WO2022149359A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2022149359A1
WO2022149359A1 PCT/JP2021/042655 JP2021042655W WO2022149359A1 WO 2022149359 A1 WO2022149359 A1 WO 2022149359A1 JP 2021042655 W JP2021042655 W JP 2021042655W WO 2022149359 A1 WO2022149359 A1 WO 2022149359A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
led
lens
display device
protective film
Prior art date
Application number
PCT/JP2021/042655
Other languages
French (fr)
Japanese (ja)
Inventor
隆 大田
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2022149359A1 publication Critical patent/WO2022149359A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/35Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being liquid crystals

Definitions

  • the present invention relates to a display device having a backlight, and more particularly to a display device that enables a high-contrast screen by using local dimming.
  • a TFT substrate in which pixel electrodes and thin film transistors (TFTs) are formed in a matrix, and a facing substrate are arranged facing the TFT substrate, and a liquid crystal layer is sandwiched between the TFT substrate and the facing substrate. There is. Then, the image is formed by controlling the transmittance of light by the liquid crystal molecules for each pixel.
  • TFTs thin film transistors
  • the organic EL display device pixels having a light emitting element, a driving TFT, a switching TFT, and the like formed by the organic EL layer are formed in a matrix, and an image is formed by controlling the light emitting intensity of the organic EL layer for each pixel. .. Since the organic EL display device is a self-luminous element, the contrast of the image is excellent.
  • Patent Document 1 exists as a prior art relating to local dimming.
  • VR Virtual Reality
  • medical display devices require higher-definition and higher-contrast images.
  • finer control is required for local dimming as well.
  • the area of the segment that is the unit of local dimming is reduced, and the light of each segment is placed in the adjacent segment. It needs to be out of reach.
  • An object of the present invention is to solve such a problem, effectively perform local dimming, and realize a high-definition and high-contrast screen in a display device having a backlight.
  • the present invention solves the above problems, and the main specific means are as follows.
  • a display device having a display panel and a backlight, wherein the backlight has a light source and an optical sheet group, the light source has a light source substrate and LEDs arranged on the light source substrate, and the light source is ,
  • the segment is divided into segments when viewed in a plane, in which at least one LED is present, the light source substrate is covered with a protective film except for the LED, and the segment is formed of resin.
  • the display is characterized in that it is partitioned into a wall shape by a partition plate, the partition plate is placed on the protective film, and a convex lens is formed between the partition plate and the optical sheet group.
  • a display device having a display panel and a backlight wherein the backlight has a light source and an optical sheet group, the light source has a light source substrate and an LED arranged on the light source substrate, and the light source has a light source.
  • the segment is divided into segments when viewed in a plane, in which at least one LED is present, the light source substrate is covered with a protective film except for the LED, and the segment is covered with a protective film of the protective film.
  • a second lens is formed on the top and so as to surround the LED, and the diameter of the second lens is larger on the optical sheet group side than on the LED side, and is between the second lens and the optical sheet group.
  • a display device having a display panel and a backlight, wherein the backlight has a light source and an optical sheet group, the light source has a light source substrate and LEDs arranged on the light source substrate, and the light source is ,
  • the segment is divided into segments when viewed in a plane, the segment has at least one LED, the light source substrate is covered with a protective film except for the LED, and the segment is partitioned by a partition resin.
  • a through hole is formed in the partition resin, and the cross-sectional shape of the through hole is an outwardly convex curved surface. When viewed in a plane, the diameter of the through hole is larger than that of the light source substrate on the optical sheet group side.
  • the display device is also large, and is characterized in that a convex lens is formed between the partition resin and the optical sheet group.
  • FIG. 15 which shows the manufacturing method of the 1st lens.
  • FIG. 16 which shows the manufacturing method of the 1st lens. It is sectional drawing which shows the state which the partition plate is attached to the 1st lens, and this is placed on the light source substrate.
  • FIG. 29 which shows the manufacturing method of the convex lens of Example 3.
  • FIG. 30 shows the manufacturing method of the convex lens of Example 3.
  • FIG. 31 which shows the manufacturing method of the convex lens of Example 3.
  • FIG. 32 which shows the manufacturing method of the convex lens of Example 3.
  • FIG. 4 It is sectional drawing of Example 4.
  • FIG. It is a top view of Example 4.
  • FIG. It is another plan view of Example 4.
  • FIG. It is sectional drawing which shows the manufacturing method of Example 4.
  • FIG. 36 which shows the manufacturing method of Example 4.
  • FIG. 37 which shows the manufacturing method of Example 4.
  • FIG. 38 which shows the manufacturing method of Example 4.
  • FIG. It is sectional drawing which shows the state which puts the assembly of the partition resin including a 1st lens and a reflection layer on a light source substrate. It is sectional drawing of Example 5.
  • FIG. It is a top view of Example 5.
  • FIG. It is a plan view of Example 6.
  • Example 6 It is sectional drawing of Example 6.
  • FIG. 1 is a plan view showing an example of a liquid crystal display device.
  • the TFT substrate 100 and the facing substrate 200 are adhered to each other by the sealing material 16, and the liquid crystal is sandwiched inside.
  • a display region 14 is formed in a portion where the TFT substrate 100 and the facing substrate 200 overlap.
  • the scanning lines 11 extend in the horizontal direction (x direction) and are arranged in the vertical direction (y direction).
  • the video signal lines 12 extend in the vertical direction and are arranged in the horizontal direction.
  • Pixels 13 are formed in a region surrounded by scanning lines 11 and video signal lines 12.
  • the portion where the TFT substrate 100 does not overlap with the facing substrate 200 is the terminal region 15.
  • a flexible wiring board 17 is connected to the terminal area 15 in order to supply power and signals to the liquid crystal display panel.
  • the driver IC that drives the liquid crystal display panel is mounted on the flexible wiring board 17.
  • a backlight is arranged on the back surface of the TFT as shown in FIG.
  • FIG. 2 is a cross-sectional view of the liquid crystal display device.
  • the backlight 20 is arranged on the back surface of the liquid crystal display panel 10.
  • the liquid crystal display panel 10 has the following configuration. That is, the facing substrate 200 on which the black matrix and the color filter are formed is arranged so as to face the TFT substrate 100 on which the pixel electrodes, common electrodes, TFTs, scanning lines, video signal lines and the like are formed.
  • the TFT substrate 100 and the facing substrate 200 are adhered to each other by a sealing material 16 at the periphery, and a liquid crystal 300 is enclosed inside.
  • the liquid crystal molecules are initially oriented by the alignment film formed on the TFT substrate 100 and the facing substrate 200.
  • the liquid crystal molecules rotate and form an image by controlling the light from the backlight 20 for each pixel. Since the liquid crystal 300 can control only the deflected light, the lower polarizing plate 101 is arranged under the TFT substrate 100, and only the deflected light is incident on the liquid crystal 300. The light modulated by the liquid crystal 300 is detected by the upper polarizing plate 201, and the image is visually recognized.
  • the backlight 20 is arranged on the back surface of the liquid crystal display panel.
  • the backlight 20 has a configuration in which the light guide plate 40 is arranged on the light source 30, and the optical sheet group 50 is arranged on the light guide plate 40.
  • the backlight 20 of the display device includes a side light system in which a light source such as an LED is arranged on the side surface of the light guide plate and a direct type in which a light source such as an LED is arranged on the lower surface of the light guide plate. Use a direct-type backlight.
  • the light guide plate 40 is arranged on the light source 30.
  • the light guide plate 40 is made of a transparent resin.
  • the light guide plate 40 in FIG. 2 has a role of making the light from the LED, which is a point light source, uniform by reflecting the light incident on the light guide plate 40 at the interface.
  • the optical sheet group 50 is arranged on the light guide plate 40.
  • a prism sheet, a diffusion sheet, or the like is used for the optical sheet group 50.
  • a color conversion sheet in which a phosphor is dispersed in a resin sheet may be used.
  • a QD sheet using quantum dots may be used as the color conversion sheet.
  • a deflection reflection sheet may be used. What kind of optical sheet is used or how many such optical sheets are used is determined by the display device.
  • the bright part transmits the light from the backlight, and the dark part shields the light from the backlight.
  • Image contrast is defined by the ratio of bright to dark areas.
  • the dark portion is formed by shielding the light from the backlight by the liquid crystal.
  • the shielding of the backlight by the liquid crystal is not perfect, and some light leaks. This will reduce the contrast.
  • FIG. 3 is an example of a liquid crystal display device showing a form of local dimming.
  • FIG. 3 is a plan view of the liquid crystal display device, and the configuration is the same as that described with reference to FIG.
  • the display area 14 is divided by segments 141.
  • the dotted line in FIG. 3 is the boundary of the segment 141, but this is described for convenience, and the liquid crystal display panel does not have such a boundary.
  • the light source in the backlight is arranged at the position corresponding to each segment.
  • the segment (4, 2) is a bright part and the segment (5, 2) is a dark part.
  • the light source of the segment (4, 2) portion that is, the LED is turned on
  • the light source of the segment (5, 2) portion that is, the LED is not turned on.
  • the black formed in the segment (5, 2) becomes a deep black display, and high contrast is realized.
  • the light of the segment (4, 2) may reach the segment (5, 2). Then, the backlight is also illuminated on the segments (5, 2) that should be displayed in black, and the effect of local dimming cannot be fully exerted.
  • FIGS. 4 and 5 are Comparative Example 1 showing the configuration of the backlight that enables local dimming.
  • a blue LED 60 is used as a light source.
  • FIG. 4 is a plan view showing the arrangement of the LED 60, which is a light source, in each segment 141 of the backlight.
  • each segment 141 is partitioned by a dotted line. However, this dotted line is for convenience only and does not actually have a partition.
  • the size of each segment is 4 mm ⁇ (length 4 mm, width 4 mm) or less, and in the case of FIG. 5, it is, for example, 2 mm ⁇ .
  • the size of the segment 141 in the following example is also the same.
  • FIG. 4 is a cross-sectional view of the backlight in Comparative Example 1.
  • the LED 60 is arranged on the light source substrate 61, and the transparent resin 62 is formed so as to cover the LED 60.
  • a blue LED is used for the LED 60.
  • An example of the configuration of the LED 60 and its vicinity is shown in FIG.
  • the transparent resin 62 for example, an acrylic resin or a silicone resin is used.
  • the transparent resin 62 is for protecting the electrodes and wiring formed on the LED 60 and the light source substrate 61.
  • the dotted line shown on the light source substrate 61 in FIG. 5 indicates the boundary of the segment for convenience.
  • the light guide plate 40 is arranged on the transparent resin 62. Although the light guide plate 40 is transparent, it has a function of reflecting the light incident on the light guide plate 40 at the interface and making the light from the LED 60 uniform.
  • the color conversion sheet 51 is arranged on the light guide plate 40.
  • the color conversion sheet 51 is a transparent resin sheet in which a phosphor that receives blue light and develops yellow light is dispersed, and the light that has passed through the color conversion sheet 51 is white light.
  • the thickness of the color conversion sheet 51 is, for example, 50 microns to 500 microns.
  • a diffusion sheet 53 is arranged on the color conversion sheet 51.
  • the diffusion sheet 53 is for diffusing the light from the light source 60 to make the brightness uniform.
  • the thickness of the diffusion sheet 53 is, for example, 50 microns to 70 microns.
  • a prism sheet 52 is arranged on the diffusion sheet 53.
  • the prism sheet 52 is formed by extending prisms having a triangular cross section in the y direction and arranging them in the x direction.
  • the role of the prism sheet 52 is to increase the light utilization efficiency by directing the light emitted obliquely from the main surface of the color conversion sheet 51 in the direction perpendicular to the main surface of the color conversion sheet 51. In FIG.
  • the number of prism sheets 52 is one, but a prism sheet having a prism array extending in a direction perpendicular to the prism array of the prism sheet 52 in FIG. 5 may be added.
  • the thickness of the prism sheet is, for example, 50 microns in the portion of the prism array (that is, the height of the prism) and 70 microns in the thickness of the base material portion, for a total of about 120 microns.
  • FIG. 6 and 7 are comparative examples 2 when a white LED 65 is used as a light source.
  • FIG. 6 is the same as FIG. 4 except that the LED as a light source is a white LED 65.
  • FIG. 7 is a cross-sectional view of the backlight in Comparative Example 2.
  • the white LED 65 is arranged on the light source substrate 61, and the transparent resin 62 is formed so as to cover the white LED 65.
  • An example of the configuration of the white LED 65 and its vicinity is shown in FIG. 45.
  • the light guide plate 40 is arranged on the transparent resin 62.
  • the role of the light guide plate 40 is the same as that described in Comparative Example 1.
  • the diffusion sheet 53 exists on the light guide plate 40, and the color conversion sheet 51 does not exist. This is because the white LED 65 is used, so there is no need for color conversion.
  • the role of the diffusion sheet 53 is the same as described in FIG.
  • the prism sheet 52 is arranged on the diffusion sheet 53. The structure and operation of the prism sheet are the same as those described in FIG.
  • Comparative Examples 1 and 2 The problem of Comparative Examples 1 and 2 is that the light from the LED 60 or 65 leaks from the transparent resin 63 covering the LEDs 60 and 65, the light guide plate 40, the color conversion sheet 51 and the diffusion sheet 53 to the adjacent segments. be. In particular, light leakage to the adjacent segment via the transparent resin 62 and the light guide plate 40, which are close to the light source, is large. Therefore, accurate local dimming cannot be performed.
  • the present invention shown below solves the above problems.
  • the present invention can be applied regardless of whether the LED is blue or white.
  • the case where the blue LED 60 is used will be described in Examples 1 to 5 below, and the case where the white LED 65 is used in Example 6 will be described.
  • FIG. 8 and 9 are the configurations of the backlight according to the first embodiment of the present invention.
  • FIG. 8 is a plan view showing the arrangement of the LED 60, which is a light source, in each segment 141 of the backlight.
  • the LED 60 is a blue LED.
  • each segment 141 is partitioned by a partition plate 70.
  • the partition plate 70 is a thin plate made of resin assembled in a grid shape.
  • the size of each segment 141 is 4 mm ⁇ or less, for example, 2 mm ⁇ .
  • one LED 60 is arranged in each segment 141. Therefore, although the brightness of the LED 60 is high, in the configuration of the first embodiment, as will be described later, the amount of light leaking from the LED 60 to the adjacent segment is small, so that the brightness of the LED is higher than that of the LED in the case of the comparative example 1. It can be made smaller.
  • FIG. 9 is a cross-sectional view of the backlight in the first embodiment.
  • the LED 60 is arranged on the light source substrate 61.
  • the protective film 63 is formed so as to cover the wiring and the electrodes formed on the light source substrate 61.
  • This configuration is significantly different from Comparative Examples 1 and 2. That is, in the configuration of the first embodiment, the LED 60 is not covered with the transparent resin 62, and the light emitting region from the LED 60 exists above the protective film 63. Therefore, the protective film 63 does not have to be transparent. That is, in Example 1, the transparent resin 62 in Comparative Examples 1 and 2 does not exist.
  • the protective sheet 63 should be formed of, for example, a white resin and have a high reflectance.
  • a resin can be formed of, for example, a silicone resin. That is, a part of the light emitted from the LED 60 is reflected by the partition plate 70 and is incident on the protective film 63 side, but if the reflectance of the protective film 63 is large, this light is reflected again and the liquid crystal display panel. You can turn it in the direction.
  • a partition plate 70 exists at the boundary of the segment, and the partition plate 70 is arranged on the protective sheet 63.
  • the partition plate 70 is made of white PET (Polyethylene terephthalate). In this embodiment, PET is used for the partition plate 70, but a white PC (polycarbonate) may be used. Further, the partition plate 70 may be integrally formed, or a plurality of divided partition plates 70 may be arranged side by side. The light emitted obliquely from the LED 60 is reflected by the partition plate 70 and heads toward the first lens 45.
  • the light from the LED 60 leaks to the adjacent segment through the transparent resin 62 covering the LED, but in the first embodiment, as shown in FIG. 9, the light emitted from the LED 60 is a partition plate. It is configured so that it is reflected by 70 and does not leak to adjacent segments.
  • the first lens 45 is arranged on the partition plate 70 instead of the light guide plate.
  • the first lens 45 has a configuration in which one convex lens is formed for each segment. The light incident on the first lens 45 does not go to the adjacent segment, but converges in the direction of the liquid crystal display panel. Therefore, light leakage to adjacent segments can be reduced.
  • a color conversion sheet 51 is arranged on the first lens 45.
  • the configuration and operation of the color conversion sheet 51 are the same as those described in Comparative Example 1.
  • a diffusion sheet 53 is arranged on the color conversion sheet 51.
  • the role of the diffusion sheet 53 is the same as described in Comparative Example 1.
  • the prism sheet 52 is arranged on the diffusion sheet 53, which is the same as in Comparative Examples 1 and 2. Further, the configuration and operation of the prism sheet 52 are the same as those described in Comparative Examples 1 and 2.
  • the optical sheet group in FIG. 9 is an example, and other optical sheets may be used.
  • FIG. 10 is a perspective view of the partition plate 70.
  • the partition plate 70 is a combination of white PET plates having a thickness of about 0.2 mm in a grid shape.
  • the segment 141 is formed in the region surrounded by the partition plate 70.
  • the size of the segment 141 is, for example, 2 mm ⁇ (2 mm ⁇ 2 mm), and the height of the partition plate 70 is, for example, 1 mm (in the Z-axis direction).
  • FIG. 11 is a plan view of the partition plate 70.
  • the plate thickness sw of the partition plate 70 is about 0.2 mm.
  • the sizes sx and sy of the segment 141 are 4 mm or less, for example, about 2 mm.
  • FIG. 12 is a sectional view taken along the line AA of FIG.
  • the height sh of the partition plate 70 is 0.5 mm to 2 mm, for example, 1 mm.
  • FIG. 13 is a perspective view of the first lens array 45.
  • One first lens 45 is formed for each segment.
  • the thickness of the lens is, for example, 1 mm to 2 mm at the central portion t11.
  • the lens is, for example, a spherical surface, and the thickness t12 around the lens is determined by the curved surface of the lens.
  • acrylic resin which is a transparent resin, silicone resin polycarbonate, or the like is used.
  • FIG. 14 to 17 are sectional views showing a process of manufacturing the first lens 45.
  • a microlens array there are various methods for manufacturing a microlens array, but in this embodiment, an example of manufacturing using photolithography will be shown.
  • As the material of the first lens 45 a transparent photosensitive resin as described above is used. In Example 1, an example using a positive photosensitive resin will be described.
  • FIG. 14 shows a state in which a positive type photosensitive resin 451 that constitutes the first lens is applied to a glass substrate 500, and the photosensitive resin 451 is exposed using an exposure mask 400.
  • the arrow in FIG. 14 is the light for exposure.
  • FIG. 15 is a graph showing the light transmittance of the exposure mask 400.
  • the vertical axis is the transmittance and the horizontal axis is the position.
  • the light transmittance profile is symmetrical with the cross-sectional shape of the first lens. That is, since it is a positive photosensitive resin, it has a profile that allows a large amount of exposure to a portion to be thinned.
  • FIG. 16 is a cross-sectional view showing the shape of the first lens 45 after development.
  • the developed first lens 45 is formed on the glass substrate 500. That is, the portion corresponding to the apex of the convex lens is hardly exposed to light, so that it is insoluble in the developing solution. It will melt away. As a result, the lens shape is as shown in FIG. After that, as shown in FIG. 17, when the glass substrate 500 is removed, the first lens 45 is completed.
  • the partition plate 70 is a combination of thin white PET plates in a grid shape, its shape is unstable. Therefore, as shown in FIG. 18, it is efficient to first fix the partition plate 70 to the first lens 45 with an adhesive or the like, and then combine it with the light source substrate 61 side on which the LED 60 and the protective film 63 are arranged. ..
  • FIG. 18 is a cross-sectional view showing a state in which the partition plate 70 attached to the first lens 45 is arranged on the protective film 63 on the light source substrate 61 side.
  • the LED 60 is mounted on the light source substrate 61, and the light source substrate 61 is covered with a protective film 63 except for the LED.
  • the protective film 63 also has a role as a reflective film.
  • the plane of the LED is rectangular, and the width lx of the LED is 0.1 mm to 0.5 mm. In this embodiment, an LED having a square plane is used, but an LED having a rectangular plane may be used.
  • the height lh of the LED is, for example, 0.5 mm.
  • the thickness fh of the protective film is, for example, 0.3 mm.
  • the light emitting portion of the LED 60 exists on the upper side of the upper surface of the protective film 63, that is, on the first lens 45 side.
  • FIG. 19 and 20 are cross-sectional views of the light source portion.
  • FIG. 19 is a configuration of a light source portion according to Comparative Examples 1 and 2
  • FIG. 20 is a configuration of a light source portion according to the first embodiment.
  • the LED configuration is the same in both FIGS. 19 and 20.
  • the difference between FIGS. 19 and 20 is that in FIG. 19, the transparent resin 62 is formed so as to cover the LED 60, whereas in FIG. 20, the white protective film 63 is formed so as to cover the portion other than the LED 60. That is.
  • FIG. 19 is a detailed cross-sectional view showing an LED 60, a transparent resin 62, electrodes, and the like.
  • the LED 60 is a blue LED.
  • the light source substrate 61 is made of, for example, an epoxy resin.
  • an electrode pad 612 connected to the anode 601 of the LED 60 and an electrode pad 613 connected to the cathode 602 of the LED 60 are formed of metal.
  • Various other wirings are formed on the light source substrate 61, but they are omitted in FIG.
  • the LED 60 is flip-chip bonded to the electrode pads 612 and 613 of the light source substrate 61.
  • the terminal electrodes 601 and 602 of the LED 60 and the electrode pads 612 and 613 of the light source substrate 61 face each other and are connected via the solder 615.
  • the LED 60 is formed by joining a p-type semiconductor and an n-type semiconductor, but in reality, various layers are formed in order to increase the luminous efficiency.
  • the LED 60 is covered with a transparent resin 62 and protected. When a voltage is applied to the LED, it emits light at the boundary between the p-type layer and the n-type layer. Light is emitted not only in the upward direction but also in the lateral direction. This situation is indicated by an arrow in FIG. The problem with the configuration in FIG. 19 is that the light emitted laterally is incident on adjacent segments. Therefore, accurate local dimming cannot be performed.
  • FIG. 20 is a cross-sectional view of the light source portion in the first embodiment.
  • the configuration of the light source substrate 61 and the configuration of the LED 60 in FIG. 20 are the same as those described in FIG.
  • the difference between FIG. 20 and FIG. 19 is that in FIG. 20, the transparent resin that covers the entire LED 60 does not exist and does not cover the LED 60, but the white protective film 63 that covers the electrodes and the like formed on the light source substrate 61. Is formed.
  • the joint portion between the p-type layer and the n-type layer, which is the light emitting portion of the LED 60, is not covered by the protective film 63.
  • the light from the LED 60 will be emitted directly into the space.
  • the light from the LED 60 is also emitted in the lateral direction, but this light is reflected by the partition plate 70 arranged at the boundary of the segment as shown in FIG. 9, and is therefore adjacent. It does not enter the segment.
  • the light reflected from the first lens 45 and the partition plate 70 and heading downward is reflected by the white protective film 63 having a role as a reflective layer, and is directed to the first lens 45 side again.
  • the light source shown in FIG. 20 has excellent light utilization efficiency of the LED 60 and has a configuration in which light does not leak to adjacent segments, so that accurate local dimming is possible.
  • the light emitted from the LED 60 can be suppressed from leaking to the adjacent segment by the structure of the light source substrate and the partition plate 70. Further, since the first lens 45 arranged on the partition plate 70 converges in the direction of the display panel, light leakage to the adjacent segment can be further reduced.
  • FIG. 21 is a cross-sectional view of the backlight in Example 2
  • FIG. 22 is a plan view including the second lens 80 used in Example 2 and the LED 60 as a light source.
  • the configuration from the first lens 45 to the prism sheet 52 is the same as that of the first embodiment.
  • the blue LED 60 as a light source is the same as that in the first embodiment.
  • the feature of the second embodiment is that the second lens 80 is used instead of the partition plate 70 in order to prevent light leakage to the adjacent segment. It is desirable that the cross-sectional shape of the second lens 80 is convex outward and conforms to a hyperbola.
  • a recess 81 is formed on the lower surface of the second lens 80, and the tip of the LED 60 is fitted into the recess 81.
  • the light emitted from the LED 60 is incident on the second lens 80.
  • the second lens 80 forms a concave lens with respect to the LED 60. Therefore, it is possible to improve the incident efficiency of light from the LED 60 to the second lens 80.
  • the light incident on the second lens 80 from the LED 60 spreads once, but is totally reflected at the interface of the second lens 80 and heads toward the first lens 45. This situation is indicated by an arrow in FIG. Therefore, the light from the LED does not leak to the adjacent pixels.
  • the cross-sectional shape of the second lens 80 is a shape according to a hyperbola, but the planar shape is a circle as shown in FIG. 22A and a square shape as shown in FIG. 22B.
  • the concave portion 81 formed on the lower surface of the second lens 80 may have a circular shape or a square shape.
  • the boundaries between the segments are shown by dotted lines, but this is for convenience only and there are no actual boundaries.
  • the light from the LED 60 is confined in the second lens 80, so that the light does not leak to the adjacent segment.
  • the planar shape of the second lens 80 and the recess 81 is not limited to a circle or a square, but may be a polygon.
  • FIG. 23 to 26 are sectional views showing a process of manufacturing the second lens 80.
  • the photosensitive resin 801 that constitutes the second lens 80 is applied to the glass substrate 500, and this is exposed using the exposure mask 400.
  • the arrow in FIG. 23 represents the exposure light.
  • the second lens 80 for example, a positive photosensitive resin made of acrylic resin, silicone resin, polycarbonate or the like is used.
  • FIG. 24 is a graph showing the light transmittance of the exposure mask 400.
  • the vertical axis is the transmittance and the horizontal axis is the position.
  • the light transmittance profile is symmetrical with the cross-sectional shape of the second lens 80. That is, since it is a positive photosensitive resin, it has a profile that allows a large amount of exposure to a portion to be thinned.
  • FIG. 25 is a cross-sectional view showing the shape of the second lens 80 after development. That is, since a positive photosensitive material is used, the shape of the second lens 80 is substantially symmetrical to the transmittance profile of the exposure mask shown in FIG. 24. Then, as shown in FIG. 26, the glass substrate 500 is removed to complete the second lens 80.
  • the second lens 80 is not separated individually, but is connected at a portion having a large aperture. However, since the plate thickness of the connected portion is small, the rigidity of the second lens array 80 as a whole is not high. Therefore, it is rational to attach the first lens 45 and the second lens 80 to each other and then attach them to the light source substrate 61 side.
  • FIG. 27 is a cross-sectional view showing a state in which the configuration in which the first lens 45 and the second lens 80 are bonded is arranged on the protective film 63 on the first substrate side 61 side.
  • the LED 60 arranged on the light source substrate 61 is housed in the recess 81 of the second lens 80.
  • the other configurations on the light source substrate 61 side and the configurations of the LED 60 are the same as those described with reference to FIG. 20 of the first embodiment.
  • the light from the LED 60 is confined in the lens, and the light converged by the lens effect is diffused by the color conversion sheet. Since it is incident on an optical sheet group composed of sheets or the like, it is possible to effectively prevent light leakage to adjacent segments.
  • FIG. 28 is a cross-sectional view showing the configuration of the backlight according to the third embodiment.
  • the feature of the third embodiment is that the first lens 45 and the second lens 80 in the second embodiment are integrated to form a convex lens 85. It is the same as in Example 2 that the concave portion 81 is formed on the lower surface of the convex lens 85 to accommodate the LED 60.
  • the planar shape of the convex lens 85 is the same as that of FIG. 22 in the second embodiment.
  • the operation in the third embodiment is the same as that described in the second embodiment. However, in the third embodiment, since the first lens 45 and the second lens 80 in the second embodiment are integrally formed, the step of bonding the first lens 45 and the second lens 80 can be omitted.
  • 29 to 33 are cross-sectional views showing the process of forming the convex lens 85.
  • the base layer 510 for forming the lens curved surface of the first lens 45 on the convex lens 85 is formed on the glass substrate 500.
  • the base layer 510 can also be formed by photolithography using a resin. That is, it can be manufactured in the same process as the manufacturing of the first lens 45 in the first embodiment. However, the curved surface is opposite to that of the first lens of the first embodiment.
  • the base layer 510 can be used repeatedly if the resin constituting the convex lens 45 formed on the base layer 510 and a material having good releasability are used.
  • FIG. 30 is a cross-sectional view showing a state in which the resin 801 which is the material of the convex lens 85 is applied on the base layer 510.
  • FIG. 31 is a cross-sectional view showing a state in which the resin 801 which is the material of the convex lens 85 is exposed by using the exposure mask 400.
  • the arrow represents the light to be exposed.
  • the light transmittance of the exposure mask 400 is the same as that of FIG. 24 in Example 2.
  • FIG. 32 is a cross-sectional view showing the shape of the convex lens 85 after development.
  • the shape of the convex lens 85 after development is the same as that of the combination of the first lens 45 and the second lens 80 in the second embodiment.
  • the glass substrate 500 and the base layer 510 formed on the glass substrate 500 are separated from the convex lens 85. If the convex lens 85 and a material having good releasability are used for the base layer 510, the combination of the glass substrate 500 and the base layer 510 can be repeatedly used.
  • Example 3 Combining the convex lens 85 with the light source substrate 81 on which the LED 60 and the like are formed is the same as in FIG. 27 in the second embodiment. As described above, in the third embodiment, the first lens 45 and the second lens 80 in the second embodiment are formed at the same time, so that the manufacturing process can be simplified. The effect of Example 3 is the same as that of Example 2.
  • FIG. 34 is a cross-sectional shape of the backlight of the fourth embodiment.
  • a reflective layer 91 is formed on the inner wall of the through hole formed in the partition resin 90 that partitions the segments, thereby reliably preventing the light from the LED 60 from leaking to the adjacent segment.
  • the curved surface of the reflective layer 91 has a shape conforming to a hyperbola, and the reflected light is efficiently directed to the first lens 45 side.
  • the partition resin 90 is formed with through holes having an inner wall having a shape conforming to a hyperbola, and as a result, an efficient reflective layer 91 is formed.
  • the light reflected by the reflective layer 91 and incident on the first lens 45 is converged by the first lens 45 and incident on an optical sheet group such as a color conversion sheet. Therefore, in the optical sheet group, light leakage to adjacent segments is further suppressed.
  • an optical sheet group such as a color conversion sheet. Therefore, in the optical sheet group, light leakage to adjacent segments is further suppressed.
  • from the first lens 45 to the upper prism sheet 52 is the same as in FIG. 9 of the first embodiment.
  • FIG. 35A and 35B are plan views showing the reflective layer 91 and the partition resin 90.
  • FIG. 35A is a case where the plan view of the reflective layer 91 is a circle
  • FIG. 35B is a case where the plan view of the reflective layer 91 is a square.
  • the reflective layer 91 is formed by coating the inner wall of the through hole formed in the partition resin 90 with a material having a high reflectance such as metal by vapor deposition, sputtering, or the like.
  • the metal for example, Al or an alloy thereof is suitable.
  • the planar shape of the through hole formed in the partition resin 90 is a circle in FIG. 35A and a square in FIG. 35B.
  • the dotted lines shown in FIGS. 35A and 35B indicate the boundaries of the segments for convenience, but such lines do not actually exist. However, since the light from the LED 60 is confined in the through hole having the reflective layer 91, the light does not leak to the adjacent segment.
  • FIG. 36 to 39 are cross-sectional views showing the process of forming the reflective layer 91 in the fourth embodiment.
  • FIG. 36 is a cross-sectional view showing a state in which the material 901 of the partition resin 90 applied on the glass substrate 500 is exposed through the exposure mask 400. Arrows in FIG. 36 indicate light for exposure.
  • the material 901 of the partition resin 90 for example, a positive type material is used.
  • a pattern forming a normal through hole may be applied.
  • FIG. 37 is a cross-sectional view showing a state in which a through hole 92 is formed in the material 901 of the partition resin 90 to form the partition resin 90.
  • FIG. 38 is a cross-sectional view showing a state in which a metal as a reflective material is formed in a portion of a through hole 92 of a partition resin 90 by vapor deposition or sputtering in order to form a reflective layer 91 via a vapor deposition mask 450. Is. Arrows in FIG. 37 indicate the orientation of the deposited atoms.
  • the vapor deposition mask 450 is for preventing the reflective layer 91 from being attached to the upper surface of the partition resin 90. However, if there is no problem even if the reflective layer 91 is formed on the upper surface of the partition resin 90, the vapor deposition mask 450 can be omitted.
  • the glass substrate 500 is removed from the compartment resin 90, the compartment resin 90 on which the reflective layer 91 is formed is completed. If the reflective layer material 91 adhering to the glass substrate 500 is removed by etching, the glass substrate 500 can be used repeatedly.
  • FIG. 40 is a cross-sectional view showing a state in which a partition resin 90 on which a reflective layer 91 is formed is bonded to a first lens 45 separately formed, and a light source substrate 61 having an LED 60 or the like is combined.
  • the LED 60 will be fitted into a small hole of the through hole 92 formed in the partition resin 90.
  • the structures of the light source substrate 61, the LED 60, and the like in FIG. 40 are the same as those described in the first embodiment.
  • the reflective layer 91 is used to prevent the light from the LED 60 from leaking to other segments. Further, since the light from the reflective layer 91 is converged by the first lens 45, it is possible to reduce the diffusion of light from the optical sheet group arranged above the first lens 45 to the adjacent segment.
  • FIG. 41 is a cross-sectional view showing the fifth embodiment
  • FIG. 42 is a plan view showing the partition resin 90 and the LED 60 in the fifth embodiment.
  • Example 5 is a modification of Example 4, and the reflective layer made of metal is not formed on the inner wall of the through hole 92 formed in the partition resin 90.
  • the partition resin 90 itself is formed of a resin having a high reflectance.
  • white resins such as white PET and polyester have high reflectance.
  • the cross-sectional shape of the inner wall of the through hole 92 of the partition resin 90 is a curve conforming to a hyperbola, much light from the LED 60 is reflected by the side wall of the through hole 92 and is parallel. It becomes close to light and is incident on the first lens 45.
  • the configuration above the first lens 45 in FIG. 41 is the same as that of the first embodiment or the fourth embodiment.
  • FIG. 42 is a plan view showing the shapes of the partition resin 90 and the through hole 92. As shown in FIG. 42, the planar shape of the through hole 92 is a circle. The LED 60 is arranged in the small hole portion of the through hole 92. The dotted line shown in FIG. 42 indicates the boundary of the segment for convenience, but such a line does not actually exist. However, since the light from the LED 60 is confined in the through hole 92, the light does not leak to the adjacent segment.
  • the method for forming the through hole 92 of the compartment resin 90 in FIG. 41 is the same as that described in the fourth embodiment. That is, in the manufacturing method of Example 4, the formation of the metal film for the reflective layer 91 is omitted. Therefore, in the fifth embodiment, the manufacturing cost of the backlight can be reduced as compared with the case of the fourth embodiment.
  • the operation of Example 5 is that in Example 5, the light from the LED 60 is reflected by the inner wall of the through hole 92 of the partition resin 90 formed of the reflective resin and directed toward the first lens 45, except that the light is directed to the first lens 45. Is the same as.
  • planar shape of the through hole 92 shown in FIG. 42 is a circle, the present embodiment is not limited to this, and the planar shape of the through hole 92 may be a square or a polygon.
  • Examples 1 to 5 are cases where a blue LED 60 is used as a light source.
  • the present invention can be similarly applied when the white LED 65 is used as the light source.
  • FIG. 44 is a cross-sectional view showing an example of the sixth embodiment.
  • FIG. 44 is different from FIG. 9 of the first embodiment in that the light source is a white LED 65 and the optical sheet group does not include a color conversion sheet. That is, since the light source is originally white, there is no need to perform color conversion.
  • FIG. 43 is a plan view including the partition plate 70 in FIG. 44 and the white LED 65 as a light source.
  • the configuration of FIG. 43 is the same as that of FIG. 8 of the first embodiment except that the light source is the white LED 65.
  • FIG. 46 is a cross-sectional view showing the configuration of the white LED 65 used in the sixth embodiment and its surroundings.
  • the structure of FIG. 46 is the same as that of FIG. 20, except that the LED is a white LED 65.
  • FIG. 45 is a configuration of the white LED 65 and its surroundings used in Comparative Example 2 shown in FIGS. 6 and 7. In FIG. 45, the entire white LED 65 is covered with the transparent resin 62. As described with reference to FIG. 19, in the structure of FIG. 45, there arises a problem that light leaks to adjacent pixels through the transparent resin 62. In that respect, since the configuration of FIG. 46 does not use a transparent resin as described with reference to FIG. 20, such a problem does not occur.
  • the number of blue LEDs 60 or white LEDs 65 is one per segment, but even when a plurality of blue LEDs 60 or white LEDs 65 are present, the present invention can be applied by modifying the second lens, the partition resin, the reflective layer, or the like. Can be done.
  • the configuration of the second lens, the partition resin, the reflective layer, the light source substrate, or the like can be applied, and the effect can be obtained. ..
  • upper polarizing plate 300 ... liquid crystal, 400 ... exposure mask, 451 ... resin for first lens, 450 ... vapor deposition mask, 500 ... glass substrate, 510 ... base layer, 601 ... terminal electrode, 602 ... terminal electrode, 612 ... electrode pad, 613 ... electrode pad, 615 ... solder , 801 ... Resin for the second lens, 901 ... Material for compartment resin

