WO2022149331A1 - Frame-retardant fabric containing infrared absorbent and textile product of same - Google Patents

Frame-retardant fabric containing infrared absorbent and textile product of same Download PDF

Info

Publication number
WO2022149331A1
WO2022149331A1 PCT/JP2021/038775 JP2021038775W WO2022149331A1 WO 2022149331 A1 WO2022149331 A1 WO 2022149331A1 JP 2021038775 W JP2021038775 W JP 2021038775W WO 2022149331 A1 WO2022149331 A1 WO 2022149331A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
weight
fiber
retardant fabric
fabric
Prior art date
Application number
PCT/JP2021/038775
Other languages
French (fr)
Japanese (ja)
Inventor
内堀恵太
大野重樹
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2022149331A1 publication Critical patent/WO2022149331A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/54Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/513Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads heat-resistant or fireproof
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/52Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads thermal insulating, e.g. heating or cooling
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes

Definitions

  • the present invention relates to a flame-retardant fabric containing an infrared absorber and a textile product thereof.
  • Patent Document 1 proposes a heat-shielding fiber fabric in which a resin layer having a conductive metal oxide is applied to the surface of the fabric.
  • a resin layer having a conductive metal oxide is applied to the surface of the fabric.
  • Patent Document 1 by using a conductive metal oxide as an infrared absorber, the transmission of infrared rays is blocked and the temperature of the cloth itself rises, but the temperature rise on the back surface side of the cloth having a resin layer is suppressed. It is possible to block heat rays from the sun during the daytime in the summer.
  • the heat ray-blocking fiber fabric described in Patent Document 1 can obtain heat-shielding property, its flame retardancy has not been investigated, and consideration is given to the fact that it is used at a distance close to the human body such as an indoor interior or a tent. Then, there remained a problem from the viewpoint of safety. Further, since the resin layer containing the metal oxide is laminated on the cloth, the washing durability and the texture may be deteriorated. On the other hand, carbon black is well known as an infrared absorber, but when carbon black is kneaded into the fiber, the whiteness of the fiber is lowered and the color development property when the fabric containing the fiber is dyed is inferior. There was a problem.
  • the present invention provides a flame-retardant fabric having excellent heat-shielding, flame-retardant and color-developing properties, and a textile product using the same.
  • the present invention is a flame-retardant fabric in one or more embodiments, has a limiting oxygen index of 26 or more, and has an infrared absorber of 1.0% by weight or more and 20% by weight based on the total weight of the flame-retardant fabric. It is said that the infrared absorber has a transmittance of less than 11%, the infrared absorber is contained inside the fiber constituting the flame-retardant fabric, and the infrared absorber does not contain carbon black. It relates to a characteristic flame-retardant fabric.
  • the present invention relates to a textile product containing the flame-retardant fabric in one or more embodiments.
  • the present invention it is possible to provide a flame-retardant fabric having excellent heat-shielding property, flame-retardant property and color-developing property, and a textile product using the same.
  • the fabric contain an infrared absorber in a specific amount excluding carbon black and set the transmittance of near-infrared rays to less than 11%, thereby improving the heat-shielding property of the fabric.
  • the infrared absorber contained in the fabric absorbs near-infrared rays and converts them into heat, so that the temperature is lowered at a position away from the back surface of the surface in the infrared incident direction. It is thought that it can be kept.
  • the infrared absorber is contained inside the fibers constituting the fabric, the texture is better and the washing durability is higher than that in the case where the infrared absorber is adhered to the fiber surface. Further, since the cloth does not use a dark infrared ray absorber such as carbon black, the whiteness of the cloth does not decrease and the color development property at the time of dyeing becomes good. Further, since the fabric has a critical oxygen concentration of 26 or more and is highly flame-retardant, it is possible to expand the range in which it can be developed as a textile product from the viewpoint of safety.
  • the transmittance means the spectral transmittance (%) of the cloth having a wavelength of 250 to 2500 nm by a spectrophotometer, and the near-infrared transmittance means the average value of the transmittances having a wavelength of 780 to 2500 nm.
  • the flame-retardant fabric has a transmittance of less than 11% for near-infrared rays, and when it is 11% or more, it is not preferable from the viewpoint of heat shielding properties, and the near-infrared rays of the fabric irradiate the fabric. It may be difficult to sufficiently suppress the temperature rise on the back surface side of the surface.
  • the numerical range indicated by “... to " includes both ends values as in the numerical range indicated by "... or more ... or less”.
  • the lower limit of the transmittance of near-infrared rays of the flame-retardant fabric is not particularly limited, but may be 4% or more from the viewpoint of easily improving the heat-shielding property, for example.
  • the transmittance of near-infrared rays of the flame-retardant fabric is preferably 4% or more and less than 11%, and more preferably 4.2% or more and 10.9% or less. , 4.5% or more and 10.5% or less, more preferably 5% or more and 10% or less, and even more preferably 5.2% or more and 9% or less. It is particularly preferable that it is 5% or more and 8% or less.
  • the heat shield rate is such that the distance between the light source and the cloth is 50 cm, the front surface of the cloth is irradiated with the light source, and the black body at a position 10 cm away from the back surface of the cloth is the black body with and without the cloth.
  • the temperature of is measured and calculated by the following formula (1).
  • Heat shield rate (%) (AB) / A ⁇ 100
  • the heat shield rate of the flame-retardant fabric is preferably 45.0% or more.
  • the heat shield rate is less than 45.0%, the heat shield becomes insufficient and the temperature of the fabric increases due to the heat, and the temperature rise becomes large even at a position away from the fabric, which is not preferable.
  • the upper limit of the heat shield rate of the flame-retardant fabric is not particularly limited, but may be 55% or less, for example, from the viewpoint of easily suppressing the permeability. In one or more embodiments of the present invention, the heat shielding rate of the flame-retardant fabric is preferably 45.0% or more and 55% or less.
  • the infrared absorber is contained in an amount of 1.0% by weight or more and 20% by weight or less based on the total weight of the fabric. As a result, it is possible to obtain a fabric having high infrared absorption ability, low average transmittance, and heat shielding performance. From the viewpoint of improving the infrared absorbing ability, it is more preferable to contain the infrared absorber in the fabric in an amount of 1.5% by weight or more and 19% by weight or less. From the viewpoint of dyeability, the infrared absorber preferably contains 1.8% by weight or more and 18% by weight or less, more preferably 2.0% by weight or more and 17% by weight or less, and further preferably 3.0% by weight or more and 16% by weight.
  • the infrared absorber is contained inside the fibers constituting the fabric, preferably uniformly dispersed inside the fibers, the texture is compared with the case where the infrared absorber is adhered to the fiber surface. Is good, and the washing durability is also high.
  • the infrared absorber may be any as long as it has an effect of absorbing near infrared rays except carbon black, and is not particularly limited. For example, it is preferable to have an absorption peak in the wavelength region of 750 to 2500 nm. Specific examples thereof include metal oxides, and more specifically, antimony-doped tin oxide, indium tin oxide, niob-doped tin oxide, phosphorus-doped tin oxide, fluorine-doped tin oxide, and antimony-doped supported on a titanium oxide substrate.
  • Examples thereof include tin oxide, iron-doped titanium oxide, carbon-doped titanium oxide, fluorine-doped titanium oxide, nitrogen-doped titanium oxide, aluminum-doped zinc oxide, and antimony-doped zinc oxide.
  • Indium tin oxide includes indium-doped tin oxide and tin-doped indium oxide.
  • the infrared absorber is preferably a tin oxide-based compound, and antimony-doped tin oxide, indium tin oxide, niobium-doped tin oxide, phosphorus-doped tin oxide, fluorine-doped tin oxide, and titanium oxide.
  • the substrate It is more preferably one or more selected from the group consisting of antimony-doped tin oxide carried on the substrate, and one or more selected from the group consisting of antimony-doped tin oxide and antimony-doped tin oxide supported on the titanium oxide substrate. It is even more preferable, and it is even more preferable that the antimony-doped tin oxide is carried on the titanium oxide substrate.
  • the infrared absorber may be used alone or in combination of two or more.
  • the infrared absorber does not contain carbon black.
  • the whiteness does not decrease, the fabric can be light-colored, and the color-developing property at the time of dyeing becomes good.
  • the infrared absorber preferably has an average particle size of 2 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 0.5 ⁇ m or less, from the viewpoint of being easily dispersed evenly inside the fiber.
  • the particle size of the infrared absorber can be measured by a laser diffraction method in the case of powder, and in the case of a dispersion (dispersion liquid) dispersed in water or an organic solvent. Can be measured by laser diffraction or dynamic light scattering.
  • the fibers constituting the flame-retardant fabric are not particularly limited, but for example, from the viewpoint of dispersibility of the infrared absorber in the fibers, at least acrylic fibers, cellulose fibers, and the like. And preferably contains any of polyester fibers.
  • the acrylic fiber is preferably composed of an acrylic polymer containing 40 to 70% by weight of acrylonitrile and 30 to 60% by weight of other components with respect to the total weight of the acrylic polymer.
  • the content of acrylonitrile in the acrylic polymer is 40 to 70% by weight, the heat resistance and flame retardancy of the acrylic fiber are improved.
  • the other components are not particularly limited as long as they can be copolymerized with acrylonitrile.
  • a halogen-containing vinyl-based monomer, a sulfonic acid group-containing monomer, and the like can be mentioned.
  • the halogen-containing vinyl-based monomer examples include halogen-containing vinyl and halogen-containing vinylidene.
  • examples of the halogen-containing vinyl include vinyl chloride and vinyl bromide, and examples of the halogen-containing vinylidene include vinylidene chloride and vinylidene bromide.
  • These halogen-containing vinyl-based monomers may be used alone or in combination of two or more.
  • the acrylic fiber preferably contains 30 to 60% by weight of a halogen-containing vinyl monomer as another component with respect to the total weight of the acrylic polymer.
  • Examples of the monomer containing a sulfonic acid group include methacrylsulfonic acid, allylsulfonic acid, styrenesulfonic acid, 2-acrylamide-2-methylpropanesulfonic acid, and salts thereof.
  • examples of the salt include, but are not limited to, sodium salts such as sodium p-styrene sulfonic acid, potassium salts, and ammonium salts.
  • These monomers containing a ruphonic acid group may be used alone or in combination of two or more.
  • a monomer containing a sulfonic acid group is used as needed, but if the content of the monomer containing a sulfonic acid group in the acrylic polymer is 3% by weight or less, it is produced in the spinning process. Excellent stability.
  • the acrylic polymer is a copolymer of 40 to 70% by weight of acrylonitrile, 30 to 57% by weight of a halogen-containing vinyl-based monomer, and 0 to 3% by weight of a monomer containing a sulfonic acid group. It is preferably a polymer. More preferably, the acrylic polymer contains 45 to 65% by weight of acrylonitrile, 35 to 52% by weight of a halogen-containing vinyl-based monomer, and 0 to 3% by weight of a sulfonic acid group. It is a copolymerized copolymer.
  • the acrylic fiber is not particularly limited, but preferably contains the above-mentioned infrared absorber inside the fiber, and more preferably is uniformly dispersed inside the fiber.
  • the infrared absorber is easily dispersed in the fiber, and the fabric is easily heat-shielded.
  • the acrylic fiber is not particularly limited, but preferably contains a flame retardant from the viewpoint of flame retardancy.
  • the flame retardant include antimony compounds.
  • the content of the antimony compound in the acrylic fiber is preferably 2 to 30% by weight, more preferably 3 to 20% by weight, based on the total weight of the fiber. When the content of the antimony compound in the acrylic fiber is within the above range, the production stability of the spinning process is excellent and the flame retardancy is good.
  • antimony compound examples include antimony acid salts such as antimony trioxide, antimony tetroxide, antimony pentoxide, antimony acid, and sodium antimonate, antimony oxychloride, and the like, and one or a combination of two or more thereof. Can be used. From the viewpoint of production stability in the spinning process, the antimony compound is preferably one or more compounds selected from the group consisting of antimony trioxide, antimony tetroxide and antimony tetroxide.
  • the acrylic fiber is not particularly limited, but may contain an ultraviolet absorber.
  • the ultraviolet absorber is not particularly limited, and for example, an inorganic compound such as titanium oxide or zinc oxide, an organic compound such as a triazine-based compound, a benzophenone-based compound, or a benzotriazole-based compound can be used. Above all, titanium oxide is preferable from the viewpoint of whiteness.
  • the acrylic fiber preferably contains an ultraviolet absorber in an amount of 0.3 to 10% by weight, more preferably 0.5 to 7% by weight, still more preferably 1 to 5% by weight, based on the total weight of the acrylic fiber. include.
  • the acrylic fiber is, if necessary, a flame retardant aid, a matting agent, a crystal nucleating agent, a dispersant, a lubricant, a stabilizer, a fluorescent agent, and an antioxidant, as long as the effect of the present invention is not impaired.
  • Antistatic agents, pigments and other various additives may be contained.
  • the fineness of the acrylic fiber is not particularly limited, but is preferably 1 to 20 dtex, more preferably 1.5 to 15 dtex, from the viewpoint of spinnability, processability, texture and strength when made into a fabric.
  • the fiber length of the acrylic fiber is not particularly limited, but is preferably 38 to 127 mm, more preferably 38 to 76 mm, from the viewpoint of spinnability and processability. In one or more embodiments of the present invention, the fineness of the fiber is measured based on JIS L 1015.
  • the strength of the acrylic fiber is not particularly limited, but is preferably 1.0 to 4.0 cN / dtex, and more preferably 1.5 to 3.0 cN / dtex from the viewpoint of spinnability and processability. preferable.
  • the elongation of the acrylic fiber is not particularly limited, but is preferably 20 to 35%, more preferably 20 to 25%, from the viewpoint of spinnability and processability. In one or more embodiments of the present invention, the strength and elongation of the fiber are measured based on JIS L 1015.
  • It can be manufactured by wet spinning the undiluted spinning solution in the same manner as for general acrylic fibers, except that an infrared absorber, a flame retardant, etc. are added to the undiluted spinning solution in which the acrylic polymer is dissolved.
  • an acrylic fiber containing an infrared absorber inside the fiber and an acrylic fiber containing no infrared absorber inside the fiber may be used in combination.
  • Cellulose-based fibers are a general term for fibers derived from cellulose, and are not particularly limited, and commercially available cellulosic fibers may be used.
  • cotton, hemp including flax, ramie, jute, kenaf, cannabis, Manila hemp, sisal hemp, New Zealand hemp
  • natural fibers such as capoc, banana and palm
  • semi-synthetic fibers such as acetate and triacetate
  • rayon and cupra Contains regenerated fibers such as lyocell.
  • the method for producing rayon which is a regenerated fiber, may be a conventionally known method for producing viscose rayon fiber.
  • viscose having a cellulose content of about 7 to 10% and an alkali such as caustic soda in an amount of about 50 to 80% with respect to cellulose may be used. This is extruded from a spinning nozzle into an acidic solution containing sulfuric acid or the like and chemically reacted while forming fibers to regenerate cellulose and produce it.
  • the cellulosic fiber may be a functional cellulosic fiber containing the above-mentioned infrared absorber inside the fiber, and is not particularly limited.
  • the functional cellulosic fiber for example, "Solar Touch (registered trademark)" manufactured by Omikenshi Co., Ltd. can be used.
  • a cellulosic fiber containing an infrared absorber inside the fiber and a cellulosic fiber not containing an infrared absorber may be used in combination.
  • the cellulosic fiber contains an infrared absorber inside the fiber, it preferably contains an ultraviolet absorber in an amount of 0.3 to 10% by weight, more preferably 0.5 to 7% by weight, still more preferably 1 to 5% by weight. %include.
  • the infrared absorber is uniformly dispersed inside the fiber.
  • the fineness of the cellulosic fiber is not particularly limited, but is preferably 1 to 20 dtex, more preferably 1.5 to 15 dtex, from the viewpoint of spinnability, processability, texture and strength when made into a fabric.
  • the fiber length of the cellulosic fiber is not particularly limited, but is preferably 38 to 127 mm, more preferably 38 to 76 mm, from the viewpoint of spinnability and processability.
  • polyester fiber As the polyester, at least one selected from the group consisting of terephthalic acid as a main acid component and alkylene glycol having 2 to 6 carbon atoms, that is, ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, and hexamethylene glycol.
  • Glycol particularly preferably a polyester containing ethylene glycol as a main glycol component is exemplified, and the above-mentioned functional polyester containing an infrared absorber may be used, and is not particularly limited.
  • the polyester fiber is composed of a polyester resin composition.
  • the polyester-based resin composition means that the polyester-based resin is contained in an amount of more than 50% by weight when the total weight of the polyester-based resin composition is 100% by weight, and the polyester-based resin may be contained in an amount of 70% by weight or more. It is preferable to contain 80% by weight or more, more preferably 90% by weight or more, and even more preferably 95% by weight or more.
  • the polyester-based resin it is preferable to use one or more selected from the group consisting of polyalkylene terephthalate and copolymerized polyester mainly composed of polyalkylene terephthalate.
  • the "copolymerized polyester mainly composed of polyalkylene terephthalate” refers to a copolymerized polyester containing 80 mol% or more of polyalkylene terephthalate.
  • the polyalkylene terephthalate is not particularly limited, and examples thereof include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polycyclohexanedimethylene terephthalate.
  • the copolymerized polyester mainly composed of polyalkylene terephthalate is not particularly limited, but for example, polyalkylene terephthalate such as polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polycyclohexanedimethylene terephthalate is mainly used, and other copolymerization components are used. Examples thereof include copolymerized polyester contained therein.
  • copolymerization components include, for example, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, paraphenylenedicarboxylic acid, trimellitic acid, pyromellitic acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, and sebacic acid.
  • Polyvalent carboxylic acids such as dodecanedioic acid and their derivatives; dicarboxylic acids including sulfonates such as 5-sodium sulfoisophthalic acid, 5-sodium sulfoisophthalic acid dihydroxyethyl and their derivatives; 1,2-propanediol , 1,3-Propanediol, 1,4-Butanediol, 1,6-hexanediol, Neopentylglycol, 1,4-Cyclohexanedimethanol, Diethyleneglycol, Polyethylene glycol, Trimethylolpropane, Pentaerythritol, 4-Hydroxybenzoic acid Examples thereof include acid, ⁇ -caprolactone, and ethylene glycol ether of bisphenol A.
  • the copolymerized polyester is preferably produced by reacting the main polyalkylene terephthalate with a small amount of other copolymerizing components.
  • the polyalkylene terephthalate a polymer of terephthalic acid and / or a derivative thereof (for example, methyl terephthalate) and alkylene glycol can be used.
  • the copolymerized polyester is a mixture of terephthalic acid and / or a derivative thereof (for example, methyl terephthalate) used for the polymerization of the main polyalkylene terephthalate and alkylene glycol, and a monomer or a monomer which is a small amount of other copolymerization components. It may be produced by polymerizing a product containing an oligomer component.
  • the copolymerized polyester may be polycondensed with the above-mentioned other copolymerization components on the main chain and / or side chain of the main polyalkylene terephthalate, and the copolymerization method is not particularly limited.
  • copolymerized polyester mainly composed of polyalkylene terephthalate include, for example, ethylene glycol ether of bisphenol A, 1,4-cyclohexadimethanol, isophthalic acid and dihydroxyethyl 5-sodium sulfoisophthalate mainly composed of polyethylene terephthalate.
  • the polyalkylene terephthalate and the copolymerized polyester mainly composed of the polyalkylene terephthalate may be used alone or in combination of two or more.
  • polyester mainly composed of terephthalate and copolymerized with isophthalic acid and polyester mainly composed of polyethylene terephthalate and copolymerized with dihydroxyethyl 5-sodium sulfoisophthalate alone or in combination of two or more.
  • the intrinsic viscosity (sometimes referred to as IV value) of the polyester resin is not particularly limited, but is preferably 0.3 dL / g or more and 1.2 dL / g or less, and 0.4 dL / g or more and 1.0 dL / g. It is more preferably g or less.
  • the intrinsic viscosity is 0.3 dL / g or more, the mechanical strength of the obtained fiber does not decrease and there is no risk of drip during the combustion test.
  • the intrinsic viscosity is 1.2 dL / g or less, the molecular weight does not increase too much, the melt viscosity does not become too high, melt spinning becomes easy, and the fineness tends to be uniform.
  • the polyester resin composition may contain a flame retardant.
  • the flame retardant is not particularly limited, and examples thereof include a phosphorus-based flame retardant and a bromine-based flame retardant.
  • the polyester-based resin composition may contain other resins in addition to the polyester-based resin.
  • other resins include polyamide-based resins, vinyl chloride-based resins, modaacrylic-based resins, polycarbonate-based resins, polyolefin-based resins, and polyphenylene sulfide-based resins.
  • one type may be used alone, or two or more types may be used in combination.
  • the fineness of the polyester fiber is not particularly limited, but is preferably 1 to 20 dtex, more preferably 1.5 to 15 dtex, from the viewpoint of spinnability, processability, texture and strength when made into a fabric.
  • the fiber length of the polyester fiber is not particularly limited, but is preferably 38 to 127 mm, more preferably 38 to 76 mm, from the viewpoint of spinnability and processability.
  • polyester-based resin composition can be produced by melt-spinning a polyester-based resin composition in the same manner as in the case of general polyester-based fibers, except that a flame retardant, an infrared absorber, or the like is added to the polyester-based resin composition.
  • a polyester fiber containing an infrared absorber inside the fiber and a polyester fiber not containing an infrared absorber may be used in combination.
  • the polyester fiber contains an infrared absorber inside the fiber, it preferably contains an ultraviolet absorber in an amount of 0.3 to 10% by weight, more preferably 0.5 to 7% by weight, still more preferably 1 to 5% by weight. %include.
  • the polyester fiber contains an infrared absorber inside the fiber, it is preferable that the infrared absorber is uniformly dispersed inside the fiber.
  • the flame retardancy of the fabric can be indicated by the limit oxygen index (LOI).
  • LOI limit oxygen index
  • the LOI is preferably 26 or more, more preferably 28 or more, and most preferably 30 or more. This is because if the limit oxygen index is less than 25, it cannot be said that it is sufficient for making the fabric flame-retardant, and it is not at a level of safely self-extinguishing in combustion behavior.
  • the flame-retardant fabric is an acrylic fiber containing 2 to 30% by weight of an antimony compound with respect to the total weight of the fiber from the viewpoint of heat insulation, flame retardancy, color development and texture. 35 to 65% by weight, cellulose fibers 25 to 45% by weight, polyester fibers 0 to 45% by weight, acrylic fibers 35 to 60% by weight, cellulose fibers 25 to 45% by weight. %, And 5 to 45% by weight of polyester fiber, more preferably 35 to 60% by weight of acrylic fiber, 30 to 45% by weight of cellulose fiber, and 5 to 40% by weight of polyester fiber.
  • the acrylic fiber preferably contains 35 to 55% by weight of acrylic fiber, 30 to 40% by weight of cellulose fiber, and 5 to 40% by weight of polyester fiber, and 35 to 50% by weight of acrylic fiber. It is even more preferable to contain 30 to 40% by weight of cellulose-based fibers and 10 to 40% by weight of polyester-based fibers. From the viewpoint of flame retardancy, the acrylic fiber preferably contains 3 to 20% by weight of the antimony compound with respect to the total weight of the fiber.
  • the infrared absorber may be contained inside at least one of the acrylic fiber, the cellulose fiber and the polyester fiber, and further, for example, the acrylic fiber and the cellulose fiber contain the infrared absorber inside the fiber. Two or more fibers may contain an infrared absorber.
  • other fibers may be contained as long as the effect of the present invention is not impaired.
  • other fibers include conductive fibers, aramid fibers and polyimide fibers.
  • the fibers are contained in an amount of 5 to 20% by weight based on the total weight of the fabric. You may.
  • the fiber may be in the form of spun yarn.
  • the thickness of the spun yarn is not particularly limited, but may be, for example, an English-style cotton count of 5 to 40 or 10 to 30.
  • the yarn type may be a single yarn or a twin yarn.
  • the form of the flame-retardant fabric is not particularly limited, and may be, for example, a knitted fabric or a woven fabric.
  • the structure of the knitted fabric is not particularly limited, and may be a round knit, a horizontal knit, or a warp knit.
  • the structure of the woven fabric is not particularly limited, and may be a plain weave, a twill weave, a satin weave, or the like, or a patterned woven fabric using a special loom such as a dobby or a jaguar.
  • the flame-retardant fabric is preferably a woven fabric, and more preferably a twill woven fabric.
  • the basis weight (weight per unit area) of the flame-retardant fabric is not particularly limited, but is preferably 3 to 10 oz / yd 2 from the viewpoint of lightness and durability, and is preferably 4 to 9 oz / yd 2 . More preferably, it is more preferably 4 to 8 oz / yd 2 .
  • the infrared source is not particularly limited, and may be anything from a heating device such as sunlight, a stove, or a bonfire that irradiates a large amount of infrared rays to a human body that generates a small amount of infrared rays.
  • the above-mentioned fabric may be used as the textile product, and the fabric is not particularly limited. Examples include duvet covers, mufflers, sunshades, hats, flameproof stuffing, insulation, filters, linings, tents, tarps, etc. Textile products may also contain other fabrics and fibers.
  • the transmittance (%) at a wavelength of 250 to 2500 nm was measured with a V-770 spectrophotometer manufactured by Nippon Spectroscopy Co., Ltd., and the average value of the transmittance at a wavelength of 780 to 2500 nm was obtained.
  • the transmittance was used.
  • the band width was 5 nm (250 to 850 nm) and 20 nm (850 to 2500 nm).
  • Heat shield rate The heat shield rate when the fabric was irradiated with infrared rays was determined based on the following, and the heat shield test was carried out under the following conditions. Measurement environment: 20 ° C x 65% RH Type of light source: Artificial solar lighting SERIC XC-500EFSS Illuminance: 100,000 lux The distance between the light source and the cloth was set to 50 cm, the front surface of the cloth was irradiated with the light source, a blackbody with a temperature sensor was installed at a place 10 cm away from the back surface of the cloth, and the temperature change after irradiating the light source for 20 minutes was measured. ..
  • Heat shield rate (%) (AB) / A ⁇ 100
  • the limit oxygen index (LOI value) was measured in accordance with the combustibility test method according to the JIS-L 1091 E method oxygen index.
  • ⁇ Acrylic fiber manufacturing example i> An acrylic copolymer consisting of 51% by weight of acrylonitrile, 48% by weight of vinylidene chloride and 1% by weight of sodium p-styrene sulfonic acid was dissolved in dimethylformamide so that the resin concentration was 30% by weight.
  • Antimony-doped tin oxide hereinafter, also referred to as Ti-ATO
  • Ti-ATO Antimony-doped tin oxide supported on a titanium oxide base material in an amount of 5 parts by weight based on 100 parts by weight of the resin in the obtained resin solution (manufactured by Ishihara Sangyo Co., Ltd., product name "ET521W").
  • the obtained acrylic fiber of Production Example i had a fineness of 1.7 dtex, a strength of 2.4 cN / dtex, an elongation of 25%, and a cut length of 51 mm.
  • the fineness, strength and elongation of the acrylic fiber were measured based on JIS L 1015.
  • the acrylic fiber of Production Example i contained Ti-ATO inside the fiber, and the content of Ti-ATO with respect to the total weight of the acrylic fiber was 4.2% by weight.
  • ⁇ Acrylic fiber manufacturing example ii> To the obtained resin solution, 10 parts by weight of antimony trioxide (Sb 2 O 3 , manufactured by Nihon Seiko Co., Ltd., product name "Patox-M”) was added to 100 parts by weight of the resin to prepare a spinning stock solution. Obtained an acrylic fiber in the same manner as in Production Example i.
  • the obtained acrylic fiber of Production Example ii had a fineness of 1.7 dtex, a strength of 2.6 cN / dtex, an elongation of 27%, and a cut length of 51 mm.
  • acrylic fiber iii> In the obtained resin solution, 2.6 parts by weight of carbon black (CB, CABOT, product name "BLACK PEARLS”) and 10 parts by weight of antimony trioxide (Sb 2 O 3 , Japan) with respect to 100 parts by weight of the resin.
  • Acrylic fibers were obtained in the same manner as in Production Example i, except that a product name "Patox-M” manufactured by Seiko Co., Ltd. was added to prepare a spinning stock solution.
  • the obtained acrylic fiber of Production Example iii had a fineness of 1.7 dtex, a strength of 2.2 cN / dtex, an elongation of 24%, and a cut length of 51 mm. Further, the acrylic fiber of Production Example iii contained carbon black inside the fiber, and the content of carbon black with respect to the total weight of the acrylic fiber was 2.3% by weight.
  • Cellulous fiber containing an infrared absorber (metal oxide) ("Solar Touch (registered trademark)” manufactured by Omikenshi Co., Ltd., infrared absorber content 3% by weight, fineness 1.4 dtex, cut length 38 mm, " Solar touch), polyester fiber ("Tetron (registered trademark)” manufactured by Teijin Frontier, fineness 1.7dtex, cut length 38mm, hereinafter also referred to as "PET"), para-aramid fiber (Yantai Taiho Advanced Materials Co.) ., Made by LTD, product name “Taparan (registered trademark)", fineness 1.7 dtex, cut length 51 mm, hereinafter also referred to as "p-Aramid”), and meta-aramid fiber (manufactured by Teijin, product name "Conex (registered trademark)”.
  • infrared absorber metal oxide
  • polyester fiber Teijin Frontier, fineness 1.7dtex, cut length 38mm, hereinafter also referred to as
  • Fineness 1.7 dtex, cut length 51 mm also referred to as "m-Aramid” in the following
  • Table 1 Fineness 1.7 dtex, cut length 51 mm, also referred to as "m-Aramid” in the following
  • Example 1 The spun yarn of Production Example 1 was used for the warp yarn and the weft yarn to prepare a woven fabric having a 2/1 twill structure.
  • the number of threads to be driven was 76 threads / 1 inch for warp threads, 54 threads / 1 inch for weft threads, and a basis weight of 5.5 oz / yd 2 (hereinafter, also referred to as osy).
  • Example 2 The spun yarn of Production Example 2 was used for the warp yarn and the weft yarn to prepare a woven fabric having a 2/1 twill structure.
  • the number of threads to be driven was 80 threads / 1 inch for the warp threads, 60 threads / 1 inch for the weft threads, and the basis weight of the obtained woven fabric was 5.0 oz / yd 2 .
  • Example 3 A woven fabric was produced in the same manner as in Example 1 except that the spun yarn of Production Example 3 was used for the warp yarn and the weft yarn.
  • the basis weight of the obtained woven fabric was 5.5 oz / yd 2 .
  • Example 4 A woven fabric was produced in the same manner as in Example 1 except that the spun yarn of Production Example 4 was used for the warp yarn and the weft yarn. The basis weight of the obtained woven fabric was 5.8 oz / yd 2 .
  • Example 1 A woven fabric was produced in the same manner as in Example 1 except that the spun yarn of Production Example 5 was used for the warp yarn and the weft yarn.
  • the basis weight of the obtained woven fabric was 5.8 oz / yd 2 .
  • Example 2 A woven fabric was produced in the same manner as in Example 2 except that the spun yarn of Production Example 6 was used for the warp yarn and the weft yarn.
  • the basis weight of the obtained woven fabric was 5.9 oz / yd 2 .
  • Example 3 A woven fabric was produced in the same manner as in Example 2 except that the spun yarn of Production Example 7 was used for the warp yarn and the weft yarn.
  • the basis weight of the obtained woven fabric was 5.0 oz / yd 2 .
  • Example 4 A woven fabric was produced in the same manner as in Example 2 except that the spun yarn of Production Example 8 was used for the warp yarn and the weft yarn. The basis weight of the obtained woven fabric was 5.5 oz / yd 2 .
  • Example 5 A woven fabric was produced in the same manner as in Example 2 except that the spun yarn of Production Example 9 was used for the warp yarn and the weft yarn.
  • the basis weight of the obtained woven fabric was 5.8 oz / yd 2 .
  • the flame-retardant fabric of the example has a low transmittance of near-infrared rays, the temperature rise on the back surface side of the surface irradiated with the near-infrared rays of the fabric is suppressed, and the heat shielding rate is also high. rice field.
  • the present invention is not particularly limited, but preferably includes at least the following embodiments.
  • It is a flame-retardant fabric and is Limiting oxygen index is 26 or more, Contains 1.0% by weight or more and 20% by weight or less of an infrared absorber with respect to the total weight of the flame-retardant fabric. Near infrared transmittance is less than 11%, The infrared absorber is contained inside the fibers constituting the flame-retardant fabric.
  • the infrared absorber is a flame-retardant fabric, characterized in that it does not contain carbon black.
  • the flame-retardant fabric contains 35 to 65% by weight of acrylic fibers containing 3 to 20% by weight of an antimon compound, 25 to 45% by weight of cellulosic fibers, and 0 to 45% by weight of polyester fibers.
  • a textile product comprising the flame-retardant fabric according to any one of [1] to [9].

Abstract

One or more embodiments of the present invention relate to a flame-retardant fabric which has a limiting oxygen index of 26 or more, while containing from 1.0% by weight to 20% by weight of an infrared absorbent relative to the total weight of the flame-retardant fabric, wherein: the near-infrared light transmittance is less than 11%; the infrared absorbent is contained in the fibers that constitute the flame-retardant fabric; and the infrared absorbent does not contain carbon black. Consequently, the present invention provides: a flame-retardant fabric which has excellent thermal barrier properties, flame retardancy and color developability; and a textile product which uses this flame-resistant fabric.

Description

赤外線吸収剤を含む難燃性布帛及びその繊維製品Flame-retardant fabrics containing infrared absorbers and their textile products
 本発明は、赤外線吸収剤を含む難燃性布帛及びその繊維製品に関する。 The present invention relates to a flame-retardant fabric containing an infrared absorber and a textile product thereof.
 近年、太陽光による外気温が高い(特に真夏など)ことから、人体への影響を低減するため、日傘やカーテンなどに用いる布帛として、温度上昇を抑制することを目的に様々な布帛が開発されている。例えば、特許文献1では、導電性を有する金属酸化物を有する樹脂層を布帛表面に塗布した熱線遮断性繊維布帛が提案されている。特許文献1では、導電性を有する金属酸化物を赤外線吸収剤として用いることで、赤外線の透過を遮断し、布帛自体の温度は上昇するものの、樹脂層を有する布帛の裏面側の温度上昇を抑制でき、夏場の日中の太陽からの熱線を遮断することを可能としている。 In recent years, since the outside temperature due to sunlight is high (especially in midsummer), various fabrics have been developed for the purpose of suppressing the temperature rise as fabrics used for sunshades and curtains in order to reduce the influence on the human body. ing. For example, Patent Document 1 proposes a heat-shielding fiber fabric in which a resin layer having a conductive metal oxide is applied to the surface of the fabric. In Patent Document 1, by using a conductive metal oxide as an infrared absorber, the transmission of infrared rays is blocked and the temperature of the cloth itself rises, but the temperature rise on the back surface side of the cloth having a resin layer is suppressed. It is possible to block heat rays from the sun during the daytime in the summer.
特開2002-370319号公報Japanese Unexamined Patent Publication No. 2002-370319
 しかしながら、特許文献1に記載の熱線遮断性繊維布帛は、遮熱性は得られるものの、難燃性については検討されておらず、屋内のインテリアやテントなどの人体に近い距離で使用する点を考慮すると、安全性の観点から課題が残っていた。また、布帛に金属酸化物を含有した樹脂層を積層しているため、洗濯耐久性や風合いが低下する恐れがある。一方、赤外線吸収剤として、カーボンブラックがよく知られているが、カーボンブラックを繊維内部に練り込んだ際、繊維の白度が低下し、当該繊維を含む布帛を染色した際の発色性が劣る問題があった。 However, although the heat ray-blocking fiber fabric described in Patent Document 1 can obtain heat-shielding property, its flame retardancy has not been investigated, and consideration is given to the fact that it is used at a distance close to the human body such as an indoor interior or a tent. Then, there remained a problem from the viewpoint of safety. Further, since the resin layer containing the metal oxide is laminated on the cloth, the washing durability and the texture may be deteriorated. On the other hand, carbon black is well known as an infrared absorber, but when carbon black is kneaded into the fiber, the whiteness of the fiber is lowered and the color development property when the fabric containing the fiber is dyed is inferior. There was a problem.
 本発明は、上記課題を解決するため、遮熱性、難燃性及び発色性に優れた難燃性布帛、並びにそれを用いた繊維製品を提供する。 In order to solve the above problems, the present invention provides a flame-retardant fabric having excellent heat-shielding, flame-retardant and color-developing properties, and a textile product using the same.
 本発明は、1以上の実施形態において、難燃性布帛であって、限界酸素指数が26以上であり、難燃性布帛全重量に対して赤外線吸収剤を1.0重量%以上20重量%以下含み、近赤外線の透過率が11%未満であり、前記赤外線吸収剤は、難燃性布帛を構成する繊維の内部に含まれており、前記赤外線吸収剤は、カーボンブラックを含まないことを特徴とする、難燃性布帛に関する。 The present invention is a flame-retardant fabric in one or more embodiments, has a limiting oxygen index of 26 or more, and has an infrared absorber of 1.0% by weight or more and 20% by weight based on the total weight of the flame-retardant fabric. It is said that the infrared absorber has a transmittance of less than 11%, the infrared absorber is contained inside the fiber constituting the flame-retardant fabric, and the infrared absorber does not contain carbon black. It relates to a characteristic flame-retardant fabric.
 本発明は、1以上の実施形態において、前記難燃性布帛を含む繊維製品に関する。 The present invention relates to a textile product containing the flame-retardant fabric in one or more embodiments.
 本発明によれば、遮熱性、難燃性及び発色性に優れた難燃性布帛、並びにそれを用いた繊維製品を提供することができる。 According to the present invention, it is possible to provide a flame-retardant fabric having excellent heat-shielding property, flame-retardant property and color-developing property, and a textile product using the same.
 本発明者らは、鋭意検討した結果、カーボンブラックを除く赤外線吸収剤を布帛全体に対して特定量含有させ、近赤外線の透過率を11%未満とすることで、布帛の遮熱性が向上することを見出した。その理由としては、推測の域をでないが、当該布帛に含まれる赤外線吸収剤が、近赤外線を吸収して熱に変換することで、赤外線入射方向の面の裏面から離れた位置では温度を低く保てるためと考えられる。また、赤外線吸収剤が、布帛を構成する繊維の内部に含まれていることにより、繊維表面に赤外線吸収剤を付着させた場合と比べると、風合いが良好であるとともに、洗濯耐久性も高い。さらに、当該布帛はカーボンブラックといった濃色赤外線吸収剤を使用しないことから、布帛の白度が低下することなく、染色時の発色性が良好となる。また、該布帛は、限界酸素濃度が26以上であり、難燃性が高いことから安全性の観点からも繊維製品として展開できる幅を広げることが可能である。 As a result of diligent studies, the present inventors have made the fabric contain an infrared absorber in a specific amount excluding carbon black and set the transmittance of near-infrared rays to less than 11%, thereby improving the heat-shielding property of the fabric. I found that. The reason is not speculative, but the infrared absorber contained in the fabric absorbs near-infrared rays and converts them into heat, so that the temperature is lowered at a position away from the back surface of the surface in the infrared incident direction. It is thought that it can be kept. Further, since the infrared absorber is contained inside the fibers constituting the fabric, the texture is better and the washing durability is higher than that in the case where the infrared absorber is adhered to the fiber surface. Further, since the cloth does not use a dark infrared ray absorber such as carbon black, the whiteness of the cloth does not decrease and the color development property at the time of dyeing becomes good. Further, since the fabric has a critical oxygen concentration of 26 or more and is highly flame-retardant, it is possible to expand the range in which it can be developed as a textile product from the viewpoint of safety.
 <透過率>
 透過率とは、分光光度計による布帛の波長250~2500nmの分光透過率(%)を意味し、近赤外線の透過率は、波長780~2500nmの透過率の平均値を意味する。近赤外線の透過率が低いほど遮熱率が高く、透過率が高いほど遮熱率が低くなる。本発明の1以上の実施形態において、難燃性布帛は、近赤外線の透過率が11%未満であり、11%以上の場合、遮熱性の観点から好ましくなく、布帛の近赤外線が照射している面の裏面側の温度上昇を十分に抑えることが難しくなる恐れがある。本発明の1以上の実施形態において、「…~…」で示される数値範囲は、「…以上…以下」で示される数値範囲と同様、両端値を含む。
<Transmittance>
The transmittance means the spectral transmittance (%) of the cloth having a wavelength of 250 to 2500 nm by a spectrophotometer, and the near-infrared transmittance means the average value of the transmittances having a wavelength of 780 to 2500 nm. The lower the transmittance of near-infrared rays, the higher the heat-shielding rate, and the higher the transmittance, the lower the heat-shielding rate. In one or more embodiments of the present invention, the flame-retardant fabric has a transmittance of less than 11% for near-infrared rays, and when it is 11% or more, it is not preferable from the viewpoint of heat shielding properties, and the near-infrared rays of the fabric irradiate the fabric. It may be difficult to sufficiently suppress the temperature rise on the back surface side of the surface. In one or more embodiments of the present invention, the numerical range indicated by "... to ..." includes both ends values as in the numerical range indicated by "... or more ... or less".
 本発明の1以上の実施形態において、難燃性布帛の近赤外線の透過率の下限は特に限定されないが、例えば、遮熱性を高めやすい観点から、4%以上であってもよい。本発明の1以上の実施形態において、難燃性布帛の近赤外線の透過率は、4%以上11%未満であることが好ましく、4.2%以上10.9%以下であることがより好ましく、4.5%以上10.5%以下であることがさらに好ましく、5%以上10%以下であることがさらにより好ましく、5.2%以上9%以下であることがさらにより好ましく、5.5%以上8%以下であることが特に好ましい。 In one or more embodiments of the present invention, the lower limit of the transmittance of near-infrared rays of the flame-retardant fabric is not particularly limited, but may be 4% or more from the viewpoint of easily improving the heat-shielding property, for example. In one or more embodiments of the present invention, the transmittance of near-infrared rays of the flame-retardant fabric is preferably 4% or more and less than 11%, and more preferably 4.2% or more and 10.9% or less. , 4.5% or more and 10.5% or less, more preferably 5% or more and 10% or less, and even more preferably 5.2% or more and 9% or less. It is particularly preferable that it is 5% or more and 8% or less.
 <遮熱率>
 遮熱率は、光源と布帛の距離を50cmとし、布帛の表面を光源で照射し、布帛の裏面から10cm離れた位置の黒体について、布帛が有る場合と無い場合のそれぞれの場合の黒体の温度を測定し、下記数式(1)により求める。
<Heat shield rate>
The heat shield rate is such that the distance between the light source and the cloth is 50 cm, the front surface of the cloth is irradiated with the light source, and the black body at a position 10 cm away from the back surface of the cloth is the black body with and without the cloth. The temperature of is measured and calculated by the following formula (1).
 [数式1]
 遮熱率(%)=(A―B)/A×100
A:布帛が無い場合の黒体温度(℃)、B:布帛が有る場合の黒体温度(℃)
[Formula 1]
Heat shield rate (%) = (AB) / A × 100
A: Blackbody temperature (° C) when there is no cloth, B: Blackbody temperature (° C) when there is cloth
 本発明の1以上の実施形態において、難燃性布帛の遮熱率は好ましくは45.0%以上である。遮熱率が45.0%未満の場合、遮熱が不十分となり、熱による布帛の温度が高くなることに伴い、布帛から離れた位置でも温度上昇が大きくなることから好ましくない。 In one or more embodiments of the present invention, the heat shield rate of the flame-retardant fabric is preferably 45.0% or more. When the heat shield rate is less than 45.0%, the heat shield becomes insufficient and the temperature of the fabric increases due to the heat, and the temperature rise becomes large even at a position away from the fabric, which is not preferable.
 本発明の1以上の実施形態において、難燃性布帛の遮熱率の上限は特に限定されないが、例えば、透過性を抑制しやすい観点から、55%以下であってもよい。本発明の1以上の実施形態において、難燃性布帛の遮熱率は45.0%以上55%以下であることが好ましい。 In one or more embodiments of the present invention, the upper limit of the heat shield rate of the flame-retardant fabric is not particularly limited, but may be 55% or less, for example, from the viewpoint of easily suppressing the permeability. In one or more embodiments of the present invention, the heat shielding rate of the flame-retardant fabric is preferably 45.0% or more and 55% or less.
 <赤外線吸収剤>
 赤外線吸収剤は、布帛全重量に対して1.0重量%以上20重量%以下含まれる。これにより、高い赤外吸収能を有し、平均透過率が低く、遮熱性能を有する布帛を得ることができる。赤外線吸収能を向上させる観点から、赤外線吸収剤を布帛中に1.5重量%以上19重量%以下含むことがより好ましい。染色性の観点から、赤外線吸収剤は1.8重量%以上18重量%以下含むことが好ましく、より好ましくは2.0重量%以上17重量%以下、さらに好ましくは3.0重量%以上16重量%以下含む。赤外線吸収剤が、布帛を構成する繊維の内部に含まれていること、好ましくは繊維内部に均一に分散して存在することにより、繊維表面に赤外線吸収剤を付着させた場合と比べると、風合いが良好であるとともに、洗濯耐久性も高い。
<Infrared absorber>
The infrared absorber is contained in an amount of 1.0% by weight or more and 20% by weight or less based on the total weight of the fabric. As a result, it is possible to obtain a fabric having high infrared absorption ability, low average transmittance, and heat shielding performance. From the viewpoint of improving the infrared absorbing ability, it is more preferable to contain the infrared absorber in the fabric in an amount of 1.5% by weight or more and 19% by weight or less. From the viewpoint of dyeability, the infrared absorber preferably contains 1.8% by weight or more and 18% by weight or less, more preferably 2.0% by weight or more and 17% by weight or less, and further preferably 3.0% by weight or more and 16% by weight. Including% or less. Since the infrared absorber is contained inside the fibers constituting the fabric, preferably uniformly dispersed inside the fibers, the texture is compared with the case where the infrared absorber is adhered to the fiber surface. Is good, and the washing durability is also high.
 赤外線吸収剤は、カーボンブラックを除く、近赤外線を吸収効果を有するものであればよく、特に限定されない。例えば、750~2500nmの波長領域において、吸収ピークを有することが好ましい。具体的には、金属酸化物が挙げられ、より具体的には、アンチモンドープ酸化スズ、インジウムスズ酸化物、ニオブドープ酸化スズ、リンドープ酸化スズ、フッ素ドープ酸化スズ、酸化チタン基材に担持したアンチモンドープ酸化スズ、鉄ドープ酸化チタン、炭素ドープ酸化チタン、フッ素ドープ酸化チタン、窒素ドープ酸化チタン、アルミニウムドープ酸化亜鉛、アンチモンドープ酸化亜鉛などが挙げられる。インジウムスズ酸化物は、インジウムドープ酸化スズとスズドープ酸化インジウムを含む。赤外線吸収能を向上させる観点から、上記赤外線吸収剤は、酸化スズ系化合物であることが好ましく、アンチモンドープ酸化スズ、インジウムスズ酸化物、ニオブドープ酸化スズ、リンドープ酸化スズ、フッ素ドープ酸化スズ及び酸化チタン基材に担持したアンチモンドープ酸化スズからなる群から選ばれる一種以上であることがより好ましく、アンチモンドープ酸化スズ及び酸化チタン基材に担持したアンチモンドープ酸化スズからなる群から選ばれる一種以上であることがさらに好ましく、酸化チタン基材に担持したアンチモンドープ酸化スズであることがさらにより好ましい。上記赤外線吸収剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The infrared absorber may be any as long as it has an effect of absorbing near infrared rays except carbon black, and is not particularly limited. For example, it is preferable to have an absorption peak in the wavelength region of 750 to 2500 nm. Specific examples thereof include metal oxides, and more specifically, antimony-doped tin oxide, indium tin oxide, niob-doped tin oxide, phosphorus-doped tin oxide, fluorine-doped tin oxide, and antimony-doped supported on a titanium oxide substrate. Examples thereof include tin oxide, iron-doped titanium oxide, carbon-doped titanium oxide, fluorine-doped titanium oxide, nitrogen-doped titanium oxide, aluminum-doped zinc oxide, and antimony-doped zinc oxide. Indium tin oxide includes indium-doped tin oxide and tin-doped indium oxide. From the viewpoint of improving the infrared absorptive capacity, the infrared absorber is preferably a tin oxide-based compound, and antimony-doped tin oxide, indium tin oxide, niobium-doped tin oxide, phosphorus-doped tin oxide, fluorine-doped tin oxide, and titanium oxide. It is more preferably one or more selected from the group consisting of antimony-doped tin oxide carried on the substrate, and one or more selected from the group consisting of antimony-doped tin oxide and antimony-doped tin oxide supported on the titanium oxide substrate. It is even more preferable, and it is even more preferable that the antimony-doped tin oxide is carried on the titanium oxide substrate. The infrared absorber may be used alone or in combination of two or more.
 本発明の1以上の実施形態において、赤外線吸収剤はカーボンブラックを含まない。カーボンブラックを含まないことで、白度が低下せず、布帛を淡色にすることができ、染色時の発色性が良好になる。 In one or more embodiments of the present invention, the infrared absorber does not contain carbon black. By not containing carbon black, the whiteness does not decrease, the fabric can be light-colored, and the color-developing property at the time of dyeing becomes good.
 赤外線吸収剤は、繊維内部に均一に分散しやすい観点から、平均粒子径が2μm以下であることが好ましく、1μm以下であることがより好ましく、0.5μm以下であることがさらに好ましい。本発明の1以上の実施形態において、赤外線吸収剤の粒子径は、粉体の場合は、レーザー回析法で測定することができ、水や有機溶媒に分散した分散体(分散液)の場合は、レーザー回折法又は動的光散乱法で測定することができる。 The infrared absorber preferably has an average particle size of 2 μm or less, more preferably 1 μm or less, and even more preferably 0.5 μm or less, from the viewpoint of being easily dispersed evenly inside the fiber. In one or more embodiments of the present invention, the particle size of the infrared absorber can be measured by a laser diffraction method in the case of powder, and in the case of a dispersion (dispersion liquid) dispersed in water or an organic solvent. Can be measured by laser diffraction or dynamic light scattering.
 <繊維>
 本発明の1以上の実施形態において、難燃性布帛を構成する繊維は、特に限定されないが、例えば、繊維中の赤外線吸収剤の分散性などの観点から、少なくともアクリル系繊維、セルロース系繊維、及びポリエステル系繊維のいずれかを含むことが好ましい。
<Fiber>
In one or more embodiments of the present invention, the fibers constituting the flame-retardant fabric are not particularly limited, but for example, from the viewpoint of dispersibility of the infrared absorber in the fibers, at least acrylic fibers, cellulose fibers, and the like. And preferably contains any of polyester fibers.
 <アクリル系繊維>
 アクリル系繊維は、アクリル系重合体の全重量に対して、アクリロニトリルを40~70重量%、他の成分を30~60重量%含むアクリル系重合体で構成されていることが好ましい。上記アクリル系重合体中のアクリロニトリルの含有量が40~70重量%であれば、アクリル系繊維の耐熱性及び難燃性が良好になる。
<Acrylic fiber>
The acrylic fiber is preferably composed of an acrylic polymer containing 40 to 70% by weight of acrylonitrile and 30 to 60% by weight of other components with respect to the total weight of the acrylic polymer. When the content of acrylonitrile in the acrylic polymer is 40 to 70% by weight, the heat resistance and flame retardancy of the acrylic fiber are improved.
 上記他の成分としては、アクリロニトリルと共重合可能なものであればよく特に限定されない。例えば、ハロゲン含有ビニル系単量体、スルホン酸基含有単量体などが挙げられる。 The other components are not particularly limited as long as they can be copolymerized with acrylonitrile. For example, a halogen-containing vinyl-based monomer, a sulfonic acid group-containing monomer, and the like can be mentioned.
 上記ハロゲン含有ビニル系単量体としては、例えば、ハロゲン含有ビニル、ハロゲン含有ビニリデンなどが挙げられる。ハロゲン含有ビニルとしては、例えば、塩化ビニル、臭化ビニルなどが挙げられ、ハロゲン含有ビニリデンとしては、塩化ビニリデン、臭化ビニリデンなどが挙げられる。これらのハロゲン含有ビニル系単量体は、一種又は二種以上を組み合わせて用いてもよい。耐熱性及び難燃性の観点から、上記アクリル系繊維は、アクリル系重合体の全重量に対して、他の成分としてハロゲン含有ビニル系単量体を30~60重量%含むことが好ましい。 Examples of the halogen-containing vinyl-based monomer include halogen-containing vinyl and halogen-containing vinylidene. Examples of the halogen-containing vinyl include vinyl chloride and vinyl bromide, and examples of the halogen-containing vinylidene include vinylidene chloride and vinylidene bromide. These halogen-containing vinyl-based monomers may be used alone or in combination of two or more. From the viewpoint of heat resistance and flame retardancy, the acrylic fiber preferably contains 30 to 60% by weight of a halogen-containing vinyl monomer as another component with respect to the total weight of the acrylic polymer.
 上記スルホン酸基を含有する単量体としては、例えば、メタクリルスルホン酸、アリルスルホン酸、スチレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、及びそれらの塩などが挙げられる。上記において、塩としては、例えば、p-スチレンスルホン酸ソーダなどのナトリウム塩、カリウム塩、アンモニウム塩などを挙げることができるが、これらに限定されるものではない。これらのルホン酸基を含有する単量体は、一種又は二種以上を組み合わせて用いてもよい。スルホン酸基を含有する単量体は必要に応じて使用されるが、上記アクリル系重合体中のスルホン酸基を含有する単量体の含有量が3重量%以下であれば紡糸工程の生産安定性に優れる。 Examples of the monomer containing a sulfonic acid group include methacrylsulfonic acid, allylsulfonic acid, styrenesulfonic acid, 2-acrylamide-2-methylpropanesulfonic acid, and salts thereof. In the above, examples of the salt include, but are not limited to, sodium salts such as sodium p-styrene sulfonic acid, potassium salts, and ammonium salts. These monomers containing a ruphonic acid group may be used alone or in combination of two or more. A monomer containing a sulfonic acid group is used as needed, but if the content of the monomer containing a sulfonic acid group in the acrylic polymer is 3% by weight or less, it is produced in the spinning process. Excellent stability.
 上記アクリル系重合体は、40~70重量%のアクリロニトリルと、30~57重量%のハロゲン含有ビニル系単量体、0~3重量%のスルホン酸基を含有する単量体を共重合した共重合体であることが好ましい。より好ましくは、上記アクリル系重合体は、45~65重量%のアクリロニトリルと、35~52重量%のハロゲン含有ビニル系単量体、0~3重量%のスルホン酸基を含有する単量体を共重合した共重合体である。 The acrylic polymer is a copolymer of 40 to 70% by weight of acrylonitrile, 30 to 57% by weight of a halogen-containing vinyl-based monomer, and 0 to 3% by weight of a monomer containing a sulfonic acid group. It is preferably a polymer. More preferably, the acrylic polymer contains 45 to 65% by weight of acrylonitrile, 35 to 52% by weight of a halogen-containing vinyl-based monomer, and 0 to 3% by weight of a sulfonic acid group. It is a copolymerized copolymer.
 アクリル系繊維は、特に限定されないが、上述した赤外線吸収剤を繊維内部に含むことが好ましく、より好ましくは繊維内部に均一に分散して存在する。繊維中に赤外線吸収剤が分散しやすく、布帛に遮熱性を付与しやすい。 The acrylic fiber is not particularly limited, but preferably contains the above-mentioned infrared absorber inside the fiber, and more preferably is uniformly dispersed inside the fiber. The infrared absorber is easily dispersed in the fiber, and the fabric is easily heat-shielded.
 アクリル系繊維は、特に限定されないが、難燃性の観点から、難燃剤を含むことが好ましい。難燃剤としては、例えば、アンチモン系化合物などが挙げられる。アクリル系繊維におけるアンチモン系化合物の含有量は、繊維全重量に対して2~30重量%であることが好ましく、より好ましくは3~20重量%である。アクリル系繊維におけるアンチモン化合物の含有量が上記範囲内であれば、紡糸工程の生産安定性に優れるとともに難燃性が良好になる。 The acrylic fiber is not particularly limited, but preferably contains a flame retardant from the viewpoint of flame retardancy. Examples of the flame retardant include antimony compounds. The content of the antimony compound in the acrylic fiber is preferably 2 to 30% by weight, more preferably 3 to 20% by weight, based on the total weight of the fiber. When the content of the antimony compound in the acrylic fiber is within the above range, the production stability of the spinning process is excellent and the flame retardancy is good.
 上記アンチモン化合物としては、例えば、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、アンチモン酸、アンチモン酸ナトリウムなどのアンチモン酸の塩類、オキシ塩化アンチモンなどが挙げられ、これらの一種又は二種以上を組み合わせて用いることができる。紡糸工程の生産安定性の面から、上記アンチモン化合物は、三酸化アンチモン、四酸化アンチモン及び五酸化アンチモンからなる群から選ばれる1以上の化合物であることが好ましい。 Examples of the antimony compound include antimony acid salts such as antimony trioxide, antimony tetroxide, antimony pentoxide, antimony acid, and sodium antimonate, antimony oxychloride, and the like, and one or a combination of two or more thereof. Can be used. From the viewpoint of production stability in the spinning process, the antimony compound is preferably one or more compounds selected from the group consisting of antimony trioxide, antimony tetroxide and antimony tetroxide.
 アクリル系繊維は、特に限定されないが、紫外線吸収剤を含んでもよい。上記紫外線吸収剤としては、特に限定されず、例えば、酸化チタン、酸化亜鉛などの無機化合物、トリアジン系化合物、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物などの有機化合物などを用いることができる。中でも、白度の観点から、酸化チタンであることが好ましい。アクリル系繊維は、アクリル系繊維の全重量に対して紫外線吸収剤を0.3~10重量%含むことが好ましく、より好ましくは0.5~7重量%含み、さらに好ましくは1~5重量%含む。 The acrylic fiber is not particularly limited, but may contain an ultraviolet absorber. The ultraviolet absorber is not particularly limited, and for example, an inorganic compound such as titanium oxide or zinc oxide, an organic compound such as a triazine-based compound, a benzophenone-based compound, or a benzotriazole-based compound can be used. Above all, titanium oxide is preferable from the viewpoint of whiteness. The acrylic fiber preferably contains an ultraviolet absorber in an amount of 0.3 to 10% by weight, more preferably 0.5 to 7% by weight, still more preferably 1 to 5% by weight, based on the total weight of the acrylic fiber. include.
 また、アクリル系繊維は、必要に応じて、本発明の効果を阻害しない範囲内で、難燃助剤、艶消し剤、結晶核剤、分散剤、滑剤、安定剤、蛍光剤、酸化防止剤、静電防止剤、顔料などの各種添加剤を含有してもよい。 Further, the acrylic fiber is, if necessary, a flame retardant aid, a matting agent, a crystal nucleating agent, a dispersant, a lubricant, a stabilizer, a fluorescent agent, and an antioxidant, as long as the effect of the present invention is not impaired. , Antistatic agents, pigments and other various additives may be contained.
 アクリル系繊維の繊度は、特に限定されないが、紡績性や加工性、布帛とした際の風合いや強度の観点から、好ましくは1~20dtexであり、より好ましくは1.5~15dtexである。また、アクリル系繊維の繊維長は、特に限定されないが、紡績性や加工性の観点から、好ましくは38~127mmであり、より好ましくは38~76mmである。本発明の1以上の実施形態において、繊維の繊度は、JIS L 1015に基づいて測定したものである。 The fineness of the acrylic fiber is not particularly limited, but is preferably 1 to 20 dtex, more preferably 1.5 to 15 dtex, from the viewpoint of spinnability, processability, texture and strength when made into a fabric. The fiber length of the acrylic fiber is not particularly limited, but is preferably 38 to 127 mm, more preferably 38 to 76 mm, from the viewpoint of spinnability and processability. In one or more embodiments of the present invention, the fineness of the fiber is measured based on JIS L 1015.
 アクリル系繊維の強度は、特に限定されないが、紡績性や加工性の観点から、1.0~4.0cN/dtexであることが好ましく、1.5~3.0cN/dtexであることがより好ましい。また、アクリル系繊維の伸度は、特に限定されないが、紡績性や加工性の観点から、20~35%であることが好ましく、より好ましくは20~25%である。本発明の1以上の実施形態において、繊維の強度及び伸度は、JIS L 1015に基づいて測定したものである。 The strength of the acrylic fiber is not particularly limited, but is preferably 1.0 to 4.0 cN / dtex, and more preferably 1.5 to 3.0 cN / dtex from the viewpoint of spinnability and processability. preferable. The elongation of the acrylic fiber is not particularly limited, but is preferably 20 to 35%, more preferably 20 to 25%, from the viewpoint of spinnability and processability. In one or more embodiments of the present invention, the strength and elongation of the fiber are measured based on JIS L 1015.
 アクリル系重合体を溶解した紡糸原液に赤外線吸収剤及び難燃剤などを添加する以外は、一般的なアクリル系繊維の場合と同様に紡糸原液を湿式紡糸することで製造することができる。 It can be manufactured by wet spinning the undiluted spinning solution in the same manner as for general acrylic fibers, except that an infrared absorber, a flame retardant, etc. are added to the undiluted spinning solution in which the acrylic polymer is dissolved.
 アクリル系繊維としては、繊維内部に赤外線吸収剤を含むアクリル系繊維と、繊維内部に赤外線吸収剤を含まないアクリル系繊維を併用してもよい。 As the acrylic fiber, an acrylic fiber containing an infrared absorber inside the fiber and an acrylic fiber containing no infrared absorber inside the fiber may be used in combination.
 <セルロース系繊維>
 セルロース系繊維は、セルロースから誘導された繊維に対する総称であり、特に限定されず、市販されているセルロース系繊維を用いてもよい。例えば、木綿、麻(亜麻、ラミー、ジュート、ケナフ、大麻、マニラ麻、サイザル麻、ニュージーランド麻を含む)、カポック、バナナ、ヤシなどの天然繊維、アセテート、トリアセテートなどの半合成繊維、及びレーヨン、キュプラ、リヨセルなどの再生繊維を含む。再生繊維であるレーヨンの製造方法は、従来公知のビスコースレーヨン繊維の製造方法でよい。具体的にはセルロース含有量が7~10%程度で、苛性ソーダなどのアルカリがをセルロースに対して50~80%程度含有するビスコースを用いればよい。これを紡糸ノズルから硫酸などを含む酸性溶液中に押し出し、繊維を形成させながら化学反応させてセルロースを再生して製造する。また、セルロース系繊維は繊維内部に上述した赤外線吸収剤を含有した機能性セルロース系繊維でもよく、特に限定されない。機能性セルロース系繊維として、例えばオーミケンシ社製「Solar Touch(登録商標)」などを用いることができる。セルロース系繊維としては、繊維内部に赤外線吸収剤を含有したセルロース系繊維及び赤外線吸収剤を含有しないセルロース系繊維を併用してもよい。セルロース系繊維が繊維内部に赤外線吸収剤を含有する場合、紫外線吸収剤を0.3~10重量%含むことが好ましく、より好ましくは0.5~7重量%含み、さらに好ましくは1~5重量%含む。セルロース系繊維が繊維内部に赤外線吸収剤を含有する場合、赤外線吸収剤が繊維内部に均一に分散して存在することが好ましい。
<Cellulose fiber>
Cellulose-based fibers are a general term for fibers derived from cellulose, and are not particularly limited, and commercially available cellulosic fibers may be used. For example, cotton, hemp (including flax, ramie, jute, kenaf, cannabis, Manila hemp, sisal hemp, New Zealand hemp), natural fibers such as capoc, banana and palm, semi-synthetic fibers such as acetate and triacetate, and rayon and cupra. , Contains regenerated fibers such as lyocell. The method for producing rayon, which is a regenerated fiber, may be a conventionally known method for producing viscose rayon fiber. Specifically, viscose having a cellulose content of about 7 to 10% and an alkali such as caustic soda in an amount of about 50 to 80% with respect to cellulose may be used. This is extruded from a spinning nozzle into an acidic solution containing sulfuric acid or the like and chemically reacted while forming fibers to regenerate cellulose and produce it. Further, the cellulosic fiber may be a functional cellulosic fiber containing the above-mentioned infrared absorber inside the fiber, and is not particularly limited. As the functional cellulosic fiber, for example, "Solar Touch (registered trademark)" manufactured by Omikenshi Co., Ltd. can be used. As the cellulosic fiber, a cellulosic fiber containing an infrared absorber inside the fiber and a cellulosic fiber not containing an infrared absorber may be used in combination. When the cellulosic fiber contains an infrared absorber inside the fiber, it preferably contains an ultraviolet absorber in an amount of 0.3 to 10% by weight, more preferably 0.5 to 7% by weight, still more preferably 1 to 5% by weight. %include. When the cellulosic fiber contains an infrared absorber inside the fiber, it is preferable that the infrared absorber is uniformly dispersed inside the fiber.
 セルロース系繊維の繊度は、特に限定されないが、紡績性や加工性、布帛とした際の風合いや強度の観点から、好ましくは1~20dtexであり、より好ましくは1.5~15dtexである。また、セルロース系繊維の繊維長は、特に限定されないが、紡績性や加工性の観点から、好ましくは38~127mmであり、より好ましくは38~76mmである。 The fineness of the cellulosic fiber is not particularly limited, but is preferably 1 to 20 dtex, more preferably 1.5 to 15 dtex, from the viewpoint of spinnability, processability, texture and strength when made into a fabric. The fiber length of the cellulosic fiber is not particularly limited, but is preferably 38 to 127 mm, more preferably 38 to 76 mm, from the viewpoint of spinnability and processability.
 <ポリエステル系繊維>
 ポリエステルとしては、テレフタル酸を主たる酸成分とし、炭素数2~6のアルキレングリコール、すなわちエチレングリコール、トリメチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコールからなる群より選ばれた少なくとも一種のグリコール、特に好ましくはエチレングリコールを主たるグリコール成分とするポリエステルが例示され、上述した赤外線吸収剤を含有した機能性ポリエステルでもよく、特に限定されない。
<Polyester fiber>
As the polyester, at least one selected from the group consisting of terephthalic acid as a main acid component and alkylene glycol having 2 to 6 carbon atoms, that is, ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, and hexamethylene glycol. Glycol, particularly preferably a polyester containing ethylene glycol as a main glycol component is exemplified, and the above-mentioned functional polyester containing an infrared absorber may be used, and is not particularly limited.
 本発明の1以上の実施形態において、ポリエステル系繊維は、ポリエステル系樹脂組成物で構成されている。ポリエステル系樹脂組成物とは、ポリエステル系樹脂組成物の全重量を100重量%とした場合、ポリエステル系樹脂を50重量%より多く含むことを意味し、ポリエステル系樹脂を70重量%以上含むことが好ましく、80重量%以上含むことがより好ましく、90重量%以上含むことがさらに好ましく、95重量%以上含むことがさらにより好ましい。 In one or more embodiments of the present invention, the polyester fiber is composed of a polyester resin composition. The polyester-based resin composition means that the polyester-based resin is contained in an amount of more than 50% by weight when the total weight of the polyester-based resin composition is 100% by weight, and the polyester-based resin may be contained in an amount of 70% by weight or more. It is preferable to contain 80% by weight or more, more preferably 90% by weight or more, and even more preferably 95% by weight or more.
 ポリエステル系樹脂としては、ポリアルキレンテレフタレート及びポリアルキレンテレフタレートを主体とした共重合ポリエステルからなる群から選ばれる一種以上を用いることが好ましい。本発明の1以上の実施形態において、「ポリアルキレンテレフタレートを主体とする共重合ポリエステル」は、ポリアルキレンテレフタレートを80モル%以上含有する共重合ポリエステルをいう。 As the polyester-based resin, it is preferable to use one or more selected from the group consisting of polyalkylene terephthalate and copolymerized polyester mainly composed of polyalkylene terephthalate. In one or more embodiments of the present invention, the "copolymerized polyester mainly composed of polyalkylene terephthalate" refers to a copolymerized polyester containing 80 mol% or more of polyalkylene terephthalate.
 ポリアルキレンテレフタレートとしては、特に限定されないが、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレートなどが挙げられる。 The polyalkylene terephthalate is not particularly limited, and examples thereof include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polycyclohexanedimethylene terephthalate.
 ポリアルキレンテレフタレートを主体とする共重合ポリエステルとしては、特に限定されないが、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレートなどのポリアルキレンテレフタレートを主体とし、他の共重合成分を含有する共重合ポリエステルなどが挙げられる。 The copolymerized polyester mainly composed of polyalkylene terephthalate is not particularly limited, but for example, polyalkylene terephthalate such as polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polycyclohexanedimethylene terephthalate is mainly used, and other copolymerization components are used. Examples thereof include copolymerized polyester contained therein.
 他の共重合成分としては、例えば、イソフタル酸、オルトフタル酸、ナフタレンジカルボン酸、パラフェニレンジカルボン酸、トリメリット酸、ピロメリット酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸などの多価カルボン酸及びそれらの誘導体;5-ナトリウムスルホイソフタル酸、5-ナトリウムスルホイソフタル酸ジヒドロキシエチルなどのスルホン酸塩を含むジカルボン酸及びそれらの誘導体;1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、ポリエチレングリコール、トリメチロールプロパン、ペンタエリスリトール、4-ヒドロキシ安息香酸、ε-カプロラクトン、ビスフェノールAのエチレングリコールエーテルなどが挙げられる。 Other copolymerization components include, for example, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, paraphenylenedicarboxylic acid, trimellitic acid, pyromellitic acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, and sebacic acid. , Polyvalent carboxylic acids such as dodecanedioic acid and their derivatives; dicarboxylic acids including sulfonates such as 5-sodium sulfoisophthalic acid, 5-sodium sulfoisophthalic acid dihydroxyethyl and their derivatives; 1,2-propanediol , 1,3-Propanediol, 1,4-Butanediol, 1,6-hexanediol, Neopentylglycol, 1,4-Cyclohexanedimethanol, Diethyleneglycol, Polyethylene glycol, Trimethylolpropane, Pentaerythritol, 4-Hydroxybenzoic acid Examples thereof include acid, ε-caprolactone, and ethylene glycol ether of bisphenol A.
 共重合ポリエステルは、安定性及び操作の簡便性の点から、主体となるポリアルキレンテレフタレートに少量の他の共重合成分を含有させて反応させることにより製造するのが好ましい。ポリアルキレンテレフタレートとしては、テレフタル酸及び/又はその誘導体(例えば、テレフタル酸メチル)と、アルキレングリコールとの重合体を用いることができる。前記共重合ポリエステルは、主体となるポリアルキレンテレフタレートの重合に用いるテレフタル酸及び/又はその誘導体(例えば、テレフタル酸メチル)と、アルキレングリコールとの混合物に、少量の他の共重合成分であるモノマーあるいはオリゴマー成分を含有させたものを重合させることにより製造してもよい。 From the viewpoint of stability and ease of operation, the copolymerized polyester is preferably produced by reacting the main polyalkylene terephthalate with a small amount of other copolymerizing components. As the polyalkylene terephthalate, a polymer of terephthalic acid and / or a derivative thereof (for example, methyl terephthalate) and alkylene glycol can be used. The copolymerized polyester is a mixture of terephthalic acid and / or a derivative thereof (for example, methyl terephthalate) used for the polymerization of the main polyalkylene terephthalate and alkylene glycol, and a monomer or a monomer which is a small amount of other copolymerization components. It may be produced by polymerizing a product containing an oligomer component.
 共重合ポリエステルは、主体となるポリアルキレンテレフタレートの主鎖及び/又は側鎖に上記他の共重合成分が重縮合していればよく、共重合の方法などには特別な限定はない。 The copolymerized polyester may be polycondensed with the above-mentioned other copolymerization components on the main chain and / or side chain of the main polyalkylene terephthalate, and the copolymerization method is not particularly limited.
 ポリアルキレンテレフタレートを主体とする共重合ポリエステルの具体例としては、例えば、ポリエチレンテレフタレートを主体とし、ビスフェノールAのエチレングリコールエーテル、1,4-シクロヘキサジメタノール、イソフタル酸及び5-ナトリウムスルホイソフタル酸ジヒドロキシエチルからなる群から選ばれる一種の化合物を共重合したポリエステルなどが挙げられる。 Specific examples of the copolymerized polyester mainly composed of polyalkylene terephthalate include, for example, ethylene glycol ether of bisphenol A, 1,4-cyclohexadimethanol, isophthalic acid and dihydroxyethyl 5-sodium sulfoisophthalate mainly composed of polyethylene terephthalate. Examples thereof include polyester obtained by copolymerizing a kind of compound selected from the group consisting of.
 ポリアルキレンテレフタレート及び前記ポリアルキレンテレフタレートを主体とする共重合ポリエステルは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも、ポリエチレンテレフタレート;ポリプロピレンテレフタレート;ポリブチレンテレフタレート;ポリエチレンテレフタレートを主体とし、ビスフェノールAのエチレングリコールエーテルを共重合したポリエステル;ポリエチレンテレフタレートを主体とし、1,4-シクロヘキサンジメタノールを共重合したポリエステル;ポリエチレンテレフタレートを主体とし、イソフタル酸を共重合したポリエステル;及びポリエチレンテレフタレートを主体とし、5-ナトリウムスルホイソフタル酸ジヒドロキシエチルを共重合したポリエステルなどを単独又は2種以上組み合わせて用いることが好ましい。 The polyalkylene terephthalate and the copolymerized polyester mainly composed of the polyalkylene terephthalate may be used alone or in combination of two or more. Among them, polyethylene terephthalate; polypropylene terephthalate; polybutylene terephthalate; polyester mainly composed of polyethylene terephthalate and copolymerized with ethylene glycol ether of bisphenol A; polyester mainly composed of polyethylene terephthalate and copolymerized with 1,4-cyclohexanedimethanol; polyester. It is preferable to use polyester mainly composed of terephthalate and copolymerized with isophthalic acid; and polyester mainly composed of polyethylene terephthalate and copolymerized with dihydroxyethyl 5-sodium sulfoisophthalate alone or in combination of two or more.
 ポリエステル系樹脂の固有粘度(IV値と称す場合がある)は、特に限定されないが、0.3dL/g以上1.2dL/g以下であることが好ましく、0.4dL/g以上1.0dL/g以下であることがより好ましい。固有粘度が0.3dL/g以上であると、得られる繊維の機械的強度が低下せず、燃焼試験時にドリップする恐れもない。また、固有粘度が1.2dL/g以下であると、分子量が増大しすぎず、溶融粘度が高くなり過ぎることがなく、溶融紡糸が容易となるうえ、繊度も均一になりやすい。 The intrinsic viscosity (sometimes referred to as IV value) of the polyester resin is not particularly limited, but is preferably 0.3 dL / g or more and 1.2 dL / g or less, and 0.4 dL / g or more and 1.0 dL / g. It is more preferably g or less. When the intrinsic viscosity is 0.3 dL / g or more, the mechanical strength of the obtained fiber does not decrease and there is no risk of drip during the combustion test. Further, when the intrinsic viscosity is 1.2 dL / g or less, the molecular weight does not increase too much, the melt viscosity does not become too high, melt spinning becomes easy, and the fineness tends to be uniform.
 ポリエステル系樹脂組成物は、難燃剤を含んでもよい。難燃剤としては、特に限定されず、例えば、リン系難燃剤、臭素系難燃剤などが挙げられる。 The polyester resin composition may contain a flame retardant. The flame retardant is not particularly limited, and examples thereof include a phosphorus-based flame retardant and a bromine-based flame retardant.
 ポリエステル系樹脂組成物は、ポリエステル系樹脂に加えて他の樹脂を含んでもよい。他の樹脂としては、例えば、ポリアミド系樹脂、塩化ビニル系樹脂、モダアクリル系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂、ポリフェニレンサルファイド系樹脂などが挙げられる。他の樹脂は、一種を単独で用いてもよく、二種以上を併用してもよい。 The polyester-based resin composition may contain other resins in addition to the polyester-based resin. Examples of other resins include polyamide-based resins, vinyl chloride-based resins, modaacrylic-based resins, polycarbonate-based resins, polyolefin-based resins, and polyphenylene sulfide-based resins. As for other resins, one type may be used alone, or two or more types may be used in combination.
 ポリエステル系繊維の繊度は、特に限定されないが、紡績性や加工性、布帛とした際の風合いや強度の観点から、好ましくは1~20dtexであり、より好ましくは1.5~15dtexである。また、ポリエステル系繊維の繊維長は、特に限定されないが、紡績性や加工性の観点から、好ましくは38~127mmであり、より好ましくは38~76mmである。 The fineness of the polyester fiber is not particularly limited, but is preferably 1 to 20 dtex, more preferably 1.5 to 15 dtex, from the viewpoint of spinnability, processability, texture and strength when made into a fabric. The fiber length of the polyester fiber is not particularly limited, but is preferably 38 to 127 mm, more preferably 38 to 76 mm, from the viewpoint of spinnability and processability.
 ポリエステル系樹脂組成物に難燃剤や赤外線吸収剤などを添加する以外は、一般的なポリエステル系繊維の場合と同様にポリエステル系樹脂組成物を溶融紡糸することで製造することができる。 It can be produced by melt-spinning a polyester-based resin composition in the same manner as in the case of general polyester-based fibers, except that a flame retardant, an infrared absorber, or the like is added to the polyester-based resin composition.
 ポリエステル系繊維としては、繊維内部に赤外線吸収剤を含有するポリエステル系繊維及び赤外線吸収剤を含有しないポリエステル系繊維を併用してもよい。ポリエステル系繊維が繊維内部に赤外線吸収剤を含有する場合、紫外線吸収剤を0.3~10重量%含むことが好ましく、より好ましくは0.5~7重量%含み、さらに好ましくは1~5重量%含む。ポリエステル系繊維が繊維内部に赤外線吸収剤を含有する場合、赤外線吸収剤が繊維内部に均一に分散して存在することが好ましい。 As the polyester fiber, a polyester fiber containing an infrared absorber inside the fiber and a polyester fiber not containing an infrared absorber may be used in combination. When the polyester fiber contains an infrared absorber inside the fiber, it preferably contains an ultraviolet absorber in an amount of 0.3 to 10% by weight, more preferably 0.5 to 7% by weight, still more preferably 1 to 5% by weight. %include. When the polyester fiber contains an infrared absorber inside the fiber, it is preferable that the infrared absorber is uniformly dispersed inside the fiber.
 <難燃性>
 本発明の1以上の実施形態において、布帛の難燃性は、限界酸素指数(LOI)で示すことができる。LOIが大きいほど、布帛の難燃性が高いことを示す。布帛が優れた難燃性を有するためには、少なくともLOIは26以上が好ましく、28以上がさらに好ましく、30以上が最も好ましい。限界酸素指数が25未満では、布帛の難燃化において十分とは言えず、燃焼挙動において安全に自己消火するレベルではないためである。
<Flame retardant>
In one or more embodiments of the invention, the flame retardancy of the fabric can be indicated by the limit oxygen index (LOI). The larger the LOI, the higher the flame retardancy of the fabric. In order for the fabric to have excellent flame retardancy, the LOI is preferably 26 or more, more preferably 28 or more, and most preferably 30 or more. This is because if the limit oxygen index is less than 25, it cannot be said that it is sufficient for making the fabric flame-retardant, and it is not at a level of safely self-extinguishing in combustion behavior.
 <難燃性布帛>
 難燃性布帛は、遮熱性、難燃性、発色性及び風合いなどの観点から、布帛の全重量に対して、繊維の全重量に対してアンチモン化合物を2~30重量%含有するアクリル系繊維を35~65重量%、セルロース系繊維を25~45重量%、及びポリエステル系繊維を0~45重量%含むことが好ましく、アクリル系繊維を35~60重量%、セルロース系繊維を25~45重量%、及びポリエステル系繊維を5~45重量%含むことがより好ましく、アクリル系繊維を35~60重量%、セルロース系繊維を30~45重量%、及びポリエステル系繊維を5~40重量%含むことがより好ましく、アクリル系繊維を35~55重量%、セルロース系繊維を30~40重量%、及びポリエステル系繊維を5~40重量%含むことがさらに好ましく、アクリル系繊維を35~50重量%、セルロース系繊維を30~40重量%、及びポリエステル系繊維を10~40重量%含むことがさらにより好ましい。難燃性の観点から、前記アクリル系繊維は、繊維の全重量に対してアンチモン化合物を3~20重量%含有することが好ましい。赤外線吸収剤は、アクリル系繊維、セルロース系繊維及びポリエステル系繊維の少なくとも一つの繊維内部に含まれていればよく、さらには、例えばアクリル系繊維及びセルロース系繊維が繊維内部に赤外線吸収剤を含むといった、2つ以上の繊維が赤外線吸収剤を含んでいてもよい。
<Flame-retardant fabric>
The flame-retardant fabric is an acrylic fiber containing 2 to 30% by weight of an antimony compound with respect to the total weight of the fiber from the viewpoint of heat insulation, flame retardancy, color development and texture. 35 to 65% by weight, cellulose fibers 25 to 45% by weight, polyester fibers 0 to 45% by weight, acrylic fibers 35 to 60% by weight, cellulose fibers 25 to 45% by weight. %, And 5 to 45% by weight of polyester fiber, more preferably 35 to 60% by weight of acrylic fiber, 30 to 45% by weight of cellulose fiber, and 5 to 40% by weight of polyester fiber. More preferably, it contains 35 to 55% by weight of acrylic fiber, 30 to 40% by weight of cellulose fiber, and 5 to 40% by weight of polyester fiber, and 35 to 50% by weight of acrylic fiber. It is even more preferable to contain 30 to 40% by weight of cellulose-based fibers and 10 to 40% by weight of polyester-based fibers. From the viewpoint of flame retardancy, the acrylic fiber preferably contains 3 to 20% by weight of the antimony compound with respect to the total weight of the fiber. The infrared absorber may be contained inside at least one of the acrylic fiber, the cellulose fiber and the polyester fiber, and further, for example, the acrylic fiber and the cellulose fiber contain the infrared absorber inside the fiber. Two or more fibers may contain an infrared absorber.
 また、布帛の強度を向上させる観点から、本発明の効果を阻害しない範囲で、その他の繊維を含んでいてもよい。他の繊維としては、例えば、導電性繊維、アラミド系繊維及びポリイミド繊維などが挙げられ、パラ又はメタ系アラミド繊維の場合、布帛全重量に対し、当該繊維を5~20%重量%を含んでいてもよい。 Further, from the viewpoint of improving the strength of the fabric, other fibers may be contained as long as the effect of the present invention is not impaired. Examples of other fibers include conductive fibers, aramid fibers and polyimide fibers. In the case of para or meta-aramid fibers, the fibers are contained in an amount of 5 to 20% by weight based on the total weight of the fabric. You may.
 難燃性布帛において、繊維は、紡績糸の形態でもよい。紡績糸の太さは、特に限定されないが、例えば、英式綿番手5~40番であってもよく、10~30番であってもよい。また糸種は単糸であってもよく、双糸であってもよい。 In the flame-retardant fabric, the fiber may be in the form of spun yarn. The thickness of the spun yarn is not particularly limited, but may be, for example, an English-style cotton count of 5 to 40 or 10 to 30. The yarn type may be a single yarn or a twin yarn.
 難燃性布帛の形態は特に限定されず、例えば、編物でもよく、織物でもよい。編物の組織は、特に限定されず、丸編、横編、経編のいずれでもよい。織物の組織は、特に限定されず、平織、綾織、朱子織などの三原組織でもよく、ドビーやジャガーなどの特殊織機を用いた柄織物でもよい。耐久性に優れるという観点から、難燃性布帛は、織物であることが好ましく、綾織の織物であることがより好ましい。 The form of the flame-retardant fabric is not particularly limited, and may be, for example, a knitted fabric or a woven fabric. The structure of the knitted fabric is not particularly limited, and may be a round knit, a horizontal knit, or a warp knit. The structure of the woven fabric is not particularly limited, and may be a plain weave, a twill weave, a satin weave, or the like, or a patterned woven fabric using a special loom such as a dobby or a jaguar. From the viewpoint of excellent durability, the flame-retardant fabric is preferably a woven fabric, and more preferably a twill woven fabric.
 難燃性布帛の目付(単位面積あたりの重量)は特に限定されないが、例えば、軽量性及び耐久性の観点から、3~10oz/yd2であることが好ましく、4~9oz/yd2であることがより好ましく、4~8oz/yd2であることがさらに好ましい。 The basis weight (weight per unit area) of the flame-retardant fabric is not particularly limited, but is preferably 3 to 10 oz / yd 2 from the viewpoint of lightness and durability, and is preferably 4 to 9 oz / yd 2 . More preferably, it is more preferably 4 to 8 oz / yd 2 .
 <赤外線発生源>
 赤外線発生源として、特に制限されず、多量の赤外線を照射する太陽光、ストーブ、焚火などの暖房器具から、微量の赤外線を発生する人体を含む全ての物のいずれでもよい。
<Infrared source>
The infrared source is not particularly limited, and may be anything from a heating device such as sunlight, a stove, or a bonfire that irradiates a large amount of infrared rays to a human body that generates a small amount of infrared rays.
 <繊維製品>
 繊維製品は、上記の布帛を用いればよく、特に限定されないが、遮熱性の観点から、例えば毛布、カーテン、カーテンの裏張り、壁紙、カーペット、タオル、作業服、消防服、天井材、天幕、布団カバー、マフラー、日傘、帽子、耐炎詰め物、断熱材、フィルター、ライニング材、テント、タープなどが挙げられる。繊維製品は、また、他の布帛や繊維を含んでいてもよい。
<Textile products>
The above-mentioned fabric may be used as the textile product, and the fabric is not particularly limited. Examples include duvet covers, mufflers, sunshades, hats, flameproof stuffing, insulation, filters, linings, tents, tarps, etc. Textile products may also contain other fabrics and fibers.
 以下、本発明を実施例に基づいて、さらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples. The present invention is not limited to these examples.
 実施例及び比較例で用いた測測定方法及び評価方法は、以下のとおりである。 The measurement and evaluation methods used in the examples and comparative examples are as follows.
 (透過率)
 布帛の透過率は、日本分光株式会社製のV-770型分光光度計により波長250~2500nmの透過率(%)を測定し、波長780~2500nmにおける透過率の平均値を求め、近赤外線の透過率とした。バンド幅は5nm(250~850nm)、20nm(850~2500nm)であった。
(Transmittance)
For the transmittance of the fabric, the transmittance (%) at a wavelength of 250 to 2500 nm was measured with a V-770 spectrophotometer manufactured by Nippon Spectroscopy Co., Ltd., and the average value of the transmittance at a wavelength of 780 to 2500 nm was obtained. The transmittance was used. The band width was 5 nm (250 to 850 nm) and 20 nm (850 to 2500 nm).
 (遮熱率)
 布帛に赤外線が照射された際の遮熱率は以下に基づき求め、遮熱性試験は以下の条件で実施した。
 測定環境:20℃×65%RH
 光源の種類:人工太陽照明灯 SERIC社製 XC-500EFSS
 照度:10万lux
 光源と布帛の距離を50cmとし、布帛の表面を光源で照射し、布帛裏面から10cm離れた場所に温度センサーを取り付けた黒体を設置し、光源を20分間照射した後の温度変化を測定した。また、布帛を取り除いた後に、光源を20分間照射した後の黒体の温度変化を測定した。さらに、下記数式(1)を用いて遮熱率を算出した。
 [数式1]
 遮熱率(%)=(A―B)/A×100
A:布帛が無い場合の黒体温度(℃)、B:布帛が有る場合の黒体温度(℃)
(Heat shield rate)
The heat shield rate when the fabric was irradiated with infrared rays was determined based on the following, and the heat shield test was carried out under the following conditions.
Measurement environment: 20 ° C x 65% RH
Type of light source: Artificial solar lighting SERIC XC-500EFSS
Illuminance: 100,000 lux
The distance between the light source and the cloth was set to 50 cm, the front surface of the cloth was irradiated with the light source, a blackbody with a temperature sensor was installed at a place 10 cm away from the back surface of the cloth, and the temperature change after irradiating the light source for 20 minutes was measured. .. Moreover, after removing the cloth, the temperature change of the black body after irradiating with a light source for 20 minutes was measured. Further, the heat shield rate was calculated using the following mathematical formula (1).
[Formula 1]
Heat shield rate (%) = (AB) / A × 100
A: Blackbody temperature (° C) when there is no cloth, B: Blackbody temperature (° C) when there is cloth
 (難燃性)
 限界酸素指数(LOI値)をJIS-L 1091 E法酸素指数による燃焼性の試験方法に準拠した形で測定した。
(Flame retardance)
The limit oxygen index (LOI value) was measured in accordance with the combustibility test method according to the JIS-L 1091 E method oxygen index.
 <アクリル系繊維の製造例i>
 アクリロニトリル51重量%、塩化ビニリデン48重量%及びp-スチレンスルホン酸ソーダ1重量%からなるアクリル系共重合体をジメチルホルムアミドに樹脂濃度が30重量%になるように溶解させた。得られた樹脂溶液に、樹脂重量100重量部に対して5重量部の酸化チタン基材に担持したアンチモンドープ酸化スズ(以下、Ti-ATOとも記す)(石原産業社製、品名「ET521W」)と10重量部の三酸化アンチモン(Sb23、日本精鉱社製、品名「Patox-M」)と5重量部の酸化チタン(堺化学工業社製、品名「R-22L」)を添加し、紡糸原液とした。得られた紡糸原液をノズル孔径0.08mm及び孔数300ホールのノズルを用い、50重量%のジメチルホルムアミド水溶液中へ押し出して凝固させ、次いで水洗した後120℃で乾燥し、乾燥後に3倍に延伸してから、さらに145℃で5分間熱処理を行うことにより、アクリル系繊維を得た。得られた製造例iのアクリル系繊維は、繊度1.7dtex、強度2.4cN/dtex、伸度25%、カット長51mmであった。アクリル系繊維の製造例において、アクリル系繊維の繊度、強度及び伸度は、JIS L 1015に基づいて測定した。製造例iのアクリル系繊維は、繊維内部にTi-ATOを含み、アクリル系繊維全重量に対するTi-ATOの含有量は4.2重量%であった。
<Acrylic fiber manufacturing example i>
An acrylic copolymer consisting of 51% by weight of acrylonitrile, 48% by weight of vinylidene chloride and 1% by weight of sodium p-styrene sulfonic acid was dissolved in dimethylformamide so that the resin concentration was 30% by weight. Antimony-doped tin oxide (hereinafter, also referred to as Ti-ATO) supported on a titanium oxide base material in an amount of 5 parts by weight based on 100 parts by weight of the resin in the obtained resin solution (manufactured by Ishihara Sangyo Co., Ltd., product name "ET521W"). And 10 parts by weight of antimony trioxide (Sb 2 O 3 , manufactured by Nihon Seiko Co., Ltd., product name "Patox-M") and 5 parts by weight of titanium oxide (manufactured by Sakai Chemical Industry Co., Ltd., product name "R-22L") are added. Then, it was used as a spinning stock solution. The obtained undiluted spinning solution was extruded into a 50 wt% dimethylformamide aqueous solution using a nozzle with a nozzle hole diameter of 0.08 mm and a hole number of 300 holes to coagulate it, then washed with water and dried at 120 ° C., and tripled after drying. After stretching, an acrylic fiber was obtained by further heat-treating at 145 ° C. for 5 minutes. The obtained acrylic fiber of Production Example i had a fineness of 1.7 dtex, a strength of 2.4 cN / dtex, an elongation of 25%, and a cut length of 51 mm. In the production example of the acrylic fiber, the fineness, strength and elongation of the acrylic fiber were measured based on JIS L 1015. The acrylic fiber of Production Example i contained Ti-ATO inside the fiber, and the content of Ti-ATO with respect to the total weight of the acrylic fiber was 4.2% by weight.
 <アクリル系繊維の製造例ii>
 得られた樹脂溶液に、樹脂重量100重量部に対して10重量部の三酸化アンチモン(Sb23、日本精鉱社製、品名「Patox-M」)を添加し、紡糸原液とした以外は、製造例iと同様にして、アクリル系繊維を得た。得られた製造例iiのアクリル系繊維は、繊度1.7dtex、強度2.6cN/dtex、伸度27%、カット長51mmであった。
<Acrylic fiber manufacturing example ii>
To the obtained resin solution, 10 parts by weight of antimony trioxide (Sb 2 O 3 , manufactured by Nihon Seiko Co., Ltd., product name "Patox-M") was added to 100 parts by weight of the resin to prepare a spinning stock solution. Obtained an acrylic fiber in the same manner as in Production Example i. The obtained acrylic fiber of Production Example ii had a fineness of 1.7 dtex, a strength of 2.6 cN / dtex, an elongation of 27%, and a cut length of 51 mm.
 <アクリル系繊維の製造例iii>
 得られた樹脂溶液に、樹脂重量100重量部に対して2.6重量部のカーボンブラック(CB、CABOT製、品名「BLACK PEARLS」)と10重量部の三酸化アンチモン(Sb23、日本精鉱社製、品名「Patox-M」)を添加し、紡糸原液とした以外は、製造例iと同様にして、アクリル系繊維を得た。得られた製造例iiiのアクリル系繊維は、繊度1.7dtex、強度2.2cN/dtex、伸度24%、カット長51mmであった。また、製造例iiiのアクリル系繊維は、繊維内部にカーボンブラックを含み、アクリル系繊維全重量に対するカーボンブラックの含有量は2.3重量%であった。
<Production example of acrylic fiber iii>
In the obtained resin solution, 2.6 parts by weight of carbon black (CB, CABOT, product name "BLACK PEARLS") and 10 parts by weight of antimony trioxide (Sb 2 O 3 , Japan) with respect to 100 parts by weight of the resin. Acrylic fibers were obtained in the same manner as in Production Example i, except that a product name "Patox-M" manufactured by Seiko Co., Ltd. was added to prepare a spinning stock solution. The obtained acrylic fiber of Production Example iii had a fineness of 1.7 dtex, a strength of 2.2 cN / dtex, an elongation of 24%, and a cut length of 51 mm. Further, the acrylic fiber of Production Example iii contained carbon black inside the fiber, and the content of carbon black with respect to the total weight of the acrylic fiber was 2.3% by weight.
 <紡績糸の製造例1~9>
 上記製造例i~iiiで得られたアクリル系繊維、セルロース系繊維(レンチング社製の「Tencel(登録商標)」、繊度1.4dtex、カット長38mm、以下において「Lyocell」とも記す)、繊維内部に赤外線吸収剤(金属酸化物)を含有するセルロース系繊維(オーミケンシ社製の「Solar Touch(登録商標)」、赤外線吸収剤含有量3重量%、繊度1.4dtex、カット長38mm、以下において「Solar touch」とも記す)、ポリエステル系繊維(帝人フロンティア社製の「テトロン(登録商標)」、繊度1.7dtex、カット長38mm、以下において「PET」とも記す)、パラアラミド繊維(Yantai Tayho Advanced Materials Co.,LTD製、品名「Taparan(登録商標)」、繊度1.7dtex、カット長51mm、以下において「p-Aramid」とも記す)、及びメタアラミド繊維(帝人社製、品名「コーネックス(登録商標)」、繊度1.7dtex、カット長51mm、以下において「m-Aramid」とも記す)を下記表1に示す割合で混合し、リング紡績により紡績し、全て英式綿番手20番の混紡糸(20/1)を製造した。
<Manufacturing examples 1 to 9 of spun yarn>
Acrylic fibers and cellulose fibers obtained in the above production examples i to iii (“Tencel®” manufactured by Lenting Co., Ltd., fineness 1.4 dtex, cut length 38 mm, hereinafter also referred to as “Lyocell”), fiber interior. Cellulous fiber containing an infrared absorber (metal oxide) ("Solar Touch (registered trademark)" manufactured by Omikenshi Co., Ltd., infrared absorber content 3% by weight, fineness 1.4 dtex, cut length 38 mm, " Solar touch), polyester fiber ("Tetron (registered trademark)" manufactured by Teijin Frontier, fineness 1.7dtex, cut length 38mm, hereinafter also referred to as "PET"), para-aramid fiber (Yantai Taiho Advanced Materials Co.) ., Made by LTD, product name "Taparan (registered trademark)", fineness 1.7 dtex, cut length 51 mm, hereinafter also referred to as "p-Aramid"), and meta-aramid fiber (manufactured by Teijin, product name "Conex (registered trademark)". , Fineness 1.7 dtex, cut length 51 mm, also referred to as "m-Aramid" in the following) were mixed at the ratio shown in Table 1 below and spun by ring spinning, all of which were blended yarns with an English cotton count of 20 (20). / 1) was manufactured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例1)
 製造例1の紡績糸をたて糸及びよこ糸に用いて2/1綾組織の織物を作製した。打ち込み本数は、たて糸は76本/1インチとし、よこ糸は54本/1インチとし、目付が5.5oz/yd2(以下において、osyとも記す)であった。
(Example 1)
The spun yarn of Production Example 1 was used for the warp yarn and the weft yarn to prepare a woven fabric having a 2/1 twill structure. The number of threads to be driven was 76 threads / 1 inch for warp threads, 54 threads / 1 inch for weft threads, and a basis weight of 5.5 oz / yd 2 (hereinafter, also referred to as osy).
 (実施例2)
 製造例2の紡績糸をたて糸及びよこ糸に用いて2/1綾組織の織物を作製した。打ち込み本数は、たて糸は80本/1インチとし、よこ糸は60本/1インチとし、得られた織物の目付は5.0oz/yd2であった。
(Example 2)
The spun yarn of Production Example 2 was used for the warp yarn and the weft yarn to prepare a woven fabric having a 2/1 twill structure. The number of threads to be driven was 80 threads / 1 inch for the warp threads, 60 threads / 1 inch for the weft threads, and the basis weight of the obtained woven fabric was 5.0 oz / yd 2 .
 (実施例3)
 製造例3の紡績糸をたて糸及びよこ糸に用いたこと以外は実施例1と同様にして織物を作製した。得られた織物の目付は5.5oz/yd2であった。
(Example 3)
A woven fabric was produced in the same manner as in Example 1 except that the spun yarn of Production Example 3 was used for the warp yarn and the weft yarn. The basis weight of the obtained woven fabric was 5.5 oz / yd 2 .
 (実施例4)
 製造例4の紡績糸をたて糸及びよこ糸に用いたこと以外は実施例1と同様にして織物を作製した。得られた織物の目付は5.8oz/yd2であった。
(Example 4)
A woven fabric was produced in the same manner as in Example 1 except that the spun yarn of Production Example 4 was used for the warp yarn and the weft yarn. The basis weight of the obtained woven fabric was 5.8 oz / yd 2 .
 (比較例1)
 製造例5の紡績糸をたて糸及びよこ糸に用いたこと以外は実施例1と同様にして織物を作製した。得られた織物の目付は5.8oz/yd2であった。
(Comparative Example 1)
A woven fabric was produced in the same manner as in Example 1 except that the spun yarn of Production Example 5 was used for the warp yarn and the weft yarn. The basis weight of the obtained woven fabric was 5.8 oz / yd 2 .
 (比較例2)
 製造例6の紡績糸をたて糸及びよこ糸に用いたこと以外は実施例2と同様にして織物を作製した。得られた織物の目付は5.9oz/yd2であった。
(Comparative Example 2)
A woven fabric was produced in the same manner as in Example 2 except that the spun yarn of Production Example 6 was used for the warp yarn and the weft yarn. The basis weight of the obtained woven fabric was 5.9 oz / yd 2 .
 (比較例3)
 製造例7の紡績糸をたて糸及びよこ糸に用いたこと以外は実施例2と同様にして織物を作製した。得られた織物の目付は5.0oz/yd2であった。
(Comparative Example 3)
A woven fabric was produced in the same manner as in Example 2 except that the spun yarn of Production Example 7 was used for the warp yarn and the weft yarn. The basis weight of the obtained woven fabric was 5.0 oz / yd 2 .
  (比較例4)
 製造例8の紡績糸をたて糸及びよこ糸に用いたこと以外は実施例2と同様にして織物を作製した。得られた織物の目付は5.5oz/yd2であった。
(Comparative Example 4)
A woven fabric was produced in the same manner as in Example 2 except that the spun yarn of Production Example 8 was used for the warp yarn and the weft yarn. The basis weight of the obtained woven fabric was 5.5 oz / yd 2 .
 (比較例5)
 製造例9の紡績糸をたて糸及びよこ糸に用いたこと以外は実施例2と同様にして織物を作製した。得られた織物の目付は5.8oz/yd2であった。
(Comparative Example 5)
A woven fabric was produced in the same manner as in Example 2 except that the spun yarn of Production Example 9 was used for the warp yarn and the weft yarn. The basis weight of the obtained woven fabric was 5.8 oz / yd 2 .
 実施例及び比較例で得られた織物の透過率及び遮熱率を上述したとおりに測定し、その結果を下記表2に示した。 The transmittance and heat shielding rate of the woven fabrics obtained in Examples and Comparative Examples were measured as described above, and the results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、実施例の難燃性布帛は、近赤外線の透過率が低く、当該布帛の近赤外線が照射される面の裏面側の温度上昇が抑制され、遮熱率も高くなった。 As can be seen from Table 2, the flame-retardant fabric of the example has a low transmittance of near-infrared rays, the temperature rise on the back surface side of the surface irradiated with the near-infrared rays of the fabric is suppressed, and the heat shielding rate is also high. rice field.
 本発明は、特に限定されないが、少なくとも、下記の実施形態を含むことが好ましい。
 [1] 難燃性布帛であって、
 限界酸素指数が26以上であり、
 難燃性布帛全重量に対して赤外線吸収剤を1.0重量%以上20重量%以下含み、
 近赤外線の透過率が11%未満であり、
 前記赤外線吸収剤は、難燃性布帛を構成する繊維の内部に含まれており、
 前記赤外線吸収剤は、カーボンブラックを含まないことを特徴とする、難燃性布帛。
 [2] 前記難燃性布帛は、アクリル系繊維、セルロース系繊維、及びポリエステル系繊維からなる群から選ばれる少なくとも一つの繊維を含む、[1]に記載の難燃性布帛。
 [3] 前記繊維の内部に、赤外線吸収剤が均一に分散されている、[1]又は[2]に記載の難燃性布帛。
 [4] 前記アクリル系繊維は、難燃剤としてアンチモン系化合物を含む、[2]又は[3]に記載の難燃性布帛。
 [5] 前記繊維は、単繊維繊度が1~20dtexである、[1]~[4]のいずれかに記載の難燃性布帛。
 [6] 前記難燃性布帛は、アンチモン化合物を3~20重量%含有するアクリル系繊維を35~65重量%、セルロース系繊維を25~45重量%、及びポリエステル系繊維を0~45重量%含む、[1]~[5]のいずれかに記載の難燃性布帛。
 [7] 前記アクリル系繊維は、赤外線吸収剤を含む、[6]に記載の難燃性布帛。
 [8] 前記セルロース系繊維は、赤外線吸収剤を含む、[6]又は[7]に記載の難燃性布帛。
 [9] 遮熱率が45.0%以上である、[1]~[8]のいずれかに記載の難燃性布帛。
 [10] [1]~[9]のいずれかに記載の難燃性布帛を含むことを特徴とする繊維製品。
The present invention is not particularly limited, but preferably includes at least the following embodiments.
[1] It is a flame-retardant fabric and is
Limiting oxygen index is 26 or more,
Contains 1.0% by weight or more and 20% by weight or less of an infrared absorber with respect to the total weight of the flame-retardant fabric.
Near infrared transmittance is less than 11%,
The infrared absorber is contained inside the fibers constituting the flame-retardant fabric.
The infrared absorber is a flame-retardant fabric, characterized in that it does not contain carbon black.
[2] The flame-retardant fabric according to [1], wherein the flame-retardant fabric contains at least one fiber selected from the group consisting of acrylic fibers, cellulosic fibers, and polyester fibers.
[3] The flame-retardant fabric according to [1] or [2], wherein the infrared absorber is uniformly dispersed inside the fiber.
[4] The flame-retardant fabric according to [2] or [3], wherein the acrylic fiber contains an antimony compound as a flame retardant.
[5] The flame-retardant fabric according to any one of [1] to [4], wherein the fiber has a single fiber fineness of 1 to 20 dtex.
[6] The flame-retardant fabric contains 35 to 65% by weight of acrylic fibers containing 3 to 20% by weight of an antimon compound, 25 to 45% by weight of cellulosic fibers, and 0 to 45% by weight of polyester fibers. The flame-retardant fabric according to any one of [1] to [5], which comprises.
[7] The flame-retardant fabric according to [6], wherein the acrylic fiber contains an infrared absorber.
[8] The flame-retardant fabric according to [6] or [7], wherein the cellulosic fiber contains an infrared absorber.
[9] The flame-retardant fabric according to any one of [1] to [8], which has a heat shield rate of 45.0% or more.
[10] A textile product comprising the flame-retardant fabric according to any one of [1] to [9].

Claims (10)

  1.  難燃性布帛であって、
     限界酸素指数が26以上であり、
     難燃性布帛全重量に対して赤外線吸収剤を1.0重量%以上20重量%以下含み、
     近赤外線の透過率が11%未満であり、
     前記赤外線吸収剤は、難燃性布帛を構成する繊維の内部に含まれており、
     前記赤外線吸収剤は、カーボンブラックを含まないことを特徴とする、難燃性布帛。
    It is a flame-retardant fabric
    Limiting oxygen index is 26 or more,
    Contains 1.0% by weight or more and 20% by weight or less of an infrared absorber with respect to the total weight of the flame-retardant fabric.
    Near infrared transmittance is less than 11%,
    The infrared absorber is contained inside the fibers constituting the flame-retardant fabric.
    The infrared absorber is a flame-retardant fabric, characterized in that it does not contain carbon black.
  2.  前記難燃性布帛は、アクリル系繊維、セルロース系繊維、及びポリエステル系繊維からなる群から選ばれる少なくとも一つの繊維を含む、請求項1に記載の難燃性布帛。 The flame-retardant fabric according to claim 1, wherein the flame-retardant fabric contains at least one fiber selected from the group consisting of acrylic fibers, cellulosic fibers, and polyester fibers.
  3.  前記繊維の内部に、赤外線吸収剤が均一に分散されている、請求項1又は2に記載の難燃性布帛。 The flame-retardant fabric according to claim 1 or 2, wherein the infrared absorber is uniformly dispersed inside the fiber.
  4.  前記アクリル系繊維は、難燃剤としてアンチモン系化合物を含む、請求項2又は3に記載の難燃性布帛。 The flame-retardant fabric according to claim 2 or 3, wherein the acrylic fiber contains an antimony compound as a flame retardant.
  5.  前記繊維は、繊度が1~20dtexである、請求項1~4のいずれかに記載の難燃性布帛。 The flame-retardant fabric according to any one of claims 1 to 4, wherein the fiber has a fineness of 1 to 20 dtex.
  6.  前記難燃性布帛は、アンチモン化合物を3~20重量%含有するアクリル系繊維を35~65重量%、セルロース系繊維を25~45重量%、及びポリエステル系繊維を0~45重量%含む、請求項1~5のいずれかに記載の難燃性布帛。 The flame-retardant fabric is claimed to contain 35 to 65% by weight of acrylic fibers containing 3 to 20% by weight of an antimon compound, 25 to 45% by weight of cellulosic fibers, and 0 to 45% by weight of polyester fibers. Item 5. The flame-retardant fabric according to any one of Items 1 to 5.
  7.  前記アクリル系繊維は、赤外線吸収剤を含む、請求項6に記載の難燃性布帛。 The flame-retardant fabric according to claim 6, wherein the acrylic fiber contains an infrared absorber.
  8.  前記セルロース系繊維は、赤外線吸収剤を含む、請求項6又は7に記載の難燃性布帛。 The flame-retardant fabric according to claim 6 or 7, wherein the cellulosic fiber contains an infrared absorber.
  9.  遮熱率が45.0%以上である、請求項1~8のいずれかに記載の難燃性布帛。 The flame-retardant fabric according to any one of claims 1 to 8, which has a heat shield rate of 45.0% or more.
  10.  請求項1~9のいずれかに記載の難燃性布帛を含むことを特徴とする繊維製品。 A textile product comprising the flame-retardant fabric according to any one of claims 1 to 9.
PCT/JP2021/038775 2021-01-05 2021-10-20 Frame-retardant fabric containing infrared absorbent and textile product of same WO2022149331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021000393A JP2024021087A (en) 2021-01-05 2021-01-05 Flame-retardant fabrics containing infrared absorbers and their textile products
JP2021-000393 2021-01-05

Publications (1)

Publication Number Publication Date
WO2022149331A1 true WO2022149331A1 (en) 2022-07-14

Family

ID=82357355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038775 WO2022149331A1 (en) 2021-01-05 2021-10-20 Frame-retardant fabric containing infrared absorbent and textile product of same

Country Status (2)

Country Link
JP (1) JP2024021087A (en)
WO (1) WO2022149331A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161248A (en) * 2004-12-10 2006-06-22 Kawashima Selkon Textiles Co Ltd Heat-blocking fiber and heat-blocking and light-collecting fabric
JP2010084238A (en) * 2008-09-29 2010-04-15 Mitsubishi Materials Corp Polyester fiber for shielding heat ray
WO2016111116A1 (en) * 2015-01-06 2016-07-14 株式会社カネカ Arc resistant acrylic fiber, fabric for arc-protective clothing, and arc protective clothing
WO2017150341A1 (en) * 2016-03-04 2017-09-08 株式会社カネカ Fabric for electric-arc protective clothing, and electric-arc protective clothing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161248A (en) * 2004-12-10 2006-06-22 Kawashima Selkon Textiles Co Ltd Heat-blocking fiber and heat-blocking and light-collecting fabric
JP2010084238A (en) * 2008-09-29 2010-04-15 Mitsubishi Materials Corp Polyester fiber for shielding heat ray
WO2016111116A1 (en) * 2015-01-06 2016-07-14 株式会社カネカ Arc resistant acrylic fiber, fabric for arc-protective clothing, and arc protective clothing
WO2017150341A1 (en) * 2016-03-04 2017-09-08 株式会社カネカ Fabric for electric-arc protective clothing, and electric-arc protective clothing

Also Published As

Publication number Publication date
JP2024021087A (en) 2024-02-16

Similar Documents

Publication Publication Date Title
JP6659585B2 (en) Arc-resistant acrylic fiber, fabric for arc protective clothing, and arc protective clothing
US11198957B2 (en) Fabric for electric-arc protective clothing, and electric-arc protective clothing
JP6072538B2 (en) High pilling heat resistant fabric
WO2005090658A1 (en) Flame-retardant artificial polyester hair
JPWO2014104411A1 (en) Heat resistant fabric
TWI530597B (en) A flame retardant fiber aggregate and a method for manufacturing the same, and a fiber product
KR100615781B1 (en) Polyester Fiber Having Excellent Light-Shielding and Flame Retardant Characteristic and Textile Goods Using the Same
JP4118238B2 (en) Interwoven fabric with flame retardancy
WO2022149331A1 (en) Frame-retardant fabric containing infrared absorbent and textile product of same
JPH07189018A (en) Light-screening synthetic fiber
JP4243478B2 (en) Highly flame retardant acrylic fiber and fabric with excellent weather resistance
JP6355351B2 (en) Synthetic fiber
CN115768933A (en) Heating cloth and fiber product
JP2012012726A (en) Heat-shielding woven or knitted fabric and clothing
EP4215658A1 (en) Fabric, method for producing same and clothing item using same
WO2023171286A1 (en) Flame retardant cloth and flame retardant work clothing
JP2005314817A (en) Halogen-containing fiber and flame-retardant fiber product using the same
WO2024004692A1 (en) Flame-retardant cloth and work wear
CN115667600A (en) Multi-layer section composite fiber and fabric thereof
JP4777892B2 (en) Flame retardant synthetic fiber, flame retardant fiber composite and upholstered furniture product using the same
CN113699622A (en) High penetration-proof sea-island composite fiber and fabric thereof
JPH04194053A (en) Flame-retardant cloth

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP