WO2022149294A1 - Laser processing device - Google Patents

Laser processing device Download PDF

Info

Publication number
WO2022149294A1
WO2022149294A1 PCT/JP2021/009202 JP2021009202W WO2022149294A1 WO 2022149294 A1 WO2022149294 A1 WO 2022149294A1 JP 2021009202 W JP2021009202 W JP 2021009202W WO 2022149294 A1 WO2022149294 A1 WO 2022149294A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanner
region
control device
laser
optical pulses
Prior art date
Application number
PCT/JP2021/009202
Other languages
French (fr)
Japanese (ja)
Inventor
忠正 横井
克充 芦原
和美 土道
達典 阪本
直毅 吉武
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2022149294A1 publication Critical patent/WO2022149294A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating

Definitions

  • This disclosure relates to a laser processing device.
  • the laser marker which is one of the laser processing devices, draws a processing pattern on the object to be processed by scanning the laser beam along the processing pattern to be drawn using a galvano mirror that can be deflected in two directions (hereinafter, "printing"). (Also called “to do”) is often used.
  • the line width may not be uniform or the printing may be distorted in the laser processing device using the galvano mirror, which causes deterioration of the printing quality. rice field.
  • Patent Document 1 lowers the scanning speed (scanning speed) of the scanner when drawing a curved portion than when drawing a straight portion in order to eliminate the inward rotation phenomenon of the curved portion.
  • Patent Document 1 lowers the scanning speed (scanning speed) of the scanner when drawing a curved portion than when drawing a straight portion in order to eliminate the inward rotation phenomenon of the curved portion.
  • the technique of reducing the pulse oscillation frequency and the duty ratio or the pulse oscillation interval contributing to printing according to the scanning speed is disclosed.
  • the scanning speed of the scanner must be adjusted in consideration of the response delay of the galvano mirror in order to prevent the print quality from being deteriorated due to the response delay of the galvano mirror. .. Therefore, it is difficult to prevent deterioration of print quality in an area where the scanning speed of the scanner cannot be adjusted (for example, an area at the beginning of drawing, an area at the end of drawing, etc.).
  • An object of the present disclosure is to provide a laser processing apparatus capable of preventing deterioration of print quality without adjusting the scanning speed of the scanner.
  • the laser processing apparatus is a laser processing apparatus that draws a processing pattern on an object to be processed, and controls an oscillator that oscillates a laser beam, a scanner that scans the laser beam output from the oscillator, an oscillator, and a scanner. It is provided with a control device for processing and a reception unit for receiving input of a processing pattern of a processing object.
  • the oscillator includes a seed light source that emits seed light, an excitation light source that emits excitation light, and an optical amplification fiber configured to amplify the seed light by injecting the seed light and the excitation light.
  • the seed light source repeatedly generates a pulse train containing a plurality of optical pulses as the seed light, and the control device changes the scanning speed when the laser beam is scanned by the scanner according to the processing pattern received by the reception unit. At least one of the number of light pulses emitted by the seed light source and the pulse width of each of the plurality of light pulses emitted by the seed light source is varied in a predetermined region.
  • the predetermined area is the area where the drawing starts in the processing pattern.
  • the predetermined area is the area of the processing pattern at the end of drawing.
  • the predetermined region is the curved portion region of the machining pattern.
  • the reception unit receives the driving conditions of the scanner.
  • the control device determines the number of optical pulses and the pulse width when scanning the laser beam with the scanner for a predetermined area based on the processing pattern received by the reception unit and the driving conditions of the scanner.
  • the number of optical pulses and the pulse width when scanning the laser beam with the scanner for a predetermined area can be determined before the driving of the scanner is started.
  • control device determines the number of optical pulses and the pulse width when scanning the laser beam with the scanner for a predetermined area based on the driving condition of the scanner.
  • the number of optical pulses and the pulse width when scanning the laser beam with the scanner for a predetermined area can be corrected based on the driving condition of the scanner.
  • the reception unit accepts processing patterns with shades.
  • the control device changes at least one of the number of optical pulses and the pulse width according to the gradation of the processing pattern when the laser light is scanned by the scanner according to the processing pattern with shading received by the reception unit.
  • the scene to which the present invention is applied is a scene in which a processing pattern is drawn on a processing object 90 (hereinafter, also referred to as “printing”) using a laser processing apparatus 100.
  • the laser processing apparatus 100 uses a galvano mirror (X scan mirror 31, Y scan mirror 32) that can be deflected in a two-dimensional direction to transmit the laser light output from the oscillator 20 in the two-dimensional direction on the surface of the object to be processed 90.
  • a galvano mirror X scan mirror 31, Y scan mirror 32
  • processing marks dots
  • a processing pattern is drawn on the object to be processed 90.
  • the speed at which the scanner 30 scans the laser beam (hereinafter, also referred to as “scanning speed”) is in a constant speed region (hereinafter, also referred to as “scanning speed”).
  • the scanning speed is maintained at the set speed (including a speed close to the set speed) in the constant speed region, whereas the scanning speed is slower than the set speed in the region where the scanning speed changes.
  • the area at the beginning of drawing, the area at the end of drawing, and the area of the curved portion correspond to the area where the scanning speed changes, and correspond to the “predetermined area”.
  • the area where drawing starts is the area where laser printing is started, the laser light starts to be emitted, and the scanner 30 changes from a stopped state or a low speed state to a constant speed state within a set speed range. This is a region that shows accelerated behavior up to the point.
  • the area at the end of drawing is an area where laser printing ends, and is an area immediately before the emission of laser light stops, and the scanner 30 is in a constant speed state, a stopped state, or a low speed state within a set speed range. It is a region showing decelerating behavior up to.
  • the curved area is an area in which the scanner 30 simultaneously accelerates or decelerates in two axis directions (X-axis direction and Y-axis direction) within a set speed range during laser printing, or a scanner.
  • 30 is a region that exhibits accelerating or decelerating behavior within a set speed range in one axial direction, while exhibiting constant speed behavior within a set speed range in the other axial direction.
  • the number of optical pulses included in one pulse train and each of the optical pulses among the parameters related to the laser light shown in FIG. Uniform printing is realized by changing at least one of the pulse width tw between the predetermined region and the constant speed region.
  • the number of optical pulses included in one pulse train and the pulse width tw of each of the light pulses are elements that determine the width of dots (that is, the pulse train width Tw) that affects the thickness and density of the line segment. Therefore, in the laser processing apparatus 100, it is possible to prevent the print quality from deteriorating without adjusting the scanning speed of the scanner 30.
  • LD Laser Diode (semiconductor laser).
  • FIGS. 1 and 2 are diagrams showing a configuration example of the laser processing apparatus 100 according to the embodiment.
  • the laser processing device 100 is a laser marker including an oscillator 20, a scanner 30, a control device 50, and an input device 60.
  • the oscillator 20 oscillates a laser beam.
  • the scanner 30 scans the laser beam output from the oscillator 20.
  • the control device 50 controls the oscillator 20 and the scanner 30.
  • the input device 60 is an example of a “reception unit” and receives information input from a user.
  • the oscillator 20 adopts the MOPA (Master Oscillator and Power Amplifier) method.
  • the MOPA method is a method in which a highly stable main oscillator (or seed light) for generating a high-definition beam and a high-output optical amplifier are separated and each is controlled independently.
  • the oscillator 20 includes an optical fiber 1,8, a seed LD2, an excited LD3, 9A, 9B, an isolator 4,6,11, a coupler 5,10, an end cap 12, a driver 13, and the like. It is provided with 14, 15A and 15B, and is configured to amplify the seed light generated from the seed LD2 by the optical fibers 1 and 8 and output the amplified seed light.
  • Optical fibers 1 and 8 are optical amplification fibers.
  • the optical fibers 1 and 8 may be quartz-based fibers containing quartz as a main component, or may be plastic optical amplification fibers.
  • the optical fibers 1 and 8 have a core to which a rare earth element which is an optical amplification component is added, and a clad provided around the core.
  • the seed LD2 is a laser light source that emits seed light.
  • the seed LD2 repeatedly outputs a pulse train (see FIG. 3) including a plurality of optical pulses as the seed light.
  • the wavelength of the seed light is, for example, a wavelength selected from the range of 1000 to 1100 nm.
  • the driver 13 repeatedly applies a pulsed current to the seed LD2 in accordance with the instruction of the control device 50 to drive the seed LD2 in a pulsed manner, and repeatedly generate seed light (pulse train) including a plurality of optical pulses from the seed LD2. ..
  • the seed light emitted from the seed LD2 passes through the isolator 4.
  • the isolator 4 realizes a function of transmitting light in only one direction and blocking light incident on the opposite direction of the light.
  • the isolator 4 transmits the seed light from the seed LD 2 and blocks the return light from the optical fiber 1. This makes it possible to prevent the return light from the optical fiber 1 from incident on the seed LD2.
  • the seed LD 2 may be damaged, and the provision of the isolator 4 can prevent such a problem.
  • Excitation LD3 is an excitation light source that emits excitation light for exciting the atoms of rare earth elements added to the core of the optical fiber 1.
  • the driver 14 drives the excited LD3 by CW (Continuous Wave) according to the instruction of the control device 50 (continuous operation).
  • the coupler 5 combines the seed light from the seed LD2 and the excitation light from the excitation LD3 and causes them to enter the optical fiber 1.
  • the excitation light incident on the optical fiber 1 is absorbed by the atom of the rare earth element contained in the core, and the atom is excited.
  • the excited atoms cause stimulated emission by the seed light, so that the seed light is amplified.
  • the isolator 6 passes the seed light (optical pulse) amplified by the optical fiber 1 and emitted from the optical fiber 1 and blocks the light returning to the optical fiber 1.
  • Excitation LD9A and 9B emit excitation light for exciting the atoms of rare earth elements contained in the core of the optical fiber 8.
  • the drivers 15A and 15B drive each of the excited LD9A and 9B by CW according to the instruction of the control device 50.
  • the coupler 10 combines the optical pulse output from the optical fiber 1 and the excitation light from the excitation LDs 9A and 9B to be incident on the optical fiber 8.
  • the optical pulse incident on the optical fiber 8 is amplified by the same action as the optical amplification action in the optical fiber 1.
  • the isolator 11 passes the optical pulse emitted from the optical fiber 8 and blocks the light returning to the optical fiber 8.
  • the optical pulse that has passed through the isolator 11 is emitted into the atmosphere from the end face of the optical fiber attached to the isolator 11.
  • the end cap 12 is provided to prevent damage that occurs at the interface between the end face of the optical fiber and the atmosphere when an optical pulse having a high peak power is emitted from the optical fiber into the atmosphere.
  • the end cap 12 may be provided inside the isolator 11.
  • the number of excited LDs in the first stage is 1, and the number of excited LDs in the second stage is 2, but the number of excited LDs is not limited to these values. do not have.
  • the scanner 30 scans the laser beam output from the oscillator 20 in a two-dimensional direction on the surface of the object to be machined 90.
  • the scanner 30 includes an X-scan mirror 31, a Y-scan mirror 32, an X-axis motor 33, a Y-axis motor 34, a driver 35, and a condenser lens 36, and uses these elements.
  • the laser beam is scanned along the processing pattern.
  • the processing pattern is accepted by the input device 60 described later.
  • the X scan mirror 31 is a galvano mirror that can be deflected in the X-axis direction, and deflects the laser beam in the X direction.
  • the Y scan mirror 32 is a galvano mirror that can be deflected in the Y-axis direction, and deflects the laser beam in the Y-axis direction.
  • the X-axis motor 33 is a drive source for the X scan mirror 31.
  • the Y-axis motor 34 is a drive source for the Y-scan mirror 32.
  • the driver 35 drives the X-axis motor 33 and the Y-axis motor 34 according to the instructions of the control device 50.
  • the condenser lens 36 is an f ⁇ lens or the like for condensing laser light.
  • the laser beam output from the oscillator 20 is scanned by the scanner 30 in a two-dimensional direction on the surface of the object to be machined 90, so that dots are formed on the object to be machined 90 along the machining pattern.
  • the control device 50 comprehensively controls the operation of the laser processing device 100 by controlling the drivers 13, 14, 15A, 15B, and 35.
  • the input device 60 receives the input of information from the user and transmits the received information to the control device 50.
  • the information received by the input device 60 is, for example, a machining pattern of the machining object 90, a driving condition of the scanner 30, and the like.
  • the processing pattern received by the input device 60 may be a processing pattern composed of a region irradiated with laser light (hereinafter, also referred to as “irradiation region”) and a region not irradiated with laser light, or may be composed of only an irradiation region. It may be a processing pattern. Further, the irradiation area may have light and shade, or may have no light and shade.
  • the drive condition of the scanner 30 accepted by the input device 60 is a type related to the scanning speed of the scanner 30, and is, for example, "standard", “low speed”, “high speed”, and the like.
  • the control device 50 sets the scanning speed corresponding to the type as the set speed.
  • control device 50 for example, a personal computer that executes a predetermined program is adopted.
  • input device 60 for example, a mouse, a keyboard, a touch panel, or the like is adopted.
  • the control device 50 controls the operation of the drivers 13, 14, 15A, 15B based on the information received from the input device 60, and while operating the drivers 13, 14, 15A, 15B (that is, the oscillator 20). (While the laser beam is emitted from), the operation of the driver 35 is controlled.
  • FIG. 3 is a diagram showing a waveform of seed light generated from seed LD2.
  • the seed light generated from the seed LD2 is a pulse train (multi-pulse) including a plurality of light pulses.
  • a pulse train including a plurality of optical pulses is generated from the seed LD2 for each repetition period tprd.
  • the time interval (pulse interval) of the plurality of optical pulses is tp.
  • the repetition period tprd and the pulse interval tp are set based on the processing conditions of the object to be processed, for example, the material (metal, resin, etc.) of the object to be processed, the processing time, the processing quality, and the like.
  • the repetition period tprd is selected from the range of 1 ⁇ s to 1 ms.
  • the pulse interval tp is shorter than the repetition period tprd, and is selected from, for example, between 1 ns and 100 ns.
  • the pulse interval tp is short, the scanning distance between one pulse and the next pulse is very short in the pulse train constituting one multi-pulse. Therefore, the next pulse is irradiated within the range of the machining mark on the surface of the machining object by the previous pulse, and as a result, the pulse train constituting one multi-pulse is irradiated to almost the same place of the machining object to form a dot. do. That is, the dot is composed of a plurality of optical pulses (pulse trains).
  • the laser processing apparatus 100 adopts a MOPA method using an optical amplification fiber, and uses light from a semiconductor laser as seed light.
  • the seed light generated from the seed LD2 is amplified by the optical fibers 1 and 8 and output from the laser processing apparatus 100. Since the seed LD2 outputs a pulse train containing a plurality of light pulses as seed light, the laser processing apparatus 100 outputs a pulse train containing a plurality of light pulses, in other words, a multi-pulse laser light.
  • the seed LD2 When the driver 13 drives the seed LD2, the seed LD2 generates a seed light (pulse train).
  • the repetition period tprd of the seed light (pulse train) generated from the seed LD2 By controlling the current supplied to the seed LD2 by the driver 13, the repetition period tprd of the seed light (pulse train) generated from the seed LD2, the number of optical pulses contained in one pulse train, the pulse interval tp, and each optical pulse. Multiple parameters related to seed light, such as peak power (pulse amplitude) and pulse width tw of each light pulse, can be controlled independently of each other.
  • the laser light output from the laser processing apparatus 100 is seed light amplified by the optical fibers 1 and 8.
  • the peak power of an optical pulse (pulse amplitude) and the pulse width of each optical pulse can be controlled independently of each other.
  • a pulse train (multi-pulse) can be output as a laser beam from the laser processing apparatus 100. Further, a plurality of parameters related to the laser beam (pulse train) output from the laser processing apparatus 100 can be controlled independently of each other. Therefore, according to the embodiment, the laser beam (pulse train) for performing the desired processing can be output from the laser processing apparatus 100.
  • FIG. 4 is a diagram for explaining the Q-switch method.
  • the Q-switch method is a laser oscillation method, which is compared with the MOPA method.
  • pulsed laser light is output by instantaneously opening an element called a Q-switch.
  • the laser energy is increased between the total reflection mirror and the partially transmitted mirror by using the principle of laser resonance, and the pulse laser light is output by momentarily opening the Q switch.
  • FIG. 5 is a diagram showing the relationship between the frequency and the pulse train width (pulse width) in the MOPA method and the Q-switch method.
  • the vertical axis shows the pulse train width Tw (pulse width in the Q-switch system), and the horizontal axis shows the frequency.
  • the pulse width of the pulsed laser beam is uniquely determined in relation to the frequency.
  • the pulse train width does not change even if the frequency changes.
  • the pulse train width is the width of a pulse train containing a plurality of optical pulses, that is, the width of dots, and is shown by Tw in FIG. That is, in the case of the MOPA method, a pulse train having the same pulse train width Tw can be output at different frequencies.
  • the pulse train width Tw is arbitrarily set by changing at least one of the number of optical pulses included in one pulse train and the pulse width tw of each of the light pulses (see FIG. 3). Because it can be done.
  • the laser processing device 100 can increase the degree of freedom in changing the pulse train width Tw as compared with the Q-switch type laser processing device.
  • the pulse train width Tw is an element that affects the thickness and density of the line segment.
  • the laser processing apparatus 100 changes at least one of the number of optical pulses included in one pulse train and the pulse width of each of the optical pulses in a predetermined region and a constant velocity region, that is, changes the irradiation conditions of the laser beam. By changing between the predetermined area and the constant speed area, the pulse train width Tw in the predetermined area is adjusted to realize uniform printing.
  • irradiation conditions An example of changing the irradiation conditions of the laser beam (hereinafter, also simply referred to as “irradiation conditions”) performed by the laser processing apparatus 100 will be described with reference to FIGS. 2, 6, and 7.
  • the irradiation conditions are changed by changing the values of the parameters related to the laser beam.
  • FIG. 6 is a diagram showing an example of changing the irradiation conditions between the area at the beginning of drawing and the area at the end of drawing.
  • FIG. 7 is a diagram showing an example of changing the irradiation conditions in the curved portion.
  • Patterns 1A to 3A and patterns 1B to 3B are examples of changing the irradiation conditions performed by the laser processing apparatus 100
  • Comparative Example A and Comparative Example B are examples of cases where the irradiation conditions are not changed.
  • the region at the beginning of drawing, the region at the end of drawing, and the region of the curved portion are examples of predetermined regions, and the region in the middle of the line segment and the region of the straight line portion are examples of the constant velocity region.
  • Pattern 1A and pattern 1B are examples of cases where the frequency and the number of optical pulses included in one pulse train (dot) are changed between a predetermined region and a constant speed region.
  • the irradiation conditions in the constant velocity region are such that the frequency is 100 kHz, the number of optical pulses contained in one pulse train is eight, and the pulse width of each of the optical pulses is 8 ns, whereas the irradiation in a predetermined region is performed.
  • the conditions are that the frequency is 75 kHz, the number of optical pulses included in one pulse train is four, and the pulse width of each of the optical pulses is 8 ns.
  • the frequency is changed from 100 kHz to 75 kHz, and the number of optical pulses included in one pulse train is changed from 8 to 4.
  • the frequency is changed from 100 kHz to 75 kHz, the number of dots formed on the workpiece 90 is reduced from 4 (see Comparative Example A and Comparative Example B) to 3, and as a result, the dots become dense in a predetermined region. Is avoided.
  • the pulse train width Tw is suppressed, and as a result, the line width is prevented from becoming thick in a predetermined region. Therefore, the density and line width of the processing pattern formed on the object to be processed become uniform.
  • Pattern 2A and pattern 2B are examples of cases where the frequency and the pulse width of each of the optical pulses included in one pulse train are changed between a predetermined region and a constant speed region.
  • the irradiation conditions in the constant velocity region are such that the frequency is 100 kHz, the number of optical pulses contained in one pulse train is eight, and the pulse width of each of the optical pulses is 8 ns, whereas the irradiation in a predetermined region is performed.
  • the conditions are that the frequency is 75 kHz, the number of optical pulses included in one pulse train is eight, and the pulse width of each of the optical pulses is 4 ns.
  • the frequency is changed from 100 kHz to 75 kHz, and the pulse width of each of the optical pulses included in one pulse train is changed from 8 ns to 4 ns.
  • the frequency is changed from 100 kHz to 75 kHz, the number of dots formed on the workpiece 90 is reduced from 4 (see Comparative Example A and Comparative Example B) to 3, and as a result, the dots become dense in a predetermined region. Is avoided.
  • the pulse width of each of the optical pulses included in one pulse train from 8 ns to 4 ns, the pulse train width Tw is suppressed, and as a result, the line width is prevented from becoming thick in a predetermined region. Therefore, the density and line width of the processing pattern formed on the object to be processed become uniform.
  • Pattern 3A and pattern 3B are examples of cases where the frequency, the number of optical pulses included in one pulse train, and the pulse width of each of the optical pulses are changed between a predetermined region and a constant speed region.
  • the irradiation conditions in the constant velocity region are such that the frequency is 100 kHz, the number of optical pulses contained in one pulse train is eight, and the pulse width of each of the optical pulses is 8 ns, whereas the irradiation in a predetermined region is performed.
  • the conditions are that the frequency is 75 kHz, the number of optical pulses included in one pulse train is two, and the pulse width of each of the optical pulses is 16 ns.
  • the frequency is changed from 100 kHz to 75 kHz
  • the number of optical pulses contained in one pulse train is changed from 8 to 2
  • the pulse width is 8 ns. Is changed to 16ns.
  • the frequency is changed from 100 kHz to 75 kHz
  • the number of dots formed on the workpiece 90 is reduced from 4 (see Comparative Example A and Comparative Example B) to 3, and as a result, the dots become dense in a predetermined region. Is avoided.
  • the pulse width of each of the optical pulses included in one pulse train has expanded from 8 ns to 16 ns, the number of optical pulses contained in one pulse train has decreased from eight to two, so that the predetermined region As a result of suppressing the pulse train width Tw in, it is possible to prevent the line width from becoming thick in a predetermined region. Therefore, the density and line width of the processing pattern formed on the object to be processed become uniform.
  • the laser processing apparatus 100 includes the number of optical pulses included in one pulse train and the pulse width of each of the optical pulses among the parameters related to the laser light. Uniform printing is realized by changing at least one of the above in the predetermined area and the constant speed area.
  • At least one of the number of optical pulses included in one pulse train and the pulse width of each of the optical pulses and the frequency are changed in the predetermined region and the constant velocity region.
  • only one of the number of optical pulses included in one pulse train and the pulse width of each of the optical pulses may be changed between the predetermined region and the constant velocity region.
  • the parameter value was not changed in one predetermined area, but the parameter value may be changed stepwise in one predetermined area.
  • Method of determining irradiation conditions (specifically, frequency, the number of optical pulses included in one pulse train, and the pulse width of each of the optical pulses) in a predetermined region will be described.
  • FIG. 8 is a diagram for explaining a method of determining irradiation conditions in a predetermined area. Irradiation conditions in a predetermined area are determined by the control device 50.
  • the control device 50 predicts the acceleration of the scanner 30 in a predetermined region by using any one of the three methods shown in FIG. 8, and the predicted acceleration of the scanner 30 and the irradiation condition in the constant speed region. Based on the above, the irradiation conditions in a predetermined region, that is, the frequency, the number of optical pulses contained in one pulse train, and the pulse width of each of the optical pulses are determined. Since the acceleration of the scanner 30 is zero (including a value close to zero) in the constant speed region, uniform printing can be achieved by predicting what value the acceleration of the scanner 30 will be in a predetermined region. It is possible to determine the frequency required for realization, the number of optical pulses contained in one pulse train, and the pulse width of each of the optical pulses.
  • the control device 50 predicts the acceleration of the scanner 30 in a predetermined region based on the machining pattern and the driving conditions of the scanner 30 received by the input device 60.
  • the control device 50 gives an irradiation condition in all predetermined regions (a region at the beginning of drawing, a region of a curved portion, and a region at the end of drawing) before issuing an instruction to start scanning to the scanner 30. Can be determined.
  • the control device 50 After issuing an instruction to start scanning to the scanner 30, the control device 50 starts scanning the laser beam for the corresponding predetermined region (the region at the beginning of drawing, the region of the curved portion, or the region at the end of drawing). In the meantime, the irradiation conditions in the corresponding predetermined area may be determined.
  • the control device 50 predicts the acceleration in a predetermined region based on the driving condition of the scanner 30. Therefore, according to the second method or the third method, the irradiation condition in the predetermined region is determined after the scanner 30 receives the scanning start instruction (input signal).
  • the control device 50 changes the current value thereafter based on the input value (input signal) input to the motors of the scanner 30 (X-axis motor 33 and Y-axis motor 34 shown in FIG. 1). Predict. Since the positions of the mirrors (X scan mirror 31 and Y scan mirror 32 shown in FIG. 1) change with changes in the current value, the control device 50 predicts the change in the current value to accelerate the scanner 30. Can be predicted.
  • the irradiation condition in the predetermined region is the scanning of the laser beam to the predetermined region (the region at the beginning of drawing, the region of the curved portion, or the region at the end of drawing) after receiving the input signal by the scanner 30. Will be determined before the start of.
  • control device 50 calculates the difference between the actual mirror position and the mirror position that should be by detecting the rotation position of the motor of the scanner 30 using the rotary encoder, and based on the calculated difference. Predicts the acceleration of the scanner 30.
  • the irradiation condition in the predetermined region is the corresponding predetermined region (the region where the drawing starts, the region of the curved portion, or the drawing) after the current value starts to change after the input signal is received by the scanner 30. It is determined before the start of scanning the laser beam for the end region).
  • control device 50 may detect the value of the current supplied to the motor of the scanner 30 instead of the rotation position of the motor of the scanner 30.
  • the control device 50 predicts the acceleration of the scanner 30 by using any one of the above three methods until the scanning of the laser beam for the predetermined region is started, so that the irradiation condition in the predetermined region is reached. That is, the frequency, the number of optical pulses contained in one pulse train, and the pulse width of each of the optical pulses are determined, and the oscillator 20 is instructed to change the value of each parameter to the determined content.
  • the control device 50 may determine the irradiation conditions in all the predetermined regions (the region at the beginning of drawing, the region at the curved portion, and the region at the end of drawing) by using any one of the above three methods. However, the method used for each region may be changed. As an example, the control device 50 may determine only the region at the beginning of drawing by using the first method, and determine the region of the curved portion and the region at the end of drawing by using the second method or the third method. ..
  • control device 50 determines the irradiation conditions in all the predetermined regions by using the first method, and then determines by the second method or the third method, and the content determined by the first method is the second.
  • the correction may be made based on the content determined in the above method or the third method.
  • the method of predicting the acceleration of the scanner 30 based on the driving condition of the scanner 30 is not limited to the second method and the third method, and a method of detecting the movement of the mirror may be used.
  • the printing process performed by the control device 50 will be described with reference to FIGS. 9 to 11.
  • the control device 50 prints while changing the irradiation conditions between a predetermined area and a constant speed area.
  • the control device 50 determines the irradiation conditions in the constant speed region based on the driving conditions of the scanner 30 input by the user, and determines the irradiation conditions in the predetermined region by at least one of the three methods described with reference to FIG. To determine using.
  • FIG. 9 is a flowchart showing an example of printing processing when the irradiation condition in a predetermined area is determined by using the first method.
  • step S905 the control device 50 receives the machining pattern and the driving conditions of the scanner 30.
  • the processing pattern and the driving conditions of the scanner 30 are received by the input device 60 and transmitted to the control device 50.
  • the driving condition of the scanner 30 is a type related to the scanning speed of the scanner 30, and is, for example, "standard", “low speed”, “high speed”, and the like.
  • step S910 the control device 50 generates print data based on the processing pattern received in step S905.
  • step S915 the control device 50 determines a predetermined area and a constant speed area based on the print data generated in step S910.
  • step S920 the control device 50 determines the irradiation condition in the constant speed region to the irradiation condition corresponding to the driving condition of the scanner 30 received in step S905.
  • the frequency is 100 kHz and the number of optical pulses included in one pulse train is eight as the irradiation condition in the constant velocity region.
  • the pulse width is determined to be 8 ns.
  • step S925 the control device 50 determines the irradiation conditions in the predetermined region by using the first method. Specifically, the control device 50 predicts the acceleration in a predetermined region based on the machining pattern received in step S905 and the driving conditions of the scanner 30, and the predicted acceleration and the irradiation in the constant speed region determined in step S920. Irradiation conditions in a predetermined area are determined based on the conditions. As an example, in the example of Pattern 1A and Pattern 1B of FIGS. 6 and 7, according to step S925, the frequency is 75 kHz, the number of optical pulses included in one pulse train is four, and the pulse is a pulse as the irradiation condition in the predetermined region. The width is determined to be 8ns.
  • step S930 the control device 50 instructs the start of printing. Specifically, the control device 50 instructs the oscillator 20 to start outputting the laser beam, and instructs the scanner 30 to start scanning. At this time, the control device 50 outputs the laser beam to the constant speed region under the irradiation condition determined in step S920, and outputs the laser beam to the predetermined region under the irradiation condition determined in step S925. Instruct the oscillator 20. As a result, when the laser beam is scanned in the constant speed region, the laser beam under the irradiation conditions determined in step S920 is output from the oscillator 20, and the laser beam is scanned in the predetermined region. Is that the laser beam under the irradiation conditions determined in step S925 is output from the oscillator 20.
  • step S935 the control device 50 determines whether or not all of the machining patterns accepted in step S905 have been printed. When all the processing patterns accepted in step S905 have been printed (YES in step S935), the control device 50 instructs the end of printing (step S940). Specifically, the control device 50 instructs the oscillator 20 to end the output of the laser beam, and instructs the scanner 30 to end the scanning. After step S940, the control device 50 ends a series of processes shown in FIG.
  • FIG. 10 is a flowchart showing an example of printing processing when the irradiation condition in a predetermined area is determined by using the second method or the third method.
  • control device 50 performs the same processing as in steps S905 to S920.
  • step S1025 the control device 50 instructs the start of printing. Specifically, the control device 50 instructs the oscillator 20 to start outputting the laser beam, and instructs the scanner 30 to start scanning. At this time, the control device 50 instructs the oscillator 20 to output the laser beam under the irradiation conditions determined in step S1020 for all the regions (predetermined region and constant speed region) of the machining pattern.
  • step S1030 the control device 50 acquires the driving status of the scanner 30.
  • the control device 50 determines the irradiation condition in the predetermined region by using the second method
  • the control device 50 acquires an input value input to the motor of the scanner 30.
  • the control device 50 acquires the rotation position of the motor of the scanner 30 or the value of the current supplied to the motor of the scanner 30. ..
  • step S1035 the control device 50 determines the irradiation conditions in the predetermined region by using the second method or the third method. Specifically, according to the second method, the control device 50 predicts the acceleration of the scanner 30 based on the input value input to the motor of the scanner 30 acquired in step S1030, and in the predicted acceleration and step S1020. The irradiation condition in the predetermined region is determined based on the irradiation condition in the determined constant velocity region.
  • the control device 50 predicts and predicts the acceleration of the scanner 30 based on the rotation position of the motor of the scanner 30 acquired in step S1030 or the value of the current supplied to the motor of the scanner 30.
  • the irradiation condition in the predetermined region is determined based on the acceleration and the irradiation condition in the constant speed region determined in step S1020.
  • the frequency is 75 kHz
  • the number of optical pulses included in one pulse train is four
  • the pulse is a pulse as the irradiation condition in the predetermined region.
  • the width is determined to be 8ns.
  • step S1040 the control device 50 instructs the oscillator 20 to change only the irradiation condition of a predetermined region of the processing pattern to the irradiation condition determined in step S1035.
  • Step S1040 the control device 50 performs step S1045 and step S1050, and ends a series of processes shown in FIG.
  • Step S1045 and step S1050 are the same processes as in step S935 and step S940.
  • FIG. 11 is a flowchart showing an example of a printing process in which the irradiation conditions in a predetermined area are determined by using the first method and then corrected by using the second method or the third method.
  • control device 50 performs the same processing as in steps S905 to S930.
  • step S1135 the control device 50 acquires the driving status of the scanner 30.
  • the process of step S1135 is the same process as that of step S1030.
  • step S1140 the control device 50 determines the irradiation condition in the predetermined region by using the second method or the third method.
  • the process of step S1140 is the same as that of step S1035.
  • step S1145 the control device 50 instructs the oscillator 20 to correct the irradiation condition in the predetermined region to the irradiation condition determined in step S1140.
  • Step S1145 the control device 50 performs step S1150 and step S1155, and ends a series of processes shown in FIG.
  • Step S1150 and step S1155 are the same processes as in step S935 and step S940.
  • the laser processing apparatus 100 in the embodiment scans the laser light with the scanner 30 along the processing pattern
  • the number of optical pulses included in one pulse train and the pulse width of each of the optical pulses are used.
  • printing is performed while changing the irradiation condition of the laser beam between the predetermined region and the constant speed region. This makes it possible to prevent the printing from becoming darker or the line width from becoming thicker in a predetermined area where the scanning speed of the scanner 30 is slower than the set speed.
  • the density and line width of the processing pattern formed on the object to be processed become uniform, so that it is possible to prevent the print quality from deteriorating.
  • the laser processing apparatus 100 uses the scanner 30 when changing the value of each parameter related to the seed light. There is no need to stop. That is, in the laser processing apparatus 100, even if the irradiation condition of the laser beam is changed between the predetermined region and the constant speed region, the tact time does not increase.
  • FIG. 12 are diagrams showing an example of irradiation conditions when printing a processing pattern with shading.
  • FIG. 12 as an example of a processing pattern with shading, a processing pattern composed of two regions (regions P and Q) having different gradations is drawn.
  • the laser processing apparatus 100 sets different irradiation conditions for each region having different gradations.
  • the irradiation conditions in each region are determined by the control device 50 according to the gradation of each region.
  • the frequency is set to 200 kHz
  • the number of optical pulses included in one pulse train (dot) is set to 16
  • the pulse width of each of the optical pulses is set to 8 ns
  • the irradiation in the region Q is performed.
  • the frequency is set to 100 kHz
  • the number of optical pulses included in one pulse train is set to 8
  • the pulse width of each of the optical pulses is set to 8 ns.
  • the frequency and the number of optical pulses included in one pulse train, and the frequency and one pulse train among the pulse widths of the optical pulses are used.
  • different values are set for each region having different gradations with respect to the number of included optical pulses
  • the combination of parameters in which different values are set is not limited to this.
  • a value different for each region having a different gradation for at least one of the number of optical pulses included in one pulse train and the pulse width of each of the optical pulses Should be set.
  • FIG. 13 is a flowchart showing an example of a printing process when printing a processing pattern with shading. The process shown in FIG. 13 is performed by the control device 50.
  • step S1305 and step S1310 the control device 50 performs the same processing as in step S905 and step S910.
  • step S1315 the control device 50 determines the irradiation conditions for each gradation of the processing pattern based on the print data generated in step S1310. Specifically, the control device 50 divides the processing pattern into a plurality of regions having different gradations based on the print data generated in step S1310, and determines the irradiation conditions in each region according to the gradation of each region.
  • the frequency is 200 kHz
  • the number of optical pulses included in one pulse train is 16, and the pulse width is set.
  • the irradiation condition in the region Q thinner than the region P is determined to be 8 ns
  • the frequency is 100 kHz
  • the number of optical pulses included in one pulse train is eight
  • the pulse width is determined to be 8 ns.
  • step S1315 the frequency, the number of optical pulses included in one pulse train, and the pulse width of each of the optical pulses are determined according to the gradation of each region.
  • the frequency and the number of optical pulses included in one pulse train are determined to be different values in the regions having different gradations, but the regions having different gradations are combined into one pulse train. At least one of the number of included optical pulses and the pulse width of each of the optical pulses may be determined to be different values.
  • the irradiation condition determined in step S1315 is adopted as the irradiation condition in the constant speed region, and the irradiation condition in the predetermined region is determined in step S1325 described later.
  • step S1320 the control device 50 determines a predetermined area and a constant speed area based on the print data generated in step S1310.
  • the process of step S1320 is the same process as that of step S915.
  • step S1325 the control device 50 determines the irradiation conditions in the predetermined region by using the first method. Specifically, first, the control device 50 specifies the irradiation condition determined in step S1315 for the region to which the predetermined region belongs. For convenience of explanation, the specified irradiation conditions will be referred to as "reference irradiation conditions" below. Next, the control device 50 predicts the acceleration in the predetermined region based on the machining pattern and the driving condition of the scanner 30 received in step S1305, and irradiates in the predetermined region based on the predicted acceleration and the reference irradiation condition. Determine the conditions.
  • the frequency is 75 kHz
  • the number of optical pulses included in one pulse train is four
  • the pulse width is set as the irradiation conditions in the predetermined region. It is decided to be 8ns.
  • the frequency and the number of optical pulses included in one pulse train are changed in the predetermined region and the constant speed region, but the optical pulses included in one pulse train are the same as in the above-described embodiment.
  • At least one of the number of light pulses and the pulse width of each of the optical pulses may be changed between a predetermined region and a constant velocity region.
  • step S1330 the control device 50 instructs the start of printing. Specifically, the control device 50 instructs the oscillator 20 to start outputting the laser beam, and instructs the scanner 30 to start scanning. At this time, the control device 50 outputs the laser beam to the constant speed region under the irradiation condition determined in step S1315, and outputs the laser beam to the predetermined region under the irradiation condition determined in step S1325. Instruct the oscillator 20. As a result, when the laser beam is scanned in the constant speed region, the laser beam under the irradiation conditions determined in step S1315 is output from the oscillator 20, and the laser beam is scanned in the predetermined region. Is that the laser beam under the irradiation conditions determined in step S1325 is output from the oscillator 20.
  • Step S1330 the control device 50 performs step S1335 and step S1340, and ends a series of processes shown in FIG.
  • Step S1335 and step S1340 are the same processes as in step S935 and step S940.
  • the laser processing apparatus 100 it is not necessary to stop the scanner 30 when changing the value of each parameter related to the seed light. Therefore, according to the modification, the laser processing apparatus 100 can draw a processing pattern with shading without stopping the scanner 30.
  • the laser processing apparatus 100 draws a processing pattern with shading, but at least one of the number of optical pulses included in one pulse train and the pulse width of each of the optical pulses. Can be changed between a predetermined region and a constant speed region. As a result, it is possible to prevent the printing from becoming darker or the line width from becoming thicker in a predetermined area where the scanning speed of the scanner 30 is slower than the set speed, so that it is possible to prevent the print quality from deteriorating. Further, in the laser processing apparatus 100, it is not necessary to stop the scanner 30 when changing the value of each parameter related to the seed light, so that the tact time increases even if the parameter value is changed between the predetermined region and the constant speed region. There is nothing to do.
  • the processing pattern is composed of two or more regions having different gradations, but the processing pattern is not limited to this.
  • the processing pattern may be composed of three or more regions having different gradations.
  • the control device 50 determines the irradiation condition in the predetermined region by using the first method, but the irradiation condition in the predetermined region is determined by the second method as in the above-described embodiment. Alternatively, it may be determined using a third method. Further, the control device 50 determines the irradiation conditions in the predetermined region by using the first method, and then determines by the second method or the third method, and the contents determined by the first method are determined by the second method. Alternatively, the correction may be made based on the content determined by the third method.
  • control device 50 sets the irradiation conditions in all predetermined regions (the region at the beginning of drawing, the region of the curved portion, and the region at the end of drawing) in any one of the above three methods. It may be determined by using a method, or the irradiation conditions in each predetermined region may be determined by changing the method used for each region.
  • a laser machining apparatus (100) that draws a machining pattern on a machining object (90).
  • An oscillator (20) that oscillates laser light and A scanner (30) that scans the laser beam output from the oscillator (20), and a scanner (30).
  • a control device (50) that controls the oscillator (20) and the scanner (30),
  • a reception unit (60) for receiving an input of the processing pattern of the processing object (90) is provided.
  • the oscillator (20) is A seed light source (2) that emits seed light and Excitation light sources (3, 9A, 9B) that emit excitation light, and It comprises an optical amplification fiber (1,8) configured to amplify the seed light by injecting the seed light and the excitation light.
  • the seed light source (2) repeatedly generates a pulse train containing a plurality of optical pulses as the seed light.
  • the control device (50) has the seed in a predetermined region where the scanning speed changes.
  • a laser processing apparatus that varies at least one of the number of the optical pulses emitted by the light source and the pulse width of each of the plurality of optical pulses emitted by the seed light source.
  • the reception unit (60) receives the drive conditions of the scanner (30) and receives the drive conditions.
  • the control device (50) receives the number of the optical pulses and the pulse width when the scanner (30) scans the laser beam with respect to the predetermined region at the reception unit (60).
  • the laser processing apparatus according to any one of configurations 1 to 4, which is determined based on the pattern and the driving conditions of the scanner (30).
  • the control device (50) determines the number of the optical pulses and the pulse width when the scanner (30) scans the laser beam with respect to the predetermined region based on the driving condition of the scanner (30).
  • the laser processing apparatus according to any one of configurations 1 to 5, which is determined.
  • the reception unit (60) receives the processing pattern having a shade, and receives the processing pattern.
  • the control device (50) scans the laser beam with the number of optical pulses and the pulse width.
  • the laser processing apparatus according to any one of Configurations 1 to 6, wherein at least one of the above is varied according to the gradation of the processing pattern.
  • 1,8 optical fiber 2 seed LD, 3,9A, 9B excited LD, 4,6,11 isolator, 5,10 coupler, 12 end cap, 13,14,15A, 15B, 35 driver, 20 oscillator, 30 Scanner, 31 X-scan mirror, 32 Y-scan mirror, 33 X-axis motor, 34 Y-axis motor, 36 condenser lens, 50 control device, 60 input device, 90 machining object, 100 laser machining device, Tw pulse train width, tp Pulse interval, tprd repetition cycle, tw pulse width.

Abstract

A laser processing device (100) includes an oscillator (20), a scanner (30), a control device (50), and an input device (60). The oscillator (20) repeatedly produces pulse trains including multiple optical pulses. When a laser beam is scanned with the scanner (30) according to a processing pattern accepted by the input device (60), the control device (50) varies at least one of the number of optical pulses and the pulse width of each of the multiple optical pulses in a predetermined area in which the scanning speed changes.

Description

レーザ加工装置Laser processing equipment
 本開示は、レーザ加工装置に関する。 This disclosure relates to a laser processing device.
 レーザ加工装置の一つであるレーザマーカは、2方向に偏向自在のガルバノミラーを用いて描きたい加工パターンに沿ってレーザ光を走査することにより、加工対象物に加工パターンを描く(以下、「印字する」とも称す)手法が多く用いられている。 The laser marker, which is one of the laser processing devices, draws a processing pattern on the object to be processed by scanning the laser beam along the processing pattern to be drawn using a galvano mirror that can be deflected in two directions (hereinafter, "printing"). (Also called "to do") is often used.
 ガルバノミラーはその慣性により指示に対して応答が遅れることから、ガルバノミラーを用いたレーザ加工装置では線幅が均一にならなかったり、印字が歪んだりすることがあり、印字品質の低下を招いていた。 Since the response of the galvano mirror to the instruction is delayed due to its inertia, the line width may not be uniform or the printing may be distorted in the laser processing device using the galvano mirror, which causes deterioration of the printing quality. rice field.
 特開2010-125489号公報(特許文献1)は、湾曲部の内回り現象を解消するために、曲線部を描く場合には直線部を描く場合よりもスキャナの走査速度(スキャン速度)を低下させるとともに、パルス発振周波数とデューティ比又は印字に寄与するパルス発振間隔とをスキャン速度に合わせて低下させる技術を開示している。 Japanese Patent Application Laid-Open No. 2010-125489 (Patent Document 1) lowers the scanning speed (scanning speed) of the scanner when drawing a curved portion than when drawing a straight portion in order to eliminate the inward rotation phenomenon of the curved portion. At the same time, the technique of reducing the pulse oscillation frequency and the duty ratio or the pulse oscillation interval contributing to printing according to the scanning speed is disclosed.
特開2010-125489号公報Japanese Unexamined Patent Publication No. 2010-125489
 特開2010-125489号公報に開示の技術によれば、ガルバノミラーの応答遅れにより印字品質が低下することを防ぐために、ガルバノミラーの応答遅れを考慮してスキャナの走査速度を調整しなければならない。したがって、スキャナの走査速度を調整できないような領域(たとえば、描き始めの領域、描き終わりの領域等)における印字品質の低下を防ぐことは難しい。 According to the technique disclosed in Japanese Patent Application Laid-Open No. 2010-125489, the scanning speed of the scanner must be adjusted in consideration of the response delay of the galvano mirror in order to prevent the print quality from being deteriorated due to the response delay of the galvano mirror. .. Therefore, it is difficult to prevent deterioration of print quality in an area where the scanning speed of the scanner cannot be adjusted (for example, an area at the beginning of drawing, an area at the end of drawing, etc.).
 本開示の目的は、スキャナの走査速度を調整せずとも、印字品質が低下することを防ぐことができるレーザ加工装置を提供することである。 An object of the present disclosure is to provide a laser processing apparatus capable of preventing deterioration of print quality without adjusting the scanning speed of the scanner.
 この開示にかかるレーザ加工装置は、加工パターンを加工対象物に描くレーザ加工装置であって、レーザ光を発振する発振器と、発振器から出力されるレーザ光を走査するスキャナと、発振器およびスキャナを制御する制御装置と、加工対象物の加工パターンの入力を受け付ける受付部と、を備える。発振器は、シード光を発するシード光源と、励起光を発する励起光源と、シード光および励起光が入射されることによってシード光を増幅するように構成された光増幅ファイバと、を含む。シード光源は、シード光として、複数の光パルスを含むパルス列を繰り返し発生させ、制御装置は、受付部で受け付けた加工パターンに沿ってスキャナでレーザ光を走査する場合に、走査する速度が変化する所定領域において、シード光源が発する光パルスの数と、シード光源が発する複数の光パルスの各々のパルス幅と、の少なくとも一方を可変させる。 The laser processing apparatus according to this disclosure is a laser processing apparatus that draws a processing pattern on an object to be processed, and controls an oscillator that oscillates a laser beam, a scanner that scans the laser beam output from the oscillator, an oscillator, and a scanner. It is provided with a control device for processing and a reception unit for receiving input of a processing pattern of a processing object. The oscillator includes a seed light source that emits seed light, an excitation light source that emits excitation light, and an optical amplification fiber configured to amplify the seed light by injecting the seed light and the excitation light. The seed light source repeatedly generates a pulse train containing a plurality of optical pulses as the seed light, and the control device changes the scanning speed when the laser beam is scanned by the scanner according to the processing pattern received by the reception unit. At least one of the number of light pulses emitted by the seed light source and the pulse width of each of the plurality of light pulses emitted by the seed light source is varied in a predetermined region.
 上述の開示によれば、所定領域において印字が濃くなったり、線幅が太くなったりすることを防ぐことができるので、印字品質が低下することを防ぐことができる。 According to the above disclosure, it is possible to prevent the print from becoming darker or the line width from becoming thicker in a predetermined area, so that it is possible to prevent the print quality from deteriorating.
 上述の開示において、所定領域は、加工パターンのうち描き始めの領域である。 In the above disclosure, the predetermined area is the area where the drawing starts in the processing pattern.
 上述の開示によれば、描き始めの領域において印字が濃くなったり、線幅が太くなったりすることを防ぐことができるので、印字品質が低下することを防ぐことができる。 According to the above disclosure, it is possible to prevent the print from becoming dark or the line width from becoming thick in the area where the drawing starts, so that it is possible to prevent the print quality from deteriorating.
 上述の開示において、所定領域は、加工パターンのうち描き終わりの領域である。 In the above disclosure, the predetermined area is the area of the processing pattern at the end of drawing.
 上述の開示によれば、描き終わりの領域において印字が濃くなったり、線幅が太くなったりすることを防ぐことができるので、印字品質が低下することを防ぐことができる。 According to the above disclosure, it is possible to prevent the print from becoming darker or the line width from becoming thicker in the area at the end of drawing, so that it is possible to prevent the print quality from deteriorating.
 上述の開示において、所定領域は、加工パターンのうち曲線部の領域である。 In the above disclosure, the predetermined region is the curved portion region of the machining pattern.
 上述の開示によれば、曲線部の領域において印字が濃くなったり、線幅が太くなったりすることを防ぐことができるので、印字品質が低下することを防ぐことができる。 According to the above disclosure, it is possible to prevent the print from becoming darker or the line width from becoming thicker in the area of the curved portion, so that it is possible to prevent the print quality from deteriorating.
 上述の開示において、受付部は、スキャナの駆動条件を受け付ける。制御装置は、所定領域に対してスキャナでレーザ光を走査する際の光パルスの数とパルス幅とを受付部で受け付けた加工パターンとスキャナの駆動条件とに基づいて決定する。 In the above disclosure, the reception unit receives the driving conditions of the scanner. The control device determines the number of optical pulses and the pulse width when scanning the laser beam with the scanner for a predetermined area based on the processing pattern received by the reception unit and the driving conditions of the scanner.
 上述の開示によれば、所定領域に対してスキャナでレーザ光を走査する際の光パルスの数とパルス幅とをスキャナの駆動が開始される前に決定することができる。 According to the above disclosure, the number of optical pulses and the pulse width when scanning the laser beam with the scanner for a predetermined area can be determined before the driving of the scanner is started.
 上述の開示において、制御装置は、所定領域に対してスキャナでレーザ光を走査する際の光パルスの数とパルス幅とをスキャナの駆動状況に基づいて決定する。 In the above disclosure, the control device determines the number of optical pulses and the pulse width when scanning the laser beam with the scanner for a predetermined area based on the driving condition of the scanner.
 上述の開示によれば、所定領域に対してスキャナでレーザ光を走査する際の光パルスの数とパルス幅とをスキャナの駆動状況に基づいて補正することができる。 According to the above disclosure, the number of optical pulses and the pulse width when scanning the laser beam with the scanner for a predetermined area can be corrected based on the driving condition of the scanner.
 上述の開示において、受付部は、濃淡のある加工パターンを受け付ける。制御装置は、受付部で受け付けた濃淡のある加工パターンに沿ってスキャナでレーザ光を走査する場合に、光パルスの数とパルス幅との少なくとも一方を加工パターンの階調に応じて可変させる。 In the above disclosure, the reception unit accepts processing patterns with shades. The control device changes at least one of the number of optical pulses and the pulse width according to the gradation of the processing pattern when the laser light is scanned by the scanner according to the processing pattern with shading received by the reception unit.
 上述の開示によれば、濃淡のある加工パターンを描く場合であっても、所定領域において印字が濃くなったり、線幅が太くなったりすることを防ぐことができるので、印字品質が低下することを防ぐことができる。 According to the above disclosure, even when drawing a processing pattern with shading, it is possible to prevent the print from becoming dark or the line width in a predetermined area, so that the print quality deteriorates. Can be prevented.
 本開示によれば、スキャナの走査速度を調整せずとも、印字品質が低下することを防ぐことができるレーザ加工装置を提供することである。 According to the present disclosure, it is an object of the present invention to provide a laser processing apparatus capable of preventing deterioration of print quality without adjusting the scanning speed of the scanner.
実施の形態に係るレーザ加工装置の構成例を示す図である。It is a figure which shows the structural example of the laser processing apparatus which concerns on embodiment. 実施の形態に係るレーザ加工装置の構成例を示す図である。It is a figure which shows the structural example of the laser processing apparatus which concerns on embodiment. シードLDから発生するシード光の波形を示す図である。It is a figure which shows the waveform of the seed light generated from a seed LD. Qスイッチ方式を説明するための図である。It is a figure for demonstrating the Q-switch system. MOPA方式とQスイッチ方式とにおける周波数とパルス列幅(パルス幅)との関係を示す図である。It is a figure which shows the relationship between the frequency and the pulse train width (pulse width) in the MOPA system and the Q switch system. 描き始めの領域と描き終わりの領域とにおける照射条件の変更例を示す図である。It is a figure which shows the example of change of the irradiation condition in the area at the beginning of drawing and the area at the end of drawing. 曲線部における照射条件の変更例を示す図である。It is a figure which shows the example of changing the irradiation condition in a curved part. 所定領域における照射条件の決定方法を説明するための図である。It is a figure for demonstrating the method of determining an irradiation condition in a predetermined area. 所定領域における照射条件を第1の方法を用いて決定する場合の印字処理の一例を示すフローチャートである。It is a flowchart which shows an example of the printing process at the time of determining the irradiation condition in a predetermined area by using the 1st method. 所定領域における照射条件を第2の方法または第3の方法を用いて決定する場合の印字処理の一例を示すフローチャートである。It is a flowchart which shows an example of the printing process at the time of determining the irradiation condition in a predetermined area by using the 2nd method or the 3rd method. 所定領域における照射条件を第1の方法を用いて決定した後、第2の方法または第3の方法を用いて補正する場合の印字処理の一例を示すフローチャートである。It is a flowchart which shows an example of the printing process in the case which the irradiation condition in a predetermined area is determined by using the 1st method, and then corrected by the 2nd method or the 3rd method. 濃淡のある加工パターンを印字する場合の照射条件の一例を示す図である。It is a figure which shows an example of the irradiation condition at the time of printing a processing pattern with shading. 濃淡のある加工パターンを印字する場合の印字処理の一例を示すフローチャートである。It is a flowchart which shows an example of the printing process at the time of printing a processing pattern with shading.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 [適用例]
 まず、図1および図3を参照して、本発明が適用される場面の一例について説明する。本発明が適用される場面は、レーザ加工装置100を用いて加工パターンを加工対象物90に描く(以下、「印字する」とも称す)場面である。
[Application example]
First, an example of a situation in which the present invention is applied will be described with reference to FIGS. 1 and 3. The scene to which the present invention is applied is a scene in which a processing pattern is drawn on a processing object 90 (hereinafter, also referred to as “printing”) using a laser processing apparatus 100.
 レーザ加工装置100は、二次元方向に偏向自在のガルバノミラー(Xスキャンミラー31、Yスキャンミラー32)を用いて、発振器20から出力されるレーザ光を加工対象物90の表面上で二次元方向に走査することにより、加工パターンに沿って加工対象物90に加工痕(ドット)を形成する。これにより、加工対象物90に加工パターンが描かれる。 The laser processing apparatus 100 uses a galvano mirror (X scan mirror 31, Y scan mirror 32) that can be deflected in a two-dimensional direction to transmit the laser light output from the oscillator 20 in the two-dimensional direction on the surface of the object to be processed 90. By scanning to, processing marks (dots) are formed on the processing object 90 along the processing pattern. As a result, a processing pattern is drawn on the object to be processed 90.
 一般的に、このようなガルバノミラーを用いたレーザ加工装置で加工パターンを描く場合には、スキャナ30がレーザ光を走査する速度(以下、「走査速度」とも称す)が定速の領域(以下、「定速領域」とも称す)と比べて、走査速度が変化する領域では、印字が濃くなったり、線幅が太くなったりする。これは、定速領域では走査速度が設定速度(設定速度に近似する速度を含む)に維持されるのに対し、走査速度が変化する領域では、走査速度が設定速度よりも遅いためである。加工パターンのうち、描き始めの領域、描き終わりの領域、および曲線部の領域が、走査速度が変化する領域に該当し、「所定領域」に相当する。 Generally, when drawing a processing pattern with a laser processing apparatus using such a galvano mirror, the speed at which the scanner 30 scans the laser beam (hereinafter, also referred to as “scanning speed”) is in a constant speed region (hereinafter, also referred to as “scanning speed”). , Also referred to as "constant speed area"), in the area where the scanning speed changes, the printing becomes darker and the line width becomes thicker. This is because the scanning speed is maintained at the set speed (including a speed close to the set speed) in the constant speed region, whereas the scanning speed is slower than the set speed in the region where the scanning speed changes. Of the processing patterns, the area at the beginning of drawing, the area at the end of drawing, and the area of the curved portion correspond to the area where the scanning speed changes, and correspond to the “predetermined area”.
 詳細には、描き始めの領域とは、レーザ印字が開始される領域であって、レーザ光が出射され始め、かつ、スキャナ30が設定速度の範囲内で停止状態または低速状態から定速状態に至るまでの加速的な挙動を示す領域である。 Specifically, the area where drawing starts is the area where laser printing is started, the laser light starts to be emitted, and the scanner 30 changes from a stopped state or a low speed state to a constant speed state within a set speed range. This is a region that shows accelerated behavior up to the point.
 描き終わりの領域とは、レーザ印字が終了する領域であって、レーザ光の出射が停止する直前の領域であり、かつ、スキャナ30が設定速度の範囲内で定速状態から停止状態または低速状態に至るまでの減速的な挙動を示す領域である。 The area at the end of drawing is an area where laser printing ends, and is an area immediately before the emission of laser light stops, and the scanner 30 is in a constant speed state, a stopped state, or a low speed state within a set speed range. It is a region showing decelerating behavior up to.
 曲線部の領域とは、レーザ印字中に、スキャナ30が設定速度の範囲内で2軸の方向(X軸方向、Y軸方向)に同時に加速的または減速的な挙動を示す領域、若しくは、スキャナ30が一方の軸方向には設定速度の範囲内で加速的または減速的な挙動を示すのに対し、他方の軸方向には設定速度の範囲内で定速的な挙動を示す領域である。 The curved area is an area in which the scanner 30 simultaneously accelerates or decelerates in two axis directions (X-axis direction and Y-axis direction) within a set speed range during laser printing, or a scanner. 30 is a region that exhibits accelerating or decelerating behavior within a set speed range in one axial direction, while exhibiting constant speed behavior within a set speed range in the other axial direction.
 レーザ加工装置100は、加工パターンに沿ってスキャナ30でレーザ光を走査する場合に、図3に示すレーザ光に関するパラメータのうち、1つのパルス列に含まれる光パルスの数と当該光パルスの各々のパルス幅twとの少なくとも一方を所定領域と定速領域とで変えることにより、均一な印字を実現する。1つのパルス列に含まれる光パルスの数と当該光パルスの各々のパルス幅twとは、線分の太さや濃さに影響を与えるドットの幅(すなわち、パルス列幅Tw)を決める要素である。ゆえに、レーザ加工装置100では、スキャナ30の走査速度を調整せずとも、印字品質が低下することを防ぐことができる。 When the laser processing apparatus 100 scans the laser light with the scanner 30 along the processing pattern, the number of optical pulses included in one pulse train and each of the optical pulses among the parameters related to the laser light shown in FIG. Uniform printing is realized by changing at least one of the pulse width tw between the predetermined region and the constant speed region. The number of optical pulses included in one pulse train and the pulse width tw of each of the light pulses are elements that determine the width of dots (that is, the pulse train width Tw) that affects the thickness and density of the line segment. Therefore, in the laser processing apparatus 100, it is possible to prevent the print quality from deteriorating without adjusting the scanning speed of the scanner 30.
 以下、実施の形態のより具体的な応用例について説明する。以下において、「LD」とは、Laser Diode(半導体レーザ)を意味する。 Hereinafter, a more specific application example of the embodiment will be described. In the following, "LD" means Laser Diode (semiconductor laser).
 [実施の形態]
 (レーザ加工装置100の構成)
 図1および図2を参照して、実施の形態に係るレーザ加工装置の構成例を説明する。図1および図2は、実施の形態に係るレーザ加工装置100の構成例を示す図である。
[Embodiment]
(Structure of Laser Machining Equipment 100)
A configuration example of the laser processing apparatus according to the embodiment will be described with reference to FIGS. 1 and 2. 1 and 2 are diagrams showing a configuration example of the laser processing apparatus 100 according to the embodiment.
 図1および図2を参照して、レーザ加工装置100は、発振器20と、スキャナ30と、制御装置50と、入力装置60とを備える、レーザマーカである。発振器20は、レーザ光を発振する。スキャナ30は、発振器20から出力されるレーザ光を走査する。制御装置50は、発振器20およびスキャナ30を制御する。入力装置60は、「受付部」の一例であり、ユーザから情報の入力を受け付ける。 With reference to FIGS. 1 and 2, the laser processing device 100 is a laser marker including an oscillator 20, a scanner 30, a control device 50, and an input device 60. The oscillator 20 oscillates a laser beam. The scanner 30 scans the laser beam output from the oscillator 20. The control device 50 controls the oscillator 20 and the scanner 30. The input device 60 is an example of a “reception unit” and receives information input from a user.
 主に図2を参照して、発振器20は、MOPA(Master Oscillator and Power Amplifier)方式を採用する。MOPA方式とは、高品位ビーム発生用の高安定な主発振器(またはシード光)と高出力な光増幅器とを分けて、それぞれを独立に制御する方式である。詳細には、発振器20は、光ファイバ1,8と、シードLD2と、励起LD3,9A,9Bと、アイソレータ4,6,11と、結合器5,10と、エンドキャップ12と、ドライバ13,14,15A,15Bとを備え、シードLD2から発生するシード光を光ファイバ1,8によって増幅し、増幅したシード光を出力するように構成されている。 Mainly referring to FIG. 2, the oscillator 20 adopts the MOPA (Master Oscillator and Power Amplifier) method. The MOPA method is a method in which a highly stable main oscillator (or seed light) for generating a high-definition beam and a high-output optical amplifier are separated and each is controlled independently. Specifically, the oscillator 20 includes an optical fiber 1,8, a seed LD2, an excited LD3, 9A, 9B, an isolator 4,6,11, a coupler 5,10, an end cap 12, a driver 13, and the like. It is provided with 14, 15A and 15B, and is configured to amplify the seed light generated from the seed LD2 by the optical fibers 1 and 8 and output the amplified seed light.
 光ファイバ1,8は、光増幅ファイバである。光ファイバ1,8は、石英を主成分とする石英系ファイバでもよいし、プラスチック光増幅ファイバでもよい。 Optical fibers 1 and 8 are optical amplification fibers. The optical fibers 1 and 8 may be quartz-based fibers containing quartz as a main component, or may be plastic optical amplification fibers.
 光ファイバ1,8は、光増幅成分である希土類元素が添加されたコア、および、そのコアの周囲に設けられるクラッドを有する。 The optical fibers 1 and 8 have a core to which a rare earth element which is an optical amplification component is added, and a clad provided around the core.
 シードLD2は、シード光を発するレーザ光源である。シードLD2は、シード光として、複数の光パルスを含むパルス列(図3参照)を繰り返し出力する。シード光の波長は、たとえば1000~1100nmの範囲から選択された波長である。ドライバ13は、制御装置50の指示に従って、シードLD2にパルス状の電流を繰返し印加することにより、シードLD2をパルス駆動させ、シードLD2から複数の光パルスを含むシード光(パルス列)を繰り返し発生させる。 The seed LD2 is a laser light source that emits seed light. The seed LD2 repeatedly outputs a pulse train (see FIG. 3) including a plurality of optical pulses as the seed light. The wavelength of the seed light is, for example, a wavelength selected from the range of 1000 to 1100 nm. The driver 13 repeatedly applies a pulsed current to the seed LD2 in accordance with the instruction of the control device 50 to drive the seed LD2 in a pulsed manner, and repeatedly generate seed light (pulse train) including a plurality of optical pulses from the seed LD2. ..
 シードLD2から出射されるシード光は、アイソレータ4を通過する。アイソレータ4は、一方向の光のみを透過し、その光と逆方向に入射する光を遮断する機能を実現する。この例では、アイソレータ4は、シードLD2からのシード光を透過させるとともに光ファイバ1からの戻り光を遮断する。これによって、光ファイバ1からの戻り光がシードLD2に入射するのを防ぐことができる。シードLD2に光ファイバ1からの戻り光が入射した場合にはシードLD2が損傷するおそれがあるが、アイソレータ4を設けることでこのような問題を防ぐことができる。 The seed light emitted from the seed LD2 passes through the isolator 4. The isolator 4 realizes a function of transmitting light in only one direction and blocking light incident on the opposite direction of the light. In this example, the isolator 4 transmits the seed light from the seed LD 2 and blocks the return light from the optical fiber 1. This makes it possible to prevent the return light from the optical fiber 1 from incident on the seed LD2. When the return light from the optical fiber 1 is incident on the seed LD 2, the seed LD 2 may be damaged, and the provision of the isolator 4 can prevent such a problem.
 励起LD3は、光ファイバ1のコアに添加された希土類元素の原子を励起するための励起光を発する励起光源である。ドライバ14は、制御装置50の指示に従って、励起LD3をCW(Continuous Wave)駆動(連続動作)させる。 Excitation LD3 is an excitation light source that emits excitation light for exciting the atoms of rare earth elements added to the core of the optical fiber 1. The driver 14 drives the excited LD3 by CW (Continuous Wave) according to the instruction of the control device 50 (continuous operation).
 結合器5は、シードLD2からのシード光と励起LD3からの励起光とを結合して光ファイバ1に入射させる。 The coupler 5 combines the seed light from the seed LD2 and the excitation light from the excitation LD3 and causes them to enter the optical fiber 1.
 光ファイバ1に入射した励起光は、コアに含まれる希土類元素の原子に吸収され、原子が励起される。シードLD2からのシード光が光ファイバ1のコアを伝搬すると、励起された原子がシード光により誘導放出を起こすためシード光が増幅される。 The excitation light incident on the optical fiber 1 is absorbed by the atom of the rare earth element contained in the core, and the atom is excited. When the seed light from the seed LD2 propagates through the core of the optical fiber 1, the excited atoms cause stimulated emission by the seed light, so that the seed light is amplified.
 アイソレータ6は、光ファイバ1によって増幅され、かつ光ファイバ1から出射されたシード光(光パルス)を通過させるとともに光ファイバ1に戻る光を遮断する。 The isolator 6 passes the seed light (optical pulse) amplified by the optical fiber 1 and emitted from the optical fiber 1 and blocks the light returning to the optical fiber 1.
 励起LD9A,9Bは、光ファイバ8のコアに含まれる希土類元素の原子を励起するための励起光を発する。ドライバ15A,15Bは、制御装置50の指示に従って、励起LD9A,9BのそれぞれをCW駆動させる。 Excitation LD9A and 9B emit excitation light for exciting the atoms of rare earth elements contained in the core of the optical fiber 8. The drivers 15A and 15B drive each of the excited LD9A and 9B by CW according to the instruction of the control device 50.
 結合器10は、光ファイバ1から出力された光パルスと、励起LD9A,9Bからの励起光とを結合して光ファイバ8に入射させる。光ファイバ1における光増幅作用と同じ作用によって、光ファイバ8に入射した光パルスが増幅される。 The coupler 10 combines the optical pulse output from the optical fiber 1 and the excitation light from the excitation LDs 9A and 9B to be incident on the optical fiber 8. The optical pulse incident on the optical fiber 8 is amplified by the same action as the optical amplification action in the optical fiber 1.
 アイソレータ11は、光ファイバ8から出射された光パルスを通過させるとともに、光ファイバ8に戻る光を遮断する。アイソレータ11を通過した光パルスは、アイソレータ11に付随する光ファイバの端面から大気中に出射される。エンドキャップ12は、ピークパワーの高い光パルスが光ファイバから大気中に出射される際に光ファイバの端面と大気との境界面で生じるダメージを防止するために設けられる。なお、エンドキャップ12は、アイソレータ11の内部に設けられてもよい。 The isolator 11 passes the optical pulse emitted from the optical fiber 8 and blocks the light returning to the optical fiber 8. The optical pulse that has passed through the isolator 11 is emitted into the atmosphere from the end face of the optical fiber attached to the isolator 11. The end cap 12 is provided to prevent damage that occurs at the interface between the end face of the optical fiber and the atmosphere when an optical pulse having a high peak power is emitted from the optical fiber into the atmosphere. The end cap 12 may be provided inside the isolator 11.
 なお、図2に示す構成では、第1段階の励起LDの個数は1であり、第2段階の励起LDの個数は2であるが、励起LDの個数はこれらの値に限定されるものではない。 In the configuration shown in FIG. 2, the number of excited LDs in the first stage is 1, and the number of excited LDs in the second stage is 2, but the number of excited LDs is not limited to these values. do not have.
 主に図1を参照して、スキャナ30は、発振器20から出力されるレーザ光を加工対象物90の表面上で二次元方向に走査する。詳細には、スキャナ30は、Xスキャンミラー31と、Yスキャンミラー32と、X軸モーター33と、Y軸モーター34と、ドライバ35と、集光レンズ36とを備え、これらの要素を用いて加工パターンに沿ってレーザ光を走査する。当該加工パターンは、後述の入力装置60で受け付けられる。 Mainly referring to FIG. 1, the scanner 30 scans the laser beam output from the oscillator 20 in a two-dimensional direction on the surface of the object to be machined 90. Specifically, the scanner 30 includes an X-scan mirror 31, a Y-scan mirror 32, an X-axis motor 33, a Y-axis motor 34, a driver 35, and a condenser lens 36, and uses these elements. The laser beam is scanned along the processing pattern. The processing pattern is accepted by the input device 60 described later.
 Xスキャンミラー31は、X軸方向に偏向自在のガルバノミラーであり、レーザ光をX方向に偏向する。Yスキャンミラー32は、Y軸方向に偏向自在のガルバノミラーであり、レーザ光をY軸方向に偏向する。X軸モーター33は、Xスキャンミラー31の駆動源である。Y軸モーター34は、Yスキャンミラー32の駆動源である。ドライバ35は、制御装置50の指示に従って、X軸モーター33およびY軸モーター34を駆動する。集光レンズ36は、レーザ光を集光させるためのfθレンズ等である。 The X scan mirror 31 is a galvano mirror that can be deflected in the X-axis direction, and deflects the laser beam in the X direction. The Y scan mirror 32 is a galvano mirror that can be deflected in the Y-axis direction, and deflects the laser beam in the Y-axis direction. The X-axis motor 33 is a drive source for the X scan mirror 31. The Y-axis motor 34 is a drive source for the Y-scan mirror 32. The driver 35 drives the X-axis motor 33 and the Y-axis motor 34 according to the instructions of the control device 50. The condenser lens 36 is an fθ lens or the like for condensing laser light.
 発振器20から出力されるレーザ光がスキャナ30によって加工対象物90の表面上で二次元方向に走査されることにより、加工パターンに沿って加工対象物90にドットが形成される。 The laser beam output from the oscillator 20 is scanned by the scanner 30 in a two-dimensional direction on the surface of the object to be machined 90, so that dots are formed on the object to be machined 90 along the machining pattern.
 図1および図2を参照して、制御装置50は、ドライバ13,14,15A,15B,35を制御することによりレーザ加工装置100の動作を統括的に制御する。入力装置60は、ユーザから情報の入力を受け付けて、その受け付けた情報を制御装置50に送信する。入力装置60が受け付ける情報は、たとえば、加工対象物90の加工パターン、スキャナ30の駆動条件等である。 With reference to FIGS. 1 and 2, the control device 50 comprehensively controls the operation of the laser processing device 100 by controlling the drivers 13, 14, 15A, 15B, and 35. The input device 60 receives the input of information from the user and transmits the received information to the control device 50. The information received by the input device 60 is, for example, a machining pattern of the machining object 90, a driving condition of the scanner 30, and the like.
 入力装置60が受け付ける加工パターンは、レーザ光が照射される領域(以下「照射領域」とも称す)とレーザ光が照射されない領域とで構成される加工パターンでもよいし、照射領域のみで構成される加工パターンでもよい。また、照射領域には濃淡があってもよいし、濃淡がなくてもよい。 The processing pattern received by the input device 60 may be a processing pattern composed of a region irradiated with laser light (hereinafter, also referred to as “irradiation region”) and a region not irradiated with laser light, or may be composed of only an irradiation region. It may be a processing pattern. Further, the irradiation area may have light and shade, or may have no light and shade.
 入力装置60が受け付けるスキャナ30の駆動条件は、スキャナ30の走査速度に関する種別であり、たとえば「標準」、「低速」、「高速」等である。入力装置60によってスキャナ30の走査速度に関する種別が受け付けられると、制御装置50は当該種別に対応する走査速度を設定速度として設定する。 The drive condition of the scanner 30 accepted by the input device 60 is a type related to the scanning speed of the scanner 30, and is, for example, "standard", "low speed", "high speed", and the like. When the input device 60 accepts a type related to the scanning speed of the scanner 30, the control device 50 sets the scanning speed corresponding to the type as the set speed.
 制御装置50には、たとえば所定のプログラムを実行するパーソナルコンピュータが採用される。入力装置60には、たとえばマウス、キーボード、タッチパネル等が採用される。制御装置50は、入力装置60から受信した情報に基づいて、ドライバ13,14,15A,15Bの動作を制御するとともに、ドライバ13,14,15A,15Bを動作させている間(すなわち、発振器20からレーザ光が出射されている間)、ドライバ35の動作を制御する。 For the control device 50, for example, a personal computer that executes a predetermined program is adopted. For the input device 60, for example, a mouse, a keyboard, a touch panel, or the like is adopted. The control device 50 controls the operation of the drivers 13, 14, 15A, 15B based on the information received from the input device 60, and while operating the drivers 13, 14, 15A, 15B (that is, the oscillator 20). (While the laser beam is emitted from), the operation of the driver 35 is controlled.
 (シード光の波形)
 次に、図2および図3を参照して、シードLD2から発生するシード光の波形について説明する。
(Waveform of seed light)
Next, the waveform of the seed light generated from the seed LD2 will be described with reference to FIGS. 2 and 3.
 図3は、シードLD2から発生するシード光の波形を示す図である。シードLD2から発生するシード光は、複数の光パルスを含むパルス列(マルチパルス)である。ドライバ13が制御装置50の指示に従ってシードLD2を駆動することにより、シードLD2から複数の光パルスを含むパルス列が繰返し周期tprdごとに発生する。複数の光パルスの時間間隔(パルス間隔)はtpである。 FIG. 3 is a diagram showing a waveform of seed light generated from seed LD2. The seed light generated from the seed LD2 is a pulse train (multi-pulse) including a plurality of light pulses. When the driver 13 drives the seed LD2 according to the instruction of the control device 50, a pulse train including a plurality of optical pulses is generated from the seed LD2 for each repetition period tprd. The time interval (pulse interval) of the plurality of optical pulses is tp.
 繰返し周期tprdおよびパルス間隔tpは、加工対象物の加工条件、たとえば加工対象物の素材(金属、樹脂など)、加工時間、加工品質等に基づいて設定される。たとえば繰返し周期tprdは1μs~1msの範囲から選択される。一方、パルス間隔tpは繰返し周期tprdに比較して短く、たとえば1ns~100nsの間から選択される。 The repetition period tprd and the pulse interval tp are set based on the processing conditions of the object to be processed, for example, the material (metal, resin, etc.) of the object to be processed, the processing time, the processing quality, and the like. For example, the repetition period tprd is selected from the range of 1 μs to 1 ms. On the other hand, the pulse interval tp is shorter than the repetition period tprd, and is selected from, for example, between 1 ns and 100 ns.
 パルス間隔tpが短いため、1つのマルチパルスを構成するパルス列においては、1つのパルスとその次のパルスとの間の走査距離が非常に短い。よって、前のパルスによる加工対象物表面の加工痕の範囲内に次のパルスが照射され、結果として、1つのマルチパルスを構成するパルス列は加工対象物のほぼ同一箇所に照射され、ドットを形成する。すなわち、ドットは複数の光パルス(パルス列)によって構成される。 Since the pulse interval tp is short, the scanning distance between one pulse and the next pulse is very short in the pulse train constituting one multi-pulse. Therefore, the next pulse is irradiated within the range of the machining mark on the surface of the machining object by the previous pulse, and as a result, the pulse train constituting one multi-pulse is irradiated to almost the same place of the machining object to form a dot. do. That is, the dot is composed of a plurality of optical pulses (pulse trains).
 レーザ加工装置100は、光増幅ファイバを利用したMOPA方式を採用し、シード光として半導体レーザからの光を利用する。シードLD2から発生するシード光は光ファイバ1,8によって増幅され、レーザ加工装置100から出力される。シードLD2は複数の光パルスを含むパルス列をシード光として出力するので、レーザ加工装置100からは複数の光パルスを含むパルス列、言い換えればマルチパルス化されたレーザ光が出力される。 The laser processing apparatus 100 adopts a MOPA method using an optical amplification fiber, and uses light from a semiconductor laser as seed light. The seed light generated from the seed LD2 is amplified by the optical fibers 1 and 8 and output from the laser processing apparatus 100. Since the seed LD2 outputs a pulse train containing a plurality of light pulses as seed light, the laser processing apparatus 100 outputs a pulse train containing a plurality of light pulses, in other words, a multi-pulse laser light.
 ドライバ13がシードLD2を駆動することによって、シードLD2はシード光(パルス列)を発生する。ドライバ13がシードLD2に供給される電流を制御することにより、シードLD2から発生するシード光(パルス列)の繰返し周期tprd、1つのパルス列に含まれる光パルスの数、パルス間隔tp、各光パルスのピークパワー(パルスの振幅)、および各光パルスのパルス幅tw等、シード光に関する複数のパラメータを互いに独立に制御することができる。レーザ加工装置100から出力されるレーザ光は、光ファイバ1、8によって増幅されたシード光である。シード光に関するパラメータを制御することによってレーザ加工装置100から出力されるレーザ光(パルス列)に関する複数のパラメータ(1つのパルス列に含まれる光パルスの数、繰返し周期(周波数に相当)、パルス間隔、各光パルスのピークパワー(パルスの振幅)、および各光パルスのパルス幅等)を互いに独立に制御することができる。 When the driver 13 drives the seed LD2, the seed LD2 generates a seed light (pulse train). By controlling the current supplied to the seed LD2 by the driver 13, the repetition period tprd of the seed light (pulse train) generated from the seed LD2, the number of optical pulses contained in one pulse train, the pulse interval tp, and each optical pulse. Multiple parameters related to seed light, such as peak power (pulse amplitude) and pulse width tw of each light pulse, can be controlled independently of each other. The laser light output from the laser processing apparatus 100 is seed light amplified by the optical fibers 1 and 8. Multiple parameters related to the laser light (pulse train) output from the laser processing apparatus 100 by controlling the parameters related to the seed light (number of optical pulses contained in one pulse train, repetition period (corresponding to frequency), pulse interval, each). The peak power of an optical pulse (pulse amplitude) and the pulse width of each optical pulse can be controlled independently of each other.
 このように、実施の形態によれば、レーザ加工装置100からレーザ光としてパルス列(マルチパルス)を出力することができる。さらに、レーザ加工装置100から出力されるレーザ光(パルス列)に関する複数のパラメータを互いに独立に制御することができる。したがって、実施の形態によれば、所望の加工を行うためのレーザ光(パルス列)をレーザ加工装置100から出力することができる。 As described above, according to the embodiment, a pulse train (multi-pulse) can be output as a laser beam from the laser processing apparatus 100. Further, a plurality of parameters related to the laser beam (pulse train) output from the laser processing apparatus 100 can be controlled independently of each other. Therefore, according to the embodiment, the laser beam (pulse train) for performing the desired processing can be output from the laser processing apparatus 100.
 (MOPA方式の利点)
 ここで、図4および図5を参照して、MOPA方式の利点について、MOPA方式と比較されるQスイッチ方式との比較のもとで説明する。
(Advantages of MOPA method)
Here, with reference to FIGS. 4 and 5, the advantages of the MOPA method will be described in comparison with the Q-switch method compared with the MOPA method.
 図4は、Qスイッチ方式を説明するための図である。Qスイッチ方式とは、レーザ発振の方式であり、MOPA方式と比較される方式である。Qスイッチ方式では、Qスイッチと呼ばれる素子を瞬間的に開放させることにより、パルスレーザ光が出力される。詳細には、レーザ共振の原理を用いて全反射ミラーと部分透過ミラーとの間でレーザエネルギが高められ、Qスイッチが瞬間的に開放されることでパルスレーザ光が出力される。 FIG. 4 is a diagram for explaining the Q-switch method. The Q-switch method is a laser oscillation method, which is compared with the MOPA method. In the Q-switch system, pulsed laser light is output by instantaneously opening an element called a Q-switch. Specifically, the laser energy is increased between the total reflection mirror and the partially transmitted mirror by using the principle of laser resonance, and the pulse laser light is output by momentarily opening the Q switch.
 図5は、MOPA方式とQスイッチ方式とにおける周波数とパルス列幅(パルス幅)との関係を示す図である。縦軸にパルス列幅Tw(Qスイッチ方式ではパルス幅)が示され、横軸に周波数が示されている。 FIG. 5 is a diagram showing the relationship between the frequency and the pulse train width (pulse width) in the MOPA method and the Q-switch method. The vertical axis shows the pulse train width Tw (pulse width in the Q-switch system), and the horizontal axis shows the frequency.
 図5に示すように、Qスイッチ方式の場合には、周波数が変化すると周波数の変化に応じてパルス幅が変化する。すなわち、Qスイッチ方式の場合には、パルスレーザ光のパルス幅は周波数との関係で一意に定まる。 As shown in FIG. 5, in the case of the Q-switch method, when the frequency changes, the pulse width changes according to the change in frequency. That is, in the case of the Q-switch method, the pulse width of the pulsed laser beam is uniquely determined in relation to the frequency.
 一方、MOPA方式の場合には、周波数が変化してもパルス列幅は変化しない。パルス列幅とは複数の光パルスを含むパルス列の幅、すなわちドットの幅であり、図3ではTwで示されている。すなわち、MOPA方式の場合では、同じパルス列幅Twのパルス列を周波数を変化させて出力することができる。これは、MOPA方式において、パルス列幅Twは、1つのパルス列に含まれる光パルスの数と当該光パルスの各々のパルス幅tw(図3参照)との少なくとも一方の変更により、任意に設定することができるからである。 On the other hand, in the case of the MOPA method, the pulse train width does not change even if the frequency changes. The pulse train width is the width of a pulse train containing a plurality of optical pulses, that is, the width of dots, and is shown by Tw in FIG. That is, in the case of the MOPA method, a pulse train having the same pulse train width Tw can be output at different frequencies. In the MOPA method, the pulse train width Tw is arbitrarily set by changing at least one of the number of optical pulses included in one pulse train and the pulse width tw of each of the light pulses (see FIG. 3). Because it can be done.
 このように、レーザ加工装置100は、MOPA方式を採用することによりQスイッチ方式のレーザ加工装置よりもパルス列幅Twの変更の自由度を高めることができる。パルス列幅Twは、線分の太さや濃さに影響を与える要素である。レーザ加工装置100は、1つのパルス列に含まれる光パルスの数と当該光パルスの各々のパルス幅との少なくとも一方を所定領域と定速領域とで変えることにより、すなわち、レーザ光の照射条件を所定領域と定速領域とで変えることにより、所定領域におけるパルス列幅Twを調整して均一な印字を実現する。 As described above, by adopting the MOPA method, the laser processing device 100 can increase the degree of freedom in changing the pulse train width Tw as compared with the Q-switch type laser processing device. The pulse train width Tw is an element that affects the thickness and density of the line segment. The laser processing apparatus 100 changes at least one of the number of optical pulses included in one pulse train and the pulse width of each of the optical pulses in a predetermined region and a constant velocity region, that is, changes the irradiation conditions of the laser beam. By changing between the predetermined area and the constant speed area, the pulse train width Tw in the predetermined area is adjusted to realize uniform printing.
 (照射条件の変更例)
 図2、図6、および図7を参照して、レーザ加工装置100で行われるレーザ光の照射条件(以下、単に「照射条件」とも称す)の変更の一例について説明する。照射条件は、レーザ光に関するパラメータの値を変更することにより変更される。
(Example of changing irradiation conditions)
An example of changing the irradiation conditions of the laser beam (hereinafter, also simply referred to as “irradiation conditions”) performed by the laser processing apparatus 100 will be described with reference to FIGS. 2, 6, and 7. The irradiation conditions are changed by changing the values of the parameters related to the laser beam.
 図6は、描き始めの領域と描き終わりの領域とにおける照射条件の変更例を示す図である。図7は、曲線部における照射条件の変更例を示す図である。パターン1A~パターン3Aおよびパターン1B~パターン3Bは、レーザ加工装置100で行われる照射条件の変更の一例であり、比較例Aおよび比較例Bは、照射条件を変更しない場合の一例である。描き始めの領域、描き終わりの領域、および曲線部の領域は所定領域の一例であり、線分途中の領域および直線部の領域は定速領域の一例である。 FIG. 6 is a diagram showing an example of changing the irradiation conditions between the area at the beginning of drawing and the area at the end of drawing. FIG. 7 is a diagram showing an example of changing the irradiation conditions in the curved portion. Patterns 1A to 3A and patterns 1B to 3B are examples of changing the irradiation conditions performed by the laser processing apparatus 100, and Comparative Example A and Comparative Example B are examples of cases where the irradiation conditions are not changed. The region at the beginning of drawing, the region at the end of drawing, and the region of the curved portion are examples of predetermined regions, and the region in the middle of the line segment and the region of the straight line portion are examples of the constant velocity region.
 パターン1Aおよびパターン1Bは、周波数と1つのパルス列(ドット)に含まれる光パルスの数とを所定領域と定速領域とで変える場合の一例である。詳細には、定速領域における照射条件は、周波数が100kHz、1つのパルス列に含まれる光パルスの数が8本、当該光パルスの各々のパルス幅が8nsであるのに対し、所定領域における照射条件は、周波数が75kHz、1つのパルス列に含まれる光パルスの数が4本、当該光パルスの各々のパルス幅が8nsである。 Pattern 1A and pattern 1B are examples of cases where the frequency and the number of optical pulses included in one pulse train (dot) are changed between a predetermined region and a constant speed region. Specifically, the irradiation conditions in the constant velocity region are such that the frequency is 100 kHz, the number of optical pulses contained in one pulse train is eight, and the pulse width of each of the optical pulses is 8 ns, whereas the irradiation in a predetermined region is performed. The conditions are that the frequency is 75 kHz, the number of optical pulses included in one pulse train is four, and the pulse width of each of the optical pulses is 8 ns.
 すなわち、所定領域に対してレーザ光が走査される際には、周波数が100kHzから75kHzに変更され、1つのパルス列に含まれる光パルスの数が8本から4本に変更される。周波数が100kHzから75kHzに変更されることにより加工対象物90に形成されるドットの数が4つ(比較例A、比較例B参照)から3つに減る結果、所定領域においてドットが密になることが回避される。また、1つのパルス列に含まれる光パルスの数が8本から4本に変更されることによりパルス列幅Twが抑えられる結果、所定領域において線幅が太くなることが回避される。したがって、加工対象物に形成される加工パターンの濃さおよび線幅が均一になる。 That is, when the laser beam is scanned for a predetermined area, the frequency is changed from 100 kHz to 75 kHz, and the number of optical pulses included in one pulse train is changed from 8 to 4. By changing the frequency from 100 kHz to 75 kHz, the number of dots formed on the workpiece 90 is reduced from 4 (see Comparative Example A and Comparative Example B) to 3, and as a result, the dots become dense in a predetermined region. Is avoided. Further, by changing the number of optical pulses included in one pulse train from eight to four, the pulse train width Tw is suppressed, and as a result, the line width is prevented from becoming thick in a predetermined region. Therefore, the density and line width of the processing pattern formed on the object to be processed become uniform.
 パターン2Aおよびパターン2Bは、周波数と1つのパルス列に含まれる光パルスの各々のパルス幅とを所定領域と定速領域とで変える場合の一例である。詳細には、定速領域における照射条件は、周波数が100kHz、1つのパルス列に含まれる光パルスの数が8本、当該光パルスの各々のパルス幅が8nsであるのに対し、所定領域における照射条件は、周波数が75kHz、1つのパルス列に含まれる光パルスの数が8本、当該光パルスの各々のパルス幅が4nsである。 Pattern 2A and pattern 2B are examples of cases where the frequency and the pulse width of each of the optical pulses included in one pulse train are changed between a predetermined region and a constant speed region. Specifically, the irradiation conditions in the constant velocity region are such that the frequency is 100 kHz, the number of optical pulses contained in one pulse train is eight, and the pulse width of each of the optical pulses is 8 ns, whereas the irradiation in a predetermined region is performed. The conditions are that the frequency is 75 kHz, the number of optical pulses included in one pulse train is eight, and the pulse width of each of the optical pulses is 4 ns.
 すなわち、所定領域に対してレーザ光が走査される際には、周波数が100kHzから75kHzに変更され、1つのパルス列に含まれる光パルスの各々のパルス幅が8nsから4nsに変更される。周波数が100kHzから75kHzに変更されることにより加工対象物90に形成されるドットの数が4つ(比較例A、比較例B参照)から3つに減る結果、所定領域においてドットが密になることが回避される。また、1つのパルス列に含まれる光パルスの各々のパルス幅が8nsから4nsに変更されることによりパルス列幅Twが抑えられる結果、所定領域において線幅が太くなることが回避される。したがって、加工対象物に形成される加工パターンの濃さおよび線幅が均一になる。 That is, when the laser beam is scanned for a predetermined region, the frequency is changed from 100 kHz to 75 kHz, and the pulse width of each of the optical pulses included in one pulse train is changed from 8 ns to 4 ns. By changing the frequency from 100 kHz to 75 kHz, the number of dots formed on the workpiece 90 is reduced from 4 (see Comparative Example A and Comparative Example B) to 3, and as a result, the dots become dense in a predetermined region. Is avoided. Further, by changing the pulse width of each of the optical pulses included in one pulse train from 8 ns to 4 ns, the pulse train width Tw is suppressed, and as a result, the line width is prevented from becoming thick in a predetermined region. Therefore, the density and line width of the processing pattern formed on the object to be processed become uniform.
 パターン3Aおよびパターン3Bは、周波数、1つのパルス列に含まれる光パルスの数、および当該光パルスの各々のパルス幅を所定領域と定速領域とで変える場合の一例である。詳細には、定速領域における照射条件は、周波数が100kHz、1つのパルス列に含まれる光パルスの数が8本、当該光パルスの各々のパルス幅が8nsであるのに対し、所定領域における照射条件は、周波数が75kHz、1つのパルス列に含まれる光パルスの数が2本、当該光パルスの各々のパルス幅が16nsである。 Pattern 3A and pattern 3B are examples of cases where the frequency, the number of optical pulses included in one pulse train, and the pulse width of each of the optical pulses are changed between a predetermined region and a constant speed region. Specifically, the irradiation conditions in the constant velocity region are such that the frequency is 100 kHz, the number of optical pulses contained in one pulse train is eight, and the pulse width of each of the optical pulses is 8 ns, whereas the irradiation in a predetermined region is performed. The conditions are that the frequency is 75 kHz, the number of optical pulses included in one pulse train is two, and the pulse width of each of the optical pulses is 16 ns.
 すなわち、所定領域に対してレーザ光が走査される際には、周波数が100kHzから75kHzに変更され、1つのパルス列に含まれる光パルスの数が8本から2本に変更され、パルス幅が8nsから16nsに変更される。周波数が100kHzから75kHzに変更されることにより加工対象物90に形成されるドットの数が4つ(比較例A、比較例B参照)から3つに減る結果、所定領域においてドットが密になることが回避される。また、1つのパルス列に含まれる光パルスの各々のパルス幅が8nsから16nsに広がっているものの、1つのパルス列に含まれる光パルスの数が8本から2本に減少していることから所定領域におけるパルス列幅Twが抑えられる結果、所定領域において線幅が太くなることが回避される。したがって、加工対象物に形成される加工パターンの濃さおよび線幅が均一になる。 That is, when the laser beam is scanned for a predetermined region, the frequency is changed from 100 kHz to 75 kHz, the number of optical pulses contained in one pulse train is changed from 8 to 2, and the pulse width is 8 ns. Is changed to 16ns. By changing the frequency from 100 kHz to 75 kHz, the number of dots formed on the workpiece 90 is reduced from 4 (see Comparative Example A and Comparative Example B) to 3, and as a result, the dots become dense in a predetermined region. Is avoided. Further, although the pulse width of each of the optical pulses included in one pulse train has expanded from 8 ns to 16 ns, the number of optical pulses contained in one pulse train has decreased from eight to two, so that the predetermined region As a result of suppressing the pulse train width Tw in, it is possible to prevent the line width from becoming thick in a predetermined region. Therefore, the density and line width of the processing pattern formed on the object to be processed become uniform.
 比較例Aおよび比較例Bに示すように、所定領域と定速領域とで、レーザ光に関するパラメータの値が同じ(すなわち、照射条件が同じ)場合には、所定領域ではスキャナ30の走査速度が設定速度よりも遅くなるため、所定領域においてドットが密になる結果、所定領域における印字が濃くなったり、線幅が太くなったりする。そこで、レーザ加工装置100は、パターン1A~パターン3Aまたはパターン1B~パターン3Bに示すように、レーザ光に関するパラメータのうち、1つのパルス列に含まれる光パルスの数と当該光パルスの各々のパルス幅との少なくとも一方を所定領域と定速領域とで変えることにより均一な印字を実現する。 As shown in Comparative Example A and Comparative Example B, when the values of the parameters related to the laser beam are the same (that is, the irradiation conditions are the same) in the predetermined region and the constant speed region, the scanning speed of the scanner 30 is the same in the predetermined region. Since the speed is slower than the set speed, the dots become dense in the predetermined area, and as a result, the printing in the predetermined area becomes darker or the line width becomes thicker. Therefore, as shown in Patterns 1A to 3A or Patterns 1B to 3B, the laser processing apparatus 100 includes the number of optical pulses included in one pulse train and the pulse width of each of the optical pulses among the parameters related to the laser light. Uniform printing is realized by changing at least one of the above in the predetermined area and the constant speed area.
 なお、図6および図7に示す各パラメータの値は一例であり、各パラメータの値はこれに限られない。 Note that the values of each parameter shown in FIGS. 6 and 7 are examples, and the values of each parameter are not limited to this.
 また、図6および図7に示す例では、1つのパルス列に含まれる光パルスの数と当該光パルスの各々のパルス幅との少なくとも一方と周波数とが所定領域と定速領域とで変えられたが、所定領域と定速領域とで変えられるのは、1つのパルス列に含まれる光パルスの数と当該光パルスの各々のパルス幅との少なくとも一方だけでもよい。 Further, in the examples shown in FIGS. 6 and 7, at least one of the number of optical pulses included in one pulse train and the pulse width of each of the optical pulses and the frequency are changed in the predetermined region and the constant velocity region. However, only one of the number of optical pulses included in one pulse train and the pulse width of each of the optical pulses may be changed between the predetermined region and the constant velocity region.
 また、図6および図7に示す例では、1つの所定領域内でパラメータの値は変更されなかったが、1つの所定領域内でパラメータの値が段階的に変更されてもよい。 Further, in the examples shown in FIGS. 6 and 7, the parameter value was not changed in one predetermined area, but the parameter value may be changed stepwise in one predetermined area.
 (照射条件の決定方法)
 図8を参照して、所定領域における照射条件(具体的には、周波数、1つのパルス列に含まれる光パルスの数、および当該光パルスの各々のパルス幅)の決定方法について説明する。
(Method of determining irradiation conditions)
With reference to FIG. 8, a method of determining irradiation conditions (specifically, frequency, the number of optical pulses included in one pulse train, and the pulse width of each of the optical pulses) in a predetermined region will be described.
 図8は、所定領域における照射条件の決定方法を説明するための図である。所定領域における照射条件は、制御装置50によって決定される。 FIG. 8 is a diagram for explaining a method of determining irradiation conditions in a predetermined area. Irradiation conditions in a predetermined area are determined by the control device 50.
 詳細には、制御装置50は、図8に示す3つの方法のうちいずれか1つの方法を用いて所定領域におけるスキャナ30の加速度を予測し、予測したスキャナ30の加速度と定速領域における照射条件とに基づいて所定領域における照射条件、すなわち、周波数、1つのパルス列に含まれる光パルスの数、および当該光パルスの各々のパルス幅を決定する。スキャナ30の加速度は、定速領域ではゼロ(ゼロに近似する値を含む)であることから、所定領域におけるスキャナ30の加速度がどのような値になるかを予測することで、均一な印字を実現するために必要な周波数、1つのパルス列に含まれる光パルスの数、および当該光パルスの各々のパルス幅を決定することが可能となる。 Specifically, the control device 50 predicts the acceleration of the scanner 30 in a predetermined region by using any one of the three methods shown in FIG. 8, and the predicted acceleration of the scanner 30 and the irradiation condition in the constant speed region. Based on the above, the irradiation conditions in a predetermined region, that is, the frequency, the number of optical pulses contained in one pulse train, and the pulse width of each of the optical pulses are determined. Since the acceleration of the scanner 30 is zero (including a value close to zero) in the constant speed region, uniform printing can be achieved by predicting what value the acceleration of the scanner 30 will be in a predetermined region. It is possible to determine the frequency required for realization, the number of optical pulses contained in one pulse train, and the pulse width of each of the optical pulses.
 では、ここで、スキャナ30の加速度を予測する3つの方法について説明する。加速度を予測する第1の方法では、制御装置50は、入力装置60によって受け付けられた、加工パターンおよびスキャナ30の駆動条件に基づいて、所定領域におけるスキャナ30の加速度を予測する。 Here, three methods for predicting the acceleration of the scanner 30 will be described. In the first method of predicting acceleration, the control device 50 predicts the acceleration of the scanner 30 in a predetermined region based on the machining pattern and the driving conditions of the scanner 30 received by the input device 60.
 第1の方法によれば、制御装置50は、スキャナ30に対し走査開始の指示を出す前に、全ての所定領域(描き始めの領域、曲線部の領域、および描き終わりの領域)における照射条件を決定することができる。 According to the first method, the control device 50 gives an irradiation condition in all predetermined regions (a region at the beginning of drawing, a region of a curved portion, and a region at the end of drawing) before issuing an instruction to start scanning to the scanner 30. Can be determined.
 なお、制御装置50は、スキャナ30に対し走査開始の指示を出した後、該当の所定領域(描き始めの領域、曲線部の領域、または描き終わりの領域)に対するレーザ光の走査が開始されるまでの間に該当の所定領域における照射条件を決定してもよい。 After issuing an instruction to start scanning to the scanner 30, the control device 50 starts scanning the laser beam for the corresponding predetermined region (the region at the beginning of drawing, the region of the curved portion, or the region at the end of drawing). In the meantime, the irradiation conditions in the corresponding predetermined area may be determined.
 これに対し、第2の方法および第3の方法では、制御装置50はスキャナ30の駆動状況に基づいて、所定領域における加速度を予測する。したがって、第2の方法または第3の方法によれば、所定領域における照射条件は、スキャナ30が走査開始の指示(入力信号)を受信した後に決定される。 On the other hand, in the second method and the third method, the control device 50 predicts the acceleration in a predetermined region based on the driving condition of the scanner 30. Therefore, according to the second method or the third method, the irradiation condition in the predetermined region is determined after the scanner 30 receives the scanning start instruction (input signal).
 第2の方法では、制御装置50は、スキャナ30のモーター(図1に示すX軸モーター33およびY軸モーター34)に入力される入力値(入力信号)に基づいて、その後の電流値の変化を予測する。ミラー(図1に示すXスキャンミラー31およびYスキャンミラー32)のポジションは電流値の変化に伴って変化することから、制御装置50は電流値の変化を予測することにより、スキャナ30の加速度を予測することができる。 In the second method, the control device 50 changes the current value thereafter based on the input value (input signal) input to the motors of the scanner 30 (X-axis motor 33 and Y-axis motor 34 shown in FIG. 1). Predict. Since the positions of the mirrors (X scan mirror 31 and Y scan mirror 32 shown in FIG. 1) change with changes in the current value, the control device 50 predicts the change in the current value to accelerate the scanner 30. Can be predicted.
 第2の方法によれば、所定領域における照射条件は、スキャナ30による入力信号の受信後、該当の所定領域(描き始めの領域、曲線部の領域、または描き終わりの領域)に対するレーザ光の走査が開始されるまでの間に決定される。 According to the second method, the irradiation condition in the predetermined region is the scanning of the laser beam to the predetermined region (the region at the beginning of drawing, the region of the curved portion, or the region at the end of drawing) after receiving the input signal by the scanner 30. Will be determined before the start of.
 第3の方法では、制御装置50は、ロータリエンコーダを用いてスキャナ30のモーターの回転位置を検出することにより、実際のミラーポジションとあるべきミラーポジションとの差異を算出し、算出した差異に基づいてスキャナ30の加速度を予測する。 In the third method, the control device 50 calculates the difference between the actual mirror position and the mirror position that should be by detecting the rotation position of the motor of the scanner 30 using the rotary encoder, and based on the calculated difference. Predicts the acceleration of the scanner 30.
 第3の方法では、モーターの回転が開始されていることが必要になる。そのため、第3の方法によれば、所定領域における照射条件は、スキャナ30による入力信号の受信後、電流値が変化し始めてから該当の所定領域(描き始めの領域、曲線部の領域、または描き終わりの領域)に対するレーザ光の走査が開始されるまでの間に決定される。 In the third method, it is necessary that the rotation of the motor is started. Therefore, according to the third method, the irradiation condition in the predetermined region is the corresponding predetermined region (the region where the drawing starts, the region of the curved portion, or the drawing) after the current value starts to change after the input signal is received by the scanner 30. It is determined before the start of scanning the laser beam for the end region).
 なお、第3の方法では、制御装置50は、スキャナ30のモーターの回転位置に替えてスキャナ30のモーターに供給される電流の値を検出してもよい。 In the third method, the control device 50 may detect the value of the current supplied to the motor of the scanner 30 instead of the rotation position of the motor of the scanner 30.
 制御装置50は、所定領域に対するレーザ光の走査が開始されるまでの間に、上記3つの方法のうちいずれか1つの方法を用いてスキャナ30の加速度を予測することにより、所定領域における照射条件、すなわち、周波数、1つのパルス列に含まれる光パルスの数、および当該光パルスの各々のパルス幅を決定し、各パラメータの値を決定した内容に変更することを発振器20に指示する。 The control device 50 predicts the acceleration of the scanner 30 by using any one of the above three methods until the scanning of the laser beam for the predetermined region is started, so that the irradiation condition in the predetermined region is reached. That is, the frequency, the number of optical pulses contained in one pulse train, and the pulse width of each of the optical pulses are determined, and the oscillator 20 is instructed to change the value of each parameter to the determined content.
 なお、制御装置50は、全ての所定領域(描き始めの領域、曲線部の領域、および描き終わりの領域)における照射条件を上記3つの方法のいずれか1つの方法を用いて決定してもよいし、領域毎に用いる方法を変更してもよい。一例として、制御装置50は、描き始めの領域のみ第1の方法を用いて決定し、曲線部の領域および描き終わりの領域を第2の方法または第3の方法を用いて決定してもよい。 The control device 50 may determine the irradiation conditions in all the predetermined regions (the region at the beginning of drawing, the region at the curved portion, and the region at the end of drawing) by using any one of the above three methods. However, the method used for each region may be changed. As an example, the control device 50 may determine only the region at the beginning of drawing by using the first method, and determine the region of the curved portion and the region at the end of drawing by using the second method or the third method. ..
 また、制御装置50は、全ての所定領域における照射条件を第1の方法を用いて決定した後、第2の方法または第3の方法でも決定し、第1の方法で決定した内容を第2の方法または第3の方法で決定した内容に基づいて補正してもよい。 Further, the control device 50 determines the irradiation conditions in all the predetermined regions by using the first method, and then determines by the second method or the third method, and the content determined by the first method is the second. The correction may be made based on the content determined in the above method or the third method.
 また、スキャナ30の加速度をスキャナ30の駆動状況に基づいて予測する方法は第2の方法や第3の方法に限られず、ミラーの動きを検出するような方法でもよい。 Further, the method of predicting the acceleration of the scanner 30 based on the driving condition of the scanner 30 is not limited to the second method and the third method, and a method of detecting the movement of the mirror may be used.
 (印字処理)
 図9~図11を参照して、制御装置50で行われる印字処理について説明する。制御装置50は、照射条件を所定領域と定速領域とで変えながら印字を行う。制御装置50は、定速領域における照射条件をユーザによって入力されるスキャナ30の駆動条件に基づいて決定し、所定領域における照射条件を図8で説明した3つの方法のうち少なくとも1つ以上の方法を用いて決定する。
(Print processing)
The printing process performed by the control device 50 will be described with reference to FIGS. 9 to 11. The control device 50 prints while changing the irradiation conditions between a predetermined area and a constant speed area. The control device 50 determines the irradiation conditions in the constant speed region based on the driving conditions of the scanner 30 input by the user, and determines the irradiation conditions in the predetermined region by at least one of the three methods described with reference to FIG. To determine using.
 図9は、所定領域における照射条件を第1の方法を用いて決定する場合の印字処理の一例を示すフローチャートである。 FIG. 9 is a flowchart showing an example of printing processing when the irradiation condition in a predetermined area is determined by using the first method.
 ステップS905において、制御装置50は、加工パターンおよびスキャナ30の駆動条件を受け付ける。加工パターンおよびスキャナ30の駆動条件は、入力装置60によって受け付けられ、制御装置50へ送信される。スキャナ30の駆動条件は、スキャナ30の走査速度に関する種別であり、たとえば「標準」、「低速」、「高速」等である。 In step S905, the control device 50 receives the machining pattern and the driving conditions of the scanner 30. The processing pattern and the driving conditions of the scanner 30 are received by the input device 60 and transmitted to the control device 50. The driving condition of the scanner 30 is a type related to the scanning speed of the scanner 30, and is, for example, "standard", "low speed", "high speed", and the like.
 ステップS910において、制御装置50は、ステップS905で受け付けた加工パターンを基に印字データを生成する。 In step S910, the control device 50 generates print data based on the processing pattern received in step S905.
 ステップS915において、制御装置50は、ステップS910で生成した印字データを基に所定領域と定速領域とを決定する。 In step S915, the control device 50 determines a predetermined area and a constant speed area based on the print data generated in step S910.
 ステップS920において、制御装置50は、定速領域における照射条件をステップS905で受け付けたスキャナ30の駆動条件に対応する照射条件に決定する。一例として、図6および図7のパターン1Aおよびパターン1Bの例でいうと、ステップS920により、定速領域における照射条件として、周波数が100kHz、1つのパルス列に含まれる光パルスの数が8本、パルス幅が8nsに決定される。 In step S920, the control device 50 determines the irradiation condition in the constant speed region to the irradiation condition corresponding to the driving condition of the scanner 30 received in step S905. As an example, in the example of Pattern 1A and Pattern 1B of FIGS. 6 and 7, according to step S920, the frequency is 100 kHz and the number of optical pulses included in one pulse train is eight as the irradiation condition in the constant velocity region. The pulse width is determined to be 8 ns.
 ステップS925において、制御装置50は、所定領域における照射条件を第1の方法を用いて決定する。詳細には、制御装置50は、ステップS905で受け付けた、加工パターンとスキャナ30の駆動条件とに基づいて、所定領域における加速度を予測し、予測した加速度とステップS920で決定した定速領域における照射条件とに基づいて所定領域における照射条件を決定する。一例として、図6および図7のパターン1Aおよびパターン1Bの例でいうと、ステップS925により、所定領域における照射条件として、周波数が75kHz、1つのパルス列に含まれる光パルスの数が4本、パルス幅が8nsに決定される。 In step S925, the control device 50 determines the irradiation conditions in the predetermined region by using the first method. Specifically, the control device 50 predicts the acceleration in a predetermined region based on the machining pattern received in step S905 and the driving conditions of the scanner 30, and the predicted acceleration and the irradiation in the constant speed region determined in step S920. Irradiation conditions in a predetermined area are determined based on the conditions. As an example, in the example of Pattern 1A and Pattern 1B of FIGS. 6 and 7, according to step S925, the frequency is 75 kHz, the number of optical pulses included in one pulse train is four, and the pulse is a pulse as the irradiation condition in the predetermined region. The width is determined to be 8ns.
 ステップS930において、制御装置50は、印字開始を指示する。詳細には、制御装置50は、発振器20に対しレーザ光の出力開始を指示し、スキャナ30に対し走査開始を指示する。このとき、制御装置50は、定速領域に対してはステップS920で決定した照射条件でレーザ光を出力し、所定領域に対してはステップS925で決定した照射条件でレーザ光を出力することを発振器20に対し指示する。これにより、定速領域に対してレーザ光が走査される場合には、ステップS920で決定された照射条件のレーザ光が発振器20から出力され、所定領域に対してレーザ光が走査される場合には、ステップS925で決定された照射条件のレーザ光が発振器20から出力される。 In step S930, the control device 50 instructs the start of printing. Specifically, the control device 50 instructs the oscillator 20 to start outputting the laser beam, and instructs the scanner 30 to start scanning. At this time, the control device 50 outputs the laser beam to the constant speed region under the irradiation condition determined in step S920, and outputs the laser beam to the predetermined region under the irradiation condition determined in step S925. Instruct the oscillator 20. As a result, when the laser beam is scanned in the constant speed region, the laser beam under the irradiation conditions determined in step S920 is output from the oscillator 20, and the laser beam is scanned in the predetermined region. Is that the laser beam under the irradiation conditions determined in step S925 is output from the oscillator 20.
 ステップS935において、制御装置50は、ステップS905において受け付けられた加工パターンの全てを印字し終えたか否かを判定する。ステップS905において受け付けられた加工パターンの全てを印字し終えた場合には(ステップS935においてYES)、制御装置50は、印字終了を指示する(ステップS940)。詳細には、制御装置50は、発振器20に対しレーザ光の出力終了を指示し、スキャナ30に対し走査終了を指示する。制御装置50は、ステップS940の後、図9に示す一連の処理を終了する。 In step S935, the control device 50 determines whether or not all of the machining patterns accepted in step S905 have been printed. When all the processing patterns accepted in step S905 have been printed (YES in step S935), the control device 50 instructs the end of printing (step S940). Specifically, the control device 50 instructs the oscillator 20 to end the output of the laser beam, and instructs the scanner 30 to end the scanning. After step S940, the control device 50 ends a series of processes shown in FIG.
 図10は、所定領域における照射条件を第2の方法または第3の方法を用いて決定する場合の印字処理の一例を示すフローチャートである。 FIG. 10 is a flowchart showing an example of printing processing when the irradiation condition in a predetermined area is determined by using the second method or the third method.
 ステップS1005~ステップS1020において、制御装置50は、ステップS905~ステップS920と同様の処理を行う。 In steps S1005 to S1020, the control device 50 performs the same processing as in steps S905 to S920.
 ステップS1025において、制御装置50は、印字開始を指示する。詳細には、制御装置50は、発振器20に対しレーザ光の出力開始を指示し、スキャナ30に対し走査開始を指示する。このとき、制御装置50は、加工パターンの全ての領域(所定領域と定速領域)に対してステップS1020で決定した照射条件でレーザ光を出力することを発振器20に対し指示する。 In step S1025, the control device 50 instructs the start of printing. Specifically, the control device 50 instructs the oscillator 20 to start outputting the laser beam, and instructs the scanner 30 to start scanning. At this time, the control device 50 instructs the oscillator 20 to output the laser beam under the irradiation conditions determined in step S1020 for all the regions (predetermined region and constant speed region) of the machining pattern.
 ステップS1030において、制御装置50は、スキャナ30の駆動状況を取得する。制御装置50は、所定領域における照射条件を第2の方法を用いて決定する場合には、スキャナ30のモーターに入力される入力値を取得する。これに対し、制御装置50は、所定領域における照射条件を第3の方法を用いて決定する場合には、スキャナ30のモーターの回転位置またはスキャナ30のモーターに供給される電流の値を取得する。 In step S1030, the control device 50 acquires the driving status of the scanner 30. When the control device 50 determines the irradiation condition in the predetermined region by using the second method, the control device 50 acquires an input value input to the motor of the scanner 30. On the other hand, when the irradiation condition in the predetermined region is determined by the third method, the control device 50 acquires the rotation position of the motor of the scanner 30 or the value of the current supplied to the motor of the scanner 30. ..
 ステップS1035において、制御装置50は、所定領域における照射条件を第2の方法または第3の方法を用いて決定する。詳細には、第2の方法によれば、制御装置50は、ステップS1030において取得したスキャナ30のモーターに入力される入力値に基づいてスキャナ30の加速度を予測し、予測した加速度とステップS1020で決定した定速領域における照射条件とに基づいて所定領域における照射条件を決定する。 In step S1035, the control device 50 determines the irradiation conditions in the predetermined region by using the second method or the third method. Specifically, according to the second method, the control device 50 predicts the acceleration of the scanner 30 based on the input value input to the motor of the scanner 30 acquired in step S1030, and in the predicted acceleration and step S1020. The irradiation condition in the predetermined region is determined based on the irradiation condition in the determined constant velocity region.
 第3の方法によれば、制御装置50は、ステップS1030において取得したスキャナ30のモーターの回転位置またはスキャナ30のモーターに供給される電流の値に基づいてスキャナ30の加速度を予測し、予測した加速度とステップS1020で決定した定速領域における照射条件とに基づいて所定領域における照射条件を決定する。 According to the third method, the control device 50 predicts and predicts the acceleration of the scanner 30 based on the rotation position of the motor of the scanner 30 acquired in step S1030 or the value of the current supplied to the motor of the scanner 30. The irradiation condition in the predetermined region is determined based on the acceleration and the irradiation condition in the constant speed region determined in step S1020.
 一例として、図6および図7のパターン1Aおよびパターン1Bの例でいうと、ステップS1035により、所定領域における照射条件として、周波数が75kHz、1つのパルス列に含まれる光パルスの数が4本、パルス幅が8nsに決定される。 As an example, in the example of Pattern 1A and Pattern 1B of FIGS. 6 and 7, according to step S1035, the frequency is 75 kHz, the number of optical pulses included in one pulse train is four, and the pulse is a pulse as the irradiation condition in the predetermined region. The width is determined to be 8ns.
 ステップS1040において、制御装置50は、加工パターンのうち所定領域の照射条件のみステップS1035で決定した照射条件へ変更することを発振器20に対し指示する。 In step S1040, the control device 50 instructs the oscillator 20 to change only the irradiation condition of a predetermined region of the processing pattern to the irradiation condition determined in step S1035.
 ステップS1040の後、制御装置50は、ステップS1045およびステップS1050を行い、図10に示す一連の処理を終了する。ステップS1045およびステップS1050は、ステップS935およびステップS940と同様の処理である。 After step S1040, the control device 50 performs step S1045 and step S1050, and ends a series of processes shown in FIG. Step S1045 and step S1050 are the same processes as in step S935 and step S940.
 図11は、所定領域における照射条件を第1の方法を用いて決定した後、第2の方法または第3の方法を用いて補正する場合の印字処理の一例を示すフローチャートである。 FIG. 11 is a flowchart showing an example of a printing process in which the irradiation conditions in a predetermined area are determined by using the first method and then corrected by using the second method or the third method.
 ステップS1105~ステップS1130において、制御装置50は、ステップS905~ステップS930と同様の処理を行う。 In steps S1105 to S1130, the control device 50 performs the same processing as in steps S905 to S930.
 ステップS1135において、制御装置50は、スキャナ30の駆動状況を取得する。ステップS1135の処理は、ステップS1030と同様の処理である。 In step S1135, the control device 50 acquires the driving status of the scanner 30. The process of step S1135 is the same process as that of step S1030.
 ステップS1140において、制御装置50は、所定領域における照射条件を第2の方法または第3の方法を用いて決定する。ステップS1140の処理は、ステップS1035と同様の処理である。 In step S1140, the control device 50 determines the irradiation condition in the predetermined region by using the second method or the third method. The process of step S1140 is the same as that of step S1035.
 ステップS1145において、制御装置50は、所定領域における照射条件をステップS1140で決定した照射条件へ補正することを発振器20に対し指示する。 In step S1145, the control device 50 instructs the oscillator 20 to correct the irradiation condition in the predetermined region to the irradiation condition determined in step S1140.
 ステップS1145の後、制御装置50は、ステップS1150およびステップS1155を行い、図11に示す一連の処理を終了する。ステップS1150およびステップS1155は、ステップS935およびステップS940と同様の処理である。 After step S1145, the control device 50 performs step S1150 and step S1155, and ends a series of processes shown in FIG. Step S1150 and step S1155 are the same processes as in step S935 and step S940.
 このように、実施の形態におけるレーザ加工装置100は、加工パターンに沿ってスキャナ30でレーザ光を走査する場合に、1つのパルス列に含まれる光パルスの数と当該光パルスの各々のパルス幅との少なくとも一方を所定領域と定速領域とで変えることにより、レーザ光の照射条件を所定領域と定速領域とで変えながら印字を行う。これにより、スキャナ30の走査速度が設定速度よりも遅い所定領域において印字が濃くなったり線幅が太くなったりすることを防ぐことができる。その結果、加工対象物に形成される加工パターンの濃さおよび線幅が均一となるので、印字品質が低下することを防ぐことができる。 As described above, when the laser processing apparatus 100 in the embodiment scans the laser light with the scanner 30 along the processing pattern, the number of optical pulses included in one pulse train and the pulse width of each of the optical pulses are used. By changing at least one of the above in the predetermined region and the constant speed region, printing is performed while changing the irradiation condition of the laser beam between the predetermined region and the constant speed region. This makes it possible to prevent the printing from becoming darker or the line width from becoming thicker in a predetermined area where the scanning speed of the scanner 30 is slower than the set speed. As a result, the density and line width of the processing pattern formed on the object to be processed become uniform, so that it is possible to prevent the print quality from deteriorating.
 また、シード光に関する各パラメータの値はドライバ13がシードLD2に供給する電流を変更することによって変更されることから、レーザ加工装置100ではシード光に関する各パラメータの値を変更する際にスキャナ30を停止させる必要がない。すなわち、レーザ加工装置100ではレーザ光の照射条件を所定領域と定速領域とで変えたとしても、タクトタイムが増加することもない。 Further, since the value of each parameter related to the seed light is changed by changing the current supplied to the seed LD2 by the driver 13, the laser processing apparatus 100 uses the scanner 30 when changing the value of each parameter related to the seed light. There is no need to stop. That is, in the laser processing apparatus 100, even if the irradiation condition of the laser beam is changed between the predetermined region and the constant speed region, the tact time does not increase.
 [変形例]
 変形例として、図1、図12、および図13を参照して、上述のレーザ加工装置100を用いて濃淡のある加工パターンを印字する場合の印字処理について説明する。
[Modification example]
As a modification, the printing process in the case of printing a processing pattern having a shade using the above-mentioned laser processing apparatus 100 will be described with reference to FIGS. 1, 12, and 13.
 図1および図12は、濃淡のある加工パターンを印字する場合の照射条件の一例を示す図である。図12には、濃淡のある加工パターンの一例として、階調の異なる2つの領域(領域P、領域Q)で構成される加工パターンが描かれている。 1 and 12 are diagrams showing an example of irradiation conditions when printing a processing pattern with shading. In FIG. 12, as an example of a processing pattern with shading, a processing pattern composed of two regions (regions P and Q) having different gradations is drawn.
 レーザ加工装置100はこのような濃淡のある加工パターンを描く場合には、階調の異なる領域毎に異なる照射条件を設定する。各領域における照射条件は、各領域の階調に応じて制御装置50によって決定される。 When drawing such a shading processing pattern, the laser processing apparatus 100 sets different irradiation conditions for each region having different gradations. The irradiation conditions in each region are determined by the control device 50 according to the gradation of each region.
 この例では、領域Pにおける照射条件として、周波数が200kHz、1つのパルス列(ドット)に含まれる光パルスの数が16本、当該光パルスの各々のパルス幅が8nsに設定され、領域Qにおける照射条件として、周波数が100kHz、1つのパルス列に含まれる光パルスの数が8本、当該光パルスの各々のパルス幅が8nsに設定される。このような照射条件の設定により、領域Pではドット同士が重なり合う結果、領域Pが領域Qよりも濃くなり、濃淡のある加工パターンが出来上がる。 In this example, as the irradiation conditions in the region P, the frequency is set to 200 kHz, the number of optical pulses included in one pulse train (dot) is set to 16, the pulse width of each of the optical pulses is set to 8 ns, and the irradiation in the region Q is performed. As a condition, the frequency is set to 100 kHz, the number of optical pulses included in one pulse train is set to 8, and the pulse width of each of the optical pulses is set to 8 ns. By setting the irradiation conditions in this way, the dots overlap each other in the region P, and as a result, the region P becomes darker than the region Q, and a processing pattern with shades is completed.
 なお、図12に示す例では、濃淡のある加工パターンを描くために、周波数、1つのパルス列に含まれる光パルスの数、および当該光パルスの各々のパルス幅のうち、周波数と1つのパルス列に含まれる光パルスの数とについて階調の異なる領域毎に異なる値が設定されたが、異なる値が設定されるパラメータの組合せはこれに限られない。レーザ加工装置100では、濃淡のある加工パターンを描くために、1つのパルス列に含まれる光パルスの数と当該光パルスの各々のパルス幅とのうち少なくとも一方について階調の異なる領域毎に異なる値が設定されればよい。 In the example shown in FIG. 12, in order to draw a processing pattern with shading, the frequency and the number of optical pulses included in one pulse train, and the frequency and one pulse train among the pulse widths of the optical pulses are used. Although different values are set for each region having different gradations with respect to the number of included optical pulses, the combination of parameters in which different values are set is not limited to this. In the laser processing apparatus 100, in order to draw a processing pattern with shading, a value different for each region having a different gradation for at least one of the number of optical pulses included in one pulse train and the pulse width of each of the optical pulses. Should be set.
 図13は、濃淡のある加工パターンを印字する場合の印字処理の一例を示すフローチャートである。図13に示す処理は、制御装置50で行われる。 FIG. 13 is a flowchart showing an example of a printing process when printing a processing pattern with shading. The process shown in FIG. 13 is performed by the control device 50.
 ステップS1305およびステップS1310において、制御装置50は、ステップS905およびステップS910と同様の処理を行う。 In step S1305 and step S1310, the control device 50 performs the same processing as in step S905 and step S910.
 ステップS1315において、制御装置50は、ステップS1310で生成した印字データを基に照射条件を加工パターンの階調毎に決定する。詳細には、制御装置50は、ステップS1310で生成した印字データを基に加工パターンを階調の異なる複数の領域に区分けし、各領域における照射条件を各領域の階調に応じて決定する。 In step S1315, the control device 50 determines the irradiation conditions for each gradation of the processing pattern based on the print data generated in step S1310. Specifically, the control device 50 divides the processing pattern into a plurality of regions having different gradations based on the print data generated in step S1310, and determines the irradiation conditions in each region according to the gradation of each region.
 一例として、図12で示した例でいうと、ステップS1315により、領域Qよりも濃い領域Pにおける照射条件として、周波数が200kHz、1つのパルス列に含まれる光パルスの数が16本、パルス幅が8nsに決定され、領域Pよりも薄い領域Qにおける照射条件として、周波数が100kHz、1つのパルス列に含まれる光パルスの数が8本、パルス幅が8nsに決定される。 As an example, in the example shown in FIG. 12, according to step S1315, as the irradiation conditions in the region P darker than the region Q, the frequency is 200 kHz, the number of optical pulses included in one pulse train is 16, and the pulse width is set. The irradiation condition in the region Q thinner than the region P is determined to be 8 ns, the frequency is 100 kHz, the number of optical pulses included in one pulse train is eight, and the pulse width is determined to be 8 ns.
 ステップS1315により、各領域の階調に応じて、周波数、1つのパルス列に含まれる光パルスの数、および当該光パルスの各々のパルス幅が決定される。なお、図12で示した例では、階調の異なる領域同士で周波数と1つのパルス列に含まれる光パルスの数とが異なる値に決定されたが、階調の異なる領域同士で1つのパルス列に含まれる光パルスの数と当該光パルスの各々のパルス幅とのうち少なくとも一方が異なる値に決定されればよい。 In step S1315, the frequency, the number of optical pulses included in one pulse train, and the pulse width of each of the optical pulses are determined according to the gradation of each region. In the example shown in FIG. 12, the frequency and the number of optical pulses included in one pulse train are determined to be different values in the regions having different gradations, but the regions having different gradations are combined into one pulse train. At least one of the number of included optical pulses and the pulse width of each of the optical pulses may be determined to be different values.
 レーザ加工装置100では、ステップS1315で決定された照射条件は定速領域における照射条件として採用され、所定領域における照射条件は後述のステップS1325で決定される。 In the laser processing apparatus 100, the irradiation condition determined in step S1315 is adopted as the irradiation condition in the constant speed region, and the irradiation condition in the predetermined region is determined in step S1325 described later.
 ステップS1320において、制御装置50は、ステップS1310で生成した印字データを基に所定領域と定速領域とを決定する。ステップS1320の処理は、ステップS915と同様の処理である。 In step S1320, the control device 50 determines a predetermined area and a constant speed area based on the print data generated in step S1310. The process of step S1320 is the same process as that of step S915.
 ステップS1325において、制御装置50は、所定領域における照射条件を第1の方法を用いて決定する。詳細には、まず、制御装置50は、所定領域が属する領域に対しステップS1315で決定された照射条件を特定する。説明の都合上、特定された照射条件を以下では「基準の照射条件」と称す。次いで、制御装置50は、ステップS1305において受け付けられた、加工パターンおよびスキャナ30の駆動条件に基づいて、所定領域における加速度を予測し、予測した加速度と基準の照射条件とに基づいて所定領域における照射条件を決定する。 In step S1325, the control device 50 determines the irradiation conditions in the predetermined region by using the first method. Specifically, first, the control device 50 specifies the irradiation condition determined in step S1315 for the region to which the predetermined region belongs. For convenience of explanation, the specified irradiation conditions will be referred to as "reference irradiation conditions" below. Next, the control device 50 predicts the acceleration in the predetermined region based on the machining pattern and the driving condition of the scanner 30 received in step S1305, and irradiates in the predetermined region based on the predicted acceleration and the reference irradiation condition. Determine the conditions.
 一例として、所定領域が図12に示す領域Qに属する場合には、ステップS1325により、所定領域における照射条件として、周波数が75kHz、1つのパルス列に含まれる光パルスの数が4本、パルス幅が8nsに決定される。 As an example, when the predetermined region belongs to the region Q shown in FIG. 12, according to step S1325, the frequency is 75 kHz, the number of optical pulses included in one pulse train is four, and the pulse width is set as the irradiation conditions in the predetermined region. It is decided to be 8ns.
 なお、この例では、所定領域と定速領域とで、周波数と1つのパルス列に含まれる光パルスの数とを変えたが、上述の実施の形態と同様に、1つのパルス列に含まれる光パルスの数と当該光パルスの各々のパルス幅との少なくとも一方を所定領域と定速領域とで変えればよい。 In this example, the frequency and the number of optical pulses included in one pulse train are changed in the predetermined region and the constant speed region, but the optical pulses included in one pulse train are the same as in the above-described embodiment. At least one of the number of light pulses and the pulse width of each of the optical pulses may be changed between a predetermined region and a constant velocity region.
 ステップS1330において、制御装置50は、印字開始を指示する。詳細には、制御装置50は、発振器20に対しレーザ光の出力開始を指示し、スキャナ30に対し走査開始を指示する。このとき、制御装置50は、定速領域に対してはステップS1315で決定した照射条件でレーザ光を出力し、所定領域に対してはステップS1325で決定した照射条件でレーザ光を出力することを発振器20に対し指示する。これにより、定速領域に対してレーザ光が走査される場合には、ステップS1315で決定された照射条件のレーザ光が発振器20から出力され、所定領域に対してレーザ光が走査される場合には、ステップS1325で決定された照射条件のレーザ光が発振器20から出力される。 In step S1330, the control device 50 instructs the start of printing. Specifically, the control device 50 instructs the oscillator 20 to start outputting the laser beam, and instructs the scanner 30 to start scanning. At this time, the control device 50 outputs the laser beam to the constant speed region under the irradiation condition determined in step S1315, and outputs the laser beam to the predetermined region under the irradiation condition determined in step S1325. Instruct the oscillator 20. As a result, when the laser beam is scanned in the constant speed region, the laser beam under the irradiation conditions determined in step S1315 is output from the oscillator 20, and the laser beam is scanned in the predetermined region. Is that the laser beam under the irradiation conditions determined in step S1325 is output from the oscillator 20.
 ステップS1330の後、制御装置50は、ステップS1335およびステップS1340を行い、図13に示す一連の処理を終了する。ステップS1335およびステップS1340は、ステップS935およびステップS940と同様の処理である。 After step S1330, the control device 50 performs step S1335 and step S1340, and ends a series of processes shown in FIG. Step S1335 and step S1340 are the same processes as in step S935 and step S940.
 上述の通り、レーザ加工装置100ではシード光に関する各パラメータの値を変更する際にスキャナ30を停止させる必要がない。そのため、変形例によれば、レーザ加工装置100は、濃淡のある加工パターンをスキャナ30を停止させることなく、描くことができる。 As described above, in the laser processing apparatus 100, it is not necessary to stop the scanner 30 when changing the value of each parameter related to the seed light. Therefore, according to the modification, the laser processing apparatus 100 can draw a processing pattern with shading without stopping the scanner 30.
 また、変形例によれば、レーザ加工装置100は、濃淡のある加工パターンを描く場合であっても、1つのパルス列に含まれる光パルスの数と当該光パルスの各々のパルス幅との少なくとも一方を所定領域と定速領域とで変えることができる。これにより、スキャナ30の走査速度が設定速度よりも遅い所定領域において印字が濃くなったり、線幅が太くなったりすることを防ぐことができるので、印字品質が低下することを防ぐことができる。また、レーザ加工装置100ではシード光に関する各パラメータの値を変更する際にスキャナ30を停止させる必要がないため、所定領域と定速領域とでパラメータの値を変更したとしても、タクトタイムが増加することもない。 Further, according to the modification, the laser processing apparatus 100 draws a processing pattern with shading, but at least one of the number of optical pulses included in one pulse train and the pulse width of each of the optical pulses. Can be changed between a predetermined region and a constant speed region. As a result, it is possible to prevent the printing from becoming darker or the line width from becoming thicker in a predetermined area where the scanning speed of the scanner 30 is slower than the set speed, so that it is possible to prevent the print quality from deteriorating. Further, in the laser processing apparatus 100, it is not necessary to stop the scanner 30 when changing the value of each parameter related to the seed light, so that the tact time increases even if the parameter value is changed between the predetermined region and the constant speed region. There is nothing to do.
 なお、図12に示す例では、加工パターンは階調の異なる2つ以上の領域で構成されていたが、これに限られない。加工パターンは、階調の異なる3つ以上の領域で構成されてもよい。 In the example shown in FIG. 12, the processing pattern is composed of two or more regions having different gradations, but the processing pattern is not limited to this. The processing pattern may be composed of three or more regions having different gradations.
 また、図13に示す例では、制御装置50は、所定領域における照射条件を第1の方法を用いて決定したが、上述の実施の形態と同様に、所定領域における照射条件を第2の方法または第3の方法を用いて決定してもよい。また、制御装置50は、所定領域における照射条件を第1の方法を用いて決定した後、第2の方法または第3の方法でも決定し、第1の方法で決定した内容を第2の方法または第3の方法で決定した内容に基づいて補正してもよい。 Further, in the example shown in FIG. 13, the control device 50 determines the irradiation condition in the predetermined region by using the first method, but the irradiation condition in the predetermined region is determined by the second method as in the above-described embodiment. Alternatively, it may be determined using a third method. Further, the control device 50 determines the irradiation conditions in the predetermined region by using the first method, and then determines by the second method or the third method, and the contents determined by the first method are determined by the second method. Alternatively, the correction may be made based on the content determined by the third method.
 また、上述の実施の形態と同様に、制御装置50は、全ての所定領域(描き始めの領域、曲線部の領域、および描き終わりの領域)における照射条件を上記3つの方法のいずれか1つの方法を用いて決定してもよいし、領域毎に用いる方法を変えて各所定領域における照射条件を決定してもよい。 Further, similarly to the above-described embodiment, the control device 50 sets the irradiation conditions in all predetermined regions (the region at the beginning of drawing, the region of the curved portion, and the region at the end of drawing) in any one of the above three methods. It may be determined by using a method, or the irradiation conditions in each predetermined region may be determined by changing the method used for each region.
 また、上述の実施の形態および変形例は、適宜選択的に組み合わされてもよい。 Further, the above-described embodiments and modifications may be selectively combined as appropriate.
 [付記]
 上述した実施の形態は、以下のような技術思想を含む。
[Additional Notes]
The above-described embodiment includes the following technical ideas.
 [構成1]
 加工パターンを加工対象物(90)に描くレーザ加工装置(100)であって、
 レーザ光を発振する発振器(20)と、
 前記発振器(20)から出力される前記レーザ光を走査するスキャナ(30)と、
 前記発振器(20)および前記スキャナ(30)を制御する制御装置(50)と、
 前記加工対象物(90)の前記加工パターンの入力を受け付ける受付部(60)と、を備え、
 前記発振器(20)は、
  シード光を発するシード光源(2)と、
  励起光を発する励起光源(3,9A,9B)と、
  前記シード光および前記励起光が入射されることによって前記シード光を増幅するように構成された光増幅ファイバ(1,8)と、を含み、
  前記シード光源(2)は、前記シード光として、複数の光パルスを含むパルス列を繰り返し発生させ、
 前記制御装置(50)は、前記受付部(60)で受け付けた前記加工パターンに沿って前記スキャナ(30)で前記レーザ光を走査する場合に、走査する速度が変化する所定領域において、前記シード光源が発する前記光パルスの数と、前記シード光源が発する複数の前記光パルスの各々のパルス幅と、の少なくとも一方を可変させる、レーザ加工装置。
[Structure 1]
A laser machining apparatus (100) that draws a machining pattern on a machining object (90).
An oscillator (20) that oscillates laser light and
A scanner (30) that scans the laser beam output from the oscillator (20), and a scanner (30).
A control device (50) that controls the oscillator (20) and the scanner (30),
A reception unit (60) for receiving an input of the processing pattern of the processing object (90) is provided.
The oscillator (20) is
A seed light source (2) that emits seed light and
Excitation light sources (3, 9A, 9B) that emit excitation light, and
It comprises an optical amplification fiber (1,8) configured to amplify the seed light by injecting the seed light and the excitation light.
The seed light source (2) repeatedly generates a pulse train containing a plurality of optical pulses as the seed light.
When the scanner (30) scans the laser beam along the processing pattern received by the reception unit (60), the control device (50) has the seed in a predetermined region where the scanning speed changes. A laser processing apparatus that varies at least one of the number of the optical pulses emitted by the light source and the pulse width of each of the plurality of optical pulses emitted by the seed light source.
 [構成2]
 前記所定領域は、前記加工パターンのうち描き始めの領域である、構成1に記載のレーザ加工装置。
[Structure 2]
The laser processing apparatus according to configuration 1, wherein the predetermined region is a region where drawing starts in the processing pattern.
 [構成3]
 前記所定領域は、前記加工パターンのうち描き終わりの領域である、構成1または構成2に記載のレーザ加工装置。
[Structure 3]
The laser processing apparatus according to the configuration 1 or 2, wherein the predetermined region is a region of the processing pattern at the end of drawing.
 [構成4]
 前記所定領域は、前記加工パターンのうち曲線部の領域である、構成1~構成3のいずれか1項に記載のレーザ加工装置。
[Structure 4]
The laser processing apparatus according to any one of configurations 1 to 3, wherein the predetermined region is a curved portion region of the machining pattern.
 [構成5]
 前記受付部(60)は、前記スキャナ(30)の駆動条件を受け付け、
 前記制御装置(50)は、前記所定領域に対して前記スキャナ(30)で前記レーザ光を走査する際の前記光パルスの数と前記パルス幅とを前記受付部(60)で受け付けた前記加工パターンと前記スキャナ(30)の前記駆動条件とに基づいて決定する、構成1~構成4のいずれか1項に記載のレーザ加工装置。
[Structure 5]
The reception unit (60) receives the drive conditions of the scanner (30) and receives the drive conditions.
The control device (50) receives the number of the optical pulses and the pulse width when the scanner (30) scans the laser beam with respect to the predetermined region at the reception unit (60). The laser processing apparatus according to any one of configurations 1 to 4, which is determined based on the pattern and the driving conditions of the scanner (30).
 [構成6]
 前記制御装置(50)は、前記所定領域に対して前記スキャナ(30)で前記レーザ光を走査する際の前記光パルスの数と前記パルス幅とを前記スキャナ(30)の駆動状況に基づいて決定する、構成1~構成5のいずれか1項に記載のレーザ加工装置。
[Structure 6]
The control device (50) determines the number of the optical pulses and the pulse width when the scanner (30) scans the laser beam with respect to the predetermined region based on the driving condition of the scanner (30). The laser processing apparatus according to any one of configurations 1 to 5, which is determined.
 [構成7]
 前記受付部(60)は、濃淡のある前記加工パターンを受け付け、
 前記制御装置(50)は、前記受付部(60)で受け付けた濃淡のある前記加工パターンに沿って前記スキャナ(30)で前記レーザ光を走査する場合に、前記光パルスの数と前記パルス幅との少なくとも一方を前記加工パターンの階調に応じて可変させる、構成1~構成6のいずれか1項に記載のレーザ加工装置。
[Structure 7]
The reception unit (60) receives the processing pattern having a shade, and receives the processing pattern.
When the scanner (30) scans the laser beam along the shading processing pattern received by the reception unit (60), the control device (50) scans the laser beam with the number of optical pulses and the pulse width. The laser processing apparatus according to any one of Configurations 1 to 6, wherein at least one of the above is varied according to the gradation of the processing pattern.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1,8 光ファイバ、2 シードLD、3,9A,9B 励起LD、4,6,11 アイソレータ、5,10 結合器、12 エンドキャップ、13,14,15A,15B,35 ドライバ、20 発振器、30 スキャナ、31 Xスキャンミラー、32 Yスキャンミラー、33 X軸モーター、34 Y軸モーター、36 集光レンズ、50 制御装置、60 入力装置、90 加工対象物、100 レーザ加工装置、Tw パルス列幅、tp パルス間隔、tprd 繰返し周期、tw パルス幅。 1,8 optical fiber, 2 seed LD, 3,9A, 9B excited LD, 4,6,11 isolator, 5,10 coupler, 12 end cap, 13,14,15A, 15B, 35 driver, 20 oscillator, 30 Scanner, 31 X-scan mirror, 32 Y-scan mirror, 33 X-axis motor, 34 Y-axis motor, 36 condenser lens, 50 control device, 60 input device, 90 machining object, 100 laser machining device, Tw pulse train width, tp Pulse interval, tprd repetition cycle, tw pulse width.

Claims (7)

  1.  加工パターンを加工対象物に描くレーザ加工装置であって、
     レーザ光を発振する発振器と、
     前記発振器から出力される前記レーザ光を走査するスキャナと、
     前記発振器および前記スキャナを制御する制御装置と、
     前記加工対象物の前記加工パターンの入力を受け付ける受付部と、を備え、
     前記発振器は、
      シード光を発するシード光源と、
      励起光を発する励起光源と、
      前記シード光および前記励起光が入射されることによって前記シード光を増幅するように構成された光増幅ファイバと、を含み、
      前記シード光源は、前記シード光として、複数の光パルスを含むパルス列を繰り返し発生させ、
     前記制御装置は、前記受付部で受け付けた前記加工パターンに沿って前記スキャナで前記レーザ光を走査する場合に、走査する速度が変化する所定領域において、前記シード光源が発する前記光パルスの数と、前記シード光源が発する複数の前記光パルスの各々のパルス幅と、の少なくとも一方を可変させる、レーザ加工装置。
    A laser processing device that draws a processing pattern on an object to be processed.
    An oscillator that oscillates laser light and
    A scanner that scans the laser beam output from the oscillator,
    A control device that controls the oscillator and the scanner,
    A reception unit that accepts input of the processing pattern of the processing object is provided.
    The oscillator is
    A seed light source that emits seed light and
    An excitation light source that emits excitation light,
    It comprises an optical amplification fiber configured to amplify the seed light by injecting the seed light and the excitation light.
    The seed light source repeatedly generates a pulse train containing a plurality of optical pulses as the seed light.
    When the scanner scans the laser beam along the processing pattern received by the reception unit, the control device determines the number of optical pulses emitted by the seed light source in a predetermined region where the scanning speed changes. , A laser processing apparatus that varies at least one of the pulse widths of each of the plurality of optical pulses emitted by the seed light source.
  2.  前記所定領域は、前記加工パターンのうち描き始めの領域である、請求項1に記載のレーザ加工装置。 The laser processing apparatus according to claim 1, wherein the predetermined area is a region where drawing starts in the processing pattern.
  3.  前記所定領域は、前記加工パターンのうち描き終わりの領域である、請求項1または請求項2に記載のレーザ加工装置。 The laser processing apparatus according to claim 1 or 2, wherein the predetermined area is an area at the end of drawing in the processing pattern.
  4.  前記所定領域は、前記加工パターンのうち曲線部の領域である、請求項1~請求項3のいずれか1項に記載のレーザ加工装置。 The laser machining apparatus according to any one of claims 1 to 3, wherein the predetermined region is a curved portion region of the machining pattern.
  5.  前記受付部は、前記スキャナの駆動条件を受け付け、
     前記制御装置は、前記所定領域に対して前記スキャナで前記レーザ光を走査する際の前記光パルスの数と前記パルス幅とを前記受付部で受け付けた前記加工パターンと前記スキャナの前記駆動条件とに基づいて決定する、請求項1~請求項4のいずれか1項に記載のレーザ加工装置。
    The receiving unit receives the driving conditions of the scanner and receives the driving conditions.
    The control device has the processing pattern and the driving condition of the scanner in which the number of the optical pulses and the pulse width when the scanner scans the laser beam with respect to the predetermined region are received by the reception unit. The laser processing apparatus according to any one of claims 1 to 4, which is determined based on the above.
  6.  前記制御装置は、前記所定領域に対して前記スキャナで前記レーザ光を走査する際の前記光パルスの数と前記パルス幅とを前記スキャナの駆動状況に基づいて決定する、請求項1~請求項5のいずれか1項に記載のレーザ加工装置。 Claims 1 to claim that the control device determines the number of the optical pulses and the pulse width when the scanner scans the laser beam with respect to the predetermined region based on the driving condition of the scanner. 5. The laser processing apparatus according to any one of 5.
  7.  前記受付部は、濃淡のある前記加工パターンを受け付け、
     前記制御装置は、前記受付部で受け付けた濃淡のある前記加工パターンに沿って前記スキャナで前記レーザ光を走査する場合に、前記光パルスの数と前記パルス幅との少なくとも一方を前記加工パターンの階調に応じて可変させる、請求項1~請求項6のいずれか1項に記載のレーザ加工装置。 
    The reception unit receives the processing pattern with light and shade, and receives it.
    When the scanner scans the laser beam along the shaded processing pattern received by the reception unit, the control device sets at least one of the number of optical pulses and the pulse width of the processing pattern. The laser processing apparatus according to any one of claims 1 to 6, which is variable according to the gradation.
PCT/JP2021/009202 2021-01-07 2021-03-09 Laser processing device WO2022149294A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021001525A JP2022106489A (en) 2021-01-07 2021-01-07 Laser processing apparatus
JP2021-001525 2021-04-23

Publications (1)

Publication Number Publication Date
WO2022149294A1 true WO2022149294A1 (en) 2022-07-14

Family

ID=82358881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009202 WO2022149294A1 (en) 2021-01-07 2021-03-09 Laser processing device

Country Status (2)

Country Link
JP (1) JP2022106489A (en)
WO (1) WO2022149294A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066625A (en) * 2007-09-13 2009-04-02 Omron Corp Laser marking device
JP2010064144A (en) * 2008-08-11 2010-03-25 Sumitomo Electric Ind Ltd Laser marking method
JP2010125489A (en) * 2008-11-28 2010-06-10 Keyence Corp Laser marker and laser marking system
JP2019055565A (en) * 2017-09-22 2019-04-11 ローランドディー.ジー.株式会社 Foil push device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066625A (en) * 2007-09-13 2009-04-02 Omron Corp Laser marking device
JP2010064144A (en) * 2008-08-11 2010-03-25 Sumitomo Electric Ind Ltd Laser marking method
JP2010125489A (en) * 2008-11-28 2010-06-10 Keyence Corp Laser marker and laser marking system
JP2019055565A (en) * 2017-09-22 2019-04-11 ローランドディー.ジー.株式会社 Foil push device

Also Published As

Publication number Publication date
JP2022106489A (en) 2022-07-20

Similar Documents

Publication Publication Date Title
KR0185231B1 (en) Beam scanning type laser marking method and device therefor
JP4445217B2 (en) Laser marking device
KR101898371B1 (en) Optical amplification device and laser processing device
WO2011059049A1 (en) Laser processing device and laser processing method
JP2010125489A (en) Laser marker and laser marking system
JPH11500962A (en) Laser engraving machine
JP5025391B2 (en) Laser processing apparatus and processing method
JP4957474B2 (en) Laser marking device
WO2022149294A1 (en) Laser processing device
JP2541501B2 (en) Laser marking method
WO2021166407A1 (en) Laser processing device and method for controlling laser processing device
JP6682148B2 (en) Laser pulse cutting device and cutting method
JP5248353B2 (en) Laser processing equipment
JP3513489B2 (en) Galvano scanner control method and apparatus
WO2023276346A1 (en) Laser machining device and acceleration control method
JP4461740B2 (en) Laser marking device
JP2004354781A (en) Scanner driving circuit, laser beam machining device and method of adjusting scanner driving circuit
JP7468171B2 (en) Laser processing device and processing method
JP2008073733A (en) Laser beam machining apparatus
JP7165597B2 (en) LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD
JP2008105054A (en) Laser beam machine
EP3922399A2 (en) Laser processing apparatus and processing method
JP2004148322A (en) Laser marking device
KR20220120467A (en) Laser processing apparatus and laser processing method
JP2012096254A (en) Laser beam machining apparatus and its control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917519

Country of ref document: EP

Kind code of ref document: A1