WO2022149575A1 - Kit for detecting mlh1 methylation modification and braf mutation - Google Patents

Kit for detecting mlh1 methylation modification and braf mutation Download PDF

Info

Publication number
WO2022149575A1
WO2022149575A1 PCT/JP2022/000095 JP2022000095W WO2022149575A1 WO 2022149575 A1 WO2022149575 A1 WO 2022149575A1 JP 2022000095 W JP2022000095 W JP 2022000095W WO 2022149575 A1 WO2022149575 A1 WO 2022149575A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
methylation
gene
region
base sequence
Prior art date
Application number
PCT/JP2022/000095
Other languages
French (fr)
Japanese (ja)
Inventor
憲章 中村
光芳 大場
岳司 永坂
彰一 硲
浩昭 永野
Original Assignee
東洋鋼鈑株式会社
学校法人 川崎学園
国立大学法人山口大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社, 学校法人 川崎学園, 国立大学法人山口大学 filed Critical 東洋鋼鈑株式会社
Priority to JP2022574056A priority Critical patent/JPWO2022149575A1/ja
Publication of WO2022149575A1 publication Critical patent/WO2022149575A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention relates to a kit for detecting methylation modification of the MLH1 gene encoding a DNA mismatch repair protein and a V600E gene mutation in BRAF (v-raf murine sarcoma viral oncogene homolog B1).
  • colorectal cancers are thought to develop due to the accumulation of gene mutations in colorectal mucosal cells, mainly due to exposure to environmental factors (sporadic colorectal cancer). Therefore, the prevalence of sporadic colorectal cancer increases with age.
  • some colorectal cancers are familial and are collectively called hereditary colorectal cancer.
  • hereditary colorectal cancer the germline mutation that causes it is found to be a mutation in the tumor suppressor gene or mismatch repair gene, and it is a premature onset, and has the characteristic of developing multiple colorectal cancer and cancer in other organs at a high rate.
  • Lynch syndrome (sometimes referred to as hereditary non-polyposis colorectal cancer: HNPCC), which frequently develops colorectal cancer in an autosomal dominant manner, Includes familial adenomatous polyposis (FAP).
  • FAP familial adenomatous polyposis
  • Lynch syndrome which has no difference in clinical characteristics from sporadic colorectal cancer, is used in daily practice. It is highly likely that many have been overlooked. Reliable identification of hereditary tumors reliably aids in cancer prevention and early detection in the family.
  • Lynch syndrome is an autosomal dominant disorder mainly caused by germline mutations in mismatch repair genes.
  • Lynch syndrome is diagnosed according to the following procedure. First, for patients with suspected Lynch syndrome, we will collect clinical information such as family history, age of onset, related cancers, and histopathological features, and consider whether they meet the so-called Amsterdam Standard II or the revised Zebesda Guidelines. If these Amsterdam Standard II or revised Zebesda Guidelines are met, a microsatellite instability (MSI) test of the tumor tissue or an immunohistological test for the causative mismatch repair protein is performed, and the frequency is high. Confirm the disappearance of mismatch repair proteins by MSI (high-frequency MSI: MSI-H) or immunostaining.
  • MSI microsatellite instability
  • microsite instability means that microsatellite, which is a repeating sequence of one to several bases existing in the genome due to an abnormality in the mismatch repair mechanism, has a different number of repetitions from normal cells.
  • MSI-H Frequent microsatellite instability
  • the Amsterdam Standard II may miss Lynch Syndrome due to its strict standards, and the revised Zebesda Guidelines have been devised to make up for its shortcomings.
  • the revised Zebesda Guidelines recommend that MSI tests be performed when 1 to 5 items of clinical information and findings are met. And if the result of the MSI test on the tumor cells is MSI-H, Lynch syndrome is strongly suspected.
  • a definitive diagnosis of Lynch syndrome is made by identifying pathogenic mutations in the germline of the mismatch repair gene. Specifically, the patient's blood is used to directly test for mutations in the germline of the mismatch repair gene (eg, the MLH1 gene). If a pathogenic variant is identified, it is a definitive diagnosis of Lynch syndrome.
  • the mismatch repair gene eg, the MLH1 gene
  • MSI-H cancer is found not only in Lynch syndrome but also in sporadic solid tumors (reported to be found in ⁇ 15% of sporadic colorectal cancers). Therefore, by distinguishing between Lynch syndrome and sporadic MSI-H cancer, it is possible to narrow down Lynch syndrome more accurately.
  • Patent Document 1 describes a method for detecting the methylation of CpG islands in the MLH1 gene by a methylation-sensitive enzyme, and simultaneously amplifying the CpG islands in the MLH1 gene and the region containing V600E in the BRAF gene to simultaneously amplify the CpG islands.
  • a method for detecting methylation by a methylation-sensitive enzyme and V600E in the BRAF gene by sequence analysis is disclosed.
  • the V600E mutation in the BRAF gene is found in hairy cell leukemia, malignant melanoma, thyroid cancer, ovarian cancer, colorectal cancer, etc., and about 10% in colorectal cancer.
  • 35 to 43% of sporadic colorectal cancers showing MSI-H have V600E mutations in the BRAF gene in tumor tissue
  • most colorectal cancers in Lynch syndrome show MSI-H but V600E in the BRAF gene. Almost no mutations are found. Therefore, the presence or absence of the V600E mutation in the BRAF gene may be used to distinguish between sporadic colorectal cancer and Lynch syndrome.
  • Patent Document 1 discloses a specific region for detecting methylation of the MLH1 gene, and when methylation cytosine in the region is detected by a methylation sensitivity restriction enzyme cleavage method and methylation is detected. Discloses that the subject is determined not to have Lynch syndrome or Lynch-like. Further, Patent Document 1 discloses that a predetermined region of the BRAF gene is amplified at the same time as the above-mentioned methylation of the MLH1 gene, and the presence or absence of a V600E mutation in the BRAF gene is investigated.
  • Patent Document 2 discloses a cancer-specific variant for detecting a mutation (V600E) in the BRAF gene, a method for diagnosing cancer, and a method for developing a therapeutic agent for treating cancer. ..
  • the present inventors have obtained a probe for detecting a region encoding a mutation (V600E) in the BRAF gene based on a sequence in which cytosine in the region is replaced with thymine.
  • V600E a mutation in the BRAF gene
  • methylation of the MLH1 gene and mutation (V600E) in the BRAF gene can be detected simultaneously with high accuracy, and the present invention was completed.
  • the present invention includes the following. (1) A step of treating genomic DNA prepared from a sample with hydrogen sulfite, a region for detecting methylation of the MLH1 gene using genomic DNA treated with hydrogen sulfite as a template, and a V600E mutation site in the BRAF gene.
  • the step of amplifying the region containing the A method for simultaneously detecting methylation of the MLH1 gene and V600E mutation of the BRAF gene in a sample including the steps of (2) Regarding the region for detecting methylation of the MLH1 gene, a methylation-compatible probe corresponding to the amplicon when the region is methylated and a demethylation corresponding to the amplicon when the region is not methylated.
  • the method according to (1) wherein a probe set including a corresponding probe is used.
  • (4) Regarding the region containing the V600E mutation site in the BRAF gene a wild-type probe corresponding to the case where the V600E mutation site is a wild type and a mutant probe corresponding to the case where the V600E mutation site is a mutant type.
  • the method according to (1) wherein a probe set consisting of the above is used.
  • the method according to (6), wherein the blocking nucleic acid contains the base sequence of SEQ ID NO: 15.
  • a region for detecting methylation of the MLH1 gene and containing a probe for the MLH1 gene corresponding to the base sequence of the region after hydrogen sulfite treatment and a V600E mutation site in the BRAF gene A kit that simultaneously detects methylation of the MLH1 gene and V600E mutation of the BRAF gene in a sample, including a probe set, including a probe for the BRAF gene corresponding to the base sequence of the region after hydrogen sulfite treatment.
  • the probe for the MLH1 gene includes a methylation-compatible probe corresponding to an amplicon when the region is methylated and a non-methylation-compatible probe corresponding to an amplicon when the region is not methylated.
  • the BRAF gene probe is characterized by including a wild-type probe corresponding to the case where the V600E mutation site is a wild type and a mutant probe corresponding to the case where the V600E mutation site is a mutant type.
  • the blocking nucleic acid contains the base sequence of SEQ ID NO: 15.
  • the probe for the MLH1 gene and the probe for the BRAF gene include a microarray immobilized on a substrate.
  • the probe for detecting the region containing the V600E mutation site in the BRAF gene is designed based on the base sequence after bisulfite treatment, the methylation of the MLH1 gene and the sudden V600E in the BRAF gene are designed. Mutations can be detected simultaneously with high accuracy. Therefore, by applying the present invention, it is possible to quickly and efficiently distinguish between sporadic colorectal cancer and Lynch syndrome.
  • A shows the result of determining the methylation of the MLH1 gene
  • B shows the result of determining the V600E mutation in the BRAF gene. It is a characteristic diagram which shows the result of having performed PCR by applying the PCR program shown in Table 4 or the PCR program shown in Table 9, and measuring the fluorescence intensity from each probe.
  • the MLH1 gene (MutL homolog 1 gene) is a gene located on chromosome 3 and encoding a type of mismatch repair protein. By methylation of the MLH1 gene, the expression of the MLH1 gene is suppressed. Methylation of the MLH1 gene can result in cancers such as colon cancer, small bowel cancer, uterine body cancer, ovarian cancer, gastric cancer, renal pelvis / urinary tract cancer, pancreatic cancer, biliary tract cancer, brain tumor, Muir-Torre syndrome, malignant melanoma, non-malignant melanoma. It is also found in other cancers such as small cell lung cancer, prostate cancer, and thyroid cancer.
  • cancers such as colon cancer, small bowel cancer, uterine body cancer, ovarian cancer, gastric cancer, renal pelvis / urinary tract cancer, pancreatic cancer, biliary tract cancer, brain tumor, Muir-Torre syndrome, malignant melanoma, non-
  • Methylation that suppresses the expression of the MLH1 gene is determined by hydrogen sulfite treatment (also referred to as bisulfite treatment), which will be described in detail later.
  • hydrogen sulfite treatment also referred to as bisulfite treatment
  • CpG islands are defined as regions where CG sequences (dinucleotides consisting of 5'-CG-3') frequently appear in specific regions.
  • the probability of appearance of a dinucleotide consisting of 5'-CG-3' is 1/16. Therefore, the region in which the dinucleotide consisting of 5'-CG-3'appears frequently is the region in which the appearance probability of the dinucleotide consisting of 5'-CG-3'appearing in the region exceeds 1/16. Can be defined. Further, the region in which the dinucleotide consisting of 5'-CG-3'appears frequently is not limited to the above definition, and the GC content contained in the region exceeds 50% and is present in 5'. -The CG-3'ratio may be defined as 60% or more (CpG observed / expected> 0.6) of the amount expected from the GC content.
  • methylation that suppresses the expression of the MLH1 gene methylation in the region disclosed in Herman JG. Et al., Proc. Natl. Acad. Sci., 95, 6870-6875, 1998 was discriminated.
  • the methylation of the CpG sequence in the marker region for determining the MLH1 methylation group disclosed in JP-A-2019-135928 may be discriminated.
  • the base sequence of the marker region for determining the MLH1 methylation group disclosed in JP-A-2019-135928 is shown in SEQ ID NO: 1.
  • cytosine For methylation that suppresses the expression of the MLH1 gene, it is particularly preferable to detect the methylation of cytosine in the CpG sequence contained in the nucleotide sequence shown in SEQ ID NO: 1.
  • the cytosine to be detected is not particularly limited as long as it is cytosine in the CpG sequence of the base sequence shown in SEQ ID NO: 1.
  • the positions of cytosine that detect methylation include, for example, the 1st, 7th, 38th, 47th, 61st, 78th, 85th, 95th, 97th, 103rd, and 122nd positions of the base sequence of SEQ ID NO: 1.
  • the cytosine for detecting methylation may be one of these cytosines, two cytosines, 3 or more, 4 or more, 5 or more, 10 or more cytosines, or all cytosines. May be.
  • the position of the cytosine that detects methylation can be preferably the cytosine at position 264 or the cytosine at position 272 in SEQ ID NO: 1, and more preferably the cytosine at position 264 and position 272 in SEQ ID NO: 1.
  • the BRAF gene is a gene encoding a BRAF (v-raf murine sarcoma viral oncogene homolog B1) protein, and BRAF activated by a mutation in which valine at position 600 becomes glutamic acid (V600E mutation) activates the MAPK pathway. It is known to mutate and excite abnormal cell proliferation.
  • the V600E mutation in the BRAF gene is a gene mutation found in lung cancer, colon cancer, thyroid cancer, biliary tract cancer and the like.
  • the base sequence of a part of the BRAF gene containing the V600E gene mutation is shown in SEQ ID NO: 2.
  • A is the first codon (ATG) (not shown in SEQ ID NO: 2) and T at the 1799th position is A, so that the 600th valine counted from the N-terminal of the BRAF protein is It will mutate to glutamic acid.
  • w (T or A) at position 267 is the position of the V600E gene mutation.
  • the genomic DNA prepared from the sample is treated with bisulfite.
  • the sample means a biological sample obtained from a test subject such as a patient suspected of having a disease.
  • the biological sample is not particularly limited, but is limited to sheep water containing fetal or embryo-derived cells, fetal-derived cell samples such as navel cord, body fluid samples such as blood, ascites, and saliva, cancer tissues or tissues suspected of having cancer, and oral mucosal cells. , Hair, skin can be mentioned.
  • the method for extracting genomic DNA is not particularly limited, and a conventionally known method or a method using a commercially available genomic DNA extraction reagent kit can be appropriately used.
  • Bisulfite treatment is also called bisulfite treatment, and unmethylated cytosine residues contained in genomic DNA are converted to uracil. On the other hand, methylated cytosine residues contained in genomic DNA are not converted. For example, in the CpG island contained in genomic DNA, if the cytosine of the 5'-CG-3'dinucleotide is not methylated, the dinucleotide is converted to 5'-UG-3'. Also, if cytosine, a dinucleotide consisting of 5'-CG-3', is methylated, the dinucleotide remains 5'-CG-3'.
  • the concentration of bisulfite added during treatment with bisulfite is not particularly limited as long as it can sufficiently convert unmethylated cytosine in genomic DNA, but is not particularly limited, for example, in a solution containing genomic DNA.
  • the final concentration is 1 M or more, preferably 1 to 15 M, and more preferably 3 to 10 M.
  • the incubation conditions (temperature and time) after the addition of bisulfite can be appropriately set according to the amount of bisulfite added. For example, when bisulfite is added at a final concentration of 6 M, 50 to Incubate at 80 ° C for 10 minutes to 7 hours.
  • the region for detecting methylation of the MLH1 gene and the region containing the V600E mutation site in the BRAF gene are each amplified by a pair of primers.
  • the base length of the region to be amplified is not particularly limited, but can be several tens to several thousand bases, particularly preferably 50 to 1000 bases, and 50 to 700 bases. It is more preferably 50 to 500 bases long, further preferably 50 to 300 bases, and even more preferably 50 to 100 bases.
  • the region for detecting methylation of the MLH1 gene and the region containing the V600E mutation site in the BRAF gene are not particularly limited, but are preferably substantially the same base length.
  • the region for detecting methylation of the MLH1 gene and the region containing the V600E mutation site in the BRAF gene are preferably the same base length, but may have different base lengths.
  • the different base length is preferably, for example, 20 bases or less, preferably 15 bases or less. It is more preferably 10 bases or less, and most preferably 5 bases or less.
  • the region for detecting methylation of the MLH1 gene is not particularly limited, but may be, for example, a region consisting of the above-mentioned nucleotide sequence of SEQ ID NO: 1 or a part of the region contained in the nucleotide sequence of SEQ ID NO: 1.
  • the base sequence of SEQ ID NO: 1 includes the 1st, 7th, 38th, 47th, 61st, 78th, 85th, 95th, 97th, 103rd, 122nd, and 133rd positions.
  • Cytosine which constitutes CpG, exists at positions, 605, 631, 638, 653, and 663.
  • a region containing one or more cytosines selected from these can be a region for detecting methylation of the MLH1 gene. More specifically, when detecting the methylation of cytosine at position 264 and cytosine at position 272 in SEQ ID NO: 1, in order to detect the methylation of the MLH1 gene in the region containing these cytosine at position 264 and cytosine at position 272. It can be an area.
  • a pair of primers for amplifying the region for detecting methylation of the MLH1 gene can be appropriately designed according to a conventional method.
  • the region for detecting methylation of the MLH1 gene is a predetermined partial region in SEQ ID NO: 1
  • the pair of primers can be designed based on the base sequence of SEQ ID NO: 1.
  • the forward primer is 5'more than cytosine at position 264 in the base sequence of SEQ ID NO: 1.
  • It can be designed at a position separated by several bases in the side (upstream) direction, for example, 1 to 5 bases, 1 to 10 bases, 1 to 20 bases, and 1 to 30 bases.
  • several bases for example, 1 to 5 bases, 1 to 10 bases, 1 to 20 bases, 1 to 1 to 3'side (downstream) from cytosine at position 272 in the base sequence of SEQ ID NO: 1. It can be designed at a position 30 bases away.
  • a pair of primers for amplifying the region for detecting methylation of the MLH1 gene hybridize to a region containing no dinucleotide consisting of 5'-CG-3'constituting CpG islands. It is preferable to design in. This is because the region for detecting methylation of the MLH1 gene is amplified using the genomic DNA after hydrogen sulfite treatment as a template. That is, since cytosine other than the dinucleotide consisting of 5'-CG-3'is not methylated, it is converted to uracil by hydrogen sulfite treatment.
  • a pair of primers for amplifying the region for detecting methylation of the MLH1 gene is from 5'-CG-3'in the base sequence of SEQ ID NO: 1. It will be designed based on the base sequence in which cytosine other than the dinucleotide is replaced with uracil (or thymine).
  • the region containing the V600E mutation site in the BRAF gene is not particularly limited, but may be, for example, a region consisting of the above-mentioned nucleotide sequence of SEQ ID NO: 2 or a partial region contained in the nucleotide sequence of SEQ ID NO: 2. ..
  • the V600E mutation site is a mutation in which A is the first (not shown in SEQ ID NO: 2) of the start codon (ATG) and T at the 1799th position is A. Therefore, the region containing the V600E mutation site in the BRAF gene can be rephrased as the region containing the 1799th base with A as the first codon (ATG).
  • the region containing the V600E mutation site in the BRAF gene can be paraphrased as the region containing the 267th base in SEQ ID NO: 2.
  • a pair of primers for amplifying the region containing the V600E mutation site in the BRAF gene can also be appropriately designed according to a conventional method.
  • a pair of primers for amplifying the region containing the V600E mutation site in the BRAF gene can be designed based on the base sequence of SEQ ID NO: 2. That is, the pair of primers is designed as a forward primer and a reverse primer so as to amplify the region of the start codon (ATG) containing the 1799th base (267th base in SEQ ID NO: 2) with A as the first. ..
  • a forward primer for example, several bases, for example, 1 to 5 bases, 1 to 10 bases, 1 to 20 bases, or 1 to 30 bases in the 5'side (upstream) direction from the 267th base in the base sequence of SEQ ID NO: 2. It can be designed at a position separated from the base.
  • the reverse primer several bases, for example, 1 to 5 bases, 1 to 10 bases, 1 to 20 bases, or 1 to 1 to 3'side (downstream) from the 267th base in the base sequence of SEQ ID NO: 2. It can be designed at a position 30 bases away.
  • the region containing the V600E mutation site in the BRAF gene is also amplified using the genomic DNA after hydrogen sulfite treatment as a template. Since cytosine contained in the BRAF gene present in genomic DNA is not methylated, it is converted to uracil by bisulfite treatment. Therefore, using the genomic DNA after hydrogen sulfite treatment as a template, the pair of primers for amplifying the region containing the V600E mutation site in the BRAF gene replaces cytosine in the nucleotide sequence of SEQ ID NO: 2 with uracil (or thymine). It will be designed based on the base sequence.
  • a polymerase chain reaction PCR
  • LAMP Loop-Mediated Isothermal Amplification
  • ICAN Isothermal and Chimeric primer-initiated Amplification of Nucleic acids
  • the method for labeling the amplified amplicon is not particularly limited, but for example, a method in which a primer used for the amplification reaction is labeled in advance may be used, or a labeled nucleotide may be used as a substrate for the amplification reaction. You may use the method you use.
  • the labeling substance is not particularly limited, but a radioisotope, a fluorescent dye, or an organic compound such as digoxigenin (DIG) or biotin can be used.
  • this reaction system includes a buffer required for nucleic acid amplification / labeling, a heat-resistant DNA polymerase, a primer specific to the amplification region, and a labeled nucleotide triphosphate (specifically, a nucleotide triphosphate to which a fluorescent label or the like is added). , Nucleotide triphosphate, magnesium chloride and the like.
  • the region for detecting the methylation of the amplified MLH1 gene and the region containing the V600E mutation site in the BRAF gene are detected using the probe for the MLH1 gene and the probe for the BRAF gene, respectively.
  • the regions for detecting methylation of the MLH1 gene include a methylation-compatible probe corresponding to the case where the methylation site is methylated and a non-methylation-compatible probe corresponding to the case where the methylation site is not methylated. It can be detected using a probe for the MLH1 gene that contains it. That is, the methylation-compatible probe corresponds to the case where the cytosine of the dinucleotide composed of 5'-CG-3'is methylated, and the cytosine of 5'-CG-3'is maintained even by the above-mentioned bisulfite treatment. Therefore, it has a sequence corresponding to the dinucleotide consisting of 5'-CG-3'.
  • the non-methylation-compatible probe corresponds to the case where the dinucleotide consisting of 5'-CG-3'is not methylated, and the cytosine of 5'-CG-3'is converted to uracil by the above-mentioned hydrogen sulfite treatment. It will have a sequence corresponding to the dinucleotide consisting of 5'-UG-3'(5'-TG-3' as an amplicon).
  • a pair of probes consisting of a methylation-compatible probe and a non-methylation-compatible probe may be simply referred to as a probe set or a pair of probe sets. These probe sets preferably have the same sequence except for the methylation site to be detected (cytosine of the dinucleotide consisting of 5'-CG-3').
  • the region for detecting methylation of the MLH1 gene contains multiple methylation sites (5'-CG-3'dinucleotides), methylation of one or more of these multiple methylation sites.
  • Methylation in the partial region containing the site can be detected with a pair of probe sets.
  • the pair of probe sets may have a sequence corresponding to one methylation site contained in the region for detecting methylation of the MLH1 gene, or may correspond to two or more methylation sites. It may have a sequence. More specifically, a pair of probe sets can have sequences corresponding to 2-7 methylation sites and can also have sequences corresponding to 2-4 methylation sites. Probe specificity can be enhanced by using probe sets that correspond to multiple methylation sites.
  • a pair of probe sets that detect methylation can be designed for each of multiple methylation sites contained in the region for detecting methylation of the MLH1 gene. With these multiple probe sets, multiple methylation sites can also be detected independently. By preparing a plurality of probe sets, all the methylation sites contained in the amplicon can be targeted for detection, but some methylation sites can be selected and targeted for detection.
  • the region containing the V600E mutation site in the BRAF gene includes a wild-type probe corresponding to the case where the V600E mutation site is wild-type and a mutant probe corresponding to the case where the site is mutant type. It can be detected using a probe for. That is, the wild-type probe is designed to hybridize to the base sequence in which the 1799th base (267th base in SEQ ID NO: 2) is T among the start codons (ATG) in the BRAF gene, with A as the first. To. In addition, the mutant probe is designed to hybridize to the base sequence in which the 1799th base (267th base in SEQ ID NO: 2) is A among the start codons (ATG) in the BRAF gene. To.
  • the region containing the V600E mutation site in the BRAF gene is amplified using the genomic DNA after hydrogen sulfite treatment as a template, as described above. Since cytosine contained in the BRAF gene present in genomic DNA is not methylated, it is converted to uracil by bisulfite treatment. Therefore, in the region containing the V600E mutation site in the BRAF gene, which was amplified using the genomic DNA after bisulfite treatment as a template, the position originally cytosine is amplified as thymine. Therefore, the wild-type probe and the mutant probe are designed based on the base sequence in which cytosine in SEQ ID NO: 2 is replaced with thymine, respectively.
  • the base length of these probes is not particularly limited, but can be, for example, 10 to 30 base lengths, preferably 15 to 25 base lengths.
  • the probe designed as described above is preferably nucleic acid, more preferably DNA.
  • the DNA includes both double-stranded and single-stranded DNA, but is preferably single-stranded DNA.
  • the probe can be obtained, for example, by chemically synthesizing it with a nucleic acid synthesizer.
  • a nucleic acid synthesizer a device called a DNA synthesizer, a fully automatic nucleic acid synthesizer, an automatic nucleic acid synthesizer, or the like can be used.
  • the probe designed as described above is preferably used in the form of a microarray (as an example, a DNA chip) by immobilizing its 5'end on a carrier.
  • the microarray is provided with a probe set for detecting methylation or unmethylation at a plurality of methylation sites contained in the above-mentioned amplicon. Further, a plurality of probe sets corresponding to different partial regions may be provided.
  • the material of the carrier those known in the art can be used and are not particularly limited.
  • precious metals such as platinum, platinum black, gold, palladium, rhodium, silver, mercury, tungsten and their compounds, and conductive materials such as carbon represented by graphite and carbon fiber; single crystal silicon, amorphous.
  • Silicon materials typified by silicon, silicon carbide, silicon oxide, silicon nitride, etc., composite materials of these silicon materials typified by SOI (silicon on insulator); glass, quartz glass, alumina, sapphire, ceramics, fol Inorganic materials such as sterite and photosensitive glass; polyethylene, ethylene, polyprovylene, cyclic polyolefin, polyisobutylene, polyethylene terephthalate, unsaturated polyester, fluororesin, polyvinyl chloride, polyvinylidene chloride, polyvinylacetate, polyvinyl alcohol, polyvinyl acetal , Acrylic resin, polyacrylonitrile, polystyrene, acetal resin, polycarbonate, polyamide, phenol resin, urea resin, epoxy resin, melamine resin, styrene / acrylonitrile copolymer, acrylonitrile / butadiene styrene copolymer, polyphenylene oxide and organic such as
  • the carrier it is preferable to use a carrier having a carbon layer and a chemically modifying group on the surface.
  • the carrier having a carbon layer and a chemical modification group on the surface includes a carrier having a carbon layer and a chemical modification group on the surface of the substrate and a carrier having a chemical modification group on the surface of the substrate composed of the carbon layer.
  • the material of the substrate those known in the art can be used, and the same materials as those mentioned above as the carrier materials can be used without particular limitation.
  • a carrier having a fine flat plate-like structure is preferably used.
  • the shape is not limited to rectangular, square and round, but usually 1 to 75 mm square, preferably 1 to 10 mm square, and more preferably 3 to 5 mm square are used. Since it is easy to produce a carrier having a fine flat plate-like structure, it is preferable to use a substrate made of a silicon material or a resin material, and in particular, a carrier having a carbon layer and a chemically modifying group on the surface of a substrate made of single crystal silicon is more preferable. preferable.
  • Single crystal silicon contains a slight change in the orientation of the crystal axis in a partial part (sometimes called a mosaic crystal) or an atomic scale disorder (lattice defect). Is also included.
  • the carbon layer formed on the substrate is not particularly limited, but is limited to synthetic diamond, high-pressure synthetic diamond, natural diamond, soft diamond (for example, diamond-like carbon), amorphous carbon, and carbon-based material (for example, graphite, fullerene, carbon nanotube). ), A mixture thereof, or a laminate thereof is preferable.
  • carbides such as hafnium carbide, niobium carbide, silicon carbide, tantalum carbide, thorium carbide, titanium carbide, uranium carbide, tungsten carbide, zirconium carbide, molybdenum carbide, chromium carbide, vanadium carbide and the like may be used.
  • soft diamond is a general term for incomplete diamond structures that are a mixture of diamond and carbon, such as so-called diamond-like carbon (DLC: Diamond Like Carbon), and the mixing ratio thereof is not particularly limited.
  • the carbon layer has excellent chemical stability and can withstand subsequent reactions in the introduction of chemically modifying groups and the bond with the substance to be analyzed, and the bond is flexible because it is bonded to the substance to be analyzed by electrostatic bonding. It is advantageous in that it has the property, it is transparent to the detection system UV because it does not absorb UV, and it can be energized during electroblotting. It is also advantageous in that there is little non-specific adsorption in the binding reaction with the substance to be analyzed. As described above, a carrier whose substrate itself is made of a carbon layer may be used.
  • the carbon layer can be formed by a known method.
  • microwave plasma CVD Chemical vapor deposit
  • ECRCVD Electro cyclotron resonance chemical vapor deposit
  • ICP Inductive coupled plasma
  • DC sputtering method ECR (Electric cyclotron resonance) sputtering method
  • ionized vapor deposition method arc.
  • Examples include a formula vapor deposition method, a laser vapor deposition method, an EB (Electron beam) vapor deposition method, and a resistance heating vapor deposition method.
  • the raw material gas (methane) is decomposed by the glow discharge generated between the electrodes by the high frequency, and a carbon layer is synthesized on the substrate.
  • the ionization vapor deposition method thermions generated by the tungsten filament are used to decompose and ionize the raw material gas (benzene), and a carbon layer is formed on the substrate by the bias voltage.
  • a carbon layer may be formed by an ionization vapor deposition method in a mixed gas consisting of 1 to 99% by volume of hydrogen gas and 99 to 1% by volume of remaining methane gas.
  • an arc discharge is generated in a vacuum by applying a DC voltage between a solid graphite material (cathode evaporation source) and a vacuum vessel (anode) to generate carbon atom plasma from the cathode and evaporate source.
  • a DC voltage between a solid graphite material (cathode evaporation source) and a vacuum vessel (anode) to generate carbon atom plasma from the cathode and evaporate source.
  • a carbon layer can be formed by irradiating a graphite target plate with Nd: YAG laser (pulse oscillation) light to melt it and depositing carbon atoms on a glass substrate.
  • Nd: YAG laser pulse oscillation
  • the thickness of the carbon layer is usually about a monolayer to 100 ⁇ m, and if it is too thin, the surface of the underlying substrate may be locally exposed, and conversely, it is thick. In this case, the productivity is deteriorated, so it is preferably 2 nm to 1 ⁇ m, more preferably 5 nm to 500 nm.
  • the oligonucleotide probe By introducing a chemically modifying group on the surface of the substrate on which the carbon layer is formed, the oligonucleotide probe can be firmly immobilized on the carrier.
  • the chemically modifying group to be introduced can be appropriately selected by those skilled in the art and is not particularly limited, and examples thereof include an amino group, a carboxyl group, an epoxy group, a formyl group, a hydroxyl group and an active ester group.
  • the introduction of the amino group can be carried out, for example, by irradiating the carbon layer with ultraviolet rays in ammonia gas or by plasma treatment. Alternatively, it can be carried out by irradiating the carbon layer with ultraviolet rays in chlorine gas to chlorinate it, and then irradiating it with ultraviolet rays in ammonia gas. Alternatively, it can also be carried out by reacting a polyhydric amine gas such as methylenediamine or ethylenediamine with a chlorinated carbon layer.
  • the introduction of the carboxyl group can be carried out, for example, by reacting the amino acidized carbon layer as described above with an appropriate compound.
  • Examples of the compound used for introducing a carboxyl group are represented by the formula: X-R1-COOH (in the formula, X represents a halogen atom and R1 represents a divalent hydrocarbon group having 10 to 12 carbon atoms).
  • Halocarboxylic acids such as chloroacetic acid, fluoroacetic acid, bromoacetic acid, iodoacetic acid, 2-chloropropionic acid, 3-chloropropionic acid, 3-chloroacrylic acid, 4-chlorobenzoic acid;
  • R2 represents a single bond or a divalent hydrocarbon group having 1 to 12 carbon atoms), such as dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, phthalic acid; polyacrylic acid.
  • Polycarboxylic acids such as polymethacrylic acid, trimellitic acid, butanetetracarboxylic acid; formula: R3-CO-R4-COOH (in the formula, R3 is a hydrogen atom or a divalent hydrocarbon group having 1 to 12 carbon atoms.
  • R4 represents a divalent hydrocarbon group having 1 to 12 carbon atoms); ketoic acid or aldehyde acid; formula: X-OC-R5-COOH (in the formula, X is a halogen atom, R5 is a single bond or Represents a divalent hydrocarbon group having 1 to 12 carbon atoms.)
  • Monohalides of dicarboxylic acids such as succinic acid monoclonal acid, malonic acid monoclonal acid; phthalic acid anhydride, succinic acid anhydride, oxalic acid anhydride, maleine anhydride. Examples thereof include acid anhydrides and acid anhydrides such as butanetetracarboxylic acid anhydride.
  • the introduction of the epoxy group can be carried out, for example, by reacting the amino acidized carbon layer as described above with an appropriate polyvalent epoxy compound. Alternatively, it can be obtained by reacting an organic peracid with a carbon-carbon double bond contained in the carbon layer.
  • organic peracetic acid include peracetic acid, perbenzoic acid, diperoxyphthalic acid, performic acid, trifluoroperacetic acid and the like.
  • the introduction of the formyl group can be carried out, for example, by reacting the amino acidized carbon layer as described above with glutaraldehyde.
  • the introduction of the hydroxyl group can be carried out, for example, by reacting the chlorinated carbon layer with water as described above.
  • the active ester group means an ester group that has an electron-attracting group with high acidity on the alcohol side of the ester group and activates the nucleophilic reaction, that is, an ester group with high reaction activity. It is an ester group that has an electron-withdrawing group on the alcohol side of the ester group and is more activated than the alkyl ester.
  • the active ester group has reactivity with a group such as an amino group, a thiol group and a hydroxyl group. More specifically, phenol esters, thiophenol esters, N-hydroxyamine esters, cyanomethyl esters, esters of heterocyclic hydroxy compounds, etc. are active ester groups having much higher activity than alkyl esters and the like. Known as.
  • examples of the active ester group include p-nitrophenyl group, N-hydroxysuccinimide group, succinimide group, phthalateimide group, 5-norbornen-2,3-dicarboxyimide group and the like.
  • an N-hydroxysuccinimide group is preferably used.
  • the carboxyl group introduced as described above is combined with a dehydration condensing agent such as cyanamide or carbodiimide (for example, 1- [3- (dimethylamino) propyl] -3-ethylcarbodiimide) and N-. It can be carried out by active esterification with a compound such as hydroxysuccinimide. By this treatment, a group to which an active ester group such as an N-hydroxysuccinimide group is bonded can be formed at the end of the hydrocarbon group via an amide bond (Japanese Patent Laid-Open No. 2001-139532).
  • a dehydration condensing agent such as cyanamide or carbodiimide (for example, 1- [3- (dimethylamino) propyl] -3-ethylcarbodiimide) and N-.
  • the probe is dissolved in a spotting buffer to prepare a spotting solution, which is dispensed into a 96-well or 384-well plastic plate, and the dispensed solution is spotted onto a carrier by a spotter device or the like.
  • a spotter device or the like Can produce microarrays immobilized on a carrier.
  • the spotting solution may be manually spotted with a micropipettor.
  • Incubation After spotting, it is preferable to carry out incubation because the reaction in which the probe binds to the carrier proceeds. Incubation is usually carried out at a temperature of ⁇ 20 to 100 ° C., preferably 0 to 90 ° C., usually for 0.5 to 16 hours, preferably 1 to 2 hours. Incubation is preferably performed in a high humidity atmosphere, for example, in a humidity of 50 to 90%. Following the incubation, it is preferable to perform washing with a washing solution (for example, 50 mM TBS / 0.05% Tween20, 2 ⁇ SSC / 0.2% SDS solution, ultrapure water, etc.) in order to remove DNA that is not bound to the carrier. ..
  • a washing solution for example, 50 mM TBS / 0.05% Tween20, 2 ⁇ SSC / 0.2% SDS solution, ultrapure water, etc.
  • Hybridization reaction is performed between the amplicon obtained as described above and a probe immobilized on a carrier (methylation-compatible probe and non-methylation-compatible probe, and wild-type probe and mutant probe). Methylation of the MLH1 gene can be detected based on hybrids to methylated and non-methylated probes, and V600E mutations in the BRAF gene can be detected based on hybrids to wild-type and mutant probes. be able to.
  • the solution containing the amplicon preferably contains a blocking nucleic acid that hybridizes to a base sequence (that is, wild type) that does not have a V600E mutation in the BRAF gene.
  • the blocking nucleic acid has a base sequence complementary to a nucleic acid fragment having a wild-type sequence in the region containing the V600E mutation site in the BRAF gene amplified by a pair of primers.
  • the genomic DNA after treatment with bisulfite is used as a template to amplify the region containing the V600E mutation in the BRAF gene, and the amplified region contains a large amount of adenine and thymine (AT). rich).
  • AT adenine and thymine
  • the hybridization between the probe fixed on the carrier and the amplicon can be detected based on the signal from the label attached to the amplicon.
  • the signal from the label for example, when a fluorescent label is used, the fluorescent signal is detected by using a fluorescent scanner, and the signal intensity can be quantified by analyzing this with image analysis software.
  • the hybridization reaction is preferably carried out under stringent conditions.
  • the stringent condition is a condition in which a specific hybrid is formed and a non-specific hybrid is not formed. For example, after a hybridization reaction at 50 ° C. for 16 hours, 2 ⁇ SSC / 0.2% SDS, 25 Refers to the conditions for cleaning at °C, 10 minutes and 2 ⁇ SSC, 25 °C, 5 minutes.
  • the hybridization temperature can be 45 to 60 ° C. when the salt concentration is 0.5 ⁇ SSC, and it is more preferable to lower the hybridization temperature when the chain length of the probe is short. When the chain length is long, it is more preferable to set the hybridization temperature higher than this. Needless to say, the higher the salt concentration, the higher the hybridization temperature having specificity, and conversely, the lower the salt concentration, the lower the hybridization temperature having specificity.
  • a probe set corresponding to a partial region containing one or more methylation sites among a plurality of methylation sites included in the above-mentioned region for detecting methylation of the MLH1 gene (methylation-compatible probe and non-methylation-compatible probe).
  • the signal intensities from these probe sets can be used to determine methylation or demethylation for the methylation site.
  • the signal intensity in the methylation-compatible probe and the signal intensity in the non-methylation-compatible probe are measured, respectively, and a judgment value for evaluating the signal intensity derived from the methylation-compatible probe is calculated. do.
  • the judgment value calculated by the above formula is compared with a predetermined threshold value (cutoff value), and if the judgment value exceeds the upper limit threshold value, the region for detecting methylation of the MLH1 gene is used. It is determined that the included CpG island is methylated, and if the determination value is below the lower limit threshold value, it is determined that the included CpG island is not methylated. If the determination value is between the upper and lower thresholds set in advance, it can be determined that about half of the CpG islands contained in the region are methylated (one allele is methylated). can.
  • a single threshold value may be set, and if it exceeds this threshold value, it may be determined that it is methylated, and if it is lower than this threshold value, it may be determined that it is not methylated.
  • the V600E mutation in the BRAF gene can be detected using the genomic DNA after bisulfite treatment (bisulfite treatment) for detecting the methylation of the MLH1 gene. That is, according to the method described above, methylation of the MLH1 gene and V600E mutation in the BRAF gene can be detected at the same time.
  • bisulfite treatment bisulfite treatment
  • methylation of the MLH1 gene and V600E mutation in the BRAF gene can be detected at the same time.
  • Lynch syndrome and sporadic colorectal cancer in colorectal cancer can be discriminated.
  • the MLH1 gene is methylated and the BRAF gene has a V600E mutation, it can be determined to be sporadic MSI-H colorectal cancer. If there is no methylation of the MLH1 gene and there is a V600E mutation in the BRAF gene, it can be determined that there is a high probability of sporadic colorectal cancer that is not MSI-H. Sporadic MSI-H colorectal cancer can also be determined if the MLH1 gene is methylated and there is no V600E mutation in the BRAF gene. Then, in MSI-H colorectal cancer, if there is no methylation of the MLH1 gene and no V600E mutation in the BRAF gene, it can be judged that there is a high possibility of Lynch syndrome in colorectal cancer.
  • FIG. 1 shows the base sequences (SEQ ID NO: 4) of a part of the BRAF gene (SEQ ID NO: 3) and a part of the MLH1 gene (promoter region).
  • FIG. 2 shows the base sequences (SEQ ID NOs: 5 and 6) of the region shown in FIG. 1 after bisulfite treatment (bisulfite treatment). Cytosine becomes uracil by hydrogen sulfite treatment (bisulfite treatment), and in FIG.
  • the uracil is described as thymine for convenience. Further, in FIG. 2, the nucleic acid to be analyzed is surrounded by a square. In FIG. 2, the positions of the primers for amplifying the region containing the nucleic acid to be analyzed are underlined in each base sequence. The base sequence of each primer is shown in Table 1. Table 2 shows the base sequence of the probe that hybridizes with the amplified region.
  • the PCR temperature conditions were set as shown in Table 4.
  • the hybridization reaction was performed using the MLH1 / BRAF analysis chip (MB chip) prepared in advance. Specifically, first, the hybridization oven was set at 60 ° C., a tapper containing 30 mL of water was installed, and the mixture was left for 1 hour or more. Next, the hybridization buffer (2.25 ⁇ SSC, 0.23% SDS) and the PCR product were taken out from the freezer and returned to room temperature. 4 ⁇ l of PCR product and 2 ⁇ l of hybridization buffer were mixed. After adding 3 ⁇ L of the mixed solution to the chip cover, the mixture was set on the chip. The temperature condition in the hybridization reaction was 60 ° C.
  • a cleaning solution (0.1 ⁇ SSC / 0.1% SDS solution) was prepared, the chip after the hybridization reaction was placed in a stainless steel holder, and the inside of the cleaning solution was washed by moving it up and down 10 times, and allowed to stand for 5 minutes. After cleaning, a stainless steel holder holding the chips was placed in 1 ⁇ SSC solution. Then, the water was wiped off, a cover film was covered, and the measurement was performed by the fluorescence intensity estimation method using the gene analyzer BIOSHOT (manufactured by Toyo Kohan Co., Ltd.).
  • Experiment 1 In Experiment 1, we investigated the design of primer concentration for detecting BRAF / MLH1. Specifically, the concentrations of the two types of primer sets corresponding to the BRAF / MLH1 region were carried out under conditions 1 to 3. Each condition is shown in Tables 5 to 7, respectively.
  • the above-mentioned PCR was performed using RKO cell line-derived DNA after bisulfite treatment (bisulfite treatment) as a sample for evaluating the intensity of BRAF / MLH1.
  • the RKO cell line has an MLH1 methylation frequency of about 0% and a BRAF mutation frequency of about 66%.
  • the fluorescence intensity of BRAF / MLH1 is shown in FIG. 3 under conditions 1, 2 and 3.
  • the minimum fluorescence intensity is set to 5000 for stable analysis.
  • the fluorescence intensity of BRAF was less than 5000, and the analysis condition was not satisfied.
  • the fluorescence intensity of BRAF was detected higher than that of condition 1, and under condition 3, the fluorescence intensity of MLH1 and BRAF could be detected to the same extent.
  • the judgment value which is the intensity ratio, was calculated from the fluorescence intensity of each probe obtained by using the control treated with bisulfite (bisulfite treatment) from the following formula.
  • Judgment value strength of mutant probe / (strength of wild-type probe + strength of mutant probe)
  • the results of the judgment values obtained from each control are shown in FIG.
  • the kit was intended to determine the presence or absence of mutation and methylation, and the control with 0% mutation and methylation frequency and the error bar of the determination value were separated in other cases. From this result, it was confirmed that the probe and blocker set in this experiment can detect methylation of the MLH1 gene and V600E mutation in the BRAF gene at the same time.
  • Example 2 PCR conditions were investigated to suppress non-specific amplification of the base sequence in which the conversion from cytosine to uracil did not proceed normally by bisulfite treatment (bisulfite treatment). Specifically, a PCR program in which the annealing temperature and time were changed when the primers designed in Example 1 were used was set (Table 9). In this experiment, a comparative test was carried out between the PCR program shown in Table 4 set in Example 1 and the PCR program shown in Table 9 set in this example. Using genomic DNA derived from normal human tissue (mutation and methylation frequency 0%), treated and untreated samples with bisulfite were prepared, and 20 ng of each sample was added as a template in PCR.
  • the test conditions other than the PCR program were based on Example 1.
  • the fluorescence intensity obtained from the conditions of each PCR program is shown in FIG.
  • the PCR program shown in Table 4 about 4,000 fluorescence intensities were detected from the BRAF wild-type probe and the MLH1 methylation probe even in the sample not treated with bisulfite. It is considered that this is because in the PCR program shown in Table 4, in the annealing reaction, the base sequence untreated with bisulfite and the primer were non-specifically bound to generate an amplicon.

Abstract

The present invention accurately detects methylation of the MLH1 gene and a spontaneous mutation (V600E) in the BRAF gene. A step for treating sample genome DNA with bisulfite, wherein a region for detecting methylation of the MLH1 gene and a region which includes the V600E spontaneous mutation site in the BRAF gene are each amplified by using a pair of primers, and the region for detecting methylation of the MLH1 gene and the region which includes the V600E spontaneous mutation site in the BRAF gene which are contained in the amplicon are detected by using a probe.

Description

MLH1メチル化修飾及びBRAF変異を検出するためのキットKit for detecting MLH1 methylation modifications and BRAF mutations
 本発明は、DNAミスマッチ修復タンパク質をコードするMLH1遺伝子のメチル化修飾と、BRAF(v-raf murine sarcoma viral oncogene homolog B1)におけるV600E遺伝子変異とを検出するためのキットに関する。 The present invention relates to a kit for detecting methylation modification of the MLH1 gene encoding a DNA mismatch repair protein and a V600E gene mutation in BRAF (v-raf murine sarcoma viral oncogene homolog B1).
 大部分の大腸癌は、環境因子への暴露が主な成因とされ、大腸粘膜細胞に遺伝子変異が蓄積することにより発症すると考えられている(散発性大腸癌)。このため、散発性大腸癌は加齢とともに罹患率が高まる。一方、大腸癌の中には家族性に集積するものがあり、遺伝性大腸癌と総称される。遺伝性大腸癌は、その原因となる生殖細胞変異は腫瘍抑制遺伝子やミスマッチ修復遺伝子に変異を認め、若年発症であり、多発大腸癌および他臓器にも癌を高率に発症する特徴を有する。遺伝性大腸癌のなかには、頻度が高く、常染色体優性遺伝形式で大腸癌を発症するリンチ症候群(遺伝性非ポリポーシス大腸癌: hereditary non-polyposis colorectal cancer: HNPCCと称される場合もある)と、家族性大腸腺腫症(familial adenomatous polyposis: FAP)とが含まれる。大腸粘膜に通常100個以上の腺腫を発症するFAPは、その臨床的特徴により容易に診断される機会が多い一方、散発性大腸癌と臨床的特徴の差を認めないリンチ症候群は日常診療でその多くが見逃されている可能性が高いと考えられる。遺伝性腫瘍を確実に同定することは、その家系における癌予防、早期発見を確実に幇助する。 Most colorectal cancers are thought to develop due to the accumulation of gene mutations in colorectal mucosal cells, mainly due to exposure to environmental factors (sporadic colorectal cancer). Therefore, the prevalence of sporadic colorectal cancer increases with age. On the other hand, some colorectal cancers are familial and are collectively called hereditary colorectal cancer. In hereditary colorectal cancer, the germline mutation that causes it is found to be a mutation in the tumor suppressor gene or mismatch repair gene, and it is a premature onset, and has the characteristic of developing multiple colorectal cancer and cancer in other organs at a high rate. Among hereditary colorectal cancers, Lynch syndrome (sometimes referred to as hereditary non-polyposis colorectal cancer: HNPCC), which frequently develops colorectal cancer in an autosomal dominant manner, Includes familial adenomatous polyposis (FAP). FAP, which usually develops 100 or more adenomas in the colorectal mucosa, is often easily diagnosed due to its clinical characteristics, while Lynch syndrome, which has no difference in clinical characteristics from sporadic colorectal cancer, is used in daily practice. It is highly likely that many have been overlooked. Reliable identification of hereditary tumors reliably aids in cancer prevention and early detection in the family.
 リンチ症候群は、主にミスマッチ修復遺伝子の生殖細胞系列変異を原因とする常染色体優性遺伝性疾患である。現在、リンチ症候群につては、以下の手順に従って診断されている。先ず、リンチ症候群が疑われる患者に関し、家族歴、発症年齢、関連癌、病理組織像といった臨床情報を収集し、いわゆるアムステルダム基準II又は改訂ゼベスダガイドラインを満たすか検討する。そして、これらアムステルダム基準II又は改訂ゼベスダガイドラインを満たす場合には、腫瘍組織のマイクロサテライト不安定性(microsatellite instability:MSI)検査又は原因となるミスマッチ修復蛋白に対する免疫組織学的検査を行い、高頻度MSI(high-frequency MSI:MSI-H)又は免疫染色でミスマッチ修復タンパクの消失を確認する。 Lynch syndrome is an autosomal dominant disorder mainly caused by germline mutations in mismatch repair genes. Currently, Lynch syndrome is diagnosed according to the following procedure. First, for patients with suspected Lynch syndrome, we will collect clinical information such as family history, age of onset, related cancers, and histopathological features, and consider whether they meet the so-called Amsterdam Standard II or the revised Zebesda Guidelines. If these Amsterdam Standard II or revised Zebesda Guidelines are met, a microsatellite instability (MSI) test of the tumor tissue or an immunohistological test for the causative mismatch repair protein is performed, and the frequency is high. Confirm the disappearance of mismatch repair proteins by MSI (high-frequency MSI: MSI-H) or immunostaining.
 ここで、マイクロサイト不安定性(MSI)とは、ミスマッチ修復機構に異常があるなどの理由によってゲノムの中に存在する1~数塩基の繰り返し配列であるマイクロサテライトが正常細胞とは異なる反復回数を示す現象をいう。リンチ症候群における腫瘍組織では高頻度マイクロサテライト不安定性(MSI-H)を認めることが多い。アムステルダム基準IIでは、その基準が厳しいため、リンチ症候群を見逃す場合があり、その欠点を補うために改訂ゼベスダガイドラインが考案された。改訂ゼベスダガイドラインでは、1~5項目の臨床的情報や所見を満たした場合に、MSI検査を行うことが推奨されている。そして、腫瘍細胞におけるMSI検査の結果がMSI-Hであれば、リンチ症候群が強く疑われることになる。 Here, microsite instability (MSI) means that microsatellite, which is a repeating sequence of one to several bases existing in the genome due to an abnormality in the mismatch repair mechanism, has a different number of repetitions from normal cells. The phenomenon shown. Frequent microsatellite instability (MSI-H) is often found in tumor tissue in Lynch syndrome. The Amsterdam Standard II may miss Lynch Syndrome due to its strict standards, and the revised Zebesda Guidelines have been devised to make up for its shortcomings. The revised Zebesda Guidelines recommend that MSI tests be performed when 1 to 5 items of clinical information and findings are met. And if the result of the MSI test on the tumor cells is MSI-H, Lynch syndrome is strongly suspected.
 リンチ症候群の確定診断は、ミスマッチ修復遺伝子の生殖細胞系列における病的変異を同定することにより行われる。具体的には、患者の血液を用いて、ミスマッチ修復遺伝子(例えばMLH1遺伝子)の生殖細胞系列における変異の有無を直接検査する。病的変異が同定されれば、リンチ症候群の確定診断となる。 A definitive diagnosis of Lynch syndrome is made by identifying pathogenic mutations in the germline of the mismatch repair gene. Specifically, the patient's blood is used to directly test for mutations in the germline of the mismatch repair gene (eg, the MLH1 gene). If a pathogenic variant is identified, it is a definitive diagnosis of Lynch syndrome.
 MSI-Hと診断された患者のうち、リンチ症候群は16%程度であったという報告もあり、MSI検査だけでは、リンチ症候群の絞り込みは十分行うことができないことも事実である。この理由として、MSI-H癌はリンチ症候群だけでなく、散発性固形癌にも認められるためである(大腸癌では散発性の~15%に認めると報告されている)。したがって、リンチ症候群と散発性MSI-H癌の区別を行うことで、より正確にリンチ症候群の絞り込みが可能となる。 It has been reported that about 16% of the patients diagnosed with MSI-H had Lynch syndrome, and it is a fact that the MSI test alone cannot sufficiently narrow down Lynch syndrome. The reason for this is that MSI-H cancer is found not only in Lynch syndrome but also in sporadic solid tumors (reported to be found in ~ 15% of sporadic colorectal cancers). Therefore, by distinguishing between Lynch syndrome and sporadic MSI-H cancer, it is possible to narrow down Lynch syndrome more accurately.
 散発性MSI-H大腸癌の臨床的特徴は、高齢女性、右側大腸に好発することが挙げられる。また、ミスマッチ修復蛋白では、リンチ症候群がMLH1、MSH2欠損を多く有するのに対し、MLH1蛋白の欠損がほとんどであった。1998年にMLH1蛋白をコードしているMLH1遺伝子のプロモーター領域にあるCpGアイランドのメチル化が、そのMLH1蛋白欠損の原因であることが報告された。すなわち、MLH1欠損を有する癌においては、MLH1遺伝子におけるCpGアイランドのメチル化の有無により、散発性MSI-H大腸癌とリンチ症候群の区別が可能となる。 The clinical feature of sporadic MSI-H colorectal cancer is that it occurs frequently in elderly women and the right large intestine. As for mismatch repair proteins, Lynch syndrome had many MLH1 and MSH2 deficiencies, whereas most of them had MLH1 protein deficiencies. In 1998, it was reported that methylation of CpG islands in the promoter region of the MLH1 gene, which encodes the MLH1 protein, is responsible for the MLH1 protein deficiency. That is, in cancers with MLH1 deficiency, sporadic MSI-H colorectal cancer and Lynch syndrome can be distinguished by the presence or absence of methylation of CpG islands in the MLH1 gene.
 例えば、特許文献1には、MLH1遺伝子におけるCpGアイランドのメチル化をメチル化感受性酵素によって検出する方法、さらにMLH1遺伝子におけるCpGアイランドと、BRAF遺伝子におけるV600Eを含む領域とを同時に増幅し、CpGアイランドのメチル化をメチル化感受性酵素によって検出するとともに、BRAF遺伝子におけるV600Eをシーケンス解析によって検出する方法が開示されている。 For example, Patent Document 1 describes a method for detecting the methylation of CpG islands in the MLH1 gene by a methylation-sensitive enzyme, and simultaneously amplifying the CpG islands in the MLH1 gene and the region containing V600E in the BRAF gene to simultaneously amplify the CpG islands. A method for detecting methylation by a methylation-sensitive enzyme and V600E in the BRAF gene by sequence analysis is disclosed.
 ここで、BRAF遺伝子におけるV600E変異は、有毛細胞白血病、悪性黒色腫、甲状腺癌、卵巣癌や大腸癌などに認められる変異、大腸癌においては約10%程度に見られる。なお、MSI-Hを示す散発性大腸癌の35~43%に腫瘍組織のBRAF遺伝子のV600E変異を認めるが、リンチ症候群の大部分の大腸癌はMSI-Hを示しても、BRAF遺伝子におけるV600E変異はほとんど認められない。したがって、BRAF遺伝子におけるV600E変異の有無が、散発性大腸癌とリンチ症候群との鑑別に利用されることがある。 Here, the V600E mutation in the BRAF gene is found in hairy cell leukemia, malignant melanoma, thyroid cancer, ovarian cancer, colorectal cancer, etc., and about 10% in colorectal cancer. Although 35 to 43% of sporadic colorectal cancers showing MSI-H have V600E mutations in the BRAF gene in tumor tissue, most colorectal cancers in Lynch syndrome show MSI-H but V600E in the BRAF gene. Almost no mutations are found. Therefore, the presence or absence of the V600E mutation in the BRAF gene may be used to distinguish between sporadic colorectal cancer and Lynch syndrome.
 特許文献1には、MLH1遺伝子のメチル化を検出するための特定の領域が開示されており、当該領域のメチル化シトシンをメチル化感受性制限酵素切断法により検出し、メチル化が検出された場合に被験体がリンチ症候群やリンチ様ではないと判断することが開示されている。また、特許文献1には、上述したMLH1遺伝子のメチル化と同時に、BRAF遺伝子の所定の領域を増幅し、BRAF遺伝子におけるV600E変異の有無を調べることが開示されている。 Patent Document 1 discloses a specific region for detecting methylation of the MLH1 gene, and when methylation cytosine in the region is detected by a methylation sensitivity restriction enzyme cleavage method and methylation is detected. Discloses that the subject is determined not to have Lynch syndrome or Lynch-like. Further, Patent Document 1 discloses that a predetermined region of the BRAF gene is amplified at the same time as the above-mentioned methylation of the MLH1 gene, and the presence or absence of a V600E mutation in the BRAF gene is investigated.
 また、特許文献2には、BRAF遺伝子における突然変異(V600E)を検出する、癌特異的変異体、癌を診断する方法、及び癌を治療するための治療薬を開発する方法が開示されている。 Further, Patent Document 2 discloses a cancer-specific variant for detecting a mutation (V600E) in the BRAF gene, a method for diagnosing cancer, and a method for developing a therapeutic agent for treating cancer. ..
特開2019-135928号公報Japanese Unexamined Patent Publication No. 2019-135928 特許第4643909号公報Japanese Patent No. 4643909
 以上のように、MLH1遺伝子のメチル化を検出するための特定の領域やBRAF遺伝子における突然変異(V600E)を検出することは公知であるものの、これらを同時に高精度に検出する技術は知られていなかった。そこで、本発明は、このような実情に鑑み、MLH1遺伝子のメチル化及びBRAF遺伝子における突然変異(V600E)を高精度に検出できるキットを提供することを目的とする。 As described above, although it is known to detect a mutation (V600E) in a specific region for detecting methylation of the MLH1 gene or a BRAF gene, a technique for simultaneously detecting these with high accuracy is known. I didn't. Therefore, in view of such circumstances, it is an object of the present invention to provide a kit capable of detecting methylation of the MLH1 gene and mutation (V600E) in the BRAF gene with high accuracy.
 本発明者らは、上記課題を解決すべく鋭意検討を行った結果、BRAF遺伝子における突然変異(V600E)をコードする領域を検出するプローブとして、当該領域のシトシンをチミンに置換した配列に基づいて設計することで、MLH1遺伝子のメチル化とBRAF遺伝子における突然変異(V600E)を同時に高精度に検出できることを見いだし、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have obtained a probe for detecting a region encoding a mutation (V600E) in the BRAF gene based on a sequence in which cytosine in the region is replaced with thymine. By designing, we found that methylation of the MLH1 gene and mutation (V600E) in the BRAF gene can be detected simultaneously with high accuracy, and the present invention was completed.
 本発明は以下を包含する。
 (1)検体から調製したゲノムDNAを亜硫酸水素塩で処理する工程と、亜硫酸水素塩によって処理されたゲノムDNAを鋳型としMLH1遺伝子のメチル化を検出するための領域とBRAF遺伝子におけるV600E突然変異部位を含む領域とをそれぞれ一対のプライマーにより増幅する工程と、増幅で得られるアンプリコンに含まれるMLH1遺伝子のメチル化を検出するための領域及びBRAF遺伝子におけるV600E突然変異部位を含む領域をプローブで検出する工程とを含む、検体におけるMLH1遺伝子のメチル化及びBRAF遺伝子のV600E突然変異を同時に検出する方法。
 (2)MLH1遺伝子のメチル化を検出するための領域について、当該領域がメチル化している場合のアンプリコンに対応するメチル化対応プローブと、メチル化していない場合のアンプリコンに対応する非メチル化対応プローブとからなるプローブセットを用いることを特徴とする(1)記載の方法。
 (3)上記メチル化対応プローブは配列番号17の塩基配列を含み、上記非メチル化対応プローブは配列番号16の塩基配列を含むことを特徴とする(2)記載の方法。
 (4)BRAF遺伝子におけるV600E突然変異部位を含む領域について、V600E突然変異部位が野生型である場合に対応する野生型プローブと、V600E突然変異部位が変異型である場合に対応する変異型プローブとからなるプローブセットを用いることを特徴とする(1)記載の方法。
 (5)上記野生型プローブは配列番号13の塩基配列を含み、上記変異型プローブは配列番号14の塩基配列を含むことを特徴とする(4)記載の方法。
 (6)増幅で得られるアンプリコンを含む溶液に、V600E突然変異部位が野生型であるアンプリコンにハイブリダイズする塩基配列を有するブロッキング用核酸を混合する工程を含むことを特徴とする(1)記載の方法。
 (7)上記ブロッキング用核酸は配列番号15の塩基配列を含むことを特徴とする(6)記載の方法。
 (8)上記プローブを基板に固定したマイクロアレイを使用し、上記アンプリコンを検出することを特徴とする(1)記載の方法。
The present invention includes the following.
(1) A step of treating genomic DNA prepared from a sample with hydrogen sulfite, a region for detecting methylation of the MLH1 gene using genomic DNA treated with hydrogen sulfite as a template, and a V600E mutation site in the BRAF gene. The step of amplifying the region containing the A method for simultaneously detecting methylation of the MLH1 gene and V600E mutation of the BRAF gene in a sample, including the steps of
(2) Regarding the region for detecting methylation of the MLH1 gene, a methylation-compatible probe corresponding to the amplicon when the region is methylated and a demethylation corresponding to the amplicon when the region is not methylated. The method according to (1), wherein a probe set including a corresponding probe is used.
(3) The method according to (2), wherein the methylation-compatible probe contains the base sequence of SEQ ID NO: 17, and the non-methylation-compatible probe contains the base sequence of SEQ ID NO: 16.
(4) Regarding the region containing the V600E mutation site in the BRAF gene, a wild-type probe corresponding to the case where the V600E mutation site is a wild type and a mutant probe corresponding to the case where the V600E mutation site is a mutant type. The method according to (1), wherein a probe set consisting of the above is used.
(5) The method according to (4), wherein the wild-type probe contains the base sequence of SEQ ID NO: 13, and the mutant probe contains the base sequence of SEQ ID NO: 14.
(6) It is characterized by comprising a step of mixing a blocking nucleic acid having a base sequence that hybridizes to an amplicon having a wild-type V600E mutation site with a solution containing an amplicon obtained by amplification (1). The method described.
(7) The method according to (6), wherein the blocking nucleic acid contains the base sequence of SEQ ID NO: 15.
(8) The method according to (1), wherein the microarray in which the probe is fixed to a substrate is used to detect the amplicon.
 (9)MLH1遺伝子のメチル化を検出するための領域であって亜硫酸水素塩処理後の当該領域の塩基配列に対応するMLH1遺伝子用プローブと、BRAF遺伝子におけるV600E突然変異部位を含む領域であって亜硫酸水素塩処理後の当該領域の塩基配列に対応するBRAF遺伝子用プローブとを含む、プローブセットを含む、検体におけるMLH1遺伝子のメチル化及びBRAF遺伝子のV600E突然変異を同時に検出するキット。
 (10)上記MLH1遺伝子用プローブは、当該領域がメチル化している場合のアンプリコンに対応するメチル化対応プローブと、メチル化していない場合のアンプリコンに対応する非メチル化対応プローブとを含むことを特徴とする(9)記載のキット。
 (11)上記メチル化対応プローブは配列番号17の塩基配列を含み、上記非メチル化対応プローブは配列番号16の塩基配列を含むことを特徴とする(10)記載のキット。
 (12)上記BRAF遺伝子用プローブは、V600E突然変異部位が野生型である場合に対応する野生型プローブと、V600E突然変異部位が変異型である場合に対応する変異型プローブとを含むことを特徴とする(9)記載のキット。
 (13)上記野生型プローブは配列番号13の塩基配列を含み、上記変異型プローブは配列番号14の塩基配列を含むことを特徴とする(12)記載のキット。
 (14)V600E突然変異部位が野生型であるアンプリコンにハイブリダイズする塩基配列を有するブロッキング用核酸を含むことを特徴とする(9)記載のキット。
 (15)上記ブロッキング用核酸は配列番号15の塩基配列を含むことを特徴とする(14)記載のキット。
 (16)上記MLH1遺伝子用プローブ及び上記BRAF遺伝子用プローブが基板に固定されたマイクロアレイを含むことを特徴とする(9)記載のキット。
(9) A region for detecting methylation of the MLH1 gene and containing a probe for the MLH1 gene corresponding to the base sequence of the region after hydrogen sulfite treatment and a V600E mutation site in the BRAF gene. A kit that simultaneously detects methylation of the MLH1 gene and V600E mutation of the BRAF gene in a sample, including a probe set, including a probe for the BRAF gene corresponding to the base sequence of the region after hydrogen sulfite treatment.
(10) The probe for the MLH1 gene includes a methylation-compatible probe corresponding to an amplicon when the region is methylated and a non-methylation-compatible probe corresponding to an amplicon when the region is not methylated. The kit according to (9).
(11) The kit according to (10), wherein the methylation-compatible probe contains the base sequence of SEQ ID NO: 17, and the non-methylation-compatible probe contains the base sequence of SEQ ID NO: 16.
(12) The BRAF gene probe is characterized by including a wild-type probe corresponding to the case where the V600E mutation site is a wild type and a mutant probe corresponding to the case where the V600E mutation site is a mutant type. The kit described in (9).
(13) The kit according to (12), wherein the wild-type probe contains the base sequence of SEQ ID NO: 13, and the mutant probe contains the base sequence of SEQ ID NO: 14.
(14) The kit according to (9), wherein the V600E mutation site contains a blocking nucleic acid having a base sequence that hybridizes to a wild-type amplicon.
(15) The kit according to (14), wherein the blocking nucleic acid contains the base sequence of SEQ ID NO: 15.
(16) The kit according to (9), wherein the probe for the MLH1 gene and the probe for the BRAF gene include a microarray immobilized on a substrate.
 本発明によれば、BRAF遺伝子におけるV600E突然変異部位を含む領域を検出するプローブを、亜硫酸水素塩処理後の塩基配列に基づいて設計しているため、MLH1遺伝子のメチル化及びBRAF遺伝子におけるV600E突然変異を高精度に同時に検出できる。よって、本発明を適用することにより、散発性大腸癌とリンチ症候群との鑑別を迅速且つ効率よく実施することができる。 According to the present invention, since the probe for detecting the region containing the V600E mutation site in the BRAF gene is designed based on the base sequence after bisulfite treatment, the methylation of the MLH1 gene and the sudden V600E in the BRAF gene are designed. Mutations can be detected simultaneously with high accuracy. Therefore, by applying the present invention, it is possible to quickly and efficiently distinguish between sporadic colorectal cancer and Lynch syndrome.
本実施例で検出対象とした塩基を含むMLH1遺伝子の一部及びBRAF遺伝子の一部の塩基配列を示す図である。It is a figure which shows the base sequence of a part of the MLH1 gene containing the base which was the detection target in this Example, and part of the BRAF gene. 図1に示したMLH1遺伝子の一部及びBRAF遺伝子の一部を亜硫酸水素塩処理(バイサルファイト処理)した後の塩基配列を示す図である。It is a figure which shows the base sequence after the part of the MLH1 gene and part of the BRAF gene shown in FIG. 1 were treated with bisulfite (bisulfite treatment). 本実施例で行ったハイブリダズ実験の条件1、2及び3において、BRAF/MLH1の蛍光強度を測定した結果を示す特性図である。It is a characteristic diagram which shows the result of having measured the fluorescence intensity of BRAF / MLH1 under the conditions 1, 2 and 3 of the hybridaization experiment performed in this Example. 実施例で行ったメチル化頻度の異なる4種類のコントロールについて判定値(=変異型プローブの強度/(野生型プローブの強度+変異型プローブの強度))を算出した結果を示す特性図であり、AはMLH1遺伝子のメチル化を判定した結果を示し、BはBRAF遺伝子におけるV600E突然変異を判定した結果を示している。It is a characteristic diagram showing the result of calculating the judgment value (= strength of mutant probe / (strength of wild-type probe + strength of mutant probe)) for four types of controls having different methylation frequencies performed in the examples. A shows the result of determining the methylation of the MLH1 gene, and B shows the result of determining the V600E mutation in the BRAF gene. 表4に示したPCRプログラム又は表9に示したPCRプログラムを適用してPCRを行い、各プローブからの蛍光強度を測定した結果を示す特性図である。It is a characteristic diagram which shows the result of having performed PCR by applying the PCR program shown in Table 4 or the PCR program shown in Table 9, and measuring the fluorescence intensity from each probe.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
<MLH1遺伝子のメチル化>
 MLH1遺伝子(MutL homolog 1遺伝子)は、第三染色体に位置し、ミスマッチ修復タンパク質の一種をコードする遺伝子である。MLH1遺伝子のメチル化により、MLH1遺伝子の発現が抑制された状態となる。MLH1遺伝子のメチル化は、がん、例えば大腸癌、小腸癌、子宮体癌、卵巣癌、胃癌、腎盂・尿管癌、膵臓癌、胆道癌、脳腫瘍、Muir-Torre症候群、悪性黒色腫、非小細胞肺癌、前立腺癌、及び甲状腺癌等の他のがんにおいても見出される。
<Methylation of MLH1 gene>
The MLH1 gene (MutL homolog 1 gene) is a gene located on chromosome 3 and encoding a type of mismatch repair protein. By methylation of the MLH1 gene, the expression of the MLH1 gene is suppressed. Methylation of the MLH1 gene can result in cancers such as colon cancer, small bowel cancer, uterine body cancer, ovarian cancer, gastric cancer, renal pelvis / urinary tract cancer, pancreatic cancer, biliary tract cancer, brain tumor, Muir-Torre syndrome, malignant melanoma, non-malignant melanoma. It is also found in other cancers such as small cell lung cancer, prostate cancer, and thyroid cancer.
 MLH1遺伝子の発現を抑制するメチル化は、詳細を後述する亜硫酸水素塩処理(バイサルファイト処理とも称される)により判別する。特に、MLH1遺伝子の発現を抑制するメチル化は、MLH1遺伝子(発現制御領域及びコーディング領域を含む)に出現するCpGアイランドに含まれるCpG配列中のシトシンのメチル化を検出することが好ましい。CpGアイランドは、特定の領域にCG配列(5'-CG-3'からなるジヌクレオチド)が高頻度に出現する領域と定義される。ここで、所定のゲノム領域において出現する塩基の種類(A、G、C及びT)に偏りが無いとすると、5'-CG-3'からなるジヌクレオチドの出現確率は1/16となる。よって、5'-CG-3'からなるジヌクレオチドが高頻度に出現する領域とは、当該領域に出現する5'-CG-3'からなるジヌクレオチドの出現確率が1/16を超える領域と定義することができる。また、5'-CG-3'からなるジヌクレオチドが高頻度に出現する領域とは、上記の定義に限定されず、当該領域に含まれるGC含量が50%を超え、且つ、存在する5'-CG-3'割合がGC含量から期待される量の60%以上(CpG observed/expected > 0.6)と定義してもよい。 Methylation that suppresses the expression of the MLH1 gene is determined by hydrogen sulfite treatment (also referred to as bisulfite treatment), which will be described in detail later. In particular, for methylation that suppresses the expression of the MLH1 gene, it is preferable to detect the methylation of cytosine in the CpG sequence contained in the CpG island that appears in the MLH1 gene (including the expression control region and the coding region). CpG islands are defined as regions where CG sequences (dinucleotides consisting of 5'-CG-3') frequently appear in specific regions. Here, assuming that there is no bias in the types of bases (A, G, C and T) that appear in a predetermined genomic region, the probability of appearance of a dinucleotide consisting of 5'-CG-3'is 1/16. Therefore, the region in which the dinucleotide consisting of 5'-CG-3'appears frequently is the region in which the appearance probability of the dinucleotide consisting of 5'-CG-3'appearing in the region exceeds 1/16. Can be defined. Further, the region in which the dinucleotide consisting of 5'-CG-3'appears frequently is not limited to the above definition, and the GC content contained in the region exceeds 50% and is present in 5'. -The CG-3'ratio may be defined as 60% or more (CpG observed / expected> 0.6) of the amount expected from the GC content.
 より具体的に、MLH1遺伝子の発現を抑制するメチル化としては、Herman JG. et al., Proc. Natl. Acad. Sci., 95, 6870-6875, 1998に開示された領域におけるメチル化を判別しても良いし、特開2019-135928号公報に開示されたMLH1メチル化群判定用マーカー領域におけるCpG配列のメチル化を判別しても良い。特開2019-135928号公報に開示されたMLH1メチル化群判定用マーカー領域の塩基配列を配列番号1に示す。 More specifically, as methylation that suppresses the expression of the MLH1 gene, methylation in the region disclosed in Herman JG. Et al., Proc. Natl. Acad. Sci., 95, 6870-6875, 1998 was discriminated. Alternatively, the methylation of the CpG sequence in the marker region for determining the MLH1 methylation group disclosed in JP-A-2019-135928 may be discriminated. The base sequence of the marker region for determining the MLH1 methylation group disclosed in JP-A-2019-135928 is shown in SEQ ID NO: 1.
 MLH1遺伝子の発現を抑制するメチル化は、特に、配列番号1に示す塩基配列に含まれるCpG配列中のシトシンのメチル化を検出することが好ましい。検出対象のシトシンは、配列番号1に示される塩基配列のCpG配列中のシトシンであれば特に限定されない。メチル化を検出するシトシンの位置として、例えば配列番号1の塩基配列の1位、7位、38位、47位、61位、78位、85位、95位、97位、103位、122位、133位、148位、217位、240位、264位、272位、305位、320位、340位、351位、355位、371位、374位、382位、398位、403位、405位、408位、425位、466位、476位、481位、500位、508位、513位、515位、528位、530位、536位、548位、567位、580位、583位、590位、593位、605位、631位、638位、653位、及び663位のシトシンが挙げられる。 For methylation that suppresses the expression of the MLH1 gene, it is particularly preferable to detect the methylation of cytosine in the CpG sequence contained in the nucleotide sequence shown in SEQ ID NO: 1. The cytosine to be detected is not particularly limited as long as it is cytosine in the CpG sequence of the base sequence shown in SEQ ID NO: 1. The positions of cytosine that detect methylation include, for example, the 1st, 7th, 38th, 47th, 61st, 78th, 85th, 95th, 97th, 103rd, and 122nd positions of the base sequence of SEQ ID NO: 1. , 133rd, 148th, 217th, 240th, 264th, 272th, 305th, 320th, 340th, 351st, 355th, 371th, 374th, 382th, 398th, 403th, 405th Rank, 408, 425, 466, 476, 481, 500, 508, 513, 515, 528, 530, 536, 548, 567, 580, 583, Cytosine at 590th, 593th, 605th, 631st, 638th, 653rd, and 663rd.
 メチル化を検出するシトシンとしては、これらのうち1つのシトシンとしても良いし、2つのシトシンとしても良いし、3以上、4以上、5以上、10以上のシトシンとしても良いし、又は全てのシトシンとしてもよい。具体的に、メチル化を検出するシトシンの位置は、好ましくは配列番号1における264位のシトシン又は272位のシトシンとすることができ、より好ましくは配列番号1における264位のシトシン及び272位のシトシンとすることができる。 The cytosine for detecting methylation may be one of these cytosines, two cytosines, 3 or more, 4 or more, 5 or more, 10 or more cytosines, or all cytosines. May be. Specifically, the position of the cytosine that detects methylation can be preferably the cytosine at position 264 or the cytosine at position 272 in SEQ ID NO: 1, and more preferably the cytosine at position 264 and position 272 in SEQ ID NO: 1. Can be cytosine.
<BRAF遺伝子におけるV600E突然変異>
 BRAF遺伝子は、BRAF(v-raf murine sarcoma viral oncogene homolog B1)タンパク質をコードする遺伝子であり、600番目のバリンがグルタミン酸となる変異(V600E突然変異)により活性化されたBRAFがMAPK経路を活性化させて異常な細胞増殖を励起することが知られている。BRAF遺伝子におけるV600E突然変異は、肺癌、大腸癌、甲状腺癌及び胆道癌等において見られる遺伝子変異である。V600E遺伝子変異を含むBRAF遺伝子の一部の塩基配列を配列番号2に示す。V600E遺伝子変異は、開始コドン(ATG)のうちAを1番目(配列番号2には示さず)として1799番目のTがAとなることで、BRAFタンパク質のN末端から数えて600番目のバリンがグルタミン酸に変異することとなる。配列番号2においては、267番目のw(T又はA)がV600E遺伝子変異の位置である。
<V600E mutation in BRAF gene>
The BRAF gene is a gene encoding a BRAF (v-raf murine sarcoma viral oncogene homolog B1) protein, and BRAF activated by a mutation in which valine at position 600 becomes glutamic acid (V600E mutation) activates the MAPK pathway. It is known to mutate and excite abnormal cell proliferation. The V600E mutation in the BRAF gene is a gene mutation found in lung cancer, colon cancer, thyroid cancer, biliary tract cancer and the like. The base sequence of a part of the BRAF gene containing the V600E gene mutation is shown in SEQ ID NO: 2. In the V600E gene mutation, A is the first codon (ATG) (not shown in SEQ ID NO: 2) and T at the 1799th position is A, so that the 600th valine counted from the N-terminal of the BRAF protein is It will mutate to glutamic acid. In SEQ ID NO: 2, w (T or A) at position 267 is the position of the V600E gene mutation.
<MLH1遺伝子のメチル化及びBRAF遺伝子のV600E突然変異の検出>
 上述したMLH1遺伝子のメチル化及びBRAF遺伝子のV600E突然変異を検出するには、先ず検体から調製したゲノムDNAを亜硫酸水素塩で処理する。ここで検体とは、疾患が疑われる患者など検査対象者から得た生体試料を意味する。生体試料としては、特に限定されないが、胎児又は胚由来細胞を含む羊水、へその緒等の胎児由来細胞試料、血液、腹水、唾液等の体液試料、癌組織又は癌の疑いがある組織、口腔粘膜細胞、毛髪、皮膚を挙げることができる。ゲノムDNAの抽出方法は、特に限定されず、従来公知の手法や市販されているゲノムDNA抽出試薬キットを使用する方法を適宜使用することができる。
<Methylation of MLH1 gene and detection of V600E mutation in BRAF gene>
To detect the methylation of the MLH1 gene and the V600E mutation of the BRAF gene described above, first, the genomic DNA prepared from the sample is treated with bisulfite. Here, the sample means a biological sample obtained from a test subject such as a patient suspected of having a disease. The biological sample is not particularly limited, but is limited to sheep water containing fetal or embryo-derived cells, fetal-derived cell samples such as navel cord, body fluid samples such as blood, ascites, and saliva, cancer tissues or tissues suspected of having cancer, and oral mucosal cells. , Hair, skin can be mentioned. The method for extracting genomic DNA is not particularly limited, and a conventionally known method or a method using a commercially available genomic DNA extraction reagent kit can be appropriately used.
 亜硫酸水素塩処理は、バイサルファイト処理とも称され、ゲノムDNAに含まれる非メチル化シトシン残基がウラシルに変換される。一方、ゲノムDNAに含まれるメチル化シトシン残基は変換されない。例えば、ゲノムDNAに含まれるCpGアイランドにおいて、5'-CG-3'からなるジヌクレオチドのシトシンがメチル化されていない場合、当該ジヌクレオチドは5'-UG-3'に変換される。また、5'-CG-3'からなるジヌクレオチドのシトシンがメチル化されている場合、当該ジヌクレオチドは5'-CG-3'のままとなる。 Bisulfite treatment is also called bisulfite treatment, and unmethylated cytosine residues contained in genomic DNA are converted to uracil. On the other hand, methylated cytosine residues contained in genomic DNA are not converted. For example, in the CpG island contained in genomic DNA, if the cytosine of the 5'-CG-3'dinucleotide is not methylated, the dinucleotide is converted to 5'-UG-3'. Also, if cytosine, a dinucleotide consisting of 5'-CG-3', is methylated, the dinucleotide remains 5'-CG-3'.
 ここで、亜硫酸水素塩で処理する際の亜硫酸水素塩の添加濃度は、ゲノムDNA中の非メチル化シトシンを十分に変換できる程度であれば特に限定されないが、例えば、ゲノムDNAを含む溶液中の終濃度として1M以上、好ましくは1~15M、より好ましくは3~10Mである。また、亜硫酸水素塩を添加した後のインキュベーションの条件(温度及び時間)は、亜硫酸水素塩の添加量に応じて適宜設定できるが、例えば、亜硫酸水素塩を終濃度6Mで添加した場合、50~80℃で10分間~7時間インキュベーションする。 Here, the concentration of bisulfite added during treatment with bisulfite is not particularly limited as long as it can sufficiently convert unmethylated cytosine in genomic DNA, but is not particularly limited, for example, in a solution containing genomic DNA. The final concentration is 1 M or more, preferably 1 to 15 M, and more preferably 3 to 10 M. The incubation conditions (temperature and time) after the addition of bisulfite can be appropriately set according to the amount of bisulfite added. For example, when bisulfite is added at a final concentration of 6 M, 50 to Incubate at 80 ° C for 10 minutes to 7 hours.
 次いで、このように亜硫酸水素塩処理したゲノムDNAを鋳型として、MLH1遺伝子のメチル化を検出するための領域とBRAF遺伝子におけるV600E突然変異部位を含む領域とをそれぞれ一対のプライマーにより増幅する。 Next, using the genomic DNA treated with bisulfite as a template, the region for detecting methylation of the MLH1 gene and the region containing the V600E mutation site in the BRAF gene are each amplified by a pair of primers.
 また、増幅する領域の塩基長としては、特に限定されないが、数十~数千塩基長とすることができ、特に50~1000塩基長とすることが好ましく、50~700塩基長とすることがより好ましく、50~500塩基長とすることが更に好ましく、50~300塩基長とすることが更に好ましく、50~100塩基長とすることが更に好ましい。また、MLH1遺伝子のメチル化を検出するための領域とBRAF遺伝子におけるV600E突然変異部位を含む領域とは、特に限定されないが、略同一の塩基長とすることが好ましい。MLH1遺伝子のメチル化を検出するための領域とBRAF遺伝子におけるV600E突然変異部位を含む領域は、全く同じ塩基長とすることが好ましいが、異なる塩基長でも良い。MLH1遺伝子のメチル化を検出するための領域とBRAF遺伝子におけるV600E突然変異部位を含む領域の塩基長が異なる場合、異なる塩基長は、例えば、20塩基以内とすることが好ましく、15塩基以内とすることがより好ましく、10塩基以内とすることが更に好ましく、5塩基以内とすることが最も好ましい。 The base length of the region to be amplified is not particularly limited, but can be several tens to several thousand bases, particularly preferably 50 to 1000 bases, and 50 to 700 bases. It is more preferably 50 to 500 bases long, further preferably 50 to 300 bases, and even more preferably 50 to 100 bases. The region for detecting methylation of the MLH1 gene and the region containing the V600E mutation site in the BRAF gene are not particularly limited, but are preferably substantially the same base length. The region for detecting methylation of the MLH1 gene and the region containing the V600E mutation site in the BRAF gene are preferably the same base length, but may have different base lengths. When the base lengths of the region for detecting methylation of the MLH1 gene and the region containing the V600E mutation site in the BRAF gene are different, the different base length is preferably, for example, 20 bases or less, preferably 15 bases or less. It is more preferably 10 bases or less, and most preferably 5 bases or less.
 MLH1遺伝子のメチル化を検出するための領域は、特に限定されないが、例えば上述した配列番号1の塩基配列からなる領域又は配列番号1の塩基配列に含まれる一部の領域とすることができる。上述したように、配列番号1の塩基配列には、1位、7位、38位、47位、61位、78位、85位、95位、97位、103位、122位、133位、148位、217位、240位、264位、272位、305位、320位、340位、351位、355位、371位、374位、382位、398位、403位、405位、408位、425位、466位、476位、481位、500位、508位、513位、515位、528位、530位、536位、548位、567位、580位、583位、590位、593位、605位、631位、638位、653位及び663位にCpGを構成するシトシンが存在する。これらから選ばれる1又は複数のシトシンを含む領域をMLH1遺伝子のメチル化を検出するための領域とすることができる。より具体的に、配列番号1における264位のシトシン及び272位のシトシンのメチル化を検出する場合、これら264位のシトシン及び272位のシトシンを含む領域をMLH1遺伝子のメチル化を検出するための領域とすることができる。 The region for detecting methylation of the MLH1 gene is not particularly limited, but may be, for example, a region consisting of the above-mentioned nucleotide sequence of SEQ ID NO: 1 or a part of the region contained in the nucleotide sequence of SEQ ID NO: 1. As described above, the base sequence of SEQ ID NO: 1 includes the 1st, 7th, 38th, 47th, 61st, 78th, 85th, 95th, 97th, 103rd, 122nd, and 133rd positions. 148th, 217th, 240th, 264th, 272th, 305th, 320th, 340th, 351st, 355th, 371th, 374th, 382th, 398th, 403th, 405th, 408th , 425th, 466th, 476th, 481st, 500th, 508th, 513th, 515th, 528th, 530th, 536th, 548th, 567th, 580th, 583th, 590th, 593th Cytosine, which constitutes CpG, exists at positions, 605, 631, 638, 653, and 663. A region containing one or more cytosines selected from these can be a region for detecting methylation of the MLH1 gene. More specifically, when detecting the methylation of cytosine at position 264 and cytosine at position 272 in SEQ ID NO: 1, in order to detect the methylation of the MLH1 gene in the region containing these cytosine at position 264 and cytosine at position 272. It can be an area.
 MLH1遺伝子のメチル化を検出するための領域を増幅するための一対のプライマーは、定法に従って適宜設計することができる。例えば、MLH1遺伝子のメチル化を検出するための領域を配列番号1における所定の部分領域とした場合、一対のプライマーは、配列番号1の塩基配列に基づいて設計することができる。例えば、264位のシトシン及び272位のシトシンを含む領域をMLH1遺伝子のメチル化を検出するための領域とした場合、フォワードプライマーとしては、配列番号1の塩基配列における264位のシトシンよりも5’側(上流)方向に数塩基、例えば、1~5塩基、1~10塩基、1~20塩基、1~30塩基離れた位置に設計することができる。同様に、リバースプライマーとしては、配列番号1の塩基配列における272位のシトシンよりも3’側(下流)方向に数塩基、例えば1~5塩基、1~10塩基、1~20塩基、1~30塩基離れた位置に設計することができる。 A pair of primers for amplifying the region for detecting methylation of the MLH1 gene can be appropriately designed according to a conventional method. For example, when the region for detecting methylation of the MLH1 gene is a predetermined partial region in SEQ ID NO: 1, the pair of primers can be designed based on the base sequence of SEQ ID NO: 1. For example, when the region containing cytosine at position 264 and cytosine at position 272 is used as a region for detecting methylation of the MLH1 gene, the forward primer is 5'more than cytosine at position 264 in the base sequence of SEQ ID NO: 1. It can be designed at a position separated by several bases in the side (upstream) direction, for example, 1 to 5 bases, 1 to 10 bases, 1 to 20 bases, and 1 to 30 bases. Similarly, as a reverse primer, several bases, for example, 1 to 5 bases, 1 to 10 bases, 1 to 20 bases, 1 to 1 to 3'side (downstream) from cytosine at position 272 in the base sequence of SEQ ID NO: 1. It can be designed at a position 30 bases away.
 このとき、MLH1遺伝子のメチル化を検出するための領域を増幅するための一対のプライマーとしては、CpGアイランドを構成する5'-CG-3'からなるジヌクレオチドを含まない領域にハイブリダイズするように設計することが好ましい。MLH1遺伝子のメチル化を検出するための領域は、亜硫酸水素塩処理後のゲノムDNAを鋳型として増幅されるためである。すなわち、5'-CG-3'からなるジヌクレオチド以外のシトシンはメチル化されていないため、亜硫酸水素塩処理によってウラシルに変換される。よって、亜硫酸水素塩処理後のゲノムDNAを鋳型として、MLH1遺伝子のメチル化を検出するための領域を増幅するための一対のプライマーは、配列番号1の塩基配列における5'-CG-3'からなるジヌクレオチド以外のシトシンをウラシル(又はチミン)に置換した塩基配列に基づいて設計することとなる。 At this time, as a pair of primers for amplifying the region for detecting methylation of the MLH1 gene, hybridize to a region containing no dinucleotide consisting of 5'-CG-3'constituting CpG islands. It is preferable to design in. This is because the region for detecting methylation of the MLH1 gene is amplified using the genomic DNA after hydrogen sulfite treatment as a template. That is, since cytosine other than the dinucleotide consisting of 5'-CG-3'is not methylated, it is converted to uracil by hydrogen sulfite treatment. Therefore, using the genomic DNA after treatment with hydrogen sulfite as a template, a pair of primers for amplifying the region for detecting methylation of the MLH1 gene is from 5'-CG-3'in the base sequence of SEQ ID NO: 1. It will be designed based on the base sequence in which cytosine other than the dinucleotide is replaced with uracil (or thymine).
 一方、BRAF遺伝子におけるV600E突然変異部位を含む領域は、特に限定されないが、例えば上述した配列番号2の塩基配列からなる領域又は配列番号2の塩基配列に含まれる一部の領域とすることができる。V600E突然変異部位は開始コドン(ATG)のうちAを1番目(配列番号2には示さず)として1799番目のTがAとなる変異である。よって、BRAF遺伝子におけるV600E突然変異部位を含む領域とは、開始コドン(ATG)のうちAを1番目として1799番目の塩基を含む領域と言い換えることができる。なお、配列番号2の塩基配列を基準とすれば、BRAF遺伝子におけるV600E突然変異部位を含む領域は、配列番号2における267番目の塩基を含む領域と言い換えることができる。 On the other hand, the region containing the V600E mutation site in the BRAF gene is not particularly limited, but may be, for example, a region consisting of the above-mentioned nucleotide sequence of SEQ ID NO: 2 or a partial region contained in the nucleotide sequence of SEQ ID NO: 2. .. The V600E mutation site is a mutation in which A is the first (not shown in SEQ ID NO: 2) of the start codon (ATG) and T at the 1799th position is A. Therefore, the region containing the V600E mutation site in the BRAF gene can be rephrased as the region containing the 1799th base with A as the first codon (ATG). In addition, based on the base sequence of SEQ ID NO: 2, the region containing the V600E mutation site in the BRAF gene can be paraphrased as the region containing the 267th base in SEQ ID NO: 2.
 BRAF遺伝子におけるV600E突然変異部位を含む領域を増幅するための一対のプライマーもまた、定法に従って適宜設計することができる。例えば、BRAF遺伝子におけるV600E突然変異部位を含む領域を増幅するための一対のプライマーは、配列番号2の塩基配列に基づいて設計することができる。すなわち、一対のプライマーは、開始コドン(ATG)のうちAを1番目として1799番目の塩基(配列番号2における267番目の塩基)を含む領域を増幅するようにフォワードプライマー及びリバースプライマーとして設計される。例えば、フォワードプライマーとしては、配列番号2の塩基配列における267番目の塩基よりも5’側(上流)方向に数塩基、例えば1~5塩基、1~10塩基、1~20塩基又は1~30塩基離れた位置に設計することができる。同様に、リバースプライマーとしては、配列番号2の塩基配列における267番目の塩基よりも3’側(下流)方向に数塩基、例えば1~5塩基、1~10塩基、1~20塩基又は1~30塩基離れた位置に設計することができる。 A pair of primers for amplifying the region containing the V600E mutation site in the BRAF gene can also be appropriately designed according to a conventional method. For example, a pair of primers for amplifying the region containing the V600E mutation site in the BRAF gene can be designed based on the base sequence of SEQ ID NO: 2. That is, the pair of primers is designed as a forward primer and a reverse primer so as to amplify the region of the start codon (ATG) containing the 1799th base (267th base in SEQ ID NO: 2) with A as the first. .. For example, as a forward primer, several bases, for example, 1 to 5 bases, 1 to 10 bases, 1 to 20 bases, or 1 to 30 bases in the 5'side (upstream) direction from the 267th base in the base sequence of SEQ ID NO: 2. It can be designed at a position separated from the base. Similarly, as the reverse primer, several bases, for example, 1 to 5 bases, 1 to 10 bases, 1 to 20 bases, or 1 to 1 to 3'side (downstream) from the 267th base in the base sequence of SEQ ID NO: 2. It can be designed at a position 30 bases away.
 ここで、BRAF遺伝子におけるV600E突然変異部位を含む領域もまた、亜硫酸水素塩処理後のゲノムDNAを鋳型として増幅されるものである。そして、ゲノムDNAに存在するBRAF遺伝子に含まれるシトシンはメチル化されていないため、亜硫酸水素塩処理によってウラシルに変換される。よって、亜硫酸水素塩処理後のゲノムDNAを鋳型として、BRAF遺伝子におけるV600E突然変異部位を含む領域を増幅するための一対のプライマーは、配列番号2の塩基配列におけるシトシンをウラシル(又はチミン)に置換した塩基配列に基づいて設計することとなる。 Here, the region containing the V600E mutation site in the BRAF gene is also amplified using the genomic DNA after hydrogen sulfite treatment as a template. Since cytosine contained in the BRAF gene present in genomic DNA is not methylated, it is converted to uracil by bisulfite treatment. Therefore, using the genomic DNA after hydrogen sulfite treatment as a template, the pair of primers for amplifying the region containing the V600E mutation site in the BRAF gene replaces cytosine in the nucleotide sequence of SEQ ID NO: 2 with uracil (or thymine). It will be designed based on the base sequence.
 このとき、増幅反応としては、ポリメラーゼ連鎖反応(PCR)、LAMP(Loop-Mediated Isothermal Amplification)、ICAN(Isothermal and Chimeric primer-initiated Amplification of Nucleic acids)法等を適用することができる。増幅反応においては、増幅後のアンプリコンを識別できるように標識を付加することが望ましい。このとき、増幅されたアンプリコンを標識する方法としては、特に限定されないが、例えば増幅反応に使用するプライマーをあらかじめ標識しておく方法を使用してもよいし、増幅反応に標識ヌクレオチドを基質として使用する方法を使用してもよい。標識物質としては、特に限定されないが、放射性同位元素や蛍光色素、あるいはジゴキシゲニン(DIG)やビオチンなどの有機化合物などを使用することができる。 At this time, as the amplification reaction, a polymerase chain reaction (PCR), LAMP (Loop-Mediated Isothermal Amplification), ICAN (Isothermal and Chimeric primer-initiated Amplification of Nucleic acids) method, etc. can be applied. In the amplification reaction, it is desirable to add a label so that the amplified amplicon can be identified. At this time, the method for labeling the amplified amplicon is not particularly limited, but for example, a method in which a primer used for the amplification reaction is labeled in advance may be used, or a labeled nucleotide may be used as a substrate for the amplification reaction. You may use the method you use. The labeling substance is not particularly limited, but a radioisotope, a fluorescent dye, or an organic compound such as digoxigenin (DIG) or biotin can be used.
 またこの反応系は、核酸増幅・標識に必要な緩衝剤、耐熱性DNAポリメラーゼ、増幅領域に特異的なプライマー、標識ヌクレオチド三リン酸(具体的には蛍光標識等を付加したヌクレオチド三リン酸)、ヌクレオチド三リン酸および塩化マグネシウム等を含む反応系である。 In addition, this reaction system includes a buffer required for nucleic acid amplification / labeling, a heat-resistant DNA polymerase, a primer specific to the amplification region, and a labeled nucleotide triphosphate (specifically, a nucleotide triphosphate to which a fluorescent label or the like is added). , Nucleotide triphosphate, magnesium chloride and the like.
 次に、上述のように、増幅したMLH1遺伝子のメチル化を検出するための領域とBRAF遺伝子におけるV600E突然変異部位を含む領域を、それぞれMLH1遺伝子用プローブとBRAF遺伝子用プローブを用いて検出する。 Next, as described above, the region for detecting the methylation of the amplified MLH1 gene and the region containing the V600E mutation site in the BRAF gene are detected using the probe for the MLH1 gene and the probe for the BRAF gene, respectively.
 MLH1遺伝子のメチル化を検出するための領域は、メチル化部位がメチル化している場合に対応するメチル化対応プローブと、メチル化部位がメチル化していない場合に対応する非メチル化対応プローブとを含むMLH1遺伝子用プローブを用いて検出することができる。すなわち、メチル化対応プローブは、5'-CG-3'からなるジヌクレオチドのシトシンがメチル化している場合に対応し、上述した亜硫酸水素塩処理によっても5'-CG-3'のシトシンが維持されるため、5'-CG-3'からなるジヌクレオチドに対応する配列を有することとなる。一方、非メチル化対応プローブは、5'-CG-3'からなるジヌクレオチドがメチル化していない場合に対応し、上述した亜硫酸水素塩処理によって5'-CG-3'のシトシンがウラシルに変換される、5'-UG-3'からなるジヌクレオチド(アンプリコンとしては5'-TG-3')に対応する配列を有することとなる。なお、以下、メチル化対応プローブ及び非メチル化対応プローブからなる一対のプローブを単にプローブセット又は一対のプローブセットと称する場合もある。これらプローブセットは、検出対象のメチル化部位(5'-CG-3'からなるジヌクレオチドのシトシン)以外は同じ配列を有することが好ましい。 The regions for detecting methylation of the MLH1 gene include a methylation-compatible probe corresponding to the case where the methylation site is methylated and a non-methylation-compatible probe corresponding to the case where the methylation site is not methylated. It can be detected using a probe for the MLH1 gene that contains it. That is, the methylation-compatible probe corresponds to the case where the cytosine of the dinucleotide composed of 5'-CG-3'is methylated, and the cytosine of 5'-CG-3'is maintained even by the above-mentioned bisulfite treatment. Therefore, it has a sequence corresponding to the dinucleotide consisting of 5'-CG-3'. On the other hand, the non-methylation-compatible probe corresponds to the case where the dinucleotide consisting of 5'-CG-3'is not methylated, and the cytosine of 5'-CG-3'is converted to uracil by the above-mentioned hydrogen sulfite treatment. It will have a sequence corresponding to the dinucleotide consisting of 5'-UG-3'(5'-TG-3' as an amplicon). Hereinafter, a pair of probes consisting of a methylation-compatible probe and a non-methylation-compatible probe may be simply referred to as a probe set or a pair of probe sets. These probe sets preferably have the same sequence except for the methylation site to be detected (cytosine of the dinucleotide consisting of 5'-CG-3').
 特に、MLH1遺伝子のメチル化を検出するための領域に複数のメチル化部位(5'-CG-3'ジヌクレオチド)が含まれている場合、これら複数のメチル化部位のうち1以上のメチル化部位を含む部分領域におけるメチル化を一対のプローブセットで検出することができる。このとき、一対のプローブセットは、MLH1遺伝子のメチル化を検出するための領域に含まれる1つのメチル化部位に対応する配列を有していても良いし、2以上のメチル化部位に対応する配列を有していてもよい。より具体的に一対のプローブセットは、2~7個のメチル化部位に対応する配列を有することができ、2~4個のメチル化部位に対応する配列を有することもできる。複数のメチル化部位に対応するプローブセットを使用することにより、プローブの特異性を高めることができる。 In particular, if the region for detecting methylation of the MLH1 gene contains multiple methylation sites (5'-CG-3'dinucleotides), methylation of one or more of these multiple methylation sites. Methylation in the partial region containing the site can be detected with a pair of probe sets. At this time, the pair of probe sets may have a sequence corresponding to one methylation site contained in the region for detecting methylation of the MLH1 gene, or may correspond to two or more methylation sites. It may have a sequence. More specifically, a pair of probe sets can have sequences corresponding to 2-7 methylation sites and can also have sequences corresponding to 2-4 methylation sites. Probe specificity can be enhanced by using probe sets that correspond to multiple methylation sites.
 また、メチル化を検出する一対のプローブセットは、MLH1遺伝子のメチル化を検出するための領域に含まれる複数のメチル化部位についてそれぞれ設計することができる。これら複数のプローブセットで、複数のメチル化部位をそれぞれ独立して検出することもできる。複数のプローブセットを用意することによって、アンプリコンに含まれる全てのメチル化部位を検出対象とすることもできるが、一部のメチル化部位を選択して検出対象とすることもできる。 In addition, a pair of probe sets that detect methylation can be designed for each of multiple methylation sites contained in the region for detecting methylation of the MLH1 gene. With these multiple probe sets, multiple methylation sites can also be detected independently. By preparing a plurality of probe sets, all the methylation sites contained in the amplicon can be targeted for detection, but some methylation sites can be selected and targeted for detection.
 一方、BRAF遺伝子におけるV600E突然変異部位を含む領域は、V600E突然変異部位が野生型である場合に対応する野生型プローブと、当該部位が変異型である場合に対応する変異型プローブと含むBRAF遺伝子用プローブを用いて検出することができる。すなわち、野生型プローブは、BRAF遺伝子における開始コドン(ATG)のうちAを1番目として1799番目の塩基(配列番号2における267番目の塩基)がTである塩基配列にハイブリダイズするように設計される。また、変異型プローブは、BRAF遺伝子における開始コドン(ATG)のうちAを1番目として1799番目の塩基(配列番号2における267番目の塩基)がAである塩基配列にハイブリダイズするように設計される。 On the other hand, the region containing the V600E mutation site in the BRAF gene includes a wild-type probe corresponding to the case where the V600E mutation site is wild-type and a mutant probe corresponding to the case where the site is mutant type. It can be detected using a probe for. That is, the wild-type probe is designed to hybridize to the base sequence in which the 1799th base (267th base in SEQ ID NO: 2) is T among the start codons (ATG) in the BRAF gene, with A as the first. To. In addition, the mutant probe is designed to hybridize to the base sequence in which the 1799th base (267th base in SEQ ID NO: 2) is A among the start codons (ATG) in the BRAF gene. To.
 ここで、BRAF遺伝子におけるV600E突然変異部位を含む領域は、上述したように、亜硫酸水素塩処理後のゲノムDNAを鋳型として増幅されるものである。そして、ゲノムDNAに存在するBRAF遺伝子に含まれるシトシンはメチル化されていないため、亜硫酸水素塩処理によってウラシルに変換される。よって、亜硫酸水素塩処理後のゲノムDNAを鋳型として増幅した、BRAF遺伝子におけるV600E突然変異部位を含む領域は、もともとシトシンであった位置がチミンとして増幅されることとなる。よって、野生型プローブ及び変異型プローブは、それぞれ配列番号2におけるシトシンをチミンに置換した塩基配列に基づいて設計されることとなる。 Here, the region containing the V600E mutation site in the BRAF gene is amplified using the genomic DNA after hydrogen sulfite treatment as a template, as described above. Since cytosine contained in the BRAF gene present in genomic DNA is not methylated, it is converted to uracil by bisulfite treatment. Therefore, in the region containing the V600E mutation site in the BRAF gene, which was amplified using the genomic DNA after bisulfite treatment as a template, the position originally cytosine is amplified as thymine. Therefore, the wild-type probe and the mutant probe are designed based on the base sequence in which cytosine in SEQ ID NO: 2 is replaced with thymine, respectively.
 これらプローブの塩基長としては、特に限定しないが、例えば10~30塩基長とすることができ、15~25塩基長とすることが好ましい。また、上述のように設計したプローブは、好ましくは核酸であり、より好ましくはDNAである。DNAには二本鎖も一本鎖も含まれるが、好ましくは一本鎖DNAである。プローブは、例えば、核酸合成装置によって化学的に合成することで取得することができる。核酸合成装置としては、DNAシンセサイザー、全自動核酸合成装置、核酸自動合成装置等と呼ばれる装置を使用することができる。 The base length of these probes is not particularly limited, but can be, for example, 10 to 30 base lengths, preferably 15 to 25 base lengths. Also, the probe designed as described above is preferably nucleic acid, more preferably DNA. The DNA includes both double-stranded and single-stranded DNA, but is preferably single-stranded DNA. The probe can be obtained, for example, by chemically synthesizing it with a nucleic acid synthesizer. As the nucleic acid synthesizer, a device called a DNA synthesizer, a fully automatic nucleic acid synthesizer, an automatic nucleic acid synthesizer, or the like can be used.
 上述のように設計したプローブは、その5’末端を担体上に固定化することにより、マイクロアレイ(一例としてDNAチップ)の形態で用いるのが好ましい。このとき、マイクロアレイは、上述したアンプリコンに含まれる複数のメチル化部位におけるメチル化又は非メチル化を検出するためのプローブセットを備えている。また互いに異なる部分領域に対応した複数のプローブセットを備えていてもよい。 The probe designed as described above is preferably used in the form of a microarray (as an example, a DNA chip) by immobilizing its 5'end on a carrier. At this time, the microarray is provided with a probe set for detecting methylation or unmethylation at a plurality of methylation sites contained in the above-mentioned amplicon. Further, a plurality of probe sets corresponding to different partial regions may be provided.
 担体の材料としては、当技術分野で公知のものを使用でき、特に制限されない。例えば、白金、白金黒、金、パラジウム、ロジウム、銀、水銀、タングステンおよびそれらの化合物などの貴金属、およびグラファイト、カ-ボンファイバ-に代表される炭素などの導電体材料;単結晶シリコン、アモルファスシリコン、炭化ケイ素、酸化ケイ素、窒化ケイ素などに代表されるシリコン材料、SOI(シリコン・オン・インシュレータ)などに代表されるこれらシリコン材料の複合素材;ガラス、石英ガラス、アルミナ、サファイア、セラミクス、フォルステライト、感光性ガラスなどの無機材料;ポリエチレン、エチレン、ポリプロビレン、環状ポリオレフィン、ポリイソブチレン、ポリエチレンテレフタレート、不飽和ポリエステル、含フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルアセタール、アクリル樹脂、ポリアクリロニトリル、ポリスチレン、アセタール樹脂、ポリカーボネート、ポリアミド、フェノール樹脂、ユリア樹脂、エポキシ樹脂、メラミン樹脂、スチレン・アクリロニトリル共重合体、アクリロニトリル・ブタジエンスチレン共重合体、ポリフェニレンオキサイドおよびポリスルホンなどの有機材料等が挙げられる。担体の形状も特に制限されないが、好ましくは平板状である。 As the material of the carrier, those known in the art can be used and are not particularly limited. For example, precious metals such as platinum, platinum black, gold, palladium, rhodium, silver, mercury, tungsten and their compounds, and conductive materials such as carbon represented by graphite and carbon fiber; single crystal silicon, amorphous. Silicon materials typified by silicon, silicon carbide, silicon oxide, silicon nitride, etc., composite materials of these silicon materials typified by SOI (silicon on insulator); glass, quartz glass, alumina, sapphire, ceramics, fol Inorganic materials such as sterite and photosensitive glass; polyethylene, ethylene, polyprovylene, cyclic polyolefin, polyisobutylene, polyethylene terephthalate, unsaturated polyester, fluororesin, polyvinyl chloride, polyvinylidene chloride, polyvinylacetate, polyvinyl alcohol, polyvinyl acetal , Acrylic resin, polyacrylonitrile, polystyrene, acetal resin, polycarbonate, polyamide, phenol resin, urea resin, epoxy resin, melamine resin, styrene / acrylonitrile copolymer, acrylonitrile / butadiene styrene copolymer, polyphenylene oxide and organic such as polysulfone. Materials and the like can be mentioned. The shape of the carrier is also not particularly limited, but is preferably flat.
 特に、担体として、好ましくは表面にカーボン層と化学修飾基とを有する担体を用いることが好ましい。表面にカーボン層と化学修飾基とを有する担体には、基板の表面にカーボン層と化学修飾基とを有するもの、およびカーボン層からなる基板の表面に化学修飾基を有するものが包含される。基板の材料としては、当技術分野で公知のものを使用でき、特に制限されず、上述の担体材料として挙げたものと同様のものを使用できる。 In particular, as the carrier, it is preferable to use a carrier having a carbon layer and a chemically modifying group on the surface. The carrier having a carbon layer and a chemical modification group on the surface includes a carrier having a carbon layer and a chemical modification group on the surface of the substrate and a carrier having a chemical modification group on the surface of the substrate composed of the carbon layer. As the material of the substrate, those known in the art can be used, and the same materials as those mentioned above as the carrier materials can be used without particular limitation.
 マイクロアレイにおいては、微細な平板状の構造を有する担体が好適に用いられる。形状は、長方形、正方形および丸形など限定されないが、通常、1~75mm四方のもの、好ましくは1~10mm四方のもの、より好ましくは3~5mm四方のものを用いる。微細な平板状の構造の担体を製造しやすいことから、シリコン材料や樹脂材料からなる基板を用いるのが好ましく、特に単結晶シリコンからなる基板の表面にカーボン層および化学修飾基を有する担体がより好ましい。単結晶シリコンには、部分部分でごくわずかに結晶軸の向きが変わっているものや(モザイク結晶と称される場合もある)、原子的尺度での乱れ(格子欠陥)が含まれているものも包含される。 In a microarray, a carrier having a fine flat plate-like structure is preferably used. The shape is not limited to rectangular, square and round, but usually 1 to 75 mm square, preferably 1 to 10 mm square, and more preferably 3 to 5 mm square are used. Since it is easy to produce a carrier having a fine flat plate-like structure, it is preferable to use a substrate made of a silicon material or a resin material, and in particular, a carrier having a carbon layer and a chemically modifying group on the surface of a substrate made of single crystal silicon is more preferable. preferable. Single crystal silicon contains a slight change in the orientation of the crystal axis in a partial part (sometimes called a mosaic crystal) or an atomic scale disorder (lattice defect). Is also included.
 基板上に形成させるカーボン層としては、特に制限されないが、合成ダイヤモンド、高圧合成ダイヤモンド、天然ダイヤモンド、軟ダイヤモンド(例えば、ダイヤモンドライクカーボン)、アモルファスカーボン、炭素系物質(例えば、グラファイト、フラーレン、カーボンナノチューブ)のいずれか、それらの混合物、またはそれらを積層させたものを用いることが好ましい。また、炭化ハフニウム、炭化ニオブ、炭化珪素、炭化タンタル、炭化トリウム、炭化チタン、炭化ウラン、炭化タングステン、炭化ジルコニウム、炭化モリブデン、炭化クロム、炭化バナジウム等の炭化物を用いてもよい。ここで、軟ダイヤモンドとは、いわゆるダイヤモンドライクカーボン(DLC:Diamond Like Carbon)等の、ダイヤモンドとカーボンとの混合体である不完全ダイヤモンド構造体を総称し、その混合割合は、特に限定されない。カーボン層は、化学的安定性に優れておりその後の化学修飾基の導入や分析対象物質との結合における反応に耐えることができる点、分析対象物質と静電結合によって結合するためその結合が柔軟性を持っている点、UV吸収がないため検出系UVに対して透明性である点、およびエレクトロブロッティングの際に通電可能な点において有利である。また、分析対象物質との結合反応において、非特異的吸着が少ない点においても有利である。前記のとおり基板自体がカーボン層からなる担体を用いてもよい。 The carbon layer formed on the substrate is not particularly limited, but is limited to synthetic diamond, high-pressure synthetic diamond, natural diamond, soft diamond (for example, diamond-like carbon), amorphous carbon, and carbon-based material (for example, graphite, fullerene, carbon nanotube). ), A mixture thereof, or a laminate thereof is preferable. Further, carbides such as hafnium carbide, niobium carbide, silicon carbide, tantalum carbide, thorium carbide, titanium carbide, uranium carbide, tungsten carbide, zirconium carbide, molybdenum carbide, chromium carbide, vanadium carbide and the like may be used. Here, soft diamond is a general term for incomplete diamond structures that are a mixture of diamond and carbon, such as so-called diamond-like carbon (DLC: Diamond Like Carbon), and the mixing ratio thereof is not particularly limited. The carbon layer has excellent chemical stability and can withstand subsequent reactions in the introduction of chemically modifying groups and the bond with the substance to be analyzed, and the bond is flexible because it is bonded to the substance to be analyzed by electrostatic bonding. It is advantageous in that it has the property, it is transparent to the detection system UV because it does not absorb UV, and it can be energized during electroblotting. It is also advantageous in that there is little non-specific adsorption in the binding reaction with the substance to be analyzed. As described above, a carrier whose substrate itself is made of a carbon layer may be used.
 カーボン層の形成は公知の方法で行うことができる。例えば、マイクロ波プラズマCVD(Chemical vapor deposit)法、ECRCVD(Electric cyclotron resonance chemical vapor deposit)法、ICP(Inductive coupled plasma)法、直流スパッタリング法、ECR(Electric cyclotron resonance)スパッタリング法、イオン化蒸着法、アーク式蒸着法、レーザ蒸着法、EB(Electron beam)蒸着法、抵抗加熱蒸着法などが挙げられる。 The carbon layer can be formed by a known method. For example, microwave plasma CVD (Chemical vapor deposit) method, ECRCVD (Electric cyclotron resonance chemical vapor deposit) method, ICP (Inductive coupled plasma) method, DC sputtering method, ECR (Electric cyclotron resonance) sputtering method, ionized vapor deposition method, arc. Examples include a formula vapor deposition method, a laser vapor deposition method, an EB (Electron beam) vapor deposition method, and a resistance heating vapor deposition method.
 高周波プラズマCVD法では、高周波によって電極間に生じるグロー放電により原料ガス(メタン)を分解し、基板上にカーボン層を合成する。イオン化蒸着法では、タングステンフィラメントで生成される熱電子を利用して、原料ガス(ベンゼン)を分解・イオン化し、バイアス電圧によって基板上にカーボン層を形成する。水素ガス1~99体積%と残りメタンガス99~1体積%からなる混合ガス中で、イオン化蒸着法によりカーボン層を形成してもよい。 In the high frequency plasma CVD method, the raw material gas (methane) is decomposed by the glow discharge generated between the electrodes by the high frequency, and a carbon layer is synthesized on the substrate. In the ionization vapor deposition method, thermions generated by the tungsten filament are used to decompose and ionize the raw material gas (benzene), and a carbon layer is formed on the substrate by the bias voltage. A carbon layer may be formed by an ionization vapor deposition method in a mixed gas consisting of 1 to 99% by volume of hydrogen gas and 99 to 1% by volume of remaining methane gas.
 アーク式蒸着法では、固体のグラファイト材料(陰極蒸発源)と真空容器(陽極)の間に直流電圧を印加することにより真空中でアーク放電を起こして陰極から炭素原子のプラズマを発生させ蒸発源よりもさらに負のバイアス電圧を基板に印加することにより基板に向かってプラズマ中の炭素イオンを加速しカーボン層を形成することができる。 In the arc-type vapor deposition method, an arc discharge is generated in a vacuum by applying a DC voltage between a solid graphite material (cathode evaporation source) and a vacuum vessel (anode) to generate carbon atom plasma from the cathode and evaporate source. By applying a more negative bias voltage to the substrate, carbon ions in the plasma can be accelerated toward the substrate to form a carbon layer.
 レーザ蒸着法では、例えばNd:YAGレーザ(パルス発振)光をグラファイトのターゲット板に照射して溶融させ、ガラス基板上に炭素原子を堆積させることによりカーボン層を形成することができる。 In the laser vapor deposition method, for example, a carbon layer can be formed by irradiating a graphite target plate with Nd: YAG laser (pulse oscillation) light to melt it and depositing carbon atoms on a glass substrate.
 基板の表面にカーボン層を形成する場合、カーボン層の厚さは、通常、単分子層~100μm程度であり、薄すぎると下地基板の表面が局部的に露出する可能性があり、逆に厚くなると生産性が悪くなるので、好ましくは2nm~1μm、より好ましくは5nm~500nmである。 When a carbon layer is formed on the surface of a substrate, the thickness of the carbon layer is usually about a monolayer to 100 μm, and if it is too thin, the surface of the underlying substrate may be locally exposed, and conversely, it is thick. In this case, the productivity is deteriorated, so it is preferably 2 nm to 1 μm, more preferably 5 nm to 500 nm.
 カーボン層が形成された基板の表面に化学修飾基を導入することにより、オリゴヌクレオチドプローブを担体に強固に固定化できる。導入する化学修飾基は、当業者であれば適宜選択することができ、特に制限されないが、例えば、アミノ基、カルボキシル基、エポキシ基、ホルミル基、ヒドロキシル基および活性エステル基が挙げられる。 By introducing a chemically modifying group on the surface of the substrate on which the carbon layer is formed, the oligonucleotide probe can be firmly immobilized on the carrier. The chemically modifying group to be introduced can be appropriately selected by those skilled in the art and is not particularly limited, and examples thereof include an amino group, a carboxyl group, an epoxy group, a formyl group, a hydroxyl group and an active ester group.
 アミノ基の導入は、例えば、カーボン層をアンモニアガス中で紫外線照射することによりまたはプラズマ処理することにより実施できる。または、カーボン層を塩素ガス中で紫外線を照射して塩素化し、さらにアンモニアガス中で紫外線照射することにより実施できる。または、メチレンジアミン、エチレンジアミンで等の多価アミン類ガス中を、塩素化したカーボン層と反応させることによって実施することもできる。 The introduction of the amino group can be carried out, for example, by irradiating the carbon layer with ultraviolet rays in ammonia gas or by plasma treatment. Alternatively, it can be carried out by irradiating the carbon layer with ultraviolet rays in chlorine gas to chlorinate it, and then irradiating it with ultraviolet rays in ammonia gas. Alternatively, it can also be carried out by reacting a polyhydric amine gas such as methylenediamine or ethylenediamine with a chlorinated carbon layer.
 カルボキシル基の導入は、例えば、前記のようにアミノ化したカーボン層に適当な化合物を反応させることにより実施できる。カルボキシル基を導入するために用いられる化合物としては、例えば、式:X-R1-COOH(式中、Xはハロゲン原子、R1は炭素数10~12の2価の炭化水素基を表す)で示されるハロカルボン酸、例えばクロロ酢酸、フルオロ酢酸、ブロモ酢酸、ヨード酢酸、2-クロロプロピオン酸、3-クロロプロピオン酸、3-クロロアクリル酸、4-クロロ安息香酸;式:HOOC-R2-COOH(式中、R2は単結合または炭素数1~12の2価の炭化水素基を表す)で示されるジカルボン酸、例えばシュウ酸、マロン酸、コハク酸、マレイン酸、フマル酸、フタル酸;ポリアクリル酸、ポリメタクリル酸、トリメリット酸、ブタンテトラカルボン酸などの多価カルボン酸;式:R3-CO-R4-COOH(式中、R3は水素原子または炭素数1~12の2価の炭化水素基、R4は炭素数1~12の2価の炭化水素基を表す)で示されるケト酸またはアルデヒド酸;式:X-OC-R5-COOH(式中、Xはハロゲン原子、R5は単結合または炭素数1~12の2価の炭化水素基を表す。)で示されるジカルボン酸のモノハライド、例えばコハク酸モノクロリド、マロン酸モノクロリド;無水フタル酸、無水コハク酸、無水シュウ酸、無水マレイン酸、無水ブタンテトラカルボン酸などの酸無水物が挙げられる。 The introduction of the carboxyl group can be carried out, for example, by reacting the amino acidized carbon layer as described above with an appropriate compound. Examples of the compound used for introducing a carboxyl group are represented by the formula: X-R1-COOH (in the formula, X represents a halogen atom and R1 represents a divalent hydrocarbon group having 10 to 12 carbon atoms). Halocarboxylic acids such as chloroacetic acid, fluoroacetic acid, bromoacetic acid, iodoacetic acid, 2-chloropropionic acid, 3-chloropropionic acid, 3-chloroacrylic acid, 4-chlorobenzoic acid; Among them, R2 represents a single bond or a divalent hydrocarbon group having 1 to 12 carbon atoms), such as dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, phthalic acid; polyacrylic acid. , Polycarboxylic acids such as polymethacrylic acid, trimellitic acid, butanetetracarboxylic acid; formula: R3-CO-R4-COOH (in the formula, R3 is a hydrogen atom or a divalent hydrocarbon group having 1 to 12 carbon atoms. , R4 represents a divalent hydrocarbon group having 1 to 12 carbon atoms); ketoic acid or aldehyde acid; formula: X-OC-R5-COOH (in the formula, X is a halogen atom, R5 is a single bond or Represents a divalent hydrocarbon group having 1 to 12 carbon atoms.) Monohalides of dicarboxylic acids, such as succinic acid monoclonal acid, malonic acid monoclonal acid; phthalic acid anhydride, succinic acid anhydride, oxalic acid anhydride, maleine anhydride. Examples thereof include acid anhydrides and acid anhydrides such as butanetetracarboxylic acid anhydride.
 エポキシ基の導入は、例えば、前記のようにアミノ化したカーボン層に適当な多価エポキシ化合物を反応させることによって実施できる。あるいは、カーボン層が含有する炭素=炭素2重結合に有機過酸を反応させることにより得ることができる。有機過酸としては、過酢酸、過安息香酸、ジペルオキシフタル酸、過ギ酸、トリフルオロ過酢酸などが挙げられる。 The introduction of the epoxy group can be carried out, for example, by reacting the amino acidized carbon layer as described above with an appropriate polyvalent epoxy compound. Alternatively, it can be obtained by reacting an organic peracid with a carbon-carbon double bond contained in the carbon layer. Examples of the organic peracetic acid include peracetic acid, perbenzoic acid, diperoxyphthalic acid, performic acid, trifluoroperacetic acid and the like.
 ホルミル基の導入は、例えば、前記のようにアミノ化したカーボン層に、グルタルアルデヒドを反応させることにより実施できる。 The introduction of the formyl group can be carried out, for example, by reacting the amino acidized carbon layer as described above with glutaraldehyde.
 ヒドロキシル基の導入は、例えば、前記のように塩素化したカーボン層に、水を反応させることにより実施できる。 The introduction of the hydroxyl group can be carried out, for example, by reacting the chlorinated carbon layer with water as described above.
 活性エステル基は、エステル基のアルコール側に酸性度の高い電子求引性基を有して求核反応を活性化するエステル群、すなわち反応活性の高いエステル基を意味する。エステル基のアルコール側に、電子求引性の基を有し、アルキルエステルよりも活性化されたエステル基である。活性エステル基は、アミノ基、チオール基、水酸基等の基に対する反応性を有する。さらに具体的には、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、シアノメチルエステル、複素環ヒドロキシ化合物のエステル類等がアルキルエステル等に比べてはるかに高い活性を有する活性エステル基として知られている。より具体的には、活性エステル基としては、たとえばp-ニトロフェニル基、N-ヒドロキシスクシンイミド基、コハク酸イミド基、フタル酸イミド基、5-ノルボルネン-2,3-ジカルボキシイミド基等が挙げられ、特に、N-ヒドロキシスクシンイミド基が好ましく用いられる。 The active ester group means an ester group that has an electron-attracting group with high acidity on the alcohol side of the ester group and activates the nucleophilic reaction, that is, an ester group with high reaction activity. It is an ester group that has an electron-withdrawing group on the alcohol side of the ester group and is more activated than the alkyl ester. The active ester group has reactivity with a group such as an amino group, a thiol group and a hydroxyl group. More specifically, phenol esters, thiophenol esters, N-hydroxyamine esters, cyanomethyl esters, esters of heterocyclic hydroxy compounds, etc. are active ester groups having much higher activity than alkyl esters and the like. Known as. More specifically, examples of the active ester group include p-nitrophenyl group, N-hydroxysuccinimide group, succinimide group, phthalateimide group, 5-norbornen-2,3-dicarboxyimide group and the like. In particular, an N-hydroxysuccinimide group is preferably used.
 活性エステル基の導入は、例えば、前記のように導入したカルボキシル基を、シアナミドやカルボジイミド(例えば、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド)などの脱水縮合剤とN-ヒドロキシスクシンイミドなどの化合物で活性エステル化することにより実施できる。この処理により、アミド結合を介して炭化水素基の末端に、N-ヒドロキシスクシンイミド基等の活性エステル基が結合した基を形成することができる(特開2001-139532)。 To introduce the active ester group, for example, the carboxyl group introduced as described above is combined with a dehydration condensing agent such as cyanamide or carbodiimide (for example, 1- [3- (dimethylamino) propyl] -3-ethylcarbodiimide) and N-. It can be carried out by active esterification with a compound such as hydroxysuccinimide. By this treatment, a group to which an active ester group such as an N-hydroxysuccinimide group is bonded can be formed at the end of the hydrocarbon group via an amide bond (Japanese Patent Laid-Open No. 2001-139532).
 プローブを、スポッティング用バッファーに溶解してスポッティング用溶液を調製し、これを96穴もしくは384穴プラスチックプレートに分注し、分注した溶液をスポッター装置等によって担体上にスポッティングすることにより、プローブが担体に固定化されたマイクロアレイを製造することができる。または、スポッティング溶液をマイクロピペッターにて手動でスポッティングしてもよい。 The probe is dissolved in a spotting buffer to prepare a spotting solution, which is dispensed into a 96-well or 384-well plastic plate, and the dispensed solution is spotted onto a carrier by a spotter device or the like. Can produce microarrays immobilized on a carrier. Alternatively, the spotting solution may be manually spotted with a micropipettor.
 スポッティング後、プローブが担体に結合する反応を進行させるため、インキュベーションを行うことが好ましい。インキュベーションは、通常-20~100℃、好ましくは0~90℃の温度で、通常0.5~16時間、好ましくは1~2時間にわたって行う。インキュベーションは、高湿度の雰囲気下、例えば、湿度50~90%の条件で行うのが望ましい。インキュベーションに続き、担体に結合していないDNAを除去するため、洗浄液(例えば、50mM TBS/0.05% Tween20、2×SSC/0.2%SDS溶液、超純水など)を用いて洗浄を行うことが好ましい。 After spotting, it is preferable to carry out incubation because the reaction in which the probe binds to the carrier proceeds. Incubation is usually carried out at a temperature of −20 to 100 ° C., preferably 0 to 90 ° C., usually for 0.5 to 16 hours, preferably 1 to 2 hours. Incubation is preferably performed in a high humidity atmosphere, for example, in a humidity of 50 to 90%. Following the incubation, it is preferable to perform washing with a washing solution (for example, 50 mM TBS / 0.05% Tween20, 2 × SSC / 0.2% SDS solution, ultrapure water, etc.) in order to remove DNA that is not bound to the carrier. ..
 上記のようにして得られたアンプリコンと、担体に固定されたプローブ(メチル化対応プローブと非メチル化対応プローブ並びに野生型プローブと変異型プローブ)とのハイブリダイゼーション反応を行う。メチル化対応プローブと非メチル化対応プローブに対するハイブリダイズに基づいてMLH1遺伝子のメチル化を検出することができ、野生型プローブと変異型プローブに対するハイブリダイズに基づいてBRAF遺伝子におけるV600E突然変異を検出することができる。このとき、アンプリコンを含む溶液は、BRAF遺伝子におけるV600E突然変異を有しない塩基配列(すなわち野生型)にハイブリダイズするブロッキング用核酸を含むことが好ましい。当該ブロッキング用核酸は、一対のプライマーによって増幅された、BRAF遺伝子におけるV600E突然変異部位を含む領域のうち野生型の配列を有する核酸断片に対して相補的な塩基配列を有する。ブロッキング用核酸を使用することで、BRAF遺伝子におけるV600E突然変異部位を含む領域のうち変異型の配列を有するものをより高精度に検出することができる。 Hybridization reaction is performed between the amplicon obtained as described above and a probe immobilized on a carrier (methylation-compatible probe and non-methylation-compatible probe, and wild-type probe and mutant probe). Methylation of the MLH1 gene can be detected based on hybrids to methylated and non-methylated probes, and V600E mutations in the BRAF gene can be detected based on hybrids to wild-type and mutant probes. be able to. At this time, the solution containing the amplicon preferably contains a blocking nucleic acid that hybridizes to a base sequence (that is, wild type) that does not have a V600E mutation in the BRAF gene. The blocking nucleic acid has a base sequence complementary to a nucleic acid fragment having a wild-type sequence in the region containing the V600E mutation site in the BRAF gene amplified by a pair of primers. By using a blocking nucleic acid, it is possible to detect a region containing a V600E mutation site in the BRAF gene having a mutant sequence with higher accuracy.
 特に、上述した方法では、亜硫酸水素塩処理後のゲノムDNAを鋳型してBRAF遺伝子におけるV600E突然変異を含む領域を増幅しており、増幅された当該領域にはアデニンとチミンが多く含まれる(ATリッチ)。このとき、野生型に対応するブロッキング用核酸の塩基長を、野生型プローブよりも短くすることで、増幅産物がATリッチであっても野生型の増幅産物とブロッキング用核酸との特異的なハイブリダイズを形成しやすくし、変異型を有する上記領域が微量しか含まれない場合でも高精度に検出することができる。 In particular, in the above-mentioned method, the genomic DNA after treatment with bisulfite is used as a template to amplify the region containing the V600E mutation in the BRAF gene, and the amplified region contains a large amount of adenine and thymine (AT). rich). At this time, by making the base length of the blocking nucleic acid corresponding to the wild type shorter than that of the wild type probe, even if the amplification product is AT-rich, the wild type amplification product and the blocking nucleic acid are specifically hybridized. It facilitates the formation of soybeans and can be detected with high accuracy even when the above-mentioned region having a variant is contained only in a trace amount.
 なお、担体に固定されたプローブとアンプリコンとのハイブリダイズは、アンプリコンに付した標識からのシグナルに基づいて検出することができる。標識からのシグナルは、例えば、蛍光標識を用いた場合は、蛍光スキャナを用いて蛍光シグナル検出し、これを画像解析ソフトによって解析することによりシグナル強度を数値化することができる。ハイブリダイゼーション反応は、好ましくはストリンジェントな条件下で実施する。ストリンジェントな条件とは、特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいい、例えば、50℃で16時間ハイブリダイズ反応させた後、2×SSC/0.2% SDS、25℃、10分および2×SSC、25℃、5分の条件で洗浄する条件をさす。或いは、ハイブリダイズする温度としては、塩濃度が0.5×SSCのとき、45~60℃とすることができ、プローブの鎖長が短い場合にはハイブリダイズ温度をこれより低くすることがより好ましく、鎖長が長い場合にはハイブリダイズ温度をこれより高くとすることがより好ましい。塩濃度が高くなると特異性を有するハイブリダイズ温度は高くなり、逆に塩濃度が低くなると特異性を有するハイブリダイズ温度は低くなることはいうまでもない。 The hybridization between the probe fixed on the carrier and the amplicon can be detected based on the signal from the label attached to the amplicon. For the signal from the label, for example, when a fluorescent label is used, the fluorescent signal is detected by using a fluorescent scanner, and the signal intensity can be quantified by analyzing this with image analysis software. The hybridization reaction is preferably carried out under stringent conditions. The stringent condition is a condition in which a specific hybrid is formed and a non-specific hybrid is not formed. For example, after a hybridization reaction at 50 ° C. for 16 hours, 2 × SSC / 0.2% SDS, 25 Refers to the conditions for cleaning at ℃, 10 minutes and 2 × SSC, 25 ℃, 5 minutes. Alternatively, the hybridization temperature can be 45 to 60 ° C. when the salt concentration is 0.5 × SSC, and it is more preferable to lower the hybridization temperature when the chain length of the probe is short. When the chain length is long, it is more preferable to set the hybridization temperature higher than this. Needless to say, the higher the salt concentration, the higher the hybridization temperature having specificity, and conversely, the lower the salt concentration, the lower the hybridization temperature having specificity.
 また、上述したMLH1遺伝子のメチル化を検出するための領域に含まれる複数のメチル化部位のうち1以上のメチル化部位を含む部分領域に対応するプローブセット(メチル化対応プローブと非メチル化対応プローブ)を備えるマイクロアレイを使用した場合、これらのプローブセットからのシグナル強度を用いてメチル化部位に関するメチル化又は非メチル化を判別することができる。具体的には、一対のプローブセットについて、メチル化対応プローブにおけるシグナル強度及び非メチル化対応プローブにおけるシグナル強度をそれぞれ測定し、メチル化対応プローブに由来するシグナル強度を評価するための判定値を算出する。判定値の算出例としては、例えば、式:[メチル化対応プローブ由来のシグナル強度]/([メチル化対応プローブ由来のシグナル強度]+[非メチル化対応プローブ由来シグナル強度])を使用する方法が挙げられる。この判定値では、完全にメチル化された検体を測定した場合の理論値は1となり、全くメチル化されていない(完全に非メチル化の)検体を測定した場合の理論値は0となる。 In addition, a probe set corresponding to a partial region containing one or more methylation sites among a plurality of methylation sites included in the above-mentioned region for detecting methylation of the MLH1 gene (methylation-compatible probe and non-methylation-compatible probe). When microarrays with probes) are used, the signal intensities from these probe sets can be used to determine methylation or demethylation for the methylation site. Specifically, for a pair of probe sets, the signal intensity in the methylation-compatible probe and the signal intensity in the non-methylation-compatible probe are measured, respectively, and a judgment value for evaluating the signal intensity derived from the methylation-compatible probe is calculated. do. As an example of calculating the judgment value, for example, a method using the formula: [Signal intensity derived from methylation-compatible probe] / ([Signal intensity derived from methylation-compatible probe] + [Signal intensity derived from non-methylation-compatible probe]). Can be mentioned. In this determination value, the theoretical value when a fully methylated sample is measured is 1, and the theoretical value when a completely unmethylated (fully unmethylated) sample is measured is 0.
 そして、上記式にて算出される判定値と予め定めた閾値(カットオフ値)とを比較し、判定値が上限の閾値を上回る場合には、MLH1遺伝子のメチル化を検出するための領域に含まれるCpGアイランドがメチル化されていると判断し、判定値が下限の閾値を下回る値の場合には当該に含まれるCpGアイランドがメチル化されていないと判断する。また、判定値が予め定めた上下限の閾値の間である場合、当該領域に含まれるCpGアイランドの約半分がメチル化されている(一方のアリルがメチル化されている)と判断することができる。なお、単一の閾値を設定し、この閾値を上回った場合はメチル化されていると判断し、下回った場合はメチル化されていないと判断するようにしてもよい。このように判定値を利用することで、上述したMLH1遺伝子のメチル化を検出するための領域に含まれるCpGアイランドのメチル化を判別することができる。 Then, the judgment value calculated by the above formula is compared with a predetermined threshold value (cutoff value), and if the judgment value exceeds the upper limit threshold value, the region for detecting methylation of the MLH1 gene is used. It is determined that the included CpG island is methylated, and if the determination value is below the lower limit threshold value, it is determined that the included CpG island is not methylated. If the determination value is between the upper and lower thresholds set in advance, it can be determined that about half of the CpG islands contained in the region are methylated (one allele is methylated). can. A single threshold value may be set, and if it exceeds this threshold value, it may be determined that it is methylated, and if it is lower than this threshold value, it may be determined that it is not methylated. By using the determination value in this way, it is possible to determine the methylation of the CpG island contained in the region for detecting the methylation of the MLH1 gene described above.
 以上のように、MLH1遺伝子のメチル化を検出するための亜硫酸水素塩処理(バイサルファイト処理)を行った後のゲノムDNAを用いて、BRAF遺伝子におけるV600E突然変異を検出することができる。すなわち、上述した方法によればMLH1遺伝子のメチル化とBRAF遺伝子におけるV600E突然変異とを同時に検出することができる。MLH1遺伝子のメチル化と、BRAF遺伝子におけるV600E突然変異とを検出することによって、例えば、大腸癌におけるリンチ症候群と散発性大腸癌とを判別することができる。 As described above, the V600E mutation in the BRAF gene can be detected using the genomic DNA after bisulfite treatment (bisulfite treatment) for detecting the methylation of the MLH1 gene. That is, according to the method described above, methylation of the MLH1 gene and V600E mutation in the BRAF gene can be detected at the same time. By detecting the methylation of the MLH1 gene and the V600E mutation in the BRAF gene, for example, Lynch syndrome and sporadic colorectal cancer in colorectal cancer can be discriminated.
 具体的には、大腸癌において、MLH1遺伝子のメチル化が有り且つBRAF遺伝子におけるV600E突然変異が有る場合、散発性MSI-H大腸癌と判断することができる。MLH1遺伝子のメチル化が無く且つBRAF遺伝子におけるV600E突然変異が有る場合、MSI-Hではない散発性大腸癌の可能性が高いと判断することができる。MLH1遺伝子のメチル化が有り且つBRAF遺伝子におけるV600E突然変異が無い場合も、散発性MSI-H大腸癌と判断することができる。そして、MSI-H大腸癌においては、MLH1遺伝子のメチル化が無く且つBRAF遺伝子におけるV600E突然変異が無い場合、大腸癌におけるリンチ症候群の可能性が高いと判断することができる。 Specifically, in colorectal cancer, if the MLH1 gene is methylated and the BRAF gene has a V600E mutation, it can be determined to be sporadic MSI-H colorectal cancer. If there is no methylation of the MLH1 gene and there is a V600E mutation in the BRAF gene, it can be determined that there is a high probability of sporadic colorectal cancer that is not MSI-H. Sporadic MSI-H colorectal cancer can also be determined if the MLH1 gene is methylated and there is no V600E mutation in the BRAF gene. Then, in MSI-H colorectal cancer, if there is no methylation of the MLH1 gene and no V600E mutation in the BRAF gene, it can be judged that there is a high possibility of Lynch syndrome in colorectal cancer.
 以下、実施例により本発明をより詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the technical scope of the present invention is not limited to the following examples.
〔実施例1〕
 本実施例では、リンチ症候群や散発性大腸癌の診断に用いられるMLH1遺伝子のメチル化とBRAF遺伝子におけるV600E突然変異とを同時に検出する方法を開発した。図1にBRAF遺伝子の一部(配列番号3)、MLH1遺伝子の一部(プロモーター領域)の塩基配列(配列番号4)を示した。また、図2には、図1に示した領域の亜硫酸水素塩処理(バイサルファイト処理)後の塩基配列(配列番号5及び6)を示した。なお、亜硫酸水素塩処理(バイサルファイト処理)によりシトシンがウラシルとなるが、図2においては、当該ウラシルを便宜的にチミンとして記載している。また図2において、解析対象の核酸を四角で囲った。図2において、各塩基配列中、解析対象の核酸を含む領域を増幅するためのプライマーの位置に下線を付した。各プライマーの塩基配列を表1に示した。また、増幅した領域とハイブリダイズするプローブの塩基配列を表2に示した。
[Example 1]
In this example, we developed a method to simultaneously detect methylation of the MLH1 gene and V600E mutation in the BRAF gene, which are used for the diagnosis of Lynch syndrome and sporadic colorectal cancer. FIG. 1 shows the base sequences (SEQ ID NO: 4) of a part of the BRAF gene (SEQ ID NO: 3) and a part of the MLH1 gene (promoter region). Further, FIG. 2 shows the base sequences (SEQ ID NOs: 5 and 6) of the region shown in FIG. 1 after bisulfite treatment (bisulfite treatment). Cytosine becomes uracil by hydrogen sulfite treatment (bisulfite treatment), and in FIG. 2, the uracil is described as thymine for convenience. Further, in FIG. 2, the nucleic acid to be analyzed is surrounded by a square. In FIG. 2, the positions of the primers for amplifying the region containing the nucleic acid to be analyzed are underlined in each base sequence. The base sequence of each primer is shown in Table 1. Table 2 shows the base sequence of the probe that hybridizes with the amplified region.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各領域を増幅するため、先ず表1に示したプライマーを後述の実験1に示す濃度で混合したプライマー混合物を準備した。 In order to amplify each region, first, a primer mixture in which the primers shown in Table 1 were mixed at the concentration shown in Experiment 1 described later was prepared.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 次に、表3に示した組成となるようにPCR反応液を準備した。 Next, a PCR reaction solution was prepared so as to have the composition shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 PCRの温度条件は表4に示すように設定した。 The PCR temperature conditions were set as shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 そして、予め準備したMLH1/BRAF解析チップ(MBチップ)を用いてハイブリダイズ反応を行った。具体的には、先ず、ハイブリダイズオーブンを60℃に設定し、水30mLを入れたタッパーを設置して1時間以上置いた。次に、ハイブリダイズ緩衝液(2.25×SSC、0.23%SDS)、PCR産物を冷凍庫から取り出し、常温に戻した。PCR産物4μlとハイブリダイズ緩衝液2μlを混合した。混合液3μLをチップカバーに添加した後、チップにセットした。ハイブリダイズ反応における温度条件を60℃とした。 Then, the hybridization reaction was performed using the MLH1 / BRAF analysis chip (MB chip) prepared in advance. Specifically, first, the hybridization oven was set at 60 ° C., a tapper containing 30 mL of water was installed, and the mixture was left for 1 hour or more. Next, the hybridization buffer (2.25 × SSC, 0.23% SDS) and the PCR product were taken out from the freezer and returned to room temperature. 4 μl of PCR product and 2 μl of hybridization buffer were mixed. After adding 3 μL of the mixed solution to the chip cover, the mixture was set on the chip. The temperature condition in the hybridization reaction was 60 ° C.
 そして、洗浄液(0.1×SSC/0.1%SDS溶液)を調製し、ハイブリダイズ反応後のチップをステンレスホルダーに設置して、洗浄液内を10回上下させることにより洗浄し、5分間静置した。洗浄後、チップを保持するステンレスホルダーを1×SSC溶液中に設置した。そして、水分を拭き取り、カバーフィルムを被せ、遺伝子解析装置BIOSHOT(東洋鋼鈑製)で蛍光強度推定法により測定した。 Then, a cleaning solution (0.1 × SSC / 0.1% SDS solution) was prepared, the chip after the hybridization reaction was placed in a stainless steel holder, and the inside of the cleaning solution was washed by moving it up and down 10 times, and allowed to stand for 5 minutes. After cleaning, a stainless steel holder holding the chips was placed in 1 × SSC solution. Then, the water was wiped off, a cover film was covered, and the measurement was performed by the fluorescence intensity estimation method using the gene analyzer BIOSHOT (manufactured by Toyo Kohan Co., Ltd.).
 [実験1]
 本実験1では、BRAF/MLH1を検出するためのプライマー濃度の設計について検討した。具体的には、BRAF/MLH1領域に対応する2種類のプライマーセットの濃度を条件1~3で実施した。各条件をそれぞれ表5~7に示した。
[Experiment 1]
In Experiment 1, we investigated the design of primer concentration for detecting BRAF / MLH1. Specifically, the concentrations of the two types of primer sets corresponding to the BRAF / MLH1 region were carried out under conditions 1 to 3. Each condition is shown in Tables 5 to 7, respectively.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本実験では、BRAF/MLH1の強度を評価する検体として亜硫酸水素塩処理(バイサルファイト処理)後のRKO細胞株由来DNAを用いて上述したPCRを行った。なおRKO細胞株は、MLH1メチル化頻度0%程度、BRAF変異頻度66%程度である。 In this experiment, the above-mentioned PCR was performed using RKO cell line-derived DNA after bisulfite treatment (bisulfite treatment) as a sample for evaluating the intensity of BRAF / MLH1. The RKO cell line has an MLH1 methylation frequency of about 0% and a BRAF mutation frequency of about 66%.
 条件1、2及び3において、BRAF/MLH1の蛍光強度を図3に示した。当該検査システムでは安定的な解析のために蛍光強度の最低強度を5000に設定している。図3に示すように、条件1ではBRAFの蛍光強度が5000未満であり解析条件を満たさなかった。一方、条件2及び3においては、条件1と比較して、BRAFの蛍光強度がともに高く検出され、尚且つ条件3ではMLH1とBRAFの蛍光強度が同等程度検出できた。 The fluorescence intensity of BRAF / MLH1 is shown in FIG. 3 under conditions 1, 2 and 3. In the inspection system, the minimum fluorescence intensity is set to 5000 for stable analysis. As shown in FIG. 3, under condition 1, the fluorescence intensity of BRAF was less than 5000, and the analysis condition was not satisfied. On the other hand, under conditions 2 and 3, the fluorescence intensity of BRAF was detected higher than that of condition 1, and under condition 3, the fluorescence intensity of MLH1 and BRAF could be detected to the same extent.
 本実験の結果より、条件3、すなわちプライマーセット濃度をMLH1:BRAF=1:3.75の存在下で、蛍光強度が安定的に検出することが明らかとなった。 From the results of this experiment, it was clarified that the fluorescence intensity was stably detected under condition 3, that is, the primer set concentration was in the presence of MLH1: BRAF = 1: 3.75.
 [実験2]
 本実験2では、変異およびメチル化の検出が可能であるか検証するため性能評価を実施した。BRAFに関しては、野生型PCR産物の変異検出プローブへの非特異的な結合を軽減するため、野生型プローブと同様の配列を有するブロッキング用核酸(ブロッカー)を使用した。検討に用いたプローブセットとブロッカーの配列を表8に示した。
[Experiment 2]
In Experiment 2, performance evaluation was performed to verify whether mutations and methylation could be detected. For BRAF, a blocking nucleic acid (blocker) having a sequence similar to that of the wild-type probe was used in order to reduce non-specific binding of the wild-type PCR product to the mutation detection probe. The sequences of the probe set and blocker used in the study are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本実験では、MLH1コントロールとしてEpiScope Methylated HCT116 gDNA (メチル化頻度95%)とEpiScope Unmethylated HCT116 DKO gDNA(メチル化頻度0%)、BRAFコントロールとしてはRKO細胞株由来DNA(変異頻度66%)とヒト成人正常組織由来ゲノムDNA(変異頻度0%)を用いて、それぞれ変異頻度又はメチル化頻度が、0%、5%、10%、15%になるように4種類のコントロールを調製した。ブロッカーは、ハイブリダイズ緩衝液に500nMの濃度となるように混合して用いた。 In this experiment, EpiScope Methylated HCT116 gDNA (methylation frequency 95%) and EpiScope Unmethylated HCT116 DKO gDNA (methylation frequency 0%) as MLH1 controls, and RKO cell line-derived DNA (mutation frequency 66%) as BRAF controls and human adults. Using genomic DNA derived from normal tissues (mutation frequency 0%), four types of controls were prepared so that the mutation frequency or methylation frequency was 0%, 5%, 10%, and 15%, respectively. The blocker was mixed with the hybridization buffer so as to have a concentration of 500 nM.
 亜硫酸水素塩処理(バイサルファイト処理)済みのコントロールを用いて得られた各プローブの蛍光強度から強度比である判定値を下記式から算出した。
  判定値=変異型プローブの強度/(野生型プローブの強度+変異型プローブの強度)
The judgment value, which is the intensity ratio, was calculated from the fluorescence intensity of each probe obtained by using the control treated with bisulfite (bisulfite treatment) from the following formula.
Judgment value = strength of mutant probe / (strength of wild-type probe + strength of mutant probe)
 各コントロールから得られた判定値の結果を図4に示した。試行数はN=6、エラーバーはS.D.を表す。当該キットは変異及びメチル化の有無を判別することを目的にしており、変異及びメチル化頻度0%のコントロールとそれ以外では判定値のエラーバーが分離した。この結果より、本実験で設定したプローブおよびブロッカーは、MLH1遺伝子のメチル化とBRAF遺伝子におけるV600E突然変異を同時に検出できることが確認できた。 The results of the judgment values obtained from each control are shown in FIG. The number of trials is N = 6, and the error bar is S.D. The kit was intended to determine the presence or absence of mutation and methylation, and the control with 0% mutation and methylation frequency and the error bar of the determination value were separated in other cases. From this result, it was confirmed that the probe and blocker set in this experiment can detect methylation of the MLH1 gene and V600E mutation in the BRAF gene at the same time.
〔実施例2〕
 本実施例では、亜硫酸水素塩処理(バイサルファイト処理)によりシトシンからウラシルへの変換が正常に進行しなかった塩基配列の非特異的な増幅を抑制するPCR条件を検討した。具体的には、実施例1で設計したプライマーを使用した場合の、アニーリング温度と時間を変更したPCRプログラムを設定した(表9)。
Figure JPOXMLDOC01-appb-T000009
 本実験では、実施例1において設定した表4に示すPCRプログラムと、本実施例で設定した表9に示すPCRプログラムの比較試験を実施した。ヒト成人正常組織由来ゲノムDNA(変異およびメチル化頻度0%)を用いて、バイサルファイトによる処理サンプルと未処理サンプルをそれぞれ作製し、PCRではそれぞれのサンプルを鋳型として20ngずつ添加した。なおPCRプログラム以外の試験条件は実施例1に準拠した。
 各PCRプログラムの条件から得られた蛍光強度を図5に示した。表4に示したPCRプログラムの場合、バイサルファイト未処理のサンプルであっても、BRAF野生型プローブ及びMLH1のメチル化プローブから4,000程度の蛍光強度をそれぞれ検出した。これは、表4に示したPCRプログラムでは、アニーリング反応において、バイサルファイト未処理の塩基配列とプライマーが非特異的に結合し、アンプリコンが生成したことが要因であると考えられる。この結果から、表4に示したPCRプログラムでは、バイサルファイト処理が正常に進行せずに、シトシンからウラシルへの変換が正常に進行しなかった塩基配列が残留していた場合でも、アンプリコンに由来する蛍光強度により誤判定が発生する懸念があることが明らかとなった。
 一方で、本実施例で設定した表9のPCRプログラムによれば、バイサルファイト未処理の検体を使用した場合には、BRA及びMLH1のいずれのプローブからも蛍光強度は検出されなかった(図5)。なお、本実施例で設定した表9のPCRプログラムによれば、バイサルファイト処理を施した検体を使用した場合、BRAFの野生型プローブ及びMLH1の非メチル化プローブにてそれぞれ10,000以上の蛍光強度を検出しており、表4に示したPCRプログラムと同様に検査には十分な強度を確保していることを確認できた。
 以上の結果から、アニーリング温度と時間を変更した表9のPCRプログラムによれば、亜硫酸水素塩処理(バイサルファイト処理)が正常に進行しなかった場合には、アンプリコンが生成されないこととなり誤判定を防止することができる。
[Example 2]
In this example, PCR conditions were investigated to suppress non-specific amplification of the base sequence in which the conversion from cytosine to uracil did not proceed normally by bisulfite treatment (bisulfite treatment). Specifically, a PCR program in which the annealing temperature and time were changed when the primers designed in Example 1 were used was set (Table 9).
Figure JPOXMLDOC01-appb-T000009
In this experiment, a comparative test was carried out between the PCR program shown in Table 4 set in Example 1 and the PCR program shown in Table 9 set in this example. Using genomic DNA derived from normal human tissue (mutation and methylation frequency 0%), treated and untreated samples with bisulfite were prepared, and 20 ng of each sample was added as a template in PCR. The test conditions other than the PCR program were based on Example 1.
The fluorescence intensity obtained from the conditions of each PCR program is shown in FIG. In the case of the PCR program shown in Table 4, about 4,000 fluorescence intensities were detected from the BRAF wild-type probe and the MLH1 methylation probe even in the sample not treated with bisulfite. It is considered that this is because in the PCR program shown in Table 4, in the annealing reaction, the base sequence untreated with bisulfite and the primer were non-specifically bound to generate an amplicon. From this result, in the PCR program shown in Table 4, even if the base sequence in which the conversion from cytosine to uracil did not proceed normally remains, even if the bisulfite treatment did not proceed normally and the conversion from cytosine to uracil did not proceed normally, the amplicon was used. It became clear that there is a concern that erroneous judgment may occur due to the resulting fluorescence intensity.
On the other hand, according to the PCR program of Table 9 set in this example, when the sample not treated with bisulfite was used, the fluorescence intensity was not detected from any of the BRA and MLH1 probes (FIG. 5). ). According to the PCR program in Table 9 set in this example, when the sample subjected to the bisulfite treatment was used, the fluorescence intensity of 10,000 or more was obtained by the wild type probe of BRAF and the unmethylated probe of MLH1 respectively. It was detected, and it was confirmed that the strength was sufficient for the inspection as in the PCR program shown in Table 4.
From the above results, according to the PCR program in Table 9 in which the annealing temperature and time were changed, if the bisulfite treatment (bisulfite treatment) did not proceed normally, an amplicon would not be generated and an erroneous judgment was made. Can be prevented.

Claims (16)

  1.  検体から調製したゲノムDNAを亜硫酸水素塩で処理する工程と、亜硫酸水素塩によって処理されたゲノムDNAを鋳型としMLH1遺伝子のメチル化を検出するための領域とBRAF遺伝子におけるV600E突然変異部位を含む領域とをそれぞれ一対のプライマーにより増幅する工程と、増幅で得られるアンプリコンに含まれるMLH1遺伝子のメチル化を検出するための領域及びBRAF遺伝子におけるV600E突然変異部位を含む領域をプローブで検出する工程とを含む、検体におけるMLH1遺伝子のメチル化及びBRAF遺伝子のV600E突然変異を同時に検出する方法。 A step of treating genomic DNA prepared from a sample with hydrogen sulfite, a region for detecting methylation of the MLH1 gene using genomic DNA treated with hydrogen sulfite as a template, and a region containing the V600E mutation site in the BRAF gene. A step of amplifying each with a pair of primers, and a step of detecting a region for detecting the methylation of the MLH1 gene contained in the amplicon obtained by the amplification and a region containing the V600E mutation site in the BRAF gene with a probe. A method for simultaneously detecting methylation of the MLH1 gene and V600E mutation of the BRAF gene in a sample, including.
  2.  MLH1遺伝子のメチル化を検出するための領域について、当該領域がメチル化している場合のアンプリコンに対応するメチル化対応プローブと、メチル化していない場合のアンプリコンに対応する非メチル化対応プローブとからなるプローブセットを用いることを特徴とする請求項1記載の方法。 Regarding the region for detecting methylation of the MLH1 gene, a methylation-compatible probe corresponding to the amplicon when the region is methylated and a non-methylation-compatible probe corresponding to the amplicon when the region is not methylated. The method according to claim 1, wherein a probe set comprising the same probe set is used.
  3.  上記メチル化対応プローブは配列番号17の塩基配列を含み、上記非メチル化対応プローブは配列番号16の塩基配列を含むことを特徴とする請求項2記載の方法。 The method according to claim 2, wherein the methylation-compatible probe contains the base sequence of SEQ ID NO: 17, and the non-methylation-compatible probe contains the base sequence of SEQ ID NO: 16.
  4.  BRAF遺伝子におけるV600E突然変異部位を含む領域について、V600E突然変異部位が野生型である場合に対応する野生型プローブと、V600E突然変異部位が変異型である場合に対応する変異型プローブとからなるプローブセットを用いることを特徴とする請求項1記載の方法。 For the region containing the V600E mutation site in the BRAF gene, a probe consisting of a wild-type probe corresponding to the case where the V600E mutation site is wild-type and a mutant probe corresponding to the case where the V600E mutation site is mutant type. The method according to claim 1, wherein a set is used.
  5.  上記野生型プローブは配列番号13の塩基配列を含み、上記変異型プローブは配列番号14の塩基配列を含むことを特徴とする請求項4記載の方法。 The method according to claim 4, wherein the wild-type probe contains the base sequence of SEQ ID NO: 13, and the mutant probe contains the base sequence of SEQ ID NO: 14.
  6.  増幅で得られるアンプリコンを含む溶液に、V600E突然変異部位が野生型であるアンプリコンにハイブリダイズする塩基配列を有するブロッキング用核酸を混合する工程を含むことを特徴とする請求項1記載の方法。 The method according to claim 1, wherein the solution containing the amplicon obtained by amplification is mixed with a blocking nucleic acid having a base sequence that hybridizes to an amplicon having a wild-type V600E mutation site. ..
  7.  上記ブロッキング用核酸は配列番号15の塩基配列を含むことを特徴とする請求項6記載の方法。 The method according to claim 6, wherein the blocking nucleic acid contains the base sequence of SEQ ID NO: 15.
  8.  上記プローブを基板に固定したマイクロアレイを使用し、上記アンプリコンを検出することを特徴とする請求項1記載の方法。 The method according to claim 1, wherein a microarray in which the probe is fixed to a substrate is used to detect the amplicon.
  9.  MLH1遺伝子のメチル化を検出するための領域であって亜硫酸水素塩処理後の当該領域の塩基配列に対応するMLH1遺伝子用プローブと、BRAF遺伝子におけるV600E突然変異部位を含む領域であって亜硫酸水素塩処理後の当該領域の塩基配列に対応するBRAF遺伝子用プローブとを含む、プローブセットを含む、検体におけるMLH1遺伝子のメチル化及びBRAF遺伝子のV600E突然変異を同時に検出するキット。 A region for detecting methylation of the MLH1 gene, which contains a probe for the MLH1 gene corresponding to the base sequence of the region after treatment with hydrogen sulfite, and a region containing the V600E mutation site in the BRAF gene, which is a hydrogen sulfite. A kit that simultaneously detects methylation of the MLH1 gene and V600E mutation of the BRAF gene in a sample, including a probe set, including a probe for the BRAF gene corresponding to the base sequence of the region after treatment.
  10.  上記MLH1遺伝子用プローブは、当該領域がメチル化している場合のアンプリコンに対応するメチル化対応プローブと、メチル化していない場合のアンプリコンに対応する非メチル化対応プローブとを含むことを特徴とする請求項9記載のキット。 The MLH1 gene probe is characterized by including a methylation-compatible probe corresponding to an amplicon when the region is methylated and a non-methylation-compatible probe corresponding to an amplicon when the region is not methylated. The kit according to claim 9.
  11.  上記メチル化対応プローブは配列番号17の塩基配列を含み、上記非メチル化対応プローブは配列番号16の塩基配列を含むことを特徴とする請求項10記載のキット。 The kit according to claim 10, wherein the methylation-compatible probe contains the base sequence of SEQ ID NO: 17, and the non-methylation-compatible probe contains the base sequence of SEQ ID NO: 16.
  12.  上記BRAF遺伝子用プローブは、V600E突然変異部位が野生型である場合に対応する野生型プローブと、V600E突然変異部位が変異型である場合に対応する変異型プローブとを含むことを特徴とする請求項9記載のキット。 The BRAF gene probe includes a wild-type probe corresponding to the case where the V600E mutation site is a wild type, and a mutant probe corresponding to the case where the V600E mutation site is a mutant type. Item 9. The kit according to item 9.
  13.  上記野生型プローブは配列番号13の塩基配列を含み、上記変異型プローブは配列番号14の塩基配列を含むことを特徴とする請求項12記載のキット。 The kit according to claim 12, wherein the wild-type probe contains the base sequence of SEQ ID NO: 13, and the mutant probe contains the base sequence of SEQ ID NO: 14.
  14.  V600E突然変異部位が野生型であるアンプリコンにハイブリダイズする塩基配列を有するブロッキング用核酸を含むことを特徴とする請求項9記載のキット。 The kit according to claim 9, wherein the V600E mutation site contains a blocking nucleic acid having a base sequence that hybridizes to a wild-type amplicon.
  15.  上記ブロッキング用核酸は配列番号15の塩基配列を含むことを特徴とする請求項14記載のキット。 The kit according to claim 14, wherein the blocking nucleic acid contains the base sequence of SEQ ID NO: 15.
  16.  上記MLH1遺伝子用プローブ及び上記BRAF遺伝子用プローブが基板に固定されたマイクロアレイを含むことを特徴とする請求項9記載のキット。 The kit according to claim 9, wherein the probe for the MLH1 gene and the probe for the BRAF gene include a microarray immobilized on a substrate.
PCT/JP2022/000095 2021-01-06 2022-01-05 Kit for detecting mlh1 methylation modification and braf mutation WO2022149575A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022574056A JPWO2022149575A1 (en) 2021-01-06 2022-01-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021000884 2021-01-06
JP2021-000884 2021-01-06

Publications (1)

Publication Number Publication Date
WO2022149575A1 true WO2022149575A1 (en) 2022-07-14

Family

ID=82357750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000095 WO2022149575A1 (en) 2021-01-06 2022-01-05 Kit for detecting mlh1 methylation modification and braf mutation

Country Status (2)

Country Link
JP (1) JPWO2022149575A1 (en)
WO (1) WO2022149575A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116640853A (en) * 2023-07-18 2023-08-25 北京大学第三医院(北京大学第三临床医学院) Kit for detecting linqi syndrome related gene sequence of pre-implantation embryo and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526892A (en) * 2011-08-18 2014-10-09 ネステク ソシエテ アノニム Compositions and methods for detecting allelic polymorphisms
JP2017533697A (en) * 2014-10-08 2017-11-16 コーネル・ユニバーシティーCornell University Methods for identifying and quantifying nucleic acid expression, splice variants, translocations, copy numbers, or methylation changes
JP2018019640A (en) * 2016-08-03 2018-02-08 東洋鋼鈑株式会社 Buffer composition for hybridization and hybridization method
CN108456721A (en) * 2018-05-16 2018-08-28 基因科技(上海)股份有限公司 Synchronous detection gene mutation and the method and its application to methylate
JP2019135928A (en) * 2018-02-06 2019-08-22 国立大学法人 東京大学 MLH1 methylation group determination marker and determination method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526892A (en) * 2011-08-18 2014-10-09 ネステク ソシエテ アノニム Compositions and methods for detecting allelic polymorphisms
JP2017533697A (en) * 2014-10-08 2017-11-16 コーネル・ユニバーシティーCornell University Methods for identifying and quantifying nucleic acid expression, splice variants, translocations, copy numbers, or methylation changes
JP2018019640A (en) * 2016-08-03 2018-02-08 東洋鋼鈑株式会社 Buffer composition for hybridization and hybridization method
JP2019135928A (en) * 2018-02-06 2019-08-22 国立大学法人 東京大学 MLH1 methylation group determination marker and determination method
CN108456721A (en) * 2018-05-16 2018-08-28 基因科技(上海)股份有限公司 Synchronous detection gene mutation and the method and its application to methylate

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GIOVANNI RIZZI, JUNG-ROK LEE, CHRISTINA DAHL, PER GULDBERG, MARTIN DUFVA, SHAN X. WANG, MIKKEL F. HANSEN: "Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array", ACS NANO, AMERICAN CHEMICAL SOCIETY, US, vol. 11, no. 9, 26 September 2017 (2017-09-26), US , pages 8864 - 8870, XP055545085, ISSN: 1936-0851, DOI: 10.1021/acsnano.7b03053 *
NAGASAKA, TAKESHI ET AL.: "O-132 Clinical pathology characteristics of POLE mutation colorectal cancer", JOURNAL OF HUMAN GENETICS, SPRINGER SINGAPORE, SINGAPORE, vol. 63, 1 January 2018 (2018-01-01) - 13 October 2018 (2018-10-13), Singapore, pages 282, XP009538087, ISSN: 1434-5161 *
NAGASAKA, TAKESHI: "KRAS, BRAF gene sudden mutation and DNA methylation in colorectal cancer", JOURNAL OF THE OKAYAMA MEDICAL ASSOCIATION, vol. 117, no. 9, 1 September 2005 (2005-09-01), JP , pages 97 - 103, XP009538082, ISSN: 0030-1558 *
VEGANZONES S.; MAESTRO M. L.; RAFAEL S.; ORDEN V. DE LA; VIDAURRETA M.; MEDIERO B.; ESPANTALEóN M.; CERDáN J.; DíAZ: "Combined methylation ofp16andhMLH1(CMETH2) discriminates a subpopulation with better prognosis in colorectal cancer patients with microsatellite instability tumors", TUMOR BIOLOGY, KARGER, BASEL, CH, vol. 36, no. 5, 10 January 2015 (2015-01-10), CH , pages 3853 - 3861, XP036218395, ISSN: 1010-4283, DOI: 10.1007/s13277-014-3027-1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116640853A (en) * 2023-07-18 2023-08-25 北京大学第三医院(北京大学第三临床医学院) Kit for detecting linqi syndrome related gene sequence of pre-implantation embryo and application thereof
CN116640853B (en) * 2023-07-18 2023-10-31 北京大学第三医院(北京大学第三临床医学院) Kit for detecting linqi syndrome related gene sequence of pre-implantation embryo and application thereof

Also Published As

Publication number Publication date
JPWO2022149575A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
JP7108988B2 (en) Kit for evaluating gene mutations associated with myeloproliferative neoplasms
US7943311B2 (en) Kits and method for determining the risk of adverse effects of irinotecan comprising hybridizing pairs of nucleic acid probes
WO2022149575A1 (en) Kit for detecting mlh1 methylation modification and braf mutation
JP7248982B2 (en) Gene Mutation Evaluation Method, Gene Mutation Evaluation Kit
JP2016192939A (en) Probe for detecting cyp2c19*2 and probe for detecting cyp2c19*3
WO2019182103A1 (en) Microsatellite detection microarray and microsatellite detection method using same
JP5376841B2 (en) Method for determining the risk of occurrence of side effects of irinotecan, and DNA chip and kit used therefor
WO2011152272A1 (en) Method of determining the risk of adverse effects of irinotecan, and kit therefore
WO2021039958A1 (en) Kit for evaluating gene mutation related to myeloproliferative neoplasm
JP2016192940A (en) PROBE FOR DETECTING CYP3A4*1b AND PROBE FOR DETECTING CYP3A5*3
JP6995604B2 (en) Design method and probe set for single nucleotide polymorphism detection probe
WO2020067388A1 (en) Kit for assessing gene mutations relevant to prognosis prediction of papillary thyroid carcinoma
JP2020162503A (en) Method for determining methylation in cpg island and methylation determination kit
WO2009130797A1 (en) Probe set for determining abo blood type
JP7456739B2 (en) Kit for evaluating genetic mutations associated with myeloproliferative tumors
JP6028299B2 (en) Primer set and probe for judging animals
JP6028300B2 (en) Primer set and probe for determining ABO blood group
JP2021052738A (en) Kits for evaluating gene mutation related to myeloproliferative tumor
WO2024048608A1 (en) Myelodysplastic syndrome test kit
WO2024048602A1 (en) Buffer composition for hybridization, and hybridization method
JP6735105B2 (en) Method and DNA chip for predicting side effects of gemcitabine
JP2014103904A (en) Oligonucleotide probe for detecting mutation in k-ras
JP2016192941A (en) Probe for detecting cyp2c9*3
JP2015198581A (en) Probe for polymorphism detection in il28b gene, dna chip having the probe for polymorphism detection, and data acquisition method for predicting effect of chronic hepatitis c therapy using the probe for polymorphism detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022574056

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22736743

Country of ref document: EP

Kind code of ref document: A1