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The purpose of the present invention is to achieve a display device which has high accuracy and high contrast by using accurate local dimming. A configuration for achieving this is as follows. That is, provided is a display device having a display panel and a backlight, the display device characterized in that: the backlight has a light source and an optical sheet group; the light source has a light source board 61 and an LED 60 disposed on the light source board; the light source 60 is divided into segments when viewed in a plane view and at least one of the LED 60 is present in the segments; the light source board 61 is covered with a protective film excluding the LED; the segments are partitioned into a wall shape by a partitioning plate 70 formed of a resin; the partitioning plate 70 is placed on the protective film 63; and a convex lens 45 is formed between the partitioning plate 70 and the optical sheet group.

Description

表示装置Display device
 本発明は、バックライトを有する表示装置に係り、特に、ローカルディミングを用いて高コントラスト画面を可能とする表示装置に関する。 The present invention relates to a display device having a backlight, and more particularly to a display device that enables a high-contrast screen by using local dimming.
 液晶表示装置では画素電極および薄膜トランジスタ(TFT)等がマトリクス状に形成されたTFT基板と、TFT基板に対向して、対向基板が配置され、TFT基板と対向基板の間に液晶層が挟持されている。そして液晶分子による光の透過率を画素毎に制御することによって画像を形成している。 In a liquid crystal display device, a TFT substrate in which pixel electrodes and thin film transistors (TFTs) are formed in a matrix, and a facing substrate are arranged facing the TFT substrate, and a liquid crystal layer is sandwiched between the TFT substrate and the facing substrate. There is. Then, the image is formed by controlling the transmittance of light by the liquid crystal molecules for each pixel.
 一方、有機EL表示装置では、有機EL層による発光素子、駆動TFT、スイッチングTFT等を有する画素がマトリクス状に形成され、画素毎に有機EL層の発光強度を制御して画像を形成している。有機EL表示装置は自発光素子なので、画像のコントラストが優れている。 On the other hand, in the organic EL display device, pixels having a light emitting element, a driving TFT, a switching TFT, and the like formed by the organic EL layer are formed in a matrix, and an image is formed by controlling the light emitting intensity of the organic EL layer for each pixel. .. Since the organic EL display device is a self-luminous element, the contrast of the image is excellent.
 しかし、画素の大きさは液晶表示装置のほうが小さくできるので、精細度は液晶表示装置のほうが優れている。そこで、液晶表示装置のコントラストを向上させる方式としてローカルディミングが開発されている。ローカルディミングに関する先行技術として、例えば特許文献1が存在する。 However, since the size of the pixels can be made smaller in the liquid crystal display device, the definition is superior in the liquid crystal display device. Therefore, local dimming has been developed as a method for improving the contrast of the liquid crystal display device. For example, Patent Document 1 exists as a prior art relating to local dimming.
特開2017-116683JP-A-2017-116683
 VR(Virtual Reality)用表示装置、医療用表示装置では、より高精細で、よりコントラストの高い画像が必要とされる。このような表示装置でローカルディミングを用いる場合、ローカルディミングについても、より細かい制御が必要である。 VR (Virtual Reality) display devices and medical display devices require higher-definition and higher-contrast images. When local dimming is used in such a display device, finer control is required for local dimming as well.
 このような表示装置で、より効果的にローカルディミングを行い、コントラストを向上させるためには、例えば、ローカルディミングの単位となるセグメントの面積を小さくし、かつ、各セグメントの光が隣接するセグメントに及ばないようにする必要がある。 In order to perform local dimming more effectively and improve the contrast in such a display device, for example, the area of the segment that is the unit of local dimming is reduced, and the light of each segment is placed in the adjacent segment. It needs to be out of reach.
 また、セグメントの面積を小さくすると、セグメントに複数のLEDを配置することが難しくなる。一方、各セグメントに1個のみLEDを配置した場合、輝度分布の均一化が問題となり、画面側からLEDが見えてしまうという問題を生ずる。これを対策するために、例えば、拡散シートを配置すると、拡散シートの影響によって、各セグメントの光が隣接するセグメントに漏れるという問題を生ずる。 Also, if the area of the segment is reduced, it becomes difficult to arrange multiple LEDs in the segment. On the other hand, when only one LED is arranged in each segment, uniform brightness distribution becomes a problem, and there arises a problem that the LED can be seen from the screen side. If, for example, a diffusion sheet is arranged to deal with this, there arises a problem that the light of each segment leaks to the adjacent segment due to the influence of the diffusion sheet.
 本発明の課題は、このような問題を解決し、ローカルディミングを効果的に行い、バックライトを有する表示装置において、高精細で高コントラストの画面を実現することである。 An object of the present invention is to solve such a problem, effectively perform local dimming, and realize a high-definition and high-contrast screen in a display device having a backlight.
 本発明は上記課題を解決するものであり、主な具体的な手段は次のとおりである。 The present invention solves the above problems, and the main specific means are as follows.
 (1)表示パネル及びバックライトを有する表示装置であって、前記バックライトは光源と光学シート群を有し、前記光源は、光源基板と前記光源基板に配置したLEDを有し、前記光源は、平面で視てセグメントに分割され、前記セグメントには、少なくとも1個の前記LEDが存在し、前記光源基板は、前記LEDを除いて保護フィルムによって覆われ、前記セグメントは、樹脂で形成された仕切り板によって壁状に仕切られており、前記仕切り板は、前記保護フィルムの上に載置され、前記仕切り板と前記光学シート群の間には凸レンズが形成されていることを特徴とする表示装置。 (1) A display device having a display panel and a backlight, wherein the backlight has a light source and an optical sheet group, the light source has a light source substrate and LEDs arranged on the light source substrate, and the light source is , The segment is divided into segments when viewed in a plane, in which at least one LED is present, the light source substrate is covered with a protective film except for the LED, and the segment is formed of resin. The display is characterized in that it is partitioned into a wall shape by a partition plate, the partition plate is placed on the protective film, and a convex lens is formed between the partition plate and the optical sheet group. Device.
 (2)表示パネル及びバックライトを有する表示装置であって、前記バックライトは光源と光学シート群を有し、前記光源は、光源基板と前記光源基板に配置したLEDを有し、前記光源は、平面で視てセグメントに分割され、前記セグメントには、少なくとも1個の前記LEDが存在し、前記光源基板は、前記LEDを除いて保護フィルムによって覆われ、前記セグメントには、前記保護フィルムの上に、かつ、前記LEDを囲むように第2レンズが形成され、前記第2レンズの口径は、前記LED側よりも前記光学シート群側において大きく、前記第2レンズと前記光学シート群の間には、第1レンズが形成されていることを特徴とする表示装置。 (2) A display device having a display panel and a backlight, wherein the backlight has a light source and an optical sheet group, the light source has a light source substrate and an LED arranged on the light source substrate, and the light source has a light source. The segment is divided into segments when viewed in a plane, in which at least one LED is present, the light source substrate is covered with a protective film except for the LED, and the segment is covered with a protective film of the protective film. A second lens is formed on the top and so as to surround the LED, and the diameter of the second lens is larger on the optical sheet group side than on the LED side, and is between the second lens and the optical sheet group. Is a display device characterized in that a first lens is formed therein.
 (3)表示パネル及びバックライトを有する表示装置であって、前記バックライトは光源と光学シート群を有し、前記光源は、光源基板と前記光源基板に配置したLEDを有し、前記光源は、平面で視てセグメントに分割され、前記セグメントには、少なくとも1個の前記LEDが存在し、前記光源基板は、前記LEDを除いて保護フィルムによって覆われ、前記セグメントは、区画樹脂によって区画され、前記区画樹脂にはスルーホールが形成され、前記スルーホールの断面形状は外側に凸な曲面であり、平面で視て、前記スルーホールの径は、前記光学シート群側において、光源基板側よりも大きく、前記区画樹脂と前記光学シート群の間には凸レンズが形成されていることを特徴とする表示装置。 (3) A display device having a display panel and a backlight, wherein the backlight has a light source and an optical sheet group, the light source has a light source substrate and LEDs arranged on the light source substrate, and the light source is , The segment is divided into segments when viewed in a plane, the segment has at least one LED, the light source substrate is covered with a protective film except for the LED, and the segment is partitioned by a partition resin. A through hole is formed in the partition resin, and the cross-sectional shape of the through hole is an outwardly convex curved surface. When viewed in a plane, the diameter of the through hole is larger than that of the light source substrate on the optical sheet group side. The display device is also large, and is characterized in that a convex lens is formed between the partition resin and the optical sheet group.
液晶表示装置の平面図である。It is a top view of the liquid crystal display device. 液晶表示装置の断面図である。It is sectional drawing of the liquid crystal display device. 液晶表示装置におけるローカルディミング動作の場合のセグメントの例を示す平面図である。It is a top view which shows the example of the segment in the case of the local dimming operation in the liquid crystal display device. 光源に青色LEDを使用した場合の比較例1の平面図である。It is a top view of the comparative example 1 when a blue LED is used as a light source. 光源に青色LEDを使用した場合の比較例1の断面図である。It is sectional drawing of the comparative example 1 in the case of using a blue LED as a light source. 光源に白色LEDを使用した場合の比較例2の平面図である。It is a top view of the comparative example 2 when a white LED is used as a light source. 光源に白色LEDを使用した場合の比較例2の断面図である。It is sectional drawing of the comparative example 2 when a white LED is used as a light source. 実施例1のセグメントを示す平面図である。It is a top view which shows the segment of Example 1. FIG. 実施例1のセグメントを示す断面図である。It is sectional drawing which shows the segment of Example 1. FIG. 仕切り板の斜視図である。It is a perspective view of a partition plate. 仕切り板の平面図である。It is a top view of a partition plate. 図11のA-A断面図である。11 is a cross-sectional view taken along the line AA of FIG. 第1レンズの斜視図である。It is a perspective view of the 1st lens. 第1レンズの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the 1st lens. 第1レンズの製造方法における露光マスクの透過率を示すグラフである。It is a graph which shows the transmittance of the exposure mask in the manufacturing method of the 1st lens. 第1レンズの製造方法を示す図15に続く断面図である。It is sectional drawing which follows FIG. 15 which shows the manufacturing method of the 1st lens. 第1レンズの製造方法を示す図16に続く断面図である。It is sectional drawing which follows FIG. 16 which shows the manufacturing method of the 1st lens. 仕切り板を第1レンズに取り付け、これを光源基板に載置する状態を示す断面図である。It is sectional drawing which shows the state which the partition plate is attached to the 1st lens, and this is placed on the light source substrate. 比較例1、2における青色LED及びその周辺の断面図である。It is sectional drawing of the blue LED in Comparative Examples 1 and 2 and the periphery thereof. 本発明における青色LED及びその周辺の断面図である。It is sectional drawing of the blue LED in this invention and its periphery. 実施例2の断面図である。It is sectional drawing of Example 2. FIG. 実施例2の平面図である。It is a top view of Example 2. FIG. 実施例2の他の平面図である。It is another plan view of Example 2. FIG. 第2レンズの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the 2nd lens. 第2レンズの製造方法における露光マスクの透過率を示すグラフである。It is a graph which shows the transmittance of the exposure mask in the manufacturing method of the 2nd lens. 第2レンズの製造方法を示す図24に続く断面図である。It is sectional drawing which follows FIG. 24 which shows the manufacturing method of the 2nd lens. 第2レンズの製造方法を示す図25に続く断面図である。It is sectional drawing which follows FIG. 25 which shows the manufacturing method of the 2nd lens. 第2レンズを第1レンズに貼り付け、これを光源基板に載置する状態を示す断面図である。It is sectional drawing which shows the state which the 2nd lens is attached to the 1st lens, and this is placed on the light source substrate. 実施例3の断面図である。It is sectional drawing of Example 3. FIG. 実施例3の凸レンズの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the convex lens of Example 3. FIG. 実施例3の凸レンズの製造方法を示す図29に続く断面図である。It is sectional drawing which follows FIG. 29 which shows the manufacturing method of the convex lens of Example 3. FIG. 実施例3の凸レンズの製造方法を示す図30に続く断面図である。It is sectional drawing which follows FIG. 30, which shows the manufacturing method of the convex lens of Example 3. FIG. 実施例3の凸レンズの製造方法を示す図31に続く断面図である。It is sectional drawing following FIG. 31 which shows the manufacturing method of the convex lens of Example 3. FIG. 実施例3の凸レンズの製造方法を示す図32に続く断面図である。It is sectional drawing which follows FIG. 32 which shows the manufacturing method of the convex lens of Example 3. FIG. 実施例4の断面図である。It is sectional drawing of Example 4. FIG. 実施例4の平面図である。It is a top view of Example 4. FIG. 実施例4の他の平面図である。It is another plan view of Example 4. FIG. 実施例4の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of Example 4. FIG. 実施例4の製造方法を示す図36に続く断面図である。It is sectional drawing which follows FIG. 36 which shows the manufacturing method of Example 4. FIG. 実施例4の製造方法を示す図37に続く断面図である。It is sectional drawing which follows FIG. 37 which shows the manufacturing method of Example 4. FIG. 実施例4の製造方法を示す図38に続く断面図である。It is sectional drawing which follows FIG. 38 which shows the manufacturing method of Example 4. FIG. 第1レンズと反射層を含む区画樹脂の組み立て体を光源基板に載置する状態を示す断面図である。It is sectional drawing which shows the state which puts the assembly of the partition resin including a 1st lens and a reflection layer on a light source substrate. 実施例5の断面図である。It is sectional drawing of Example 5. FIG. 実施例5の平面図である。It is a top view of Example 5. FIG. 実施例6の平面図である。It is a plan view of Example 6. 実施例6の断面図である。It is sectional drawing of Example 6. 比較例1、2で使用される白色LED及びその周辺の断面図である。It is sectional drawing of the white LED used in Comparative Examples 1 and 2 and the periphery thereof. 本発明で使用される白色LED及びその周辺の断面図である。It is sectional drawing of the white LED used in this invention and its periphery.
 以下に実施例を用いて本発明を詳細に説明する。 The present invention will be described in detail below with reference to examples.
 図1は液晶表示装置の1例を示す平面図である。図1において、TFT基板100と対向基板200がシール材16によって接着し、内部に液晶が挟持されている。TFT基板100と対向基板200がオーバーラップした部分に表示領域14が形成されている。表示領域14には、走査線11が横方向(x方向)に延在し、縦方向(y方向)に配列している。また、映像信号線12が縦方向に延在して横方向に配列している。走査線11と映像信号線12で囲まれた領域に画素13が形成されている。 FIG. 1 is a plan view showing an example of a liquid crystal display device. In FIG. 1, the TFT substrate 100 and the facing substrate 200 are adhered to each other by the sealing material 16, and the liquid crystal is sandwiched inside. A display region 14 is formed in a portion where the TFT substrate 100 and the facing substrate 200 overlap. In the display area 14, the scanning lines 11 extend in the horizontal direction (x direction) and are arranged in the vertical direction (y direction). Further, the video signal lines 12 extend in the vertical direction and are arranged in the horizontal direction. Pixels 13 are formed in a region surrounded by scanning lines 11 and video signal lines 12.
 図1において、TFT基板100が対向基板200とオーバーラップしていない部分は端子領域15となっている。端子領域15には、液晶表示パネルに電源や信号を供給するためにフレキシブル配線基板17が接続している。液晶表示パネルを駆動するドライバICはフレキシブル配線基板17に搭載されている。TFTの背面には、図2に示すようにバックライトが配置している。 In FIG. 1, the portion where the TFT substrate 100 does not overlap with the facing substrate 200 is the terminal region 15. A flexible wiring board 17 is connected to the terminal area 15 in order to supply power and signals to the liquid crystal display panel. The driver IC that drives the liquid crystal display panel is mounted on the flexible wiring board 17. A backlight is arranged on the back surface of the TFT as shown in FIG.
 図2は液晶表示装置の断面図である。図2において、液晶表示パネル10の背面にバックライト20が配置している。液晶表示パネル10は次のような構成になっている。すなわち、画素電極、コモン電極、TFT、走査線、映像信号線等が形成されたTFT基板100に対向して、ブラックマトリクスやカラーフィルタが形成された対向基板200が配置している。TFT基板100と対向基板200は周辺において、シール材16によって接着し、内部に液晶300が封入されている。 FIG. 2 is a cross-sectional view of the liquid crystal display device. In FIG. 2, the backlight 20 is arranged on the back surface of the liquid crystal display panel 10. The liquid crystal display panel 10 has the following configuration. That is, the facing substrate 200 on which the black matrix and the color filter are formed is arranged so as to face the TFT substrate 100 on which the pixel electrodes, common electrodes, TFTs, scanning lines, video signal lines and the like are formed. The TFT substrate 100 and the facing substrate 200 are adhered to each other by a sealing material 16 at the periphery, and a liquid crystal 300 is enclosed inside.
 液晶分子は、TFT基板100及び対向基板200に形成された配向膜によって、初期配向している。画素電極とコモン電極の間に電圧が印加されると、液晶分子が回転し、画素毎にバックライト20からの光を制御することによって画像を形成する。液晶300は、偏向光のみ制御することが出来るので、TFT基板100の下に下偏光板101を配置して、偏向光のみを液晶300に入射する。液晶300で変調された光は、上偏光板201において、検光され、画像が視認される。 The liquid crystal molecules are initially oriented by the alignment film formed on the TFT substrate 100 and the facing substrate 200. When a voltage is applied between the pixel electrode and the common electrode, the liquid crystal molecules rotate and form an image by controlling the light from the backlight 20 for each pixel. Since the liquid crystal 300 can control only the deflected light, the lower polarizing plate 101 is arranged under the TFT substrate 100, and only the deflected light is incident on the liquid crystal 300. The light modulated by the liquid crystal 300 is detected by the upper polarizing plate 201, and the image is visually recognized.
 図2において、液晶表示パネルの背面にバックライト20が配置している。バックライト20は光源30の上に導光板40が配置し、その上に光学シート群50が配置している構成である。表示装置のバックライト20には、LED等の光源が導光板の側面に配置するサイドライト方式と、LED等の光源が導光板の下面に配置する直下型とが存在するが、本発明では、直下型方式のバックライトを使用する。 In FIG. 2, the backlight 20 is arranged on the back surface of the liquid crystal display panel. The backlight 20 has a configuration in which the light guide plate 40 is arranged on the light source 30, and the optical sheet group 50 is arranged on the light guide plate 40. The backlight 20 of the display device includes a side light system in which a light source such as an LED is arranged on the side surface of the light guide plate and a direct type in which a light source such as an LED is arranged on the lower surface of the light guide plate. Use a direct-type backlight.
 図2において、光源30の上には導光板40が配置している。導光板40は透明な樹脂で形成されている。図2における導光板40は、導光板40に入射した光を界面において反射させることによって、点光源であるLEDからの光を均一化させる役割を有する。 In FIG. 2, the light guide plate 40 is arranged on the light source 30. The light guide plate 40 is made of a transparent resin. The light guide plate 40 in FIG. 2 has a role of making the light from the LED, which is a point light source, uniform by reflecting the light incident on the light guide plate 40 at the interface.
 導光板40の上には光学シート群50が配置している。光学シート群50には、プリズムシート、拡散シート等が用いられる。この他に、光源に青色LED等を用いて白色光を得るために、樹脂シート内に蛍光体を分散した、色変換シートが用いられることもある。色変換シートは量子ドットを用いたQDシートを使用してもよい。また、バックライト20からの光の利用効率を向上させるために、偏向反射シートが用いられることもある。どのような光学シートを用いるか、あるいは、このような光学シートを何枚用いるかは表示装置によって決められる。 The optical sheet group 50 is arranged on the light guide plate 40. A prism sheet, a diffusion sheet, or the like is used for the optical sheet group 50. In addition, in order to obtain white light by using a blue LED or the like as a light source, a color conversion sheet in which a phosphor is dispersed in a resin sheet may be used. As the color conversion sheet, a QD sheet using quantum dots may be used. Further, in order to improve the utilization efficiency of the light from the backlight 20, a deflection reflection sheet may be used. What kind of optical sheet is used or how many such optical sheets are used is determined by the display device.
 液晶表示装置に画像を表示する場合、明るい部分はバックライトからの光を透過し、暗い部分は、バックライトからの光を遮蔽する。画像のコントラストは、明るい部分と暗い部分の比によって定義される。液晶表示装置は、暗い部分は、液晶によってバックライトからの光を遮蔽することによって形成する。しかし、液晶によるバックライトの遮蔽は、完全ではなく、若干の光が漏れる。これによってコントラストが低下することになる。 When displaying an image on a liquid crystal display device, the bright part transmits the light from the backlight, and the dark part shields the light from the backlight. Image contrast is defined by the ratio of bright to dark areas. In the liquid crystal display device, the dark portion is formed by shielding the light from the backlight by the liquid crystal. However, the shielding of the backlight by the liquid crystal is not perfect, and some light leaks. This will reduce the contrast.
 ローカルディミングは、暗い部分には、バックライトからの光を照射しないことによって、深い黒表示を可能とする。したがって、高いコントラストを実現することが出来る。図3はローカルディミングの形態を示す液晶表示装置の例である。図3は液晶表示装置の平面図であり、構成は図1で説明したのと同様である。図3において、表示領域14はセグメント141によって分割されている。図3における点線は、セグメント141の境界であるが、これは便宜上記載したものであり、液晶表示パネルにこのような境界があるわけではない。バックライトにおける光源が各セグメントに対応する位置に配置されている。 Local dimming enables deep black display by not irradiating the dark part with the light from the backlight. Therefore, high contrast can be realized. FIG. 3 is an example of a liquid crystal display device showing a form of local dimming. FIG. 3 is a plan view of the liquid crystal display device, and the configuration is the same as that described with reference to FIG. In FIG. 3, the display area 14 is divided by segments 141. The dotted line in FIG. 3 is the boundary of the segment 141, but this is described for convenience, and the liquid crystal display panel does not have such a boundary. The light source in the backlight is arranged at the position corresponding to each segment.
 図3において、セグメント(4、2)は明るい部分であり、セグメント(5、2)は暗い部分であるとする。ローカルディミングでは、セグメント(4、2)の部分の光源、すなわち、LEDを点灯し、セグメント(5、2)の部分の光源、すなわち、LEDは点灯しない。そうすると、セグメント(5、2)の部分に形成される黒は、深い黒表示となり、高いコントラストが実現される。 In FIG. 3, it is assumed that the segment (4, 2) is a bright part and the segment (5, 2) is a dark part. In local dimming, the light source of the segment (4, 2) portion, that is, the LED is turned on, and the light source of the segment (5, 2) portion, that is, the LED is not turned on. Then, the black formed in the segment (5, 2) becomes a deep black display, and high contrast is realized.
 しかし、セグメント間には境界があるわけではないので、例えばセグメントの輝度分布等によっては、セグメント(4、2)の光がセグメント(5、2)に及ぶ場合がある。そうすると、黒表示をするはずのセグメント(5、2)にもバックライトが照射されることになり、ローカルディミングの効果を十分に発揮できないことになる。 However, since there is no boundary between the segments, for example, depending on the luminance distribution of the segment, the light of the segment (4, 2) may reach the segment (5, 2). Then, the backlight is also illuminated on the segments (5, 2) that should be displayed in black, and the effect of local dimming cannot be fully exerted.
 図4及び図5は、ローカルディミングを可能とするバックライトの構成を示す比較例1である。図4及び図5では、光源として青色LED60が使用されている。図4は、バックライトにおいて、各セグメント141における、光源であるLED60の配置を示す平面図である。図4において、各セグメント141は点線で仕切られている。しかし、この点線は、便宜上のものであり、実際に仕切りがあるわけではない。各セグメントの大きさは4mm□(縦4mm、横4mm)以下であり、図5の場合は、例えば2mm□である。以下の例におけるセグメント141の大きさも同様である。 4 and 5 are Comparative Example 1 showing the configuration of the backlight that enables local dimming. In FIGS. 4 and 5, a blue LED 60 is used as a light source. FIG. 4 is a plan view showing the arrangement of the LED 60, which is a light source, in each segment 141 of the backlight. In FIG. 4, each segment 141 is partitioned by a dotted line. However, this dotted line is for convenience only and does not actually have a partition. The size of each segment is 4 mm □ (length 4 mm, width 4 mm) or less, and in the case of FIG. 5, it is, for example, 2 mm □. The size of the segment 141 in the following example is also the same.
 図4において、各セグメント141に1個のLED60が配置している。図5は、比較例1におけるバックライトの断面図である。図5において、光源基板61の上にLED60が配置し、LED60を覆って透明樹脂62が形成されている。LED60には青色LEDが使用されている。LED60およびその付近の構成例は図19に記載されている。透明樹脂62には、例えばアクリル樹脂あるいはシリコーン樹脂が使用される。透明樹脂62は、LED60、及び光源基板61に形成された電極及び配線を保護するためのものである。図5の光源基板61に記載された点線は、便宜上セグメントの境界を示すものである。 In FIG. 4, one LED 60 is arranged in each segment 141. FIG. 5 is a cross-sectional view of the backlight in Comparative Example 1. In FIG. 5, the LED 60 is arranged on the light source substrate 61, and the transparent resin 62 is formed so as to cover the LED 60. A blue LED is used for the LED 60. An example of the configuration of the LED 60 and its vicinity is shown in FIG. For the transparent resin 62, for example, an acrylic resin or a silicone resin is used. The transparent resin 62 is for protecting the electrodes and wiring formed on the LED 60 and the light source substrate 61. The dotted line shown on the light source substrate 61 in FIG. 5 indicates the boundary of the segment for convenience.
 透明樹脂62の上に導光板40が配置している。導光板40は、透明であるが、導光板40に入射した光を界面において反射し、LED60からの光を均一化する働きを有する。導光板40の上に色変換シート51が配置している。色変換シート51は、透明樹脂シートに青色光を受けて黄色光を発色する蛍光体を分散させたものであり、色変換シート51を通過した光は、白色光となっている。色変換シート51の厚さは例えば50ミクロン乃至500ミクロンである。 The light guide plate 40 is arranged on the transparent resin 62. Although the light guide plate 40 is transparent, it has a function of reflecting the light incident on the light guide plate 40 at the interface and making the light from the LED 60 uniform. The color conversion sheet 51 is arranged on the light guide plate 40. The color conversion sheet 51 is a transparent resin sheet in which a phosphor that receives blue light and develops yellow light is dispersed, and the light that has passed through the color conversion sheet 51 is white light. The thickness of the color conversion sheet 51 is, for example, 50 microns to 500 microns.
 色変換シート51の上には拡散シート53が配置している。拡散シート53は、光源60からの光を拡散して輝度を均一化するためのものである。拡散シート53の厚さは、例えば、50ミクロン乃至70ミクロンである。拡散シート53の上にはプリズムシート52が配置している。プリズムシート52は、断面が3角形状のプリズムがy方向に延在し、x方向に配列したものである。プリズムシート52の役割は、色変換シート51の主面から斜め方向に出射した光を、色変換シート51の主面と直角方向に向けることによって、光の利用効率を上げるものである。図5では、プリズムシート52は、1枚であるが、図5のプリズムシート52のプリズムアレイと直角方向に延在するプリズムアレイを有するプリズムシートを加える場合もある。プリズムシートの厚さは、例えば、プリズムアレイの部分の厚さ(すなわち、プリズムの高さ)が50ミクロン、基材の部分の厚さが70ミクロンであり、合計120ミクロン程度である。 A diffusion sheet 53 is arranged on the color conversion sheet 51. The diffusion sheet 53 is for diffusing the light from the light source 60 to make the brightness uniform. The thickness of the diffusion sheet 53 is, for example, 50 microns to 70 microns. A prism sheet 52 is arranged on the diffusion sheet 53. The prism sheet 52 is formed by extending prisms having a triangular cross section in the y direction and arranging them in the x direction. The role of the prism sheet 52 is to increase the light utilization efficiency by directing the light emitted obliquely from the main surface of the color conversion sheet 51 in the direction perpendicular to the main surface of the color conversion sheet 51. In FIG. 5, the number of prism sheets 52 is one, but a prism sheet having a prism array extending in a direction perpendicular to the prism array of the prism sheet 52 in FIG. 5 may be added. The thickness of the prism sheet is, for example, 50 microns in the portion of the prism array (that is, the height of the prism) and 70 microns in the thickness of the base material portion, for a total of about 120 microns.
 図6及び図7は、光源として白色LED65を使用した場合の比較例2である。図6は、光源であるLEDが白色LED65である他は図4と同じである。図7は、比較例2におけるバックライトの断面図である。図7において、光源基板61の上に白色LED65が配置し、白色LED65を覆って透明樹脂62が形成されている。白色LED65及びその付近の構成例は、図45に記載されている。 6 and 7 are comparative examples 2 when a white LED 65 is used as a light source. FIG. 6 is the same as FIG. 4 except that the LED as a light source is a white LED 65. FIG. 7 is a cross-sectional view of the backlight in Comparative Example 2. In FIG. 7, the white LED 65 is arranged on the light source substrate 61, and the transparent resin 62 is formed so as to cover the white LED 65. An example of the configuration of the white LED 65 and its vicinity is shown in FIG. 45.
 透明樹脂62の上に導光板40が配置している。導光板40の役割は比較例1で説明したのと同様である。導光板40の上に拡散シート53が存在しており、色変換シート51は存在していない。白色LED65を使用しているので、色変換の必要が無いからである。拡散シート53の役割は図5で説明したのと同じである。拡散シート53の上にプリズムシート52が配置している。プリズムシートの構成及び作用は図5で説明したのと同じである。 The light guide plate 40 is arranged on the transparent resin 62. The role of the light guide plate 40 is the same as that described in Comparative Example 1. The diffusion sheet 53 exists on the light guide plate 40, and the color conversion sheet 51 does not exist. This is because the white LED 65 is used, so there is no need for color conversion. The role of the diffusion sheet 53 is the same as described in FIG. The prism sheet 52 is arranged on the diffusion sheet 53. The structure and operation of the prism sheet are the same as those described in FIG.
 比較例1及び2の問題点は、LED60または65からの光が、LED60、65を覆う透明樹脂63、導光板40、色変換シート51及び拡散シート53から隣接するセグメントに漏れてしまうということである。特に、光源に近い、透明樹脂62、導光板40を介しての隣接セグメントへの光漏れが大きい。したがって、正確なローカルディミングを行うことが出来なくなる。 The problem of Comparative Examples 1 and 2 is that the light from the LED 60 or 65 leaks from the transparent resin 63 covering the LEDs 60 and 65, the light guide plate 40, the color conversion sheet 51 and the diffusion sheet 53 to the adjacent segments. be. In particular, light leakage to the adjacent segment via the transparent resin 62 and the light guide plate 40, which are close to the light source, is large. Therefore, accurate local dimming cannot be performed.
 以下に示す本発明は、以上のような問題を解決するものである。本発明は、LEDが青色の場合も白色の場合も適用できる。以下の実施例1乃至5で、青色LED60を使用した場合について説明し、実施例6で白色LED65を使用した場合について説明する。 The present invention shown below solves the above problems. The present invention can be applied regardless of whether the LED is blue or white. The case where the blue LED 60 is used will be described in Examples 1 to 5 below, and the case where the white LED 65 is used in Example 6 will be described.
 図8及び図9は、本発明の実施例1によるバックライトの構成である。図8は、バックライトにおいて、各セグメント141における、光源であるLED60の配置を示す平面図である。LED60は青色LEDである。図8において、各セグメント141は仕切り板70によって仕切られている。仕切り板70は、図10に示すように、樹脂による薄板を井桁状に組んだものである。各セグメント141の大きさは4mm□以下であり、例えば2mm□である。 8 and 9 are the configurations of the backlight according to the first embodiment of the present invention. FIG. 8 is a plan view showing the arrangement of the LED 60, which is a light source, in each segment 141 of the backlight. The LED 60 is a blue LED. In FIG. 8, each segment 141 is partitioned by a partition plate 70. As shown in FIG. 10, the partition plate 70 is a thin plate made of resin assembled in a grid shape. The size of each segment 141 is 4 mm □ or less, for example, 2 mm □.
 図8において、各セグメント141に1個のLED60が配置している。したがって、LED60の輝度は大きいが、実施例1の構成は、後で説明するように、LED60からの光が隣接するセグメントに漏れ出す量は小さいので、比較例1の場合におけるLEDの輝度よりも小さくすることが出来る。 In FIG. 8, one LED 60 is arranged in each segment 141. Therefore, although the brightness of the LED 60 is high, in the configuration of the first embodiment, as will be described later, the amount of light leaking from the LED 60 to the adjacent segment is small, so that the brightness of the LED is higher than that of the LED in the case of the comparative example 1. It can be made smaller.
 図9は、実施例1におけるバックライトの断面図である。図9において、光源基板61の上にLED60が配置している。LED60部分の構成は図20において説明する。図9において、光源基板61に形成された配線や電極を覆って保護フィルム63が形成されている。この構成は比較例1及び2とは大きく異なっている。すなわち、実施例1の構成は、LED60は透明樹脂62によって覆われておらず、LED60からの光の出射領域は、保護フィルム63よりも上側に存在している。したがって、保護フィルム63は透明である必要はない。つまり、実施例1では、比較例1及び2における透明樹脂62は存在しない。 FIG. 9 is a cross-sectional view of the backlight in the first embodiment. In FIG. 9, the LED 60 is arranged on the light source substrate 61. The configuration of the LED60 portion will be described with reference to FIG. In FIG. 9, the protective film 63 is formed so as to cover the wiring and the electrodes formed on the light source substrate 61. This configuration is significantly different from Comparative Examples 1 and 2. That is, in the configuration of the first embodiment, the LED 60 is not covered with the transparent resin 62, and the light emitting region from the LED 60 exists above the protective film 63. Therefore, the protective film 63 does not have to be transparent. That is, in Example 1, the transparent resin 62 in Comparative Examples 1 and 2 does not exist.
 図9の構成では、保護シート63は例えば、白色の樹脂で形成し、反射率は高いほうがよい。このような樹脂は、例えばシリコーン樹脂で形成することが出来る。すなわち、LED60から出射した光は、一部が仕切り板70で反射して、保護フィルム63側に入射するが、保護フィルム63の反射率が大きければこの光を再び反射して、液晶表示パネルの方向に向けることが出来る。 In the configuration of FIG. 9, the protective sheet 63 should be formed of, for example, a white resin and have a high reflectance. Such a resin can be formed of, for example, a silicone resin. That is, a part of the light emitted from the LED 60 is reflected by the partition plate 70 and is incident on the protective film 63 side, but if the reflectance of the protective film 63 is large, this light is reflected again and the liquid crystal display panel. You can turn it in the direction.
 図9において、セグメントの境界には、仕切り板70が存在しており、この仕切り板70は保護シート63の上に配置している。仕切り板70は白色PET(Polyethylene terephthalate)で形成されている。本実施例では仕切り板70にPETを使用したが、白色のPC(ポリカーボネート)でもよい。また仕切り板70は一体形成でもよく、分割した仕切り板70を複数並べてもよい。LED60から斜め方向に出射した光は、仕切り板70で反射して第1レンズ45に向かう。 In FIG. 9, a partition plate 70 exists at the boundary of the segment, and the partition plate 70 is arranged on the protective sheet 63. The partition plate 70 is made of white PET (Polyethylene terephthalate). In this embodiment, PET is used for the partition plate 70, but a white PC (polycarbonate) may be used. Further, the partition plate 70 may be integrally formed, or a plurality of divided partition plates 70 may be arranged side by side. The light emitted obliquely from the LED 60 is reflected by the partition plate 70 and heads toward the first lens 45.
 比較例1及び2では、LED60からの光は、LEDを覆う透明樹脂62を伝って隣接するセグメントに漏れるが、実施例1では、図9に示すように、LED60から出射した光は、仕切り板70によって反射し、隣接するセグメントには漏れないような構成となっている。 In Comparative Examples 1 and 2, the light from the LED 60 leaks to the adjacent segment through the transparent resin 62 covering the LED, but in the first embodiment, as shown in FIG. 9, the light emitted from the LED 60 is a partition plate. It is configured so that it is reflected by 70 and does not leak to adjacent segments.
 図9において、仕切り板70の上には、導光板ではなく、第1レンズ45が配置している。第1レンズ45はセグメント毎に1個の凸レンズが形成されている構成である。第1レンズ45に入射した光は、隣接するセグメントには向かわず、液晶表示パネルの方向に収束される。したがって、隣接するセグメントへの光漏れは軽減することが出来る。 In FIG. 9, the first lens 45 is arranged on the partition plate 70 instead of the light guide plate. The first lens 45 has a configuration in which one convex lens is formed for each segment. The light incident on the first lens 45 does not go to the adjacent segment, but converges in the direction of the liquid crystal display panel. Therefore, light leakage to adjacent segments can be reduced.
 図9において、第1レンズ45の上には、色変換シート51が配置している。色変換シート51の構成及び作用は比較例1で説明したのと同様である。色変換シート51の上には、拡散シート53が配置している。拡散シート53の役割は、比較例1で説明したのと同じである。図9において、拡散シート53の上にプリズムシート52が配置していることは比較例1、2と同様である。また、プリズムシート52の構成及び作用も比較例1、2で説明したのと同様である。なお、図9における光学シート群は例であり、この他の光学シートを使用してもよい。 In FIG. 9, a color conversion sheet 51 is arranged on the first lens 45. The configuration and operation of the color conversion sheet 51 are the same as those described in Comparative Example 1. A diffusion sheet 53 is arranged on the color conversion sheet 51. The role of the diffusion sheet 53 is the same as described in Comparative Example 1. In FIG. 9, the prism sheet 52 is arranged on the diffusion sheet 53, which is the same as in Comparative Examples 1 and 2. Further, the configuration and operation of the prism sheet 52 are the same as those described in Comparative Examples 1 and 2. The optical sheet group in FIG. 9 is an example, and other optical sheets may be used.
 図10は仕切り板70の斜視図である。仕切り板70は、厚さが0.2mm程度の白色PET板を井桁状に組み合わせたものである。仕切り板70で囲まれた領域にセグメント141が形成されている。セグメント141の大きさは例えば2mm□(2mm×2mm)であり、仕切り板70の高さは(Z軸方向)例えば1mmである。 FIG. 10 is a perspective view of the partition plate 70. The partition plate 70 is a combination of white PET plates having a thickness of about 0.2 mm in a grid shape. The segment 141 is formed in the region surrounded by the partition plate 70. The size of the segment 141 is, for example, 2 mm □ (2 mm × 2 mm), and the height of the partition plate 70 is, for example, 1 mm (in the Z-axis direction).
 図11は仕切り板70の平面図である。仕切り板70の板厚swは0.2mm程度である。セグメント141の大きさsx、syは、4mm以下であり、例えば2mm程度である。図12は、図11のA-A断面図である。仕切り板70の高さshは0.5mm乃至2mmであり、例えば1mmである。 FIG. 11 is a plan view of the partition plate 70. The plate thickness sw of the partition plate 70 is about 0.2 mm. The sizes sx and sy of the segment 141 are 4 mm or less, for example, about 2 mm. FIG. 12 is a sectional view taken along the line AA of FIG. The height sh of the partition plate 70 is 0.5 mm to 2 mm, for example, 1 mm.
 図13は第1レンズアレイ45の斜視図である。第1レンズ45はセグメント毎に1個形成されている。レンズの厚さは、中央部t11で例えば1mm乃至2mmである。レンズは例えば球面であり、レンズ周辺の厚さt12はレンズ曲面によって決定される。レンズ材料には、例えば、透明樹脂であるアクリル樹脂、シリコーン樹脂ポリカーボネイト等が使用される。 FIG. 13 is a perspective view of the first lens array 45. One first lens 45 is formed for each segment. The thickness of the lens is, for example, 1 mm to 2 mm at the central portion t11. The lens is, for example, a spherical surface, and the thickness t12 around the lens is determined by the curved surface of the lens. As the lens material, for example, acrylic resin which is a transparent resin, silicone resin polycarbonate, or the like is used.
 図14乃至図17は、第1レンズ45を製造するプロセスを示す断面図である。マイクロレンズアレイを製造する方法は種々存在するが、本実施例では、フォトリソグラフィを用いて製造する例を示す。第1レンズ45の材料としては、上述したような、透明な感光性の樹脂を用いる。実施例1では、ポジ型の感光性樹脂を用いた例を説明する。 14 to 17 are sectional views showing a process of manufacturing the first lens 45. There are various methods for manufacturing a microlens array, but in this embodiment, an example of manufacturing using photolithography will be shown. As the material of the first lens 45, a transparent photosensitive resin as described above is used. In Example 1, an example using a positive photosensitive resin will be described.
 図14は、ガラス基板500に、第1レンズを構成することになる、ポジ型の感光性樹脂451を塗布し、露光マスク400を用いて感光性樹脂451を露光している状態を示す。図14における矢印は露光用の光である。図15は露光マスク400の光透過率を示すグラフである。縦軸が透過率、横軸が位置である。光透過率のプロファイルは、第1レンズの断面形状と対称な形となっている。すなわち、ポジ型の感光性樹脂なので、薄くしたい部分に多く露光できるようなプロファイルになっている。 FIG. 14 shows a state in which a positive type photosensitive resin 451 that constitutes the first lens is applied to a glass substrate 500, and the photosensitive resin 451 is exposed using an exposure mask 400. The arrow in FIG. 14 is the light for exposure. FIG. 15 is a graph showing the light transmittance of the exposure mask 400. The vertical axis is the transmittance and the horizontal axis is the position. The light transmittance profile is symmetrical with the cross-sectional shape of the first lens. That is, since it is a positive photosensitive resin, it has a profile that allows a large amount of exposure to a portion to be thinned.
 図16は、現像後の第1レンズ45の形状を示す断面図である。ガラス基板500の上に現像後の第1レンズ45が形成されている。すなわち、凸レンズの頂点に対応する部分には、ほとんど光が当たらないので、現像液に溶けないが、レンズとレンズの境界付近は、マスクの透過率が高く、強く露光されるため、現像液に溶けだすことになる。その結果、図16に示すようなレンズ形状となる。その後、図17に示すように、ガラス基板500を除去すると、第1レンズ45が完成する。 FIG. 16 is a cross-sectional view showing the shape of the first lens 45 after development. The developed first lens 45 is formed on the glass substrate 500. That is, the portion corresponding to the apex of the convex lens is hardly exposed to light, so that it is insoluble in the developing solution. It will melt away. As a result, the lens shape is as shown in FIG. After that, as shown in FIG. 17, when the glass substrate 500 is removed, the first lens 45 is completed.
 図10に示すように、仕切り板70は、薄い白色PET板を井桁状に組み合わせたものなので、形状が不安定である。そこで、図18に示すように、まず、仕切り板70を第1レンズ45に接着材等で固定し、その後、LED60や保護フィルム63が配置された光源基板61側と組み合わせるのが効率的である。 As shown in FIG. 10, since the partition plate 70 is a combination of thin white PET plates in a grid shape, its shape is unstable. Therefore, as shown in FIG. 18, it is efficient to first fix the partition plate 70 to the first lens 45 with an adhesive or the like, and then combine it with the light source substrate 61 side on which the LED 60 and the protective film 63 are arranged. ..
 図18は、第1レンズ45に取り付けられた仕切り板70を光源基板61側の保護フィルム63の上に配置する状態を示す断面図である。図18において、光源基板61の上にLED60が取り付けられ、光源基板61は、LED以外は保護フィルム63によって覆われている。保護フィルム63は、反射フィルムとしての役割も有している。図18において、LEDの平面は矩形であり、LEDの幅lxは0.1mm乃至0.5mmである。本実施例では平面が正方形のLEDを使用したが、平面が長方形でもよい。LEDの高さlhは例えば0.5mmである。また、保護フィルムの厚さfhは例えば0.3mmである。LED60での光の出射部分は保護フィルム63の上面よりも上側、すなわち、第1レンズ45側に存在している。 FIG. 18 is a cross-sectional view showing a state in which the partition plate 70 attached to the first lens 45 is arranged on the protective film 63 on the light source substrate 61 side. In FIG. 18, the LED 60 is mounted on the light source substrate 61, and the light source substrate 61 is covered with a protective film 63 except for the LED. The protective film 63 also has a role as a reflective film. In FIG. 18, the plane of the LED is rectangular, and the width lx of the LED is 0.1 mm to 0.5 mm. In this embodiment, an LED having a square plane is used, but an LED having a rectangular plane may be used. The height lh of the LED is, for example, 0.5 mm. The thickness fh of the protective film is, for example, 0.3 mm. The light emitting portion of the LED 60 exists on the upper side of the upper surface of the protective film 63, that is, on the first lens 45 side.
 図19及び図20は光源部分の断面図である。図19は比較例1、2による光源部分の構成であり、図20は実施例1による光源部分の構成である。図19も図20もLEDの構成は同じである。図19と図20が異なる点は、図19では、LED60を覆って透明樹脂62が形成されているのに対し、図20では、LED60以外の部分を覆って白色保護フィルム63が形成されていることである。 19 and 20 are cross-sectional views of the light source portion. FIG. 19 is a configuration of a light source portion according to Comparative Examples 1 and 2, and FIG. 20 is a configuration of a light source portion according to the first embodiment. The LED configuration is the same in both FIGS. 19 and 20. The difference between FIGS. 19 and 20 is that in FIG. 19, the transparent resin 62 is formed so as to cover the LED 60, whereas in FIG. 20, the white protective film 63 is formed so as to cover the portion other than the LED 60. That is.
 図19は、LED60、透明樹脂62、電極等を示す詳細断面図である。LED60は、青色LEDである。図19において、光源基板61は、例えば、エポキシ樹脂で形成されている。光源基板61の上に、LED60の陽極601と接続する電極パッド612及びLED60の陰極602と接続する電極パッド613が金属で形成されている。光源基板61上には、この他に種々の配線が形成されているが、図19では省略されている。LED60は光源基板61の電極パッド612、613にフリップチップボンディングされている。すなわち、LED60の端子電極601、602と光源基板61の電極パッド612、613を対向させて、半田615を介して接続している。LED60は、p型半導体とn型半導体が接合したものであるが、実際には発光効率を上げるために、さまざまな層が形成されている。 FIG. 19 is a detailed cross-sectional view showing an LED 60, a transparent resin 62, electrodes, and the like. The LED 60 is a blue LED. In FIG. 19, the light source substrate 61 is made of, for example, an epoxy resin. On the light source substrate 61, an electrode pad 612 connected to the anode 601 of the LED 60 and an electrode pad 613 connected to the cathode 602 of the LED 60 are formed of metal. Various other wirings are formed on the light source substrate 61, but they are omitted in FIG. The LED 60 is flip-chip bonded to the electrode pads 612 and 613 of the light source substrate 61. That is, the terminal electrodes 601 and 602 of the LED 60 and the electrode pads 612 and 613 of the light source substrate 61 face each other and are connected via the solder 615. The LED 60 is formed by joining a p-type semiconductor and an n-type semiconductor, but in reality, various layers are formed in order to increase the luminous efficiency.
 LED60は、透明樹脂62で覆われ、保護されている。LEDに電圧を印加すると、p型層とn型層の境界で発光する。光は、上方向のみでなく、横方向にも出射する。この様子を図19において矢印で示す。図19における構成の問題は、横方向に出射した光が隣接するセグメントに入射するということである。したがって、正確なローカルディミングができなくなる。 The LED 60 is covered with a transparent resin 62 and protected. When a voltage is applied to the LED, it emits light at the boundary between the p-type layer and the n-type layer. Light is emitted not only in the upward direction but also in the lateral direction. This situation is indicated by an arrow in FIG. The problem with the configuration in FIG. 19 is that the light emitted laterally is incident on adjacent segments. Therefore, accurate local dimming cannot be performed.
 図20は実施例1における光源部分の断面図である。図20における光源基板61の構成及びLED60の構成は、図19で説明したものと同様である。図20が図19と異なる点は、図20では、LED60全体を覆う透明樹脂は存在しておらず、LED60を覆わないが、光源基板61に形成された電極等を覆う、白色の保護フィルム63が形成されていることである。LED60の発光部分であるp型層とn型層の接合部分は保護フィルム63によって覆われていない。 FIG. 20 is a cross-sectional view of the light source portion in the first embodiment. The configuration of the light source substrate 61 and the configuration of the LED 60 in FIG. 20 are the same as those described in FIG. The difference between FIG. 20 and FIG. 19 is that in FIG. 20, the transparent resin that covers the entire LED 60 does not exist and does not cover the LED 60, but the white protective film 63 that covers the electrodes and the like formed on the light source substrate 61. Is formed. The joint portion between the p-type layer and the n-type layer, which is the light emitting portion of the LED 60, is not covered by the protective film 63.
 したがって、LED60からの光は、直接空間に出射することになる。図20の矢印に示すように、LED60からの光は横方向にも出射するが、この光は、図9に示すように、セグメントの境界に配置された仕切り板70によって反射されるので、隣接するセグメントには入射しない。第1レンズ45や仕切り板70から反射して、下方に向かう光は反射層としての役割を有する白色保護フィルム63によって反射し、再び第1レンズ45側に向かう。このように、図20に示す光源は、LED60の光の利用効率に優れ、かつ、隣接するセグメントに光が漏れ出さない構成となっているので、正確なローカルディミングが可能である。 Therefore, the light from the LED 60 will be emitted directly into the space. As shown by the arrow in FIG. 20, the light from the LED 60 is also emitted in the lateral direction, but this light is reflected by the partition plate 70 arranged at the boundary of the segment as shown in FIG. 9, and is therefore adjacent. It does not enter the segment. The light reflected from the first lens 45 and the partition plate 70 and heading downward is reflected by the white protective film 63 having a role as a reflective layer, and is directed to the first lens 45 side again. As described above, the light source shown in FIG. 20 has excellent light utilization efficiency of the LED 60 and has a configuration in which light does not leak to adjacent segments, so that accurate local dimming is possible.
 以上説明したように、実施例1では、LED60を出射した光は、光源基板の構造及び仕切り板70によって隣接するセグメントへの漏れは抑制できる。さらに、仕切り板70の上に配置した第1レンズ45によって表示パネル方向に収束されるので、隣接セグメントへの光漏れはさらに軽減することが出来る。 As described above, in the first embodiment, the light emitted from the LED 60 can be suppressed from leaking to the adjacent segment by the structure of the light source substrate and the partition plate 70. Further, since the first lens 45 arranged on the partition plate 70 converges in the direction of the display panel, light leakage to the adjacent segment can be further reduced.
 図21は実施例2におけるバックライトの断面図であり、図22は、実施例2で用いる第2レンズ80及び光源であるLED60を含む平面図である。図21において、第1レンズ45からプリズムシート52までの構成は実施例1と同じである。また、光源である青色LED60も実施例1と同じである。実施例2の特徴は、隣接するセグメントへの光漏れを防止するために、仕切り板70ではなく、第2レンズ80を用いていることである。第2レンズ80の断面形状は外側に凸で、双曲線に準じた形状であることが望ましい。 FIG. 21 is a cross-sectional view of the backlight in Example 2, and FIG. 22 is a plan view including the second lens 80 used in Example 2 and the LED 60 as a light source. In FIG. 21, the configuration from the first lens 45 to the prism sheet 52 is the same as that of the first embodiment. Further, the blue LED 60 as a light source is the same as that in the first embodiment. The feature of the second embodiment is that the second lens 80 is used instead of the partition plate 70 in order to prevent light leakage to the adjacent segment. It is desirable that the cross-sectional shape of the second lens 80 is convex outward and conforms to a hyperbola.
 図21において、第2レンズ80の下面には凹部81が形成されており、この凹部81にLED60の先端がはめ込まれる形になっている。図21において、LED60から出た光は第2レンズ80に入射する。ここで、第2レンズ80は、LED60に対して凹レンズを形成している。したがって、LED60から第2レンズ80への光の入射効率を向上させることが出来る。LED60から第2レンズ80に入射した光は一旦広がるが、第2レンズ80の界面において全反射して第1レンズ45の側に向かう。この様子を図21における矢印で示す。したがって、LEDからの光は隣接する画素には漏れない。 In FIG. 21, a recess 81 is formed on the lower surface of the second lens 80, and the tip of the LED 60 is fitted into the recess 81. In FIG. 21, the light emitted from the LED 60 is incident on the second lens 80. Here, the second lens 80 forms a concave lens with respect to the LED 60. Therefore, it is possible to improve the incident efficiency of light from the LED 60 to the second lens 80. The light incident on the second lens 80 from the LED 60 spreads once, but is totally reflected at the interface of the second lens 80 and heads toward the first lens 45. This situation is indicated by an arrow in FIG. Therefore, the light from the LED does not leak to the adjacent pixels.
 図21に示すように、第2レンズ80の断面形状は双曲線に準じた形状になっているが、平面形状は図22Aに示すように円である場合と、図22Bに示すように四角である場合とがある。また、第2レンズ80の下面に形成された凹部81も図22A及び図22Bに示すように平面形状は円である場合と四角である場合とがある。図22A及び図22Bにおいて、セグメント間の境界が点線で示されているが、これは便宜上のものであり、実際に境界があるわけではない。しかし、図4、図6の場合と異なり、LED60からの光は第2レンズ80内に閉じ込められるので、隣接するセグメントに光が漏れだすことはない。なお、第2レンズ80及び凹部81の平面形状は円または四角に限らず、多角形でもよい。 As shown in FIG. 21, the cross-sectional shape of the second lens 80 is a shape according to a hyperbola, but the planar shape is a circle as shown in FIG. 22A and a square shape as shown in FIG. 22B. There are cases. Further, as shown in FIGS. 22A and 22B, the concave portion 81 formed on the lower surface of the second lens 80 may have a circular shape or a square shape. In FIGS. 22A and 22B, the boundaries between the segments are shown by dotted lines, but this is for convenience only and there are no actual boundaries. However, unlike the cases of FIGS. 4 and 6, the light from the LED 60 is confined in the second lens 80, so that the light does not leak to the adjacent segment. The planar shape of the second lens 80 and the recess 81 is not limited to a circle or a square, but may be a polygon.
 図23乃至図26は、第2レンズ80を製造するプロセスを示す断面図である。図23において、ガラス基板500に第2レンズ80を構成することになる感光性樹脂801を塗布し、これを、露光マスク400を用いて露光する。図23における矢印は露光用光を表す。第2レンズ80についても、例えば、アクリル樹脂、シリコーン樹脂、ポリカーボネイト等によるポジ型の感光性樹脂を使用する。 23 to 26 are sectional views showing a process of manufacturing the second lens 80. In FIG. 23, the photosensitive resin 801 that constitutes the second lens 80 is applied to the glass substrate 500, and this is exposed using the exposure mask 400. The arrow in FIG. 23 represents the exposure light. As for the second lens 80, for example, a positive photosensitive resin made of acrylic resin, silicone resin, polycarbonate or the like is used.
 図24は露光マスク400の光透過率を示すグラフである。縦軸が透過率、横軸が位置である。光透過率のプロファイルは、第2レンズ80の断面形状と対称な形となっている。すなわち、ポジ型の感光性樹脂なので、薄くしたい部分に多く露光できるようなプロファイルになっている。 FIG. 24 is a graph showing the light transmittance of the exposure mask 400. The vertical axis is the transmittance and the horizontal axis is the position. The light transmittance profile is symmetrical with the cross-sectional shape of the second lens 80. That is, since it is a positive photosensitive resin, it has a profile that allows a large amount of exposure to a portion to be thinned.
 図25は、現像後の第2レンズ80の形状を示す断面図である。すなわち、ポジ型の感光性材料を使用しているので、第2レンズ80の形状は、図24に示す露光マスクの透過率プロファイルとほぼ対称な形となっている。その後、図26に示すように、ガラス基板500を除去すると、第2レンズ80が完成する。 FIG. 25 is a cross-sectional view showing the shape of the second lens 80 after development. That is, since a positive photosensitive material is used, the shape of the second lens 80 is substantially symmetrical to the transmittance profile of the exposure mask shown in FIG. 24. Then, as shown in FIG. 26, the glass substrate 500 is removed to complete the second lens 80.
 図26に示すように、第2レンズ80は、個々に分離しているわけではなく、口径が大きい部分において連接している。しかし、この連接している部分の板厚は小さいので、第2レンズアレイ80全体としての剛性は高くはない。そこで、第1レンズ45と第2レンズ80を張り合わせた後、光源基板61側と張り合わせるのが合理的である。 As shown in FIG. 26, the second lens 80 is not separated individually, but is connected at a portion having a large aperture. However, since the plate thickness of the connected portion is small, the rigidity of the second lens array 80 as a whole is not high. Therefore, it is rational to attach the first lens 45 and the second lens 80 to each other and then attach them to the light source substrate 61 side.
 図27は、第1レンズ45と第2レンズ80を貼り合わせた構成を第1基板側61側の保護フィルム63の上に配置する状態を示す断面図である。光源基板61に配置したLED60は、第2レンズ80の凹部81に収容されることになる。光源基板61側のその他の構成、及び、LED60の構成は、実施例1の図20で説明したのと同様である。 FIG. 27 is a cross-sectional view showing a state in which the configuration in which the first lens 45 and the second lens 80 are bonded is arranged on the protective film 63 on the first substrate side 61 side. The LED 60 arranged on the light source substrate 61 is housed in the recess 81 of the second lens 80. The other configurations on the light source substrate 61 side and the configurations of the LED 60 are the same as those described with reference to FIG. 20 of the first embodiment.
 このように、実施例2では、樹脂で形成された2つのレンズ45及び80を用いることによって、LED60からの光をレンズ内に閉じこめ、さらに、レンズ効果によって収束された光を色変換シート、拡散シート等で構成される光学シート群に入射させるので、隣接セグメントへの光もれを効果的に防止することが出来る。 As described above, in the second embodiment, by using the two lenses 45 and 80 formed of the resin, the light from the LED 60 is confined in the lens, and the light converged by the lens effect is diffused by the color conversion sheet. Since it is incident on an optical sheet group composed of sheets or the like, it is possible to effectively prevent light leakage to adjacent segments.
 図28は、実施例3によるバックライトの構成を示す断面図である。実施例3の特徴は、実施例2における第1レンズ45と第2レンズ80を一体化して凸レンズ85を形成していることである。凸レンズ85の下面に凹部81を形成して、LED60を収容していることは実施例2と同じである。凸レンズ85の平面形状は、実施例2における図22と同様である。実施例3における動作は実施例2で説明したのと同様である。ただし、実施例3では、実施例2における第1レンズ45と第2レンズ80を一体で形成するので第1レンズ45と第2レンズ80を貼り合わせる工程を省略することが出来る。 FIG. 28 is a cross-sectional view showing the configuration of the backlight according to the third embodiment. The feature of the third embodiment is that the first lens 45 and the second lens 80 in the second embodiment are integrated to form a convex lens 85. It is the same as in Example 2 that the concave portion 81 is formed on the lower surface of the convex lens 85 to accommodate the LED 60. The planar shape of the convex lens 85 is the same as that of FIG. 22 in the second embodiment. The operation in the third embodiment is the same as that described in the second embodiment. However, in the third embodiment, since the first lens 45 and the second lens 80 in the second embodiment are integrally formed, the step of bonding the first lens 45 and the second lens 80 can be omitted.
 図29乃至図33は凸レンズ85を形成するプロセスを示す断面図である。図29は、凸レンズ85に第1レンズ45のレンズ曲面を形成するための下地層510をガラス基板500に形成する。下地層510も樹脂を用いてフォトリソグラフィによって形成することが出来る。つまり、実施例1における第1レンズ45の製造と同様な工程で製造することが出来る。ただし、実施例1の第1レンズとは、曲面が逆である。下地層510は、この上に形成される凸レンズ45を構成する樹脂と離型性のよい材料を使用すれば、繰り返し使用することが出来る。 29 to 33 are cross-sectional views showing the process of forming the convex lens 85. In FIG. 29, the base layer 510 for forming the lens curved surface of the first lens 45 on the convex lens 85 is formed on the glass substrate 500. The base layer 510 can also be formed by photolithography using a resin. That is, it can be manufactured in the same process as the manufacturing of the first lens 45 in the first embodiment. However, the curved surface is opposite to that of the first lens of the first embodiment. The base layer 510 can be used repeatedly if the resin constituting the convex lens 45 formed on the base layer 510 and a material having good releasability are used.
 図30は、下地層510の上に凸レンズ85の材料となる樹脂801を塗布した状態を示す断面図である。図31は、露光マスク400を用いて凸レンズ85の材料となる樹脂801を露光している状態を示す断面図である。図31において、矢印は、露光する光を表す。露光マスク400の光透過率は、実施例2における図24と同様である。 FIG. 30 is a cross-sectional view showing a state in which the resin 801 which is the material of the convex lens 85 is applied on the base layer 510. FIG. 31 is a cross-sectional view showing a state in which the resin 801 which is the material of the convex lens 85 is exposed by using the exposure mask 400. In FIG. 31, the arrow represents the light to be exposed. The light transmittance of the exposure mask 400 is the same as that of FIG. 24 in Example 2.
 図32は、現像後の凸レンズ85の形状を示す断面図である。現像後の凸レンズ85の形状は、実施例2における第1レンズ45と第2レンズ80を組み合わせたものと同様である。その後、図33に示すように、ガラス基板500とその上に形成された下地層510を凸レンズ85から分離する。下地層510は、凸レンズ85と離型性のよい材料を用いれば、ガラス基板500と下地層510の組み合わせを繰り返し使用することが出来る。 FIG. 32 is a cross-sectional view showing the shape of the convex lens 85 after development. The shape of the convex lens 85 after development is the same as that of the combination of the first lens 45 and the second lens 80 in the second embodiment. After that, as shown in FIG. 33, the glass substrate 500 and the base layer 510 formed on the glass substrate 500 are separated from the convex lens 85. If the convex lens 85 and a material having good releasability are used for the base layer 510, the combination of the glass substrate 500 and the base layer 510 can be repeatedly used.
 凸レンズ85とLED60等が形成された光源基板81側と組み合わせるのは、実施例2における図27と同様である。このように、実施例3では、実施例2における第1レンズ45と第2レンズ80を同時に形成するので、製造プロセスを簡略化できる。実施例3の効果は実施例2と同様である。 Combining the convex lens 85 with the light source substrate 81 on which the LED 60 and the like are formed is the same as in FIG. 27 in the second embodiment. As described above, in the third embodiment, the first lens 45 and the second lens 80 in the second embodiment are formed at the same time, so that the manufacturing process can be simplified. The effect of Example 3 is the same as that of Example 2.
 図34は、実施例4のバックライトの断面形状である。図34において、セグメント間を仕切る区画樹脂90に形成されたスルーホールの内壁には反射層91が形成され、LED60からの光が隣接するセグメントに漏れるのを確実に防止する。反射層91の曲面は双曲線に順じた形状となっており、反射した光を効率よく、第1レンズ45側に向ける。言い換えると、区画樹脂90には、内壁が双曲線に準じた形状のスルーホールが形成されおり、その結果、効率のよい反射層91が形成されている。 FIG. 34 is a cross-sectional shape of the backlight of the fourth embodiment. In FIG. 34, a reflective layer 91 is formed on the inner wall of the through hole formed in the partition resin 90 that partitions the segments, thereby reliably preventing the light from the LED 60 from leaking to the adjacent segment. The curved surface of the reflective layer 91 has a shape conforming to a hyperbola, and the reflected light is efficiently directed to the first lens 45 side. In other words, the partition resin 90 is formed with through holes having an inner wall having a shape conforming to a hyperbola, and as a result, an efficient reflective layer 91 is formed.
 反射層91で反射して、第1レンズ45に入射した光は、第1レンズ45によって収束され、色変換シート等の光学シート群に入射する。したがって、光学シート群において、隣接するセグメントへの光漏れはより抑制されることになる。図34において、第1レンズ45から上側のプリズムシート52までは実施例1の図9と同じである。 The light reflected by the reflective layer 91 and incident on the first lens 45 is converged by the first lens 45 and incident on an optical sheet group such as a color conversion sheet. Therefore, in the optical sheet group, light leakage to adjacent segments is further suppressed. In FIG. 34, from the first lens 45 to the upper prism sheet 52 is the same as in FIG. 9 of the first embodiment.
 図35A及び図35Bは反射層91及び区画樹脂90を示す平面図である。図35Aは反射層91の平面図が円の場合であり、図35Bは反射層91の平面図が四角の場合である。反射層91は、区画樹脂90に形成された、スルーホールの内壁に、蒸着、あるいはスパッタリング等によって金属等の反射率の大きい材料をコーティングしたものである。金属としては、例えば、Alあるいはその合金が好適である。区画樹脂90に形成されたスルーホールの平面形状は図35Aでは円であり、図35Bでは四角である。図35A及び図35Bに示す点線は、便宜上セグメントの境界を示すものであるが、実際にこのような線が存在しているわけではない。しかし、LED60からの光は、反射層91を有するスルーホール内に閉じ込められるので隣接するセグメントに光が漏れだすことはない。 35A and 35B are plan views showing the reflective layer 91 and the partition resin 90. FIG. 35A is a case where the plan view of the reflective layer 91 is a circle, and FIG. 35B is a case where the plan view of the reflective layer 91 is a square. The reflective layer 91 is formed by coating the inner wall of the through hole formed in the partition resin 90 with a material having a high reflectance such as metal by vapor deposition, sputtering, or the like. As the metal, for example, Al or an alloy thereof is suitable. The planar shape of the through hole formed in the partition resin 90 is a circle in FIG. 35A and a square in FIG. 35B. The dotted lines shown in FIGS. 35A and 35B indicate the boundaries of the segments for convenience, but such lines do not actually exist. However, since the light from the LED 60 is confined in the through hole having the reflective layer 91, the light does not leak to the adjacent segment.
 図36乃至図39は、実施例4における反射層91を形成するプロセスを示す断面図である。図36は、ガラス基板500の上に塗布された区画樹脂90の材料901に対して、露光マスク400を介して露光している状態を示す断面図である。図36における矢印は露光用の光を示す。区画樹脂90の材料901も例えば、ポジ型材料を用いる。露光マスク400の光透過率のプロファイルは、通常のスルーホールを形成するパターンを応用すればよい。 36 to 39 are cross-sectional views showing the process of forming the reflective layer 91 in the fourth embodiment. FIG. 36 is a cross-sectional view showing a state in which the material 901 of the partition resin 90 applied on the glass substrate 500 is exposed through the exposure mask 400. Arrows in FIG. 36 indicate light for exposure. As the material 901 of the partition resin 90, for example, a positive type material is used. As the light transmittance profile of the exposure mask 400, a pattern forming a normal through hole may be applied.
 図37は、区画樹脂90の材料901にスルーホール92を形成して区画樹脂90を形成した状態を示す断面図である。図38は、反射層91を形成するために、区画樹脂90のスルーホール92の部分に反射材料である金属を、蒸着マスク450を介して、蒸着あるいはスパッタリングで形成している状態を示す断面図である。図37における矢印は蒸着される原子の向きを示す。蒸着マスク450は、区画樹脂90の上面に反射層91が付かないようにするためである。しかし、区画樹脂90の上面に反射層91が形成されても問題なければ蒸着マスク450は省略することが出来る。 FIG. 37 is a cross-sectional view showing a state in which a through hole 92 is formed in the material 901 of the partition resin 90 to form the partition resin 90. FIG. 38 is a cross-sectional view showing a state in which a metal as a reflective material is formed in a portion of a through hole 92 of a partition resin 90 by vapor deposition or sputtering in order to form a reflective layer 91 via a vapor deposition mask 450. Is. Arrows in FIG. 37 indicate the orientation of the deposited atoms. The vapor deposition mask 450 is for preventing the reflective layer 91 from being attached to the upper surface of the partition resin 90. However, if there is no problem even if the reflective layer 91 is formed on the upper surface of the partition resin 90, the vapor deposition mask 450 can be omitted.
 その後、図39に示すように、ガラス基板500を区画樹脂90から除去すれば、反射層91が形成された区画樹脂90が完成する。ガラス基板500に付着した反射層材料91は、エッチングによって除去すれば、ガラス基板500は繰り返し使用することが出来る。 After that, as shown in FIG. 39, if the glass substrate 500 is removed from the compartment resin 90, the compartment resin 90 on which the reflective layer 91 is formed is completed. If the reflective layer material 91 adhering to the glass substrate 500 is removed by etching, the glass substrate 500 can be used repeatedly.
 図40は、反射層91が形成された区画樹脂90を別途形成した第1レンズ45と貼り合わせたものを、LED60等を有する光源基板61と組み合わせている状態を示す断面図である。LED60は区画樹脂90に形成されたスルーホール92の小孔にはめ込まれることになる。図40における光源基板61、LED60等の構造は実施例1で説明したのと同様である。 FIG. 40 is a cross-sectional view showing a state in which a partition resin 90 on which a reflective layer 91 is formed is bonded to a first lens 45 separately formed, and a light source substrate 61 having an LED 60 or the like is combined. The LED 60 will be fitted into a small hole of the through hole 92 formed in the partition resin 90. The structures of the light source substrate 61, the LED 60, and the like in FIG. 40 are the same as those described in the first embodiment.
 このように、実施例4では、反射層91を用いてLED60からの光が他のセグメントに漏れるのを防止している。また、第1レンズ45によって反射層91からの光を収束するので、第1レンズ45よりも上側に配置している光学シート群から隣接するセグメントへの光の拡散も軽減することが出来る。 As described above, in the fourth embodiment, the reflective layer 91 is used to prevent the light from the LED 60 from leaking to other segments. Further, since the light from the reflective layer 91 is converged by the first lens 45, it is possible to reduce the diffusion of light from the optical sheet group arranged above the first lens 45 to the adjacent segment.
 図41は、実施例5を示す断面図であり、図42は、実施例5における区画樹脂90及びLED60を示す平面図である。実施例5は実施例4の変形例であり、区画樹脂90に形成されたスルーホール92の内壁に金属による反射層は形成されていない。その代わり、区画樹脂90自体を反射率の高い樹脂で形成する。例えば、白色PET、ポリエステル等の白色樹脂は、高い反射率を有する。 FIG. 41 is a cross-sectional view showing the fifth embodiment, and FIG. 42 is a plan view showing the partition resin 90 and the LED 60 in the fifth embodiment. Example 5 is a modification of Example 4, and the reflective layer made of metal is not formed on the inner wall of the through hole 92 formed in the partition resin 90. Instead, the partition resin 90 itself is formed of a resin having a high reflectance. For example, white resins such as white PET and polyester have high reflectance.
 図41に示すように、区画樹脂90のスルーホール92の内壁の断面形状は双曲線に準じた曲線になっているので、LED60からの多くの光はスルーホール92の側壁で反射し、かつ、平行光に近くなって第1レンズ45に入射する。図41の第1レンズ45から上の構成は、実施例1あるいは実施例4と同じである。 As shown in FIG. 41, since the cross-sectional shape of the inner wall of the through hole 92 of the partition resin 90 is a curve conforming to a hyperbola, much light from the LED 60 is reflected by the side wall of the through hole 92 and is parallel. It becomes close to light and is incident on the first lens 45. The configuration above the first lens 45 in FIG. 41 is the same as that of the first embodiment or the fourth embodiment.
 図42は、区画樹脂90及びスルーホール92の形状を示す平面図である。図42に示すようにスルーホール92の平面形状は円である。スルーホール92の小孔の部分にLED60が配置している。図42に示す点線は、便宜上セグメントの境界を示すものであるが、実際にこのような線が存在しているわけではない。しかし、LED60からの光は、スルーホール92内に閉じ込められるので隣接するセグメントに光が漏れだすことはない。 FIG. 42 is a plan view showing the shapes of the partition resin 90 and the through hole 92. As shown in FIG. 42, the planar shape of the through hole 92 is a circle. The LED 60 is arranged in the small hole portion of the through hole 92. The dotted line shown in FIG. 42 indicates the boundary of the segment for convenience, but such a line does not actually exist. However, since the light from the LED 60 is confined in the through hole 92, the light does not leak to the adjacent segment.
 図41の区画樹脂90のスルーホール92の形成方法は、実施例4において説明したのと同じである。すなわち、実施例4における製造方法において、反射層91のための金属膜の形成が省略された形となっている。したがって、実施例5では、実施例4の場合よりもバックライトの製造コストを低減させることが出来る。実施例5の作用は、実施例5においては、LED60からの光は、反射樹脂で形成される区画樹脂90のスルーホール92の内壁で反射して第1レンズ45に向かう他は、実施例4と同じである。 The method for forming the through hole 92 of the compartment resin 90 in FIG. 41 is the same as that described in the fourth embodiment. That is, in the manufacturing method of Example 4, the formation of the metal film for the reflective layer 91 is omitted. Therefore, in the fifth embodiment, the manufacturing cost of the backlight can be reduced as compared with the case of the fourth embodiment. The operation of Example 5 is that in Example 5, the light from the LED 60 is reflected by the inner wall of the through hole 92 of the partition resin 90 formed of the reflective resin and directed toward the first lens 45, except that the light is directed to the first lens 45. Is the same as.
 なお、図42に示すスルーホール92の平面形状は円であるが、本実施例は、これに限らず、スルーホール92の平面形状は4角でも多角形でもよい。 Although the planar shape of the through hole 92 shown in FIG. 42 is a circle, the present embodiment is not limited to this, and the planar shape of the through hole 92 may be a square or a polygon.
 実施例1乃至5は光源に青色LED60を使用した場合である。しかし、本発明は、光源に白色LED65を使用した場合も同様に適用することが出来る。図44は実施例6の1例を示す断面図である。図44が実施例1の図9と異なる点は、光源が白色LED65であり、光学シート群が色変換シートを含まない点である。すなわち、光源がもともと白色なので、色変換を行う必要がない。 Examples 1 to 5 are cases where a blue LED 60 is used as a light source. However, the present invention can be similarly applied when the white LED 65 is used as the light source. FIG. 44 is a cross-sectional view showing an example of the sixth embodiment. FIG. 44 is different from FIG. 9 of the first embodiment in that the light source is a white LED 65 and the optical sheet group does not include a color conversion sheet. That is, since the light source is originally white, there is no need to perform color conversion.
 図43は、図44における仕切り板70と光源である白色LED65を含む平面図である。図43の構成は、光源が白色LED65である他は、実施例1の図8と同じである。 FIG. 43 is a plan view including the partition plate 70 in FIG. 44 and the white LED 65 as a light source. The configuration of FIG. 43 is the same as that of FIG. 8 of the first embodiment except that the light source is the white LED 65.
 図46は、実施例6で用いる白色LED65及びその周辺の構成を示す断面図である。図46の構造は、LEDが白色LED65である他は、図20と同じである。図45は、図6及び図7に示す比較例2に使用される白色LED65及びおよびその周辺の構成である。図45では、白色LED65全体を透明樹脂62で覆っている。図19で説明したように、図45の構造では、透明樹脂62を伝って隣接す画素に光が漏れるという問題が生ずる。その点、図46の構成は、図20で説明したように、透明樹脂を使用していないので、このような問題は生じない。 FIG. 46 is a cross-sectional view showing the configuration of the white LED 65 used in the sixth embodiment and its surroundings. The structure of FIG. 46 is the same as that of FIG. 20, except that the LED is a white LED 65. FIG. 45 is a configuration of the white LED 65 and its surroundings used in Comparative Example 2 shown in FIGS. 6 and 7. In FIG. 45, the entire white LED 65 is covered with the transparent resin 62. As described with reference to FIG. 19, in the structure of FIG. 45, there arises a problem that light leaks to adjacent pixels through the transparent resin 62. In that respect, since the configuration of FIG. 46 does not use a transparent resin as described with reference to FIG. 20, such a problem does not occur.
 図43及び図44は、実施例1の構成について白色LED65を使用した場合の例であるが、白色LED65は、実施例2乃至5においても同様に適用することが出来る。 43 and 44 are examples of the case where the white LED 65 is used for the configuration of the first embodiment, but the white LED 65 can be similarly applied to the second to fifth embodiments.
 以上の実施例では、青色LED60あるいは白色LED65は1セグメント当たり1個であるが、複数存在する場合にも、第2レンズ、区画樹脂、あるいは反射層等を修正することによって本発明を適用することが出来る。 In the above embodiment, the number of blue LEDs 60 or white LEDs 65 is one per segment, but even when a plurality of blue LEDs 60 or white LEDs 65 are present, the present invention can be applied by modifying the second lens, the partition resin, the reflective layer, or the like. Can be done.
 また、第1レンズの代わりに、導光板を使用した場合にも、第2レンズ、区画樹脂、反射層、あるいは、光源基板等の構成を適用することが出来、また、効果を得ることが出来る。 Further, even when a light guide plate is used instead of the first lens, the configuration of the second lens, the partition resin, the reflective layer, the light source substrate, or the like can be applied, and the effect can be obtained. ..
 10…表示パネル、 11…走査線、 12…映像信号線、 13…画素、 14…表示領域、 15…端子領域、 16…シール材、 17…フレキシブル配線基板、 20…バックライト、 30…光源、 40…導光板、 45…第1レンズ、 50…光学シート群、 60…青色LED、 61…光源基板、 62…透明樹脂、 63…白色保護フィルム、 65…白色LED、 70…仕切り板、 80…第2レンズ、 81…凹部、 90…区画樹脂、 91…反射層、 92…スルーホール、 100…TFT基板、 101…下偏光板、 200…対向基板、 201…上偏光板、 300…液晶、 400…露光マスク、 451…第1レンズ用樹脂、 450…蒸着マスク、 500…ガラス基板、 510…下地層、 601…端子電極、 602…端子電極、 612…電極パッド、 613…電極パッド、 615…半田、 801…第2レンズ用樹脂、 901…区画樹脂用材料 10 ... Display panel, 11 ... Scanning line, 12 ... Video signal line, 13 ... Pixel, 14 ... Display area, 15 ... Terminal area, 16 ... Sealing material, 17 ... Flexible wiring board, 20 ... Backlight, 30 ... Light source, 40 ... light guide plate, 45 ... first lens, 50 ... optical sheet group, 60 ... blue LED, 61 ... light source substrate, 62 ... transparent resin, 63 ... white protective film, 65 ... white LED, 70 ... partition plate, 80 ... 2nd lens, 81 ... concave, 90 ... partition resin, 91 ... reflective layer, 92 ... through hole, 100 ... TFT substrate, 101 ... lower polarizing plate, 200 ... opposed substrate, 201 ... upper polarizing plate, 300 ... liquid crystal, 400 ... exposure mask, 451 ... resin for first lens, 450 ... vapor deposition mask, 500 ... glass substrate, 510 ... base layer, 601 ... terminal electrode, 602 ... terminal electrode, 612 ... electrode pad, 613 ... electrode pad, 615 ... solder , 801 ... Resin for the second lens, 901 ... Material for compartment resin

Claims (20)

  1.  表示パネル及びバックライトを有する表示装置であって、
     前記バックライトは光源と光学シート群を有し、
     前記光源は、光源基板と前記光源基板に配置したLEDを有し、
     前記光源は、平面で視てセグメントに分割され、
     前記セグメントには、少なくとも1個の前記LEDが存在し、
     前記光源基板は、前記LEDを除いて保護フィルムによって覆われ、
     前記セグメントは、樹脂で形成された仕切り板によって壁状に仕切られており、
     前記仕切り板は、前記保護フィルムの上に載置され、
     前記仕切り板と前記光学シート群の間には凸レンズが形成されていることを特徴とする表示装置。
    A display device having a display panel and a backlight.
    The backlight has a light source and a group of optical sheets.
    The light source has a light source substrate and LEDs arranged on the light source substrate.
    The light source is divided into segments when viewed in a plane.
    At least one LED is present in the segment.
    The light source substrate is covered with a protective film except for the LED, and the light source substrate is covered with a protective film.
    The segment is partitioned in a wall shape by a partition plate made of resin.
    The partition plate is placed on the protective film, and the partition plate is placed on the protective film.
    A display device characterized in that a convex lens is formed between the partition plate and the optical sheet group.
  2.  前記LEDの発光部分は、前記保護フィルムの上面よりも、前記光学シート群側に存在していることを特徴とする請求項1に記載の表示装置。 The display device according to claim 1, wherein the light emitting portion of the LED is located closer to the optical sheet group than the upper surface of the protective film.
  3.  前記仕切り板で囲まれた領域は空間であることを特徴とする請求項1に記載の表示装置。 The display device according to claim 1, wherein the area surrounded by the partition plate is a space.
  4.  前記仕切り板は白色PET樹脂で形成されていることを特徴とする請求項1に記載の表示装置。 The display device according to claim 1, wherein the partition plate is made of white PET resin.
  5.  前記保護フィルムは、白色の樹脂で形成されていることを特徴とする請求項1に記載の表示装置。 The display device according to claim 1, wherein the protective film is made of a white resin.
  6.  前記LEDは、青色LEDであり、前記光学シート群は色変換シートを含むことを特徴とする請求項1に記載の表示装置。 The display device according to claim 1, wherein the LED is a blue LED, and the optical sheet group includes a color conversion sheet.
  7.  表示パネル及びバックライトを有する表示装置であって、
     前記バックライトは光源と光学シート群を有し、
     前記光源は、光源基板と前記光源基板に配置したLEDを有し、
     前記光源は、平面で視てセグメントに分割され、
     前記セグメントには、少なくとも1個の前記LEDが存在し、
     前記光源基板は、前記LEDを除いて保護フィルムによって覆われ、
     前記セグメントには、前記保護フィルムの上に、かつ、前記LEDを囲むように第2レンズが形成され、
     前記第2レンズの口径は、前記LED側よりも前記光学シート群側において大きく、
     前記第2レンズと前記光学シート群の間には、第1レンズが形成されていることを特徴とする表示装置。
    A display device having a display panel and a backlight.
    The backlight has a light source and a group of optical sheets.
    The light source has a light source substrate and LEDs arranged on the light source substrate.
    The light source is divided into segments when viewed in a plane.
    At least one LED is present in the segment.
    The light source substrate is covered with a protective film except for the LED, and the light source substrate is covered with a protective film.
    In the segment, a second lens is formed on the protective film and so as to surround the LED.
    The aperture of the second lens is larger on the optical sheet group side than on the LED side.
    A display device characterized in that a first lens is formed between the second lens and the optical sheet group.
  8.  前記第2レンズの外側の断面形状は、外側に凸であることを特徴とする請求項7に記載の表示装置。 The display device according to claim 7, wherein the outer cross-sectional shape of the second lens is convex outward.
  9.  前記第2レンズは平面で視て円であることを特徴とする請求項7に記載の表示装置。 The display device according to claim 7, wherein the second lens is a circle when viewed in a plane.
  10.  前記第2レンズの上面は平面であり、前記平面の上に前記第1レンズが配置していることを特徴とする請求項7に記載の表示装置。 The display device according to claim 7, wherein the upper surface of the second lens is a flat surface, and the first lens is arranged on the flat surface.
  11.  前記第2レンズの前記LEDを囲む曲面は凹レンズを形成していることを特徴とする請求項7に記載の表示装置。 The display device according to claim 7, wherein the curved surface of the second lens surrounding the LED forms a concave lens.
  12.  前記第1レンズと前記第2レンズは一体であることを特徴とする請求項7に記載の表示装置。 The display device according to claim 7, wherein the first lens and the second lens are integrated.
  13.  前記LEDの発光部分は、前記保護フィルムの上面よりも、前記光学シート群側に存在していることを特徴とする請求項7に記載の表示装置。 The display device according to claim 7, wherein the light emitting portion of the LED is located closer to the optical sheet group than the upper surface of the protective film.
  14.  前記保護フィルムは、白色の樹脂で形成されていることを特徴とする請求項1に記載の表示装置。 The display device according to claim 1, wherein the protective film is made of a white resin.
  15.  表示パネル及びバックライトを有する表示装置であって、
     前記バックライトは光源と光学シート群を有し、
     前記光源は、光源基板と前記光源基板に配置したLEDを有し、
     前記光源は、平面で視てセグメントに分割され、
     前記セグメントには、少なくとも1個の前記LEDが存在し、
     前記光源基板は、前記LEDを除いて保護フィルムによって覆われ、
     前記セグメントは、区画樹脂によって区画され、
     前記区画樹脂にはスルーホールが形成され、
     前記スルーホールの断面形状は外側に凸な曲面であり、
     平面で視て、前記スルーホールの径は、前記光学シート群側において、光源基板側よりも大きく、
     前記区画樹脂と前記光学シート群の間には凸レンズが形成されていることを特徴とする表示装置。
    A display device having a display panel and a backlight.
    The backlight has a light source and a group of optical sheets.
    The light source has a light source substrate and LEDs arranged on the light source substrate.
    The light source is divided into segments when viewed in a plane.
    At least one LED is present in the segment.
    The light source substrate is covered with a protective film except for the LED, and the light source substrate is covered with a protective film.
    The segments are partitioned by a compartment resin and
    Through holes are formed in the partition resin, and through holes are formed.
    The cross-sectional shape of the through hole is an outwardly convex curved surface.
    When viewed in a plane, the diameter of the through hole is larger on the optical sheet group side than on the light source substrate side.
    A display device characterized in that a convex lens is formed between the partition resin and the optical sheet group.
  16.  平面で視て前記スルーホールの形状は円であることを特徴とする請求項15に記載の表示装置。 The display device according to claim 15, wherein the shape of the through hole is a circle when viewed in a plane.
  17.  前記区画樹脂は、不透明の白色樹脂で形成されていることを特徴とする請求項15に記載の表示装置。 The display device according to claim 15, wherein the compartment resin is made of an opaque white resin.
  18.  前記スルーホールの内壁には金属または合金による反射層が形成されていることを特徴とする請求項17に記載の表示装置。 The display device according to claim 17, wherein a reflective layer made of metal or alloy is formed on the inner wall of the through hole.
  19.  前記スルーホールと前記凸レンズが対応していることを特徴とする請求項15に記載の表示装置。 The display device according to claim 15, wherein the through hole and the convex lens correspond to each other.
  20.  前記表示パネルは液晶表示パネルであることを特徴とする請求項1乃至19のいずれか1項に記載の表示装置。 The display device according to any one of claims 1 to 19, wherein the display panel is a liquid crystal display panel.
PCT/JP2021/042655 2021-01-08 2021-11-19 Display device WO2022149359A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021001965A JP2024033019A (en) 2021-01-08 2021-01-08 display device
JP2021-001965 2021-01-08

Publications (1)

Publication Number Publication Date
WO2022149359A1 true WO2022149359A1 (en) 2022-07-14

Family

ID=82357339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042655 WO2022149359A1 (en) 2021-01-08 2021-11-19 Display device

Country Status (2)

Country Link
JP (1) JP2024033019A (en)
WO (1) WO2022149359A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115291432A (en) * 2022-08-17 2022-11-04 惠科股份有限公司 Backlight module and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176437A (en) * 2008-01-21 2009-08-06 Toppan Printing Co Ltd Light source unit, backlight unit, and display
JP2010092672A (en) * 2008-10-06 2010-04-22 Harison Toshiba Lighting Corp Backlight device, and display device
WO2017199642A1 (en) * 2016-05-19 2017-11-23 シャープ株式会社 Backlight device and display device using same
JP2020042965A (en) * 2018-09-10 2020-03-19 三菱電機株式会社 Liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176437A (en) * 2008-01-21 2009-08-06 Toppan Printing Co Ltd Light source unit, backlight unit, and display
JP2010092672A (en) * 2008-10-06 2010-04-22 Harison Toshiba Lighting Corp Backlight device, and display device
WO2017199642A1 (en) * 2016-05-19 2017-11-23 シャープ株式会社 Backlight device and display device using same
JP2020042965A (en) * 2018-09-10 2020-03-19 三菱電機株式会社 Liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115291432A (en) * 2022-08-17 2022-11-04 惠科股份有限公司 Backlight module and display device

Also Published As

Publication number Publication date
JP2024033019A (en) 2024-03-13

Similar Documents

Publication Publication Date Title
CN110491909B (en) Display panel
CN108630103B (en) Display device
US11195970B2 (en) Light emitting diode panel and tiling display apparatus
US7474475B2 (en) Optical lens, optical package having the same, backlight assembly having the same, display device having the same, and method thereof
US11231615B2 (en) Backlight unit and display device including the same
US10948645B2 (en) Backlight unit with light-modifying portion and display including the same
JP4160481B2 (en) Planar light source device and display device
KR101511550B1 (en) liquid crystal display device
US8823902B2 (en) Liquid crystal display device
US11022841B2 (en) Backlight unit and display device
WO2022149359A1 (en) Display device
US7989829B2 (en) Light emitting diode backlight module and liquid crystal display
CN110518149A (en) Display device and display panel
WO2019012793A1 (en) Light emitting device, display device, and illuminating device
KR101769933B1 (en) Backlight Unit And Display Apparatus Comprising Thereof
WO2022097339A1 (en) Display device
US10454004B2 (en) Light source module, backlight unit and liquid crystal display device including the same
US11644607B2 (en) Lighting device and display device
KR20150125120A (en) Display device and the fabrication method of the same
CN113888956A (en) Backlight module and display device
US11852857B2 (en) Display device
US20150160514A1 (en) Backlight assembly and display device having the same
KR102582503B1 (en) Liquid crystal display device
JP2006184350A (en) Display module
US20230375876A1 (en) Display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP