD 3 OD, 400 MHz): δ8.2 (d, J = 7.6 Hz, 1H), 7.3 (d, J = 7.3 Hz, 1H), 8.02 (s, 1H), 7.33-7.15 (m, 10H), 4.63-4.57 (m, 1H), 4.40-4.30 (m, 1H), 3.11 (dd, J = 6.0) , 13.7Hz, 1H), 2.88 (dd, J = 8.7, 14.2Hz, 1H), 1.89 (s, 3H), 1.35 (d, J = 6.9Hz, 3H) ..
MS (LC / ESI-MS.m / z): calcd. for C 21 H 26 N 3 O 3 (M + H) + : 368.20, found: 368.33.
[実施例3]
 Ac-L-Phe(F)-L-Ala-NHBnを合成した。
[Example 3]
Ac-L-Phe (F) -L-Ala-NHBn was synthesized.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 窒素雰囲気下、0.85mLの無水DCMを化合物8(30mg、0.10mmol)及びOxyma(22mg)に加えた。当該溶液を0℃で撹拌した。当該溶液に、DIC(22μL)を加え、反応混合物を8分間撹拌した。当該溶液を5分間かけて室温まで温めた。化合物22(26mg)を当該溶液に加え、反応混合物を室温で14.5時間撹拌した。当該溶液に、飽和NHCl水溶液を添加し、得られた溶液をDCMで4回抽出した。有機相を、1M NHCl水溶液、1M NaHCO、及びブラインで洗浄した。有機相をNaSOで乾燥させた後、真空で蒸発させた。残渣を6mLの50% アセトニトリル水溶液に溶解させ、HPLCの逆相カラムを用いて精製し、化合物27を得た(6.7mg、収率15%)。 Under a nitrogen atmosphere, 0.85 mL anhydrous DCM was added to compound 8 (30 mg, 0.10 mmol) and Oxyma (22 mg). The solution was stirred at 0 ° C. DIC (22 μL) was added to the solution and the reaction mixture was stirred for 8 minutes. The solution was warmed to room temperature over 5 minutes. Compound 22 (26 mg) was added to the solution and the reaction mixture was stirred at room temperature for 14.5 hours. To the solution was added saturated aqueous NH 4 Cl and the resulting solution was extracted 4 times with DCM. The organic phase was washed with 1M NH 4 Cl aqueous solution, 1M NaHCO 3 and brine. The organic phase was dried over Na 2 SO 4 and then evaporated in vacuo. The residue was dissolved in 6 mL of 50% aqueous acetonitrile solution and purified using an HPLC reversed-phase column to give compound 27 (6.7 mg, 15% yield).
 化合物27(5.0 mg、11μmol)を4.75mLのメタノールに溶解させた。当該溶液に、エタノール(375μL)中の34mM ヒドラジン一水和物を氷上で滴下し、反応混合物を0℃で10分間攪拌した。当該溶液を2時間かけて室温まで温めた。ヒドラジン一水和物(30μL)を当該反応混合物に加え、得られた溶液を4.5時間攪拌した。溶媒を減圧下で除去した。残渣を3mLの40% アセトニトリル水溶液に溶解させ、HPLCの逆相カラムを用いて精製し、化合物28を得た(1.3mg、収率36%)。 Compound 27 (5.0 mg, 11 μmol) was dissolved in 4.75 mL of methanol. To the solution, 34 mM hydrazine monohydrate in ethanol (375 μL) was added dropwise on ice, and the reaction mixture was stirred at 0 ° C. for 10 minutes. The solution was warmed to room temperature over 2 hours. Hydrazine monohydrate (30 μL) was added to the reaction mixture and the resulting solution was stirred for 4.5 hours. The solvent was removed under reduced pressure. The residue was dissolved in 3 mL of 40% aqueous acetonitrile solution and purified using an HPLC reversed-phase column to give compound 28 (1.3 mg, 36% yield).
 0.5mL DCMと0.5mL THFに溶解させた化合物28(0.7mg、1.9μmol)に、無水酢酸(23μL)を加えた。当該反応混合物を室温で18時間撹拌し、次いで真空で蒸発させた。残渣を3mLの40% アセトニトリル水溶液に溶解させ、HPLCの逆相カラムを用いて精製し、化合物29(Ac-L-Phe(F)-L-Ala-NHBn)を得た(0.2mg、収率25%)。 Acetic anhydride (23 μL) was added to compound 28 (0.7 mg, 1.9 μmol) dissolved in 0.5 mL DCM and 0.5 mL THF. The reaction mixture was stirred at room temperature for 18 hours and then evaporated in vacuo. The residue was dissolved in 3 mL of 40% aqueous acetonitrile solution and purified using an HPLC reversed-phase column to give compound 29 (Ac-L-Phe (F) -L-Ala-NHBn) (0.2 mg, yield). Rate 25%).
H NMR(CDOD,400MHz):δ7.39-7.252(m,10H),6.35(d,J=7.8Hz,1H),6.30(s,1H),6.06(d,J=7.2Hz,1H),5.76(dd,J=5.0,46.1Hz,1H),4.93(ddd,J=5.0,7.9,19.0Hz,1H),4.46-4.9(m,3H),1.31(d,J=7.1Hz,1H).
MS(LC/ESI-MS.m/z):calcd.for C2126FN(M+H):386.19,found:386.20.
1 1 H NMR (CD 3 OD, 400 MHz): δ7.39-7.252 (m, 10H), 6.35 (d, J = 7.8 Hz, 1H), 6.30 (s, 1H), 6. 06 (d, J = 7.2Hz, 1H), 5.76 (dd, J = 5.0, 46.1Hz, 1H), 4.93 (ddd, J = 5.0, 7.9, 19. 0Hz, 1H), 4.46-4.9 (m, 3H), 1.31 (d, J = 7.1Hz, 1H).
MS (LC / ESI-MS.m / z): calcd. for C 21 H 26 FN 3 O 3 (M + H) + : 386.19, found: 386.20.
[比較例4]
 Ac-L-Phe-L-Leu-NHBnを合成した。
[Comparative Example 4]
Ac-L-Phe-L-Leu-NHBn was synthesized.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 化合物30(802mg、3.2mmol)及びベンジルアミン(420μL)を16mLのメタノールに溶解させ、当該溶液にDMTMM・3.2HO(1.17g)を加えた。当該反応混合物を室温で4.7時間撹拌し、真空で蒸発させた。DCMを残渣に加え、得られた溶液を1M NaCO水溶液、1M HCl水溶液、及びブラインで洗浄した。有機相をNaSOで乾燥させ、真空で蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=8:2(体積比))で精製し、化合物31を得た(883mg、収率86%)。 Compound 30 (802 mg, 3.2 mmol) and benzylamine (420 μL) were dissolved in 16 mL of methanol, and DMTMM 3.2H 2 O (1.17 g) was added to the solution. The reaction mixture was stirred at room temperature for 4.7 hours and evaporated in vacuo. DCM was added to the residue and the resulting solution was washed with 1M Na 2 CO 3 aqueous, 1M HCl aqueous and brine. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 8: 2 (volume ratio)) to give compound 31 (883 mg, yield 86%).
 酢酸エチル3mL中の化合物31(868mg、2.71mmol)に、酢酸エチル中の4M HCl(3mL)を加えた後、当該溶液を室温で2.5時間撹拌した。当該溶液を真空で蒸発させて、化合物32を得た(38mg、定量的収率)。 After adding 4M HCl (3 mL) in ethyl acetate to compound 31 (868 mg, 2.71 mmol) in 3 mL of ethyl acetate, the solution was stirred at room temperature for 2.5 hours. The solution was evaporated in vacuo to give compound 32 (38 mg, quantitative yield).
 化合物33(67mg、0.25mmol)、化合物32(79mg)、及びDIPEA(52μL)を2.5mLのメタノールに溶解させ、当該溶液にDMTMM・1.3HO(95mg)を加えた。当該反応混合物を室温で13時間撹拌し、真空で蒸発させた。残渣にDCMを加え、得られた溶液を1M NaCO水溶液、1M HCl水溶液、及びブラインで洗浄した。有機相をNaSOで乾燥させ、真空で蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(DCM/メタノール=19:1(体積比))で精製し、化合物34を得た(99mg、収率84%)。 Compound 33 (67 mg, 0.25 mmol), compound 32 (79 mg), and DIPEA (52 μL) were dissolved in 2.5 mL of methanol, and DTMMM 1.3H 2 O (95 mg) was added to the solution. The reaction mixture was stirred at room temperature for 13 hours and evaporated in vacuo. DCM was added to the residue, and the resulting solution was washed with 1M Na 2 CO 3 aqueous solution, 1M HCl aqueous solution, and brine. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (DCM / methanol = 19: 1 (volume ratio)) to give compound 34 (99 mg, 84% yield).
 3mLの酢酸エチル中の化合物34(99mg、0.21mmol)に、酢酸エチル中の4M HCl(3mL)を加え、次いで当該溶液を室温で1.5時間撹拌した。当該溶液を真空で蒸発させて、化合物35を得た(83mg、定量的収率)。 4M HCl (3 mL) in ethyl acetate was added to compound 34 (99 mg, 0.21 mmol) in 3 mL of ethyl acetate, and then the solution was stirred at room temperature for 1.5 hours. The solution was evaporated in vacuo to give compound 35 (83 mg, quantitative yield).
 3.8 mL DCM及び2mL アセトニトリル中の化合物35(50mg、0.14mmol)に、DIPEA(25μL)及び無水酢酸(132μL)を加えた。当該反応混合物を室温で13時間撹拌し、次いで真空で蒸発させた。残渣を6mLの50% アセトニトリル水溶液に溶解させ、HPLCの逆相カラムを用いて精製し、化合物36(Ac-L-Phe-L-Leu-NHBn)を得た(46mg、収率80%)。 DIPEA (25 μL) and acetic anhydride (132 μL) were added to compound 35 (50 mg, 0.14 mmol) in 3.8 mL DCM and 2 mL acetonitrile. The reaction mixture was stirred at room temperature for 13 hours and then evaporated in vacuo. The residue was dissolved in 6 mL of 50% aqueous acetonitrile solution and purified using an HPLC reversed-phase column to give compound 36 (Ac-L-Phe-L-Leu-NHBn) (46 mg, 80% yield).
H NMR(CDCl,400MHz):δ7.35-7.13(m,10H),6.40-6.38(m,2H),6.16(d,J=7.3Hz,1H),4.68(q,J=7.3Hz,1H),4.34-4.32(m,3H),3.03(d,J=6.9Hz,2H),1.94(s,3H),1.77-1.67(m,1H),1.60-1.44(m,2H),0.89(t,J=6.0Hz,6H).
MS(LC/ESI-MS.m/z):calcd.for C2432(M+H):410.25,found:410.20.
1 1 H NMR (CDCl 3 , 400 MHz): δ7.35-7.13 (m, 10H), 6.40-6.38 (m, 2H), 6.16 (d, J = 7.3Hz, 1H) , 4.68 (q, J = 7.3Hz, 1H), 4.34-4.32 (m, 3H), 3.03 (d, J = 6.9Hz, 2H), 1.94 (s, 3H), 1.77-1.67 (m, 1H), 1.60-1.44 (m, 2H), 0.89 (t, J = 6.0Hz, 6H).
MS (LC / ESI-MS.m / z): calcd. for C 24 H 32 N 3 O 3 (M + H) + : 410.25, found: 410.20.
[実施例4]
 Ac-L-Phe(F)-L-Leu-NHBnを合成した。
[Example 4]
Ac-L-Phe (F) -L-Leu-NHBn was synthesized.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 化合物8(40mg、0.13mmol)及び化合物32(39mg)を1.3mLのメタノールに溶解させ、当該溶液にDMTMM・1.3HO(49mg)を加えた。当該反応混合物を室温で一晩撹拌し、真空で蒸発させた。当該反応混合物にDCMを加え、得られた溶液を1M NaHCO水溶液、1M HCl水溶液、及びブラインで洗浄した。有機相をNaSOで乾燥させ、真空で蒸発させた。残渣を4mLの50% アセトニトリル水溶液に溶解させ、HPLCの逆相カラムを用いて精製し、化合物37を得た(6.3mg、収率10%)。 Compound 8 (40 mg, 0.13 mmol) and compound 32 (39 mg) were dissolved in 1.3 mL of methanol, and DMTMM 1.3H 2 O (49 mg) was added to the solution. The reaction mixture was stirred at room temperature overnight and evaporated in vacuum. DCM was added to the reaction mixture, and the resulting solution was washed with 1M aqueous NaHCO 3 solution, 1M aqueous HCl solution, and brine. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo. The residue was dissolved in 4 mL of 50% aqueous acetonitrile solution and purified using an HPLC reverse phase column to give compound 37 (6.3 mg, 10% yield).
 化合物37(6.3mg、12μmol)を1.5mLのメタノールに溶解させた、当該溶液を0℃で撹拌した。当該溶液にヒドラジン一水和物(7.3μL)を加え、この反応混合物を0℃で14分間攪拌した。当該混合物を7分間かけて室温まで温め、当該反応混合物にメタノールを加えた。溶媒を減圧下で除去した。残渣をアセトニトリル/HO/MeOH(=2mL:6mL:2mL)に溶解させ、HPLCの逆相カラムを用いて精製し、化合物38を得た(2.4mg、収率51%)。 Compound 37 (6.3 mg, 12 μmol) was dissolved in 1.5 mL of methanol, and the solution was stirred at 0 ° C. Hydrazine monohydrate (7.3 μL) was added to the solution, and the reaction mixture was stirred at 0 ° C. for 14 minutes. The mixture was warmed to room temperature over 7 minutes and methanol was added to the reaction mixture. The solvent was removed under reduced pressure. The residue was dissolved in acetonitrile / H 2 O / MeOH (= 2 mL: 6 mL: 2 mL) and purified using an HPLC reverse phase column to give compound 38 (2.4 mg, 51% yield).
 2mL DCM中の化合物38(2.0 mg、4.0μmol)に、無水酢酸(46μL)を加えた。当該反応混合物を室温で一晩撹拌し、次に真空で蒸発させた。残渣を4mLの30% アセトニトリル水溶液に溶解させ、HPLCの逆相カラムを用いて精製し、化合物39(Ac-L-Phe(F)-L-Leu-NHBn)を得た(1.1mg、収率64%)。 Acetic anhydride (46 μL) was added to compound 38 (2.0 mg, 4.0 μmol) in 2 mL DCM. The reaction mixture was stirred at room temperature overnight and then evaporated in vacuo. The residue was dissolved in 4 mL of 30% aqueous acetonitrile solution and purified using an HPLC reverse phase column to give compound 39 (Ac-L-Phe (F) -L-Leu-NHBn) (1.1 mg, yield). Rate 64%).
H NMR(CDCl,400MHz):δ7.38-7.27(m,10H),6.34-6.32(m,2H),5.87(d,J=8.2Hz,1H),5.76(dd,J=5.0,46.3Hz,1H),4.93(ddd,J=5.0,7.8,19.2Hz,1H),4.64-4.37(m,3H),1.98(s,3H),1.72-1.65(m,1H),1.53-1.35(m,2H),0.87(dd,J=1.8,6.4Hz,6H).
MS(LC/ESI-MS.m/z):calcd.for C2430FNNa(M+Na):450.22,found:450.40.
1 1 H NMR (CDCl 3 , 400 MHz): δ7.38-7.27 (m, 10H), 6.34-6.32 (m, 2H), 5.87 (d, J = 8.2Hz, 1H) , 5.76 (dd, J = 5.0, 46.3Hz, 1H), 4.93 (ddd, J = 5.0, 7.8, 19.2Hz, 1H), 4.64-4.37 (M, 3H), 1.98 (s, 3H), 1.72-1.65 (m, 1H), 1.53-1.35 (m, 2H), 0.87 (dd, J = 1) 8.8, 6.4Hz, 6H).
MS (LC / ESI-MS.m / z): calcd. for C 24 H 30 FN 3 O 3 Na (M + Na) + : 450.22, found: 450.40.
[比較例5]
 Ac-L-Ala-L-Ala-NHBnを合成した。
[Comparative Example 5]
Ac-L-Ala-L-Ala-NHBn was synthesized.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 化合物20(61mg、0.32mmol)及び化合物22(68mg)を3mLのメタノールに溶解させ、当該溶液にDMTMM・3.2HO(135mg)を加えた。当該反応混合物を室温で12時間撹拌し、真空で蒸発させた。当該反応混合物にDCMを加え、当該溶液を1M NaCO水溶液、水、1M HCl水溶液、水、及びブラインで洗浄した。有機相をNaSOで乾燥させ、真空で蒸発させて、化合物40を得た(92mg、収率83%)。 Compound 20 (61 mg, 0.32 mmol) and compound 22 (68 mg) were dissolved in 3 mL of methanol, and DMTMM 3.2H 2 O (135 mg) was added to the solution. The reaction mixture was stirred at room temperature for 12 hours and evaporated in vacuo. DCM was added to the reaction mixture and the solution was washed with 1M Na 2 CO 3 aqueous solution, water, 1M HCl aqueous solution, water and brine. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo to give compound 40 (92 mg, 83% yield).
 化合物40(92mg、0.26mmol)をDCM 4mLとTHF 1mLに溶解させた。当該溶液に1.25mLのTFAを0℃で加え、当該混合物を15分間撹拌した。次に、反応混合物を室温まで温め、3時間撹拌した。当該反応混合物に1M NaHCO水溶液を加え、得られた溶液を2時間撹拌した。この混合物をDCMで4回抽出した。有機相をNaSOで乾燥させ、真空で蒸発させて化合物41を得た。 Compound 40 (92 mg, 0.26 mmol) was dissolved in 4 mL of DCM and 1 mL of THF. 1.25 mL of TFA was added to the solution at 0 ° C. and the mixture was stirred for 15 minutes. The reaction mixture was then warmed to room temperature and stirred for 3 hours. A 1M aqueous solution of NaHCO 3 was added to the reaction mixture, and the obtained solution was stirred for 2 hours. The mixture was extracted 4 times with DCM. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo to give compound 41.
 3mL DCM中の化合物41(73mg、0.29mmol)に、無水酢酸(33μL)を加えた。当該反応混合物を室温で24時間撹拌し、次いで真空で蒸発させた。残渣を10mLの40% アセトニトリル水溶液に溶解させ、HPLCの逆相カラムを用いて精製し、化合物42(Ac-L-Ala-L-Ala-NHBn)を得た(9mg、収率11%)。 Acetic anhydride (33 μL) was added to compound 41 (73 mg, 0.29 mmol) in 3 mL DCM. The reaction mixture was stirred at room temperature for 24 hours and then evaporated in vacuo. The residue was dissolved in 10 mL of 40% aqueous acetonitrile solution and purified using an HPLC reverse phase column to give compound 42 (Ac-L-Ala-L-Ala-NHBn) (9 mg, 11% yield).
H NMR(CDOD,400MHz):δ7.33-7.20(m,5H),4.42-4.33(m,3H),4.29(q,J=6.9Hz,1H),1.96(s,3H),1.38(d,J=6.87Hz,3H),1.33(d,J=7.3Hz,3H).
MS(MALDI-TOF MS.m/z):calcd.for C1521Na(M+Na):314.15,found:313.88.
1 1 H NMR (CD 3 OD, 400 MHz): δ7.33-7.20 (m, 5H), 4.42-4-33 (m, 3H), 4.29 (q, J = 6.9 Hz, 1H) ), 1.96 (s, 3H), 1.38 (d, J = 6.87Hz, 3H), 1.33 (d, J = 7.3Hz, 3H).
MS (MALDI-TOF MS.m / z): calcd. for C 15 H 21 N 3 O 3 Na (M + Na) + : 314.15, found: 313.88.
[実施例5]
 Ac-D,L-Ala(F3)-L-Ala-NHBnを合成した。
[Example 5]
Ac-D, L-Ala (F3) -L-Ala-NHBn were synthesized.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 D,L-トリフルオロアラニン塩酸塩(化合物43)(52mg、0.28mmol)を3mLのアセトニトリルに溶解させた。当該溶液に、DIPEA(57μL)と二炭酸ジ-tert-ブチル(77μL)を0℃で加えた。当該反応混合物を21時間かけて室温まで温めた。当該溶液を真空で蒸発させ、水を残渣に加えた。当該溶液をジエチルエーテルで3回抽出した。水相に1M HCl水溶液を加え、当該溶液をジエチルエーテルで3回抽出した。合わせた有機相をNaSOで乾燥させ、真空中で蒸発させて、化合物44を白色の固体として得た(62mg、収率91%)。 D, L-trifluoroalanine hydrochloride (Compound 43) (52 mg, 0.28 mmol) was dissolved in 3 mL of acetonitrile. DIPEA (57 μL) and di-tert-butyl dicarbonate (77 μL) were added to the solution at 0 ° C. The reaction mixture was warmed to room temperature over 21 hours. The solution was evaporated in vacuo and water was added to the residue. The solution was extracted 3 times with diethyl ether. A 1M aqueous HCl solution was added to the aqueous phase, and the solution was extracted 3 times with diethyl ether. The combined organic phases were dried over Na 2 SO 4 and evaporated in vacuo to give compound 44 as a white solid (62 mg, 91% yield).
 化合物44(40mg、0.16mmol)及び化合物22(29mg)を1.5mLのメタノールに溶解させ、当該溶液にDMTMM・3.2HO(62mg)を加えた。反応混合物を室温で11.5時間撹拌し、真空で蒸発させた。当該反応混合物にDCMを加え、得られた溶液を1M NaCO水溶液、水、1M HCl水溶液、水、及びブラインで洗浄した。有機相をNaSOで乾燥させ、真空で蒸発させて、化合物45を得た(45mg、収率68%)。 Compound 44 (40 mg, 0.16 mmol) and compound 22 (29 mg) were dissolved in 1.5 mL of methanol, and DMTMM 3.2H 2 O (62 mg) was added to the solution. The reaction mixture was stirred at room temperature for 11.5 hours and evaporated in vacuo. DCM was added to the reaction mixture, and the resulting solution was washed with 1M Na 2 CO 3 aqueous solution, water, 1M HCl aqueous solution, water, and brine. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo to give compound 45 (45 mg, 68% yield).
 化合物45(45mg、0.11mmol)をDCM 4mLとTHF 1mLに溶解させた。当該溶液に1.25 mLのTFAを0℃で加え、混合物を15分間撹拌した。次に、反応混合物を室温まで温め、3時間撹拌した。当該反応混合物に1M NaHCO水溶液を加え、得られた溶液を2時間撹拌した。この混合物をDCMで4回抽出した。有機相をNaSOで乾燥させ、真空で蒸発させて、化合物46(41mg、定量的収率)を得た。 Compound 45 (45 mg, 0.11 mmol) was dissolved in 4 mL of DCM and 1 mL of THF. 1.25 mL of TFA was added to the solution at 0 ° C. and the mixture was stirred for 15 minutes. The reaction mixture was then warmed to room temperature and stirred for 3 hours. A 1M aqueous solution of NaHCO 3 was added to the reaction mixture, and the obtained solution was stirred for 2 hours. The mixture was extracted 4 times with DCM. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo to give compound 46 (41 mg, quantitative yield).
 3mL DCM中の化合物46(41mg、0.14mmol)に、無水酢酸(67μL)を加えた。当該反応混合物を室温で24時間撹拌し、次いで真空で蒸発させた。残渣を10mLの46% アセトニトリル水溶液に溶解させ、HPLCの逆相カラムを用いて精製し、化合物47(Ac-D,L-Ala(F3)-L-Ala-NHBn)を白色の固体として得た(0.3mg、収率1%)。当該分子は、ジアステレオ混合物として得られ、そのまま透過性アッセイに使用した。 Acetic anhydride (67 μL) was added to compound 46 (41 mg, 0.14 mmol) in 3 mL DCM. The reaction mixture was stirred at room temperature for 24 hours and then evaporated in vacuo. The residue was dissolved in 10 mL of 46% aqueous acetonitrile solution and purified using an HPLC reverse phase column to give compound 47 (Ac-D, L-Ala (F3) -L-Ala-NHBn) as a white solid. (0.3 mg, yield 1%). The molecule was obtained as a diastereomix and used as is in the permeability assay.
H NMR(CDOD,400MHz):δ7.33-7.22(m,5H),5.37-5.29(m,1H),4.45-4.38(m,3H),2.66(s,3H),1.40-1.38(m,3H).
MS(MALDI-TOF MS.m/z):calcd.for C1518Na(M+Na):368.12,found:367.92.
1 1 H NMR (CD 3 OD, 400 MHz): δ7.33-7.22 (m, 5H), 5.37-5.29 (m, 1H), 4.45-4.38 (m, 3H), 2.66 (s, 3H), 1.40-1.38 (m, 3H).
MS (MALDI-TOF MS.m / z): calcd. for C 15 H 18 F 3 N 3 O 3 Na (M + Na) + : 368.12, found: 367.92.
[比較例6]
 Ac-L-Ala-L-Phe-iBuを合成した。
[Comparative Example 6]
Ac-L-Ala-L-Phe-iBu was synthesized.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 化合物1(700mg、2.34mmol)及びイソブチルアミン(181μL)を23mLのメタノールに溶解させ、当該溶液にDMTMM・1.3HO(838mg)を加えた。当該反応混合物を室温で5時間撹拌し、真空で蒸発させた。当該反応混合物にDCMを加え、得られた溶液を1M NaCO水溶液、水、1M HCl水溶液、水、及びブラインで洗浄した。有機相をNaSOで乾燥させ、真空で蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=4:6(体積比))で精製し、化合物48を得た(523mg、収率65%)。 Compound 1 (700 mg, 2.34 mmol) and isobutylamine (181 μL) were dissolved in 23 mL of methanol, and DMTMM 1.3H 2 O (838 mg) was added to the solution. The reaction mixture was stirred at room temperature for 5 hours and evaporated in vacuo. DCM was added to the reaction mixture, and the resulting solution was washed with 1M Na 2 CO 3 aqueous solution, water, 1M HCl aqueous solution, water, and brine. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 4: 6 (volume ratio)) to give compound 48 (523 mg, 65% yield).
 回収フラスコに化合物48(523mg、1.48mmol)、パラジウム炭素10%(55mg)及び7.4mL メタノールを加えた。当該フラスコにHを導入し、当該混合物を室温で15時間撹拌した。当該反応混合物をセライトで濾過した。溶媒を減圧下で除去して、化合物49を得た(319mg、収率98%)。 Compound 48 (523 mg, 1.48 mmol), palladium carbon 10% (55 mg) and 7.4 mL methanol were added to the recovery flask. H 2 was introduced into the flask and the mixture was stirred at room temperature for 15 hours. The reaction mixture was filtered through Celite. The solvent was removed under reduced pressure to give compound 49 (319 mg, 98% yield).
 化合物5(45mg、0.2mmol)及び化合物49(53mg)を2mLのメタノールに溶解させ、当該溶液を室温で撹拌した。当該溶液にDMTMM・1.3HO(74mg)を加えた。当該反応混合物を室温で23時間撹拌し、真空で蒸発させた。当該反応混合物にDCMを加え、得られた溶液を1M NaCO水溶液、水、1M HCl水溶液、水、及びブラインで洗浄した。有機相をNaSOで乾燥させ、真空で蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(DCM/メタノール=19:1(体積比))で精製し、化合物50を得た(9.1mg、収率11%)。 Compound 5 (45 mg, 0.2 mmol) and compound 49 (53 mg) were dissolved in 2 mL of methanol and the solution was stirred at room temperature. DMTMM 1.3H 2 O (74 mg) was added to the solution. The reaction mixture was stirred at room temperature for 23 hours and evaporated in vacuo. DCM was added to the reaction mixture, and the resulting solution was washed with 1M Na 2 CO 3 aqueous solution, water, 1M HCl aqueous solution, water, and brine. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (DCM / methanol = 19: 1 (volume ratio)) to obtain Compound 50 (9.1 mg, yield 11%).
 回収フラスコに、化合物50(9.1mg、21μmol)、10% パラジウム炭素(2.8mg)、2mLのメタノールを加えた。当該フラスコにHを導入し、混合物を室温で22時間撹拌した。当該反応混合物をセライトで濾過した。溶媒を減圧下で除去して、化合物51を得た(7.4mg、定量的収率)。 Compound 50 (9.1 mg, 21 μmol), 10% palladium carbon (2.8 mg), and 2 mL of methanol were added to the recovery flask. H 2 was introduced into the flask and the mixture was stirred at room temperature for 22 hours. The reaction mixture was filtered through Celite. The solvent was removed under reduced pressure to give compound 51 (7.4 mg, quantitative yield).
 1mL DCM及び0.2mL NMP中の化合物51(4mg、14μmol)に、無水酢酸(23μL)を加えた。当該反応混合物を室温で1.5時間撹拌し、次いで真空で蒸発させた。残渣を3.5mLの14% アセトニトリル水溶液に溶解させ、HPLCの逆相カラムを用いて精製し、化合物52(Ac-L-Ala-L-Phe-iBu)を得た(2.0mg、収率43%)。 Acetic anhydride (23 μL) was added to compound 51 (4 mg, 14 μmol) in 1 mL DCM and 0.2 mL NMP. The reaction mixture was stirred at room temperature for 1.5 hours and then evaporated in vacuo. The residue was dissolved in 3.5 mL of a 14% aqueous acetonitrile solution and purified using an HPLC reversed-phase column to give compound 52 (Ac-L-Ala-L-Phe-iBu) (2.0 mg, yield). 43%).
H NMR(CDCl,400MHz):δ7.32-7.19(m,10H),6.62(d,J=7.7Hz,1H),5.90-5.86(m,2H),4.57(q,J=7.7Hz,1H),4.39(dq,J=6.9,7.1Hz,1H),3.14(dd,J=6.4,13.9Hz,1H),3.06-2.98(m,3H),1.94(s,3H),1.70-1.62(m,1H),1.33(d,J=7.1Hz,3H),0.79(t,J=6.3Hz,6H).
MS(MALDI-TOF MS.m/z):calcd.for C1827Na(M+Na):356.20,found:356.23.
1 H NMR (CDCl 3 , 400 MHz): δ7.32-7.19 (m, 10H), 6.62 (d, J = 7.7 Hz, 1H), 5.90-5.86 (m, 2H) , 4.57 (q, J = 7.7Hz, 1H), 4.39 (dq, J = 6.9, 7.1Hz, 1H), 3.14 (dd, J = 6.4, 13.9Hz) , 1H), 3.06-2.98 (m, 3H), 1.94 (s, 3H), 1.70-1.62 (m, 1H), 1.33 (d, J = 7.1Hz) , 3H), 0.79 (t, J = 6.3Hz, 6H).
MS (MALDI-TOF MS.m / z): calcd. for C 18 H 27 N 3 O 3 Na (M + Na) + : 356.20, found: 356.23.
[実施例6]
 Ac-D,L-Ala(F3)-L-Phe-iBuを合成した。
[Example 6]
Ac-D and L-Ala (F3) -L-Phe-iBu were synthesized.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 化合物44(41mg、0.17mmol)及び化合物49(45mg)を1mLのメタノールと0.7mLのDCMに溶解させ、当該溶液にDMTMM・1.3HO(59mg)を加えた。当該反応混合物を室温で一晩撹拌し、真空で蒸発させた。当該反応混合物にDCMを加え、得られた溶液を1M NaHCO水溶液、飽和NHCl水溶液、及びブラインで洗浄した。有機相をNaSOで乾燥させ、真空で蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(DCM/メタノール=19:1(体積比))で精製し、化合物53を得た(47mg、収率63%)。 Compound 44 (41 mg, 0.17 mmol) and compound 49 (45 mg) were dissolved in 1 mL of methanol and 0.7 mL of DCM, and DMTMM 1.3H 2 O (59 mg) was added to the solution. The reaction mixture was stirred at room temperature overnight and evaporated in vacuo. DCM was added to the reaction mixture, the solution 1M NaHCO 3 aqueous solution obtained, saturated aqueous NH 4 Cl, and brine. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (DCM / methanol = 19: 1 (volume ratio)) to give compound 53 (47 mg, 63% yield).
 酢酸エチル3mL中の化合物53(47mg、0.11mmol)に、酢酸エチル中の4M HCl(3mL)を加え、次いで当該溶液を室温で20分間撹拌した。当該溶液を真空で蒸発させて、化合物54を得た(45mg、定量的収率)。 4M HCl (3 mL) in ethyl acetate was added to compound 53 (47 mg, 0.11 mmol) in 3 mL of ethyl acetate, and then the solution was stirred at room temperature for 20 minutes. The solution was evaporated in vacuo to give compound 54 (45 mg, quantitative yield).
 2mL DCM中の化合物54(30mg、79μmol)に、無水酢酸(45μL)を加えた。当該反応混合物を室温で3時間撹拌し、次いで真空で蒸発させた。残渣をアセトニトリル/HO/MeOH(=2.4mL:3.6mL:2mL)に溶解させ、HPLCの逆相カラムを用いて精製し、化合物55(Ac-D,L-Ala(F3)-L-Phe-iBu)を得た(9.4mg、収率30%)。当該分子は、ジアステレオ混合物として得られ、そのまま透過性アッセイに使用した。 Acetic anhydride (45 μL) was added to compound 54 (30 mg, 79 μmol) in 2 mL DCM. The reaction mixture was stirred at room temperature for 3 hours and then evaporated in vacuo. The residue was dissolved in acetonitrile / H 2 O / MeOH (= 2.4 mL: 3.6 mL: 2 mL), purified using an HPLC reverse phase column, and compound 55 (Ac-D, L-Ala (F3)- L-Phe-iBu) was obtained (9.4 mg, yield 30%). The molecule was obtained as a diastereomix and used as is in the permeability assay.
H NMR(CDCl,400MHz):δ7.34-7.21(m,5H),6.82-6.76(m,1H),6.41(d,J=6.4Hz,1H),5.3(s,1H),5.17(q,J=7.3Hz,1H),4.59-4.53(m,1H),3.21-3.12(m,1H),3.01-2.92(m,3H),1.42(dd,J=6.9,12.4Hz,1H),0.76(dd,J=6.4,10.5Hz,6H).
MS(MALDI-TOF MS.m/z):calcd.for C1824Na(M+Na):410.17,found:410.19.
1 1 H NMR (CDCl 3 , 400 MHz): δ7.34-7.21 (m, 5H), 6.82-6.76 (m, 1H), 6.41 (d, J = 6.4 Hz, 1H) , 5.3 (s, 1H), 5.17 (q, J = 7.3Hz, 1H), 4.59-4.53 (m, 1H), 3.21-3.12 (m, 1H) , 3.01-2.92 (m, 3H), 1.42 (dd, J = 6.9, 12.4Hz, 1H), 0.76 (dd, J = 6.4, 10.5Hz, 6H) ).
MS (MALDI-TOF MS.m / z): calcd. for C 18 H 24 F 3 N 3 O 3 Na (M + Na) + : 410.17, found: 410.19.
[比較例7]
 Ac-L-Val-L-Ala-NMeを合成した。
[Comparative Example 7]
Ac-L-Val-L-Ala-NMe 2 was synthesized.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 N-カルボベンゾキシ-L-バリン(化合物56)(60mg、0.24mmol)及び化合物13(33mg)を2.2mLのメタノールに溶解させ、当該溶液にDMTMM・1.3HO(91mg)を加えた。当該反応混合物を室温で一晩撹拌し、真空で蒸発させた。当該反応混合物にDCMを加え、得られた溶液を1M NaCO水溶液、水、1M HCl水溶液、水、及びブラインで洗浄した。有機相をNaSOで乾燥させ、真空で蒸発させて化合物57を得た(75mg、収率89%)。 N-Carbobenzoxyl-L-valine (Compound 56) (60 mg, 0.24 mmol) and Compound 13 (33 mg) were dissolved in 2.2 mL of methanol, and DMTMM 1.3H 2 O (91 mg) was added to the solution. added. The reaction mixture was stirred at room temperature overnight and evaporated in vacuo. DCM was added to the reaction mixture, and the resulting solution was washed with 1M Na 2 CO 3 aqueous solution, water, 1M HCl aqueous solution, water, and brine. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo to give compound 57 (75 mg, 89% yield).
 回収フラスコに、化合物57(773mg、3.10mmol)、パラジウム炭素10%(7.5mg)、及び2.1mLのメタノールを加えた。当該フラスコにHを導入し、当該混合物を室温で18時間撹拌した。当該反応混合物をセライトで濾過した。溶媒を減圧下で除去して、化合物58を得た(35mg、収率76%)。 Compound 57 (773 mg, 3.10 mmol), palladium carbon 10% (7.5 mg), and 2.1 mL of methanol were added to the recovery flask. H 2 was introduced into the flask and the mixture was stirred at room temperature for 18 hours. The reaction mixture was filtered through Celite. The solvent was removed under reduced pressure to give compound 58 (35 mg, 76% yield).
 0.8mL DCM中の化合物58(35mg、0.16mmol)に、無水酢酸(18μL)を加えた。当該反応混合物を室温で20時間撹拌し、次いで真空で蒸発させた。残渣を4mLの10% アセトニトリル水溶液に溶解させ、HPLCの逆相カラムを用いて精製し、化合物59(Ac-L-Val-L-Ala-NMe)を白色固体として得た(27mg、収率65%)。 Acetic anhydride (18 μL) was added to compound 58 (35 mg, 0.16 mmol) in 0.8 mL DCM. The reaction mixture was stirred at room temperature for 20 hours and then evaporated in vacuo. The residue was dissolved in 4 mL of 10% aqueous acetonitrile solution and purified using an HPLC reversed-phase column to give compound 59 (Ac-L-Val-L-Ala-NMe 2 ) as a white solid (27 mg, yield). 65%).
H NMR(CDCl,400MHz):δ7.10(d,J=7.3Hz,1H),6.41(d,J=8.7Hz,1H),4.87(quin,J=6.9,1H),4.37(dd,J=6.1,2.6Hz,1H),3.09(s,3H),2.99(s,3H),2.10-2.02(m,4H),1.34(d,J=6.9Hz,3H),0.94(d,J=6.0Hz,3H),0.92(d,J=5.5Hz,3H).
MS(MALDI-TOF MS.m/z):calcd.for C1223Na(M+Na):280.16,found:280.05.
1 1 H NMR (CDCl 3 , 400 MHz): δ7.10 (d, J = 7.3 Hz, 1H), 6.41 (d, J = 8.7 Hz, 1H), 4.87 (quin, J = 6. 9,1H), 4.37 (dd, J = 6.1,2.6Hz, 1H), 3.09 (s, 3H), 2.99 (s, 3H), 2.10-2.02 ( m, 4H), 1.34 (d, J = 6.9Hz, 3H), 0.94 (d, J = 6.0Hz, 3H), 0.92 (d, J = 5.5Hz, 3H).
MS (MALDI-TOF MS.m / z): calcd. for C 12 H 23 N 3 O 3 Na (M + Na) + : 280.16, found: 280.05.
[実施例7]
 Ac-D,L-Val(F6)-L-Ala-NMeを合成した。
[Example 7]
Ac-D and L-Val (F6) -L-Ala-NMe 2 were synthesized.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 D,L-ヘキサフルオロバリン(化合物60)(50mg、0.22mmol)を2.5mLのアセトニトリルに溶解させた。この溶液に、ジ-tert-ブチルジカーボネート(49μL)を0℃で加えた。当該反応混合物を11.5時間かけて室温まで温めた。当該溶液にDIPEA(38μL)を加え、当該反応混合物を室温で6.5時間攪拌した。当該溶液を真空で蒸発させ、水を残渣に加えた。当該溶液をジエチルエーテルで抽出した。 水相に1M HCl水溶液を加え、得られた溶液をジエチルエーテルで3回抽出した。合わせた有機相をNaSOで乾燥させ、真空で蒸発させて、化合物61を得た(63mg、収率87%)。 D, L-Hexafluorovaline (Compound 60) (50 mg, 0.22 mmol) was dissolved in 2.5 mL of acetonitrile. To this solution was added di-tert-butyl dicarbonate (49 μL) at 0 ° C. The reaction mixture was warmed to room temperature over 11.5 hours. DIPEA (38 μL) was added to the solution and the reaction mixture was stirred at room temperature for 6.5 hours. The solution was evaporated in vacuo and water was added to the residue. The solution was extracted with diethyl ether. A 1M aqueous HCl solution was added to the aqueous phase, and the resulting solution was extracted 3 times with diethyl ether. The combined organic phases were dried over Na 2 SO 4 and evaporated in vacuo to give compound 61 (63 mg, 87% yield).
 化合物61(50mg、0.15mmol)及び化合物13(21mg)を0.7mLのメタノールに溶解させ、当該溶液にDMTMM・1.3HO(56mg)を加えた。当該反応混合物を室温で17時間撹拌し、真空で蒸発させた。 当該反応混合物にDCMを加え、得られた溶液を1M NaCO水溶液、水、1M HCl水溶液、水、及びブラインで洗浄した。有機相をNaSOで乾燥させ、真空で蒸発させて、化合物62を得た(50mg、収率77%)。 Compound 61 (50 mg, 0.15 mmol) and compound 13 (21 mg) were dissolved in 0.7 mL of methanol, and DMTMM 1.3H 2 O (56 mg) was added to the solution. The reaction mixture was stirred at room temperature for 17 hours and evaporated in vacuo. DCM was added to the reaction mixture, and the resulting solution was washed with 1M Na 2 CO 3 aqueous solution, water, 1M HCl aqueous solution, water, and brine. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo to give compound 62 (50 mg, 77% yield).
 化合物62(50mg、0.12mmol)に、酢酸エチル中の4M HCl(2.5mL)を加えた後、当該溶液を室温で2時間撹拌した。当該反応混合物に酢酸エチルを加え、得られた溶液を1 M HCl水溶液で2回抽出した。水相に1 M NaOH水溶液をpHが11になるまで加えた。当該溶液をDCMで3回抽出し、有機相をNaSOで乾燥した。溶媒を減圧下で除去して、化合物63を得た(38mg、定量的収率)。 After adding 4M HCl (2.5 mL) in ethyl acetate to compound 62 (50 mg, 0.12 mmol), the solution was stirred at room temperature for 2 hours. Ethyl acetate was added to the reaction mixture, and the resulting solution was extracted twice with 1 M aqueous HCl solution. A 1 M aqueous NaOH solution was added to the aqueous phase until the pH reached 11. The solution was extracted 3 times with DCM and the organic phase was dried over Na 2 SO 4. The solvent was removed under reduced pressure to give compound 63 (38 mg, quantitative yield).
 DCM(1.2mL)中の化合物63(38mg、0.12mmol)に、無水酢酸(13μL)を加えた。当該反応混合物を室温で13時間撹拌し、次いで真空で蒸発させた。残渣を8mLの30% アセトニトリル水溶液に溶解させ、HPLCの逆相カラムを用いて精製し、化合物64を白色固体として得た(27mg、収率63%)。当該分子は、ジアステレオ混合物として得られ、そのまま透過性アッセイに使用した。 Acetic anhydride (13 μL) was added to compound 63 (38 mg, 0.12 mmol) in DCM (1.2 mL). The reaction mixture was stirred at room temperature for 13 hours and then evaporated in vacuo. The residue was dissolved in 8 mL of 30% aqueous acetonitrile solution and purified using an HPLC reversed-phase column to give compound 64 as a white solid (27 mg, 63% yield). The molecule was obtained as a diastereomix and used as is in the permeability assay.
H NMR(CDCl,400MHz):δ7.57(d,J=6.4Hz,0.5H),7.39(d,J=6.9Hz,0.5H),6.22(d,J=9.6Hz,0.5H),6.08(d,J=9.6Hz,0.5H),5.41(t,J=9.2Hz,1H),4.86-4.75(m,1H),4.35-4.22(m,1H),3.07(d,J=5.0Hz,3H),2.98(d,J=3.2Hz,3H),2.14(d,J=2.14Hz,3H),1.32(t,J=7.3Hz,3H).
MS(MALDI-TOF MS.m/z):calcd.for C1217Na(M+Na):388.11,found:388.18.
1 1 H NMR (CDCl 3 , 400 MHz): δ7.57 (d, J = 6.4 Hz, 0.5H), 7.39 (d, J = 6.9 Hz, 0.5H), 6.22 (d, J = 9.6Hz, 0.5H), 6.08 (d, J = 9.6Hz, 0.5H), 5.41 (t, J = 9.2Hz, 1H), 4.86-4.75 (M, 1H), 4.35-4.22 (m, 1H), 3.07 (d, J = 5.0Hz, 3H), 2.98 (d, J = 3.2Hz, 3H), 2 .14 (d, J = 2.14Hz, 3H), 1.32 (t, J = 7.3Hz, 3H).
MS (MALDI-TOF MS.m / z): calcd. for C 12 H 17 F 6 N 3 O 3 Na (M + Na) + : 388.11, found: 388.18.
[比較例8]
 Ac-L-Val-L-Phe-iBuを合成した。
[Comparative Example 8]
Ac-L-Val-L-Phe-iBu was synthesized.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 化合物56(52mg、0.2mmol)及び化合物49(53mg)を2mLのメタノールに溶解させ、溶液を室温で撹拌した。 当該溶液にDMTMM・1.3HO(72mg)を加えた。当該反応混合物を室温で23時間撹拌し、真空で蒸発させた。当該反応混合物にDCMを加え、得られた溶液を1M NaCO水溶液、水、1M HCl水溶液、水、及びブラインで洗浄した。有機相をNaSOで乾燥させ、真空で蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(DCM/メタノール=19:1(体積比))で精製し、化合物65を得た(60mg、収率67%)。 Compound 56 (52 mg, 0.2 mmol) and compound 49 (53 mg) were dissolved in 2 mL of methanol and the solution was stirred at room temperature. DMTMM 1.3H 2 O (72 mg) was added to the solution. The reaction mixture was stirred at room temperature for 23 hours and evaporated in vacuo. DCM was added to the reaction mixture, and the resulting solution was washed with 1M Na 2 CO 3 aqueous solution, water, 1M HCl aqueous solution, water, and brine. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (DCM / methanol = 19: 1 (volume ratio)) to give compound 65 (60 mg, 67% yield).
 回収フラスコに、化合物65(60mg、0.13mmol)、パラジウム炭素10%(6mg)、及び1.3mLのメタノールを加えた。当該フラスコにHを導入し、混合物を室温で22時間撹拌した。当該反応混合物をセライトで濾過した。溶媒を減圧下で除去して、化合物66を得た(39mg、収率92%)。 Compound 65 (60 mg, 0.13 mmol), palladium carbon 10% (6 mg), and 1.3 mL of methanol were added to the recovery flask. H 2 was introduced into the flask and the mixture was stirred at room temperature for 22 hours. The reaction mixture was filtered through Celite. The solvent was removed under reduced pressure to give compound 66 (39 mg, 92% yield).
 化合物66(15mg、47μmol)を1mL DCM、0.4mL NMP及び0.2mL THFに溶解させた。当該溶液に無水酢酸(23μL)を加えた。当該反応混合物を室温で1.5時間撹拌し、次いで真空で蒸発させた。残渣をアセトニトリル/HO/MeOH(=1.8mL:2.9mL:1.5mL)に溶解させ、HPLCの逆相カラムを用いて精製し、化合物67(Ac-D,L-Val(F6)-L-Ala-NMe)を得た(7.2mg、収率43%)。 Compound 66 (15 mg, 47 μmol) was dissolved in 1 mL DCM, 0.4 mL NMP and 0.2 mL THF. Acetic anhydride (23 μL) was added to the solution. The reaction mixture was stirred at room temperature for 1.5 hours and then evaporated in vacuo. The residue was dissolved in acetonitrile / H 2 O / MeOH (= 1.8 mL: 2.9 mL: 1.5 mL), purified using an HPLC reverse phase column, and compound 67 (Ac-D, L-Val (F6)). ) -L-Ala-MeOH 2 ) was obtained (7.2 mg, yield 43%).
H NMR(CDCl,400MHz):δ7.30-7.18(m,5H),6.51(d,J=7.3Hz,1H),5.92(d,J=7.8Hz,1H),5.75(s,1H),4.58(dt,J=6.0,8.2Hz,1H),4.20(dd,J=6.0,8.2Hz,1H),3.11(dd,J=6.0,13.7Hz,1H),3.02-2.92(m,3H),2.10-2.03(m,1H),1.97(s,3H),1.66-1.59(m,1H),0.88(dd,J=6.9,11.5Hz,6H),0.76(t,J=7.3Hz,6H).
MS(MALDI-TOF MS.m/z):calcd.for C2031Na(M+Na):384.23,found:384.13.
1 1 H NMR (CDCl 3 , 400 MHz): δ7.30-7.18 (m, 5H), 6.51 (d, J = 7.3 Hz, 1H), 5.92 (d, J = 7.8 Hz, 1H), 5.75 (s, 1H), 4.58 (dt, J = 6.0, 8.2Hz, 1H), 4.20 (dd, J = 6.0, 8.2Hz, 1H), 3.11 (dd, J = 6.0, 13.7Hz, 1H), 3.02-2.92 (m, 3H), 2.10-2.03 (m, 1H), 1.97 (s) , 3H), 1.66-1.59 (m, 1H), 0.88 (dd, J = 6.9, 11.5Hz, 6H), 0.76 (t, J = 7.3Hz, 6H) ..
MS (MALDI-TOF MS.m / z): calcd. for C 20 H 31 N 3 O 3 Na (M + Na) + : 384.23, found: 384.13.
[実施例8]
 Ac-D,L-Val(F6)-L-Phe-iBuを合成した。
[Example 8]
Ac-D and L-Val (F6) -L-Phe-iBu were synthesized.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 化合物61(70mg、0.22mmol)及び化合物49(57mg)を1.2mLのメタノールに溶解させ、当該溶液にDMTMM・1.3HO(83mg)を加えた。当該反応混合物を室温で5時間撹拌し、真空で蒸発させた。当該反応混合物にDCMを加え、得られた溶液を飽和NaHCO水溶液、1M HCl水溶液、及びブラインで洗浄した。有機相をNaSOで乾燥させ、真空で蒸発させた。残渣をシリカゲルカラムクロマトグラフィー(DCM/メタノール=19:1(体積比))で精製し、化合物68を得た(79mg、収率69%)。 Compound 61 (70 mg, 0.22 mmol) and compound 49 (57 mg) were dissolved in 1.2 mL of methanol, and DMTMM 1.3H 2 O (83 mg) was added to the solution. The reaction mixture was stirred at room temperature for 5 hours and evaporated in vacuo. DCM was added to the reaction mixture, and the obtained solution was washed with saturated aqueous NaHCO 3 solution, 1M aqueous HCl solution, and brine. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (DCM / methanol = 19: 1 (volume ratio)) to give compound 68 (79 mg, 69% yield).
 3mLの酢酸エチル中の化合物68に、酢酸エチル中の4M HCl(3mL)を加えた。当該溶液を室温で1.5時間撹拌した。溶媒を減圧下で除去して、化合物69を得た(53mg、収率76%)。 4M HCl (3 mL) in ethyl acetate was added to compound 68 in 3 mL of ethyl acetate. The solution was stirred at room temperature for 1.5 hours. The solvent was removed under reduced pressure to give compound 69 (53 mg, 76% yield).
 2mL DCM中の化合物69(40mg、86μmol)に、DIPEA(16μL)及び無水酢酸(45μL)を加えた。当該反応混合物を室温で8.5時間撹拌し、次いで真空で蒸発させた。残渣をアセトニトリル/HO/MeOH(=3mL:3mL:8mL)に溶解させ、HPLCの逆相カラムを用いて精製し、化合物70(Ac-D,L-Val(F6)-L-Phe-iBu)を白色固体として得た(5.7mg、収率13%)。当該分子は、ジアステレオ混合物として得られ、そのまま透過性アッセイに使用した。 DIPEA (16 μL) and acetic anhydride (45 μL) were added to compound 69 (40 mg, 86 μmol) in 2 mL DCM. The reaction mixture was stirred at room temperature for 8.5 hours and then evaporated in vacuo. The residue was dissolved in acetonitrile / H 2 O / MeOH (= 3 mL: 3 mL: 8 mL), purified using an HPLC reverse phase column, and compound 70 (Ac-D, L-Val (F6) -L-Phe- iBu) was obtained as a white solid (5.7 mg, yield 13%). The molecule was obtained as a diastereomix and used as is in the permeability assay.
H NMR(CDOD,400MHz):δ7.29-7.17(m,5H),5.29(dq,J=7.8,23.8Hz,1H),4.63-4.58(m,1H),3.15-3.05(m,1H),3.01-2.86(m,3H),2.01(d,J=4.6hz,3H),1.72-1.62(m,1H),0.82-0.78(m,6H).
MS(MALDI-TOF MS.m/z):calcd.for C2025Na(M+Na):492.17,found:491.97.
1 1 H NMR (CD 3 OD 3 , 400 MHz): δ7.29-7.17 (m, 5H), 5.29 (dq, J = 7.8, 23.8 Hz, 1H), 4.63-4. 58 (m, 1H), 3.15-3.05 (m, 1H), 3.01-2.86 (m, 3H), 2.01 (d, J = 4.6hz, 3H), 1. 72-1.62 (m, 1H), 0.82-0.78 (m, 6H).
MS (MALDI-TOF MS.m / z): calcd. for C 20 H 25 F 6 N 3 O 3 Na (M + Na) + : 492.17, found: 491.97.
[実施例9]
 Cbz-Ala(F3)-OHを合成した。
[Example 9]
Cbz-Ala (F3) -OH was synthesized.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 N-カルボベンゾキシオキシコハク酸イミド(72)(245mg、0.98mmol)とTEA(272μL、1.96mmol)を3mLのTHFに溶解させた。この溶液に、D,L-トリフルオロアラニン塩酸塩(71)(160mg、0.89mmol)を6mLの水に溶かし、0℃で滴下した。当該反応混合物を0℃で10分間撹拌し、7時間かけて室温まで温めた後、N-カルボベンゾキシオキシコハク酸イミド(72)(222mg、0.89mmol)を添加し、当該反応混合物を17時間撹拌した。
 1M NaHCO水溶液を当該反応混合物に添加し、この混合物をDCMで3回抽出した。水相に1M HCl水溶液を加えて酸性化し、当該溶液を酢酸エチルで3回抽出した。合わせた有機相をNaSOで乾燥させ、真空中で蒸発させて、残渣をシリカゲルカラムクロマトグラフィー(DCM/メタノール=9:1(体積比))で精製し、HPLCの逆相カラムを用いて精製して、化合物73(Cbz-Ala(F3)-OH)を白色の固体として得た(85mg、収率35%)。
N-Carbobenzoxioxysuccinimide (72) (245 mg, 0.98 mmol) and TEA (272 μL, 1.96 mmol) were dissolved in 3 mL of THF. In this solution, D, L-trifluoroalanine hydrochloride (71) (160 mg, 0.89 mmol) was dissolved in 6 mL of water and added dropwise at 0 ° C. The reaction mixture was stirred at 0 ° C. for 10 minutes, warmed to room temperature over 7 hours, then N-carbobenzoxoxysuccinimide (72) (222 mg, 0.89 mmol) was added to add 17 to the reaction mixture. Stir for hours.
A 1M aqueous NaHCO 3 solution was added to the reaction mixture and the mixture was extracted 3 times with DCM. A 1M aqueous HCl solution was added to the aqueous phase to acidify the solution, and the solution was extracted 3 times with ethyl acetate. The combined organic phases are dried on Na 2 SO 4 and evaporated in vacuum, the residue is purified by silica gel column chromatography (DCM / methanol = 9: 1 (volume ratio)) and an HPLC reversed phase column is used. Purified to give compound 73 (Cbz-Ala (F3) -OH) as a white solid (85 mg, 35% yield).
H NMR(CDOD,400MHz):δ8.17(d,1H,J=9.2Hz), 7.39-7.29(m,5H),5.15(s,2H),5.04-4.95(m,1H). 1 1 H NMR (CD 3 OD, 400 MHz): δ8.17 (d, 1H, J = 9.2 Hz), 7.39-7.29 (m, 5H), 5.15 (s, 2H), 5. 04-4.95 (m, 1H).
 ラセミ体Cbz-Ala(F3)-OHを分離するために、HPLCシステムでキラルカラムを使用した。Cbz-L-Ala(F3)-OHが白色固体として得られた(48mg、収率20%)。 A chiral column was used in the HPLC system to separate the racemic Cbz-Ala (F3) -OH. Cbz-L-Ala (F3) -OH was obtained as a white solid (48 mg, 20% yield).
H NMR(CDOD,400MHz):δ7.46-7.32(m、5H)、5.21(s、2H)、5.10-5.03(m、1H)。 1 1 H NMR (CD 3 OD, 400 MHz): δ7.46-7.32 (m, 5H), 5.21 (s, 2H), 5.10-5.03 (m, 1H).
 Fmoc-Tyr-Oallylは、Morimoto等の方法(非特許文献7)に従って合成した。 Fmoc-Tyr-Oallyl was synthesized according to the method of Morimoto et al. (Non-Patent Document 7).
[実施例10]
 Cyclic peptide 1_TriFを合成した。
[Example 10]
Cyclic peptide 1_TriF was synthesized.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 化合物74は、2-クロロトリチルポリスチレン樹脂(1.92mmol/g)上で、手動で合成した。樹脂(62mg、0.12mmol)は、6mL容のフリットシリンジ内で、連続的に振とうしながらDCMで膨潤させた。DIPEA(83μL、0.48mmol)及びFmoc-Leu-OH(42mg、0.24mmol)を1.2mLのDCMに溶解させ、当該反応溶液中において、前記樹脂を室温で2時間振とう攪拌することによって、1残基目を樹脂上に伸長した。反応後の樹脂を、DCM/メタノール/DIPEA=17/2/1(体積比)及びDCMで、それぞれ3回洗浄した。当該樹脂を、2残基目以降のペプチド合成に適用した。Fmoc脱保護は、当該樹脂をDMF中の20% ピペリジンと共に15分間インキュベートすることにより行った。反応後の樹脂は、DMFで3回洗浄した。 Compound 74 was manually synthesized on 2-chlorotrityl polystyrene resin (1.92 mmol / g). The resin (62 mg, 0.12 mmol) was swollen with DCM in a 6 mL frit syringe with continuous shaking. By dissolving DIPEA (83 μL, 0.48 mmol) and Fmoc-Leu-OH (42 mg, 0.24 mmol) in 1.2 mL of DCM and shaking the resin at room temperature for 2 hours in the reaction solution. The first residue was extended on the resin. The resin after the reaction was washed 3 times each with DCM / methanol / DIPEA = 17/2/1 (volume ratio) and DCM. The resin was applied to the peptide synthesis of the second and subsequent residues. Fmoc deprotection was performed by incubating the resin with 20% piperidine in DMF for 15 minutes. The resin after the reaction was washed 3 times with DMF.
 Cbz-L-Ala(F3)-OH以外のカップリング反応は、Fmoc保護アミノ酸(3当量)、HATU(3当量)、HOAt(3当量)、及びDIPEA(3当量)を使用して、DMF(Fmoc保護アミノ酸に対して0.2M)中で1~3時間反応させた。カップリング反応後の樹脂は、DMFでそれぞれ3回洗浄した。
 Cbz-L-Ala(F3)-OHのカップリング反応は、Cbz-L-Ala(F3)-OH(2当量)、Oxyma(2当量)、及びDIC(2当量)を使用して、DMF(Cbz-L-Ala(F3)-OHに対して0.1M)中で反応させた。カップリング反応後の樹脂は、DMFでそれぞれ3回洗浄した。
Coupling reactions other than Cbz-L-Ala (F3) -OH use DMF (3 equivalents), Fmoc-protected amino acids (3 equivalents), HATU (3 equivalents), HOAt (3 equivalents), and DIPEA (3 equivalents). It was reacted with Fmoc-protected amino acids in 0.2 M) for 1 to 3 hours. The resin after the coupling reaction was washed with DMF three times each.
The coupling reaction of Cbz-L-Ala (F3) -OH was carried out using Cbz-L-Ala (F3) -OH (2 eq), Oxyma (2 eq), and DIC (2 eq) using DMF (2 eq). It was reacted with Cbz-L-Ala (F3) -OH in 0.1 M). The resin after the coupling reaction was washed with DMF three times each.
 カップリングと脱保護を6番目の残基まで繰り返した。合成されたペプチドは、当該樹脂を、30% HFIPと共にDCM中で15分間インキュベートすることを3回行うことによって、当該樹脂から切断された。合成されたペプチドを含む濾液は全て、回収フラスコに集めた。次いで、当該樹脂を、DCM及びMeOHで洗浄した。全ての濾液と洗浄液を合わせ、溶媒を減圧下で蒸発させて、化合物74を得た。 Coupling and deprotection were repeated up to the 6th residue. The synthesized peptide was cleaved from the resin by incubating the resin with 30% HFIP in DCM for 15 minutes three times. All filtrates containing the synthesized peptides were collected in recovery flasks. The resin was then washed with DCM and MeOH. All filtrates and washings were combined and the solvent evaporated under reduced pressure to give compound 74.
 当該回収フラスコに、化合物74(34mg、36μmol)、10% パラジウム炭素(6.8mg)、及び2mLのメタノールを加え、Hを導入して、当該回収フラスコ内の混合物を室温で14.5時間撹拌した。得られた反応混合物をセライトで濾過した後、溶媒を減圧下で除去して、化合物75を得た。 Compound 74 (34 mg, 36 μmol), 10% palladium carbon (6.8 mg), and 2 mL of methanol were added to the recovery flask, H 2 was introduced, and the mixture in the recovery flask was allowed to stand at room temperature for 14.5 hours. Stirred. The resulting reaction mixture was filtered through Celite and then the solvent was removed under reduced pressure to give compound 75.
 回収フラスコに、化合物75(19mg、15μmol)、HOAt(6.4mg)、PyAOP(24.5mg)、及びDMF(6mL)を添加した。当該回収フラスコ内の混合物を、室温で18時間撹拌した。得られた反応混合物の溶媒を減圧下で除去して、化合物76を得た。 Compound 75 (19 mg, 15 μmol), HOAt (6.4 mg), PyAOP (24.5 mg), and DMF (6 mL) were added to the recovery flask. The mixture in the recovery flask was stirred at room temperature for 18 hours. The solvent of the resulting reaction mixture was removed under reduced pressure to give compound 76.
 化合物76に、50μLのTIPS、50μLのHO、及び1.9mLのTFAを、氷上で滴下した。得られた反応混合物を氷上で10分間撹拌し、80分間かけて室温まで温めた後、溶媒を減圧下で除去した。残渣をHPLCの逆相カラムを用いて精製し、化合物77(Cyclic peptide 1_TriF)を得た。 Compound 76, TIPS of 50 [mu] L, H 2 O of 50 [mu] L, and TFA for 1.9 mL, was added dropwise on ice. The resulting reaction mixture was stirred on ice for 10 minutes, warmed to room temperature over 80 minutes, and then the solvent was removed under reduced pressure. The residue was purified using an HPLC reverse phase column to give compound 77 (Cyclic peptide 1_TriF).
