WO2022149366A1 - Electric power converting device - Google Patents

Electric power converting device Download PDF

Info

Publication number
WO2022149366A1
WO2022149366A1 PCT/JP2021/043361 JP2021043361W WO2022149366A1 WO 2022149366 A1 WO2022149366 A1 WO 2022149366A1 JP 2021043361 W JP2021043361 W JP 2021043361W WO 2022149366 A1 WO2022149366 A1 WO 2022149366A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
power conversion
conversion device
housing
phase
Prior art date
Application number
PCT/JP2021/043361
Other languages
French (fr)
Japanese (ja)
Inventor
裕美 佐々木
大喜 澤田
健一 大濱
伸尭 高橋
和輝 小塩
卓也 大久保
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022149366A1 publication Critical patent/WO2022149366A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the disclosure described in this specification relates to a power conversion device.
  • Patent Document 1 a power conversion device including a capacitor module is known.
  • the capacitor module of the power conversion device described in Patent Document 1 has a power supply terminal connected to the battery via a DC connector. As the amount of current supplied from the battery increases, the temperature of these power supply terminals and the DC connector rises. As a result, the temperature of the capacitor cell (passive element) included in the capacitor module may rise.
  • An object of the present specification is to provide a power conversion device in which the temperature rise of a passive element is suppressed.
  • the power conversion device includes a first electric component in which a passive element is housed and a first electric component.
  • a second electrical component with an active element The input connector connected to the external power supply and An input bus bar that electrically connects each of the passive and active elements to the input connector, It has a part of the input bus bar, a storage space for accommodating each of the first electric component and the second electric component, and a housing provided with a cooling passage. A portion located outside the storage space in the input bus bar is provided in the portion where the cooling passage is formed in the housing.
  • the temperature rise of the input bus bar is suppressed.
  • the temperature rise of the passive element is suppressed.
  • the in-vehicle system 100 constitutes a system for an electric vehicle.
  • the in-vehicle system 100 includes a battery 200 and a mechanical / electrical integrated unit 300.
  • the mechanical / electrical integrated unit 300 has a power conversion device 400 and a motor 500.
  • the battery 200 corresponds to an external power source.
  • the motor 500 corresponds to an electric motor.
  • the in-vehicle system 100 has a plurality of ECUs (not shown). These plurality of ECUs send and receive signals to and from each other via bus wiring. A plurality of ECUs cooperate to control an electric vehicle. By controlling the plurality of ECUs, the power running and regeneration of the motor 500 according to the SOC of the battery 200 are controlled. SOC is an abbreviation for state of charge. ECU is an abbreviation for electronic control unit.
  • the ECU has at least one arithmetic processing unit (CPU) and at least one memory device (MMR) as a storage medium for storing programs and data.
  • the ECU is provided by a microcomputer having a storage medium that can be read by a computer or a processor.
  • a storage medium is a non-transitional substantive storage medium that non-temporarily stores a program that can be read by a computer or processor.
  • the storage medium may be provided by a semiconductor memory, a magnetic disk, or the like.
  • Battery 200 has a plurality of secondary batteries. These plurality of secondary batteries form a battery stack connected in series. The SOC of this battery stack corresponds to the SOC of the battery 200.
  • a lithium ion secondary battery, a nickel hydrogen secondary battery, an organic radical battery and the like can be adopted.
  • the power conversion device 400 performs power conversion between the battery 200 and the motor 500.
  • the power conversion device 400 converts the DC power of the battery 200 into AC power.
  • the power conversion device 400 converts the AC power generated by the power generation (regeneration) of the motor 500 into DC power.
  • the motor 500 is connected to the output shaft of an electric vehicle (not shown).
  • the rotational energy of the motor 500 is transmitted to the traveling wheels of the electric vehicle via the output shaft.
  • the rotational energy of the traveling wheel is transmitted to the motor 500 via the output shaft.
  • the motor 500 is powered by AC power supplied from the power converter 400. As a result, propulsive force is applied to the traveling wheels.
  • the motor 500 is regenerated by the rotational energy transmitted from the traveling wheels.
  • the AC power generated by this regeneration is converted into DC power by the power conversion device 400. This DC power is supplied to the battery 200. DC power is also supplied to various electric loads mounted on electric vehicles.
  • the power conversion device 400 of the present embodiment includes components of an inverter.
  • the power converter 400 may include converter components in addition to the inverter components.
  • the power conversion device 400 includes a P bus bar 401 and an N bus bar 402.
  • the P bus bar 401 is electrically connected to the positive electrode of the battery 200.
  • the N bus bar 402 is electrically connected to the negative electrode of the battery 200.
  • the P bus bar 401 and the N bus bar 402 correspond to the input bus bar.
  • the power conversion device 400 includes a U-phase bus bar 403, a V-phase bus bar 404, and a W-phase bus bar 405.
  • the U-phase bus bar 403 is electrically connected to the U-phase stator coil of the motor 500.
  • the V-phase bus bar 404 is electrically connected to the V-phase stator coil.
  • the W-phase bus bar 405 is electrically connected to the W-phase stator coil.
  • the U-phase bus bar 403 to the W-phase bus bar 405 correspond to the output bus bar.
  • the power conversion device 400 includes a first current sensor 410, a noise filter 420, a smoothing capacitor 430, a switching unit 440, a second current sensor 450, and a control board 460.
  • the first current sensor 410 and the noise filter 420 are provided on the connection point side of each of the P bus bar 401 and the N bus bar 402 with the battery 200.
  • the first current sensor 410 detects the current flowing through the P bus bar 401 and the N bus bar 402.
  • the noise filter 420 removes noise input / output from the P bus bar 401 and the N bus bar 402.
  • the first current sensor 410 may be provided on at least one of the P bus bar 401 and the N bus bar 402.
  • the smoothing capacitor 430 and the switching unit 440 are connected to the side separated from the connection points of the batteries 200 of the P bus bar 401 and the N bus bar 402, respectively. In the extension directions of the P bus bar 401 and the N bus bar 402, the points connected to the bus bar of the noise filter 420 and the points connected to the bus bars of the smoothing capacitor 430 and the switching unit 440 are separated from each other.
  • the location where the noise filter 420 is connected in the P bus bar 401 and the N bus bar 402 is located outside the storage space of the inverter housing 490.
  • the points where the smoothing capacitor 430 and the switching unit 440 of the P bus bar 401 and the N bus bar 402 are connected are located in the storage space of the inverter housing 490.
  • the portions of the P bus bar 401 and the N bus bar 402 located outside the storage space of the inverter housing 490 are shown surrounded by a two-dot chain line in FIG.
  • the switching unit 440 includes a U-phase semiconductor module 441, a V-phase semiconductor module 442, and a W-phase semiconductor module 443. Each of these three semiconductor modules has a high-side switch 444 and a low-side switch 445, and a high-side diode 444a and a low-side diode 445a.
  • the switching unit 440 corresponds to the second electric component.
  • the high side switch 444 and the low side switch 445 correspond to active elements.
  • an n-channel type IGBT is adopted as the high side switch 444 and the low side switch 445.
  • the emitter electrode of the high side switch 444 and the collector electrode of the low side switch 445 are electrically connected.
  • the high-side switch 444 and the low-side switch 445 are electrically connected in series.
  • the cathode electrode of the high side diode 444a is connected to the collector electrode of the high side switch 444.
  • the anode electrode of the high side diode 444a is connected to the emitter electrode of the high side switch 444.
  • the high-side diode 444a is connected in anti-parallel to the high-side switch 444.
  • the cathode electrode of the low side diode 445a is connected to the collector electrode of the low side switch 445.
  • the anode electrode of the low-side diode 445a is connected to the emitter electrode of the low-side switch 445.
  • the low-side diode 445a is connected in anti-parallel to the low-side switch 445.
  • MOSFETs can be adopted instead of IGBTs.
  • a body diode is formed on the MOSFET. Therefore, when a MOSFET is adopted as the switch element, a configuration without a diode separate from the above-mentioned switch element can also be adopted.
  • the material for forming the semiconductor element such as the switch element and the diode provided in each of the three semiconductor modules is not particularly limited.
  • these semiconductor elements can be manufactured by a semiconductor such as Si and a wide-gap semiconductor such as SiC.
  • Each of the U-phase semiconductor module 441 to the W-phase semiconductor module 443 has a collector terminal 440a, an emitter terminal 440b, a midpoint terminal 440c, and a gate terminal 440d.
  • the end of the collector terminal 440a is connected to the collector electrode of the high side switch 444.
  • the end of the emitter terminal 440b is connected to the emitter electrode of the low side switch 445.
  • the end of the midpoint terminal 440c is connected to the midpoint between the high side switch 444 and the low side switch 445.
  • the ends of the gate terminal 440d are individually connected to the gate electrodes of the high side switch 444 and the low side switch 445.
  • the tip of the collector terminal 440a is connected to the P bus bar 401.
  • the tip of the emitter terminal 440b is connected to the N bus bar 402.
  • the high-side switch 444 and the low-side switch 445 are sequentially connected in series from the P bus bar 401 to the N bus bar 402.
  • the tip of the midpoint terminal 440c of the U-phase semiconductor module 441 is connected to the U-phase bus bar 403.
  • the tip of the midpoint terminal 440c of the V-phase semiconductor module 442 is connected to the V-phase bus bar 404.
  • the tip of the midpoint terminal 440c of the W-phase semiconductor module 443 is connected to the W-phase bus bar 405.
  • the motor 500 has a U-phase stator coil to a W-phase stator coil. Further, the motor 500 has U-phase stator bus bars 501 to W-phase stator bus bars 503 individually connected to each of these three phase stator coils.
  • the U-phase bus bar 403 is connected to the U-phase stator bus bar 501.
  • the V-phase bus bar 404 is connected to the V-phase stator bus bar 502.
  • the W-phase bus bar 405 is connected to the W-phase stator bus bar 503.
  • the second current sensor 450 is provided in the U-phase bus bar 403 to the W-phase bus bar 405.
  • the second current sensor 450 detects the current flowing through these three phase buses.
  • the second current sensor 450 may detect the current flowing through at least two of the three phase bus bars.
  • Control board> The gate terminals 440d of each of the U-phase semiconductor modules 441 to W-phase semiconductor modules 443 are connected to the control board 460.
  • a gate driver is mounted on the control board 460.
  • the gate driver amplifies the control signal output from the ECU and outputs it to the gate electrode.
  • the ECU that outputs this control signal may be mounted on the control board 460, or may be mounted on another board.
  • the switch elements provided in each of the three semiconductor modules are PWM controlled by the output of the control signal from the ECU.
  • the power converter 400 generates a three-phase alternating current.
  • the motor 500 generates (regenerates) power
  • the ECU stops, for example, the output of a control signal.
  • the AC power generated by the power generation of the motor 500 passes through the diodes provided in each of the three semiconductor modules.
  • AC power is converted to DC power.
  • the x direction corresponds to the vertical direction.
  • the y direction corresponds to the lateral direction.
  • the z direction corresponds to the alignment direction.
  • the power conversion device 400 has a capacitor housing 470, a cooler 480, and an inverter housing 490 in addition to the electrical components described so far.
  • the capacitor housing 470 fulfills the function of accommodating the smoothing capacitor 430.
  • the cooler 480 has a function of accommodating and cooling each of the U-phase semiconductor module 441 to the W-phase semiconductor module 443.
  • the inverter housing 490 functions to house the first current sensor 410, the noise filter 420, the second current sensor 450, the control board 460, the capacitor housing 470, and the cooler 480, respectively.
  • the smoothing capacitor 430 corresponds to a passive element.
  • the capacitor housing 470 corresponds to the first electrical component.
  • the appearance of the capacitor housing 470 has a rectangular cuboid shape.
  • the capacitor housing 470 is fixed to the inverter housing 490 with bolts or the like.
  • the smoothing capacitor 430 is housed in the capacitor housing 470.
  • the smoothing capacitor 430 has a first electrode 431, a second electrode 432, and a storage element 433.
  • the first electrode 431 and the second electrode 432 are arranged in the z direction via a storage element 433 such as a separator that functions as a dielectric. A part of each of the first electrode 431 and the second electrode 432 and all of the power storage elements 433 are housed in the capacitor housing 470.
  • the P bus bar 401 is connected to the exposed portion of the first electrode 431 from the capacitor housing 470.
  • the N bus bar 402 is connected to the exposed portion of the second electrode 432 from the capacitor housing 470.
  • Each of the U-phase semiconductor modules 441 to the W-phase semiconductor module 443 is a sealing resin 446 that covers all of the semiconductor elements such as switch elements and diodes described above and a part of each of various terminals connected to them. To prepare for.
  • the sealing resin 446 has a thin flat shape with a thickness in the x direction.
  • the sealing resin 446 has two main surfaces facing in the x direction. These two main surfaces have a larger area than the other surfaces.
  • the sealing resin 446 has two end faces arranged in the z direction.
  • the tip of the gate terminal 440d protrudes from one of these two end faces.
  • the tips of the collector terminal 440a, the emitter terminal 440b, and the midpoint terminal 440c project from the other of these two end faces.
  • the cooler 480 has a supply pipe 481, a discharge pipe 482, and a plurality of relay pipes 483.
  • the supply pipe 481 and the discharge pipe 482 are connected to each other via a plurality of relay pipes 483.
  • Refrigerant is supplied to the supply pipe 481. This refrigerant flows from the supply pipe 481 to the discharge pipe 482 via a plurality of relay pipes 483.
  • the supply pipe 481 and the discharge pipe 482 extend in the x direction.
  • the supply pipe 481 and the discharge pipe 482 are separated from each other in the y direction.
  • Each of the plurality of relay pipes 483 extends in the y direction from the supply pipe 481 toward the discharge pipe 482.
  • the supply port for supplying the refrigerant from the outside in the supply pipe 481 and the discharge port for discharging the refrigerant supplied from the relay pipe 483 in the discharge pipe 482 to the outside are arranged so as to be separated from each other in the y direction.
  • a plurality of relay tubes 483 are lined up apart from each other in the x direction.
  • a gap is formed between two adjacent relay tubes 483.
  • the cooler 480 is configured with a total of three voids.
  • a U-phase semiconductor module 441 to a W-phase semiconductor module 443 are individually provided in each of these three voids.
  • the control board 460 has a thin flat shape with a thickness in the z direction.
  • the control board 460 has an insulating board, a wiring pattern formed on the insulating board, and various electric elements electrically connected to the wiring pattern.
  • a gate driver is composed of these wiring patterns and various electric elements.
  • a plurality of through holes are formed on the control board 460. As shown in FIG. 2, the control board 460 is arranged to face the cooler 480 in which the semiconductor module is housed in the z direction. The gate terminal 440d of the semiconductor module is passed through the through hole of the control board 460. Then, the wiring pattern of the control board 460 and the gate terminal 440d are electrically connected via solder.
  • the inverter housing 490 has a housing 491 and an outer cover 492.
  • Each of the housing 491 and the outer cover 492 is manufactured by, for example, aluminum die casting.
  • the first current sensor 410, the second current sensor 450, the control board 460, the condenser housing 470, and the cooler 480 are each housed in the storage space of the housing 491.
  • the noise filter 420 is housed in the covering space partitioned between the housing 491 and the outer cover 492.
  • various bus bars described above will be provided in each of the storage space and the covering space.
  • the outer cover 492 corresponds to the electromagnetic shielding cover.
  • the housing 491 has a bottom wall 493, a side wall 494, and a lid wall 495.
  • the bottom wall 493 has a flat shape with a thin thickness in the z direction.
  • the bottom wall 493 has an inner bottom surface 493a and an outer bottom surface 493b arranged in the z direction.
  • the side wall 494 stands upright in the z direction from the inner bottom surface 493a. At the same time, the side wall 494 forms an annular shape in the circumferential direction around the z direction.
  • the area where the space surrounded by the inner peripheral surface 494a of the side wall 494 and the projection area of the inner bottom surface 493a of the bottom wall 493 in the z direction overlap is the storage space of the inverter housing 490.
  • the side wall 494 and the bottom wall 493 may be integrated or separate.
  • the opening is partitioned on the tip side of the side wall 494. Through this opening, the storage space and the space outside the storage space can communicate with each other. This opening is closed by a lid wall 495.
  • the lid wall 495 is connected to the side wall 494 by bolts or the like.
  • the side wall 494 is formed with a connection hole 494c that opens in the inner peripheral surface 494a and the outer peripheral surface 494b on the back side thereof.
  • the connection hole 494c is used for electrical connection between the electric component housed in the storage space of the inverter housing 490 and the electric component located outside the electric component.
  • connection hole 494c shown in FIG. 2 is used for electrical connection between the P bus bar 401 and the N bus bar 402 and the battery 200, respectively.
  • One end of each of the P bus bar 401 and the N bus bar 402 is provided in the connection hole 494c.
  • the connection hole 494c is provided with an input connector 406 having a terminal electrically connected to the tips of the P bus bar 401 and the N bus bar 402 while closing the connection hole 494c.
  • the terminal of the wire harness extended from the battery 200 is connected to the input connector 406.
  • the P bus bar 401 and the N bus bar 402 are electrically connected to the battery 200, respectively.
  • a support wall 496 is connected to the inner peripheral surface 494a side of the side wall 494.
  • the support wall 496 has a flat shape with a thin thickness in the z direction.
  • the storage space of the inverter housing 490 is divided into a bottom wall 493 side and a lid wall 495 side by the support wall 496.
  • the support wall 496 and the side wall 494 may be separate or integrated.
  • the first current sensor 410, the capacitor housing 470, the cooler 480, and the second current sensor 450 are each the bottom wall of the storage space of the inverter housing 490. It is stored on the 493 side.
  • the control board 460 is housed on the lid wall 495 side of the storage space of the inverter housing 490.
  • the support wall 496 has a lower surface 496a on the bottom wall 493 side and an upper surface 496b on the lid wall 495 side.
  • the support wall 496 is formed with an opening window 496c that opens to the lower surface 496a and the upper surface 496b.
  • the bottom wall 493 side and the lid wall 495 side of the storage space of the inverter housing 490 communicate with each other through the opening window 496c.
  • the capacitor housing 470 is located between the lower surface 496a and the inner bottom surface 493a.
  • the first electrode 431 housed in the capacitor housing 470 is located on the lower surface 496a side.
  • the second electrode 432 is located on the inner bottom surface 493a side.
  • Air is interposed between the capacitor housing 470 and the lower surface 496a.
  • the first electrode 431 facilitates heat exchange with the support wall 496 by heat transfer or heat radiation.
  • An insulating first heat transfer sheet 471 is interposed between the capacitor housing 470 and the inner bottom surface 493a.
  • the capacitor housing 470 is fixed to the bottom wall 493 by bolts (not shown). By fastening the bolts, the first heat transfer sheet 471 is sandwiched between the capacitor housing 470 and the bottom wall 493.
  • the second electrode 432 facilitates heat exchange with the bottom wall 493 by heat conduction.
  • the cooler 480 is located between the lower surface 496a and the inner bottom surface 493a.
  • the cooler 480 is located on the lower surface 496a side of the inner bottom surface 493a.
  • the cooler 480 and the support wall 496 are easy to positively transfer heat. It is suppressed that the temperature difference between the support wall 496 and the cooler 480 becomes large. It is suppressed that the temperature difference between the support wall 496 and the refrigerant flowing inside the cooler 480 becomes large.
  • the cooler 480 faces the control board 460 in the z direction via the opening window 496c of the support wall 496.
  • the gate terminal 440d of the semiconductor module housed in the cooler 480 extends to the control board 460 via the opening window 496c.
  • the tip of the gate terminal 440d is connected to the control board 460.
  • the bottom wall 493 has a first base portion 497 and a second base portion 498.
  • the first base portion 497 includes the above-mentioned inner bottom surface 493a.
  • the second base portion 498 includes the above-mentioned outer bottom surface 493b.
  • the first facing surface 493c on the back side of the inner bottom surface 493a and the second facing surface 493d on the back side of the outer bottom surface 493b face each other in the z direction. In this facing state, the first base portion 497 and the second base portion 498 are connected.
  • a part of each of the first facing surface 493c and the second facing surface 493d is selectively in contact with each other.
  • a part of each of the first facing surface 493c and the second facing surface 493d is selectively separated from each other.
  • the gap formed between the first facing surface 493c and the second facing surface 493d functions as a passage for flowing the refrigerant.
  • this void is referred to as a cooling passage 493e.
  • the bottom wall 493 corresponds to the formation site.
  • a sealing material for suppressing leakage of the refrigerant from the cooling passage 493e is interposed between the first facing surface 493c and the second facing surface 493d.
  • the sealing material is compressed between the first facing surface 493c and the second facing surface 493d.
  • the sealing material is provided around the cooling passage 493e.
  • the sealing material is provided between the cooling passage 493e and various holes formed in the bottom wall 493, which will be described later.
  • the bottom wall 493 is formed with two inlet / outlet holes 493f for inflowing and discharging the refrigerant into the cooling passage 493e.
  • One of these two inlet / outlet holes 493f and the cooler 480 are connected via the connecting pipe 499.
  • the cooler 480 and the cooling passage 493e communicate with each other.
  • the cross-sectional view shown in FIG. 2 corresponds to the drawing cut along the II-II cross-sectional line shown in FIG.
  • one of the two inlet / outlet holes 493f is connected to the discharge pipe 482 of the cooler 480. Due to such a configuration, the refrigerant flowing through the cooler 480 is supplied to the cooling passage 493e. The refrigerant that has exchanged heat with the semiconductor module in the cooler 480 is supplied to the cooling passage 493e.
  • the solid arrow shown in FIG. 3 indicates the flow direction of the refrigerant.
  • the cooling passage 493e and the condenser housing 470 are arranged in the z direction.
  • the outer bottom surface 493b of the bottom wall 493 and the capacitor housing 470 are arranged in the z direction.
  • a part of each of the cooling passage 493e and the outer bottom surface 493b is located in the region where the condenser housing 470 is projected along the z direction.
  • the region where the capacitor housing 470 on the outer bottom surface 493b is projected along the z direction is referred to as a projection region.
  • the bottom wall 493 is formed with first through holes 493 g to fourth through holes 493j that open into the inner bottom surface 493a and the outer bottom surface 493b.
  • the first through hole 493g and the second through hole 493h are formed on the input connector 406 side of the bottom wall 493.
  • the third through hole 493i and the fourth through hole 493j are formed on the central side of the bottom wall 493.
  • the projection area is located between the first through hole 493g and the third through hole 493i.
  • the projection area is located between the second through hole 493h and the fourth through hole 493j.
  • the first through hole 493g and the second through hole 493h correspond to the first through hole.
  • the third through hole 493i and the fourth through hole 493j correspond to the second through hole.
  • each of the P bus bar 401 and the N bus bar 402 is extended in the storage space of the inverter housing 490, then extended outside the storage space, and then extended again in the storage space.
  • the P bus bar 401 is passed through the first through hole 493 g and the third through hole 493i.
  • the N bus bar 402 is passed through the second through hole 493h and the fourth through hole 493j.
  • each of the P bus bar 401 and the N bus bar 402 has a first internal bus bar 407, an external bus bar 408, and a second internal bus bar 409.
  • the first internal bus bar 407 and the second internal bus bar 409 are each extended in the storage space. These two internal bus bars are connected via an external bus bar 408 that extends outside the storage space.
  • first internal bus bar 407 One end of the first internal bus bar 407 is connected to the input connector 406.
  • the first internal bus bar 407 extends in the z direction from the input connector 406 toward the bottom wall 493 side.
  • the other end side of the first internal bus bar 407 of the P bus bar 401 is inserted into the first through hole 493 g.
  • the other end side of the first internal bus bar 407 of the N bus bar 402 is inserted into the second through hole 493h.
  • the other end of the first internal bus bar 407 is separated from the wall surface that divides the through hole in order to secure an insulating distance. Air is interposed between the other end side of the first internal bus bar 407 and the wall surface that partitions the through hole.
  • the through holes may be filled with an insulating resin material so as to insulate the first internal bus bar 407 and the bottom wall 493 and to conduct heat between them.
  • External bus bar 408 One end of the external bus bar 408 is connected to the other end of the first internal bus bar 407.
  • the external bus bar 408 extends along the outer bottom surface 493b.
  • the external bus bar 408 of the P bus bar 401 extends from the first through hole 493 g toward the third through hole 493i.
  • the external bus bar 408 of the N bus bar 402 extends from the second through hole 493h toward the fourth through hole 493j.
  • the external bus bar 408 faces the outer bottom surface 493b in the z direction.
  • the external bus bar 408 is arranged near the outer bottom surface 493b.
  • the separation distance between the external bus bar 408 and the outer bottom surface 493b is such that the insulation distance is secured.
  • the external bus bar 408 is aligned with the projection area in the z direction.
  • the external bus bar 408 is aligned with the capacitor housing 470 in the z direction.
  • the second internal bus bar 409 is connected to the other end of the external bus bar 408.
  • the second internal bus bar 409 of the P bus bar 401 extends from the third through hole 493i to the storage space of the inverter housing 490.
  • the second internal bus bar 409 of the N bus bar 402 extends from the fourth through hole 493j to the storage space.
  • the other end of the second internal bus bar 409 is separated from the wall surface that divides the through hole in order to secure an insulating distance. Air is interposed between the other end side of the second internal bus bar 409 and the wall surface that partitions the through hole.
  • the through holes may be filled with an insulating resin material so as to insulate the second inner bus bar 409 and the bottom wall 493 and to conduct heat between them.
  • each of the two second internal bus bars 409 The position in the y direction on the other end side of each of the two second internal bus bars 409 is between the condenser housing 470 and the cooler 480.
  • the other end side of each of the two second internal bus bars 409 is branched into a condenser housing 470 side and a cooler 480 side, and extends in the y direction.
  • the extension direction of these branch portions is opposite in the y direction.
  • the second internal bus bar 409 of the P bus bar 401 is connected to the first electrode 431 of the smoothing capacitor 430. At the same time, the second internal bus bar 409 of the P bus bar 401 is connected to the collector terminals 440a of the three semiconductor modules.
  • the second internal bus bar 409 of the N bus bar 402 is connected to the second electrode 432 of the smoothing capacitor 430. At the same time, the second internal bus bar 409 of the N bus bar 402 is connected to the emitter terminals 440b of the three semiconductor modules.
  • the noise filter 420 is provided on the external bus bar 408.
  • the noise filter 420 is provided on the bottom wall 493.
  • the noise filter 420 faces the outer bottom surface 493b.
  • the noise filter 420 is aligned with the projection region in the z direction.
  • the noise filter 420 is aligned with the capacitor housing 470 in the z direction.
  • the noise filter 420 contains at least one of a capacitor and a ferrite core.
  • the capacitor removes the current noise flowing through the external bus bar 408.
  • the ferrite core suppresses the input of electromagnetic noise to the external bus bar 408. Further, the ferrite core absorbs electromagnetic noise output from the external bus bar 408.
  • the following form can be adopted as the capacitor included in the noise filter 420.
  • This capacitor has less capacitance than the smoothing capacitor 430.
  • One capacitor is connected between the two external buses 408.
  • Two capacitors are connected in series between two external buses 408. The midpoint between these two capacitors is connected to ground.
  • the following form can be adopted as the ferrite core included in the noise filter 420.
  • One ferrite core surrounds each of the two external bus bars 408.
  • Two ferrite cores individually surround each of the two external bus bars 408.
  • the noise filter 420 may include a resin body that covers these in addition to the above-mentioned capacitor and ferrite core for removing noise. Then, this resin body may be fixed to the bottom wall 493 with bolts or the like. The resin body may come into contact with the outer bottom surface 493b.
  • the bottom wall 493 is formed with a first output hole 493k, a second output hole 493l, and a third output hole 493m that open into the inner bottom surface 493a and the outer bottom surface 493b. There is. These three output holes are formed on the bottom wall 493 on the side separated from the input connector 406.
  • the side wall 494 forms an annular shape in the circumferential direction around the z direction. Therefore, a part of the inner peripheral surface 494a of the side wall 494 is arranged in the y direction.
  • the input connector 406 is provided in one of the two regions arranged in the y direction on the inner peripheral surface 494a.
  • the first output hole 493k to the third output hole 493m are located on the other side of the two regions.
  • each of the U-phase bus bar 403 to the W-phase bus bar 405 extends in the storage space of the inverter housing 490, and a part thereof extends outside the storage space.
  • each of the U-phase bus bar 403 to the W-phase bus bar 405 is individually passed through the first output hole 493 k to the third output hole 493 m.
  • a cooler 480 and a condenser housing 470 are located between each of the U-phase bus bars 403 to W-phase bus bars 405 and the input connector 406.
  • the first output hole 493k to the third output hole 493m correspond to the third through hole.
  • each of the U-phase bus bar 403 to the W-phase bus bar 405 is individually connected to the midpoint terminal 440c of the three semiconductor modules in the storage space.
  • a second current sensor 450 is provided in each of the U-phase bus bar 403 to the W-phase bus bar 405.
  • the other ends of the U-phase bus bars 403 to W-phase bus bars 405 are individually connected to the U-phase stator bus bars 501 to W-phase stator bus bars 503, respectively, outside the storage space.
  • the bottom wall 493 is located between the second current sensor 450 and the other ends of each of the U-phase bus bar 403 to the W-phase bus bar 405.
  • a part of each of the U-phase bus bar 403 to the W-phase bus bar 405 of the present embodiment is extended in the z direction in the storage space, and is bent and extended along the inner bottom surface 493a.
  • a second heat transfer sheet 472 is interposed between a portion extending along the inner bottom surface 493a of the phase bus bar and the inner bottom surface 493a.
  • the second heat transfer sheet 472 is sandwiched between the phase bus bar and the bottom wall 493. This facilitates the positive heat conduction of the phase bather with the bottom wall 493 formed by the cooling passage 493e via the second heat transfer sheet 472.
  • the outer cover 492 is connected to the bottom wall 493.
  • the outer cover 492 has an facing surface 492a that faces the outer bottom surface 493b at a distance in the z direction.
  • a covering space is partitioned between the outer bottom surface 493b and the facing surface 492a.
  • An external bus bar 408, a noise filter 420, and a U-phase bus bar 403 to a W-phase bus bar 405 are housed in this covering space.
  • the covering space is roughly divided into a first space, a second space, and a third space.
  • An external bus bar 408 and a noise filter 420 are housed in the first space.
  • the first space and the third space communicate with each other through the second space.
  • the U-phase bus bar 403 to the W-phase bus bar 405 are stored in the third space.
  • the length of the connection location with the second space in the first space is shorter in the z direction than the storage location of the external bus bar 408 and the noise filter 420 in the first space. From the first space to the second space, the covering space has a narrowed shape.
  • the length of the connection location with the second space in the third space is shorter in the z direction than the storage location of the U-phase bus bar 403 to the W-phase bus bar 405 in the third space. From the third space to the second space, the covering space has a narrowed shape.
  • a part of the metal outer cover 492 is on the line connecting the noise filter 420 housed in the first space and the U-phase bus bar 403 to the W-phase bus bar 405 housed in the third storage space. Is located.
  • the covering space may be divided into a space in which the external bus bar 408 and the noise filter 420 are housed, and a space in which the U-phase bus bar 403 to the W-phase bus bar 405 are housed. These two spaces may be separated.
  • the outer cover 492 has a facing surface 492a and a back surface 492b on the back side thereof.
  • the outer cover 492 is formed with a connection hole 492c and a connection hole 492d that open on the facing surface 492a and the back surface 492b, respectively.
  • connection hole 492c is open in the z direction.
  • the tip end side of each of the U-phase stator bus bar 501 to the W-phase stator bus bar 503 is inserted into the third space through the connection hole 492c.
  • the connecting hole 492d is open in the y direction. In the overlapping region where the projection region of the connecting hole 492d in the y direction and the projection region of the connecting hole 492c in the z direction overlap, the other ends of the U-phase bus 403 to the W-phase bus 405 and the U-phase stator bus 501 to W The tips of each of the phase stator baths 503 are provided.
  • the other ends of the three phase bus bars and the tips of the three phase stator bus bars are aligned in the x direction in the overlapping region.
  • the other ends of these three phase bus bars and the tips of the three phase stator bus bars face each other in the y direction.
  • a through hole for bolting both of the phase bus bar and the phase stator bus bar is formed in the facing region of each of the phase bus bar and the phase stator bus bar. The through hole extends in the y direction.
  • a bolt 504 for connecting the phase bus bar and the phase stator bus bar is inserted into the overlapping region via the connection hole 492c that opens in the y direction. After the phase stator bus bar and the phase bus bar are bolted together, the connecting hole 492d is closed by the connecting cover 492e.
  • the shaft portion of the bolt 504 is fastened to a screw hole of a terminal block or a screw groove of a nut (not shown).
  • a phase bus bar and a phase stator bus bar are sandwiched between the head of the bolt 504 and the terminal block.
  • the motor 500 includes a metal motor housing 510 in addition to the U-phase stator bus bars 501 to the W-phase stator bus bar 503.
  • the motor shaft, rotor, and stator are housed in the hollow of the motor housing 510.
  • the motor housing 510 corresponds to an electromagnetically shielded housing.
  • the motor housing 510 has a cylindrical shape.
  • the axial direction of the motor housing 510 is the x direction. Therefore, the motor housing 510 has a cylindrical surface 510a that forms a circle in a plane facing the x direction.
  • the motor housing 510 has two bottom surfaces 510b facing in the x direction.
  • the bottom surface 510b of the motor housing 510 is formed with a through hole for providing the tip of the motor shaft extending in the y direction outside the hollow of the motor housing 510.
  • the tip of this motor shaft is connected to the output shaft of the electric vehicle.
  • the rotor has a permanent magnet and a fixing portion for fixing the permanent magnet to the motor shaft.
  • the fixed portion has a cylindrical shape.
  • the motor shaft is inserted and fixed in the hollow of the fixed portion.
  • the permanent magnet is provided around the axis of the motor shaft.
  • the stator has a stator core and a stator coil provided on the stator core.
  • the stator core has a cylindrical shape.
  • a rotor is provided together with a motor shaft in the hollow of the stator core. As a result, the rotor and the stator face each other in the radial direction orthogonal to the extension direction of the motor shaft.
  • the stator coil has the above-mentioned U-phase stator coil to W-phase stator coil.
  • Each of these three-phase stator coils has an insulated wire whose conductor is covered with an insulating material such as an enamel coating. These three-phase insulated wires are wound around the stator core. As a result, the stator coil is provided on the stator core.
  • the three-phase stator coil is electrically connected to the power conversion device 400 via the U-phase stator bus bar 501 to the W-phase stator bus bar 503.
  • Three-phase alternating current is supplied from the power conversion device 400 to the three-phase stator coil.
  • a three-phase rotating magnetic field is generated from the stator coil.
  • the rotor has a permanent magnet.
  • a magnetic field is generated from a permanent magnet.
  • a three-phase rotating magnetic field is generated from the stator coil.
  • Rotational torque is generated in the rotor by the interaction of these two magnetic fields.
  • the direction in which the rotational torque is generated sequentially changes with time in the circumferential direction around the extension direction of the motor shaft according to the phase change of the rotating magnetic field. As a result, the motor shaft provided with the rotor rotates.
  • the inverter housing 490 of the power conversion device 400 is connected to the motor housing 510 of the motor 500.
  • the mechanical / electrical integrated unit 300 is configured.
  • the opening of the connection hole 492c of the inverter housing 490 described above is closed by the motor housing 510.
  • the mechanical / electrical integrated unit 300 is provided in the mounting space behind the hood of the electric vehicle.
  • the x direction is the left-right direction of the electric vehicle
  • the y direction is the front-rear direction of the electric vehicle
  • the z direction is along the top-bottom direction of the electric vehicle.
  • the motor housing 510 is provided on the bottom side of the vehicle in the z direction with the mechanical / electrical integrated unit 300 provided in the mounting space.
  • the inverter housing 490 is provided on the bonnet side.
  • the mechanical / electrical integrated unit 300 is separated from the passenger compartment in which the user is boarding in the y direction.
  • the mechanical / electrical integrated unit 300 is separated from vehicle accessories such as a radio and a car navigation system provided in the vehicle interior in the y direction.
  • vehicle accessories such as a radio and a car navigation system provided in the vehicle interior in the y direction.
  • PS the mounting space
  • CR the passenger compartment
  • the boundary between the two is shown by a two-dot chain line.
  • the motor housing 510 has a cylindrical surface 510a whose axial direction is the x direction.
  • the cylindrical surface 510a is a plane orthogonal to the x direction and has an arc shape.
  • the cylindrical surface 510a and the outer bottom surface 493b of the inverter housing 490 are aligned in the z direction. Due to this arrangement configuration, the separation distance between the cylindrical surface 510a and the outer bottom surface 493b in the z direction changes when the position in the y direction deviates.
  • FIG. 4 shows the center line CL penetrating the center of the cylindrical surface 510a in the z direction as a alternate long and short dash line.
  • the distance between the cylindrical surface 510a and the outer bottom surface 493b in the z direction is the shortest on the center line CL.
  • the distance between the cylindrical surface 510a and the outer bottom surface 493b in the z direction becomes longer as the distance from the center line CL increases in the y direction.
  • the gap between the cylindrical surface 510a and the outer bottom surface 493b is a so-called dead space.
  • the two dead spaces are lined up in the y direction via the center line CL.
  • One of the two dead spaces is located on the passenger compartment side.
  • the other of the two dead spaces is separated from the passenger compartment.
  • the dead space separated from the passenger compartment is hatched.
  • FIG. 4 shows only the portion of the outer cover 492 that partitions the first space in which the external bus bar 408 and the noise filter 420 are housed.
  • a portion of the outer cover 492 in which the external bus bar 408 and the noise filter 420 are housed is provided in the hatched dead space.
  • the inverter housing 490 is located between the external bus bar 408 and noise filter 420 provided outside the storage space of the housing 491 and the vehicle interior provided with vehicle accessories such as a radio and a car navigation system. Housing 491 and motor housing 510 are located. The external bus bar 408 and the noise filter 420 are aligned with the motor housing 510 in the y direction.
  • Each of the P bus bar 401 and the N bus bar 402 has a first internal bus bar 407 and a second internal bus bar 409 extending in the storage space, and an external bus bar 408 extending outside the storage space.
  • the external bus bar 408 faces the outer bottom surface 493b formed by the cooling passage 493e in the z direction.
  • the separation distance between the external bus bar 408 and the outer bottom surface 493b is such that the insulation distance is secured.
  • the temperature rise of the external bus bars 408 of each of the P bus bar 401 and the N bus bar 402 is suppressed.
  • the temperature rise of the smoothing capacitor 430 electrically connected to the external bus bar 408 is suppressed. Changes in electrical characteristics such as the capacitance of the smoothing capacitor 430 are suppressed.
  • the capacitor housing 470 faces the projection region projected on the outer bottom surface 493b along the z direction in the z direction. Further, the noise filter 420 connected to the external bus bar 408 also faces the projection region in the z direction.
  • the noise filter 420 is provided on the bottom wall 493.
  • the noise filter 420 and the bottom wall 493 can easily transfer heat. Therefore, the temperature rise of the external bus bar 408 connected to the noise filter 420 is suppressed. The temperature rise of the smoothing capacitor 430 electrically connected to the external bus bar 408 is suppressed.
  • the external bus bar 408 of the P bus bar 401 extends from the first through hole 493 g to the third through hole 493i via the projection region.
  • the external bus bar 408 of the N bus bar 402 extends from the second through hole 493h to the fourth through hole 493j via the projection region.
  • the extension of the external bus bar 408 is suppressed. Therefore, the generation of electromagnetic noise from the external bus bar 408 is suppressed.
  • the condenser housing 470 and the cooler 480 are separated in the y direction.
  • the other end side of the second internal bus bar 409 extends between the condenser housing 470 and the cooler 480, and then branches into the condenser housing 470 side and the cooler 480 side.
  • One of the branched portions of the second internal bus bar 409 is connected to the smoothing capacitor 430, and the other branched portion is connected to the switching unit 440.
  • the power supply power input from the battery 200 flows to the switching unit 440 via the smoothing capacitor 430.
  • the temperature rise of the smoothing capacitor 430 due to energization is suppressed.
  • the first internal bus bar 407 of the P bus bar 401 is inserted into the first through hole 493 g.
  • the first internal bus bar 407 of the N bus bar 402 is inserted into the second through hole 493h.
  • the temperature rise of the first internal bus bar 407 is suppressed.
  • the temperature rise of the smoothing capacitor 430 electrically connected to the first internal bus bar 407 is suppressed.
  • the temperature rise of the first current sensor 410 provided in the first internal bus bar 407 is suppressed.
  • the second internal bus bar 409 of the P bus bar 401 is inserted into the third through hole 493i.
  • the second internal bus bar 409 of the N bus bar 402 is inserted into the fourth through hole 493j.
  • the temperature rise of the second internal bus bar 409 is suppressed.
  • the temperature rise of the smoothing capacitor 430 electrically connected to the second internal bus bar 409 is suppressed.
  • the external bus bar 408 is stored in the covering space partitioned between the bottom wall 493 and the outer cover 492.
  • electromagnetic noise generated from the current flowing through the external bus bar 408 is suppressed from leaking to the outside of the power conversion device 400.
  • a part of the outer cover 492 is located on the line connecting the external bus bar 408 and the U-phase bus bar 403 to the W-phase bus bar 405.
  • the configuration in which the covering space is divided into a space in which the external bus bar 408 and the noise filter 420 are housed and a space in which the U-phase bus bar 403 to the W-phase bus bar 405 are housed is shown as an example.
  • the U-phase bus bar 403 to the W-phase bus bar 405 extend in the z direction and bend along the inner bottom surface 493a in the storage space.
  • the vibration of the motor 500 suppresses the action of stress on the midpoint terminals 440c of the U-phase semiconductor modules 441 to W-phase semiconductor modules 443, respectively, of the U-phase bus bars 403 to W-phase bus bars 405. It is possible to suppress the occurrence of electrical connection failure between the phase bus bar and the semiconductor module.
  • U-phase bus bars 403 to W-phase bus bars 405 are inserted into the first output holes 493k to the third output holes 493m.
  • the temperature rise of the U-phase bus bar 403 to the W-phase bus bar 405 is suppressed.
  • the temperature rise of the second current sensor 450 provided in the U-phase bus bar 403 to the W-phase bus bar 405 is suppressed.
  • the bottom wall 493 is located between the other end connected to each of the U-phase stator bus bars 501 to W-phase stator bus bar 503 of each of the U-phase bus bars 403 to W-phase bus bar 405 and the second current sensor 450.
  • a second heat transfer sheet 472 is interposed between the U-phase bus bar 403 to the W-phase bus bar 405 and the bottom wall 493.
  • the temperature rise of the U-phase bus bar 403 to the W-phase bus bar 405 is suppressed.
  • the temperature rise of the second current sensor 450 is suppressed.
  • the external bus bar 408 and the noise filter 420 are provided in a dead space formed between the bottom wall 493 of the housing 491 of the inverter housing 490 and the cylindrical surface 510a of the motor housing 510.
  • the external bus bar 408 and the noise filter 420 are provided in the dead space separated from the vehicle interior among the two dead spaces configured between the inverter housing 490 and the motor housing 510.
  • electromagnetic noise generated from the current flowing through the external bus bar 408 provided outside the storage space of the housing 491 is suppressed from passing through vehicle accessories such as a radio and a car navigation system provided in the passenger compartment. Will be done.
  • the inverter housing 490 and the motor housing 510 are located between the external bus bar 408 provided outside the storage space of the housing 491 and the passenger compartment.
  • the electromagnetic noise generated from the external bus bar 408 is effectively suppressed from passing through the vehicle accessories provided in the passenger compartment.
  • a cooler 480 is provided on the support wall 496.
  • the support wall 496 and the capacitor housing 470 face each other in the z direction.
  • the support wall 496 and the capacitor housing 470 facilitate heat exchange. Therefore, the temperature rise of the smoothing capacitor 430 housed in the capacitor housing 470 is suppressed.
  • the first electrode 431 provided in the smoothing capacitor 430 is located on the support wall 496 side, and the second electrode 432 is located on the bottom wall 493 side.
  • the first electrode 431 easily exchanges heat with the support wall 496 provided with the cooler 480.
  • the second electrode 432 facilitates heat exchange with the bottom wall 493 in which the cooling passage 493e is formed. Therefore, the temperature rise of the smoothing capacitor 430 is effectively suppressed.
  • the configuration in which the refrigerant flowing through the cooling passage 493e is supplied to the cooler 480 is shown as an example. As shown in FIGS. 2 and 4, the cooling passage 493e is located on the bottom side of the vehicle in the vertical direction of the vehicle with respect to the cooler 480.
  • the refrigerant flowing from the cooling passage 493e to the cooler 480 flows in the z direction in the direction opposite to the vertical direction. Therefore, even if air bubbles are generated in the cooling passage 493e, the air bubbles easily flow to the cooler 480. The bubbles are easily discharged to the outside through the discharge pipe 482 of the cooler 480. Therefore, it is suppressed that the cooling performance of the cooling passage 493e and the cooler 480 is deteriorated due to the air bubbles.
  • the U-phase bus bar 403 to the W-phase bus bar 405 of the present embodiment have a conductive bus bar 400a and a heat conductive bus bar 400b.
  • the conductive bus bar 400a is responsible for energization between the switching unit 440 and the U-phase stator bus bar 501 to the W-phase stator bus bar 503.
  • the heat conductive bus bar 400b is responsible for heat conduction between the conductive bus bar 400a and the bottom wall 493.
  • the forming materials of the conductive bus bar 400a and the heat conductive bus bar 400b may be the same or different.
  • the conductive bus bar 400a may be formed of a material having a higher electric conductivity than the heat conductive bus bar 400b.
  • the heat conductive bus bar 400b is preferably made of a material having a higher thermal conductivity than the conductive bus bar 400a.
  • the conductive bus bar 400a and the heat conductive bus bar 400b are connected by, for example, bolts.
  • the heat conductive bus bar 400b extends along the inner bottom surface 493a.
  • a second heat transfer sheet 472 is interposed between the heat conduction bus bar 400b and the inner bottom surface 493a.
  • the temperature rise of the conductive bus bar 400a is suppressed.
  • the temperature rise of the second current sensor 450 provided in the conductive bus bar 400a is suppressed.
  • the mechanical / electrical integrated unit 300 described in the present embodiment includes components equivalent to those of the mechanical / electrical integrated unit 300 described in the first embodiment. Therefore, it goes without saying that the mechanical / electrical integrated unit 300 described in the present embodiment has the same function and effect as the mechanical / electrical integrated unit 300 described in the first embodiment. Therefore, the description is omitted. The description of overlapping actions and effects will be omitted in the other embodiments and modifications shown below.
  • a connecting hole 492d for bolting each of the U-phase bus bar 403 to the W-phase bus bar 405 and the U-phase stator bus bar 501 to the W-phase stator bus bar 503 is formed on the outer cover 492.
  • a connecting hole 492d is formed in the side wall 494 of the housing 491.
  • the connecting hole 492d is open to the inner peripheral surface 494a and the outer peripheral surface 494b.
  • each of the U-phase stator bus bar 501 to the W-phase stator bus bar 503 is inserted into the first output hole 493k to the third output hole 493m.
  • the tips of the U-phase stator bus bars 501 to the W-phase stator bus bars 503 are provided in the storage space of the housing 491.
  • each of the U-phase bus bars 403 to W-phase bus bar 405 and each of the U-phase stator bus bars 501 to W-phase stator bus bar 503 are on the inner bottom surface 493a side of the outer bottom surface 493b in the z direction.
  • the first output hole 493k to the third output hole 493m are formed on the side wall 494. These first output holes 493k to third output holes 493m are open to the inner peripheral surface 494a and the outer peripheral surface 494b.
  • the outer cover 492 is divided into a first outer cover 492f for partitioning the first space and a second outer cover 492g for partitioning the third space.
  • the first outer cover 492f is connected to the bottom wall 493.
  • the first space is partitioned between the first outer cover 492f and the outer bottom surface 493b.
  • the second outer cover 492 g is provided on the side wall 494.
  • the third space is partitioned between the second outer cover 492g and the outer peripheral surface 494b.
  • a connecting hole 492d is formed in the second outer cover 492g.
  • the extension of the connecting hole 492d in the z-direction suppresses the increase in the body shape of the power conversion device 400 in the z-direction.
  • each of the U-phase bus bar 403 to the W-phase bus bar 405 is located closer to the inner bottom surface 493a than the outer bottom surface 493b in the z direction.
  • the tip side of each of the U-phase bus bar 403 to the W-phase bus bar 405 is separated from the motor 500 in the z direction. Therefore, it is suppressed that the temperature of each of the U-phase bus bar 403 to the W-phase bus bar 405 rises due to heat transfer from the motor 500.
  • an output connector 400c having a terminal electrically connected to the tip of each of the U-phase bus bar 403 to the W-phase bus bar 405 is provided on the outer cover 492.
  • the terminal of the wire harness extended from the motor 500 is connected to the output connector 400c.
  • each of the U-phase bus bar 403 to the W-phase bus bar 405 is electrically connected to the motor 500.
  • the condenser housing 470 and the cooler 480 are arranged in the z direction.
  • inverter housing 490 is fixed to the motor housing 510.
  • the inverter housing 490 may be fixed to the body chassis of the electric vehicle.
  • the mechanical / electrical integrated unit 300 is applied to an in-vehicle system 100 for an electric vehicle.
  • the application of the mechanical / electrical integrated unit 300 is not particularly limited to the above example.
  • the power conversion device 400 can also adopt a configuration provided in the housing of the power transmission mechanism having a function of transmitting the power of the motor 500 to the axle.
  • This housing has the same external shape as the motor housing 510.
  • the power transmission mechanism has a plurality of shafts extending in the x direction and a gear connected to the plurality of shafts.
  • the teeth formed in these plurality of gears mesh with each other so that the shafts can rotate with each other.
  • One of the plurality of shafts of the power transmission mechanism is connected to the other end of the motor shaft of the motor 500. Further, one of the remaining plurality of shafts is connected to the drive shaft via a differential gear. As a result, the plurality of shafts and gears of the power transmission mechanism can be rotated by the rotation of the motor 500 or the rotation of the traveling wheel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

An electric power converting device (400) includes a capacitor housing (470) accommodating a smoothing capacitor (430), a switching unit (440) provided with a switch element, and an input connector (406) connected to a battery. The electric power converting device includes: a P bus bar (401) and an N bus bar (402) electrically connecting each of the smoothing capacitor and the switch element to the input connector; and a casing (491) provided with an accommodating space accommodating the electrical components and the bus bars, and a refrigerant passage (493e) through which a refrigerant flows. Parts of the P bus bar and the N bus bar positioned outside the accommodating space are provided in a bottom wall (493) of the casing through which the refrigerant passage is formed.

Description

電力変換装置Power converter 関連出願の相互参照Cross-reference of related applications
 この出願は、2021年1月8日に日本に出願された特許出願第2021-002302号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on Patent Application No. 2021-002302 filed in Japan on January 8, 2021, and the contents of the basic application are incorporated by reference as a whole.
 本明細書に記載の開示は、電力変換装置に関するものである。 The disclosure described in this specification relates to a power conversion device.
 特許文献1に示されるように、コンデンサモジュールを備える電力変換装置が知られている。 As shown in Patent Document 1, a power conversion device including a capacitor module is known.
特開2013-115903号公報Japanese Unexamined Patent Publication No. 2013-115903
 特許文献1に記載の電力変換装置のコンデンサモジュールは直流コネクタを介してバッテリに接続される電源端子を備えている。バッテリから供給される電流量が増大すると、これら電源端子と直流コネクタが昇温する。この結果、コンデンサモジュールに含まれるコンデンサセル(受動素子)が昇温する虞がある。 The capacitor module of the power conversion device described in Patent Document 1 has a power supply terminal connected to the battery via a DC connector. As the amount of current supplied from the battery increases, the temperature of these power supply terminals and the DC connector rises. As a result, the temperature of the capacitor cell (passive element) included in the capacitor module may rise.
 本明細書の目的は、受動素子の昇温の抑制された電力変換装置を提供することである。 An object of the present specification is to provide a power conversion device in which the temperature rise of a passive element is suppressed.
 本開示の一態様による電力変換装置は、受動素子の収納される第1電気部品と、
 能動素子を備える第2電気部品と、
 外部電源と接続される入力コネクタと、
 受動素子および能動素子それぞれと入力コネクタとを電気的に接続する入力バスバと、
 入力バスバの一部、第1電気部品、第2電気部品それぞれを収納する収納空間、および、冷却通路を備える筐体と、を有し、
 入力バスバにおける収納空間の外に位置する部位が筐体における冷却通路の形成部位に設けられている。
The power conversion device according to one aspect of the present disclosure includes a first electric component in which a passive element is housed and a first electric component.
A second electrical component with an active element,
The input connector connected to the external power supply and
An input bus bar that electrically connects each of the passive and active elements to the input connector,
It has a part of the input bus bar, a storage space for accommodating each of the first electric component and the second electric component, and a housing provided with a cooling passage.
A portion located outside the storage space in the input bus bar is provided in the portion where the cooling passage is formed in the housing.
 これによれば入力バスバの昇温が抑制される。その結果、受動素子の昇温が抑制される。 According to this, the temperature rise of the input bus bar is suppressed. As a result, the temperature rise of the passive element is suppressed.
 なお、添付した請求の範囲の括弧内の参照番号は、後述の実施形態に記載の構成との対応関係を示すものに過ぎず、技術的範囲を何ら制限するものではない。 Note that the reference numbers in the parentheses of the attached claims merely indicate the correspondence with the configurations described in the embodiments described later, and do not limit the technical scope at all.
車載システムを説明するための回路図である。It is a circuit diagram for demonstrating an in-vehicle system. 電力変換装置を説明するための断面図である。It is sectional drawing for demonstrating the power conversion apparatus. 流通経路を説明するための上面図である。It is a top view for demonstrating a distribution channel. 機電一体型ユニットを説明するための模式図である。It is a schematic diagram for demonstrating the mechanical / electrical integrated unit. 電力変換装置を説明するための断面図である。It is sectional drawing for demonstrating the power conversion apparatus. 電力変換装置を説明するための断面図である。It is sectional drawing for demonstrating the power conversion apparatus. 電力変換装置を説明するための断面図である。It is sectional drawing for demonstrating the power conversion apparatus. 電力変換装置を説明するための断面図である。It is sectional drawing for demonstrating the power conversion apparatus. 電力変換装置を説明するための断面図である。It is sectional drawing for demonstrating the power conversion apparatus.
 以下、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。 Hereinafter, a plurality of forms for carrying out the present disclosure will be described with reference to the drawings. In each form, the same reference numerals may be given to the parts corresponding to the matters described in the preceding forms, and duplicate explanations may be omitted. When only a part of the configuration is described in each form, other forms described above can be applied to the other parts of the configuration.
 各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせが可能である。また、特に組み合わせに支障が生じなければ、組み合わせが可能であることを明示していなくても、実施形態同士、実施形態と変形例、および、変形例同士を部分的に組み合せることも可能である。 It is possible to combine parts that clearly indicate that they can be specifically combined in each embodiment. Further, if there is no particular problem in the combination, it is possible to partially combine the embodiments, the embodiments and the modified examples, and the modified examples with each other even if it is not clearly stated that the combination is possible. be.
 (第1実施形態)
 <車載システム>
 先ず、図1~図4に基づいて車載システム100を説明する。この車載システム100は電気自動車用のシステムを構成している。車載システム100はバッテリ200と機電一体型ユニット300を有する。機電一体型ユニット300は電力変換装置400とモータ500を有する。バッテリ200が外部電源に相当する。モータ500が電動機に相当する。
(First Embodiment)
<In-vehicle system>
First, the in-vehicle system 100 will be described with reference to FIGS. 1 to 4. The in-vehicle system 100 constitutes a system for an electric vehicle. The in-vehicle system 100 includes a battery 200 and a mechanical / electrical integrated unit 300. The mechanical / electrical integrated unit 300 has a power conversion device 400 and a motor 500. The battery 200 corresponds to an external power source. The motor 500 corresponds to an electric motor.
 また車載システム100は図示しない複数のECUを有する。これら複数のECUはバス配線を介して相互に信号を送受信している。複数のECUは協調して電気自動車を制御している。複数のECUの制御により、バッテリ200のSOCに応じたモータ500の力行と回生が制御される。SOCはstate of chargeの略である。ECUはelectronic control unitの略である。 Further, the in-vehicle system 100 has a plurality of ECUs (not shown). These plurality of ECUs send and receive signals to and from each other via bus wiring. A plurality of ECUs cooperate to control an electric vehicle. By controlling the plurality of ECUs, the power running and regeneration of the motor 500 according to the SOC of the battery 200 are controlled. SOC is an abbreviation for state of charge. ECU is an abbreviation for electronic control unit.
 なお、ECUは、少なくとも1つの演算処理装置(CPU)と、プログラムおよびデータを記憶する記憶媒体としての少なくとも1つのメモリ装置(MMR)と、を有する。ECUはコンピュータやプロセッサによって読み取り可能な記憶媒体を備えるマイクロコンピュータによって提供される。記憶媒体はコンピュータやプロセッサによって読み取り可能なプログラムを非一時的に記憶する非遷移的実体的記憶媒体である。記憶媒体は半導体メモリまたは磁気ディスクなどによって提供され得る。以下、車載システム100の構成要素を個別に概説する。 The ECU has at least one arithmetic processing unit (CPU) and at least one memory device (MMR) as a storage medium for storing programs and data. The ECU is provided by a microcomputer having a storage medium that can be read by a computer or a processor. A storage medium is a non-transitional substantive storage medium that non-temporarily stores a program that can be read by a computer or processor. The storage medium may be provided by a semiconductor memory, a magnetic disk, or the like. Hereinafter, the components of the in-vehicle system 100 will be outlined individually.
 バッテリ200は複数の二次電池を有する。これら複数の二次電池は直列接続された電池スタックを構成している。この電池スタックのSOCがバッテリ200のSOCに相当する。二次電池としてはリチウムイオン二次電池、ニッケル水素二次電池、および、有機ラジカル電池などを採用することができる。 Battery 200 has a plurality of secondary batteries. These plurality of secondary batteries form a battery stack connected in series. The SOC of this battery stack corresponds to the SOC of the battery 200. As the secondary battery, a lithium ion secondary battery, a nickel hydrogen secondary battery, an organic radical battery and the like can be adopted.
 電力変換装置400はバッテリ200とモータ500との間の電力変換を行う。電力変換装置400はバッテリ200の直流電力を交流電力に変換する。電力変換装置400はモータ500の発電(回生)によって生成された交流電力を直流電力に変換する。 The power conversion device 400 performs power conversion between the battery 200 and the motor 500. The power conversion device 400 converts the DC power of the battery 200 into AC power. The power conversion device 400 converts the AC power generated by the power generation (regeneration) of the motor 500 into DC power.
 モータ500は図示しない電気自動車の出力軸に連結されている。モータ500の回転エネルギーは出力軸を介して電気自動車の走行輪に伝達される。逆に、走行輪の回転エネルギーは出力軸を介してモータ500に伝達される。 The motor 500 is connected to the output shaft of an electric vehicle (not shown). The rotational energy of the motor 500 is transmitted to the traveling wheels of the electric vehicle via the output shaft. On the contrary, the rotational energy of the traveling wheel is transmitted to the motor 500 via the output shaft.
 モータ500は電力変換装置400から供給される交流電力によって力行する。これにより推進力が走行輪に付与される。モータ500は走行輪から伝達される回転エネルギーによって回生する。この回生によって発生した交流電力は、電力変換装置400によって直流電力に変換される。この直流電力がバッテリ200に供給される。また直流電力は電気自動車に搭載された各種電気負荷にも供給される。 The motor 500 is powered by AC power supplied from the power converter 400. As a result, propulsive force is applied to the traveling wheels. The motor 500 is regenerated by the rotational energy transmitted from the traveling wheels. The AC power generated by this regeneration is converted into DC power by the power conversion device 400. This DC power is supplied to the battery 200. DC power is also supplied to various electric loads mounted on electric vehicles.
 <電力変換装置>
 次に、電力変換装置400を説明する。本実施形態の電力変換装置400はインバータの構成要素を備えている。もちろんではあるが、電力変換装置400はインバータの構成要素の他にコンバータの構成要素を備えてもよい。
<Power converter>
Next, the power conversion device 400 will be described. The power conversion device 400 of the present embodiment includes components of an inverter. Of course, the power converter 400 may include converter components in addition to the inverter components.
 図1に示すように電力変換装置400はPバスバ401とNバスバ402を備えている。Pバスバ401はバッテリ200の正極に電気的に接続される。Nバスバ402はバッテリ200の負極に電気的に接続される。Pバスバ401とNバスバ402が入力バスバに相当する。 As shown in FIG. 1, the power conversion device 400 includes a P bus bar 401 and an N bus bar 402. The P bus bar 401 is electrically connected to the positive electrode of the battery 200. The N bus bar 402 is electrically connected to the negative electrode of the battery 200. The P bus bar 401 and the N bus bar 402 correspond to the input bus bar.
 電力変換装置400はU相バスバ403、V相バスバ404、および、W相バスバ405を備えている。U相バスバ403はモータ500のU相ステータコイルに電気的に接続される。V相バスバ404はV相ステータコイルに電気的に接続される。W相バスバ405はW相ステータコイルに電気的に接続される。U相バスバ403~W相バスバ405が出力バスバに相当する。 The power conversion device 400 includes a U-phase bus bar 403, a V-phase bus bar 404, and a W-phase bus bar 405. The U-phase bus bar 403 is electrically connected to the U-phase stator coil of the motor 500. The V-phase bus bar 404 is electrically connected to the V-phase stator coil. The W-phase bus bar 405 is electrically connected to the W-phase stator coil. The U-phase bus bar 403 to the W-phase bus bar 405 correspond to the output bus bar.
 電力変換装置400は第1電流センサ410、ノイズフィルタ420、平滑コンデンサ430、スイッチング部440、第2電流センサ450、および、制御基板460を有する。 The power conversion device 400 includes a first current sensor 410, a noise filter 420, a smoothing capacitor 430, a switching unit 440, a second current sensor 450, and a control board 460.
 第1電流センサ410とノイズフィルタ420はPバスバ401とNバスバ402それぞれのバッテリ200との接続箇所側に設けられている。第1電流センサ410はPバスバ401とNバスバ402を流れる電流を検出する。ノイズフィルタ420はPバスバ401とNバスバ402を入出力するノイズを除去する。なお、第1電流センサ410はPバスバ401とNバスバ402のうちの少なくとも一方に設けられていればよい。 The first current sensor 410 and the noise filter 420 are provided on the connection point side of each of the P bus bar 401 and the N bus bar 402 with the battery 200. The first current sensor 410 detects the current flowing through the P bus bar 401 and the N bus bar 402. The noise filter 420 removes noise input / output from the P bus bar 401 and the N bus bar 402. The first current sensor 410 may be provided on at least one of the P bus bar 401 and the N bus bar 402.
 平滑コンデンサ430とスイッチング部440はPバスバ401とNバスバ402それぞれのバッテリ200との接続箇所から離間した側に接続されている。Pバスバ401とNバスバ402それぞれの延長方向において、ノイズフィルタ420のバスバに接続される個所と、平滑コンデンサ430とスイッチング部440それぞれのバスバに接続される個所とが離間している。 The smoothing capacitor 430 and the switching unit 440 are connected to the side separated from the connection points of the batteries 200 of the P bus bar 401 and the N bus bar 402, respectively. In the extension directions of the P bus bar 401 and the N bus bar 402, the points connected to the bus bar of the noise filter 420 and the points connected to the bus bars of the smoothing capacitor 430 and the switching unit 440 are separated from each other.
 後述するように、Pバスバ401とNバスバ402におけるノイズフィルタ420の接続される個所はインバータハウジング490の収納空間の外に位置している。Pバスバ401とNバスバ402における平滑コンデンサ430とスイッチング部440それぞれの接続される個所はインバータハウジング490の収納空間に位置している。Pバスバ401とNバスバ402におけるインバータハウジング490の収納空間の外に位置する部位は、図1において二点鎖線で囲って示している。 As will be described later, the location where the noise filter 420 is connected in the P bus bar 401 and the N bus bar 402 is located outside the storage space of the inverter housing 490. The points where the smoothing capacitor 430 and the switching unit 440 of the P bus bar 401 and the N bus bar 402 are connected are located in the storage space of the inverter housing 490. The portions of the P bus bar 401 and the N bus bar 402 located outside the storage space of the inverter housing 490 are shown surrounded by a two-dot chain line in FIG.
 <半導体モジュール>
 スイッチング部440は、U相半導体モジュール441、V相半導体モジュール442、および、W相半導体モジュール443を備えている。これら3つの半導体モジュールそれぞれは、ハイサイドスイッチ444とローサイドスイッチ445、および、ハイサイドダイオード444aとローサイドダイオード445aを有する。スイッチング部440が第2電気部品に相当する。ハイサイドスイッチ444とローサイドスイッチ445が能動素子に相当する。
<Semiconductor module>
The switching unit 440 includes a U-phase semiconductor module 441, a V-phase semiconductor module 442, and a W-phase semiconductor module 443. Each of these three semiconductor modules has a high-side switch 444 and a low-side switch 445, and a high-side diode 444a and a low-side diode 445a. The switching unit 440 corresponds to the second electric component. The high side switch 444 and the low side switch 445 correspond to active elements.
 本実施形態では、ハイサイドスイッチ444とローサイドスイッチ445としてnチャネル型のIGBTを採用している。ハイサイドスイッチ444のエミッタ電極とローサイドスイッチ445のコレクタ電極とが電気的に接続されている。これによりハイサイドスイッチ444とローサイドスイッチ445は電気的に直列接続されている。 In this embodiment, an n-channel type IGBT is adopted as the high side switch 444 and the low side switch 445. The emitter electrode of the high side switch 444 and the collector electrode of the low side switch 445 are electrically connected. As a result, the high-side switch 444 and the low-side switch 445 are electrically connected in series.
 ハイサイドスイッチ444のコレクタ電極にハイサイドダイオード444aのカソード電極が接続されている。ハイサイドスイッチ444のエミッタ電極にハイサイドダイオード444aのアノード電極が接続されている。これによりハイサイドスイッチ444にハイサイドダイオード444aが逆並列接続されている。 The cathode electrode of the high side diode 444a is connected to the collector electrode of the high side switch 444. The anode electrode of the high side diode 444a is connected to the emitter electrode of the high side switch 444. As a result, the high-side diode 444a is connected in anti-parallel to the high-side switch 444.
 同様にして、ローサイドスイッチ445のコレクタ電極にローサイドダイオード445aのカソード電極が接続されている。ローサイドスイッチ445のエミッタ電極にローサイドダイオード445aのアノード電極が接続されている。これによりローサイドスイッチ445にローサイドダイオード445aが逆並列接続されている。 Similarly, the cathode electrode of the low side diode 445a is connected to the collector electrode of the low side switch 445. The anode electrode of the low-side diode 445a is connected to the emitter electrode of the low-side switch 445. As a result, the low-side diode 445a is connected in anti-parallel to the low-side switch 445.
 なお、これらハイサイドスイッチ444とローサイドスイッチ445としては、IGBTではなくMOSFETを採用することもできる。MOSFETにはボディダイオードが形成される。そのためにスイッチ素子としてMOSFETを採用する場合、上記のスイッチ素子とは別個のダイオードがない構成を採用することもできる。 As these high-side switches 444 and low-side switches 445, MOSFETs can be adopted instead of IGBTs. A body diode is formed on the MOSFET. Therefore, when a MOSFET is adopted as the switch element, a configuration without a diode separate from the above-mentioned switch element can also be adopted.
 3つの半導体モジュールそれぞれの備えるスイッチ素子やダイオードなどの半導体素子の形成材料は特に限定されない。例えばこれら半導体素子は、Siなどの半導体、および、SiCなどのワイドギャップ半導体によって製造することができる。 The material for forming the semiconductor element such as the switch element and the diode provided in each of the three semiconductor modules is not particularly limited. For example, these semiconductor elements can be manufactured by a semiconductor such as Si and a wide-gap semiconductor such as SiC.
 <端子>
 U相半導体モジュール441~W相半導体モジュール443それぞれは、コレクタ端子440a、エミッタ端子440b、中点端子440c、および、ゲート端子440dを有する。
<Terminal>
Each of the U-phase semiconductor module 441 to the W-phase semiconductor module 443 has a collector terminal 440a, an emitter terminal 440b, a midpoint terminal 440c, and a gate terminal 440d.
 コレクタ端子440aの端部がハイサイドスイッチ444のコレクタ電極に接続されている。エミッタ端子440bの端部がローサイドスイッチ445のエミッタ電極に接続されている。中点端子440cの端部がハイサイドスイッチ444とローサイドスイッチ445との間の中点に接続されている。ゲート端子440dの端部がハイサイドスイッチ444とローサイドスイッチ445それぞれのゲート電極に個別に接続されている。 The end of the collector terminal 440a is connected to the collector electrode of the high side switch 444. The end of the emitter terminal 440b is connected to the emitter electrode of the low side switch 445. The end of the midpoint terminal 440c is connected to the midpoint between the high side switch 444 and the low side switch 445. The ends of the gate terminal 440d are individually connected to the gate electrodes of the high side switch 444 and the low side switch 445.
 図1に示すように、コレクタ端子440aの先端がPバスバ401に接続されている。エミッタ端子440bの先端がNバスバ402に接続されている。これによりハイサイドスイッチ444とローサイドスイッチ445はPバスバ401からNバスバ402へ向かって順に直列接続されている。 As shown in FIG. 1, the tip of the collector terminal 440a is connected to the P bus bar 401. The tip of the emitter terminal 440b is connected to the N bus bar 402. As a result, the high-side switch 444 and the low-side switch 445 are sequentially connected in series from the P bus bar 401 to the N bus bar 402.
 U相半導体モジュール441の中点端子440cの先端がU相バスバ403に接続されている。V相半導体モジュール442の中点端子440cの先端がV相バスバ404に接続されている。W相半導体モジュール443の中点端子440cの先端がW相バスバ405に接続されている。 The tip of the midpoint terminal 440c of the U-phase semiconductor module 441 is connected to the U-phase bus bar 403. The tip of the midpoint terminal 440c of the V-phase semiconductor module 442 is connected to the V-phase bus bar 404. The tip of the midpoint terminal 440c of the W-phase semiconductor module 443 is connected to the W-phase bus bar 405.
 モータ500はU相ステータコイル~W相ステータコイルを有する。また、モータ500はこれら3つの相ステータコイルそれぞれに個別に接続されたU相ステータバスバ501~W相ステータバスバ503を有する。 The motor 500 has a U-phase stator coil to a W-phase stator coil. Further, the motor 500 has U-phase stator bus bars 501 to W-phase stator bus bars 503 individually connected to each of these three phase stator coils.
 U相バスバ403はU相ステータバスバ501に接続される。V相バスバ404はV相ステータバスバ502に接続される。W相バスバ405はW相ステータバスバ503に接続される。これにより電力変換装置400とモータ500とが電気的に接続されている。 The U-phase bus bar 403 is connected to the U-phase stator bus bar 501. The V-phase bus bar 404 is connected to the V-phase stator bus bar 502. The W-phase bus bar 405 is connected to the W-phase stator bus bar 503. As a result, the power converter 400 and the motor 500 are electrically connected.
 <第2電流センサ>
 第2電流センサ450はU相バスバ403~W相バスバ405に設けられる。第2電流センサ450はこれら3つの相バスバを流れる電流を検出する。なお、第2電流センサ450は3つの相バスバのうちの少なくとも2つの相バスバに流れる電流を検出できればよい。
<Second current sensor>
The second current sensor 450 is provided in the U-phase bus bar 403 to the W-phase bus bar 405. The second current sensor 450 detects the current flowing through these three phase buses. The second current sensor 450 may detect the current flowing through at least two of the three phase bus bars.
 <制御基板>
 U相半導体モジュール441~W相半導体モジュール443それぞれのゲート端子440dは制御基板460に接続されている。この制御基板460にゲートドライバが搭載されている。ゲートドライバはECUから出力された制御信号を増幅し、それをゲート電極に出力する。この制御信号を出力するECUは制御基板460に搭載されてもよいし、他の基板に搭載されてもよい。
<Control board>
The gate terminals 440d of each of the U-phase semiconductor modules 441 to W-phase semiconductor modules 443 are connected to the control board 460. A gate driver is mounted on the control board 460. The gate driver amplifies the control signal output from the ECU and outputs it to the gate electrode. The ECU that outputs this control signal may be mounted on the control board 460, or may be mounted on another board.
 モータ500を力行する場合、ECUからの制御信号の出力によって3つの半導体モジュールそれぞれの備えるスイッチ素子がPWM制御される。これにより電力変換装置400で3相交流が生成される。モータ500が発電(回生)する場合、ECUは例えば制御信号の出力を停止する。これによりモータ500の発電によって生成された交流電力が3つの半導体モジュールそれぞれの備えるダイオードを通る。この結果、交流電力が直流電力に変換される。 When powering the motor 500, the switch elements provided in each of the three semiconductor modules are PWM controlled by the output of the control signal from the ECU. As a result, the power converter 400 generates a three-phase alternating current. When the motor 500 generates (regenerates) power, the ECU stops, for example, the output of a control signal. As a result, the AC power generated by the power generation of the motor 500 passes through the diodes provided in each of the three semiconductor modules. As a result, AC power is converted to DC power.
 <電力変換装置の機械的構成>
 次に、電力変換装置400の機械的構成を説明する。それに当たって、以下においては互いに直交の関係にある3方向をx方向、y方向、および、z方向とする。x方向が縦方向に相当する。y方向が横方向に相当する。z方向が並び方向に相当する。
<Mechanical configuration of power converter>
Next, the mechanical configuration of the power converter 400 will be described. In this regard, in the following, the three directions orthogonal to each other will be referred to as the x direction, the y direction, and the z direction. The x direction corresponds to the vertical direction. The y direction corresponds to the lateral direction. The z direction corresponds to the alignment direction.
 電力変換装置400はこれまでに説明した電気部品の他に、コンデンサハウジング470、冷却器480、および、インバータハウジング490を有する。 The power conversion device 400 has a capacitor housing 470, a cooler 480, and an inverter housing 490 in addition to the electrical components described so far.
 コンデンサハウジング470は平滑コンデンサ430を収納する機能を果たす。冷却器480はU相半導体モジュール441~W相半導体モジュール443それぞれを収納するとともに冷却する機能を果たす。インバータハウジング490は第1電流センサ410、ノイズフィルタ420、第2電流センサ450、制御基板460、コンデンサハウジング470、および、冷却器480それぞれを収納する機能を果たす。平滑コンデンサ430が受動素子に相当する。コンデンサハウジング470が第1電気部品に相当する。 The capacitor housing 470 fulfills the function of accommodating the smoothing capacitor 430. The cooler 480 has a function of accommodating and cooling each of the U-phase semiconductor module 441 to the W-phase semiconductor module 443. The inverter housing 490 functions to house the first current sensor 410, the noise filter 420, the second current sensor 450, the control board 460, the capacitor housing 470, and the cooler 480, respectively. The smoothing capacitor 430 corresponds to a passive element. The capacitor housing 470 corresponds to the first electrical component.
 <コンデンサハウジング>
 コンデンサハウジング470の外観は直方体形状を成している。このコンデンサハウジング470はボルトなどによってインバータハウジング490に固定される。
<Condenser housing>
The appearance of the capacitor housing 470 has a rectangular cuboid shape. The capacitor housing 470 is fixed to the inverter housing 490 with bolts or the like.
 コンデンサハウジング470の中に平滑コンデンサ430が収納されている。平滑コンデンサ430は第1電極431、第2電極432、および、蓄電要素433を有する。 The smoothing capacitor 430 is housed in the capacitor housing 470. The smoothing capacitor 430 has a first electrode 431, a second electrode 432, and a storage element 433.
 第1電極431と第2電極432は誘電体としての機能を果たすセパレータなどの蓄電要素433を介してz方向に並んでいる。第1電極431と第2電極432それぞれの一部と、蓄電要素433のすべてがコンデンサハウジング470に収納されている。第1電極431のコンデンサハウジング470からの露出部位にPバスバ401が接続される。第2電極432のコンデンサハウジング470からの露出部位にNバスバ402が接続される。 The first electrode 431 and the second electrode 432 are arranged in the z direction via a storage element 433 such as a separator that functions as a dielectric. A part of each of the first electrode 431 and the second electrode 432 and all of the power storage elements 433 are housed in the capacitor housing 470. The P bus bar 401 is connected to the exposed portion of the first electrode 431 from the capacitor housing 470. The N bus bar 402 is connected to the exposed portion of the second electrode 432 from the capacitor housing 470.
 <封止樹脂>
 U相半導体モジュール441~W相半導体モジュール443それぞれはこれまでに説明したスイッチ素子やダイオードなどの半導体素子の全てと、これらに接続される各種端子それぞれの一部と、を被覆する封止樹脂446を備える。
<Encapsulating resin>
Each of the U-phase semiconductor modules 441 to the W-phase semiconductor module 443 is a sealing resin 446 that covers all of the semiconductor elements such as switch elements and diodes described above and a part of each of various terminals connected to them. To prepare for.
 図2と図3に示すように、この封止樹脂446はx方向の厚さの薄い扁平形状を成している。封止樹脂446はx方向に面する2つの主面を有する。これら2つの主面は他の面よりも面積が広くなっている。 As shown in FIGS. 2 and 3, the sealing resin 446 has a thin flat shape with a thickness in the x direction. The sealing resin 446 has two main surfaces facing in the x direction. These two main surfaces have a larger area than the other surfaces.
 封止樹脂446はz方向に並ぶ2つの端面を有する。これら2つの端面のうちの一方からゲート端子440dの先端が突出している。これら2つの端面のうちの他方からコレクタ端子440a、エミッタ端子440b、および、中点端子440cそれぞれの先端が突出している。 The sealing resin 446 has two end faces arranged in the z direction. The tip of the gate terminal 440d protrudes from one of these two end faces. The tips of the collector terminal 440a, the emitter terminal 440b, and the midpoint terminal 440c project from the other of these two end faces.
 <冷却器>
 図2と図3に示すように冷却器480は供給管481、排出管482、および、複数の中継管483を有する。供給管481と排出管482は複数の中継管483を介して連結されている。供給管481に冷媒が供給される。この冷媒は複数の中継管483を介して供給管481から排出管482へと流れる。
<Cooler>
As shown in FIGS. 2 and 3, the cooler 480 has a supply pipe 481, a discharge pipe 482, and a plurality of relay pipes 483. The supply pipe 481 and the discharge pipe 482 are connected to each other via a plurality of relay pipes 483. Refrigerant is supplied to the supply pipe 481. This refrigerant flows from the supply pipe 481 to the discharge pipe 482 via a plurality of relay pipes 483.
 供給管481と排出管482はx方向に延びている。供給管481と排出管482はy方向で離間している。複数の中継管483それぞれは供給管481から排出管482へと向かってy方向に延びている。供給管481における外部から冷媒の供給される供給口と、排出管482における中継管483から供給された冷媒を外部に排出する排出口とはy方向で離間して並んでいる。 The supply pipe 481 and the discharge pipe 482 extend in the x direction. The supply pipe 481 and the discharge pipe 482 are separated from each other in the y direction. Each of the plurality of relay pipes 483 extends in the y direction from the supply pipe 481 toward the discharge pipe 482. The supply port for supplying the refrigerant from the outside in the supply pipe 481 and the discharge port for discharging the refrigerant supplied from the relay pipe 483 in the discharge pipe 482 to the outside are arranged so as to be separated from each other in the y direction.
 複数の中継管483はx方向で離間して並んでいる。隣り合う2つの中継管483の間に空隙が構成されている。冷却器480には計3個の空隙が構成されている。これら計3個の空隙それぞれにU相半導体モジュール441~W相半導体モジュール443それぞれが個別に設けられている。 A plurality of relay tubes 483 are lined up apart from each other in the x direction. A gap is formed between two adjacent relay tubes 483. The cooler 480 is configured with a total of three voids. A U-phase semiconductor module 441 to a W-phase semiconductor module 443 are individually provided in each of these three voids.
 3個の半導体モジュールそれぞれが3個の空隙それぞれに個別に設けられた状態で、図示しないバネ体から、空隙のx方向の幅を狭める付勢力が冷却器480に付与される。これにより半導体モジュールの封止樹脂446と中継管483との間の熱抵抗が低まっている。半導体モジュールで発生した熱が中継管483に積極的に熱伝導する構成になっている。なお、封止樹脂446と中継管483との間にはグリースなどの伝熱部材が介在される。 With each of the three semiconductor modules individually provided in each of the three voids, an urging force that narrows the width of the voids in the x direction is applied to the cooler 480 from a spring body (not shown). As a result, the thermal resistance between the sealing resin 446 of the semiconductor module and the relay tube 483 is reduced. The heat generated in the semiconductor module is positively conducted to the relay tube 483. A heat transfer member such as grease is interposed between the sealing resin 446 and the relay tube 483.
 制御基板460はz方向の厚さの薄い扁平形状を成している。制御基板460は、絶縁基板と、この絶縁基板に形成された配線パターンと、この配線パターンに電気的に接続された各種電気素子と、を有する。これら配線パターンと各種電気素子とによってゲートドライバが構成されている。この制御基板460とは別の基板にECUが搭載される場合、この基板と制御基板460それぞれには両者を電気的に接続するためのコネクタが搭載される。ゲートドライバとECUとは絶縁回路などを介して電気信号を送受信する。 The control board 460 has a thin flat shape with a thickness in the z direction. The control board 460 has an insulating board, a wiring pattern formed on the insulating board, and various electric elements electrically connected to the wiring pattern. A gate driver is composed of these wiring patterns and various electric elements. When the ECU is mounted on a board different from the control board 460, a connector for electrically connecting the two is mounted on each of the board and the control board 460. The gate driver and the ECU transmit and receive electrical signals via an insulation circuit or the like.
 制御基板460には複数のスルーホールが形成されている。図2に示すように制御基板460は半導体モジュールの収納された冷却器480とz方向で対向配置される。制御基板460のスルーホールに半導体モジュールのゲート端子440dが通される。そして制御基板460の配線パターンとゲート端子440dとがはんだを介して電気的に接続される。 A plurality of through holes are formed on the control board 460. As shown in FIG. 2, the control board 460 is arranged to face the cooler 480 in which the semiconductor module is housed in the z direction. The gate terminal 440d of the semiconductor module is passed through the through hole of the control board 460. Then, the wiring pattern of the control board 460 and the gate terminal 440d are electrically connected via solder.
 <インバータハウジング>
 インバータハウジング490は筐体491と外カバー492を有する。筐体491と外カバー492それぞれは例えばアルミダイカストで製造される。
<Inverter housing>
The inverter housing 490 has a housing 491 and an outer cover 492. Each of the housing 491 and the outer cover 492 is manufactured by, for example, aluminum die casting.
 筐体491の収納空間に、第1電流センサ410、第2電流センサ450、制御基板460、コンデンサハウジング470、および、冷却器480それぞれが収納される。筐体491と外カバー492との間で区画される覆い空間にノイズフィルタ420が収納される。また、収納空間と覆い空間それぞれに、これまでに説明した各種バスバが設けられる。外カバー492が電磁遮蔽カバーに相当する。 The first current sensor 410, the second current sensor 450, the control board 460, the condenser housing 470, and the cooler 480 are each housed in the storage space of the housing 491. The noise filter 420 is housed in the covering space partitioned between the housing 491 and the outer cover 492. In addition, various bus bars described above will be provided in each of the storage space and the covering space. The outer cover 492 corresponds to the electromagnetic shielding cover.
 <筐体>
 筐体491は底壁493、側壁494、および、蓋壁495を有する。底壁493はz方向の厚さの薄い扁平形状を成している。底壁493はz方向で並ぶ内底面493aと外底面493bを有する。
<Case>
The housing 491 has a bottom wall 493, a side wall 494, and a lid wall 495. The bottom wall 493 has a flat shape with a thin thickness in the z direction. The bottom wall 493 has an inner bottom surface 493a and an outer bottom surface 493b arranged in the z direction.
 側壁494は内底面493aからz方向に起立している。それとともに側壁494はz方向まわりの周方向で環状を成している。この側壁494の内周面494aで囲まれる空間と、底壁493の内底面493aのz方向への投影領域との重なる領域が、インバータハウジング490の収納空間になっている。なお、側壁494と底壁493とは一体でも別体でもよい。 The side wall 494 stands upright in the z direction from the inner bottom surface 493a. At the same time, the side wall 494 forms an annular shape in the circumferential direction around the z direction. The area where the space surrounded by the inner peripheral surface 494a of the side wall 494 and the projection area of the inner bottom surface 493a of the bottom wall 493 in the z direction overlap is the storage space of the inverter housing 490. The side wall 494 and the bottom wall 493 may be integrated or separate.
 側壁494の先端側で開口が区画されている。この開口を介して、収納空間とその外側の空間とが連通可能になっている。この開口が蓋壁495によって閉塞される。蓋壁495はボルトなどによって側壁494に連結される。 The opening is partitioned on the tip side of the side wall 494. Through this opening, the storage space and the space outside the storage space can communicate with each other. This opening is closed by a lid wall 495. The lid wall 495 is connected to the side wall 494 by bolts or the like.
 側壁494には内周面494aとその裏側の外周面494bとに開口する接続孔494cが形成されている。この接続孔494cは、インバータハウジング490の収納空間に収納された電気部品と、その外に位置する電気部品との電気的な接続に用いられる。 The side wall 494 is formed with a connection hole 494c that opens in the inner peripheral surface 494a and the outer peripheral surface 494b on the back side thereof. The connection hole 494c is used for electrical connection between the electric component housed in the storage space of the inverter housing 490 and the electric component located outside the electric component.
 図2に示す接続孔494cは、Pバスバ401とNバスバ402それぞれとバッテリ200との電気的な接続に用いられる。Pバスバ401とNバスバ402それぞれの一端が接続孔494cに設けられている。そしてこの接続孔494cには、この接続孔494cを閉塞するとともに、Pバスバ401とNバスバ402それぞれの先端と電気的に接続された端子を備える入力コネクタ406が設けられる。この入力コネクタ406にバッテリ200から延長したワイヤハーネスの端子が接続される。これによりPバスバ401とNバスバ402それぞれがバッテリ200と電気的に接続される。 The connection hole 494c shown in FIG. 2 is used for electrical connection between the P bus bar 401 and the N bus bar 402 and the battery 200, respectively. One end of each of the P bus bar 401 and the N bus bar 402 is provided in the connection hole 494c. The connection hole 494c is provided with an input connector 406 having a terminal electrically connected to the tips of the P bus bar 401 and the N bus bar 402 while closing the connection hole 494c. The terminal of the wire harness extended from the battery 200 is connected to the input connector 406. As a result, the P bus bar 401 and the N bus bar 402 are electrically connected to the battery 200, respectively.
 <支持壁>
 側壁494の内周面494a側に支持壁496が連結されている。支持壁496はz方向の厚さの薄い扁平形状を成している。支持壁496によってインバータハウジング490の収納空間が底壁493側と蓋壁495側とに分けられている。支持壁496と側壁494とは別体でも一体でもよい。
<Support wall>
A support wall 496 is connected to the inner peripheral surface 494a side of the side wall 494. The support wall 496 has a flat shape with a thin thickness in the z direction. The storage space of the inverter housing 490 is divided into a bottom wall 493 side and a lid wall 495 side by the support wall 496. The support wall 496 and the side wall 494 may be separate or integrated.
 図2に示すように、これまでに説明した各種バスバの一部、第1電流センサ410、コンデンサハウジング470、冷却器480、および、第2電流センサ450それぞれがインバータハウジング490の収納空間の底壁493側に収納されている。制御基板460がインバータハウジング490の収納空間の蓋壁495側に収納されている。 As shown in FIG. 2, a part of the various bus bars described so far, the first current sensor 410, the capacitor housing 470, the cooler 480, and the second current sensor 450 are each the bottom wall of the storage space of the inverter housing 490. It is stored on the 493 side. The control board 460 is housed on the lid wall 495 side of the storage space of the inverter housing 490.
 支持壁496は底壁493側の下面496aと蓋壁495側の上面496bを有する。支持壁496には下面496aと上面496bとに開口する開口窓496cが形成されている。この開口窓496cを介して、インバータハウジング490の収納空間の底壁493側と蓋壁495側とが連通している。 The support wall 496 has a lower surface 496a on the bottom wall 493 side and an upper surface 496b on the lid wall 495 side. The support wall 496 is formed with an opening window 496c that opens to the lower surface 496a and the upper surface 496b. The bottom wall 493 side and the lid wall 495 side of the storage space of the inverter housing 490 communicate with each other through the opening window 496c.
 <コンデンサハウジングの配置>
 コンデンサハウジング470は下面496aと内底面493aとの間に位置している。コンデンサハウジング470に収納された第1電極431が下面496a側に位置している。第2電極432が内底面493a側に位置している。
<Arrangement of capacitor housing>
The capacitor housing 470 is located between the lower surface 496a and the inner bottom surface 493a. The first electrode 431 housed in the capacitor housing 470 is located on the lower surface 496a side. The second electrode 432 is located on the inner bottom surface 493a side.
 コンデンサハウジング470と下面496aとの間に空気が介在されている。第1電極431は支持壁496と熱伝達や熱輻射によって熱交換しやすくなっている。 Air is interposed between the capacitor housing 470 and the lower surface 496a. The first electrode 431 facilitates heat exchange with the support wall 496 by heat transfer or heat radiation.
 コンデンサハウジング470と内底面493aとの間に絶縁性の第1伝熱シート471が介在されている。コンデンサハウジング470は図示しないボルトによって底壁493に固定されている。このボルトの締結によって第1伝熱シート471がコンデンサハウジング470と底壁493との間で挟持されている。第2電極432は底壁493と熱伝導によって熱交換しやすくなっている。 An insulating first heat transfer sheet 471 is interposed between the capacitor housing 470 and the inner bottom surface 493a. The capacitor housing 470 is fixed to the bottom wall 493 by bolts (not shown). By fastening the bolts, the first heat transfer sheet 471 is sandwiched between the capacitor housing 470 and the bottom wall 493. The second electrode 432 facilitates heat exchange with the bottom wall 493 by heat conduction.
 <冷却器の配置>
 冷却器480は下面496aと内底面493aとの間に位置している。冷却器480は内底面493aよりも下面496a側に位置している。冷却器480と支持壁496とは積極的に伝熱しやすくなっている。支持壁496と冷却器480の温度差が大きくなることが抑制されている。支持壁496と冷却器480の内部を流動する冷媒との温度差が大きくなることが抑制されている。
<Arrangement of coolers>
The cooler 480 is located between the lower surface 496a and the inner bottom surface 493a. The cooler 480 is located on the lower surface 496a side of the inner bottom surface 493a. The cooler 480 and the support wall 496 are easy to positively transfer heat. It is suppressed that the temperature difference between the support wall 496 and the cooler 480 becomes large. It is suppressed that the temperature difference between the support wall 496 and the refrigerant flowing inside the cooler 480 becomes large.
 冷却器480は支持壁496の開口窓496cを介して制御基板460とz方向で対向している。冷却器480に収納された半導体モジュールのゲート端子440dは開口窓496cを介して制御基板460に延びている。このゲート端子440dの先端が制御基板460に接続されている。 The cooler 480 faces the control board 460 in the z direction via the opening window 496c of the support wall 496. The gate terminal 440d of the semiconductor module housed in the cooler 480 extends to the control board 460 via the opening window 496c. The tip of the gate terminal 440d is connected to the control board 460.
 <冷却通路>
 底壁493は第1ベース部497と第2ベース部498を有する。第1ベース部497は上記の内底面493aを備えている。第2ベース部498は上記の外底面493bを備えている。この内底面493aの裏側の第1対向面493cと、外底面493bの裏側の第2対向面493dとがz方向で対向している。この対向状態で、第1ベース部497と第2ベース部498とが連結されている。
<Cooling passage>
The bottom wall 493 has a first base portion 497 and a second base portion 498. The first base portion 497 includes the above-mentioned inner bottom surface 493a. The second base portion 498 includes the above-mentioned outer bottom surface 493b. The first facing surface 493c on the back side of the inner bottom surface 493a and the second facing surface 493d on the back side of the outer bottom surface 493b face each other in the z direction. In this facing state, the first base portion 497 and the second base portion 498 are connected.
 図2に示すように、第1対向面493cと第2対向面493dそれぞれの一部は選択的に接触している。換言すると、第1対向面493cと第2対向面493dそれぞれの一部は選択的に離間している。この第1対向面493cと第2対向面493dとの間に構成された空隙が、冷媒を流動させる通路としての機能を果たしている。以下においてはこの空隙を冷却通路493eと示す。底壁493が形成部位に相当する。 As shown in FIG. 2, a part of each of the first facing surface 493c and the second facing surface 493d is selectively in contact with each other. In other words, a part of each of the first facing surface 493c and the second facing surface 493d is selectively separated from each other. The gap formed between the first facing surface 493c and the second facing surface 493d functions as a passage for flowing the refrigerant. In the following, this void is referred to as a cooling passage 493e. The bottom wall 493 corresponds to the formation site.
 なお、特に図示しないが、冷却通路493eからの冷媒の漏れを抑制するためのシール材が第1対向面493cと第2対向面493dとの間に介在されている。シール材は第1対向面493cと第2対向面493dとの間で圧縮されている。シール材は冷却通路493eの周囲に設けられている。シール材は冷却通路493eと後述の底壁493に形成される各種孔との間に設けられている。 Although not particularly shown, a sealing material for suppressing leakage of the refrigerant from the cooling passage 493e is interposed between the first facing surface 493c and the second facing surface 493d. The sealing material is compressed between the first facing surface 493c and the second facing surface 493d. The sealing material is provided around the cooling passage 493e. The sealing material is provided between the cooling passage 493e and various holes formed in the bottom wall 493, which will be described later.
 図3に示すように、底壁493には、冷却通路493eに冷媒を流入出するための入出孔493fが2つ形成されている。これら2つの入出孔493fのうちの一方と、冷却器480とが連結配管499を介して連結される。これにより冷却器480と冷却通路493eとが連通している。図2に示す断面図は、図3に示すII-II断面線で切断した図面に対応している。 As shown in FIG. 3, the bottom wall 493 is formed with two inlet / outlet holes 493f for inflowing and discharging the refrigerant into the cooling passage 493e. One of these two inlet / outlet holes 493f and the cooler 480 are connected via the connecting pipe 499. As a result, the cooler 480 and the cooling passage 493e communicate with each other. The cross-sectional view shown in FIG. 2 corresponds to the drawing cut along the II-II cross-sectional line shown in FIG.
 本実施形態では、2つの入出孔493fのうちの一方が、冷却器480の排出管482に連結されている。係る構成のため、冷却器480を流動した冷媒が冷却通路493eに供給される。冷却器480で半導体モジュールと熱交換した冷媒が冷却通路493eに供給される。図3に示す実線矢印は、冷媒の流動方向を示している。 In this embodiment, one of the two inlet / outlet holes 493f is connected to the discharge pipe 482 of the cooler 480. Due to such a configuration, the refrigerant flowing through the cooler 480 is supplied to the cooling passage 493e. The refrigerant that has exchanged heat with the semiconductor module in the cooler 480 is supplied to the cooling passage 493e. The solid arrow shown in FIG. 3 indicates the flow direction of the refrigerant.
 なお、これとは逆に、2つの入出孔493fのうちの一方が、冷却器480の供給管481に連結された構成を採用することもできる。係る構成の場合、冷却通路493eを流動した冷媒が冷却器480に供給される。筐体491に収納された平滑コンデンサ430などと熱交換した冷媒が冷却器480に供給される。冷媒の流動方向は、図3に示す実線矢印の逆向きになる。 Contrary to this, it is also possible to adopt a configuration in which one of the two inlet / outlet holes 493f is connected to the supply pipe 481 of the cooler 480. In the case of such a configuration, the refrigerant flowing through the cooling passage 493e is supplied to the cooler 480. The refrigerant that has exchanged heat with the smoothing capacitor 430 housed in the housing 491 is supplied to the cooler 480. The flow direction of the refrigerant is opposite to the solid arrow shown in FIG.
 図3において、冷却通路493eとコンデンサハウジング470とを重ねて示すように、冷却通路493eとコンデンサハウジング470とはz方向で並んでいる。そして、当然ながらにして、底壁493の外底面493bとコンデンサハウジング470とはz方向で並んでいる。コンデンサハウジング470がz方向に沿って投影された領域に、冷却通路493eと外底面493bそれぞれの一部が位置している。以下においては表記を簡便とするため、外底面493bにおけるコンデンサハウジング470がz方向に沿って投影された領域を、投影領域と示す。 In FIG. 3, as shown by overlapping the cooling passage 493e and the condenser housing 470, the cooling passage 493e and the condenser housing 470 are arranged in the z direction. And, as a matter of course, the outer bottom surface 493b of the bottom wall 493 and the capacitor housing 470 are arranged in the z direction. A part of each of the cooling passage 493e and the outer bottom surface 493b is located in the region where the condenser housing 470 is projected along the z direction. In the following, for the sake of simplicity, the region where the capacitor housing 470 on the outer bottom surface 493b is projected along the z direction is referred to as a projection region.
 <通し孔>
 図2と図3に示すように、底壁493には、内底面493aと外底面493bとに開口する第1通し孔493g~第4通し孔493jが形成されている。第1通し孔493gと第2通し孔493hは底壁493における入力コネクタ406側に形成されている。第3通し孔493iと第4通し孔493jは底壁493の中央側に形成されている。
<Through hole>
As shown in FIGS. 2 and 3, the bottom wall 493 is formed with first through holes 493 g to fourth through holes 493j that open into the inner bottom surface 493a and the outer bottom surface 493b. The first through hole 493g and the second through hole 493h are formed on the input connector 406 side of the bottom wall 493. The third through hole 493i and the fourth through hole 493j are formed on the central side of the bottom wall 493.
 第1通し孔493gと第3通し孔493iとの間に投影領域が位置している。第2通し孔493hと第4通し孔493jとの間に投影領域が位置している。第1通し孔493gと第2通し孔493hが第1貫通孔に相当する。第3通し孔493iと第4通し孔493jが第2貫通孔に相当する。 The projection area is located between the first through hole 493g and the third through hole 493i. The projection area is located between the second through hole 493h and the fourth through hole 493j. The first through hole 493g and the second through hole 493h correspond to the first through hole. The third through hole 493i and the fourth through hole 493j correspond to the second through hole.
 <PバスバとNバスバの配置>
 図2に示すように、Pバスバ401とNバスバ402それぞれはインバータハウジング490の収納空間で延長した後、収納空間の外で延長し、再び収納空間で延長している。係る延長を実現するため、Pバスバ401が第1通し孔493gと第3通し孔493iとに通される。Nバスバ402が第2通し孔493hと第4通し孔493jとに通される。
<Arrangement of P bus bar and N bus bar>
As shown in FIG. 2, each of the P bus bar 401 and the N bus bar 402 is extended in the storage space of the inverter housing 490, then extended outside the storage space, and then extended again in the storage space. In order to realize such an extension, the P bus bar 401 is passed through the first through hole 493 g and the third through hole 493i. The N bus bar 402 is passed through the second through hole 493h and the fourth through hole 493j.
 細分化して説明すると、Pバスバ401とNバスバ402それぞれは、第1内部バスバ407、外部バスバ408、および、第2内部バスバ409を有する。第1内部バスバ407と第2内部バスバ409はそれぞれ収納空間で延長している。これら2つの内部バスバが、収納空間の外で延長する外部バスバ408を介して接続されている。 To explain in detail, each of the P bus bar 401 and the N bus bar 402 has a first internal bus bar 407, an external bus bar 408, and a second internal bus bar 409. The first internal bus bar 407 and the second internal bus bar 409 are each extended in the storage space. These two internal bus bars are connected via an external bus bar 408 that extends outside the storage space.
 <第1内部バスバ>
 第1内部バスバ407の一端が入力コネクタ406に接続されている。第1内部バスバ407は入力コネクタ406から底壁493側に向かってz方向に延びている。Pバスバ401の第1内部バスバ407の他端側が第1通し孔493gに挿入されている。Nバスバ402の第1内部バスバ407の他端側が第2通し孔493hに挿入されている。
<1st internal bus bar>
One end of the first internal bus bar 407 is connected to the input connector 406. The first internal bus bar 407 extends in the z direction from the input connector 406 toward the bottom wall 493 side. The other end side of the first internal bus bar 407 of the P bus bar 401 is inserted into the first through hole 493 g. The other end side of the first internal bus bar 407 of the N bus bar 402 is inserted into the second through hole 493h.
 第1内部バスバ407の他端側と通し孔を区画する壁面とは絶縁距離を確保するために離間している。第1内部バスバ407の他端側と通し孔を区画する壁面との間には空気が介在されている。なお、第1内部バスバ407と底壁493とを絶縁するとともに、両者が熱伝導するように、通し孔に絶縁性の樹脂材料が充填されてもよい。 The other end of the first internal bus bar 407 is separated from the wall surface that divides the through hole in order to secure an insulating distance. Air is interposed between the other end side of the first internal bus bar 407 and the wall surface that partitions the through hole. The through holes may be filled with an insulating resin material so as to insulate the first internal bus bar 407 and the bottom wall 493 and to conduct heat between them.
 <外部バスバ>
 外部バスバ408の一端が第1内部バスバ407の他端に連結されている。外部バスバ408は外底面493bに沿って延びている。Pバスバ401の外部バスバ408は第1通し孔493gから第3通し孔493iに向かって延びている。Nバスバ402の外部バスバ408は第2通し孔493hから第4通し孔493jに向かって延びている。
<External bus bar>
One end of the external bus bar 408 is connected to the other end of the first internal bus bar 407. The external bus bar 408 extends along the outer bottom surface 493b. The external bus bar 408 of the P bus bar 401 extends from the first through hole 493 g toward the third through hole 493i. The external bus bar 408 of the N bus bar 402 extends from the second through hole 493h toward the fourth through hole 493j.
 外部バスバ408は外底面493bとz方向で対向している。外部バスバ408は外底面493bの近くに配置されている。外部バスバ408と外底面493bとの離間距離は絶縁距離が確保される程度になっている。外部バスバ408はz方向において投影領域と並んでいる。外部バスバ408はz方向でコンデンサハウジング470と並んでいる。 The external bus bar 408 faces the outer bottom surface 493b in the z direction. The external bus bar 408 is arranged near the outer bottom surface 493b. The separation distance between the external bus bar 408 and the outer bottom surface 493b is such that the insulation distance is secured. The external bus bar 408 is aligned with the projection area in the z direction. The external bus bar 408 is aligned with the capacitor housing 470 in the z direction.
 <第2内部バスバ>
 第2内部バスバ409の一端は外部バスバ408の他端に連結されている。Pバスバ401の第2内部バスバ409は第3通し孔493iからインバータハウジング490の収納空間へ延びている。Nバスバ402の第2内部バスバ409は第4通し孔493jから収納空間へ延びている。
<Second internal bus bar>
One end of the second internal bus bar 409 is connected to the other end of the external bus bar 408. The second internal bus bar 409 of the P bus bar 401 extends from the third through hole 493i to the storage space of the inverter housing 490. The second internal bus bar 409 of the N bus bar 402 extends from the fourth through hole 493j to the storage space.
 第2内部バスバ409の他端側と通し孔を区画する壁面とは絶縁距離を確保するために離間している。第2内部バスバ409の他端側と通し孔を区画する壁面との間には空気が介在されている。なお、第2内部バスバ409と底壁493とを絶縁するとともに、両者が熱伝導するように、通し孔に絶縁性の樹脂材料が充填されてもよい。 The other end of the second internal bus bar 409 is separated from the wall surface that divides the through hole in order to secure an insulating distance. Air is interposed between the other end side of the second internal bus bar 409 and the wall surface that partitions the through hole. The through holes may be filled with an insulating resin material so as to insulate the second inner bus bar 409 and the bottom wall 493 and to conduct heat between them.
 2つの第2内部バスバ409それぞれの他端側のy方向の位置は、コンデンサハウジング470と冷却器480との間になっている。2つの第2内部バスバ409それぞれの他端側は、コンデンサハウジング470側と冷却器480側とに分岐して、y方向に延びている。これら分岐部位の延長方向は、y方向で逆向きになっている。 The position in the y direction on the other end side of each of the two second internal bus bars 409 is between the condenser housing 470 and the cooler 480. The other end side of each of the two second internal bus bars 409 is branched into a condenser housing 470 side and a cooler 480 side, and extends in the y direction. The extension direction of these branch portions is opposite in the y direction.
 Pバスバ401の第2内部バスバ409は平滑コンデンサ430の第1電極431に接続されている。それとともに、Pバスバ401の第2内部バスバ409は3つの半導体モジュールのコレクタ端子440aに接続されている。 The second internal bus bar 409 of the P bus bar 401 is connected to the first electrode 431 of the smoothing capacitor 430. At the same time, the second internal bus bar 409 of the P bus bar 401 is connected to the collector terminals 440a of the three semiconductor modules.
 Nバスバ402の第2内部バスバ409は平滑コンデンサ430の第2電極432に接続されている。それとともに、Nバスバ402の第2内部バスバ409は3つの半導体モジュールのエミッタ端子440bに接続されている。 The second internal bus bar 409 of the N bus bar 402 is connected to the second electrode 432 of the smoothing capacitor 430. At the same time, the second internal bus bar 409 of the N bus bar 402 is connected to the emitter terminals 440b of the three semiconductor modules.
 <ノイズフィルタ>
 ノイズフィルタ420は外部バスバ408に設けられる。ノイズフィルタ420は底壁493に設けられている。ノイズフィルタ420は外底面493bと対向している。ノイズフィルタ420はz方向において投影領域と並んでいる。ノイズフィルタ420はz方向でコンデンサハウジング470と並んでいる。
<Noise filter>
The noise filter 420 is provided on the external bus bar 408. The noise filter 420 is provided on the bottom wall 493. The noise filter 420 faces the outer bottom surface 493b. The noise filter 420 is aligned with the projection region in the z direction. The noise filter 420 is aligned with the capacitor housing 470 in the z direction.
 ノイズフィルタ420にはコンデンサとフェライトコアのうちの少なくとも一方が含まれている。コンデンサは外部バスバ408に流れる電流ノイズを除去する。フェライトコアは外部バスバ408への電磁ノイズの入力を抑制する。また、フェライトコアは外部バスバ408から出力される電磁ノイズを吸収する。 The noise filter 420 contains at least one of a capacitor and a ferrite core. The capacitor removes the current noise flowing through the external bus bar 408. The ferrite core suppresses the input of electromagnetic noise to the external bus bar 408. Further, the ferrite core absorbs electromagnetic noise output from the external bus bar 408.
 ノイズフィルタ420に含まれるコンデンサとしては以下の形態を採用することができる。このコンデンサは平滑コンデンサ430よりも静電容量が少なくなっている。1つのコンデンサが2つの外部バスバ408の間で接続されている。2つのコンデンサが2つの外部バスバ408の間で直列接続されている。これら2つのコンデンサの間の中点がグランドに接続されている。 The following form can be adopted as the capacitor included in the noise filter 420. This capacitor has less capacitance than the smoothing capacitor 430. One capacitor is connected between the two external buses 408. Two capacitors are connected in series between two external buses 408. The midpoint between these two capacitors is connected to ground.
 ノイズフィルタ420に含まれるフェライトコアとしては以下の形態を採用することができる。1つのフェライトコアが2つの外部バスバ408それぞれの周囲を囲んでいる。2つのフェライトコアが2つの外部バスバ408それぞれの周囲を個別に囲んでいる。 The following form can be adopted as the ferrite core included in the noise filter 420. One ferrite core surrounds each of the two external bus bars 408. Two ferrite cores individually surround each of the two external bus bars 408.
 ノイズフィルタ420は上記したノイズを除去するためのコンデンサやフェライトコアの他に、これらを被覆する樹脂体を備えてもよい。そしてこの樹脂体が底壁493にボルトなどによって固定されてもよい。樹脂体が外底面493bに接触してもよい。 The noise filter 420 may include a resin body that covers these in addition to the above-mentioned capacitor and ferrite core for removing noise. Then, this resin body may be fixed to the bottom wall 493 with bolts or the like. The resin body may come into contact with the outer bottom surface 493b.
 <出力孔>
 図2と図3に示すように、底壁493には、内底面493aと外底面493bとに開口する第1出力孔493k、第2出力孔493l、および、第3出力孔493mが形成されている。これら3つの出力孔は底壁493における入力コネクタ406から離間した側に形成されている。
<Output hole>
As shown in FIGS. 2 and 3, the bottom wall 493 is formed with a first output hole 493k, a second output hole 493l, and a third output hole 493m that open into the inner bottom surface 493a and the outer bottom surface 493b. There is. These three output holes are formed on the bottom wall 493 on the side separated from the input connector 406.
 上記したように側壁494はz方向まわりの周方向で環状を成している。そのために側壁494の内周面494aの一部はy方向で並んでいる。この内周面494aにおけるy方向で並ぶ2つの領域のうちの一方に入力コネクタ406が設けられている。2つの領域のうちの他方側に第1出力孔493k~第3出力孔493mが位置している。 As described above, the side wall 494 forms an annular shape in the circumferential direction around the z direction. Therefore, a part of the inner peripheral surface 494a of the side wall 494 is arranged in the y direction. The input connector 406 is provided in one of the two regions arranged in the y direction on the inner peripheral surface 494a. The first output hole 493k to the third output hole 493m are located on the other side of the two regions.
 図2に示すように、U相バスバ403~W相バスバ405それぞれはインバータハウジング490の収納空間で延長するとともに、その一部が収納空間の外で延長している。係る延長を実現するため、U相バスバ403~W相バスバ405それぞれが第1出力孔493k~第3出力孔493mそれぞれに個別に通される。これらU相バスバ403~W相バスバ405それぞれと入力コネクタ406との間に冷却器480とコンデンサハウジング470が位置している。第1出力孔493k~第3出力孔493mが第3貫通孔に相当する。 As shown in FIG. 2, each of the U-phase bus bar 403 to the W-phase bus bar 405 extends in the storage space of the inverter housing 490, and a part thereof extends outside the storage space. In order to realize such an extension, each of the U-phase bus bar 403 to the W-phase bus bar 405 is individually passed through the first output hole 493 k to the third output hole 493 m. A cooler 480 and a condenser housing 470 are located between each of the U-phase bus bars 403 to W-phase bus bars 405 and the input connector 406. The first output hole 493k to the third output hole 493m correspond to the third through hole.
 U相バスバ403~W相バスバ405それぞれの一端は、収納空間において、3つの半導体モジュールの中点端子440cに個別に接続される。U相バスバ403~W相バスバ405それぞれに第2電流センサ450が設けられる。U相バスバ403~W相バスバ405それぞれの他端は、収納空間の外において、U相ステータバスバ501~W相ステータバスバ503それぞれと個別に接続される。第2電流センサ450とU相バスバ403~W相バスバ405それぞれの他端との間に底壁493が位置している。 One end of each of the U-phase bus bar 403 to the W-phase bus bar 405 is individually connected to the midpoint terminal 440c of the three semiconductor modules in the storage space. A second current sensor 450 is provided in each of the U-phase bus bar 403 to the W-phase bus bar 405. The other ends of the U-phase bus bars 403 to W-phase bus bars 405 are individually connected to the U-phase stator bus bars 501 to W-phase stator bus bars 503, respectively, outside the storage space. The bottom wall 493 is located between the second current sensor 450 and the other ends of each of the U-phase bus bar 403 to the W-phase bus bar 405.
 本実施形態のU相バスバ403~W相バスバ405それぞれの一部は、収納空間において、z方向で延長するとともに、折曲がって、内底面493aに沿って延長している。この相バスバの内底面493aに沿って延長する部位と内底面493aとの間に第2伝熱シート472が介在されている。この第2伝熱シート472は相バスバと底壁493との間で挟持されている。これにより相バスバは第2伝熱シート472を介して冷却通路493eの形成された底壁493と積極的に熱伝導しやすくなっている。 A part of each of the U-phase bus bar 403 to the W-phase bus bar 405 of the present embodiment is extended in the z direction in the storage space, and is bent and extended along the inner bottom surface 493a. A second heat transfer sheet 472 is interposed between a portion extending along the inner bottom surface 493a of the phase bus bar and the inner bottom surface 493a. The second heat transfer sheet 472 is sandwiched between the phase bus bar and the bottom wall 493. This facilitates the positive heat conduction of the phase bather with the bottom wall 493 formed by the cooling passage 493e via the second heat transfer sheet 472.
 <外カバー>
 外カバー492は底壁493に連結される。外カバー492は外底面493bとz方向で離間して対向する対向面492aを有する。この外底面493bと対向面492aとの間で覆い空間が区画されている。この覆い空間に外部バスバ408、ノイズフィルタ420、および、U相バスバ403~W相バスバ405が収納されている。
<Outer cover>
The outer cover 492 is connected to the bottom wall 493. The outer cover 492 has an facing surface 492a that faces the outer bottom surface 493b at a distance in the z direction. A covering space is partitioned between the outer bottom surface 493b and the facing surface 492a. An external bus bar 408, a noise filter 420, and a U-phase bus bar 403 to a W-phase bus bar 405 are housed in this covering space.
 細分化して説明すると、覆い空間は第1空間、第2空間、第3空間に大別される。第1空間に外部バスバ408とノイズフィルタ420とが収納されている。第2空間を介して第1空間と第3空間とが連通している。第3空間にU相バスバ403~W相バスバ405が収納されている。 To explain in detail, the covering space is roughly divided into a first space, a second space, and a third space. An external bus bar 408 and a noise filter 420 are housed in the first space. The first space and the third space communicate with each other through the second space. The U-phase bus bar 403 to the W-phase bus bar 405 are stored in the third space.
 第1空間における第2空間との連結場所は、第1空間における外部バスバ408とノイズフィルタ420それぞれの収納場所よりもz方向の長さが短くなっている。第1空間から第2空間に向かうにしたがって、覆い空間は窄まった形状をしている。 The length of the connection location with the second space in the first space is shorter in the z direction than the storage location of the external bus bar 408 and the noise filter 420 in the first space. From the first space to the second space, the covering space has a narrowed shape.
 第3空間における第2空間との連結場所は、第3空間におけるU相バスバ403~W相バスバ405の収納場所よりもz方向の長さが短くなっている。第3空間から第2空間に向かうにしたがって、覆い空間は窄まった形状をしている。 The length of the connection location with the second space in the third space is shorter in the z direction than the storage location of the U-phase bus bar 403 to the W-phase bus bar 405 in the third space. From the third space to the second space, the covering space has a narrowed shape.
 以上に示した構成のため、第1空間に収納されたノイズフィルタ420と第3収納空間に収納されたU相バスバ403~W相バスバ405とを結ぶ線上に金属製の外カバー492の一部が位置している。 Due to the configuration shown above, a part of the metal outer cover 492 is on the line connecting the noise filter 420 housed in the first space and the U-phase bus bar 403 to the W-phase bus bar 405 housed in the third storage space. Is located.
 これまでに説明したように、第1空間と第3空間とが第2空間を介して連通している構成を示した。しかしながら第2空間はなくともよい。覆い空間は、外部バスバ408とノイズフィルタ420の収納された空間と、U相バスバ403~W相バスバ405の収納された空間とに区分けされてもよい。これら2つの空間が隔絶されてもよい。 As explained so far, the configuration in which the first space and the third space communicate with each other via the second space is shown. However, the second space does not have to be. The covering space may be divided into a space in which the external bus bar 408 and the noise filter 420 are housed, and a space in which the U-phase bus bar 403 to the W-phase bus bar 405 are housed. These two spaces may be separated.
 外カバー492は対向面492aとその裏側の裏面492bを有する。外カバー492にはこの対向面492aと裏面492bそれぞれに開口する接続孔492cと連結孔492dが形成されている。 The outer cover 492 has a facing surface 492a and a back surface 492b on the back side thereof. The outer cover 492 is formed with a connection hole 492c and a connection hole 492d that open on the facing surface 492a and the back surface 492b, respectively.
 接続孔492cはz方向に開口している。この接続孔492cを介して、U相ステータバスバ501~W相ステータバスバ503それぞれの先端側が第3空間に挿入される。 The connection hole 492c is open in the z direction. The tip end side of each of the U-phase stator bus bar 501 to the W-phase stator bus bar 503 is inserted into the third space through the connection hole 492c.
 連結孔492dはy方向に開口している。この連結孔492dのy方向への投影領域と接続孔492cのz方向への投影領域との重なる重畳領域に、U相バスバ403~W相バスバ405それぞれの他端と、U相ステータバスバ501~W相ステータバスバ503それぞれの先端が設けられる。 The connecting hole 492d is open in the y direction. In the overlapping region where the projection region of the connecting hole 492d in the y direction and the projection region of the connecting hole 492c in the z direction overlap, the other ends of the U-phase bus 403 to the W-phase bus 405 and the U-phase stator bus 501 to W The tips of each of the phase stator baths 503 are provided.
 3つの相バスバの他端と3つの相ステータバスバの先端それぞれは重畳領域でx方向に並んでいる。これら3つの相バスバの他端と3つの相ステータバスバの先端がy方向で対向している。そしてこれら相バスバと相ステータバスバそれぞれの対向領域に、両者をボルト止めするための貫通孔が形成されている。貫通孔はy方向に延びている。 The other ends of the three phase bus bars and the tips of the three phase stator bus bars are aligned in the x direction in the overlapping region. The other ends of these three phase bus bars and the tips of the three phase stator bus bars face each other in the y direction. A through hole for bolting both of the phase bus bar and the phase stator bus bar is formed in the facing region of each of the phase bus bar and the phase stator bus bar. The through hole extends in the y direction.
 y方向に開口する接続孔492cを介して、相バスバと相ステータバスバとを連結するためのボルト504が重畳領域に挿入される。相ステータバスバと相バスバとがボルト止めされた後、連結孔492dは連結カバー492eによって閉塞される。なお、ボルト504の軸部は、図示しない端子台のねじ孔やナットのねじ溝に締結される。ボルト504の頭部と端子台との間で相バスバと相ステータバスバとが挟持される。 A bolt 504 for connecting the phase bus bar and the phase stator bus bar is inserted into the overlapping region via the connection hole 492c that opens in the y direction. After the phase stator bus bar and the phase bus bar are bolted together, the connecting hole 492d is closed by the connecting cover 492e. The shaft portion of the bolt 504 is fastened to a screw hole of a terminal block or a screw groove of a nut (not shown). A phase bus bar and a phase stator bus bar are sandwiched between the head of the bolt 504 and the terminal block.
 <モータ>
 次にモータ500を概説する。モータ500はU相ステータバスバ501~W相ステータバスバ503の他に、金属製のモータハウジング510を備えている。このモータハウジング510の中空に、モータシャフト、ロータ、および、ステータそれぞれが収納されている。モータハウジング510が電磁遮蔽ハウジングに相当する。
<Motor>
Next, the motor 500 will be outlined. The motor 500 includes a metal motor housing 510 in addition to the U-phase stator bus bars 501 to the W-phase stator bus bar 503. The motor shaft, rotor, and stator are housed in the hollow of the motor housing 510. The motor housing 510 corresponds to an electromagnetically shielded housing.
 モータハウジング510は円筒形状を成している。モータハウジング510の軸方向はx方向になっている。そのためにモータハウジング510はx方向に面する平面において円形を成す円筒面510aを有する。モータハウジング510はx方向に面する2つの底面510bを有する。 The motor housing 510 has a cylindrical shape. The axial direction of the motor housing 510 is the x direction. Therefore, the motor housing 510 has a cylindrical surface 510a that forms a circle in a plane facing the x direction. The motor housing 510 has two bottom surfaces 510b facing in the x direction.
 モータハウジング510の底面510bにはy方向に延びるモータシャフトの先端をモータハウジング510の中空の外に設けるための貫通孔が形成されている。このモータシャフトの先端が電気自動車の出力軸に連結されている。 The bottom surface 510b of the motor housing 510 is formed with a through hole for providing the tip of the motor shaft extending in the y direction outside the hollow of the motor housing 510. The tip of this motor shaft is connected to the output shaft of the electric vehicle.
 ロータは、永久磁石と、永久磁石をモータシャフトに固定する固定部と、を有する。固定部は円筒形状を成している。固定部の中空にモータシャフトが挿入固定されている。これにより永久磁石はモータシャフトの軸周りに設けられている。 The rotor has a permanent magnet and a fixing portion for fixing the permanent magnet to the motor shaft. The fixed portion has a cylindrical shape. The motor shaft is inserted and fixed in the hollow of the fixed portion. As a result, the permanent magnet is provided around the axis of the motor shaft.
 ステータは、ステータコアと、ステータコアに設けられるステータコイルと、を有する。ステータコアは円筒形状を成している。ステータコアの中空に、モータシャフトとともにロータが設けられている。これによりロータとステータとが、モータシャフトの延長方向に対して直交する放射方向で対向している。 The stator has a stator core and a stator coil provided on the stator core. The stator core has a cylindrical shape. A rotor is provided together with a motor shaft in the hollow of the stator core. As a result, the rotor and the stator face each other in the radial direction orthogonal to the extension direction of the motor shaft.
 ステータコイルは上記したU相ステータコイル~W相ステータコイルを有する。これら3相のステータコイルそれぞれは導線がエナメル被膜などの絶縁材料で覆われた絶縁電線を有する。これら3相の絶縁電線がステータコアに巻き回されている。これによりステータコイルがステータコアに設けられている。 The stator coil has the above-mentioned U-phase stator coil to W-phase stator coil. Each of these three-phase stator coils has an insulated wire whose conductor is covered with an insulating material such as an enamel coating. These three-phase insulated wires are wound around the stator core. As a result, the stator coil is provided on the stator core.
 3相のステータコイルはU相ステータバスバ501~W相ステータバスバ503を介して電力変換装置400と電気的に接続されている。3相のステータコイルに電力変換装置400から三相交流が供給される。これによりステータコイルから三相回転磁界が発生する。 The three-phase stator coil is electrically connected to the power conversion device 400 via the U-phase stator bus bar 501 to the W-phase stator bus bar 503. Three-phase alternating current is supplied from the power conversion device 400 to the three-phase stator coil. As a result, a three-phase rotating magnetic field is generated from the stator coil.
 上記したようにロータは永久磁石を有する。永久磁石から磁界が発生している。そしてステータコイルからは三相回転磁界が発生される。これら2つの磁界の相互作用によって、ロータに回転トルクが発生する。回転トルクの発生方向は、回転磁界の位相変化に応じて、モータシャフトの延長方向まわりの周方向で順次経時的に変化する。これによりロータの設けられたモータシャフトが回転する。 As mentioned above, the rotor has a permanent magnet. A magnetic field is generated from a permanent magnet. Then, a three-phase rotating magnetic field is generated from the stator coil. Rotational torque is generated in the rotor by the interaction of these two magnetic fields. The direction in which the rotational torque is generated sequentially changes with time in the circumferential direction around the extension direction of the motor shaft according to the phase change of the rotating magnetic field. As a result, the motor shaft provided with the rotor rotates.
 <機電一体型ユニット>
 図4に模式的に示すように、電力変換装置400のインバータハウジング490がモータ500のモータハウジング510に連結される。これにより機電一体型ユニット300が構成されている。係る連結によって、上記したインバータハウジング490の接続孔492cの開口がモータハウジング510によって閉塞される。
<Mechanical and electrical integrated unit>
As schematically shown in FIG. 4, the inverter housing 490 of the power conversion device 400 is connected to the motor housing 510 of the motor 500. As a result, the mechanical / electrical integrated unit 300 is configured. By such connection, the opening of the connection hole 492c of the inverter housing 490 described above is closed by the motor housing 510.
 機電一体型ユニット300は電気自動車のボンネット裏の載置空間に設けられる。図4に示す構成において、x方向は電気自動車の左右方向、y方向は電気自動車の前後方向、z方向は電気自動車の天地方向に沿っている。 The mechanical / electrical integrated unit 300 is provided in the mounting space behind the hood of the electric vehicle. In the configuration shown in FIG. 4, the x direction is the left-right direction of the electric vehicle, the y direction is the front-rear direction of the electric vehicle, and the z direction is along the top-bottom direction of the electric vehicle.
 機電一体型ユニット300が載置空間に設けられた状態で、z方向においてモータハウジング510は車底側に設けられる。インバータハウジング490はボンネット側に設けられる。 The motor housing 510 is provided on the bottom side of the vehicle in the z direction with the mechanical / electrical integrated unit 300 provided in the mounting space. The inverter housing 490 is provided on the bonnet side.
 また、機電一体型ユニット300はユーザの搭乗する車室からy方向で離間している。機電一体型ユニット300は車室に設けられるラジオやカーナビゲーションシステムなどの車両アクセサリとy方向で離間している。図4において載置空間をPS、車室をCRと表記している。両者の境を二点鎖線で示している。 Further, the mechanical / electrical integrated unit 300 is separated from the passenger compartment in which the user is boarding in the y direction. The mechanical / electrical integrated unit 300 is separated from vehicle accessories such as a radio and a car navigation system provided in the vehicle interior in the y direction. In FIG. 4, the mounting space is referred to as PS and the passenger compartment is referred to as CR. The boundary between the two is shown by a two-dot chain line.
 上記したようにモータハウジング510はx方向を軸方向とする円筒面510aを有する。円筒面510aはx方向に直交する平面で円弧形状を成している。この円筒面510aとインバータハウジング490の外底面493bとがz方向で並んでいる。係る配置構成のため、円筒面510aと外底面493bとのz方向の離間距離は、y方向の位置がずれると変化する。 As described above, the motor housing 510 has a cylindrical surface 510a whose axial direction is the x direction. The cylindrical surface 510a is a plane orthogonal to the x direction and has an arc shape. The cylindrical surface 510a and the outer bottom surface 493b of the inverter housing 490 are aligned in the z direction. Due to this arrangement configuration, the separation distance between the cylindrical surface 510a and the outer bottom surface 493b in the z direction changes when the position in the y direction deviates.
 図4に円筒面510aの中心をz方向に貫く中心線CLを一点鎖線で示す。円筒面510aと外底面493bとのz方向の離間距離は、この中心線CL上で最も短くなっている。円筒面510aと外底面493bとのz方向の離間距離は中心線CLからy方向に離れるにしたがって長くなっている。この円筒面510aと外底面493bとの間の隙間は、いわゆるデッドスペースになっている。 FIG. 4 shows the center line CL penetrating the center of the cylindrical surface 510a in the z direction as a alternate long and short dash line. The distance between the cylindrical surface 510a and the outer bottom surface 493b in the z direction is the shortest on the center line CL. The distance between the cylindrical surface 510a and the outer bottom surface 493b in the z direction becomes longer as the distance from the center line CL increases in the y direction. The gap between the cylindrical surface 510a and the outer bottom surface 493b is a so-called dead space.
 このデッドスペースは円筒面510aと外底面493bとの間に2つ構成されている。2つのデッドスペースは中心線CLを介してy方向で並んでいる。2つのデッドスペースのうちの一方は車室側に位置している。2つのデッドスペースのうちの他方は車室から離間している。図4ではこの車室から離間したデッドスペースにハッチングを施している。 There are two dead spaces between the cylindrical surface 510a and the outer bottom surface 493b. The two dead spaces are lined up in the y direction via the center line CL. One of the two dead spaces is located on the passenger compartment side. The other of the two dead spaces is separated from the passenger compartment. In FIG. 4, the dead space separated from the passenger compartment is hatched.
 図4では、外カバー492における外部バスバ408とノイズフィルタ420の収納される第1空間を区画する部位のみを示している。この外カバー492の外部バスバ408とノイズフィルタ420の収納された部位が、ハッチングの施されたデッドスペースに設けられている。 FIG. 4 shows only the portion of the outer cover 492 that partitions the first space in which the external bus bar 408 and the noise filter 420 are housed. A portion of the outer cover 492 in which the external bus bar 408 and the noise filter 420 are housed is provided in the hatched dead space.
 係る配置構成のため、筐体491の収納空間の外に設けられた外部バスバ408およびノイズフィルタ420と、ラジオやカーナビゲーションシステムなどの車両アクセサリの設けられた車室との間に、インバータハウジング490の筐体491とモータハウジング510が位置している。外部バスバ408およびノイズフィルタ420がy方向でモータハウジング510と並んでいる。 Due to this arrangement configuration, the inverter housing 490 is located between the external bus bar 408 and noise filter 420 provided outside the storage space of the housing 491 and the vehicle interior provided with vehicle accessories such as a radio and a car navigation system. Housing 491 and motor housing 510 are located. The external bus bar 408 and the noise filter 420 are aligned with the motor housing 510 in the y direction.
 <作用効果>
 Pバスバ401とNバスバ402それぞれは、収納空間で延長する第1内部バスバ407と第2内部バスバ409、および、収納空間の外で延長する外部バスバ408を有する。
<Action effect>
Each of the P bus bar 401 and the N bus bar 402 has a first internal bus bar 407 and a second internal bus bar 409 extending in the storage space, and an external bus bar 408 extending outside the storage space.
 外部バスバ408は冷却通路493eの形成された外底面493bとz方向で対向している。外部バスバ408と外底面493bの離間距離は絶縁距離が確保される程度になっている。 The external bus bar 408 faces the outer bottom surface 493b formed by the cooling passage 493e in the z direction. The separation distance between the external bus bar 408 and the outer bottom surface 493b is such that the insulation distance is secured.
 これによればPバスバ401とNバスバ402それぞれの外部バスバ408の昇温が抑制される。この結果、外部バスバ408に電気的に接続される平滑コンデンサ430の昇温が抑制される。平滑コンデンサ430の静電容量などの電気的特性の変化が抑制される。 According to this, the temperature rise of the external bus bars 408 of each of the P bus bar 401 and the N bus bar 402 is suppressed. As a result, the temperature rise of the smoothing capacitor 430 electrically connected to the external bus bar 408 is suppressed. Changes in electrical characteristics such as the capacitance of the smoothing capacitor 430 are suppressed.
 外部バスバ408は、コンデンサハウジング470がz方向に沿って外底面493bに投影された投影領域とz方向で対向している。また、外部バスバ408に接続されたノイズフィルタ420も投影領域とz方向で対向している。 In the external bus bar 408, the capacitor housing 470 faces the projection region projected on the outer bottom surface 493b along the z direction in the z direction. Further, the noise filter 420 connected to the external bus bar 408 also faces the projection region in the z direction.
 これによれば、電力変換装置400のz方向に直交する方向の体格の増大が抑制される。 According to this, the increase in the physique of the power converter 400 in the direction orthogonal to the z direction is suppressed.
 ノイズフィルタ420は底壁493に設けられている。 The noise filter 420 is provided on the bottom wall 493.
 これによれば、ノイズフィルタ420と底壁493とが伝熱しやすくなる。そのため、このノイズフィルタ420に接続された外部バスバ408の昇温が抑制される。外部バスバ408に電気的に接続された平滑コンデンサ430の昇温が抑制される。 According to this, the noise filter 420 and the bottom wall 493 can easily transfer heat. Therefore, the temperature rise of the external bus bar 408 connected to the noise filter 420 is suppressed. The temperature rise of the smoothing capacitor 430 electrically connected to the external bus bar 408 is suppressed.
 Pバスバ401の外部バスバ408は、投影領域を介して第1通し孔493gから第3通し孔493iへ延びている。Nバスバ402の外部バスバ408は、投影領域を介して第2通し孔493hから第4通し孔493jへ延びている。 The external bus bar 408 of the P bus bar 401 extends from the first through hole 493 g to the third through hole 493i via the projection region. The external bus bar 408 of the N bus bar 402 extends from the second through hole 493h to the fourth through hole 493j via the projection region.
 これによれば、外部バスバ408の延長が抑制される。そのため、外部バスバ408からの電磁ノイズの発生が抑制される。 According to this, the extension of the external bus bar 408 is suppressed. Therefore, the generation of electromagnetic noise from the external bus bar 408 is suppressed.
 コンデンサハウジング470と冷却器480とがy方向で離間している。第2内部バスバ409の他端側はコンデンサハウジング470と冷却器480との間に延びた後、コンデンサハウジング470側と冷却器480側とに分岐している。第2内部バスバ409の分岐した部位の1つが平滑コンデンサ430に接続され、他の分岐した部位がスイッチング部440に接続されている。 The condenser housing 470 and the cooler 480 are separated in the y direction. The other end side of the second internal bus bar 409 extends between the condenser housing 470 and the cooler 480, and then branches into the condenser housing 470 side and the cooler 480 side. One of the branched portions of the second internal bus bar 409 is connected to the smoothing capacitor 430, and the other branched portion is connected to the switching unit 440.
 これによれば、バッテリ200から入力された電源電力が平滑コンデンサ430を介してスイッチング部440に流動することが抑制される。平滑コンデンサ430が通電によって昇温することが抑制される。 According to this, it is suppressed that the power supply power input from the battery 200 flows to the switching unit 440 via the smoothing capacitor 430. The temperature rise of the smoothing capacitor 430 due to energization is suppressed.
 Pバスバ401の第1内部バスバ407が第1通し孔493gに挿入されている。Nバスバ402の第1内部バスバ407が第2通し孔493hに挿入されている。 The first internal bus bar 407 of the P bus bar 401 is inserted into the first through hole 493 g. The first internal bus bar 407 of the N bus bar 402 is inserted into the second through hole 493h.
 これにより第1内部バスバ407の昇温が抑制される。この第1内部バスバ407と電気的に接続された平滑コンデンサ430の昇温が抑制される。この第1内部バスバ407に設けられた第1電流センサ410の昇温が抑制される。 As a result, the temperature rise of the first internal bus bar 407 is suppressed. The temperature rise of the smoothing capacitor 430 electrically connected to the first internal bus bar 407 is suppressed. The temperature rise of the first current sensor 410 provided in the first internal bus bar 407 is suppressed.
 Pバスバ401の第2内部バスバ409が第3通し孔493iに挿入されている。Nバスバ402の第2内部バスバ409が第4通し孔493jに挿入されている。 The second internal bus bar 409 of the P bus bar 401 is inserted into the third through hole 493i. The second internal bus bar 409 of the N bus bar 402 is inserted into the fourth through hole 493j.
 これにより第2内部バスバ409の昇温が抑制される。この第2内部バスバ409と電気的に接続された平滑コンデンサ430の昇温が抑制される。 As a result, the temperature rise of the second internal bus bar 409 is suppressed. The temperature rise of the smoothing capacitor 430 electrically connected to the second internal bus bar 409 is suppressed.
 底壁493と外カバー492との間で区画される覆い空間に外部バスバ408が収納されている。 The external bus bar 408 is stored in the covering space partitioned between the bottom wall 493 and the outer cover 492.
 これによれば、外部バスバ408を流れる電流から発生する電磁ノイズが電力変換装置400の外に漏れることが抑制される。 According to this, electromagnetic noise generated from the current flowing through the external bus bar 408 is suppressed from leaking to the outside of the power conversion device 400.
 外部バスバ408とU相バスバ403~W相バスバ405とを結ぶ線上に外カバー492の一部が位置している。 A part of the outer cover 492 is located on the line connecting the external bus bar 408 and the U-phase bus bar 403 to the W-phase bus bar 405.
 これによれば、外部バスバ408とU相バスバ403~W相バスバ405のうちの一方から他方への電磁ノイズの入力が抑制される。 According to this, the input of electromagnetic noise from one of the external bus bar 408 and the U-phase bus bar 403 to the W-phase bus bar 405 to the other is suppressed.
 本実施形態では、覆い空間が、外部バスバ408とノイズフィルタ420の収納された空間と、U相バスバ403~W相バスバ405の収納された空間とに区分けされる構成を一例として示した。 In the present embodiment, the configuration in which the covering space is divided into a space in which the external bus bar 408 and the noise filter 420 are housed and a space in which the U-phase bus bar 403 to the W-phase bus bar 405 are housed is shown as an example.
 係る構成の場合、外部バスバ408とU相バスバ403~W相バスバ405のうちの一方から他方への電磁ノイズの入力が効果的に抑制される。 In the case of such a configuration, the input of electromagnetic noise from one of the external bus bar 408 and the U-phase bus bar 403 to the W-phase bus bar 405 to the other is effectively suppressed.
 U相バスバ403~W相バスバ405は、収納空間において、z方向で延長するとともに、折曲がって、内底面493aに沿って延長している。 The U-phase bus bar 403 to the W-phase bus bar 405 extend in the z direction and bend along the inner bottom surface 493a in the storage space.
 係る構成のため、モータ500の振動によってU相バスバ403~W相バスバ405それぞれのU相半導体モジュール441~W相半導体モジュール443の中点端子440cに応力の作用することが抑制される。相バスバと半導体モジュールとに電気的な接続不良の生じることが抑制される。 Due to this configuration, the vibration of the motor 500 suppresses the action of stress on the midpoint terminals 440c of the U-phase semiconductor modules 441 to W-phase semiconductor modules 443, respectively, of the U-phase bus bars 403 to W-phase bus bars 405. It is possible to suppress the occurrence of electrical connection failure between the phase bus bar and the semiconductor module.
 U相バスバ403~W相バスバ405が第1出力孔493k~第3出力孔493mに挿入されている。 U-phase bus bars 403 to W-phase bus bars 405 are inserted into the first output holes 493k to the third output holes 493m.
 これによりU相バスバ403~W相バスバ405の昇温が抑制される。このU相バスバ403~W相バスバ405に設けられた第2電流センサ450の昇温が抑制される。 As a result, the temperature rise of the U-phase bus bar 403 to the W-phase bus bar 405 is suppressed. The temperature rise of the second current sensor 450 provided in the U-phase bus bar 403 to the W-phase bus bar 405 is suppressed.
 U相バスバ403~W相バスバ405それぞれのU相ステータバスバ501~W相ステータバスバ503それぞれと接続される他端と、第2電流センサ450との間に底壁493が位置している。 The bottom wall 493 is located between the other end connected to each of the U-phase stator bus bars 501 to W-phase stator bus bar 503 of each of the U-phase bus bars 403 to W-phase bus bar 405 and the second current sensor 450.
 これによれば、モータ500から第2電流センサ450への伝熱が抑制される。 According to this, heat transfer from the motor 500 to the second current sensor 450 is suppressed.
 U相バスバ403~W相バスバ405と底壁493との間に第2伝熱シート472が介在されている。 A second heat transfer sheet 472 is interposed between the U-phase bus bar 403 to the W-phase bus bar 405 and the bottom wall 493.
 これによれば、U相バスバ403~W相バスバ405の昇温が抑制される。それにともなって第2電流センサ450の昇温が抑制される。 According to this, the temperature rise of the U-phase bus bar 403 to the W-phase bus bar 405 is suppressed. Along with this, the temperature rise of the second current sensor 450 is suppressed.
 外部バスバ408とノイズフィルタ420は、インバータハウジング490の筐体491の底壁493とモータハウジング510の円筒面510aとの間に構成されるデッドスペースに設けられている。 The external bus bar 408 and the noise filter 420 are provided in a dead space formed between the bottom wall 493 of the housing 491 of the inverter housing 490 and the cylindrical surface 510a of the motor housing 510.
 これによれば機電一体型ユニット300の体格の増大が抑制される。 According to this, the increase in the physique of the mechanical / electrical integrated unit 300 is suppressed.
 外部バスバ408とノイズフィルタ420は、インバータハウジング490とモータハウジング510との間に構成される2つのデッドスペースのうち、車室から離間したデッドスペースに設けられている。 The external bus bar 408 and the noise filter 420 are provided in the dead space separated from the vehicle interior among the two dead spaces configured between the inverter housing 490 and the motor housing 510.
 これによれば、筐体491の収納空間の外に設けられた外部バスバ408を流れる電流から発生した電磁ノイズが車室に設けられたラジオやカーナビゲーションシステムなどの車両アクセサリを透過することが抑制される。 According to this, electromagnetic noise generated from the current flowing through the external bus bar 408 provided outside the storage space of the housing 491 is suppressed from passing through vehicle accessories such as a radio and a car navigation system provided in the passenger compartment. Will be done.
 筐体491の収納空間の外に設けられた外部バスバ408と車室との間にインバータハウジング490とモータハウジング510が位置している。 The inverter housing 490 and the motor housing 510 are located between the external bus bar 408 provided outside the storage space of the housing 491 and the passenger compartment.
 これによれば、外部バスバ408から発生した電磁ノイズが車室に設けられた車両アクセサリを透過することが効果的に抑制される。 According to this, the electromagnetic noise generated from the external bus bar 408 is effectively suppressed from passing through the vehicle accessories provided in the passenger compartment.
 冷却器480が支持壁496に設けられている。この支持壁496とコンデンサハウジング470とがz方向で対向している。 A cooler 480 is provided on the support wall 496. The support wall 496 and the capacitor housing 470 face each other in the z direction.
 これによれば支持壁496が昇温されがたくなる。この支持壁496とコンデンサハウジング470とが熱交換しやすくなる。そのためにコンデンサハウジング470に収納された平滑コンデンサ430の昇温が抑制される。 According to this, it becomes difficult for the support wall 496 to be heated. The support wall 496 and the capacitor housing 470 facilitate heat exchange. Therefore, the temperature rise of the smoothing capacitor 430 housed in the capacitor housing 470 is suppressed.
 平滑コンデンサ430の備える第1電極431が支持壁496側に位置し、第2電極432が底壁493側に位置している。 The first electrode 431 provided in the smoothing capacitor 430 is located on the support wall 496 side, and the second electrode 432 is located on the bottom wall 493 side.
 これによれば、第1電極431が冷却器480の設けられる支持壁496と熱交換しやすくなる。それとともに、第2電極432が冷却通路493eの形成された底壁493と熱交換しやすくなる。そのために平滑コンデンサ430の昇温が効果的に抑制される。 According to this, the first electrode 431 easily exchanges heat with the support wall 496 provided with the cooler 480. At the same time, the second electrode 432 facilitates heat exchange with the bottom wall 493 in which the cooling passage 493e is formed. Therefore, the temperature rise of the smoothing capacitor 430 is effectively suppressed.
 本実施形態では、冷却通路493eを流動した冷媒が冷却器480に供給される構成を一例として示した。図2と図4に示すように、冷却通路493eは冷却器480よりも車両の天地方向において車底側に位置している。 In the present embodiment, the configuration in which the refrigerant flowing through the cooling passage 493e is supplied to the cooler 480 is shown as an example. As shown in FIGS. 2 and 4, the cooling passage 493e is located on the bottom side of the vehicle in the vertical direction of the vehicle with respect to the cooler 480.
 係る構成の場合、冷却通路493eから冷却器480へと向かう冷媒は、鉛直方向とは逆向きにz方向に流動する。そのため、例え冷却通路493e内に気泡が生じていたとしても、その気泡が冷却器480へと流動しやすくなる。この気泡が冷却器480の排出管482を介して外に排出されやすくなる。そのため、気泡のために冷却通路493eと冷却器480の冷却性能が低下することが抑制される。 In the case of such a configuration, the refrigerant flowing from the cooling passage 493e to the cooler 480 flows in the z direction in the direction opposite to the vertical direction. Therefore, even if air bubbles are generated in the cooling passage 493e, the air bubbles easily flow to the cooler 480. The bubbles are easily discharged to the outside through the discharge pipe 482 of the cooler 480. Therefore, it is suppressed that the cooling performance of the cooling passage 493e and the cooler 480 is deteriorated due to the air bubbles.
 (第2実施形態)
 次に、第2実施形態を図5に基づいて説明する。
(Second Embodiment)
Next, the second embodiment will be described with reference to FIG.
 図5に示すように、本実施形態のU相バスバ403~W相バスバ405は導電バスバ400aと熱伝導バスバ400bを有する。導電バスバ400aはスイッチング部440とU相ステータバスバ501~W相ステータバスバ503との間の通電を担う。熱伝導バスバ400bは導電バスバ400aと底壁493との間の熱伝導を担う。 As shown in FIG. 5, the U-phase bus bar 403 to the W-phase bus bar 405 of the present embodiment have a conductive bus bar 400a and a heat conductive bus bar 400b. The conductive bus bar 400a is responsible for energization between the switching unit 440 and the U-phase stator bus bar 501 to the W-phase stator bus bar 503. The heat conductive bus bar 400b is responsible for heat conduction between the conductive bus bar 400a and the bottom wall 493.
 これら導電バスバ400aと熱伝導バスバ400bの形成材料は同一でもよいし異なってもよい。形成材料が異なる場合、導電バスバ400aは熱伝導バスバ400bよりも電気伝導率の高い材料で形成されるとよい。熱伝導バスバ400bは導電バスバ400aよりも熱伝導率の高い材料で形成されるとよい。 The forming materials of the conductive bus bar 400a and the heat conductive bus bar 400b may be the same or different. When the forming materials are different, the conductive bus bar 400a may be formed of a material having a higher electric conductivity than the heat conductive bus bar 400b. The heat conductive bus bar 400b is preferably made of a material having a higher thermal conductivity than the conductive bus bar 400a.
 導電バスバ400aと熱伝導バスバ400bとは例えばボルトなどによって連結されている。熱伝導バスバ400bは内底面493aに沿って延長している。この熱伝導バスバ400bと内底面493aとの間に第2伝熱シート472が介在される。 The conductive bus bar 400a and the heat conductive bus bar 400b are connected by, for example, bolts. The heat conductive bus bar 400b extends along the inner bottom surface 493a. A second heat transfer sheet 472 is interposed between the heat conduction bus bar 400b and the inner bottom surface 493a.
 係る構成により、導電バスバ400aの昇温が抑制される。この導電バスバ400aに設けられる第2電流センサ450の昇温が抑制される。 With such a configuration, the temperature rise of the conductive bus bar 400a is suppressed. The temperature rise of the second current sensor 450 provided in the conductive bus bar 400a is suppressed.
 本実施形態に記載の機電一体型ユニット300には、第1実施形態に記載の機電一体型ユニット300と同等の構成要素が含まれている。そのために本実施形態に記載の機電一体型ユニット300が第1実施形態に記載の機電一体型ユニット300と同等の作用効果を奏することは言うまでもない。そのためにその記載を省略する。以下に示す他の実施形態や変形例でも重複する作用効果の記載を省略する。 The mechanical / electrical integrated unit 300 described in the present embodiment includes components equivalent to those of the mechanical / electrical integrated unit 300 described in the first embodiment. Therefore, it goes without saying that the mechanical / electrical integrated unit 300 described in the present embodiment has the same function and effect as the mechanical / electrical integrated unit 300 described in the first embodiment. Therefore, the description is omitted. The description of overlapping actions and effects will be omitted in the other embodiments and modifications shown below.
 (第3実施形態)
 次に、第3実施形態を図6に基づいて説明する。
(Third Embodiment)
Next, the third embodiment will be described with reference to FIG.
 第1実施形態では外カバー492にU相バスバ403~W相バスバ405とU相ステータバスバ501~W相ステータバスバ503それぞれとをボルト止めするための連結孔492dが形成された例を示した。 In the first embodiment, an example is shown in which a connecting hole 492d for bolting each of the U-phase bus bar 403 to the W-phase bus bar 405 and the U-phase stator bus bar 501 to the W-phase stator bus bar 503 is formed on the outer cover 492.
 これに対して本実施形態では、図6に示すように、筐体491の側壁494に連結孔492dが形成されている。この連結孔492dは内周面494aと外周面494bとに開口している。 On the other hand, in the present embodiment, as shown in FIG. 6, a connecting hole 492d is formed in the side wall 494 of the housing 491. The connecting hole 492d is open to the inner peripheral surface 494a and the outer peripheral surface 494b.
 係る構成を実現するため、U相ステータバスバ501~W相ステータバスバ503それぞれが第1出力孔493k~第3出力孔493mに挿入される。U相ステータバスバ501~W相ステータバスバ503それぞれの先端が筐体491の収納空間に設けられる。 In order to realize such a configuration, each of the U-phase stator bus bar 501 to the W-phase stator bus bar 503 is inserted into the first output hole 493k to the third output hole 493m. The tips of the U-phase stator bus bars 501 to the W-phase stator bus bars 503 are provided in the storage space of the housing 491.
 U相バスバ403~W相バスバ405それぞれとU相ステータバスバ501~W相ステータバスバ503それぞれとのボルト止め箇所は、z方向において外底面493bよりも内底面493a側になる。 The bolting points of each of the U-phase bus bars 403 to W-phase bus bar 405 and each of the U-phase stator bus bars 501 to W-phase stator bus bar 503 are on the inner bottom surface 493a side of the outer bottom surface 493b in the z direction.
 これによれば、U相バスバ403~W相バスバ405それぞれのz方向の延長が抑制される。この結果、電力変換装置400のz方向の体格の増大が抑制される。 According to this, the extension of each of the U-phase bus bar 403 to the W-phase bus bar 405 in the z direction is suppressed. As a result, the increase in the physique of the power converter 400 in the z direction is suppressed.
 (第4実施形態)
 次に、第4実施形態を図7に基づいて説明する。
(Fourth Embodiment)
Next, the fourth embodiment will be described with reference to FIG. 7.
 第1実施形態では第1出力孔493k~第3出力孔493mが底壁493に形成される例を示した。 In the first embodiment, an example is shown in which the first output hole 493k to the third output hole 493m are formed on the bottom wall 493.
 これに対して本実施形態では、図7に示すように、第1出力孔493k~第3出力孔493mが側壁494に形成される。これら第1出力孔493k~第3出力孔493mは内周面494aと外周面494bとに開口している。そして外カバー492が第1空間を区画する第1外カバー492fと第3空間を区画する第2外カバー492gとに分けられている。 On the other hand, in the present embodiment, as shown in FIG. 7, the first output hole 493k to the third output hole 493m are formed on the side wall 494. These first output holes 493k to third output holes 493m are open to the inner peripheral surface 494a and the outer peripheral surface 494b. The outer cover 492 is divided into a first outer cover 492f for partitioning the first space and a second outer cover 492g for partitioning the third space.
 第1外カバー492fは底壁493に連結される。第1空間は第1外カバー492fと外底面493bとの間で区画される。 The first outer cover 492f is connected to the bottom wall 493. The first space is partitioned between the first outer cover 492f and the outer bottom surface 493b.
 第2外カバー492gは側壁494に設けられる。第3空間は第2外カバー492gと外周面494bとの間で区画される。この第2外カバー492gに連結孔492dが形成されている。 The second outer cover 492 g is provided on the side wall 494. The third space is partitioned between the second outer cover 492g and the outer peripheral surface 494b. A connecting hole 492d is formed in the second outer cover 492g.
 係る構成によれば、連結孔492dのz方向の延長によって、電力変換装置400のz方向の体格が増大することが抑制される。 According to this configuration, the extension of the connecting hole 492d in the z-direction suppresses the increase in the body shape of the power conversion device 400 in the z-direction.
 また、U相バスバ403~W相バスバ405それぞれの先端側がz方向において外底面493bよりも内底面493a側に位置している。U相バスバ403~W相バスバ405それぞれの先端側がモータ500からz方向で離間している。そのためにU相バスバ403~W相バスバ405それぞれがモータ500からの伝熱によって昇温することが抑制される。 Further, the tip side of each of the U-phase bus bar 403 to the W-phase bus bar 405 is located closer to the inner bottom surface 493a than the outer bottom surface 493b in the z direction. The tip side of each of the U-phase bus bar 403 to the W-phase bus bar 405 is separated from the motor 500 in the z direction. Therefore, it is suppressed that the temperature of each of the U-phase bus bar 403 to the W-phase bus bar 405 rises due to heat transfer from the motor 500.
 (第5実施形態)
 次に、第5実施形態を図8に基づいて説明する。
(Fifth Embodiment)
Next, the fifth embodiment will be described with reference to FIG.
 第1実施形態ではU相バスバ403~W相バスバ405それぞれとU相ステータバスバ501~W相ステータバスバ503それぞれとがボルト止めされる例を示した。 In the first embodiment, an example is shown in which the U-phase bus bars 403 to W-phase bus bars 405 and the U-phase stator bus bars 501 to W-phase stator bus bars 503 are bolted to each other.
 これに対して本実施形態では、図8に示すように、U相バスバ403~W相バスバ405それぞれの先端と電気的に接続された端子を備える出力コネクタ400cが外カバー492に設けられる。この出力コネクタ400cにモータ500から延長したワイヤハーネスの端子が接続される。これによりU相バスバ403~W相バスバ405それぞれがモータ500と電気的に接続される。 On the other hand, in the present embodiment, as shown in FIG. 8, an output connector 400c having a terminal electrically connected to the tip of each of the U-phase bus bar 403 to the W-phase bus bar 405 is provided on the outer cover 492. The terminal of the wire harness extended from the motor 500 is connected to the output connector 400c. As a result, each of the U-phase bus bar 403 to the W-phase bus bar 405 is electrically connected to the motor 500.
 (第6実施形態)
 次に、第6実施形態を図9に基づいて説明する。
(Sixth Embodiment)
Next, the sixth embodiment will be described with reference to FIG.
 第1実施形態ではコンデンサハウジング470と冷却器480とがy方向で離間する例を示した。 In the first embodiment, an example is shown in which the condenser housing 470 and the cooler 480 are separated in the y direction.
 これに対して本実施形態では、図9に示すように、コンデンサハウジング470と冷却器480とがz方向で並んでいる。 On the other hand, in the present embodiment, as shown in FIG. 9, the condenser housing 470 and the cooler 480 are arranged in the z direction.
 係る構成によれば、電力変換装置400のz方向に直交する方向の体格の増大が抑制される。 According to this configuration, the increase in the physique of the power converter 400 in the direction orthogonal to the z direction is suppressed.
 (第1の変形例)
 各実施形態ではインバータハウジング490がモータハウジング510に固定される例を示した。しかしながらインバータハウジング490は電気自動車のボディシャーシに固定されてもよい。
(First modification)
In each embodiment, an example is shown in which the inverter housing 490 is fixed to the motor housing 510. However, the inverter housing 490 may be fixed to the body chassis of the electric vehicle.
 (第2の変形例)
 各実施形態では機電一体型ユニット300が電気自動車用の車載システム100に適用される例を示した。しかしながら機電一体型ユニット300の適用としては特に上記例に限定されない。例えばハイブリッド自動車の車載システムに機電一体型ユニット300が適用された構成を採用することもできる。
(Second modification)
In each embodiment, an example is shown in which the mechanical / electrical integrated unit 300 is applied to an in-vehicle system 100 for an electric vehicle. However, the application of the mechanical / electrical integrated unit 300 is not particularly limited to the above example. For example, it is possible to adopt a configuration in which the mechanical / electrical integrated unit 300 is applied to the in-vehicle system of a hybrid vehicle.
 (第3の変形例)
 各実施形態では、電力変換装置400がモータ500に設けられる例を示した。しかしながら、電力変換装置400はモータ500の動力を車軸に伝達する機能を備える動力伝達機構のハウジングに設けられた構成を採用することもできる。このハウジングはモータハウジング510と同等の外観形状を備えている。
(Third modification example)
In each embodiment, an example in which the power conversion device 400 is provided in the motor 500 is shown. However, the power conversion device 400 can also adopt a configuration provided in the housing of the power transmission mechanism having a function of transmitting the power of the motor 500 to the axle. This housing has the same external shape as the motor housing 510.
 動力伝達機構を簡単に説明すると、動力伝達機構はx方向に延びる複数のシャフトと、これら複数のシャフトに連結されるギヤと、を有する。これら複数のギヤに形成された歯が互いに噛み合うことで、各シャフトが相互に回転可能になっている。 Briefly explaining the power transmission mechanism, the power transmission mechanism has a plurality of shafts extending in the x direction and a gear connected to the plurality of shafts. The teeth formed in these plurality of gears mesh with each other so that the shafts can rotate with each other.
 動力伝達機構の有する複数のシャフトのうちの1つがモータ500のモータシャフトの他端に連結されている。また残りの複数のシャフトのうちの1つがディファレンシャルギヤを介してドライブシャフトに連結されている。これによりモータ500の回転、若しくは、走行輪の回転によって、動力伝達機構の有する複数のシャフトとギヤが回転可能になっている。 One of the plurality of shafts of the power transmission mechanism is connected to the other end of the motor shaft of the motor 500. Further, one of the remaining plurality of shafts is connected to the drive shaft via a differential gear. As a result, the plurality of shafts and gears of the power transmission mechanism can be rotated by the rotation of the motor 500 or the rotation of the traveling wheel.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範ちゅうや思想範囲に入るものである。 Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various variations and variations within a uniform range. In addition, although various combinations and forms are shown in this disclosure, other combinations and forms, including only one element, more, or less, are also within the scope and scope of this disclosure. It is something to enter.

Claims (18)

  1.  受動素子(430)の収納される第1電気部品(470)と、
     能動素子(444,445)を備える第2電気部品(440)と、
     外部電源(200)と接続される入力コネクタ(406)と、
     前記受動素子および前記能動素子それぞれと前記入力コネクタとを電気的に接続する入力バスバ(401,402)と、
     前記入力バスバの一部、前記第1電気部品、前記第2電気部品それぞれを収納する収納空間、および、冷却通路(493e)を備える筐体(491)と、を有し、
     前記入力バスバにおける前記収納空間の外に位置する部位が前記筐体における前記冷却通路の形成部位に設けられている電力変換装置。
    The first electrical component (470) in which the passive element (430) is housed,
    A second electrical component (440) with an active element (444,445) and
    The input connector (406) connected to the external power supply (200) and
    An input bus bar (401, 402) that electrically connects the passive element, each of the active elements, and the input connector, and
    It has a part of the input bus bar, a storage space for accommodating each of the first electric component and the second electric component, and a housing (491) provided with a cooling passage (493e).
    A power conversion device in which a portion of the input bus bar located outside the storage space is provided at a portion of the housing where the cooling passage is formed.
  2.  前記入力バスバは、
     前記収納空間において、前記入力コネクタから前記筐体における前記冷却通路の形成された底壁(493)に向かって延び、前記底壁の前記収納空間側の内底面(493a)とその裏側の外底面(493b)それぞれに開口する第1貫通孔(493g,493h)を介して前記収納空間の外に延びる第1内部バスバ(407)と、
     前記第1電気部品と前記底壁の並ぶ並び方向に沿って、前記第1電気部品が前記外底面に投影された投影領域に前記並び方向で対向する外部バスバ(408)と、
     前記外底面と前記内底面それぞれに開口する第2貫通孔(493i,493j)を介して前記収納空間に延び、前記第1電気部品と前記第2電気部品それぞれに接続される第2内部バスバ(409)と、を有する請求項1に記載の電力変換装置。
    The input bus bar
    In the storage space, the input connector extends toward the bottom wall (493) in which the cooling passage is formed in the housing, and the inner bottom surface (493a) of the bottom wall on the storage space side and the outer bottom surface on the back side thereof. (493b) A first internal bus bar (407) extending out of the storage space through a first through hole (493g, 493h) opened in each of the storage spaces.
    Along the line-up direction of the first electric component and the bottom wall, the first electric component faces the projection region projected on the outer bottom surface in the line-up direction with an external bus bar (408).
    A second internal bus bar (493i, 493j) extending into the storage space through the second through holes (493i, 493j) opened in the outer bottom surface and the inner bottom surface, and connected to the first electric component and the second electric component, respectively. 409) The power conversion device according to claim 1.
  3.  前記外部バスバに電気的に接続されるフィルタ(420)を備え、
     前記フィルタは前記並び方向で前記投影領域と対向している請求項2に記載の電力変換装置。
    A filter (420) electrically connected to the external bus bar is provided.
    The power conversion device according to claim 2, wherein the filter faces the projection region in the alignment direction.
  4.  前記フィルタは前記底壁に設けられている請求項3に記載の電力変換装置。 The power conversion device according to claim 3, wherein the filter is provided on the bottom wall.
  5.  前記底壁の前記外底面を覆う電磁遮蔽カバー(492)を有し、
     前記外部バスバは前記底壁と前記電磁遮蔽カバーとの間で区画される覆い空間に収納されている請求項2~4いずれか1項に記載の電力変換装置。
    It has an electromagnetic shielding cover (492) that covers the outer bottom surface of the bottom wall, and has.
    The power conversion device according to any one of claims 2 to 4, wherein the external bus bar is housed in a covering space partitioned between the bottom wall and the electromagnetic shielding cover.
  6.  前記第2電気部品と電動機とを接続する出力バスバ(403~405)を有し、
     前記出力バスバと前記外部バスバとの間に前記電磁遮蔽カバーの一部がある請求項5に記載の電力変換装置。
    It has an output bus bar (403 to 405) that connects the second electric component and the motor.
    The power conversion device according to claim 5, wherein a part of the electromagnetic shielding cover is provided between the output bus bar and the external bus bar.
  7.  前記出力バスバは前記外部バスバとともに前記覆い空間に収納されており、
     前記覆い空間は、前記外部バスバ側と前記出力バスバ側とに区分けされている請求項6に記載の電力変換装置。
    The output bus bar is housed in the covering space together with the external bus bar.
    The power conversion device according to claim 6, wherein the covering space is divided into the external bus bar side and the output bus bar side.
  8.  前記内底面と前記外底面それぞれに開口する第3貫通孔(493k~493m)が前記底壁に形成され、
     前記出力バスバの一部が前記第3貫通孔に設けられている請求項6または請求項7に記載の電力変換装置。
    A third through hole (493k to 493m) that opens in each of the inner bottom surface and the outer bottom surface is formed in the bottom wall.
    The power conversion device according to claim 6 or 7, wherein a part of the output bus bar is provided in the third through hole.
  9.  前記出力バスバにおける前記収納空間に収納された部位に設けられる電流センサ(450)を有し、
     前記電流センサと、前記出力バスバにおける前記電動機との接続箇所との間に、前記底壁の一部が位置している請求項6~8いずれか1項に記載の電力変換装置。
    It has a current sensor (450) provided in a portion of the output bus bar housed in the storage space.
    The power conversion device according to any one of claims 6 to 8, wherein a part of the bottom wall is located between the current sensor and the connection point of the output bus bar with the electric motor.
  10.  前記出力バスバにおける前記電動機との接続箇所は、前記並び方向において、前記外底面よりも前記内底面側に位置している請求項6に記載の電力変換装置。 The power conversion device according to claim 6, wherein the connection point of the output bus bar with the electric motor is located on the inner bottom surface side of the outer bottom surface in the arrangement direction.
  11.  前記出力バスバと前記底壁との間に介在される伝熱シート(472)を備える請求項6~10いずれか1項に記載の電力変換装置。 The power conversion device according to any one of claims 6 to 10, further comprising a heat transfer sheet (472) interposed between the output bus bar and the bottom wall.
  12.  前記出力バスバは、前記第2電気部品と前記電動機との間の通電を担う導電バスバ(400a)と、前記導電バスバと前記底壁との間の熱伝導を担う熱伝導バスバ(400b)と、を有し、
     前記伝熱シートは前記熱伝導バスバと前記底壁との間に介在されている請求項11に記載の電力変換装置。
    The output bus bar includes a conductive bus bar (400a) that is responsible for energizing between the second electric component and the motor, and a heat conductive bus bar (400b) that is responsible for heat conduction between the conductive bus bar and the bottom wall. Have,
    The power conversion device according to claim 11, wherein the heat transfer sheet is interposed between the heat transfer bus bar and the bottom wall.
  13.  前記並び方向に直交する横方向で前記第1電気部品と前記第2電気部品とが離間して並び、
     前記第2内部バスバは前記収納空間における前記第1電気部品と前記第2電気部品との間の領域に延び、その先端側が前記第1電気部品側と前記第2電気部品側とに分岐して延びている請求項2~12いずれか1項に記載の電力変換装置。
    The first electrical component and the second electrical component are spaced apart from each other in the lateral direction orthogonal to the alignment direction.
    The second internal bus bar extends to a region between the first electric component and the second electric component in the storage space, and the tip end side thereof branches into the first electric component side and the second electric component side. The power conversion device according to any one of claims 2 to 12, which is extended.
  14.  前記筐体は前記底壁の前記内底面から前記並び方向に起立するとともに、前記並び方向まわりの周方向で環状を成す側壁(494)を有し、
     前記外部バスバは、前記側壁における前記横方向で離間して並ぶ2つの領域のうちの一方側に位置している請求項13に記載の電力変換装置。
    The housing stands up from the inner bottom surface of the bottom wall in the alignment direction, and has a side wall (494) forming an annular shape in the circumferential direction around the alignment direction.
    The power conversion device according to claim 13, wherein the external bus bar is located on one side of two regions of the side wall that are laterally spaced apart from each other.
  15.  前記筐体の前記底壁における前記側壁の備える2つの前記領域のうちの他方側に電磁遮蔽ハウジング(510)が連結され、
     前記外部バスバは前記横方向で前記電磁遮蔽ハウジングと並んでいる請求項14に記載の電力変換装置。
    An electromagnetic shielding housing (510) is connected to the other side of the two regions of the side wall of the bottom wall of the housing.
    The power conversion device according to claim 14, wherein the external bus bar is aligned with the electromagnetic shielding housing in the lateral direction.
  16.  前記電磁遮蔽ハウジングは前記並び方向と前記横方向それぞれと直交する縦方向を軸方向とする円筒形状を成し、
     前記外底面は前記並び方向において前記電磁遮蔽ハウジングの円筒面(510a)と並び、
     前記外底面と前記円筒面との間の前記並び方向の離間距離が、前記円筒面の前記外底面と最も近い箇所から前記側壁の備える2つの前記領域のうちの一方側に向かうにしたがって延長する隙間に、前記外部バスバが設けられている請求項15に記載の電力変換装置。
    The electromagnetically shielded housing has a cylindrical shape whose axial direction is the vertical direction orthogonal to each of the arrangement direction and the horizontal direction.
    The outer bottom surface is aligned with the cylindrical surface (510a) of the electromagnetic shielding housing in the alignment direction.
    The distance between the outer bottom surface and the cylindrical surface in the alignment direction extends from the position closest to the outer bottom surface of the cylindrical surface toward one side of the two regions provided by the side wall. The power conversion device according to claim 15, wherein the external bus bar is provided in the gap.
  17.  前記第2電気部品を収納するとともに冷却する冷却器(480)と、
     前記収納空間で前記筐体に連結され、前記冷却器の設けられる支持壁(496)と、を備え、
     前記第1電気部品は前記並び方向で前記支持壁と対向している請求項2~16いずれか1項に記載の電力変換装置。
    A cooler (480) that stores and cools the second electrical component, and
    A support wall (496) connected to the housing in the storage space and provided with the cooler is provided.
    The power conversion device according to any one of claims 2 to 16, wherein the first electric component faces the support wall in the arrangement direction.
  18.  前記受動素子はコンデンサであり、
     コンデンサは第1電極(431)と第2電極(432)を有し、
     前記並び方向において、前記第1電極が前記第2電極よりも前記支持壁側に位置し、前記第2電極が前記第1電極よりも前記底壁側に位置している請求項17に記載の電力変換装置。
    The passive element is a capacitor
    The capacitor has a first electrode (431) and a second electrode (432).
    The 17th aspect of the present invention, wherein the first electrode is located closer to the support wall than the second electrode, and the second electrode is located closer to the bottom wall than the first electrode in the alignment direction. Power converter.
PCT/JP2021/043361 2021-01-08 2021-11-26 Electric power converting device WO2022149366A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-002302 2021-01-08
JP2021002302A JP2022107381A (en) 2021-01-08 2021-01-08 Power conversion device

Publications (1)

Publication Number Publication Date
WO2022149366A1 true WO2022149366A1 (en) 2022-07-14

Family

ID=82357344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043361 WO2022149366A1 (en) 2021-01-08 2021-11-26 Electric power converting device

Country Status (2)

Country Link
JP (1) JP2022107381A (en)
WO (1) WO2022149366A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014113053A (en) * 2014-03-20 2014-06-19 Hitachi Automotive Systems Ltd Power converter
WO2017187598A1 (en) * 2016-04-28 2017-11-02 日産自動車株式会社 In-vehicle power conversion device
JP2018067998A (en) * 2016-10-18 2018-04-26 三菱電機株式会社 Power converter
WO2019244502A1 (en) * 2018-06-19 2019-12-26 株式会社デンソー Electric power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014113053A (en) * 2014-03-20 2014-06-19 Hitachi Automotive Systems Ltd Power converter
WO2017187598A1 (en) * 2016-04-28 2017-11-02 日産自動車株式会社 In-vehicle power conversion device
JP2018067998A (en) * 2016-10-18 2018-04-26 三菱電機株式会社 Power converter
WO2019244502A1 (en) * 2018-06-19 2019-12-26 株式会社デンソー Electric power converter

Also Published As

Publication number Publication date
JP2022107381A (en) 2022-07-21

Similar Documents

Publication Publication Date Title
US8755209B2 (en) Reduced size power inverter suitable for a vehicle
US9159506B2 (en) Capacitor module and power conversion device
US7561448B2 (en) Power inverter
JP5851372B2 (en) Power converter
US8212382B2 (en) Power conversion apparatus and electric vehicle
JP4657329B2 (en) Power converter and electric vehicle
JP5501257B2 (en) Rotating electrical machine unit
WO2014034331A1 (en) Power conversion apparatus
JP2013046447A (en) Power conversion device
JP5622659B2 (en) Power converter
JP4895968B2 (en) Power converter
WO2022149366A1 (en) Electric power converting device
JP7294247B2 (en) electric unit
JP2021129406A (en) Power conversion device
JP7409271B2 (en) power converter
CN111404397B (en) power conversion device
JP2023067172A (en) Drive unit for vehicles
JP2021180541A (en) Power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917588

Country of ref document: EP

Kind code of ref document: A1