MS(LC/ESI-MS.m/z):calcd.for C3552(M+H):725.39,found:725.81 MS (LC / ESI-MS.m / z): calcd. for C 35 H 52 F 3 N 6 O 7 (M + H) + : 725.39, found: 725.81
[実施例11]
 Cyclic peptide 1_MonoFを合成した。
[Example 11]
Cyclic peptide 1_MonoF was synthesized.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 化合物78は、2-クロロトリチルポリスチレン樹脂(1.69mmol/g)上で、手動で合成した。樹脂(131mg、0.22mmol)は、6mL容のフリットシリンジ内で、連続的に振とうしながらDCMで膨潤させた。DIPEA(39μL)及びFmoc-Leu-OH(162mg)を2.2mLのDCMに溶解させ、当該反応溶液中において前記樹脂を室温で4.5時間振とう攪拌することによって、1残基目を樹脂上に伸長した。反応後、当該樹脂をDCM/メタノール/DIPEA=17/2/1(体積比)及びDCMでそれぞれ3回洗浄した。この樹脂を2残基目以降のペプチド合成に適用した。Fmoc脱保護は、当該樹脂をDMF中の20%ピペリジンと共に15分間インキュベートすることにより行った。反応後、樹脂をDMFで3回洗浄した。 Compound 78 was manually synthesized on 2-chlorotrityl polystyrene resin (1.69 mmol / g). The resin (131 mg, 0.22 mmol) was swollen with DCM in a 6 mL frit syringe with continuous shaking. DIPEA (39 μL) and Fmoc-Leu-OH (162 mg) were dissolved in 2.2 mL of DCM, and the resin was shaken and stirred at room temperature for 4.5 hours in the reaction solution to make the first residue resin. Stretched up. After the reaction, the resin was washed 3 times each with DCM / methanol / DIPEA = 17/2/1 (volume ratio) and DCM. This resin was applied to the peptide synthesis of the second and subsequent residues. Fmoc deprotection was performed by incubating the resin with 20% piperidine in DMF for 15 minutes. After the reaction, the resin was washed 3 times with DMF.
 後述するCbz-L-Ala(F)-OH以外のカップリング反応は、Fmoc保護アミノ酸(4当量)、Oxyma(4当量)、DIC(4当量)、及びDIPEA(4当量)を使用して、DMF(Fmoc保護アミノ酸に対して0.2M)中で1~3時間反応させた。 Coupling reactions other than Cbz-L-Ala (F) -OH, which will be described later, use Fmoc-protected amino acids (4 equivalents), Oxyma (4 equivalents), DIC (4 equivalents), and DIPEA (4 equivalents). The reaction was carried out in DMF (0.2 M for Fmoc-protected amino acid) for 1 to 3 hours.
 Cbz-L-Ala(F)-OH((R)-2-(((Benzyloxy)carbonyl)amino)-3-fluoropropanoic acid、CLD pharm社製)のカップリング反応は、Cbz-L-Ala(F)-OH(2当量)、Oxyma(2当量)、及びDIC(2当量)を使用して、DMF(Cbz-L-Ala(F)-OHに対して0.2M)中で反応させた。 The coupling reaction of Cbz-L-Ala (F) -OH ((R) -2-(((Benzyloxy) carbonyl) amino) -3-fluoropropanoic acid, manufactured by CLDpharm) is Cbz-L-Ala (F). ) -OH (2 eq), Oxyma (2 eq), and DIC (2 eq) were used to react in DMF (0.2 M to Cbz-L-Ala (F) -OH).
 反応後、当該樹脂をDMFで各3回洗浄した。カップリングと脱保護を6番目の残基まで繰り返した。合成されたペプチドは、当該樹脂を、30% HFIPと共にDCM中で15分間インキュベートすることを3回行うことによって、当該樹脂から切断された。合成されたペプチドを含む濾液は全て、回収フラスコに集めた。当該樹脂を、DCM及びMeOHで洗浄した。全ての濾液と洗浄液を合わせ、溶媒を減圧下で蒸発させて、化合物78を得た。 After the reaction, the resin was washed 3 times each with DMF. Coupling and deprotection were repeated up to the 6th residue. The synthesized peptide was cleaved from the resin by incubating the resin with 30% HFIP in DCM for 15 minutes three times. All filtrates containing the synthesized peptides were collected in recovery flasks. The resin was washed with DCM and MeOH. All filtrates and washings were combined and the solvent evaporated under reduced pressure to give compound 78.
 当該回収フラスコに、化合物78(120mg、0.13mmol)、10% パラジウム炭素(12mg)、及び2.7mLのメタノールを加えた。当該フラスコにHを導入し、混合物を室温で15.5時間撹拌した。得られた反応混合物をセライトで濾過した後、溶媒を減圧下で除去して、化合物79を得た。 Compound 78 (120 mg, 0.13 mmol), 10% palladium carbon (12 mg), and 2.7 mL of methanol were added to the recovery flask. H 2 was introduced into the flask and the mixture was stirred at room temperature for 15.5 hours. The resulting reaction mixture was filtered through Celite and the solvent was removed under reduced pressure to give compound 79.
 回収フラスコに、化合物79(57mg、75μmol)、HOAt(15mg)、PyAOP(59mg)、及びDMF(7.5mL)を添加した。混合物を室温で29時間撹拌した後、溶媒を減圧下で除去して、化合物80を得た。 Compound 79 (57 mg, 75 μmol), HOAt (15 mg), PyAOP (59 mg), and DMF (7.5 mL) were added to the recovery flask. After stirring the mixture at room temperature for 29 hours, the solvent was removed under reduced pressure to give compound 80.
 化合物80に、50μLのTIPS、50μLのHO、及び1.9mLのTFAを氷上で滴下した。反応混合物を氷上で80分間撹拌し、80分間かけて室温まで温めた後、溶媒を減圧下で除去した。残渣をHPLCの逆相カラムを用いて精製して、化合物81(Cyclic peptide 1_MonoF)を得た。 Compound 80 was added dropwise TIPS of 50 [mu] L, H 2 O of 50 [mu] L, and TFA in 1.9mL ice. The reaction mixture was stirred on ice for 80 minutes, warmed to room temperature over 80 minutes and then the solvent was removed under reduced pressure. The residue was purified using an HPLC reverse phase column to give compound 81 (Cyclic peptide 1_MonoF).
MS(LC/ESI-MS.m/z):calcd. for C3553FNNa(M+Na):711.39,found:711.70. MS (LC / ESI-MS.m / z): calcd. for C 35 H 53 FN 6 O 7 Na (M + Na) + : 711.39, found: 711.70.
[比較例9]
 Cyclic peptide 1_NonFを合成した。
[Comparative Example 9]
Cyclic peptide 1_NonF was synthesized.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 化合物82は、2-クロロトリチルポリスチレン樹脂(1.6mmol/g)上で、手動で合成した。樹脂(105mg、0.17mmol)は、6mL容のフリットシリンジ内で連続的に振とうしながら、2mLのDCMで膨潤させた。 DIPEA(58μL)及びFmoc-Tyr-OAll(15mg)を0.4mLのDCMに溶解させ、その反応溶液中において樹脂を室温で時間振とう攪拌することで、1残基目を樹脂上に伸長した。反応後、当該樹脂をDCM/メタノール/DIPEA=17/2/1(体積比)及びDCMで、それぞれ3回洗浄した。この樹脂を2残基目以降のペプチド合成に適用した。Fmoc脱保護は、樹脂をDMF中の20%ピペリジンと共に15分間インキュベートすることにより行った。反応後、樹脂をDMFで3回洗浄した。  Compound 82 was manually synthesized on 2-chlorotrityl polystyrene resin (1.6 mmol / g). The resin (105 mg, 0.17 mmol) was swollen with 2 mL of DCM with continuous shaking in a 6 mL frit syringe. DIPEA (58 μL) and Fmoc-Tyr-OAll (15 mg) were dissolved in 0.4 mL of DCM, and the resin was stirred at room temperature for a long time in the reaction solution to extend the first residue onto the resin. .. After the reaction, the resin was washed 3 times each with DCM / methanol / DIPEA = 17/2/1 (volume ratio) and DCM. This resin was applied to the peptide synthesis of the second and subsequent residues. Fmoc deprotection was performed by incubating the resin with 20% piperidine in DMF for 15 minutes. After the reaction, the resin was washed 3 times with DMF.
 カップリング反応は、Fmoc保護アミノ酸(4当量)、HATU(3.8当量)、HOAt(3.8当量)、及びDIPEA(6当量)を使用して、DMF(Fmoc保護アミノ酸に対して0.1M)中で1~3時間反応させた。反応後、当該樹脂は、DMFで各3回洗浄した。カップリングと脱保護を6番目の残基まで繰り返した。 The coupling reaction used Fmoc-protected amino acids (4 eq), HATU (3.8 eq), HOAt (3.8 eq), and DIPEA (6 eq) to 0. The reaction was carried out in 1M) for 1 to 3 hours. After the reaction, the resin was washed 3 times each with DMF. Coupling and deprotection were repeated up to the 6th residue.
 C末端のTyr残基のアリル基は、当該樹脂を、無水DCM中のテトラキス(トリフェニルホスフィン)パラジウム(1当量)及びトリフェニルホスフィン(3当量)と共に室温で1時間インキュベートすることによって除去した。当該樹脂を、DMF中の0.5%ジエチルジチオカルバミン酸ナトリウム、DMF中の0.5%DIPEA、及びDMFで、それぞれ3回洗浄した。 
 当該樹脂を、20% ピペリジン/DMFと3分間、次に20%ピペリジン/DMFと12分間、インキュベートすることにより、当該樹脂上のペプチドのN末端Fmocを脱保護した。当該樹脂をDMFで3回洗浄した後、当該樹脂上のペプチドを、無水DMF(PyBOPに対して0.2M)中のPyBOP(3当量)、HOAt(3当量)、DIPEA(6当量)とともに19時間インキュベートすることにより環化した。反応後、当該樹脂は、DMF及びDCMでそれぞれ3回洗浄した。
 合成されたペプチドは、当該樹脂をDCM中の5% TFAと60分間インキュベートすることによって、当該樹脂から切断された。合成されたペプチドを含む濾液は全て、回収フラスコに集めた。当該樹脂を、2回洗浄した。全ての濾液と洗浄液を合わせ、溶媒を減圧下で蒸発させ、得られた残渣をHPLCの逆相カラムを用いて精製し、化合物82(Cyclic peptide 1_NonF)を得た。
The allyl group of the C-terminal Tyr residue was removed by incubating the resin with tetrakis (triphenylphosphine) palladium (1 eq) and triphenylphosphine (3 eq) in anhydrous DCM for 1 hour at room temperature. The resin was washed 3 times each with 0.5% sodium diethyldithiocarbamate in DMF, 0.5% DIPEA in DMF, and DMF.
The resin was incubated with 20% piperidine / DMF for 3 minutes and then with 20% piperidine / DMF for 12 minutes to deprotect the N-terminal Fmoc of the peptide on the resin. After washing the resin 3 times with DMF, the peptides on the resin were combined with PyBOP (3 eq), HOAt (3 eq), DIPEA (6 eq) in anhydrous DMF (0.2 M relative to PyBOP) 19 It was cyclized by incubation for hours. After the reaction, the resin was washed 3 times each with DMF and DCM.
The synthesized peptide was cleaved from the resin by incubating the resin with 5% TFA in DCM for 60 minutes. All filtrates containing the synthesized peptides were collected in recovery flasks. The resin was washed twice. All the filtrate and the washing solution were combined, the solvent was evaporated under reduced pressure, and the obtained residue was purified using an HPLC reverse phase column to obtain Compound 82 (Cyclic peptide 1_NonF).
MS(LC/ESI-MS.m/z):calcd. for C3554Na(M+Na):693.40,found:693.80. MS (LC / ESI-MS.m / z): calcd. for C 35 H 54 N 6 O 7 Na (M + Na) + : 693.40, found: 693.80.
[比較例10]
 Cyclic peptide 2_NonFを合成した。
[Comparative Example 10]
Cyclic peptide 2_NonF was synthesized.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 化合物83は、2-クロロトリチルポリスチレン樹脂(1.80mmol/g)上で、手動で合成した。樹脂(200mg、0.36mmol)は、6mL容のフリットシリンジ内で、連続的に振とうしながらDCMで膨潤させた。DIPEA(245μL、1.44mmol)及びFmoc-Ala-OH(224mg,0.72mmol)を3.6mLのDCMに溶解させ、その反応溶液中において前記樹脂を室温で2時間振とう攪拌することにより、1残基目を当該樹脂上に伸長した。反応後、当該樹脂を、DCM/メタノール/DIPEA=17/2/1(体積比)及びDCMでそれぞれ3回洗浄した。この樹脂を2残基目以降のペプチド合成に適用した。DFmoc脱保護は、当該樹脂をDMF中の20%ピペリジンと共に15分間インキュベートすることにより行った。反応後、当該樹脂をDMFで3回洗浄した。 Compound 83 was manually synthesized on 2-chlorotrityl polystyrene resin (1.80 mmol / g). The resin (200 mg, 0.36 mmol) was swollen with DCM in a 6 mL frit syringe with continuous shaking. By dissolving DIPEA (245 μL, 1.44 mmol) and Fmoc-Ala-OH (224 mg, 0.72 mmol) in 3.6 mL of DCM and stirring the resin in the reaction solution at room temperature for 2 hours. The first residue was extended onto the resin. After the reaction, the resin was washed 3 times each with DCM / methanol / DIPEA = 17/2/1 (volume ratio) and DCM. This resin was applied to the peptide synthesis of the second and subsequent residues. DFmoc deprotection was performed by incubating the resin with 20% piperidine in DMF for 15 minutes. After the reaction, the resin was washed 3 times with DMF.
 カップリング反応は、Fmoc保護アミノ酸(4当量)、HATU(4当量)、HOAt(4当量)及びDIPEA(4当量)を使用して、DMF(Fmoc保護アミノ酸に対して0.2M)中で1~3時間反応させた。反応後、当該樹脂をDMFで各3回洗浄した。カップリングと脱保護を7番目の残基まで繰り返した。 The coupling reaction was 1 in DMF (0.2 M eq for Fmoc protected amino acids) using Fmoc protected amino acids (4 eq), HATU (4 eq), HOAt (4 eq) and DIPEA (4 eq). It was allowed to react for ~ 3 hours. After the reaction, the resin was washed with DMF three times each. Coupling and deprotection were repeated up to the 7th residue.
 合成されたペプチドは、当該樹脂を、30% HFIPと共にDCM中で15分間インキュベートすることを3回行うことによって、当該樹脂から切断された。合成されたペプチドを含む濾液は全て、回収フラスコに集めた。次いで、当該樹脂を、DCM及びMeOHで洗浄した。全ての濾液と洗浄液を合わせ、溶媒を減圧下で蒸発させて、化合物83を得た。 The synthesized peptide was cleaved from the resin by incubating the resin with 30% HFIP in DCM for 15 minutes three times. All filtrates containing the synthesized peptides were collected in recovery flasks. The resin was then washed with DCM and MeOH. All filtrates and washings were combined and the solvent evaporated under reduced pressure to give compound 83.
 当該回収フラスコに、化合物83、HOAt(37mg)、PyAOP(141mg)、DIPEA(138μL)、及びDMF(18mL)を添加した。この混合物を室温で13時間撹拌した後、溶媒を減圧下で除去して、化合物84を得た。 Compound 83, HOAt (37 mg), PyAOP (141 mg), DIPEA (138 μL), and DMF (18 mL) were added to the recovery flask. The mixture was stirred at room temperature for 13 hours and then the solvent was removed under reduced pressure to give compound 84.
 化合物84に、100μLのTIPS、100μLのHO及び3.8mLのTFAを、氷上で滴下した。反応混合物を氷上で10分間撹拌した後、60分間かけて室温まで温めた。その後、当該反応混合物の溶媒を減圧下で除去し、得られた残渣をHPLCの逆相カラムを用いて精製し、化合物85(Cyclic peptide 2_NonF)を得た。 Compound 84, 100 [mu] L of TIPS, a 100 [mu] L of H 2 O and 3.8mL of TFA, it was added dropwise on ice. The reaction mixture was stirred on ice for 10 minutes and then warmed to room temperature over 60 minutes. Then, the solvent of the reaction mixture was removed under reduced pressure, and the obtained residue was purified using an HPLC reverse phase column to obtain Compound 85 (Cyclic peptide 2_NonF).
MS(LC/ESI-MS.m/z):calcd. for C38531010(M+H):809.40,found:809.95. MS (LC / ESI-MS.m / z): calcd. for C 38 H 53 N 10 O 10 (M + H) + : 809.40, found: 809.95.
[実施例12]
 Cyclic peptide 2_TriFを合成した。
[Example 12]
Cyclic peptide 2_TriF was synthesized.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 化合物86は、2-クロロトリチルポリスチレン樹脂(1.80mmol/g)上で、手動で合成した。樹脂(200mg、0.36mmol)は、6mL容のフリットシリンジ内で、連続的に振とうしながらDCMで膨潤させた。DIPEA(245μL、1.44mmol)及びFmoc-Ala-OH(224mg、0.72mmol)を3.6mLのDCMに溶解させ、その反応溶液中において前記樹脂を室温で2時間振とう攪拌することで、1残基目を樹脂上に伸長した。反応後、当該樹脂をDCM/メタノール/DIPEA=17/2/1(体積比)及びDCMでそれぞれ3回洗浄した。この樹脂を2残基目以降のペプチド合成に適用した。Fmoc脱保護は、当該樹脂をDMF中の20% ピペリジンと共に15分間インキュベートすることにより行った。反応後、当該樹脂を、DMFで3回洗浄した。 Compound 86 was manually synthesized on 2-chlorotrityl polystyrene resin (1.80 mmol / g). The resin (200 mg, 0.36 mmol) was swollen with DCM in a 6 mL frit syringe with continuous shaking. DIPEA (245 μL, 1.44 mmol) and Fmoc-Ala-OH (224 mg, 0.72 mmol) are dissolved in 3.6 mL of DCM and the resin is shaken and stirred at room temperature for 2 hours in the reaction solution. The first residue was elongated on the resin. After the reaction, the resin was washed 3 times each with DCM / methanol / DIPEA = 17/2/1 (volume ratio) and DCM. This resin was applied to the peptide synthesis of the second and subsequent residues. Fmoc deprotection was performed by incubating the resin with 20% piperidine in DMF for 15 minutes. After the reaction, the resin was washed 3 times with DMF.
 Cbz-L-Ala(F3)-OH以外のカップリング反応は、Fmoc保護アミノ酸(3当量)、HATU(3当量)、HOAt(3当量)及びDIPEA(3当量)を使用して、DMF(Fmoc保護アミノ酸に対して0.2M)中で1~3時間反応させた。
 Cbz-L-Ala(F3)-OHのカップリング反応は、Cbz-L-Ala(F3)-OH(2当量)、Oxyma(2当量)、及びDIC(2当量)を使用して、DMF(Cbz-L-Ala(F3)-OHに対して0.1M)中で反応させた。
Coupling reactions other than Cbz-L-Ala (F3) -OH use DMF (Fmoc) using Fmoc-protected amino acids (3 equivalents), HATU (3 equivalents), HOAt (3 equivalents) and DIPEA (3 equivalents). It was reacted with the protected amino acid in 0.2 M) for 1 to 3 hours.
The coupling reaction of Cbz-L-Ala (F3) -OH was carried out using Cbz-L-Ala (F3) -OH (2 eq), Oxyma (2 eq), and DIC (2 eq) using DMF (2 eq). It was reacted with Cbz-L-Ala (F3) -OH in 0.1 M).
 反応後、当該樹脂は、DMFで各3回洗浄した。カップリングと脱保護を6番目の残基まで繰り返した。合成されたペプチドは、当該樹脂を、30% HFIPと共にDCM中で15分間インキュベートすることを3回行うことによって、当該樹脂から切断された。合成されたペプチドを含む濾液は全て、回収フラスコに集めた。次いで、当該樹脂を、DCM及びMeOHで洗浄した。全ての濾液と洗浄液を合わせ、溶媒を減圧下で蒸発させて、化合物86を得た。 After the reaction, the resin was washed 3 times each with DMF. Coupling and deprotection were repeated up to the 6th residue. The synthesized peptide was cleaved from the resin by incubating the resin with 30% HFIP in DCM for 15 minutes three times. All filtrates containing the synthesized peptides were collected in recovery flasks. The resin was then washed with DCM and MeOH. All filtrates and washings were combined and the solvent evaporated under reduced pressure to give compound 86.
 回収フラスコに、化合物86、10% パラジウム炭素(12.4mg)、及び2mLのメタノールを加えた。当該フラスコにHを導入し、混合物を室温で14.5時間撹拌した。得られた反応混合物をセライトで濾過した後、溶媒を減圧下で除去して、化合物87を得た。 Compound 86, 10% palladium carbon (12.4 mg), and 2 mL of methanol were added to the recovery flask. H 2 was introduced into the flask and the mixture was stirred at room temperature for 14.5 hours. The resulting reaction mixture was filtered through Celite and the solvent was removed under reduced pressure to give compound 87.
 回収フラスコに、化合物87(35mg)、HOAt(8.0mg)、PyAOP(28.5mg)、及びDMF(5.3mL)を添加した。混合物を室温で18時間撹拌した後、溶媒を減圧下で除去して、化合物88を得た。 Compound 87 (35 mg), HOAt (8.0 mg), PyAOP (28.5 mg), and DMF (5.3 mL) were added to the recovery flask. After stirring the mixture at room temperature for 18 hours, the solvent was removed under reduced pressure to give compound 88.
 化合物88に、50μLのTIPS、50μLのHO、及び1.9mLのTFAを、氷上で滴下した。この反応混合物を氷上で10分間撹拌し、80分間かけて室温まで温めた後、溶媒を減圧下で除去した。得られた残渣をHPLCの逆相カラムを用いて精製し、化合物89(Cyclic peptide 2_TriF)を得た。 Compound 88, TIPS of 50 [mu] L, H 2 O of 50 [mu] L, and TFA for 1.9 mL, was added dropwise on ice. The reaction mixture was stirred on ice for 10 minutes, warmed to room temperature over 80 minutes, and then the solvent was removed under reduced pressure. The obtained residue was purified using an HPLC reverse phase column to obtain Compound 89 (Cyclic peptide 2_TriF).
MS(LC/ESI-MS.m/z):calcd. for C38481010(M-H):861.35,found:861.64. MS (LC / ESI-MS.m / z): calcd. for C 38 H 48 F 3 N 10 O 10 (MH) + : 861.35, found: 861.64.
[比較例11]
 Ac-L-Ala-L-Val-NHEPhを合成した。
[Comparative Example 11]
Ac-L-Ala-L-Val-NHEPh was synthesized.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 化合物90(401mg、1.84mmol)及びフェネチルアミン(278μL)を18.4mLのメタノールに溶解させ、得られた溶液を室温で撹拌した。当該溶液にDMTMM・nHO(665mg)を加えた。当該反応混合物を室温で5時間撹拌し、真空で蒸発させた。当該反応混合物にDCMを入れ、得られた溶液を水で2回洗浄した。有機相をNaSOで乾燥させ、真空で蒸発させて、化合物91を得た(539mg、収率91%)。 Compound 90 (401 mg, 1.84 mmol) and phenethylamine (278 μL) were dissolved in 18.4 mL of methanol and the resulting solution was stirred at room temperature. DMTMM nH 2 O (665 mg) was added to the solution. The reaction mixture was stirred at room temperature for 5 hours and evaporated in vacuo. DCM was added to the reaction mixture and the resulting solution was washed twice with water. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo to give compound 91 (539 mg, 91% yield).
 得られた化合物91に酢酸エチル中の4M HClを加え、次いで当該溶液を室温で20分間撹拌した。当該溶液を真空で蒸発させて、化合物92を得た(372mg、定量的収率)。 4M HCl in ethyl acetate was added to the obtained compound 91, and then the solution was stirred at room temperature for 20 minutes. The solution was evaporated in vacuo to give compound 92 (372 mg, quantitative yield).
 Boc-Ala-OH(52mg)及び化合物92(64mg)を2.5mLのメタノールに溶解させ、得られた溶液を室温で撹拌した。当該溶液にDMTMM・nHO(92mg)を加えた。当該反応混合物を室温で5時間撹拌し、真空で蒸発させた。当該反応混合物にDCMを入れ、得られた溶液を水で3回洗浄した。有機相をNaSOで乾燥させ、真空で蒸発させた。残渣をシリカゲルクロマトグラフィー(DCM/メタノール=19/1(体積比))で精製し、化合物93を得た(98mg、収率95%)。 Boc-Ala-OH (52 mg) and compound 92 (64 mg) were dissolved in 2.5 mL of methanol and the resulting solution was stirred at room temperature. DMTMM · nH 2 O (92 mg) was added to the solution. The reaction mixture was stirred at room temperature for 5 hours and evaporated in vacuo. DCM was added to the reaction mixture and the resulting solution was washed 3 times with water. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo. The residue was purified by silica gel chromatography (DCM / methanol = 19/1 (volume ratio)) to give compound 93 (98 mg, 95% yield).
 6mLの酢酸エチル中の化合物93に、酢酸エチル中の4M HCl(6mL)を加え、次いで当該溶液を室温で3時間撹拌した。当該溶液を真空で蒸発させて、化合物94を得た(142mg、定量的収率)。 4M HCl (6 mL) in ethyl acetate was added to compound 93 in 6 mL of ethyl acetate, and then the solution was stirred at room temperature for 3 hours. The solution was evaporated in vacuo to give compound 94 (142 mg, quantitative yield).
 化合物94(142mg)を8mLのDCM中に溶解させ、DIPEA(150μL)と無水酢酸(400μL)を加えた。当該反応混合物を室温で17.5時間撹拌し、次いで真空で蒸発させた。残渣に水を加え、DCMで2回溶出した。有機相をNaSOで乾燥させ、真空で蒸発させ、得られた残渣をシリカゲルクロマトグラフィー(DCM/メタノール=19/1(体積比))で精製した。当該残渣をアセトニトリル/HO/メタノール(=2.4mL/5.6mL/15mL)に溶解させ、HPLCの逆相カラムを用いて精製し、化合物95(Ac-L-Ala-L-Val-NHEPh)を得た(9.2mg、収率6%)。 Compound 94 (142 mg) was dissolved in 8 mL of DCM and DIPEA (150 μL) and acetic anhydride (400 μL) were added. The reaction mixture was stirred at room temperature for 17.5 hours and then evaporated in vacuo. Water was added to the residue and eluted with DCM twice. The organic phase was dried over Na 2 SO 4 and evaporated in vacuo, and the resulting residue was purified by silica gel chromatography (DCM / methanol = 19/1 (volume ratio)). The residue was dissolved in acetonitrile / H 2 O / methanol (= 2.4 mL / 5.6 mL / 15 mL), purified using an HPLC reverse phase column, and compound 95 (Ac-L-Ala-L-Val-). NHEPh) was obtained (9.2 mg, yield 6%).
H NMR(メタノール-d,400MHz):deruta7.29-7.16(m,5H),4.36(q,J=7.3Hz,1H),4.09(d,6.9Hz,1H),3.52-3.35(m,2H),2.80(t,J=7.3Hz,2H),2.02-1.99(m,1H),1.98(s,3H),1.32(d,J=7.3Hz,3H),0.83(dd,J=2.3,6.9Hz,6H).
MS(LC-ESI-MS.m/z):calcd. for C1828(M+H):334.22,found:334.54.
1 1 H NMR (methanol-d 4 , 400 MHz): deruta 7.29-7.16 (m, 5H), 4.36 (q, J = 7.3 Hz, 1H), 4.09 (d, 6.9 Hz, 1H), 3.52-3.35 (m, 2H), 2.80 (t, J = 7.3Hz, 2H), 2.02-1.99 (m, 1H), 1.98 (s, 3H), 1.32 (d, J = 7.3Hz, 3H), 0.83 (dd, J = 2.3, 6.9Hz, 6H).
MS (LC-ESI-MS.m / z): calcd. for C 18 H 28 N 3 O 3 (M + H) + : 334.22, found: 334.54.
[実施例13]
 Ac-L-Ala(F3)-L-Val-NHEPhを合成した。
[Example 13]
Ac-L-Ala (F3) -L-Val-NHEPh was synthesized.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 比較例6と同様にして、化合物96(Ac-L-Ala(F3)-L-Val-NHEPh)を合成した。 Compound 96 (Ac-L-Ala (F3) -L-Val-NHEPh) was synthesized in the same manner as in Comparative Example 6.
H NMR(メタノール-d,400MHz):δ7.29-7.16(m,5H),5.40(q,J=7.8Hz,1H),4.12(d,J=7.8Hz,1H),3.50-3.38(m,2H),2.80(t,J=7.3Hz,2H),2.05(s,3H),2.03-1.94(m,1H),0.88(dd,J=5.5,6.4Hz,6H).
MS(LC-ESI-MS.m/z):calcd. for C1825(M+H):388.20,found:388.53.
1 1 H NMR (methanol-d 4 , 400 MHz): δ7.29-7.16 (m, 5H), 5.40 (q, J = 7.8 Hz, 1H), 4.12 (d, J = 7. 8Hz, 1H), 3.50-3.38 (m, 2H), 2.80 (t, J = 7.3Hz, 2H), 2.05 (s, 3H), 2.03-1.94 ( m, 1H), 0.88 (dd, J = 5.5, 6.4Hz, 6H).
MS (LC-ESI-MS.m / z): calcd. for C 18 H 25 F 3 N 3 O 3 (M + H) + : 388.20, found: 388.53.
[実施例14]
 Ac-L-Ala(F3)-L-Phe-iBuを合成した。
[Example 14]
Ac-L-Ala (F3) -L-Phe-iBu was synthesized.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 比較例6と同様にして、化合物97(Ac-L-Ala(F3)-L-Phe-iBu)を合成した。 Compound 97 (Ac-L-Ala (F3) -L-Phe-iBu) was synthesized in the same manner as in Comparative Example 6.
H NMR(メタノール-d,400MHz):deruta7.27-7.17(m,5H),5.32(q,J=7.8Hz,1H),4.61(t,J=7.3Hz,1H),3.10-2.86(m,4H),2.01(s,3H),1.66(m,1H),0.80(dd,J=6.4,8.7Hz.6H).
MS(LC-ESI-MS.m/z):calcd. for C1825(M+H):388.19,found:388.48.
1 1 H NMR (methanol-d 4 , 400 MHz): deruta 7.27-7.17 (m, 5H), 5.32 (q, J = 7.8 Hz, 1H), 4.61 (t, J = 7. 3Hz, 1H), 3.10-2.86 (m, 4H), 2.01 (s, 3H), 1.66 (m, 1H), 0.80 (dd, J = 6.4,8. 7Hz.6H).
MS (LC-ESI-MS.m / z): calcd. for C 18 H 25 F 3 N 3 O 3 (M + H) + : 388.19, found: 388.48.
[比較例12]
 Cbz-L-Ala-L-Ala-L-Ala-iBuを合成した。
[Comparative Example 12]
Cbz-L-Ala-L-Ala-L-Ala-iBu was synthesized.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 化合物98は、2-クロロトリチルクロライドポリスチレンレジン(1.80mmol/g)上で合成した。まず、レジン(237mg、0.43 mmol)に脱水DCMを加え、6mL容フリットシリンジ内で振盪することによって膨潤させた。Fmoc-Ala-OH(254mg)及びDIPEA(297μL)を脱水DCM 4.3mLに溶解させ、得られた反応溶液中で当該レジンを室温で2時間振盪撹拌することにより、1残基目を当該レジン上に伸長した。反応後、当該レジンをDCM/メタノール/DIPEA(=17/2/1(体積比))、DCM、及びDMFを用いて、それぞれ3回ずつ洗浄した。当該レジン上で、2残基目以降のペプチド伸長を行った。 Compound 98 was synthesized on 2-chlorotrityl chloride polystyrene resin (1.80 mmol / g). First, dehydrated DCM was added to the resin (237 mg, 0.43 mmol), and the resin was swollen by shaking in a 6 mL frit syringe. Fmoc-Ala-OH (254 mg) and DIPEA (297 μL) were dissolved in 4.3 mL of dehydrated DCM, and the resin was shaken and stirred at room temperature for 2 hours in the obtained reaction solution to make the first residue of the resin. Stretched up. After the reaction, the resin was washed 3 times each with DCM / methanol / DIPEA (= 17/2/1 (volume ratio)), DCM, and DMF. Peptide elongation after the second residue was performed on the resin.
 Fmoc脱保護は、当該レジンを20% ピペリジン/DMF中で15分間インキュベートすることによって行った。脱保護反応の後、当該レジンをDMFで3回洗浄した。 Fmoc deprotection was performed by incubating the resin in 20% piperidine / DMF for 15 minutes. After the deprotection reaction, the resin was washed 3 times with DMF.
 縮合反応は、Fmoc-Ala-OH(4当量)、Oxyma(4当量)、及びDIC(4当量)を使用し、4mLのDMF中で1~13時間反応させて行った。縮合反応の後、当該レジンを、DMFで3回洗浄した。 The condensation reaction was carried out using Fmoc-Ala-OH (4 equivalents), Oxyma (4 equivalents), and DIC (4 equivalents) in 4 mL of DMF for 1 to 13 hours. After the condensation reaction, the resin was washed 3 times with DMF.
 3残基まで伸長・脱保護を行ったのち、N-カルボベンゾキシオキシコハク酸イミド(5当量)及びDIPEA(10当量)をDMF 1.1mLに溶解させた反応溶液中で、当該レジンを2時間室温でインキュベートすることによって、N末端をCbz保護した。 After stretching and deprotecting to 3 residues, 2 of the resin was dissolved in 1.1 mL of DMF in which N-carbobenzoxoxysuccinimide (5 equivalents) and DIPEA (10 equivalents) were dissolved. The N-terminus was Cbz protected by incubation at room temperature for hours.
 合成されたペプチドは、30% HFIP/DCM中で当該レジンを15分間ずつ3回インキュベートすることによって、当該レジンから切断した。濾液はフラスコに回収した。次いで、当該レジンをDCM及びMeOHで洗浄した。全ての濾液と洗浄液を合わせ、溶媒を減圧下で蒸発させて、化合物98を得た。 The synthesized peptide was cleaved from the resin by incubating the resin in 30% HFIP / DCM three times for 15 minutes each. The filtrate was collected in a flask. The resin was then washed with DCM and MeOH. All filtrates and washings were combined and the solvent evaporated under reduced pressure to give compound 98.
 化合物98(11mg)を0.3mLのDMFに溶解させ、Oxyma(6.4mg)及びDIC(7.0μL)を加え、室温で10分間撹拌した。当該反応液に、イソブチルアミン(4.4μL)を加え、室温で終夜、撹拌した。当該溶液を減圧下で蒸発させ、40% アセトニトリル/HOに溶解させた後に、HPLCの逆相カラムを用いて精製し、化合物99(Cbz-L-Ala-L-Ala-L-Ala-iBu)を得た(3.6mg、収率29%)。 Compound 98 (11 mg) was dissolved in 0.3 mL of DMF, Oxyma (6.4 mg) and DIC (7.0 μL) were added, and the mixture was stirred at room temperature for 10 minutes. Isobutylamine (4.4 μL) was added to the reaction solution, and the mixture was stirred overnight at room temperature. The solution was evaporated under reduced pressure, after dissolved in 40% acetonitrile / H 2 O, and purified using reverse phase column HPLC, Compound 99 (Cbz-L-Ala- L-Ala-L-Ala- iBu) was obtained (3.6 mg, yield 29%).
MS(LC-ESI-MS.m/z):calcd. for C2132Na(M+Na):443.23,found:443.50 MS (LC-ESI-MS.m / z): calcd. for C 21 H 32 N 4 O 5 Na (M + Na) + : 443.23, found: 443.50
[実施例15]
 Cbz-L-Ala(F)-L-Ala(F)-L-Ala(F)-iBuを合成した。
[Example 15]
Cbz-L-Ala (F) -L-Ala (F) -L-Ala (F) -iBu was synthesized.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 フラスコ内で、化合物100(Cbz-L-Ala(F)-OH)(50mg、207μmol)とイソブチルアミン(22.7μL)を3mLのメタノールに溶解させ、室温で撹拌した。当該溶液にDMTMM(68mg)を加え、室温で6時間撹拌した。減圧下で溶媒を除去し、得られた残渣にDCMを加え、水で1度洗浄した。有機相をNaSOで乾燥させた後、減圧下で溶媒を除去し、化合物101を得た(54mg)。 In a flask, compound 100 (Cbz-L-Ala (F) -OH) (50 mg, 207 μmol) and isobutylamine (22.7 μL) were dissolved in 3 mL of methanol and stirred at room temperature. DMTMM (68 mg) was added to the solution, and the mixture was stirred at room temperature for 6 hours. The solvent was removed under reduced pressure, DCM was added to the obtained residue, and the mixture was washed once with water. After drying the organic phase with Na 2 SO 4 , the solvent was removed under reduced pressure to give compound 101 (54 mg).
 当該フラスコ内の化合物101(54mg)に、10% パラジウム炭素(5.8mg)及びメタノール(5mL)を加え、当該フラスコ内をHに置換した後、室温で4時間撹拌した。得られた反応混合物をセライトで濾過し、減圧下で溶媒を除去し、化合物102を得た(34mg)。 To compound 101 (54 mg) in the flask, 10% palladium carbon (5.8 mg) and methanol (5 mL) were added, the inside of the flask was replaced with H 2 , and then the mixture was stirred at room temperature for 4 hours. The resulting reaction mixture was filtered through Celite and the solvent was removed under reduced pressure to give compound 102 (34 mg).
 当該フラスコ内の化合物102(34mg)にCbz-L-Ala(F)-OH(26mg)を加え、これらを3mLのメタノールに溶解させ、室温で10分間撹拌した。当該溶液にDMTMM(48mg)を加え、室温で13時間撹拌した。減圧下で溶媒を除去し、得られた残渣にHOを加えた後、DCMで3回抽出した。有機相をNaSOで乾燥させた後、減圧下で溶媒を除去した。得られた残渣をシリカゲルカラムクロマトグラフィー(DCM/MeOH=19/1(体積比))で精製し、化合物103を得た(44mg)。 Cbz-L-Ala (F) -OH (26 mg) was added to compound 102 (34 mg) in the flask, and these were dissolved in 3 mL of methanol and stirred at room temperature for 10 minutes. DMTMM (48 mg) was added to the solution, and the mixture was stirred at room temperature for 13 hours. The solvent was removed under reduced pressure, H 2 O was added to the resulting residue, and extracted three times with DCM. After drying the organic phase with Na 2 SO 4 , the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography (DCM / MeOH = 19/1 (volume ratio)) to obtain compound 103 (44 mg).
 当該フラスコ内の化合物103(44mg)に、10% パラジウム炭素(7.8mg)及びメタノール(4mL)を加え、当該フラスコ内をHに置換した後、室温で18時間撹拌した。得られた反応混合物をセライトで濾過し、減圧下で溶媒を除去し、化合物104を得た(7.1mg)。 To compound 103 (44 mg) in the flask, 10% palladium carbon (7.8 mg) and methanol (4 mL) were added, the inside of the flask was replaced with H 2 , and the mixture was stirred at room temperature for 18 hours. The resulting reaction mixture was filtered through Celite and the solvent was removed under reduced pressure to give compound 104 (7.1 mg).
 当該フラスコ内の化合物104(7.1mg)に、Cbz-L-Ala(F)-OH(6.2mg)を加え、これらを4mLのメタノールに溶解させ、室温で10分間撹拌した。当該溶液にDMTMM(10mg)を加え、室温で18時間撹拌した。減圧下で溶媒を除去し、残渣を40% アセトニトリル/HOに溶解した後に、HPLCの逆相カラムを用いて精製し、化合物105(Cbz-L-Ala(F)-L-Ala(F)-L-Ala(F)-iBu)を得た(0.2 mg、収率1%)。 Cbz-L-Ala (F) -OH (6.2 mg) was added to compound 104 (7.1 mg) in the flask, and these were dissolved in 4 mL of methanol and stirred at room temperature for 10 minutes. DMTMM (10 mg) was added to the solution, and the mixture was stirred at room temperature for 18 hours. The solvent was removed under reduced pressure, residue was dissolved in 40% acetonitrile / H 2 O, and purified using reverse phase column HPLC, Compound 105 (Cbz-L-Ala ( F) -L-Ala (F ) -L-Ala (F) -iBu) was obtained (0.2 mg, yield 1%).
MS(LC-ESI-MS.m/z):calcd. for C2129Na(M+Na):496.47,found:496.46. MS (LC-ESI-MS.m / z): calcd. for C 21 H 29 F 3 N 4 O 5 Na (M + Na) + : 496.47, found: 496.46.
[比較例13]
 Cyclic peptide 3_LK1-L3Aを合成した。
[Comparative Example 13]
Cyclic peptide 3_LK1-L3A was synthesized.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 比較例10と同様にして、化合物106(Cyclic peptide 3_LK1-L3A)を合成した。 Compound 106 (Cyclic peptide 3_LK1-L3A) was synthesized in the same manner as in Comparative Example 10.
MS(LC-ESI-MS.m/z):calcd. for C3555(M+H):671.42,found:671.72 MS (LC-ESI-MS.m / z): calcd. for C 35 H 55 N 6 O 7 (M + H) + : 671.42, found: 671.72
[実施例16]
 Cyclic peptide 3_LK1-L3A(F3)を合成した。
[Example 16]
Cyclic peptide 3_LK1-L3A (F3) was synthesized.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 化合物107は、2-クロロトリチルクロライドポリスチレンレジン(1.80mmol/g)上で合成した。レジン(300mg、0.54mmol)に脱水DCMを加え、6mL容フリットシリンジ内で振盪することによって膨潤させた。Fmoc-Leu-OH(391mg)及びDIPEA(378μL)を脱水DCM(5.4mL)に溶解させ、得られた反応溶液中で当該レジンを室温で2時間振盪撹拌することによって、1残基目を当該レジン上に伸長した。反応後、当該レジンをDCM/メタノール/DIPEA(=17/2/1(体積比))、DCM、及びDMFを用いて、それぞれ3回ずつ洗浄した。当該レジン上で、2残基目以降のペプチド伸長を行った。 Compound 107 was synthesized on 2-chlorotrityl chloride polystyrene resin (1.80 mmol / g). Dehydrated DCM was added to the resin (300 mg, 0.54 mmol) and swollen by shaking in a 6 mL frit syringe. Fmoc-Leu-OH (391 mg) and DIPEA (378 μL) were dissolved in dehydrated DCM (5.4 mL), and the resin was shaken and stirred at room temperature for 2 hours in the obtained reaction solution to obtain the first residue. It extended on the resin. After the reaction, the resin was washed 3 times each with DCM / methanol / DIPEA (= 17/2/1 (volume ratio)), DCM, and DMF. Peptide elongation after the second residue was performed on the resin.
 Fmoc脱保護は、当該レジンを20% ピペリジン/DMF中で15分間インキュベートすることにより行った。脱保護反応の後、当該レジンをDMFで3回洗浄した。 Fmoc deprotection was performed by incubating the resin in 20% piperidine / DMF for 15 minutes. After the deprotection reaction, the resin was washed 3 times with DMF.
 後述するCbz-l-Ala(F3)-OH以外の縮合反応は、Fmocアミノ酸(4当量)、Oxyma(4当量)、及びDIC(4当量)を使用し、DMF(Fmocアミノ酸が0.2Mとなる量)中で、室温で1~12時間反応させた。縮合反応の後、当該レジンをDMFで3回洗浄した。 Condensation reactions other than Cbz-l-Ala (F3) -OH, which will be described later, use Fmoc amino acid (4 equivalents), Oxyma (4 equivalents), and DIC (4 equivalents), and DMF (Fmoc amino acid is 0.2 M). The reaction was carried out at room temperature for 1 to 12 hours. After the condensation reaction, the resin was washed 3 times with DMF.
 Cbz-l-Ala(F3)-OHの縮合反応は、Cbz-l-Ala(F3)-OH(2.5当量)、HOBt(2.5当量)、DIC(2.5当量)、及びCuCl(1当量)を使用し、DMF/DCM=1/1中で、4℃で22時間反応させた。縮合反応の後、当該レジンをDCMで3回洗浄した。 The condensation reaction of Cbz-l-Ala (F3) -OH is Cbz-l-Ala (F3) -OH (2.5 eq), HOBt (2.5 eq), DIC (2.5 eq), and CuCl. 2 (1 eq) was used and reacted at 4 ° C. for 22 hours in DMF / DCM = 1/1. After the condensation reaction, the resin was washed 3 times with DCM.
 合成されたペプチドは、30% HFIP/DCM中で当該レジンを15分間ずつ3回インキュベートすることによって、当該レジンから切断した。合成されたペプチドを含む濾液は全て、回収フラスコに集めた。当該レジンを、CM及びMeOHで洗浄した。全ての濾液と洗浄液を合わせ、溶媒を減圧下で蒸発させて、化合物107を得た。 The synthesized peptide was cleaved from the resin by incubating the resin in 30% HFIP / DCM three times for 15 minutes each. All filtrates containing the synthesized peptides were collected in recovery flasks. The resin was washed with CM and MeOH. All filtrates and washings were combined and the solvent evaporated under reduced pressure to give compound 107.
 当該回収フラスコ内の化合物107(21mg)に、10% パラジウム炭素(5.5mg)及びメタノールを加え、当該回収フラスコ内をHに置換した後、室温で4時間撹拌した。得られた反応混合物をセライトで濾過し、減圧下で溶媒を除去し、得られた残渣をHPLCの逆相カラムを用いて精製し、化合物108を得た(9.8mg)。 To compound 107 (21 mg) in the recovery flask, 10% palladium carbon (5.5 mg) and methanol were added, the inside of the recovery flask was replaced with H 2 , and then the mixture was stirred at room temperature for 4 hours. The resulting reaction mixture was filtered through Celite, the solvent was removed under reduced pressure and the resulting residue was purified using an HPLC reversed phase column to give compound 108 (9.8 mg).
 化合物108(4.9mg)、PyAOP(4.8mg)、HOAt(1.3mg)、及びDIPEA(1μL)をDCM/DMF=1/1(1.2mL)に溶解させ、室温で終夜、撹拌した。当該溶液から溶媒を減圧下で除去し、残渣にDCM(2.1mL)、TIPS(75μL)、及びHO(75μL)を加え、氷上で撹拌した。さらにTFA(0.9mL)を加え、氷上で1時間撹拌した後、減圧下で溶媒を除去した。得られた残渣をHPLCの逆相カラムを用いて精製し、化合物109(Cyclic peptide 3_LK1-L3A(F3))を得た(1.4mg、収率9%)。 Compound 108 (4.9 mg), PyAOP (4.8 mg), HOAt (1.3 mg), and DIPEA (1 μL) were dissolved in DCM / DMF = 1/1 (1.2 mL) and stirred overnight at room temperature. .. The solvent was removed under reduced pressure from the solution, the residue DCM (2.1mL), TIPS (75μL ), and H 2 O a (75 [mu] L) was added and stirred on ice. Further, TFA (0.9 mL) was added, and the mixture was stirred on ice for 1 hour, and then the solvent was removed under reduced pressure. The obtained residue was purified using an HPLC reverse phase column to obtain compound 109 (Cyclic peptide 3_LK1-L3A (F3)) (1.4 mg, yield 9%).
MS(LC-ESI-MS.m/z):calcd. for C3552(M+H):725.39, found:725.66. MS (LC-ESI-MS.m / z): calcd. for C 35 H 52 F 3 N 6 O 7 (M + H) + : 725.39, found: 725.66.
[試験例1]
 実施例6~8及び比較例6~8で合成したペプチドについて、PAMPAアッセイを行った。また、実施例5、6、8及び比較例5、6、8で合成したペプチドについて、MDCK-IIアッセイを行った。MDCK-IIアッセイでは、ポジティブコントロール(「PC」)としてPropranolol(CAS No:318-98-9)を、ネガティブコントロール(「NC」)としてNorfloxacin(CAS No:70458-96-7)をそれぞれ用いた。
[Test Example 1]
PAMPA assays were performed on the peptides synthesized in Examples 6-8 and Comparative Examples 6-8. The MDCK-II assay was also performed on the peptides synthesized in Examples 5, 6 and 8 and Comparative Examples 5, 6 and 8. In the MDCK-II assay, Propranolol (CAS No: 318-98-9) was used as the positive control (“PC”) and Norfloxacin (CAS No: 70458-96-7) was used as the negative control (“NC”). ..
 PAMPAアッセイの結果を表1に、MDCK-IIアッセイの結果を表2に、それぞれ示す。この結果、比較例5~8のペプチドよりも、それらの側鎖のフッ素原子を導入した実施例5~8の含フッ素ペプチドのほうが、細胞膜透過性が向上していた。 The results of the PAMPA assay are shown in Table 1, and the results of the MDCK-II assay are shown in Table 2. As a result, the cell membrane permeability of the fluorine-containing peptides of Examples 5 to 8 into which the fluorine atoms in their side chains were introduced was improved as compared with the peptides of Comparative Examples 5 to 8.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
[試験例2]
 実施例10、11及び比較例9で合成した環状ペプチドについて、PAMPAアッセイを行った。
[Test Example 2]
The PAMPA assay was performed on the cyclic peptides synthesized in Examples 10 and 11 and Comparative Example 9.
 PAMPAアッセイの結果を表3に示す。この結果、比較例9の環状ペプチドよりも、側鎖にフッ素原子を導入した実施例10、11の環状ペプチドのほうが、細胞膜透過性が向上していた。 The results of the PAMPA assay are shown in Table 3. As a result, the cell membrane permeability of the cyclic peptides of Examples 10 and 11 in which a fluorine atom was introduced into the side chain was improved as compared with the cyclic peptide of Comparative Example 9.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 本発明は、フッ素原子が側鎖に導入されたアミノ酸残基を含むペプチドを提供する。本発明に係るペプチドは、細胞膜透過性に優れているため、例えば、薬効成分を標的細胞へ導入するためのキャリア等、生理活性物質として、医薬分野での利用が期待される。 The present invention provides a peptide containing an amino acid residue in which a fluorine atom is introduced into a side chain. Since the peptide according to the present invention has excellent cell membrane permeability, it is expected to be used in the pharmaceutical field as a physiologically active substance such as a carrier for introducing a medicinal ingredient into a target cell.

Claims (12)

  1.  2個以上のアミノ酸がペプチド結合したペプチドであって、
     当該ペプチドを構成するアミノ酸残基の少なくとも1個が、側鎖に、下記一般式(g-1)~(g-3)
    Figure JPOXMLDOC01-appb-C000001
    [式中、R及びRは、互いに独立して、水素原子、ハロゲン原子、カルボキシ基、置換基を有していてもよいC6-14アリール基、置換基を有していてもよいC5-14ヘテロアリール基、又は置換基を有していてもよいアミノ基であり;R~Rは、互いに独立して、水素原子、ハロゲン原子、置換基を有していてもよいC1-30アルキル基(当該C1-30アルキル基は炭素原子が2以上の場合に、炭素原子間にエーテル結合性の酸素原子を有していてもよい)、置換基を有していてもよいC6-14アリール基、又は置換基を有していてもよいC5-14ヘテロアリール基であり;R、R、R及びRは、互いに連結して、置換基を有していてもよいC6-14アリール基、又は置換基を有していてもよいC5-14ヘテロアリール基を構成していてもよく;黒丸は結合手を意味する]
    のいずれかで表される基を有している、ペプチド。
    A peptide in which two or more amino acids are peptide-bonded.
    At least one of the amino acid residues constituting the peptide is placed in the side chain in the following general formulas (g-1) to (g-3).
    Figure JPOXMLDOC01-appb-C000001
    [In the formula, R 1 and R 2 may have a hydrogen atom, a halogen atom, a carboxy group, a C 6-14 aryl group, and a substituent, which may have a substituent, independently of each other. It is a C 5-14 heteroaryl group or an amino group which may have a substituent; R 3 to R 6 may have a hydrogen atom, a halogen atom and a substituent independently of each other. It has a C 1-30 alkyl group (the C 1-30 alkyl group may have an ether-bonding oxygen atom between carbon atoms when the number of carbon atoms is 2 or more), and a substituent. May be a C 6-14 aryl group, or a C 5-14 heteroaryl group which may have a substituent; R 1 , R 2 , R 3 and R 4 are linked to each other to form a substituent. It may constitute a C 6-14 aryl group which may have, or a C 5-14 heteroaryl group which may have a substituent; black circles mean binders].
    A peptide having a group represented by any of.
  2.  前記ペプチドを構成するアミノ酸残基の少なくとも1個が、側鎖に、前記一般式(g-1)で表される基を有しており、
     前記一般式(g-1)中、前記Rが水素原子であり、前記Rが置換基を有していてもよいC6-14アリール基である、請求項1に記載のペプチド。
    At least one of the amino acid residues constituting the peptide has a group represented by the general formula (g-1) in the side chain.
    The peptide according to claim 1, wherein in the general formula (g-1), R 1 is a hydrogen atom and R 2 is a C 6-14 aryl group which may have a substituent.
  3.  前記ペプチドを構成するアミノ酸残基の少なくとも1個が、側鎖に、前記一般式(g-1)で表される基を有しており、
     前記一般式(g-1)中、前記R及びRが、それぞれ独立して水素原子又はフッ素原子である、請求項1に記載のペプチド。
    At least one of the amino acid residues constituting the peptide has a group represented by the general formula (g-1) in the side chain.
    The peptide according to claim 1, wherein in the general formula (g-1), R 1 and R 2 are independently hydrogen atoms or fluorine atoms, respectively.
  4.  前記ペプチドを構成するアミノ酸残基の少なくとも1個が、側鎖に、前記一般式(g-2)で表される基を有しており、
     前記一般式(g-2)中、前記R及びRが、それぞれ独立して水素原子又はフッ素原子であり、前記R及びRが水素原子である、請求項1に記載のペプチド。
    At least one of the amino acid residues constituting the peptide has a group represented by the general formula (g-2) in the side chain.
    The peptide according to claim 1, wherein in the general formula (g-2), R 1 and R 2 are independently hydrogen atoms or fluorine atoms, and R 3 and R 4 are hydrogen atoms, respectively.
  5.  前記ペプチドを構成するアミノ酸残基の少なくとも1個が、側鎖に、前記一般式(g-2)で表される基を有しており、
     前記一般式(g-2)中、前記R及びRが、それぞれ独立して水素原子又はフッ素原子であり、前記Rが水素原子であり、前記Rがトリフルオロメチル基である、請求項1に記載のペプチド。
    At least one of the amino acid residues constituting the peptide has a group represented by the general formula (g-2) in the side chain.
    In the general formula (g-2), R 1 and R 2 are independently hydrogen atoms or fluorine atoms, R 3 is a hydrogen atom, and R 4 is a trifluoromethyl group. The peptide according to claim 1.
  6.  前記ペプチドを構成するアミノ酸残基の少なくとも1個が、側鎖に、前記一般式(g-3)で表される基を有しており、
     前記一般式(g-3)中、前記R、R、R及びRが互いに連結して、置換基を有していてもよいC6-14アリール基、又は置換基を有していてもよいC5-14ヘテロアリール基を構成しており、
    前記R及びRが水素原子である、請求項1に記載のペプチド。
    At least one of the amino acid residues constituting the peptide has a group represented by the general formula (g-3) in the side chain.
    In the general formula (g-3), the R 1 , R 2 , R 3 and R 4 are linked to each other and have a C 6-14 aryl group or a substituent which may have a substituent. It constitutes a C 5-14 heteroaryl group which may be present.
    The peptide according to claim 1, wherein R 5 and R 6 are hydrogen atoms.
  7.  C末端又はN末端が保護基で保護されていてもよい、請求項1~6のいずれか一項に記載のペプチド。 The peptide according to any one of claims 1 to 6, wherein the C-terminal or N-terminal may be protected by a protecting group.
  8.  下記一般式(p2-1)又は一般式(p3-1)
    Figure JPOXMLDOC01-appb-C000002
    [式中、R11及びR12は、それぞれ独立して、C1-6アルキル基又はC6-14アリール-C1-6アルキル基であり;Zは、ヒドロキシ基、C1-6アルキル基、C1-6アルコキシ基、又はカルボキシル基の保護基であり;Z及びZは、それぞれ独立して、水素原子、C1-6アルキル基、C6-14アリール-C1-6アルキル基、又はアミノ基の保護基であり;Rgは、下記一般式(g-1)~(g-3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R及びRは、互いに独立して、水素原子、ハロゲン原子、カルボキシ基、置換基を有していてもよいC6-14アリール基、置換基を有していてもよいC5-14ヘテロアリール基、又は置換基を有していてもよいアミノ基であり;R~Rは、互いに独立して、水素原子、ハロゲン原子、置換基を有していてもよいC1-30アルキル基(当該C1-30アルキル基は炭素原子が2以上の場合に、炭素原子間にエーテル結合性の酸素原子を有していてもよい)、置換基を有していてもよいC6-14アリール基、又は置換基を有していてもよいC5-14ヘテロアリール基であり;R、R、R及びRは、互いに連結して、置換基を有していてもよいC6-14アリール基、又は置換基を有していてもよいC5-14ヘテロアリール基を構成していてもよく;黒丸は結合手を意味する)
    のいずれかで表される基である]
    で表される、請求項1~7のいずれか一項に記載のペプチド。
    The following general formula (p2-1) or general formula (p3-1)
    Figure JPOXMLDOC01-appb-C000002
    [In the formula, R 11 and R 12 are independently C 1-6 alkyl groups or C 6-14 aryl-C 1-6 alkyl groups; Z 1 is a hydroxy group, C 1-6 alkyl. A group, a C 1-6 alkoxy group, or a protecting group for a carboxyl group; Z 2 and Z 3 are independently hydrogen atoms, C 1-6 alkyl groups, and C 6-14 aryl-C 1-6. It is an alkyl group or an amino protecting group; Rg is a general formula (g-1) to (g-3) below.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 1 and R 2 may have a hydrogen atom, a halogen atom, a carboxy group, a substituent, and a C 6-14 aryl group, which may have a substituent, independently of each other. It is a C 5-14 heteroaryl group or an amino group which may have a substituent; R 3 to R 6 may have a hydrogen atom, a halogen atom and a substituent independently of each other. It has a C 1-30 alkyl group (the C 1-30 alkyl group may have an ether-bonding oxygen atom between carbon atoms when the number of carbon atoms is 2 or more), and a substituent. May be a C 6-14 aryl group, or a C 5-14 heteroaryl group which may have a substituent; R 1 , R 2 , R 3 and R 4 are linked to each other to form a substituent. It may constitute a C 6-14 aryl group which may have a C 6-14 aryl group or a C 5-14 heteroaryl group which may have a substituent; a black circle means a bonder).
    It is a group represented by any of]
    The peptide according to any one of claims 1 to 7, which is represented by.
  9.  環状ペプチドである、請求項1~6のいずれか一項に記載のペプチド。 The peptide according to any one of claims 1 to 6, which is a cyclic peptide.
  10.  前記環状ペプチドの環状構造を構成するアミノ酸残基の数が、4~31残基である、請求項9に記載のペプチド。 The peptide according to claim 9, wherein the number of amino acid residues constituting the cyclic structure of the cyclic peptide is 4 to 31 residues.
  11.  細胞膜透過性である、請求項1~10のいずれか一項に記載のペプチド。 The peptide according to any one of claims 1 to 10, which is cell membrane permeable.
  12.  請求項1~10のいずれか一項に記載のペプチドを有効成分とする、細胞膜透過剤。 A cell membrane penetrant containing the peptide according to any one of claims 1 to 10 as an active ingredient.
PCT/JP2021/008075 2020-03-04 2021-03-03 Peptide and cell membrane permeation agent WO2021177336A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020037194 2020-03-04
JP2020-037194 2020-03-04
JP2020-185438 2020-11-05
JP2020185438 2020-11-05

Publications (1)

Publication Number Publication Date
WO2021177336A1 true WO2021177336A1 (en) 2021-09-10

Family

ID=77612628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008075 WO2021177336A1 (en) 2020-03-04 2021-03-03 Peptide and cell membrane permeation agent

Country Status (1)

Country Link
WO (1) WO2021177336A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149584A1 (en) * 2021-01-06 2022-07-14 Agc株式会社 Peptide
WO2023048236A1 (en) * 2021-09-22 2023-03-30 Agc株式会社 Peptide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227467A (en) * 1987-08-03 1993-07-13 Merck & Co., Inc. Immunosuppressive fluorinated cyclosporin analogs
US20090259020A1 (en) * 2006-09-15 2009-10-15 University Of Utah Research Foundation Highly fluorinated beta-amino acids and methods of making and using same
US20100099845A1 (en) * 2006-09-15 2010-04-22 University Of Utah Research Foundation Protected enantiopure trifluorothreonines and methods of making and using same
WO2021002408A1 (en) * 2019-07-02 2021-01-07 Agc株式会社 Peptide and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227467A (en) * 1987-08-03 1993-07-13 Merck & Co., Inc. Immunosuppressive fluorinated cyclosporin analogs
US20090259020A1 (en) * 2006-09-15 2009-10-15 University Of Utah Research Foundation Highly fluorinated beta-amino acids and methods of making and using same
US20100099845A1 (en) * 2006-09-15 2010-04-22 University Of Utah Research Foundation Protected enantiopure trifluorothreonines and methods of making and using same
WO2021002408A1 (en) * 2019-07-02 2021-01-07 Agc株式会社 Peptide and method for manufacturing same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHIU, HSIEN-PO ET AL.: "Helix Propensity of Highly Fluorinated Amino Acids", J. AM. CHEM. SOC., vol. 128, 2006, pages 15556 - 15557, XP055784078, DOI: 10.1021/ja0640445 *
LEE, KYUNG-HOON ET AL.: "Fluorous Effect in Proteins: De Novo Design and Characterization of a Four-alpha-Helix Bundle Protein Containing Hexafluoroleucine", BIOCHEMISTRY, vol. 43, 2004, pages 16277 - 16284, XP055784092, DOI: 10.1021/bi049086p *
MIKAMI, TOSHIKI ET AL.: "Synthesis of novel fluorine-containing amino acids and application to cell membrane permeable peptides", LECTURE ABSTRACTS OF THE 42ND FLUORINE CONFERENCE OF JAPAN, vol. 42, 21 November 2019 (2019-11-21), pages 142 - 143,38 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149584A1 (en) * 2021-01-06 2022-07-14 Agc株式会社 Peptide
WO2023048236A1 (en) * 2021-09-22 2023-03-30 Agc株式会社 Peptide

Similar Documents

Publication Publication Date Title
EP2873677B1 (en) Method of producing self-assembling peptide derivative
WO2021002408A1 (en) Peptide and method for manufacturing same
WO2021177336A1 (en) Peptide and cell membrane permeation agent
WO2019198834A1 (en) Method for producing leuprorelin
TW201420596A (en) Aldehyde acetal based processes for the manufacture of macrocyclic depsipeptides and new intermediates
JPH0354957B2 (en)
US20030073807A1 (en) Bi-directional synthesis of oligoguanidine transport agents
CN114667136A (en) Composition of TROFINETIDE
JP2017043615A (en) Cyclopropane amino acid unit that improves membrane permeability and/or metabolic stability of cyclic peptide
Obrecht et al. Design and synthesis of novel nonpolar host peptides for the determination of the 310‐and α‐helix compatibilities of α‐amino acid buildig blocks: An assessment of α, α‐disubstituted glycines
ES2265494T3 (en) PROCEDURE TO PRODUCE TRUNKAMIDA-A COMPOUNDS.
Hosseini et al. Pyrrolidinone-modified di-and tripeptides: highly diastereoselective preparation and investigation of their stability
US8981049B2 (en) Aziridine mediated native chemical ligation
PT2004670E (en) Process for the manufacture of lysobactin derivatives
JP2009528282A (en) Modified amino acid
EP1628956B1 (en) A process for the preparation of compounds having an ace inhibitory action
JP2000154198A (en) Solid phase synthesis of cyclic depsipeptide and its intermediate
WO2022149584A1 (en) Peptide
JP5097104B2 (en) New isodipeptide
US20240174713A1 (en) Peptide synthesis method involving sterically hindered mixed anhydride intermediate
Li et al. A facile synthesis of amides from 9-fluorenylmethyl carbamates and acid derivatives
CN117999272A (en) Peptides
Holmes Peptide modification by combining CH functionalization and sulfur (vi)-fluoride exchange; developing new peptide cyclization methods
Xu Synthetic and Computational Studies of Three Families of Organic Molecules with Interesting Biological Properties
White Synthesis and Site-Specific Functionalizations of Aziridine-2-Carboxylic Acid-Containing Cyclic Peptides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP