WO2022149274A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2022149274A1
WO2022149274A1 PCT/JP2021/000547 JP2021000547W WO2022149274A1 WO 2022149274 A1 WO2022149274 A1 WO 2022149274A1 JP 2021000547 W JP2021000547 W JP 2021000547W WO 2022149274 A1 WO2022149274 A1 WO 2022149274A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
pusch
spatial relationship
resource
dci
Prior art date
Application number
PCT/JP2021/000547
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US18/260,130 priority Critical patent/US20240064527A1/en
Priority to CN202180095406.0A priority patent/CN116965079A/zh
Priority to PCT/JP2021/000547 priority patent/WO2022149274A1/ja
Priority to JP2022573888A priority patent/JPWO2022149274A5/ja
Publication of WO2022149274A1 publication Critical patent/WO2022149274A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06968Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using quasi-colocation [QCL] between signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel.15 or later, etc.
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • the user terminal (User Equipment (UE)) is a UL data channel (eg, Physical Uplink Shared Channel (PUSCH)) and a UL control channel (eg, Physical Uplink).
  • PUSCH Physical Uplink Shared Channel
  • UCI Uplink Control Information
  • PUCCH Physical Uplink Control Channel
  • the UE can use one of multiple panels (multiple beams) for uplink (UL) transmission.
  • multiple panels multiple beams
  • simultaneous UL transmission using a plurality of panels has not been sufficiently studied. If simultaneous UL transmission using a plurality of panels is not properly performed, system performance may be deteriorated such as a decrease in throughput.
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately perform simultaneous UL transmission using a plurality of panels.
  • the terminal includes a control unit that determines the spatial relationship of the physical uplink control channel based on the control resource set having the lowest identifier, and a plurality of coherent panels based on the spatial relationship. It is characterized by having a transmission unit that simultaneously transmits the physical uplink control channel.
  • simultaneous UL transmission using a plurality of panels can be appropriately performed.
  • FIG. 1 is a diagram showing an example of the association between the precoder type and the TPMI index.
  • FIG. 2A-2C is a diagram showing an example of PUSCH transmission using a plurality of panels.
  • 3A-3C is a diagram showing an example of methods 1 to 3 of simultaneous UL transmission using a plurality of panels.
  • FIG. 4 is a diagram showing an example of PUSCH repeated transmission to which SDM is applied.
  • FIG. 5A is a diagram showing a first example of PUSCH repeated transmission to which FDM is applied.
  • FIG. 5B is a diagram showing a second example of PUSCH repeated transmission to which FDM is applied.
  • FIG. 5A is a diagram showing a first example of PUSCH repeated transmission to which FDM is applied.
  • FIG. 5B is a diagram showing a second example of PUSCH repeated transmission to which FDM is applied.
  • FIG. 6 shows an example of the association (table) between the precoding information and the field value of the number of layers and the number of layers and the TPMI.
  • FIG. 7 is a diagram showing a first example showing the expansion of the table with respect to the DMRS port.
  • FIG. 8 is a diagram showing a second example showing the expansion of the table with respect to the DMRS port.
  • FIG. 9 is a diagram showing a third example showing the expansion of the table with respect to the DMRS port.
  • FIG. 10 is a diagram showing a fourth example showing the expansion of the table with respect to the DMRS port.
  • FIG. 11 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 12 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 13 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 14 is a diagram showing an example of the hardware configuration of the base station and the user terminal according
  • the base station may repeat transmission of DL data (for example, downlink shared channel (PDSCH)) a predetermined number of times.
  • DL data for example, downlink shared channel (PDSCH)
  • UL data for example, an uplink shared channel (PUSCH)
  • the UE may be scheduled for a predetermined number of repeated PUSCH transmissions by a single DCI.
  • the number of repetitions is also referred to as a repetition factor K or an aggregation factor K.
  • nth repetition is also referred to as an nth transmission opportunity or the like, and may be identified by the repetition index k (0 ⁇ k ⁇ K-1).
  • Repeated transmissions may be applied to a PUSCH dynamically scheduled in DCI (eg, a dynamic grant-based PUSCH) or a set grant-based PUSCH.
  • the UE receives information indicating the repetition coefficient K (for example, aggregationFactorUL or aggregationFactorDL) quasi-statically by higher layer signaling.
  • the upper layer signaling may be, for example, any one of RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof.
  • MAC CE Control Element
  • MAC PDU Protocol Data Unit
  • the broadcast information may be, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), a minimum system information (RMSI: Remaining Minimum System Information), or the like.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • the UE receives at least one PDSCH reception process (eg, reception, demapping, demodulation, decoding) in K contiguous slots based on at least one of the following field values in the DCI (or the information indicated by that field value): 1), or control the PUSCH transmission process (eg, at least one of transmission, mapping, modulation, sign): -Allocation of time domain resources (eg start symbol, number of symbols in each slot, etc.), -Allocation of frequency domain resources (for example, a predetermined number of resource blocks (RB: Resource Block), a predetermined number of resource block groups (RBG: Resource Block Group)), -Modulation and Coding Scheme (MCS) index, -Configuration of PUSCH demodulation reference signal (DMRS), -The state (TCI-state) of the spatial relation information (spatial relation info) of the PUSCH or the transmission configuration instruction (TCI: Transmission Configuration Indication or Transmission Configuration Indicator).
  • a PDSCH reception process eg, reception
  • the same symbol assignment may be applied between K consecutive slots.
  • the UE is based on the start symbol S and the number of symbols L (eg, Start and Length Indicator (SLIV)) determined based on the value m of a predetermined field (eg, time domain resource allocation (TDRA) field) in the DCI.
  • L Start and Length Indicator
  • TDRA time domain resource allocation
  • the symbol assignment in each slot may be determined.
  • the UE may determine the first slot based on the K2 information determined based on the value m of the predetermined field of DCI (for example, the TDRA field).
  • the redundant version (Redundancy Version (RV)) applied to the TB based on the same data may be the same, or at least a part thereof may be different.
  • the RV applied to the TB in the nth slot (transmission opportunity, repeat) may be determined based on the value of a predetermined field (eg, RV field) in the DCI.
  • the PUSCH may be repeatedly transmitted over a plurality of slots (in slot units). Rel. From 16 onwards, it is supported to repeatedly transmit the PUSCH in units shorter than the slot (for example, in units of subslots, units of minislots, or units of a predetermined number of symbols).
  • the symbol assignment may be determined.
  • the UE may determine a predetermined slot based on Ks information determined based on the value m of a predetermined field (for example, TDRA field) of DCI.
  • the UE may dynamically receive information indicating the repetition coefficient K (for example, numberofrepetitions) by downlink control information.
  • the repeat factor may be determined based on the value m of a predetermined field (eg, TDRA field) in the DCI. For example, a table in which the correspondence between the bit value notified by DCI and the repetition coefficient K, the start symbol S, and the number of symbols L may be defined may be supported.
  • repetitive transmission type A eg, PUSCH repetition Type A
  • repetitive transmission type B eg, PUSCH repetition Type B
  • the UE may be set to apply at least one of the repetitive transmission type A and the repetitive transmission type B.
  • the base station may notify the UE of the iterative transmission type applied by the UE by higher layer signaling (eg, PUSCHRepTypeIndicator).
  • Either one of the repetitive transmission type A and the repetitive transmission type B may be set in the UE for each DCI format for scheduling the PUSCH.
  • a first DCI format eg DCI format 0_1
  • higher layer signaling eg PUSCHRepTypeIndicator-AorDCIFormat0_1
  • repeat transmission type B eg PUSCH-RepTypeB
  • the UE will be the first DCI.
  • Repeated transmission type B is applied to the PUSCH repetitive transmission scheduled in the format.
  • the UE applies the UE repeatedly send type A for the PUSCH repeats scheduled in the first DCI format. do.
  • the NR considers that the UE supports at least one of codebook (Codebook (CB)) -based transmission and non-codebook (Non-Codebook (NCB)) -based transmission.
  • codebook Codebook
  • NCB Non-Codebook
  • the UE uses at least a reference signal for measurement (Sounding Reference Signal (SRS)) and a resource indicator (SRS Resource Indicator (SRI)), and at least one of the CB-based and NCB-based uplink shared channels (PUSCH). )) It is being considered to determine the precoder (precoding matrix) for transmission.
  • SRS Sounding Reference Signal
  • SRI SRS Resource Indicator
  • PUSCH CB-based and NCB-based uplink shared channels
  • the UE determines the precoder for PUSCH transmission based on the SRI, transmission rank index (Transmitted Rank Indicator (TRI)), transmission precoding matrix index (Transmitted Precoding Matrix Indicator (TPMI)), and the like. You may.
  • the UE may determine a precoder for PUSCH transmission based on SRI.
  • SRI, TRI, TPMI, etc. may be notified to the UE using downlink control information (DCI).
  • DCI downlink control information
  • the SRI may be specified by the SRS Resource Indicator field (SRI field) of DCI, or by the parameter "srs-ResourceIndicator” included in the RRC information element "Configured GrantConfig" of the configured grant PUSCH (configured grant PUSCH). You may.
  • the TRI and TPMI may be specified by the DCI precoding information and the number of layers field ("Precoding information and number of layers" field).
  • the UE may report UE capability information regarding the precoder type, and the precoder type based on the UE capability information may be set from the base station by higher layer signaling.
  • the UE capability information may be precoder type information (may be represented by the RRC parameter "pusch-TransCoherence") used by the UE in PUSCH transmission.
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information may be, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), or the like.
  • MIB Master Information Block
  • SIB System Information Block
  • the UE is based on the precoder type information (which may be represented by the RRC parameter "codebookSubset") contained in the PUSCH setting information (the "PUSCH-Config" information element of RRC signaling) notified by the upper layer signaling.
  • the precoder used for PUSCH transmission may be determined.
  • the UE may be configured by the codebookSubset with a subset of the PMI specified by the TPMI.
  • the precoder type is either full coherent (full coherent, fully coherent, coherent), partial coherent (partial coherent), non-coherent (non-coherent, non-coherent), or at least two combinations thereof (for example, "complete”. And may be represented by parameters such as "fullyAndPartialAndNonCoherent", "partialAndNonCoherent").
  • Full coherent means that all antenna ports used for transmission are synchronized (phase can be matched, phase can be controlled for each coherent antenna port, precoder can be applied appropriately for each coherent antenna port, etc.). It may be expressed as). Partial coherent may mean that some of the antenna ports used for transmission are synchronized, but some of the ports are out of sync with other ports. Non-coherent may mean that each antenna port used for transmission cannot be synchronized.
  • UEs that support fully coherent precoder types may be assumed to support partially coherent and non-coherent precoder types.
  • a UE that supports a partially coherent precoder type may be expected to support a non-coherent precoder type.
  • the precoder type may be read as coherence, PUSCH transmission coherence, coherent type, coherence type, codebook type, codebook subset, codebook subset type, and the like.
  • the UE is a TPMI index obtained from a DCI (eg, DCI format 0_1, and so on) that schedules UL transmissions from multiple precoders (may be referred to as precoding matrices, codebooks, etc.) for CB-based transmissions.
  • the precoding matrix corresponding to may be determined.
  • FIG. 1 is a diagram showing an example of the association between the precoder type and the TPMI index.
  • FIG. 1 shows a table of precoding matrix W for single layer (rank 1) transmission using 4 antenna ports in DFT-s-OFDM (Discrete Fourier Transform spread OFDM, transform precoding is effective). Corresponds to.
  • the UE is notified of any TPMI from 0 to 27 for single layer transmission. Further, when the precoder type is partialAndNonCoherent, the UE is set to any TPMI from 0 to 11 for single layer transmission. If the precoder type is nonCoherent, the UE is configured with any TPMI from 0 to 3 for single layer transmission.
  • a precoding matrix in which only one component in each column is not 0 may be called a non-coherent codebook.
  • a precoding matrix in which the components of each column are not zero by a predetermined number (but not all) may be referred to as a partial coherent codebook.
  • a precoding matrix in which the components of each column are not all zeros may be referred to as a complete coherent codebook.
  • the non-coherent codebook and the partial coherent codebook may be referred to as an antenna selection precoder.
  • a fully coherent codebook may be referred to as a non-antenna selection precoder.
  • RRC parameter "codebookSubset” "partialAndNonCoherent”
  • the UE receives information (SRS configuration information, eg, parameters in "SRS-Config" of the RRC control element) used to transmit a measurement reference signal (eg, Sounding Reference Signal (SRS)).
  • SRS configuration information e.g, parameters in "SRS-Config" of the RRC control element
  • SRS Sounding Reference Signal
  • the UE has information about one or more SRS resource sets (SRS resource set information, for example, "SRS-ResourceSet” of RRC control element) and information about one or more SRS resources (SRS resource). At least one piece of information, eg, the RRC control element "SRS-Resource”), may be received.
  • SRS resource set information for example, "SRS-ResourceSet” of RRC control element
  • SRS resource information about one or more SRS resources
  • One SRS resource set may be related to a predetermined number of SRS resources (a predetermined number of SRS resources may be grouped).
  • Each SRS resource may be specified by an SRS resource identifier (SRS Resource Indicator (SRI)) or an SRS resource ID (Identifier).
  • SRI SRS Resource Indicator
  • SRS resource ID Identifier
  • the SRS resource set information may include information on the SRS resource set ID (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, the SRS resource type, and the usage of the SRS.
  • SRS-ResourceSetId information on the SRS resource set ID
  • SRS-ResourceId list of SRS resource IDs
  • the SRS resource types are periodic SRS (Periodic SRS (P-SRS)), semi-persistent SRS (Semi-Persistent SRS (SP-SRS)), and aperiodic SRS (Aperiodic SRS (A-SRS, AP)).
  • P-SRS Period SRS
  • SP-SRS semi-persistent SRS
  • Aperiodic SRS Aperiodic SRS
  • AP aperiodic SRS
  • -SRS periodic SRS
  • the UE may transmit P-SRS and SP-SRS periodically (or periodically after activation), and may transmit A-SRS based on DCI's SRS request.
  • the usage is, for example, beam management, codebook-based transmission (codebook: CB), non-codebook-based transmission. (NonCodebook: NCB), antenna switching, and the like may be used.
  • SRS for use in codebook-based or non-codebook-based transmissions may be used to determine a precoder for codebook-based or non-codebook-based PUSCH transmissions based on SRI.
  • the UE determines a precoder for PUSCH transmission based on the SRI, transmission rank indicator (Transmitted Rank Indicator: TRI), and transmission precoding matrix indicator (Transmitted Precoding Matrix Indicator: TPMI). You may.
  • the UE may determine a precoder for PUSCH transmission based on SRI.
  • the SRS resource information includes SRS resource ID (SRS-ResourceId), number of SRS ports, SRS port number, transmission Comb, SRS resource mapping (for example, time and / or frequency resource position, resource offset, resource cycle, number of repetitions, SRS). It may include (number of symbols, SRS bandwidth, etc.), hopping-related information, SRS resource type, series ID, SRS spatial-related information, and the like.
  • SRS resource ID SRS-ResourceId
  • number of SRS ports for example, number of SRS ports, SRS port number, transmission Comb
  • SRS resource mapping for example, time and / or frequency resource position, resource offset, resource cycle, number of repetitions, SRS. It may include (number of symbols, SRS bandwidth, etc.), hopping-related information, SRS resource type, series ID, SRS spatial-related information, and the like.
  • the spatial relationship information of the SRS may indicate the spatial relationship information between the predetermined reference signal and the SRS.
  • the predetermined reference signal includes a synchronization signal / broadcast channel (Synchronization Signal / Physical Broadcast Channel: SS / PBCH) block, a channel state information reference signal (Channel State Information Reference Signal: CSI-RS), and an SRS (for example, another SRS). It may be at least one of.
  • the SS / PBCH block may be referred to as a sync signal block (SSB).
  • the SRS spatial relationship information may include at least one of the SSB index, the CSI-RS resource ID, and the SRS resource ID as the index of the predetermined reference signal.
  • the SSB index, SSB resource ID, and SSBRI may be read as each other. Further, the CSI-RS index, the CSI-RS resource ID and the CRI (CSI-RS Resource Indicator) may be read as each other. Further, the SRS index, SRS resource ID and SRI may be read as each other.
  • the SRS spatial relationship information may include a serving cell index, a BWP index (BWP ID), and the like corresponding to the above-mentioned predetermined reference signal.
  • the transmission of the uplink signal may be controlled based on the presence or absence of beam correspondence (BC).
  • BC means, for example, a node (for example, a base station or a UE) determines a beam (transmitted beam, Tx beam) used for signal transmission based on a beam (received beam, Rx beam) used for signal reception. It may be the ability to do.
  • BC is transmit / receive beam correspondence (Tx / Rx beam correspondence), beam reciprocity (beam reciprocity), beam calibration (beam calibration), calibrated / uncalibrated (Calibrated / Non-calibrated), reciprocity calibration. It may be called reciprocity calibrated / non-calibrated, degree of correspondence, degree of agreement, and the like.
  • the UE uses the same beam (spatial domain transmit filter) as the SRS (or SRS resource) instructed by the base station based on the measurement results of one or more SRS (or SRS resources).
  • Upstream signals eg, PUSCH, PUCCH, SRS, etc. may be transmitted.
  • the UE uses the same or corresponding beam (spatial domain transmission filter) as the beam (spatial domain reception filter) used for receiving a predetermined SSB or CSI-RS (or CSI-RS resource). Then, an uplink signal (for example, PUSCH, PUCCH, SRS, etc.) may be transmitted.
  • a predetermined SSB or CSI-RS or CSI-RS resource
  • the UE When the UE is set with spatial relation information regarding SSB or CSI-RS and SRS for a certain SRS resource (for example, when BC is present), the UE is a spatial domain for receiving the SSB or CSI-RS.
  • the SRS resource may be transmitted using the same spatial domain filter (spatial domain transmit filter) as the filter (spatial domain receive filter). In this case, the UE may assume that the UE receiving beam of SSB or CSI-RS and the UE transmitting beam of SRS are the same.
  • the reference SRS When the UE is set the spatial relationship information about another SRS (reference SRS) and the SRS (target SRS) for one SRS (target SRS) resource (for example, in the case of no BC), the reference SRS is set.
  • the target SRS resource may be transmitted using the same spatial domain filter (spatial domain transmission filter) as the spatial domain filter (spatial domain transmission filter) for transmission of. That is, in this case, the UE may assume that the UE transmission beam of the reference SRS and the UE transmission beam of the target SRS are the same.
  • the UE may determine the spatial relationship of the PUSCH scheduled by the DCI based on the value of a predetermined field (eg, the SRS resource identifier (SRI) field) in the DCI (eg, DCI format 0_1). Specifically, the UE may use the spatial relationship information of the SRS resource (for example, the “spatialRelationInfo” of the RRC information element) determined based on the value of the predetermined field (for example, SRI) for the PUSCH transmission.
  • a predetermined field eg, the SRS resource identifier (SRI) field
  • the UE may use the spatial relationship information of the SRS resource (for example, the “spatialRelationInfo” of the RRC information element) determined based on the value of the predetermined field (for example, SRI) for the PUSCH transmission.
  • the UE When codebook-based transmission is used for PUSCH, the UE may set two SRS resources by RRC and indicate one of the two SRS resources by DCI (a predetermined field of 1 bit). When using non-codebook-based transmission for PUSCH, the UE may have four SRS resources configured by RRC and one of the four SRS resources indicated by DCI (2-bit predetermined field). .. In order to use a spatial relationship other than the two or four spatial relationships set by the RRC, it is necessary to reset the RRC.
  • DL-RS can be set for the spatial relationship of the SRS resource used for PUSCH.
  • the UE can set the spatial relationship of a plurality of (for example, up to 16) SRS resources by RRC, and can instruct one of the plurality of SRS resources by MAC CE.
  • UL TCI state (UL TCI state) Rel.
  • UL TCI status notification is similar to UE DL beam (DL TCI status) notification.
  • the DL TCI state may be read as the TCI state for PDCCH / PDSCH.
  • the channels / signals (which may be called target channels / RS) for which the UL TCI state is set (designated) are, for example, PUSCH (PUSCH DMRS), PUCCH (PUCCH DMRS), and random access channels (Physical Random Access). It may be at least one such as Channel (PRACH)) and SRS.
  • PUSCH DMRS PUSCH DMRS
  • PUCCH PUCCH
  • PRACH Physical Random Access
  • the RS (source RS) having a QCL relationship with the channel / signal may be, for example, DL RS (for example, SSB, CSI-RS, TRS, etc.) or UL RS (for example, SRS, beam management). For SRS, etc.).
  • DL RS for example, SSB, CSI-RS, TRS, etc.
  • UL RS for example, SRS, beam management.
  • SRS beam management
  • the RS having a QCL relationship with the channel / signal may be associated with the panel ID for receiving or transmitting the RS.
  • the association may be explicitly set (or specified) by higher layer signaling (eg, RRC signaling, MAC CE, etc.) or implicitly determined.
  • the correspondence relationship between the RS and the panel ID may be included in the UL TCI status information and set, or may be included in at least one of the resource setting information, the spatial relationship information, and the like of the RS.
  • the QCL type indicated by the UL TCI state may be an existing QCL type AD or another QCL type, and may have a predetermined spatial relationship, a related antenna port (port index), or the like. It may be included.
  • the UE may perform UL transmission using the panel corresponding to the panel ID.
  • the panel ID may be associated with the UL TCI state, and if the UE specifies (or activates) the UL TCI state for a given UL channel / signal, the UL channel according to the panel ID associated with the UL TCI state. / The panel used for signal transmission may be specified.
  • reception by one TRP having multiple panels (FIG. 2B) or reception by two TRPs having an ideal backhaul (FIG. 2C) is considered.
  • a single PDCCH for scheduling multiple PUSCHs (eg, simultaneous transmission of PUSCH # 1 and PUSCH # 2) is being considered. It is being considered that panel-specific transmission will be supported and a panel ID will be introduced.
  • the base station may set or instruct panel-specific transmission for UL transmission using UL TCI or panel ID.
  • UL TCI (UL TCI state) is referred to as Rel. It may be based on signaling similar to the DL beam indication supported in 15.
  • the panel ID may be implicitly or explicitly applied to at least one transmission of the target RS resource or target RS resource set, PUCCH, SRS, and PRACH. When the panel ID is explicitly notified, the panel ID may be set in at least one of the target RS, the target channel, and the reference RS (for example, DL RS resource setting or spatial relation information).
  • the candidate for the multi-panel UL transmission method or the multi-panel UL transmission method may be at least one of the following methods 1 to 3 (multi-panel UL transmission methods 1 to 3). Only one of methods 1 to 3 may be supported. A plurality of methods including at least one of the methods 1 to 3 are supported, and one of the plurality of methods may be set in the UE.
  • SRI SRS Resource Indicator
  • the UE maps one codeword (CW) or one transport block (TB) to L layers (PUSCH (1, 2, ..., L)) from each of the two panels.
  • Panels # 1 and # 2 are coherent.
  • Method 1 can obtain a gain due to diversity.
  • the total number of layers in the two panels is 2L.
  • the maximum value of the total number of layers is 4, the maximum value of the number of layers in one panel is 2.
  • Multiple panels do not have to be synchronized. Different layers are mapped to different panels and one CW or TB for PUSCH from multiple panels. Layers corresponding to one CW or TB may be mapped to multiple panels. In this method, a maximum of 4 layers or a maximum of 8 layers may be used for UL. If up to 8 layers are supported, this scheme may support one CW or TB with up to 8 layers.
  • the UE converts 1CW or 1TB into k layers (PUSCH (1, 2, ..., K)) and LK layers (PUSCH (k + 1, k + 2, ..., L)). Map to, k layers are transmitted from panel # 1, and LK layers are transmitted from panel # 2. Method 2 can obtain gains due to multiplex and diversity. The total number of layers in the two panels is L.
  • Multiple panels do not have to be synchronized. Different layers are mapped to different panels and two CWs or TBs for PUSCH from multiple panels. Layers corresponding to one CW or TB may be mapped to one panel. Layers corresponding to multiple CWs or TBs may be mapped to different panels. In this method, a maximum of 4 layers or a maximum of 8 layers may be used for UL. If up to 8 layers are supported, this scheme may support up to 4 layers per CW or TB.
  • the UE maps CW # 1 or TB # 1 to k layers (PUSCH (1, 2, ..., K)) of 2CW or 2TB, and CW # 2 or TB # 2 Is mapped to Lk layers (PUSCH (k + 1, k + 2, ..., L)), k layers are transmitted from panel # 1, and Lk layers are transmitted from panel # 2.
  • Method 3 can obtain gains due to multiplex and diversity. The total number of layers in the two panels is L.
  • the existing DCI may be extended.
  • at least one of the following options 1 to 6 may be applied.
  • Multiple PUSCHs may be designated (schedule) by a single PDCCH (DCI) for Method 1.
  • the SRI field may be expanded to indicate multiple PUSCHs.
  • Multiple SRI fields in the DCI may be used to indicate multiple PUSCHs from multiple panels. For example, a DCI that schedules two PUSCHs may include two SRI fields.
  • the expansion of the SRI field for method 2 may differ from the expansion of the SRI field for method 1 in the following points.
  • the UE transmits the SRI (SRS # i) first indicated by the SRI field in the DCI for UL transmission from the panel 1. It may be used as a spatial filter.
  • the UE transmits the SRI (SRS # j) second indicated by the SRI field in the DCI from the panel 2 by UL transmission. May be used as a spatial filter for. k may follow pre-defined rules or may be explicitly indicated by DCI.
  • the extension of the SRI field for method 3 is modulated in the DCI to indicate multiple PUSCHs in addition to the extension of the SRI field for method 2 to support two CWs or TBs for different TRPs.
  • MCS coding scheme
  • precoding information and number of layers field precoding information and number of layers field
  • scheduled transmission power control (TPC) field frequency At least one of the frequency domain resource assignment field and the time domain resource assignment field may be expanded.
  • Different TRPs may have different path losses or different SINRs.
  • Information about the PUSCH repeat transmission type may be notified or set to the UE by higher layer signaling.
  • the UE may apply the iterative transmission type A when the iterative transmission type B (for example, PUSCH-RepTypeB) is not set by the upper layer signaling.
  • the repeat transmission type may be set for each DCI format (or PUSCH type).
  • the type of PUSCH may include a dynamic grant-based PUSCH and a setting grant-based PUSCH.
  • Information on repetition factors, information on PUSCH allocation, information on spatial relationships (or recorders) used for PUSCH transmission, and information on redundant versions used for PUSCH transmission can be found in DCI or a combination of DCI and higher layer parameters.
  • the UE may be notified.
  • a plurality of candidates may be defined in the table for the information regarding the repetition coefficient (for example, K) and the information regarding the allocation of the PUSCH (for example, the start symbol S and the PUSCH length L), and a specific candidate may be selected by DCI.
  • the repetition coefficient (K) of PUSCH is 4 will be described as an example, but the applicable repetition coefficient is not limited to 4.
  • a plurality of candidates may be set by higher layer signaling, and one or more spatial relation information may be activated by at least one of DCI and MAC CE.
  • the number of bits of the TPC command field included in one DCI that schedules PUSCH transmission over a plurality of TRPs, and the correspondence between the TPC command field and the index related to the TPC (for example, a closed loop index) will be described.
  • the UE may control multiple PUSCH transmissions based on at least the index.
  • the number of bits of the TPC command field included in one DCI that schedules PUSCH transmission over multiple TRPs is Rel. It may be extended to a specific number of bits (eg, 2M) as compared to the number of bits of 15/16.
  • M may be the number of TRPs or the number of SRIs that can be directed for PUSCH transmission over multiple TRPs.
  • the TPC command field may be extended to 4 bits when the DCI directs the SRI for PUSCH transmission to the two TRPs.
  • the association between the extended TPC command field and a specific index related to TPC may follow at least one of the following mapping 1 or mapping 2.
  • a specific index related to TPC eg, closed loop index
  • mapping 1 or mapping 2 mapping 2
  • the closed loop index will be described, but the closed loop index of the present disclosure may be read as any specific index related to TPC.
  • the xth smallest (or larger) specific number of bits is the xth smallest (or larger) bit indicated by DCI. It may be associated with the SRI corresponding to the (larger) closed loop index.
  • the same number of antenna ports may be set / instructed for different TRPs (different PUSCHs).
  • the same number of antenna ports may be set / instructed in common for a plurality of TRPs (plurality of PUSCHs).
  • the UE may assume that the same number of antenna ports is set / instructed in common for a plurality of TRPs (plurality of PUSCHs).
  • the UE may determine the TPMI for PUSCH transmission according to at least one of the instruction method 1-1 or the instruction method 1-2 described below.
  • the precoding information and the number of layers fields included in the scheduling DCI are described in Rel.
  • the number of bits may be the same as the number of bits specified in 15/16.
  • one precoding information and one layer number field included in one DCI may be instructed to the UE.
  • the UE may determine the TPMI based on one precoding information and one layer number field contained in one DCI.
  • the UE may then apply the precoding information and layer number field / TPMI to PUSCH transmissions of different TRPs.
  • the precoding information and the number of layers fields included in the scheduling DCI are described in Rel.
  • the number of bits may be expanded to a specific number as compared with 15/16.
  • the specific number may be represented by X ⁇ M.
  • the above X may be determined based on the precoding information included in the DCI and the size of the layer number field for performing UL transmission for one TRP. For example, X is determined based on at least one of the number of antenna ports and the number set by a particular higher layer parameter (eg, at least one of ul-FullPowerTransmission, maxRank, codebookSubset, transformPrecoder). May be good.
  • a particular higher layer parameter eg, at least one of ul-FullPowerTransmission, maxRank, codebookSubset, transformPrecoder. May be good.
  • the above X may be a fixed value.
  • the UE may assume that X has a fixed size regardless of the number of antenna ports set in the upper layer. Further, the UE may assume that X has a fixed size regardless of the value of the antenna port number field (the number of antenna ports indicated by the antenna port number field).
  • different / same number of antenna ports may be set / instructed for different TRPs (different PUSCHs).
  • the number of antenna ports may be set / instructed separately for a plurality of TRPs (plurality of PUSCHs).
  • the UE may assume that the number of antenna ports is independently set / instructed for each of the plurality of TRPs (plurality of PUSCHs). In this case, the UE may determine the TPMI for PUSCH transmission according to the instruction method 2 described below.
  • the precoding information and the number of layers fields included in the scheduling DCI are described in Rel.
  • the number of bits may be expanded to a specific number as compared with 15/16.
  • the specific number may be represented by X 1 + X 2 + ... + X M.
  • the above Xi ( i is an arbitrary integer from 1 to M) is determined based on the precoding information contained in the DCI and the size of the layer number field for performing UL transmission to the i-th TRP. good.
  • the Xi is determined based on at least one of the number of antenna ports and the number set by a particular higher layer parameter (eg, at least one of ul- FullPowerTransmission , maxRank, codebookSubset, transformPrecoder). You may. Further, the above Xi may be set to a fixed value.
  • the above M may be the number of TRPs, or may be the number of spatial relational information (SRIs) that can be instructed for PUSCH transmission over a plurality of TRPs.
  • SRIs spatial relational information
  • the UE inputs the SRI applied to the PUSCH to the SRI field of the DCI that schedules the PUSCH and the CORESET pool index of the control resource set (COntrol REsource SET (CORESET)) for the DCI (for example, to detect the DCI). And may be determined based on at least one of them.
  • COntrol REsource SET COntrol REsource SET
  • the UE may determine the SRI to be applied to each PUSCH based on a plurality of SRI fields included in the DCI that schedules the plurality of PUSCHs.
  • the UE may determine the SRI to be applied to each PUSCH based on one SRI field included in the DCI that schedules a plurality of PUSCHs.
  • the UE may determine the transmit power of the PUSCH based on the SRI field of the DCI that schedules the PUSCH. For example, the UE may determine the transmit power control (TPC) related parameters of the PUSCH based on the SRI field of the DCI that schedules the PUSCH.
  • TPC transmit power control
  • the UE may decide to perform either repetitive transmission for a single TRP or repetitive transmission for multiple TRPs based on the particular fields contained in the DCI.
  • the UE may determine that repeated transmissions of multiple PUSCHs will take place in the SRI to which it applies. In other words, if the fields contained in the DCI indicate that one of the SRI fields be applied, the UE may decide to repeat the PUSCH in a single TRP. good.
  • both the first SRI field and the second SRI field among a plurality of (for example, two) SRI fields (first SRI field, second SRI field).
  • the UE may determine that repeated transmissions of a plurality of PUSCHs will occur in multiple SRIs (eg, multiple TRPs).
  • the UE may decide to repeatedly transmit the PUSCH in the plurality of TRPs.
  • a beam, a panel, a UE panel, an RS port group, a DMRS port group, an SRS port group, an RS resource group, a DMRS resource group, an SRS resource group, a beam group, a TCI state group, a spatial relationship group, and an SRS resource indicator ( The SRI) group, the antenna port group, the antenna group, the CORESET group, and the CORESET pool may be read as each other.
  • the panel may be associated with at least one of panel ID, UL TCI state, UL beam, L beam, DL RS resource, and spatial relationship information.
  • spatial relations, spatial settings, spatial relations information, spatialRelationInfo, SRI, SRS resources, precoders, UL TCIs, TCI states, Unified TCIs, QCLs, etc. may be read as each other.
  • index, ID, indicator, and resource ID may be read as each other.
  • scheduling multiple PUSCHs with a single DCI (sDCI), a single PDCCH, a single DCI-based multi-TRP (MTRP) system, an sDCI-based MTRP, and a single DCI, an sDCI-based MTRP.
  • Transmission, activating two TCI states on at least one TCI code point, may be read interchangeably.
  • multi-DCI is used for multi-DCI (mDCI), multi-PDCCH, multi-DCI-based multi-TRP system, mDCI-based MTRP, mDCI-based MTRP transmission, MTRP, and multiple (for different SRIs) by two DCIs.
  • activate, deactivate, instruct (or indicate), select, configure, update, determine, etc. may be read interchangeably.
  • repetition repetition (one repetition)
  • occasion and channel
  • channel may be read as each other.
  • UL data, TB, CW, and UCI may be read as each other.
  • a / B may be read as "at least one of A and B".
  • the transmission method and the new transmission method of the present disclosure may mean at least one of the above-mentioned methods 1 to 3.
  • the UE receives the setting regarding the transmission of the physical uplink shared channel (PUSCH) by the upper layer signaling (RRC). Then, the UE simultaneously transmits the PUSCH using a plurality of coherent (first embodiment) or non-coherent (second embodiment) panels based on the setting.
  • RRC upper layer signaling
  • the PUSCH generation (transmission) operation when the coherent multi-panel UL transmission shown in the above-mentioned method 1 is applied has not been sufficiently studied. Therefore, the present inventors have conceived a method for appropriately performing PUSCH generation when coherent multi-panel UL transmission is applied.
  • the multi-TRP may be applied and the two panels may be panels of different TRPs.
  • method 1 may be applied to a high speed train (HST) -single frequency network (SFN).
  • HST high speed train
  • SFN single frequency network
  • a plurality of small antennas (transmission / reception points) having the same cell ID and a predetermined distance form an SFN.
  • transmission / reception points in units of several kilometers form one cell.
  • Handover is performed when straddling cells.
  • a beam transmitted from a transmission point for example, Remote Radio Head (RRH)
  • RRH Remote Radio Head
  • HST moving body
  • RRH Remote Radio Head
  • Existing systems eg, Rel.15
  • HST moving body
  • the UE can be scheduled to send two PUSCHs / CW / TBs at the same time, and the two PUSCHs / CW / TBs may be the same.
  • the two PUSCHs may be regarded as one PUSCH that is repeatedly transmitted at the same time.
  • the SRI / TPMI / TPC may use an extended DCI as shown in the ⁇ DCI extension> described above.
  • the UE In the DMRS transmission of the PUSCH, the UE has multiple SRIs (in the case of CB-based PUSCH transmission) / multiple SRI sets (in the case of NCB-based PUSCH transmission) instructed for different PUSCH / CW / TB. It may be assumed that it is applied to each DMRS port (each layer) of.
  • time / frequency resource indications for repetitive PUSCHs one of the following options may be applied.
  • the UE may assume that PUSCH repetitive transmissions to which Space Division Multiplexing (SDM) is applied are scheduled for the same time resource and the same frequency resource. That is, when using a plurality of coherent panels, the UE may transmit SDM-applied PUSCH repetitive transmissions at the same time resource and the same frequency resource.
  • FIG. 4 is a diagram showing an example of PUSCH repeated transmission to which SDM is applied. In FIG. 4, the repeating PUSCH A and PUSCH B have the same time and frequency resources.
  • the UE may assume that PUSCH repetitive transmissions to which Frequency Division Multiplexing (FDM) is applied are scheduled for the same time resource and different frequency resources. That is, when using a plurality of coherent panels, the UE may transmit FDM-applied PUSCH repetitive transmissions at the same time resource and different frequency resources.
  • FIG. 5A is a diagram showing a first example of PUSCH repeated transmission to which FDM is applied. In FIG. 5A, the repeating PUSCH A and PUSCH B have the same time resource but different frequency resources.
  • the UE may assume that some (one or more symbols) are scheduled for overlapping time resources and different frequency resources for FDM-applied PUSCH repeat transmissions.
  • FIG. 5B is a diagram showing a second example of PUSCH repeated transmission to which FDM is applied. In FIG. 5B, a part (one or a plurality of symbols) of the repeated time resources of PUSCH A and PUSCH B overlaps, and the frequency resources are different.
  • the UE may repeatedly transmit one PUCCH at the same time with the SDM applied.
  • the PUCCH resource may be configured with two TCI state / spatial relationships.
  • the UE may assume that the two indicated TCI state / spatial relationships apply to each DMRS port of the PUCCH.
  • the UE may assume that SDM-applied PUCCH repetitive transmissions are scheduled for the same time / frequency resource.
  • the UE can appropriately execute the PUSCH generation (transmission) operation when the coherent multi-panel UL transmission is applied.
  • ⁇ Second embodiment> The mapping of DMRS ports when applying one / two CW or TB non-coherent multi-panel UL transmissions shown in Method 2 or Method 3 described above has not been fully investigated.
  • the mapping of DMRS ports corresponding to each PUSCH / SRI / TPMI / TPC when multiple (multiple sets) SRI / TPMI / TPC are instructed has not been fully investigated. Therefore, the present inventors have conceived a method for appropriately mapping DMRS ports when one / two CW or TB non-coherent multi-panel UL transmissions are applied.
  • the UE may be scheduled to send one or two PUSCHs / CW / TBs with different data / layers on different beams / panels to different TRPs at the same time.
  • the following embodiments 2-1 to 2-3 may be applied when multiple (multiple sets) of SRI / TPMI / TPC are indicated in the DCI scheduling PUSCH.
  • the UE transmits a reference signal resource indicator (SRI) for measurement, which corresponds to a Code Division Multiplexing (CDM) group when a plurality of non-coherent panels are used.
  • SRI reference signal resource indicator
  • CDM Code Division Multiplexing
  • DCI downlink control information
  • TPMI precoding matrix index
  • TPC command transmit power control command
  • the UE transmits the PUSCH based on the DCI.
  • the TPC and TPC commands may be read as each other.
  • the DCI field "Antenna Port (s)" indicates a DM-RS port in two CDM groups
  • the first (first set) SRI / TPMI / TPC is indicated by the antenna port indicator table.
  • the second (second set) SRI / TPMI / TPC may correspond to another CDM group corresponding to the CDM group of the first antenna port.
  • the first (first set) SRI / TPMI / TPC corresponds to the CDM group of the first and second antenna ports shown in the antenna port indicator table, and the second (second set) ) SRI / TPMI / TPC corresponds to the third CDM group.
  • the first (first set) SRI / TPMI / TPC corresponds to the CDM group of the first antenna port shown in the antenna port indicator table
  • the second (second set) SRI / TPMI / TPC corresponds to the second and third CDM groups.
  • the UE does not assume to be represented by three CDM groups.
  • the UE does not assume a DM-RS port within a CDM group indicated by multiple (multiple sets) of SRI / TPMI / TPC.
  • a new codeword-layer mapping table may be defined to indicate two instructions for each entry, layer (for two panels) and TPMI.
  • FIG. 6 shows an example of the association (table) between the precoding information and the field value of the number of layers and the number of layers and the TPMI. This table is for 4 antenna ports when transform precoding is disabled and the maxRank is 2 or 3 or 4.
  • the number of layers when only panel # 1 is used is expressed as "L layers", and the number of layers k for panel # 1 when using panels # 1 and # 2 and the layer for panel # 2 are used.
  • the number L-k is expressed as "k + (L-k) layers”.
  • the two layers may be represented as "2 layers” or as "1 + 1 layers”.
  • the UE will see the actual number of frontloaded DM-RS symbols, additional DM-RS symbols. Do not assume different DM-RS settings for actual numbers, actual DM-RS symbol locations, and DM-RS configuration types.
  • ⁇ DCI expansion> When performing DCI expansion of single DCI-based simultaneous PUSCH transmission, the above-mentioned example of ⁇ DCI expansion> may be applied to SRI / TPMI / TPC having a plurality of instructions.
  • FIG. 7 is a diagram showing a first example showing the expansion of the table regarding the DMRS port.
  • the maximum length is the number of DMRS OFDM symbols that are DL frontloaded.
  • the "value" in FIGS. 7 to 10 indicates the value of the DCI field "Antenna Port (s)".
  • a column is added in which the "value" is 2 or 1, the number of DMRS CDM groups without data is 2, and the DMRS ports are 0, 2, and 3.
  • FIG. 8 is a diagram showing a second example showing the expansion of the table regarding the DMRS port.
  • a column is added in which the "value" is 3, the number of DMRS CDM groups without data is 2, the DMRS ports are 0, 2, and 3, and the number of front load symbols is 1.
  • FIG. 9 is a diagram showing a third example showing the expansion of the table regarding the DMRS port.
  • a column is added in which the "value" is 3, the number of DMRS CDM groups without data is 2, and the DMRS ports are 0, 2, and 3.
  • FIG. 10 is a diagram showing a fourth example showing the expansion of the table regarding the DMRS port.
  • a column is added in which the "value" is 6, the number of DMRS CDM groups without data is 2, the DMRS ports are 0, 2, and 3, and the number of front load symbols is 1.
  • ⁇ Third embodiment> In DCI format 0_0 or in some cases (cases 1 and 2 below), the space of the PUSCH in the new transmission method (eg, at least one of methods 1 to 3 above) when the spatial relationship is instructed to the PUSCH. How to determine the relationship has not been fully considered.
  • the spatial relationship of PUSCH may be different between single DCI-based PUSCH scheduling and multi-DCI-based PUSCH scheduling. Therefore, the present inventors have conceived a method for appropriately assuming (determining) the spatial relationship of PUSCH.
  • the UE receives downlink control information (DCI) that schedules a physical uplink shared channel (PUSCH) and has the lowest identifier (ID) of the physical uplink control channel resource (PUCCH resource) or most.
  • DCI downlink control information
  • PUSCH physical uplink shared channel
  • ID the physical uplink control channel resource
  • a spatial relationship of PUSCH is assumed (determined) based on a control resource set (CORESET) having a low identifier (ID). Then, the UE simultaneously transmits the PUSCH using the plurality of panels.
  • the PUCCH resource having the lowest ID may be read as the PUCCH resource having the lowest PUCCH resource ID.
  • the TCI state / spatial relationship having the lowest ID may be read as the TCI state / spatial relationship having the lowest TCI state ID / spatial relationship information ID.
  • the UE transmits the PUSCH according to the spatial relationship. If available, the spatial relationship corresponds to the dedicated PUCCH resource with the lowest ID in the cell's active UL BWP.
  • Case 1 is 3GPP Rel. It is applied to 15 and 16.
  • the PUCCH resource of the active UL BWP is set in the UE, and the spatial relationship is not set in all PUCCH resources.
  • the UE transmits the PUSCH according to the spatial relationship. If available, the spatial relationship refers to an RS with a QCL type D corresponding to the QCL assumption of the CORESET with the lowest ID on the cell's active DL BWP in the case where the CORESET is set in the cell. do.
  • case 2 the PUSCH spatial relationship follows the QCL of the CORESET with the lowest ID.
  • Case 2 is 3GPP Rel. It is applied to 16.
  • the UE may be scheduled for simultaneous transmission of UL beams / panels using method 1/2/3. Assumed and if the UL is scheduled by a single (single) DCI, in Case 1 above, the UE assumes a PUSCH spatial relationship based on PUCCH resources, as in Options 1-4 below. In Case 2, the UE may perform the same processing when'enabled'is not set in the upper layer parameter "enableDefaultBeamPlForPUSCH0_0".
  • the UE may follow the existing methods shown in Cases 1 and 2. That is, in this case, the UE does not have to predict that the UL beam / panel simultaneous transmission will be scheduled. Alternatively, the UE may predict that PUSCH transmissions by one UL beam / panel will be scheduled.
  • the UE predicts that one or more PUCCH resources will be configured with two TCI state / spatial relationships.
  • the PUSCH spatial relationship of the new transmission method is the two TCI state / spatial relationships of the PUCCH resource having the lowest ID (PUCCH resource ID) of one or more PUCCH resources, and the lowest ID of one or more PUCCH resources. It may be determined according to the TCI state / spatial relationship having the lowest ID (TCI state ID / spatial relationship information ID) from the two PUCCH resources having, or the TCI state / spatial relationship having the two lowest IDs. That is, the multi-panel UE in which UL multi-beam / panel simultaneous transmission is set may also be set to receive DL multi-beam / panel from a plurality of TRPs.
  • the PUSCH spatial relationship is one or more of the two TCI states / spatial relationships of the PUCCH resource with the lowest ID of the one or more PUCCH resources. It may be determined according to the TCI state / spatial relationship with the lowest ID from the two PUCCH resources with the lowest ID of the PUCCH resources, or the TCI state / spatial relationship with the two lowest IDs.
  • the PUSCH spatial relationship is two TCI state / spatial relationships from the two PUCCH resources with the lowest ID of one or more PUCCH resources. , Or according to the two TCI state / spatial relationships with the lowest IDs from the two PUCCH resources.
  • the PUSCH spatial relationship has two TCI states / spatial relationships, the lowest ID, of the PUCCH resource with the lowest ID. It may be determined according to the TCI state / spatial relationship with the lowest ID from the two PUCCH resources, or the TCI state / spatial relationship with the two lowest IDs. For example, if repetitive transmissions are applied between MTRPs, there may be PUCCH resources with more than 2 TCI state / spatial relationships.
  • the PUSCH spatial relationship may be determined according to the two PUCCH spatial relationships of the PUCCH resource with the lowest ID and the second lowest ID.
  • Option 4 may be applied to multiple PUCCH resources with different spatial relationship settings.
  • the PUSCH spatial relationship of option 4 may be the same as that of option 2/3.
  • the UE may follow the existing methods shown in Cases 1 and 2. That is, in this case, the UE does not have to predict that the UL beam / panel simultaneous transmission will be scheduled. Alternatively, the UE may predict that PUSCH transmissions by one UL beam / panel will be scheduled.
  • the UE predicts that one or more CORESETs will be set with two TCI states.
  • the PUSCH spatial relationship of the new transmission scheme has the lowest ID from the two TCI states of the CORESET with the lowest ID of one or more CORESETs and the two CORESETs with the lowest ID of one or more CORESETs. It may be determined according to the TCI state, or the TCI state with the two lowest IDs. That is, the multi-panel UE in which UL multi-beam / panel simultaneous transmission is set may also be set to receive DL multi-beam / panel from a plurality of TRPs.
  • the PUSCH spatial relationship has the lowest ID of one or more CORESETs in the two TCI states of CORESETs with the lowest ID of one or more CORESETs. It may be determined according to the TCI state with the lowest ID from the two CORESETs having, or the TCI state with the two lowest IDs.
  • the PUSCH spatial relationship is the two TCI states from the two CORESETs with the lowest ID of the one or more CORESETs, or the most from the two CORESETs. It may be determined according to two TCI states with low IDs.
  • the PUSCH spatial relationship is the lowest ID from the two TCI states of CORESET with the lowest ID, the two CORESETs with the lowest ID. It may be determined according to the TCI state having or the TCI state having the two lowest IDs. For example, if repetitive transmissions are applied between MTRPs, there may be CORESETs with more than 2 TCI states.
  • the PUSCH spatial relationship may be determined according to two TCI states, CORESET with the lowest ID and CORESET with the second lowest ID.
  • Option 4 may be applied to multiple CORESETs with different TCI state / spatial relationship settings.
  • the PUSCH spatial relationship of option 4 may be the same as that of option 2/3.
  • the UE may be scheduled for simultaneous transmission of UL beams / panels using method 1/2/3.
  • the UL is scheduled by multiple (eg, two) DCIs from different CORESET pool indexes (possible in method 2/3), in case 1 above, the UE will have the following options 1-4.
  • a PUSCH spatial relationship based on PUCCH resources is assumed.
  • the UE may follow the existing methods shown in Cases 1 and 2. That is, in this case, the UE does not have to assume that the UL beam / panel simultaneous transmission is scheduled. Alternatively, the UE may predict that PUSCH transmissions by one UL beam / panel will be scheduled.
  • the spatial relationship of each PUSCH scheduled by multiple DCIs of the new transmission scheme is the TCI state / spatial relationship of the PUCCH resource with the lowest ID of one or more PUCCH resources associated with the same CORESET pool index, or the same. It may be determined according to the TCI state / spatial relationship with the lowest ID of the PUCCH resource in the CORESET pool index.
  • the spatial relationship of each PUSCH scheduled by multiple DCIs in the new transmission scheme is of one or more PUCCH resources associated with the same CORESET pool index. It may be determined according to the TCI state / spatial relationship with the lowest ID of the PUCCH resource with the lowest ID of, or the TCI state / spatial relationship with the lowest ID of the PUCCH in the same CORESET pool index.
  • the PUCCH resource may be set with two beams (TCI state / spatial relationship) only in the case of repetitive transmission between TRPs using single DCI-based scheduling. However, when the single DCI and the multi-DCI are set at the same time, the PUCCH resource may be set together with the two beams even in the case of repeated transmission between TRPs using multi-DCI-based scheduling.
  • each PUSCH spatial relationship in the new transmission scheme is that of the PUCCH resource with the lowest ID of one or more PUCCH resources associated with each CORESET pool index. It may be determined according to the TCI state / spatial relationship with the lowest ID.
  • the UE may be scheduled for simultaneous transmission of UL beams / panels using method 1/2/3.
  • the UL (PUSCH) is scheduled by multiple (eg, two) DCIs from different CORESET pool indexes (possible in method 2/3), in case 2 above, the UE is the next option 1.
  • PUSCH spatial relationship based on CORESET as in ⁇ 4.
  • the UE may follow the existing methods shown in Cases 1 and 2. That is, in this case, the UE does not have to assume that the UL beam / panel simultaneous transmission is scheduled. Alternatively, the UE may predict that PUSCH transmissions by one UL beam / panel will be scheduled.
  • the spatial relationship of each PUSCH scheduled by multiple DCIs of the new transmission method is the TCI state of the CORESET with the lowest ID of one or more CORESETs associated with the same CORESET pool index, or within the same CORESET pool index. It may be determined according to the TCI state with the lowest ID of CORESET.
  • the spatial relationship of each PUSCH scheduled by multiple DCIs in the new transmission scheme is of one or more CORESETs associated with the same CORESET pool index. It may be determined according to the TCI state with the lowest ID of CORESET with the lowest ID or the TCI state with the lowest ID of CORESET in the same CORESET pool index.
  • CORESET may be set with two beams (TCI state) only in the case of repetitive transmission between TRPs using single DCI-based scheduling. However, when single DCI and multi DCI are set at the same time, CORESET may be set together with the two beams, even in the case of repeated transmission between TRPs using multi DCI-based scheduling.
  • each PUSCH spatial relationship of the new transmission scheme has the lowest ID of the CORESET with the lowest ID of one or more CORESETs associated with each CORESET pool index. It may be determined according to the TCI state.
  • the UE can appropriately assume (determine) the spatial relationship of the PUSCH in the new transmission method.
  • the UE determines the spatial relationship of the physical uplink control channel (PUCCH) based on the control resource set (CORESET) having the lowest identifier (ID), and is coherent based on the spatial relationship.
  • PUCCH is transmitted simultaneously using a plurality of panels (method 1).
  • the PUCCH repeated transmission to which SDM is applied may be read as the PUCCH repeated transmission to which TDM / FDM is applied.
  • the space setting for PUCCH transmission from the UE is the space for receiving PDCCH by the UE in CORESET having the lowest ID of the active DL BWP of the primary cell (PCell). It may be the same as the setting.
  • the UE is provided with pathlossReferenceRSs in PUCCH-PowerControl.
  • enableDefaultBeamPlForPUCCH is provided to the UE.
  • PUCCH-SpatialRelationInfo is provided to the UE.
  • the UE is provided with the value of the CORESET pool index of one of several CORESETs in the ControlResourceSet, or is provided with the value of the CORESET pool index of one of all CORESETs and two TCIs. There is no code point for the TCI field in the DCI format (if any) of the search space set that maps the state.
  • the PUCCH spatial relationship follows the QCL of the CORESET having the lowest ID.
  • a new RRC parameter is set to indicate the method 1 described above for the PUCCH, allowing the UE to transmit SDM-applied PUCCH iterations using multiple (two) beams / panels. If assumed and the CORESET pool index is not set, the UE may assume a PUCCH spatial relationship based on CORESET, as in options 1-5 below.
  • the UE when the CORESET pool index is not set and the UE repeatedly transmits the PUCCH to which the SDM is applied by using a plurality of panels, the UE is placed in two TCI states of the CORESET having the lowest ID among one or more CORESETs. Based on this, the spatial relationship of PUCCH may be determined.
  • the UE may follow the existing method shown in Case 3. That is, in this case, the UE does not have to predict that the UL Beam / Panel will schedule PUCCH simultaneous transmission. Alternatively, the UE may anticipate simultaneous PUSCH transmissions by one UL beam / panel.
  • the PUCCH spatial relationship may be determined according to the two TCI states of the two CORESETs with the lowest ID of one or more CORESETs, or the TCI states with the two lowest IDs of the two CORESETs.
  • the PUCCH spatial relationship may be determined according to the two TCI states of CORESET having the lowest ID of one or more CORESETs.
  • the PUCCH spatial relationship has two TCI states with the lowest ID of CORESET with the lowest ID of one or more CORESETs, or the lowest ID of CORESETs. It may be determined according to two TCI states.
  • the PUCCH spatial relationship may be determined according to the TCI state of the lowest CORESET ID and the TCI state of the second lowest CORESET ID.
  • a new RRC parameter is set to indicate the method 1 described above for PUCCH, and the UE predicts SDM-applied PUCCH repetitive transmission using multiple (two) beams / panels.
  • the UE may assume a PUCCH spatial relationship based on CORESET, as in options 1-4 below.
  • the UE when a CORESET pool index is set and a plurality of panels are used to repeatedly transmit a PUCCH to which an SDM is applied, the UE has a CORESET having the lowest ID among one or more CORESETs related to the same CORESET pool index.
  • the spatial relationship of the PUCCH may be determined based on the TCI state of.
  • the UE may follow the existing method shown in Case 3. That is, in this case, the UE does not have to predict that the UL Beam / Panel will schedule PUCCH simultaneous transmission. Alternatively, the UE may anticipate simultaneous PUSCH transmissions by one UL beam / panel.
  • Each PUCCH spatial relationship is determined according to the TCI state of the CORESET with the lowest ID of one or more CORESETs associated with the same CORESET pool index, or the TCI state of the CORESET with the lowest ID of the same CORESET pool index. You may.
  • each PUCCH spatial relationship is the TCI state with the lowest ID of the CORESET with the lowest ID of one or more CORESETs associated with the same CORESET pool index, or the same. It may be determined according to the TCI state with the lowest ID of CORESET with the CORESET pool index.
  • each PUCCH spatial relationship of the new transmission scheme has the lowest ID of CORESET with the lowest ID of one or more CORESETs associated with each CORESET pool index. It may be determined according to.
  • CORESET may be set with two beams (TCI state) only in the case of repetitive transmission between TRPs using single DCI-based scheduling. However, when single DCI and multi DCI are set at the same time, CORESET may be set together with the two beams, even in the case of repeated transmission between TRPs using multi DCI-based scheduling.
  • the UE can appropriately determine the PUCCH spatial relationship.
  • the UE may transmit (report) at least one of the UE capabilities (UE capability information) shown in the following (1) to (8).
  • the method 1/2/3 shows the above-mentioned transmission method. (1) Whether to support the method 1/2/3 for UL (PUSCH) transmission. (2) Whether to support method 1 for UL (PUCCH) transmission. (3) Whether the method 1/2/3 for PUSCH transmission supports the same or different time / frequency resource indications. (4) Whether to support single DCI-based or multi-DCI-based PUSCH scheduling in method 1/2/3. (5) Whether to support 1/2/3 DMRS CDM groups in PUSCH scheduling using method 1/2/3. (6) Whether to support a table showing the expanded DMRS port (for example, FIGS. 7 to 10).
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 11 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between a plurality of Radio Access Technologies (RATs).
  • MR-DC is a dual connectivity (E-UTRA-NR Dual Connectivity (EN-DC)) between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR, and a dual connectivity (NR-E) between NR and LTE.
  • E-UTRA-NR Dual Connectivity Evolved Universal Terrestrial Radio Access (E-UTRA)
  • NR-E dual connectivity
  • NE-DC -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the base station (gNB) of NR is MN
  • the base station (eNB) of LTE (E-UTRA) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macrocell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macrocell C1 and forms a small cell C2 that is narrower than the macrocell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of a plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macrocell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR 2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • a broadcast channel Physical Broadcast Channel (PBCH)
  • a downlink control channel Physical Downlink Control
  • PDSCH Physical Downlink Control
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, or the like, and the DCI that schedules PUSCH may be called UL grant, UL DCI, or the like.
  • the PDSCH may be read as DL data, and the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request).
  • Uplink Control Information including at least one of SR)
  • the PRACH may transmit a random access preamble to establish a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" to the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a reference signal for demodulation (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DMRS positioning reference signal
  • PRS Positioning Reference Signal
  • PTRS phase tracking reference signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 12 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional block of the characteristic portion in the present embodiment is mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. Processing (if necessary), inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-analog transformation may be performed, and the baseband signal may be output.
  • channel coding may include error correction coding
  • modulation modulation
  • mapping mapping, filtering
  • DFT discrete Fourier Transform
  • IFFT inverse Fast Fourier Transform
  • precoding coding
  • transmission processing such as digital-analog transformation
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) for the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10, etc., and user data (user plane data) for the user terminal 20 and a control plane. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 may transmit settings related to transmission of the physical uplink shared channel by higher layer signaling.
  • the transmission / reception unit 120 may receive the physical uplink shared channel transmitted simultaneously using a plurality of coherent or non-coherent panels based on the above settings.
  • the control unit 110 may set the spatial relationship of the physical uplink shared channel based on the resource of the physical uplink control channel having the lowest identifier or the control resource set having the lowest identifier.
  • the transmission / reception unit 120 may receive the physical uplink shared channel transmitted simultaneously using a plurality of coherent or non-coherent panels based on the above settings.
  • the control unit 110 may determine the spatial relationship of the physical uplink control channel based on the control resource set having the lowest identifier.
  • the transmission / reception unit 120 may receive the physical uplink control channel transmitted at the same time using a plurality of coherent panels based on the spatial relationship.
  • FIG. 13 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • the functional block of the feature portion in the present embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 processes, for example, PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output a baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitting unit and the receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the transmission / reception unit 220 may receive the setting related to the transmission of the physical uplink shared channel by the upper layer signaling.
  • the transmission / reception unit 220 may simultaneously transmit the physical uplink shared channel using a plurality of coherent or non-coherent panels based on the above settings.
  • the transmission / reception unit 220 may transmit repeated transmissions of the physical uplink shared channel to which spatial division multiplexing is applied in the same time resource and the same frequency resource.
  • the transmission / reception unit 220 may transmit repeated transmissions of the physical uplink shared channel to which frequency division multiplexing is applied in the same time resource and different frequency resources.
  • the transmission / reception unit 220 includes downlink control including at least one of a reference signal resource indicator for measurement, a transmission precoding matrix index, and a transmission power control command corresponding to a code division multiple access group. Information may be received. The transmission / reception unit 220 may transmit the physical uplink shared channel based on the downlink control information.
  • the control unit 210 may determine the spatial relationship of the physical uplink shared channel based on the resource of the physical uplink control channel having the lowest identifier or the control resource set having the lowest identifier.
  • the transmission / reception unit 220 may simultaneously transmit the physical uplink shared channel using a plurality of panels.
  • the transmission / reception unit 220 may receive a single downlink control information that schedules the physical uplink shared channel.
  • the spatial relationship of the physical uplink shared channel is among the one or more physical uplink control channel resources.
  • the two TCI states of the resource of the physical uplink control channel with the lowest identifier may be followed.
  • the transmission / reception unit 220 may receive a single downlink control information that schedules the physical uplink shared channel.
  • the spatial relationship of the physical uplink shared channel is the control with the lowest identifier of the one or more control resource sets.
  • the two TCI states of the resource set may be followed.
  • the transmission / reception unit 220 may receive a plurality of downlink control information for scheduling the physical uplink shared channel.
  • the spatial relationship of each physical uplink shared channel scheduled in the plurality of downlink control information has the lowest identifier of one or more physical uplink control channel resources associated with the same control resource set pool index.
  • the control unit 210 may determine the spatial relationship of the physical uplink control channel based on the control resource set having the lowest identifier.
  • the transmission / reception unit 220 may simultaneously transmit the physical uplink control channel using a plurality of coherent panels based on the spatial relationship.
  • control resource set pool index When the control resource set pool index is not set and the control unit 210 repeatedly transmits the physical uplink control channel to which the spatial division multiplexing is applied by using the plurality of panels, the control resource set having the lowest identifier.
  • the spatial relationship may be determined based on the two transmit configuration instruction (TCI) states of.
  • control unit 210 When the control resource set pool index is set and the control unit 210 repeatedly transmits the physical uplink control channel to which the spatial division multiplexing is applied by using the plurality of panels, the control unit 210 is related to the same control resource set pool index.
  • the spatial relationship may be determined based on the transmission configuration instruction (TCI) state of the control resource set having the lowest identifier among the above control resource sets.
  • TCI transmission configuration instruction
  • each functional block is realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the realization method is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 14 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function in the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy disk (registered trademark) disk, an optical magnetic disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, etc.). At least one of Blu-ray® discs), removable discs, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers and other suitable storage media. May be configured by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 has, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated by the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
  • channels, symbols and signals may be read interchangeably.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
  • the component carrier CC may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the wireless frame may be configured by one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time area (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots.
  • Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • the PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • the time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read as each other.
  • one subframe may be referred to as TTI
  • a plurality of consecutive subframes may be referred to as TTI
  • one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-coded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, or the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB. It may be called a pair or the like.
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
  • the radio resource may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals or combinations thereof. May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) on the website.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the terms “system” and “network” used in this disclosure may be used interchangeably.
  • the “network” may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • Reception point Reception Point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (eg, 3) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))).
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "uplink” and "downlink” may be read as words corresponding to communication between terminals (for example, "sidelink”).
  • the uplink channel, the downlink channel, and the like may be read as the side link channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are a base station, one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, an integer or a fraction)
  • Future Radio Access FAA
  • RAT New -Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • LTE 802.11 Wi-Fi®
  • LTE 802.16 WiMAX®
  • LTE 802.20 Ultra-WideBand (UWB), Bluetooth®, and other suitable radios.
  • UMB Ultra Mobile Broadband
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “determining” such as accessing) (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “bonded” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency region when two elements are connected, one or more wires, cables, printed electrical connections, etc. are used, and as some non-limiting and non-comprehensive examples, the radio frequency region, microwaves. It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the region, light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、最も低い識別子を有する制御リソースセットに基づいて、物理上りリンク制御チャネルの空間関係を決定する制御部と、前記空間関係に基づいて、コヒーレントな複数のパネルを用いて、前記物理上りリンク制御チャネルを同時に送信する送信部と、を有することを特徴とする。本開示の一態様によれば、複数パネルを用いる同時UL送信を適切に行うことができる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 既存のLTEシステム(例えば、3GPP Rel.8-14)では、ユーザ端末(User Equipment(UE))は、ULデータチャネル(例えば、Physical Uplink Shared Channel(PUSCH))及びUL制御チャネル(例えば、Physical Uplink Control Channel(PUCCH))の少なくとも一方を用いて、上りリンク制御情報(Uplink Control Information(UCI))を送信する。
 NRにおいて、UEは、複数パネル(複数ビーム)の1つを上りリンク(UL)送信に用いることができる。しかしながら、複数パネルを用いる同時UL送信については、十分に検討されていない。複数パネルを用いる同時UL送信が適切に行われなければ、スループットの低下など、システム性能が低下するおそれがある。
 そこで、本開示は、複数パネルを用いる同時UL送信を適切に行う端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、最も低い識別子を有する制御リソースセットに基づいて、物理上りリンク制御チャネルの空間関係を決定する制御部と、前記空間関係に基づいて、コヒーレントな複数のパネルを用いて、前記物理上りリンク制御チャネルを同時に送信する送信部と、を有することを特徴とする。
 本開示の一態様によれば、複数パネルを用いる同時UL送信を適切に行うことができる。
図1は、プリコーダタイプとTPMIインデックスとの関連付けの一例を示す図である。 図2A-2Cは、複数パネルを用いるPUSCH送信の一例を示す図である。 図3A-3Cは、複数パネルを用いる同時UL送信の方式1~3の一例を示す図である。 図4は、SDMを適用したPUSCH繰り返し送信の例を示す図である。 図5Aは、FDMを適用したPUSCH繰り返し送信の第1の例を示す図である。図5Bは、FDMを適用したPUSCH繰り返し送信の第2の例を示す図である。 図6は、プリコーディング情報及びレイヤ数のフィールド値と、レイヤ数及びTPMIの関連付け(テーブル)の一例を示す。 図7は、DMRSポートに関するテーブルの拡張を示す第1の例を示す図である。 図8は、DMRSポートに関するテーブルの拡張を示す第2の例を示す図である。 図9は、DMRSポートに関するテーブルの拡張を示す第3の例を示す図である。 図10は、DMRSポートに関するテーブルの拡張を示す第4の例を示す図である。 図11は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図12は、一実施形態に係る基地局の構成の一例を示す図である。 図13は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図14は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(繰り返し送信)
 Rel.15では、データ送信において繰り返し送信がサポートされている。例えば、基地局(ネットワーク(NW)、gNB)は、DLデータ(例えば、下り共有チャネル(PDSCH))の送信を所定回数だけ繰り返して行ってもよい。あるいは、UEは、ULデータ(例えば、上り共有チャネル(PUSCH))を所定回数だけ繰り返して行ってもよい。
 UEは、単一のDCIにより所定数の繰り返しのPUSCH送信をスケジューリングされてもよい。当該繰り返しの回数は、繰り返し係数(repetition factor)K又はアグリゲーション係数(aggregation factor)Kとも呼ばれる。
 また、n回目の繰り返しは、n回目の送信機会(transmission occasion)等とも呼ばれ、繰り返しインデックスk(0≦k≦K-1)によって識別されてもよい。繰り返し送信は、DCIで動的にスケジュールされるPUSCH(例えば、動的グラントベースのPUSCH)に適用されてもよいし、設定グラントベースのPUSCHに適用されてもよい。
 UEは、繰り返し係数Kを示す情報(例えば、aggregationFactorUL又はaggregationFactorDL)を上位レイヤシグナリングにより準静的に受信する。ここで、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)などであってもよい。
 UEは、DCI内の以下の少なくとも一つのフィールド値(又は当該フィールド値が示す情報)に基づいて、K個の連続するスロットにおけるPDSCHの受信処理(例えば、受信、デマッピング、復調、復号の少なくとも一つ)、又はPUSCHの送信処理(例えば、送信、マッピング、変調、符号の少なくとも一つ)を制御する:
・時間領域リソース(例えば、開始シンボル、各スロット内のシンボル数等)の割り当て、
・周波数領域リソース(例えば、所定数のリソースブロック(RB:Resource Block)、所定数のリソースブロックグループ(RBG:Resource Block Group))の割り当て、
・変調及び符号化方式(MCS:Modulation and Coding Scheme)インデックス、
・PUSCHの復調用参照信号(DMRS:Demodulation Reference Signal)の構成(configuration)、
・PUSCHの空間関係情報(spatial relation info)、又は送信構成指示(TCI:Transmission Configuration Indication又はTransmission Configuration Indicator)の状態(TCI状態(TCI-state))。
 連続するK個のスロット間では、同一のシンボル割り当てが適用されてもよい。UEは、DCI内の所定フィールド(例えば、時間ドメインリソース割り当て(TDRA)フィールド)の値mに基づいて決定される開始シンボルS及びシンボル数L(例えば、Start and Length Indicator(SLIV))に基づいて各スロットにおけるシンボル割り当てを決定してもよい。なお、UEは、DCIの所定フィールド(例えば、TDRAフィールド)の値mに基づいて決定されるK2情報に基づいて、最初のスロットを決定してもよい。
 一方、当該連続するK個のスロット間では、同一データに基づくTBに適用される冗長バージョン(Redundancy Version(RV))は、同一であってもよいし、少なくとも一部が異なってもよい。例えば、n番目のスロット(送信機会、繰り返し)で当該TBに適用されるRVは、DCI内の所定フィールド(例えば、RVフィールド)の値に基づいて決定されてもよい。
 Rel.15では、複数のスロットにわたって(スロット単位)でPUSCHが繰り返し送信され得る。Rel.16以降では、スロットより短い単位(例えば、サブスロット単位、ミニスロット単位又は所定シンボル数単位)でPUSCHの繰り返し送信を行うことがサポートされる。
 UEは、PUSCHのDCI内の所定フィールド(例えば、TDRAフィールド)の値mに基づいて決定される開始シンボルS及びシンボル数Lに基づいて所定スロットにおけるPUSCH送信(例えば、k=0のPUSCH)のシンボル割り当てを決定してもよい。なお、UEは、DCIの所定フィールド(例えば、TDRAフィールド)の値mに基づいて決定されるKs情報に基づいて、所定スロットを決定してもよい。
 UEは、繰り返し係数Kを示す情報(例えば、numberofrepetitions)を下り制御情報によりダイナミックに受信してもよい。DCI内の所定フィールド(例えば、TDRAフィールド)の値mに基づいて繰り返し係数が決定されてもよい。例えば、DCIで通知されるビット値と、繰り返し係数K、開始シンボルS及びシンボル数Lと、の対応関係が定義されたテーブルがサポートされてもよい。
 スロットベースの繰り返し送信は、繰り返し送信タイプA(例えば、PUSCH repetition Type A)と呼ばれ、サブスロットベースの繰り返し送信は、繰り返し送信タイプB(例えば、PUSCH repetition Type B)と呼ばれてもよい。
 UEは、繰り返し送信タイプAと繰り返し送信タイプBの少なくとも一方の適用が設定されてもよい。例えば、上位レイヤシグナリング(例えば、PUSCHRepTypeIndicator)によりUEが適用する繰り返し送信タイプが基地局からUEに通知されてもよい。
 PUSCHをスケジュールするDCIフォーマット毎に、繰り返し送信タイプAと繰り返し送信タイプBのいずれか一方がUEに設定されてもよい。
 例えば、第1のDCIフォーマット(例えば、DCIフォーマット0_1)について、上位レイヤシグナリング(例えば、PUSCHRepTypeIndicator-AorDCIFormat0_1)が繰り返し送信タイプB(例えば、PUSCH-RepTypeB)に設定される場合、UEは第1のDCIフォーマットでスケジュールされたPUSCH繰り返し送信について繰り返し送信タイプBを適用する。それ以外の場合(例えば、PUSCH-RepTypeBが設定されない場合、又はPUSCH-RepTypAが設定される場合)、UEは、UEは第1のDCIフォーマットでスケジュールされたPUSCH繰り返し送信について繰り返し送信タイプAを適用する。
(PUSCHプリコーダ)
 NRでは、UEがコードブック(Codebook(CB))ベース送信及びノンコードブック(Non-Codebook(NCB))ベース送信の少なくとも一方をサポートすることが検討されている。
 例えば、UEは少なくとも測定用参照信号(Sounding Reference Signal(SRS))リソースインジケータ(SRS Resource Indicator(SRI))を用いて、CBベース及びNCBベースの少なくとも一方の上り共有チャネル(Physical Uplink Shared Channel(PUSCH))送信のためのプリコーダ(プリコーディング行列)を判断することが検討されている。
 UEは、CBベース送信の場合、SRI、送信ランク指標(Transmitted Rank Indicator(TRI))及び送信プリコーディング行列指標(Transmitted Precoding Matrix Indicator(TPMI))などに基づいて、PUSCH送信のためのプリコーダを決定してもよい。UEは、NCBベース送信の場合、SRIに基づいてPUSCH送信のためのプリコーダを決定してもよい。
 SRI、TRI、TPMIなどは、下り制御情報(Downlink Control Information(DCI))を用いてUEに通知されてもよい。SRIは、DCIのSRS Resource Indicatorフィールド(SRIフィールド)によって指定されてもよいし、コンフィギュアドグラントPUSCH(configured grant PUSCH)のRRC情報要素「ConfiguredGrantConfig」に含まれるパラメータ「srs-ResourceIndicator」によって指定されてもよい。TRI及びTPMIは、DCIのプリコーディング情報及びレイヤ数フィールド(”Precoding information and number of layers” field)によって指定されてもよい。
 UEは、プリコーダタイプに関するUE能力情報(UE capability information)を報告し、基地局から上位レイヤシグナリングによって当該UE能力情報に基づくプリコーダタイプを設定されてもよい。当該UE能力情報は、UEがPUSCH送信において用いるプリコーダタイプの情報(RRCパラメータ「pusch-TransCoherence」で表されてもよい)であってもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))などであってもよい。
 UEは、上位レイヤシグナリングで通知されるPUSCH設定情報(RRCシグナリングの「PUSCH-Config」情報要素)に含まれるプリコーダタイプの情報(RRCパラメータ「codebookSubset」で表されてもよい)に基づいて、PUSCH送信に用いるプリコーダを決定してもよい。UEは、codebookSubsetによって、TPMIによって指定されるPMIのサブセットを設定されてもよい。
 なお、プリコーダタイプは、完全コヒーレント(full coherent、fully coherent、coherent)、部分コヒーレント(partial coherent)及びノンコヒーレント(non coherent、非コヒーレント)のいずれか又はこれらの少なくとも2つの組み合わせ(例えば、「完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)」、「部分及びノンコヒーレント(partialAndNonCoherent)」などのパラメータで表されてもよい)によって指定されてもよい。
 完全コヒーレントは、送信に用いる全アンテナポートの同期がとれている(位相を合わせることができる、コヒーレントなアンテナポート毎に位相制御できる、コヒーレントなアンテナポート毎にプリコーダを適切にかけることができる、などと表現されてもよい)ことを意味してもよい。部分コヒーレントは、送信に用いるアンテナポートの一部のポート間は同期がとれているが、当該一部のポートと他のポートとは同期がとれないことを意味してもよい。ノンコヒーレントは、送信に用いる各アンテナポートの同期がとれないことを意味してもよい。
 なお、完全コヒーレントのプリコーダタイプをサポートするUEは、部分コヒーレント及びノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。部分コヒーレントのプリコーダタイプをサポートするUEは、ノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。
 プリコーダタイプは、コヒーレンシー、PUSCH送信コヒーレンス、コヒーレントタイプ、コヒーレンスタイプ、コードブックタイプ、コードブックサブセット、コードブックサブセットタイプなどで読み替えられてもよい。
 UEは、CBベース送信のための複数のプリコーダ(プリコーディング行列、コードブックなどと呼ばれてもよい)から、UL送信をスケジュールするDCI(例えば、DCIフォーマット0_1。以下同様)から得られるTPMIインデックスに対応するプリコーディング行列を決定してもよい。
 図1は、プリコーダタイプとTPMIインデックスとの関連付けの一例を示す図である。図1は、DFT-s-OFDM(Discrete Fourier Transform spread OFDM、変換プリコーディング(transform precoding)が有効である)で4アンテナポートを用いたシングルレイヤ(ランク1)送信用のプリコーディング行列Wのテーブルに該当する。
 図1において、プリコーダタイプ(codebookSubset)が、完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から27までのいずれかのTPMIを通知される。また、プリコーダタイプが、部分及びノンコヒーレント(partialAndNonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から11までのいずれかのTPMIを設定される。プリコーダタイプが、ノンコヒーレント(nonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から3までのいずれかのTPMIを設定される。
 なお、図1に示すように、各列の成分がそれぞれ1つだけ0でないプリコーディング行列は、ノンコヒーレントコードブックと呼ばれてもよい。各列の成分がそれぞれ所定の数(全てではない)だけ0でないプリコーディング行列は、部分コヒーレントコードブックと呼ばれてもよい。各列の成分が全て0でないプリコーディング行列は、完全コヒーレントコードブックと呼ばれてもよい。
 ノンコヒーレントコードブック及び部分コヒーレントコードブックは、アンテナ選択プリコーダ(antenna selection precoder)と呼ばれてもよい。完全コヒーレントコードブックは、非アンテナ選択プリコーダ(non-antenna selection precoder)と呼ばれてもよい。
 なお、本開示において、部分コヒーレントコードブックは、部分コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「partialAndNonCoherent」)を設定されたUEが、コードブックベース送信のためにDCIによって指定されるTPMIに対応するコードブック(プリコーディング行列)のうち、ノンコヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「nonCoherent」)を設定されたUEが指定されるTPMIに対応するコードブックを除いたもの(つまり、4アンテナポートのシングルレイヤ送信であれば、TPMI=4から11のコードブック)に該当してもよい。
 なお、本開示において、完全コヒーレントコードブックは、完全コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「fullyAndPartialAndNonCoherent」)を設定されたUEが、コードブックベース送信のためにDCIによって指定されるTPMIに対応するコードブック(プリコーディング行列)のうち、部分コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「partialAndNonCoherent」)を設定されたUEが指定されるTPMIに対応するコードブックを除いたもの(つまり、4アンテナポートのシングルレイヤ送信であれば、TPMI=12から27のコードブック)に該当してもよい。
(SRS、PUSCHのための空間関係)
 UEは、測定用参照信号(例えば、サウンディング参照信号(Sounding Reference Signal(SRS)))の送信に用いられる情報(SRS設定情報、例えば、RRC制御要素の「SRS-Config」内のパラメータ)を受信してもよい。
 具体的には、UEは、一つ又は複数のSRSリソースセットに関する情報(SRSリソースセット情報、例えば、RRC制御要素の「SRS-ResourceSet」)と、一つ又は複数のSRSリソースに関する情報(SRSリソース情報、例えば、RRC制御要素の「SRS-Resource」)との少なくとも一つを受信してもよい。
 1つのSRSリソースセットは、所定数のSRSリソースに関連してもよい(所定数のSRSリソースをグループ化してもよい)。各SRSリソースは、SRSリソース識別子(SRS Resource Indicator(SRI))又はSRSリソースID(Identifier)によって特定されてもよい。
 SRSリソースセット情報は、SRSリソースセットID(SRS-ResourceSetId)、当該リソースセットにおいて用いられるSRSリソースID(SRS-ResourceId)のリスト、SRSリソースタイプ、SRSの用途(usage)の情報を含んでもよい。
 ここで、SRSリソースタイプは、周期的SRS(Periodic SRS(P-SRS))、セミパーシステントSRS(Semi-Persistent SRS(SP-SRS))、非周期的SRS(Aperiodic SRS(A-SRS、AP-SRS))のいずれかを示してもよい。なお、UEは、P-SRS及びSP-SRSを周期的(又はアクティベート後、周期的)に送信し、A-SRSをDCIのSRSリクエストに基づいて送信してもよい。
 また、用途(RRCパラメータの「usage」、L1(Layer-1)パラメータの「SRS-SetUse」)は、例えば、ビーム管理(beamManagement)、コードブックベース送信(codebook:CB)、ノンコードブックベース送信(nonCodebook:NCB)、アンテナスイッチング(antennaSwitching)などであってもよい。コードブックベース送信又はノンコードブックベース送信の用途のSRSは、SRIに基づくコードブックベース又はノンコードブックベースのPUSCH送信のプリコーダの決定に用いられてもよい。
 例えば、UEは、コードブックベース送信の場合、SRI、送信ランクインジケータ(Transmitted Rank Indicator:TRI)及び送信プリコーディング行列インジケータ(Transmitted Precoding Matrix Indicator:TPMI)に基づいて、PUSCH送信のためのプリコーダを決定してもよい。UEは、ノンコードブックベース送信の場合、SRIに基づいてPUSCH送信のためのプリコーダを決定してもよい。
 SRSリソース情報は、SRSリソースID(SRS-ResourceId)、SRSポート数、SRSポート番号、送信Comb、SRSリソースマッピング(例えば、時間及び/又は周波数リソース位置、リソースオフセット、リソースの周期、繰り返し数、SRSシンボル数、SRS帯域幅など)、ホッピング関連情報、SRSリソースタイプ、系列ID、SRSの空間関係情報などを含んでもよい。
 SRSの空間関係情報(例えば、RRC情報要素の「spatialRelationInfo」)は、所定の参照信号とSRSとの間の空間関係情報を示してもよい。当該所定の参照信号は、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel:SS/PBCH)ブロック、チャネル状態情報参照信号(Channel State Information Reference Signal:CSI-RS)及びSRS(例えば別のSRS)の少なくとも1つであってもよい。SS/PBCHブロックは、同期信号ブロック(SSB)と呼ばれてもよい。
 SRSの空間関係情報は、上記所定の参照信号のインデックスとして、SSBインデックス、CSI-RSリソースID、SRSリソースIDの少なくとも1つを含んでもよい。
 なお、本開示において、SSBインデックス、SSBリソースID及びSSBRI(SSB Resource Indicator)は互いに読み替えられてもよい。また、CSI-RSインデックス、CSI-RSリソースID及びCRI(CSI-RS Resource Indicator)は互いに読み替えられてもよい。また、SRSインデックス、SRSリソースID及びSRIは互いに読み替えられてもよい。
 SRSの空間関係情報は、上記所定の参照信号に対応するサービングセルインデックス、BWPインデックス(BWP ID)などを含んでもよい。
 NRでは、上り信号の送信は、ビームコレスポンデンス(Beam Correspondence(BC))の有無に基づいて制御されてもよい。BCとは、例えば、あるノード(例えば、基地局又はUE)が、信号の受信に用いるビーム(受信ビーム、Rxビーム)に基づいて、信号の送信に用いるビーム(送信ビーム、Txビーム)を決定する能力であってもよい。
 なお、BCは、送信/受信ビームコレスポンデンス(Tx/Rx beam correspondence)、ビームレシプロシティ(beam reciprocity)、ビームキャリブレーション(beam calibration)、較正済/未較正(Calibrated/Non-calibrated)、レシプロシティ較正済/未較正(reciprocity calibrated/non-calibrated)、対応度、一致度などと呼ばれてもよい。
 例えば、BC無しの場合、UEは、一以上のSRS(又はSRSリソース)の測定結果に基づいて基地局から指示されるSRS(又はSRSリソース)と同一のビーム(空間ドメイン送信フィルタ)を用いて、上り信号(例えば、PUSCH、PUCCH、SRS等)を送信してもよい。
 一方、BC有りの場合、UEは、所定のSSB又はCSI-RS(又はCSI-RSリソース)の受信に用いるビーム(空間ドメイン受信フィルタ)と同一の又は対応するビーム(空間ドメイン送信フィルタ)を用いて、上り信号(例えば、PUSCH、PUCCH、SRS等)を送信してもよい。
 UEは、あるSRSリソースについて、SSB又はCSI-RSと、SRSとに関する空間関係情報を設定される場合(例えば、BC有りの場合)には、当該SSB又はCSI-RSの受信のための空間ドメインフィルタ(空間ドメイン受信フィルタ)と同じ空間ドメインフィルタ(空間ドメイン送信フィルタ)を用いて当該SRSリソースを送信してもよい。この場合、UEはSSB又はCSI-RSのUE受信ビームとSRSのUE送信ビームとが同じであると想定してもよい。
 UEは、あるSRS(ターゲットSRS)リソースについて、別のSRS(参照SRS)と当該SRS(ターゲットSRS)とに関する空間関係情報を設定される場合(例えば、BC無しの場合)には、当該参照SRSの送信のための空間ドメインフィルタ(空間ドメイン送信フィルタ)と同じ空間ドメインフィルタ(空間ドメイン送信フィルタ)を用いてターゲットSRSリソースを送信してもよい。つまり、この場合、UEは参照SRSのUE送信ビームとターゲットSRSのUE送信ビームとが同じであると想定してもよい。
 UEは、DCI(例えば、DCIフォーマット0_1)内の所定フィールド(例えば、SRSリソース識別子(SRI)フィールド)の値に基づいて、当該DCIによりスケジュールされるPUSCHの空間関係を決定してもよい。具体的には、UEは、当該所定フィールドの値(例えば、SRI)に基づいて決定されるSRSリソースの空間関係情報(例えば、RRC情報要素の「spatialRelationInfo」)をPUSCH送信に用いてもよい。
 PUSCHに対し、コードブックベース送信を用いる場合、UEは、2個のSRSリソースをRRCによって設定され、2個のSRSリソースの1つをDCI(1ビットの所定フィールド)によって指示されてもよい。PUSCHに対し、ノンコードブックベース送信を用いる場合、UEは、4個のSRSリソースをRRCによって設定され、4個のSRSリソースの1つをDCI(2ビットの所定フィールド)によって指示されてもよい。RRCによって設定された2個又は4個の空間関係以外の空間関係を用いるためには、RRC再設定が必要となる。
 なお、PUSCHに用いられるSRSリソースの空間関係に対し、DL-RSを設定することができる。例えば、SP-SRSに対し、UEは、複数(例えば、16個まで)のSRSリソースの空間関係をRRCによって設定され、複数のSRSリソースの1つをMAC CEによって指示されることができる。
(UL TCI状態)
 Rel.16 NRでは、ULのビーム指示方法として、UL TCI状態を用いることが検討されている。UL TCI状態の通知は、UEのDLビーム(DL TCI状態)の通知に類似する。なお、DL TCI状態は、PDCCH/PDSCHのためのTCI状態と互いに読み換えられてもよい。
 UL TCI状態が設定(指定)されるチャネル/信号(ターゲットチャネル/RSと呼ばれてもよい)は、例えば、PUSCH(PUSCHのDMRS)、PUCCH(PUCCHのDMRS)、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))、SRSなどの少なくとも1つであってもよい。
 また、当該チャネル/信号とQCL関係となるRS(ソースRS)は、例えば、DL RS(例えば、SSB、CSI-RS、TRSなど)であってもよいし、UL RS(例えば、SRS、ビームマネジメント用のSRSなど)であってもよい。
 UL TCI状態において、当該チャネル/信号とQCL関係となるRSは、当該RSを受信又は送信するためのパネルIDに関連付けられてもよい。当該関連付けは、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CEなど)によって明示的に設定(又は指定)されてもよいし、暗示的に判断されてもよい。
 RSとパネルIDとの対応関係は、UL TCI状態情報に含まれて設定されてもよいし、当該RSのリソース設定情報、空間関係情報などの少なくとも1つに含まれて設定されてもよい。
 UL TCI状態によって示されるQCLタイプは、既存のQCLタイプA-Dであってもよいし、他のQCLタイプであってもよいし、所定の空間関係、関連するアンテナポート(ポートインデックス)などを含んでもよい。
 UEは、UL送信について、関連するパネルIDを指定される(例えば、DCIによって指定される)と、当該パネルIDに対応するパネルを用いて当該UL送信を行ってもよい。パネルIDは、UL TCI状態に関連付けられてもよく、UEは、所定のULチャネル/信号についてUL TCI状態を指定(又はアクティベート)された場合、当該UL TCI状態に関連するパネルIDに従って当該ULチャネル/信号送信に用いるパネルを特定してもよい。
(複数パネル送信)
<送信方式>
 Rel.15及びRel.16のUEにおいては、1つのみのビーム及びパネルが、1つの時点においてUL送信に用いられる(図2A)。Rel.17以降においては、ULのスループット及び信頼性(reliability)の改善のために、1以上のTRPに対して、複数ビーム及び複数パネルの同時UL送信が検討されている。以下、PUSCHの同時送信について記載するが、PUCCHについても同様の処理を行ってもよい。
 複数ビーム及び複数パネルを用いる同時UL送信に対し、複数パネルを有する1つのTRPによる受信(図2B)、又は理想バックホール(ideal backhaul)を有する2つのTRPによる受信(図2C)、が検討されている。複数PUSCH(例えば、PUSCH#1及びPUSCH#2の同時送信)のスケジューリングのための単一のPDCCHが検討されている。パネル固有送信がサポートされ、パネルIDが導入されること、が検討されている。
 基地局は、UL TCI又はパネルIDを用いて、UL送信のためのパネル固有送信を設定又は指示してもよい。UL TCI(UL TCI状態)は、Rel.15においてサポートされるDLビーム指示と類似するシグナリングに基づいてもよい。パネルIDは、ターゲットRSリソース又はターゲットRSリソースセットと、PUCCHと、SRSと、PRACHと、の少なくとも1つの送信に、暗示的に又は明示的に適用されてもよい。パネルIDが明示的に通知される場合、パネルIDは、ターゲットRSと、ターゲットチャネルと、リファレンスRSと、の少なくとも1つ(例えば、DL RSリソース設定又は空間関係情報)において設定されてもよい。
 マルチパネルUL送信方式又はマルチパネルUL送信方式候補は、次の方式1~3(マルチパネルUL送信方式1~3)の少なくとも1つであってもよい。方式1~3の1つのみがサポートされてもよい。方式1~3の少なくとも1つを含む複数の方式がサポートされ、複数の方式の1つがUEに設定されてもよい。
《方式1》
コヒーレントマルチパネルUL送信
 複数パネルが互いに同期していてもよい。全てのレイヤは、全てのパネルにマップされる。複数アナログビームが指示される。SRSリソースインジケータ(SRI)フィールドが拡張されてもよい。この方式は、ULに対して最大4レイヤを用いてもよい。
 図3Aの例において、UEは、1コードワード(CW)又は1トランスポートブロック(TB)をL個のレイヤ(PUSCH(1,2,…,L))へマップし、2つのパネルのそれぞれからL個のレイヤを送信する。パネル#1及びパネル#2はコヒーレントである。方式1は、ダイバーシチによるゲインを得ることができる。2つのパネルにおけるレイヤの総数は2Lである。レイヤの総数の最大値が4である場合、1つのパネルにおけるレイヤ数の最大値は2である。
《方式2》
1つのコードワード(CW)又はトランスポートブロック(TB)のノンコヒーレントマルチパネルUL送信
 複数パネルが同期していなくてもよい。異なるレイヤは、異なるパネルと、複数パネルからのPUSCHに対する1つのCW又はTBにマップされる。1つのCW又はTBに対応するレイヤが、複数パネルにマップされてもよい。この方式は、ULに対して最大4レイヤ又は最大8レイヤを用いてもよい。最大8レイヤをサポートする場合、この方式は、最大8レイヤを用いる1つのCW又はTBをサポートしてもよい。
 図3Bの例において、UEは、1CW又は1TBを、k個のレイヤ(PUSCH(1,2,…,k))とL-k個のレイヤ(PUSCH(k+1,k+2,…,L))とへマップし、k個のレイヤをパネル#1から送信し、L-k個のレイヤをパネル#2から送信する。方式2は、多重及びダイバーシチによるゲインを得ることができる。2つのパネルにおけるレイヤの総数はLである。
《方式3》
2つのCW又はTBのノンコヒーレントマルチパネルUL送信
 複数パネルが同期していなくてもよい。異なるレイヤは、異なるパネルと、複数パネルからのPUSCHに対する2つのCW又はTBにマップされる。1つのCW又はTBに対応するレイヤが、1つのパネルにマップされてもよい。複数のCW又はTBに対応するレイヤが、異なるパネルにマップされてもよい。この方式は、ULに対して最大4レイヤ又は最大8レイヤを用いてもよい。最大8レイヤをサポートする場合、この方式は、CW又はTB当たり最大4レイヤをサポートしてもよい。
 図3Cの例において、UEは、2CW又は2TBのうち、CW#1又はTB#1をk個のレイヤ(PUSCH(1,2,…,k))へマップし、CW#2又はTB#2をL-k個のレイヤ(PUSCH(k+1,k+2,…,L))へマップし、k個のレイヤをパネル#1から送信し、L-k個のレイヤをパネル#2から送信する。方式3は、多重及びダイバーシチによるゲインを得ることができる。2つのパネルにおけるレイヤの総数はLである。
<DCI拡張>
 上述した方式1~3を適用する場合に、既存のDCIの拡張が行われてもよい。例えば、次のオプション1~6の少なくとも1つが適用されてもよい。
[オプション1]
 方式1のために単一のPDCCH(DCI)によって複数PUSCHが指示(スケジュール)されてもよい。複数PUSCHを指示するためにSRIフィールドが拡張されてもよい。複数パネルからの複数PUSCHを指示するために、DCI内の複数SRIフィールドが用いられてもよい。例えば、2つのPUSCHをスケジュールするDCIは、2つのSRIフィールドを含んでもよい。
 方式2のためのSRIフィールドの拡張は、方式1のためのSRIフィールドの拡張と次の点で異なっていてもよい。
 L個のレイヤのうち、レイヤ1,2,…,kに対し、UEは、DCI内のSRIフィールドによって1番目に指示されたSRI(SRS#i)を、パネル1からのUL送信のための空間フィルタに用いてもよい。L個のレイヤのうち、残りのレイヤk+1,k+2,…,Lに対し、UEは、DCI内のSRIフィールドによって2番目に指示されたSRI(SRS#j)を、パネル2からのUL送信のための空間フィルタに用いてもよい。kは、予め規定されたルールに従ってもよいし、DCIによって明示的に指示されてもよい。
 方式3のためのSRIフィールドの拡張は、異なるTRPに対する2つのCW又はTBをサポートするために、方式2のためのSRIフィールドの拡張に加え、複数PUSCHを指示するために、DCI内の、変調及び符号化方式(modulation and coding scheme(MCS))フィールド、プリコーディング情報及びレイヤ数のフィールド、スケジュールされたPUSCH用送信電力制御(transmission power control:TPC)コマンド(TPC command for scheduled PUSCH)フィールド、周波数ドメインリソース割り当て(frequency domain resource assignment)フィールド、時間ドメインリソース割り当て(time domain resource assignment)フィールド、の少なくとも1つが拡張されてもよい。異なるTRPは、異なるパスロスを有していてもよいし、異なるSINRを有していてもよい。
[オプション2]
 PUSCHの繰り返し送信タイプに関する情報は、上位レイヤシグナリングによりUEに通知又は設定されてもよい。例えば、UEは、上位レイヤシグナリングにより繰り返し送信タイプB(例えば、PUSCH-RepTypeB)が設定されない場合、繰り返し送信タイプAを適用してもよい。繰り返し送信タイプは、DCIフォーマット(又は、PUSCHのタイプ)毎に設定されてもよい。PUSCHのタイプは、ダイナミックグラントベースのPUSCH、設定グラントベースのPUSCHが含まれていてもよい。
 繰り返し係数に関する情報、PUSCHの割当てに関する情報、PUSCH送信に利用する空間関係(又は、プリコーダー)に関する情報、及びPUSCH送信に利用する冗長バージョンに関する情報は、DCI、又はDCIと上位レイヤパラメータの組み合わせによりUEに通知されてもよい。
 繰り返し係数に関する情報(例えば、K)、PUSCHの割当てに関する情報(例えば、開始シンボルSとPUSCH長L)について、複数の候補がテーブルに定義され、DCIで特定の候補が選択されてもよい。以下の説明では、PUSCHの繰り返し係数(K)が4の場合を例に挙げて説明するが、適用可能な繰り返し係数は4に限られない。
 空間関係に関する情報(以下、空間関係情報とも記す)は、上位レイヤシグナリングで複数候補が設定され、DCI及びMAC CEの少なくとも一つにより1以上の空間関係情報がアクティブ化されてもよい。
[オプション3]
 複数TRPにわたるPUSCH送信をスケジュールする1つのDCIに含まれるTPCコマンドフィールドのビット数、及び、TPCコマンドフィールドと、TPCに関連するインデックス(例えば、クローズドループインデックス)との対応付けについて説明する。UEは、少なくとも当該インデックスに基づいて、複数のPUSCH送信を制御してもよい。
 複数TRPにわたるPUSCH送信をスケジュールする1つのDCIに含まれるTPCコマンドフィールドのビット数は、Rel.15/16のビット数と比較して、特定の数(例えば、2M)のビット数に拡張されてもよい。本開示において、Mは、TRP数であってもよいし、複数TRPにわたるPUSCH送信のために指示されうるSRIの数であってもよい。
 例えば、コードブックベースの送信について、2つのTRPに対するPUSCH送信のためのSRIをDCIによって指示されるとき、TPCコマンドフィールドは4ビットに拡張されてもよい。
 拡張されたTPCコマンドフィールドと、TPCに関連する特定のインデックス(例えば、クローズドループインデックス)との対応付けは、以下の対応付け1又は対応付け2の少なくとも一方に従ってもよい。以下、クローズドループインデックスについて説明するが、本開示のクローズドループインデックスは、TPCに関連する任意の特定のインデックスで読み替えられてもよい。
[[対応付け1]]
 拡張されたTPCコマンドフィールドを特定数(例えば、2、4など)のビットごとに区切った場合、x番目(xは任意の整数)に小さい(又は、大きい)特定数のビットが、DCIによって指示されるx番目のSRI/SRIの組み合わせに対応付けられてもよい。
[[対応付け2]]
 拡張されたTPCコマンドフィールドを特定数(例えば、2つ)のビットごとに区切った場合、x番目に小さい(又は、大きい)特定数のビットが、DCIによって指示されるx番目に小さい(又は、大きい)クローズドループインデックスに対応するSRIに対応付けられてもよい。
[オプション4]
 複数TRPにわたるPUSCHの繰り返し送信を行う場合、異なるTRP(異なるPUSCH)に対して、同じアンテナポート数が設定/指示されてもよい。言い換えれば、複数のTRP(複数のPUSCH)に対して、共通に同じアンテナポート数が設定/指示されてもよい。このとき、UEは、複数のTRP(複数のPUSCH)に対して、共通に同じアンテナポート数が設定/指示されると想定してもよい。この場合、UEは、以下で説明する指示方法1-1又は指示方法1-2の少なくとも一方に従って、PUSCH送信のためのTPMIを決定してもよい。
[[指示方法1-1]]
 スケジューリングDCIに含まれるプリコーディング情報及びレイヤ数フィールドは、Rel.15/16で規定されたビット数と同じビット数であってもよい。このとき、UEに対して、1つのDCIに含まれる1つのプリコーディング情報及びレイヤ数フィールドが指示されてもよい。言い換えれば、UEは、1つのDCIに含まれる1つのプリコーディング情報及びレイヤ数フィールドに基づいてTPMIを決定してもよい。次いで、UEは、異なるTRPのPUSCH送信に対して、当該プリコーディング情報及びレイヤ数フィールド/TPMIを適用してもよい。
[[指示方法1-2]]
 スケジューリングDCIに含まれるプリコーディング情報及びレイヤ数フィールドは、Rel.15/16と比較して、特定数に拡張されたビット数であってもよい。当該特定数は、X×Mで表されてもよい。
 上記Xは、1つのTRPに対するUL送信を行うための、DCIに含まれるプリコーディング情報及びレイヤ数フィールドのサイズに基づいて決定されてもよい。例えば、上記Xは、アンテナポート数、および、特定の上位レイヤパラメータ(例えば、ul-FullPowerTransmission、maxRank、codebookSubset、transformPrecoderの少なくとも1つ)によって設定される数、の少なくとも1つに基づいて決定されてもよい。
 また、上記Xは、固定値であってもよい。UEは、上位レイヤで設定されるアンテナポート数に関わらず、上記Xが固定のサイズを有すると想定してもよい。また、UEは、アンテナポート数フィールドの値(アンテナポート数フィールドが示すアンテナポート数)に関わらず、上記Xが固定のサイズを有すると想定してもよい。
 また、複数TRPにわたるPUSCHの繰り返し送信を行う場合、異なるTRP(異なるPUSCH)に対して、異なる/同じアンテナポート数が設定/指示されてもよい。言い換えれば、複数のTRP(複数のPUSCH)に対して、別々にアンテナポート数が設定/指示されてもよい。このとき、UEは、複数のTRP(複数のPUSCH)のそれぞれに対して、独立してアンテナポート数が設定/指示されると想定してもよい。この場合、UEは、以下で説明する指示方法2に従って、PUSCH送信のためのTPMIを決定してもよい。
[[指示方法2]]
 スケジューリングDCIに含まれるプリコーディング情報及びレイヤ数フィールドは、Rel.15/16と比較して、特定数に拡張されたビット数であってもよい。当該特定数は、X+X+…+Xで表されてもよい。
 上記X(iは、1からMまでの任意の整数)は、i番目のTRPに対するUL送信を行うための、DCIに含まれるプリコーディング情報及びレイヤ数フィールドのサイズに基づいて決定されてもよい。例えば、上記Xは、アンテナポート数、および、特定の上位レイヤパラメータ(例えば、ul-FullPowerTransmission、maxRank、codebookSubset、transformPrecoderの少なくとも1つ)によって設定される数、の少なくとも1つに基づいて決定されてもよい。また、上記Xは、固定値に設定されてもよい。
 上記Mは、TRP数であってもよいし、複数TRPにわたるPUSCH送信のために指示されうる空間関係情報(SRI)の数であってもよい。
[オプション5]
 UEは、PUSCHに適用するSRIを、当該PUSCHをスケジュールするDCIのSRIフィールドと、当該DCIのための(例えば、当該DCIを検出する)制御リソースセット(COntrol REsource SET(CORESET))のCORESETプールインデックスと、の少なくとも一方に基づいて決定してもよい。
 UEは、複数のPUSCHをスケジュールするDCIに含まれる複数のSRIフィールドに基づいて、それぞれのPUSCHに適用するSRIを決定してもよい。
 UEは、複数のPUSCHをスケジュールするDCIに含まれる1つのSRIフィールドに基づいて、それぞれのPUSCHに適用するSRIを決定してもよい。
 UEは、PUSCHの送信電力を、当該PUSCHをスケジュールするDCIのSRIフィールドに基づいて決定してもよい。例えば、UEは、PUSCHの送信電力制御(TPC)関連パラメータを、当該PUSCHをスケジュールするDCIのSRIフィールドに基づいて決定してもよい。
[オプション6]
 UEは、DCIに含まれる特定のフィールドに基づいて、単一TRP向けの繰り返し送信又は複数TRP向けの繰り返し送信のいずれかを行うことを決定してもよい。
 例えば、DCIに含まれるフィールドによって、複数(例えば、2つ)のSRIフィールド(第1のSRIフィールド、第2のSRIフィールド)のうち、第1のSRIフィールド又は第2のSRIフィールドのいずれか1つを適用することが指示される場合、UEは、複数のPUSCHの繰り返し送信が、適用されるSRIにおいて行われると決定してもよい。言い換えれば、DCIに含まれるフィールドによって、複数のSRIフィールドのうち、1つのSRIフィールドを適用することが指示される場合、UEは、単一TRPにおけるPUSCHの繰り返し送信を行うことを決定してもよい。
 また、例えば、DCIに含まれるフィールドによって、複数(例えば、2つ)のSRIフィールド(第1のSRIフィールド、第2のSRIフィールド)のうち、第1のSRIフィールド及び第2のSRIフィールドの両方を適用することが指示される場合、UEは、複数のPUSCHの繰り返し送信が、複数のSRI(例えば、複数TRP)において行われると決定してもよい。言い換えれば、DCIに含まれるフィールドによって、複数のSRIフィールドを適用することが指示される場合、UEは、複数TRPにおけるPUSCHの繰り返し送信を行うことを決定してもよい。
(問題点)
 上述のように、方式1~3の例に関するDCI拡張等が検討されている。しかし、複数ビーム及び複数パネルによる同時UL送信の動作の詳細について、十分に検討されていない。例えば、複数(複数セット)のSRI/TPMI/TPCが指示されることが考えられる。しかし、どのように各PUSCHのDMRSポートを各PUSCH/SRI/TPMI/TPCにマッピングするかは十分に検討されていない。複数パネルを用いる同時UL送信が適切に行われなければ、スループットの低下など、システム性能が低下するおそれがある。そこで、本発明者らは、UEが複数パネルの同時UL送信を適切に行う方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、ビーム、パネル、UEパネル、RSポートグループ、DMRSポートグループ、SRSポートグループ、RSリソースグループ、DMRSリソースグループ、SRSリソースグループ、ビームグループ、TCI状態グループ、空間関係グループ、SRSリソースインジケータ(SRI)グループ、アンテナポートグループ、アンテナグループ、CORESETグループ、CORESETプール、は互いに読み替えられてもよい。
 パネルは、パネルID、UL TCI状態、ULビーム、Lビーム、DL RSリソース、空間関係情報、の少なくとも1つに関連付けられてもよい。
 本開示において、空間関係、空間設定、空間関係情報、spatialRelationInfo、SRI、SRSリソース、プリコーダ、UL TCI、TCI状態、Unified TCI、QCL等などは、互いに読み替えられてもよい。
 本開示において、インデックス、ID、インジケータ、リソースID、は互いに読み替えられてもよい。
 本開示において、シングルDCI(sDCI)、シングルPDCCH、シングルDCIに基づくマルチTRP(MTRP)システム、sDCIベースMTRP、1つのDCIによって複数の(異なるSRIに対応する)PUSCHをスケジュールすること、sDCIベースMTRP送信、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされること、は互いに読み替えられてもよい。
 本開示において、マルチDCI(mDCI)、マルチPDCCH、マルチDCIに基づくマルチTRPシステム、mDCIベースMTRP、mDCIベースMTRP送信、MTRP向けにマルチDCIが用いられること、2つのDCIによって複数の(異なるSRIに対応する)PUSCHをスケジュールすること、2つのCORESETプールインデックス又はCORESETプールインデックス=1(又は1以上の値)が設定されること、は互いに読み替えられてもよい。
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。
 本開示において、繰り返し(repetition(1つのrepetition))、オケージョン、チャネルは、互いに読み替えられてもよい。本開示において、ULデータ、TB、CW、UCIは、互いに読み替えられてもよい。
 なお、本開示において、「A/B」は、「A及びBの少なくとも一方」で読み替えられてもよい。本開示の送信方式、新しい送信方式は、上述の方式1~3の少なくとも1つを意味してもよい。
(無線通信方法)
 第1の実施形態及び第2の実施形態では、UEは、上位レイヤシグナリング(RRC)により、物理上りリンク共有チャネル(PUSCH)の送信に関する設定を受信する。そして、UEは、その設定に基づいて、コヒーレント(第1の実施形態)又はノンコヒーレントな(第2の実施形態)複数のパネルを用いて、PUSCHを同時に送信する。
<第1の実施形態>
 上述した方式1に示すコヒーレントマルチパネルUL送信を適用した場合のPUSCH生成(送信)動作が十分に検討されていない。そこで、本発明者らは、コヒーレントマルチパネルUL送信を適用した場合のPUSCH生成を適切に行う方法を着想した。方式1において、マルチTRPが適用されてもよく、2つのパネルは、異なるTRPのパネルであってもよい。
 なお、方式1は、high speed train(HST)-single frequency network(SFN)に適用されてもよい。例えば、同じセルIDを有し所定の距離を有する複数のスモールアンテナ(送受信ポイント)はSFNを形成する。高速移動時には、数kmの単位の送受信ポイントが1つのセルを形成する。セルを跨ぐ場合にハンドオーバが行われる。
 NRでは、高速に移動する電車等の移動体(HST)に含まれるUEとの通信を行うために、送信ポイント(例えば、Remote Radio Head(RRH))から送信されるビームを利用することが想定される。既存システム(例えば、Rel.15)では、RRHから一方向のビームを送信して移動体との通信を行うことがサポートされている。方式1を適用することにより、HSTのような高速移動時におけるULの信頼性を改善させることができる。
 新しいRRC設定により、UEは2つのPUSCH/CW/TBを同時に送信するようにスケジュールでき、当該2つのPUSCH/CW/TBは同じであってもよい。又は2つのPUSCHは、同時に繰り返し送信される1つのPUSCHと見なされてもよい。
 単一DCIベースの(単一DCIによりスケジューリングされる)同時PUSCH送信に関して、SRI/TPMI/TPCは、上述した<DCI拡張>に示すように拡張されたDCIが用いられてもよい。
 PUSCHのDMRS送信において、UEは、異なるPUSCH/CW/TBに対して、指示された複数のSRI(CBベースのPUSCH送信の場合)/複数のSRIセット(NCBベースのPUSCH送信の場合)がPUSCHの各DMRSポート(各レイヤ)に適用されると想定してもよい。
 繰り返しPUSCHについての時間/周波数リソース指示については、次のいずれかのオプションが適用されてもよい。
[オプション1]
 UEは、空間分割多重(Space Division Multiplexing:SDM)を適用したPUSCH繰り返し送信が同じ時間リソース及び同じ周波数リソースにスケジュールされることを想定してもよい。すなわち、UEは、コヒーレントな複数のパネルを用いた場合、SDMを適用したPUSCH繰り返し送信を、同じ時間リソース及び同じ周波数リソースにおいて送信してもよい。図4は、SDMを適用したPUSCH繰り返し送信の例を示す図である。図4では、繰り返しであるPUSCH AとPUSCH Bの時間及び周波数リソースが同じである。
[オプション2]
 UEは、周波数分割多重(Frequency Division Multiplexing:FDM)を適用したPUSCH繰り返し送信が同じ時間リソース及び異なる周波数リソースにスケジュールされることを想定してもよい。すなわち、UEは、コヒーレントな複数のパネルを用いた場合、FDMを適用したPUSCH繰り返し送信を同じ時間リソース及び異なる周波数リソースにおいて送信してもよい。図5Aは、FDMを適用したPUSCH繰り返し送信の第1の例を示す図である。図5Aでは、繰り返しであるPUSCH AとPUSCH Bの時間リソースが同じであり周波数リソースが異なっている。
 UEは、FDMを適用したPUSCH繰り返し送信に対して、一部(1又は複数のシンボル)が重複する時間リソース及び異なる周波数リソースにスケジュールされることを想定してもよい。図5Bは、FDMを適用したPUSCH繰り返し送信の第2の例を示す図である。図5Bでは、繰り返しであるPUSCH AとPUSCH Bの時間リソースのうち一部(1又は複数のシンボル)が重複し、周波数リソースが異なっている。
[変形例]
 新しいRRC設定により、UEは、SDMを適用した同じ時間における1つのPUCCHの繰り返し送信をしてもよい。PUCCHリソースは、2つのTCI状態/空間関係とともに設定されてもよい。PUCCHのDMRS送信において、UEは、指示された2つのTCI状態/空間関係が、PUCCHの各DMRSポートに適用されることを想定してもよい。UEは、SDMを適用したPUCCH繰り返し送信について、同じ時間/周波数リソースにスケジュールされることを想定してもよい。
 本実施形態によれば、UEは、コヒーレントマルチパネルUL送信を適用した場合のPUSCH生成(送信)動作を適切に実行することができる。
<第2の実施形態>
 上述した方式2又は方式3に示した、1つ/2つのCW又はTBのノンコヒーレントマルチパネルUL送信を適用した場合のDMRSポートのマッピングが十分に検討されていない。例えば、複数の(複数セットの)SRI/TPMI/TPCが指示された場合の、各PUSCH/SRI/TPMI/TPCに対応するDMRSポートのマッピングが十分に検討されていない。そこで、本発明者らは、1つ/2つのCW又はTBのノンコヒーレントマルチパネルUL送信を適用した場合のDMRSポートのマッピングを適切に行う方法を着想した。
 新しいRRC設定を使用した場合、UEは、異なるビーム/パネル上の異なるデータ/レイヤを有する1つ又は2つのPUSCH/CW/TBを異なるTRPに同時に送信するようにスケジュールされてもよい。この新しいRRC設定を使用した場合、複数(複数セット)のSRI/TPMI/TPCがPUSCHをスケジューリングするDCIにおいて指示された場合、以下の態様2-1~2-3が適用されてもよい。
 態様2-1~2-3において、UEは、ノンコヒーレントな複数のパネルを用いた場合、符号分割多重(Code Division Multiplexing:CDM)グループと対応する、測定用参照信号リソースインジケータ(SRI)、送信プリコーディング行列指標(TPMI)、送信電力制御コマンド(TPCコマンド)の少なくとも1つを含む下り制御情報(DCI)を受信する。そして、UEは、DCIに基づいて、PUSCHを送信する。本開示において、TPC、TPCコマンドは互いに読み替えられてもよい。
[態様2-1]
 DCIフィールド"Antenna Port(s)"が、2つのCDMグループ内のDM-RSポートを示している場合、1番目の(1番目のセットの)SRI/TPMI/TPCは、アンテナポート指示テーブルによって示される1番目のアンテナポートのCDMグループに対応し、2番目(2番目のセット)のSRI/TPMI/TPCは、他のCDMグループに対応してもよい。
[態様2-2]
 DCIフィールド"Antenna Port(s)"が3つのCDMグループ内のDM-RSポートを示している場合、次のオプション1~3のいずれかが適用されてもよい。
[[オプション1]]
 1番目の(1番目のセットの)SRI/TPMI/TPCは、アンテナポート指示テーブルに示されている1番目と2番目のアンテナポートのCDMグループに対応し、2番目の(2番目のセットの)SRI/TPMI/TPCは3番目のCDMグループに対応する。
[[オプション2]]
 1番目の(1番目のセットの)SRI/TPMI/TPCは、アンテナポート指示テーブルに示されている1番目のアンテナポートのCDMグループに対応し、2番目の(2番目のセットの)SRI/TPMI/TPCは、2番目と3番目のCDMグループに対応する。
[[オプション3]]
 マルチパネル送信の新しい送信方式(例えば上述の方式1~3の少なくとも1つ)では、UEは、3つのCDMグループで示されることを想定しない。
[態様2-3]
 DCIフィールド"Antenna Port(s)"が1つのCDMグループ内のDM-RSポートを示している場合、次のオプション1又は2が適用されてもよい。
[[オプション1]]
 UEは、複数(複数セット)のSRI/TPMI/TPCによって示されるCDMグループ内のDM-RSポートを想定しない。
[[オプション2]]
 新しいコードワード-レイヤマッピングテーブルが、各エントリのレイヤ(2つのパネルに対する)とTPMIの2つの指示を示すように定義されてもよい。図6は、プリコーディング情報及びレイヤ数のフィールド値と、レイヤ数及びTPMIの関連付け(テーブル)の一例を示す。このテーブルは、トランスフォームプリコーディングが無効であり、最大ランク(maxRank)が2又は3又は4である場合の、4アンテナポート用のテーブルである。
 このテーブルにおいて、パネル#1のみを用いる場合のレイヤ数は、"L layers"と表され、パネル#1,#2を用いる場合のパネル#1用のレイヤ数kと、パネル#2用のレイヤ数L-kとは、"k+(L-k) layers"と表される。このテーブルにおける2レイヤ(L=2)は、パネル#1用のレイヤ数が1(k=1)、パネル#2用のレイヤ数が1であってもよい。このテーブルにおいて、2レイヤは、"2 layers"のように表されてもよいし、"1+1 layers"のように表されてもよい。
 さらに、異なるビーム/パネルからの異なるデータ/レイヤを有する1つ又は2つのPUSCH/CW/TBの場合、UEは、フロントロードされたDM-RSシンボルの実際の数、追加のDM-RSシンボルの実際の数、実際のDM-RSシンボルの場所、およびDM-RS設定タイプに関して異なるDM-RS設定を想定しない。
 単一DCIベースの同時PUSCH送信のDCI拡張を行う場合、複数の指示を有するSRI/TPMI/TPCについて、上述した<DCI拡張>の例を適用してもよい。
[DMRSポートを示すテーブルの拡張]
 2つのTRPに対する2つのPUSCHの間の異なるレイヤマッピングがサポートされるために、DMRSポートを示すテーブルの拡張が行われてもよい。例えば、2つのDMRS CDMグループ、ランク=3の場合に、2+1レイヤに加えて、1+2レイヤがサポートされてもよい。
 図7は、DMRSポートに関するテーブルの拡張を示す第1の例を示す図である。図7は、プリコーダが無効(disabled)であり、DMRSタイプ=1,最大長=1,ランク=3である場合のDMRSアンテナポートに関するテーブルの拡張を示す。最大長は、DLフロントロードされるDMRSのOFDMシンボル数である。図7~図10の"value"は、DCIフィールド"Antenna Port(s)"の値を示す。図7では、"value"が2又は1であり、データなしのDMRS CDMグループ数が2であり、DMRSポートが0,2,3である列が追加されている。
 図8は、DMRSポートに関するテーブルの拡張を示す第2の例を示す図である。図8は、プリコーダが無効であり、DMRSタイプ=1,最大長=2,ランク=3である場合のDMRSアンテナポートに関するテーブルの拡張を示す。図8では、"value"が3であり、データなしのDMRS CDMグループ数が2であり、DMRSポートが0,2,3であり、フロントロードシンボル数が1である列が追加されている。
 図9は、DMRSポートに関するテーブルの拡張を示す第3の例を示す図である。図9は、プリコーダが無効であり、DMRSタイプ=2,最大長=1,ランク=3である場合のDMRSアンテナポートに関するテーブルの拡張を示す。図9では、"value"が3であり、データなしのDMRS CDMグループ数が2であり、DMRSポートが0,2,3である列が追加されている。
 図10は、DMRSポートに関するテーブルの拡張を示す第4の例を示す図である。図10は、プリコーダが無効であり、DMRSタイプ=2,最大長=2,ランク=3である場合のDMRSアンテナポートに関するテーブルの拡張を示す。図10では、"value"が6であり、データなしのDMRS CDMグループ数が2であり、DMRSポートが0,2,3であり、フロントロードシンボル数が1である列が追加されている。
<第3の実施形態>
 DCIフォーマット0_0又はいくつかのケース(下記のケース1,2)において、空間関係がPUSCHに対して指示された場合、新しい送信方式(例えば上述の方式1~3の少なくとも1つ)におけるPUSCHの空間関係をどのように決定するかが十分に検討されていない。例えば、シングルDCIベースのPUSCHスケジューリングとマルチDCIベースのPUSCHスケジューリングにおいてPUSCHの空間関係が異なっていてもよい。そこで、本発明者らは、PUSCHの空間関係を適切に想定(決定)する方法を着想した。
 本実施形態では、UEは、物理上りリンク共有チャネル(PUSCH)をスケジュールする下り制御情報(DCI)を受信し、最も低い識別子(ID)を有する物理上りリンク制御チャネルのリソース(PUCCHリソース)又は最も低い識別子(ID)を有する制御リソースセット(CORESET)に基づいて、PUSCHの空間関係を想定(決定)する。そして、UEは、複数のパネルを用いて、そのPUSCHを同時に送信する。
 本開示において、最も低いIDを有するPUCCHリソースは、最も低いPUCCHリソースIDを有するPUCCHリソースに読み替えられてもよい。最も低いIDを有するTCI状態/空間関係は、最も低いTCI状態ID/空間関係情報IDを有するTCI状態/空間関係に読み替えられてもよい。
[ケース1]
 セル上のDCIフォーマット0_0によるPUSCHスケジューリングにおいて、UEは、空間関係に従ってPUSCHを送信する。利用可能である場合、その空間関係は、そのセルのアクティブUL BWP内において最も低いIDを有する個別(dedicated)PUCCHリソースに対応する。
 すなわち、ケース1では、PUSCH空間関係は、最も低いIDを有するPUCCHリソースに従う。ケース1は、3GPP Rel.15、16に適用されている。
[ケース2]
 セル上のDCIフォーマット0_0によるPUSCHスケジューリングにおいて、上位レイヤパラメータ"enableDefaultBeamPlForPUSCH0_0"に'enabled'がセットされ、UEが、アクティブUL BWPのPUCCHリソースが設定されず、RRC接続モードである場合、UEは、空間関係に従ってPUSCHを送信する。利用可能である場合、その空間関係は、そのセルのアクティブDL BWP上の最も低いIDを有するCORESETのQCL想定に対応するQCLタイプDを有するRSを参照する。
 セル上のDCIフォーマット0_0によるPUSCHスケジューリングにおいて、上位レイヤパラメータ"enableDefaultBeamPlForPUSCH0_0"に'enabled'がセットされ、UEに、アクティブUL BWPのPUCCHリソースが設定され、全てのPUCCHリソースに空間関係が設定されず、UEがRRC接続モードである場合、UEは、空間関係に従ってPUSCHを送信する。利用可能である場合、その空間関係は、そのセルにおいてCORESETが設定されるケースでは、そのセルのアクティブDL BWP上の最も低いIDを有するCORESETのQCL想定に対応するQCLタイプDを有するRSを参照する。
 すなわち、ケース2において、PUSCH空間関係は、最も低いIDを有するCORESETのQCLに従う。ケース2は、3GPP Rel.16に適用されている。
[態様3-1]
 PUSCHに関する上述した方式1/2/3を指示するための新しいRRCパラメータが設定された場合において、UEが、方式1/2/3を用いたULビーム/パネルの同時送信をスケジュールされることが想定され、そのULが単一の(シングル)DCIによってスケジュールされる場合、上述のケース1において、UEは、次のオプション1~4のようにPUCCHリソースに基づくPUSCH空間関係を想定する。なお、UEは、ケース2において、上位レイヤパラメータ"enableDefaultBeamPlForPUSCH0_0"に'enabled'がセットされない場合に、同様の処理を行ってもよい。
[[オプション1]]
 UEは、ケース1、2に示す既存の方法に従ってもよい。つまり、この場合、UEは、ULビーム/パネルの同時送信がスケジュールされることを予測しなくてもよい。代わりに、UEは、1つのULビーム/パネルによるPUSCH送信がスケジュールされることを予測してもよい。
[[オプション2]]
 UEは、1以上のPUCCHリソースが2つのTCI状態/空間関係とともに設定されることを予測する。新しい送信方式のPUSCH空間関係は、1以上のPUCCHリソースのうちの最も低いID(PUCCHリソースID)を有するPUCCHリソースの2つのTCI状態/空間関係、1以上のPUCCHリソースのうちの最も低いIDを有する2つのPUCCHリソースからの最も低いID(TCI状態ID/空間関係情報ID)を有するTCI状態/空間関係、又は、2つの最も低いIDを有するTCI状態/空間関係に従って決定されてもよい。つまり、ULマルチビーム/パネル同時送信が設定されたマルチパネルUEは、複数のTRPからのDLマルチビーム/パネル受信も設定されてもよい。
[[オプション3]]
 1以上のPUCCHリソースが2つのTCI状態/空間関係とともに設定される場合、PUSCH空間関係は、1以上のPUCCHリソースのうちの最も低いIDを有するPUCCHリソースの2つのTCI状態/空間関係、1以上のPUCCHリソースのうちの最も低いIDを有する2つのPUCCHリソースからの最も低いIDを有するTCI状態/空間関係、又は、2つの最も低いIDを有するTCI状態/空間関係に従って決定されてもよい。
 1以上のPUCCHリソースが1つのTCI状態/空間関係とともに設定される場合、PUSCH空間関係は、1以上のPUCCHリソースのうちの最も低いIDを有する2つのPUCCHリソースからの2つのTCI状態/空間関係、又は、2つのPUCCHリソースからの最も低いIDを有する2つのTCI状態/空間関係に従って決定されてもよい。
 オプション2/3では、PUCCHリソースが2より多いTCI状態/空間関係とともに設定されている場合、PUSCH空間関係は、最も低いIDを有するPUCCHリソースの2つのTCI状態/空間関係、最も低いIDを有する2つのPUCCHリソースからの最も低いIDを有するTCI状態/空間関係、又は、2つの最も低いIDを有するTCI状態/空間関係に従って決定されてもよい。例えば、MTRP間で繰り返し送信が適用される場合、2より多いTCI状態/空間関係を有するPUCCHリソースが存在していてもよい。
[[オプション4]]
 PUCCHリソースが、1つのTCI状態/空間関係とともに設定された場合、PUSCH空間関係は、最も低いIDと2番目に低いIDとを有するPUCCHリソースの2つのPUCCH空間関係に従って決定されてもよい。オプション4は、異なる空間関係の設定を有する複数のPUCCHリソースに対して適用されてもよい。オプション4のPUSCH空間関係は、オプション2/3と同様であってもよい。
[態様3-2]
 PUSCHに関する上述した方式1/2/3を指示するための新しいRRCパラメータが設定された場合において、UEが、方式1/2/3を用いたULビーム/パネルの同時送信をスケジュールされることが想定され、そのULが単一の(シングル)DCIによってスケジュールされる場合、上述のケース2において、UEは、次のオプション1~4のようにCORESETに基づくPUSCH空間関係を想定する。
[[オプション1]]
 UEは、ケース1、2に示す既存の方法に従ってもよい。つまり、この場合、UEは、ULビーム/パネルの同時送信がスケジュールされることを予測しなくてもよい。代わりに、UEは、1つのULビーム/パネルによるPUSCH送信がスケジュールされることを予測してもよい。
[[オプション2]]
 UEは、1以上のCORESETが2つのTCI状態とともに設定されることを予測する。新しい送信方式のPUSCH空間関係は、1以上のCORESETのうちの最も低いIDを有するCORESETの2つのTCI状態、1以上のCORESETのうちの最も低いIDを有する2つのCORESETからの最も低いIDを有するTCI状態、又は、2つの最も低いIDを有するTCI状態に従って決定されてもよい。つまり、ULマルチビーム/パネル同時送信が設定されたマルチパネルUEは、複数のTRPからのDLマルチビーム/パネル受信も設定されてもよい。
[[オプション3]]
 1以上のCORESETが2つのTCI状態とともに設定される場合、PUSCH空間関係は、1以上のCORESETのうちの最も低いIDを有するCORESETの2つのTCI状態、1以上のCORESETのうちの最も低いIDを有する2つのCORESETからの最も低いIDを有するTCI状態、又は、2つの最も低いIDを有するTCI状態に従って決定されてもよい。
 1以上のCORESETが1つのTCI状態とともに設定される場合、PUSCH空間関係は、1以上のCORESETのうちの最も低いIDを有する2つのCORESETからの2つのTCI状態、又は、2つのCORESETからの最も低いIDを有する2つのTCI状態に従って決定されてもよい。
 オプション2/3では、CORESETが2より多いTCI状態とともに設定されている場合、PUSCH空間関係は、最も低いIDを有するCORESETの2つのTCI状態、最も低いIDを有する2つのCORESETからの最も低いIDを有するTCI状態、又は、2つの最も低いIDを有するTCI状態に従って決定されてもよい。例えば、MTRP間で繰り返し送信が適用される場合、2より多いTCI状態を有するCORESETが存在していてもよい。
[[オプション4]]
 CORESETが、1つのTCI状態とともに設定された場合、PUSCH空間関係は、最も低いIDを有するCORESETと2番目に低いIDを有するCORESETの2つのTCI状態に従って決定されてもよい。オプション4は、異なるTCI状態/空間関係の設定を有する複数のCORESETに対して適用されてもよい。オプション4のPUSCH空間関係は、オプション2/3と同様であってもよい。
[態様3-3]
 PUSCHに関する上述した方式1/2/3を指示するための新しいRRCパラメータが設定された場合において、UEが、方式1/2/3を用いたULビーム/パネルの同時送信をスケジュールされることが想定され、そのULが異なるCORESETプールインデックス(方式2/3において可能)からの複数の(例えば2つの)DCIによってスケジュールされる場合、上述のケース1において、UEは、次のオプション1~4のようにPUCCHリソースに基づくPUSCH空間関係を想定する。
[[オプション1]]
 UEは、ケース1、2に示す既存の方法に従ってもよい。つまり、この場合、UEは、ULビーム/パネルの同時送信がスケジュールされることを想定しなくてもよい。代わりに、UEは、1つのULビーム/パネルによるPUSCH送信がスケジュールされることを予測してもよい。
[[オプション2]]
 新しい送信方式の複数のDCIによりスケジュールされる各PUSCHの空間関係は、同じCORESETプールインデックスに関連する1以上のPUCCHリソースのうちの最も低いIDを有するPUCCHリソースのTCI状態/空間関係、又は、同じCORESETプールインデックス内のPUCCHリソースの最も低いIDを有するTCI状態/空間関係に従って決定されてもよい。
[[オプション3]]
 PUCCHリソースが1より多いTCI状態/空間関係とともに設定されている場合、新しい送信方式の複数のDCIによりスケジュールされる各PUSCHの空間関係は、同じCORESETプールインデックスに関連する1以上のPUCCHリソースのうちの最も低いIDを有するPUCCHリソースの最も低いIDを有するTCI状態/空間関係、又は、同じCORESETプールインデックス内のPUCCHの最も低いIDを有するTCI状態/空間関係に従って決定されてもよい。
 シングルDCIベースのスケジューリングを用いたTRP間における繰り返し送信の場合のみ、PUCCHリソースが2つのビーム(TCI状態/空間関係)とともに設定されてもよい。ただし、シングルDCIとマルチDCIとが同時に設定される場合、マルチDCIベースのスケジューリングを用いたTRP間における繰り返し送信の場合であっても、PUCCHリソースが2つのビームとともに設定されてもよい。
[[オプション4]]
 PUCCHリソースが、1つのTCI状態/空間関係とともに設定された場合、新しい送信方式の各PUSCH空間関係は、各CORESETプールインデックスに関連する1以上のPUCCHリソースのうちの最も低いIDを有するPUCCHリソースの最も低いIDを有するTCI状態/空間関係に従って決定されてもよい。
[態様3-4]
 PUSCHに関する上述した方式1/2/3を指示するための新しいRRCパラメータが設定された場合において、UEが、方式1/2/3を用いたULビーム/パネルの同時送信をスケジュールされることが想定され、そのUL(PUSCH)が異なるCORESETプールインデックス(方式2/3において可能)からの複数(例えば2つ)のDCIによってスケジュールされる場合、上述のケース2において、UEは、次のオプション1~4のようにCORESETに基づくPUSCH空間関係を想定する。
[[オプション1]]
 UEは、ケース1、2に示す既存の方法に従ってもよい。つまり、この場合、UEは、ULビーム/パネルの同時送信がスケジュールされることを想定しなくてもよい。代わりに、UEは、1つのULビーム/パネルによるPUSCH送信がスケジュールされることを予測してもよい。
[[オプション2]]
 新しい送信方式の複数のDCIによりスケジュールされる各PUSCHの空間関係は、同じCORESETプールインデックスに関連する1以上のCORESETのうちの最も低いIDを有するCORESETのTCI状態、又は、同じCORESETプールインデックス内のCORESETの最も低いIDを有するTCI状態に従って決定されてもよい。
[[オプション3]]
 PUCCHリソースが1より多いTCI状態/空間関係とともに設定されている場合、新しい送信方式の複数のDCIによりスケジュールされる各PUSCHの空間関係は、同じCORESETプールインデックスに関連する1以上のCORESETのうちの最も低いIDを有するCORESETの最も低いIDを有するTCI状態、又は、同じCORESETプールインデックス内のCORESETの最も低いIDを有するTCI状態に従って決定されてもよい。
 シングルDCIベースのスケジューリングを用いたTRP間における繰り返し送信の場合のみ、CORESETが2つのビーム(TCI状態)とともに設定されてもよい。ただし、シングルDCIとマルチDCIとが同時に設定される場合、マルチDCIベースのスケジューリングを用いたTRP間における繰り返し送信の場合であっても、CORESETが2つのビームとともに設定されてもよい。
[[オプション4]]
 PUCCHリソースが、1つのTCI状態とともに設定された場合、新しい送信方式の各PUSCH空間関係は、各CORESETプールインデックスに関連する1以上のCORESETのうちの最も低いIDを有するCORESETの最も低いIDを有するTCI状態に従って決定されてもよい。
 本実施形態によれば、UEは、新しい送信方式において、PUSCHの空間関係を適切に想定(決定)することができる。
<第4の実施形態>
 3GPP Rel.16における以下のケース3では、空間関係は、PUCCHに指示されない。そのため、上述した方式1をPUCCHに適用した場合、又は第1の実施形態の変形例に記載したSDMを適用した同じ時間における1つのPUCCHの繰り返し送信において、PUCCHの空間関係をどのように決定するかが十分に検討されていない。そこで、本発明者らは、PUCCHの空間関係を適切に想定(決定)する方法を着想した。
 本実施形態では、UEは、物理上りリンク制御チャネル(PUCCH)の空間関係を、最も低い識別子(ID)を有する制御リソースセット(CORESET)に基づいて決定し、その空間関係に基づいて、コヒーレントな複数のパネルを用いて(方式1)、PUCCHを同時に送信する。
 本開示において、SDMを適用したPUCCH繰り返し送信は、TDM/FDMを適用したPUCCH繰り返し送信に読み替えられてもよい。
[ケース3]
 次の(1)~(4)の条件が満たされた場合、UEからのPUCCH送信の空間設定が、Primary Cell(PCell)のアクティブDL BWPの最も低いIDを有するCORESETにおけるUEによるPDCCH受信の空間設定と同じであってもよい。
(1)UEにPUCCH-PowerControl内のpathlossReferenceRSsが提供される。
(2)UEにenableDefaultBeamPlForPUCCHが提供される。
(3)UEにPUCCH-SpatialRelationInfoが提供される。
(4)UEに、ControlResourceSet内における、いくつかのCORESETのうちの1つのCORESETプールインデックスの値が提供された、又は全てのCORESETのうちの1つのCORESETプールインデックスの値が提供され、2つのTCI状態をマップするサーチスペースセットのDCIフォーマット内(もしあれば)にTCIフィールドのコードポイントがない。
 つまり、ケース3では、PUCCH空間関係(空間設定)は、最も低いIDを有するCORESETのQCLに従う。
[態様4-1]
 上述したケース3において、PUCCHに対する上述した方式1を指示するための新しいRRCパラメータが設定され、UEが、複数の(2つの)ビーム/パネルを用いてSDMを適用したPUCCH繰り返しを送信することが想定され、CORESETプールインデックスが設定されない場合、UEは、次のオプション1~5のように、CORESETに基づくPUCCH空間関係を想定してもよい。
 UEは、例えば、CORESETプールインデックスが設定されず、複数のパネルを用いてSDMを適用したPUCCHの繰り返し送信を行う場合、1以上のCORESETのうちの最も低いIDを有するCORESETの2つのTCI状態に基づいて、PUCCHの空間関係を決定してもよい。
[[オプション1]]
 UEは、ケース3に示す既存の方法に従ってもよい。つまり、この場合、UEは、ULビーム/パネルによるPUCCH同時送信がスケジュールされることを予測しなくてもよい。代わりに、UEは、1つのULビーム/パネルによる同時のPUSCH送信を予測してもよい。
[[オプション2]]
 PUCCH空間関係は、1以上のCORESETのうちの最も低いIDを有する2つのCORESETの2つのTCI状態、又は、2つのCORESETの2つの最も低いIDを有するTCI状態に従って決定されてもよい。
[[オプション3]]
 CORESETに2つのTCI状態が設定された場合、PUCCH空間関係は、1以上のCORESETのうちの最も低いIDを有するCORESETの当該2つのTCI状態に従って決定されてもよい。
[[オプション4]]
 CORESETに2より多いTCI状態が設定された場合、PUCCH空間関係は、1以上のCORESETのうちの最も低いIDを有するCORESETの最も低いIDを有する2つのTCI状態、又はCORESETの最も低いIDを有する2つのTCI状態に従って決定されてもよい。
[[オプション5]]
 CORESETに1つのTCI状態が設定された場合、PUCCH空間関係は、最も低いCORESET IDのTCI状態、及び2番目に低いCORESET IDのTCI状態に従って決定されてもよい。
[態様4-2]
 上述したケース3において、PUCCHに対する上述した方式1を指示するための新しいRRCパラメータが設定され、UEが、複数の(2つの)ビーム/パネルを用いてSDMを適用したPUCCH繰り返し送信を予測し、CORESETプールインデックスが設定される場合、UEは、次のオプション1~4のように、CORESETに基づくPUCCH空間関係を想定してもよい。
 UEは、例えば、CORESETプールインデックスが設定され、複数のパネルを用いてSDMを適用したPUCCHの繰り返し送信を行う場合、同じCORESETプールインデックスに関連する1以上のCORESETのうちの最も低いIDを有するCORESETのTCI状態に基づいて、PUCCHの空間関係を決定してもよい。
[[オプション1]]
 UEは、ケース3に示す既存の方法に従ってもよい。つまり、この場合、UEは、ULビーム/パネルによるPUCCH同時送信がスケジュールされることを予測しなくてもよい。代わりに、UEは、1つのULビーム/パネルによる同時のPUSCH送信を予測してもよい。
[[オプション2]]
 各PUCCH空間関係は、同じCORESETプールインデックスに関連する1以上のCORESETのうちの最も低いIDを有するCORESETのTCI状態、又は、同じCORESETプールインデックスを有するCORESETの最も低いIDを有するTCI状態に従って決定されてもよい。
[[オプション3]]
 CORESETに1つのTCI状態が設定された場合、各PUCCH空間関係は、同じCORESETプールインデックスに関連する1以上のCORESETのうちの最も低いIDを有するCORESETの最も低いIDを有するTCI状態、又は、同じCORESETプールインデックスを有するCORESETの最も低いIDを有するTCI状態に従って決定されてもよい。
[[オプション4]]
 CORESETに1つのTCI状態が設定された場合、新しい送信方式の各PUCCH空間関係は、各CORESETプールインデックスに関連する1以上のCORESETのうちの最も低いIDを有するCORESETの最も低いIDを有するTCI状態に従って決定されてもよい。
 シングルDCIベースのスケジューリングを用いたTRP間における繰り返し送信の場合のみ、CORESETが2つのビーム(TCI状態)とともに設定されてもよい。ただし、シングルDCIとマルチDCIとが同時に設定される場合、マルチDCIベースのスケジューリングを用いたTRP間における繰り返し送信の場合であっても、CORESETが2つのビームとともに設定されてもよい。
 本実施形態によれば、UEは、PUCCH空間関係を適切に決定することができる。
<UE能力(UE capability)>
 UEは、以下の(1)~(8)に示すUE能力(UE能力情報)の少なくとも1つを送信(報告)してもよい。なお、方式1/2/3は、上述の送信方式を示す。
(1)UL(PUSCH)送信のための方式1/2/3をサポートするかどうか。
(2)UL(PUCCH)送信のための方式1をサポートするかどうか。
(3)PUSCH送信のための方式1/2/3において、同じ又は異なる、時間/周波数のリソース指示をサポートするかどうか。
(4)方式1/2/3において、シングルDCIベース又はマルチDCIベースのPUSCHスケジューリングをサポートするかどうか。
(5)方式1/2/3を用いたPUSCHスケジューリングにおいて、1つ/2つ/3つのDMRS CDMグループをサポートするかどうか。
(6)拡張されたDMRSポートを示すテーブル(例えば、図7~図10)をサポートするかどうか。
(7)方式1/2/3を用いたPUSCH(シングルDCI/マルチDCIベースのスケジューリングを適用)にデフォルトの2つのビームをサポートするかどうか。
(8)方式1/2/3(2つのCORESETプールインデックスを有する又は有しない)を用いたPUSCHにデフォルトの2つのビームをサポートするかどうか。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図11は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図12は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 なお、送受信部120は、上位レイヤシグナリングにより、物理上りリンク共有チャネルの送信に関する設定を送信してもよい。送受信部120は、前記設定に基づいて、コヒーレント又はノンコヒーレントな複数のパネルを用いて同時に送信された、前記物理上りリンク共有チャネルを受信してもよい。
 制御部110は、最も低い識別子を有する物理上りリンク制御チャネルのリソース又は最も低い識別子を有する制御リソースセットに基づいて、物理上りリンク共有チャネルの空間関係を設定してもよい。送受信部120は、前記設定に基づいて、コヒーレント又はノンコヒーレントな複数のパネルを用いて同時に送信された、前記物理上りリンク共有チャネルを受信してもよい。
 制御部110は、最も低い識別子を有する制御リソースセットに基づいて、物理上りリンク制御チャネルの空間関係を決定してもよい。送受信部120は、記空間関係に基づいてコヒーレントな複数のパネルを用いて同時に送信された、前記物理上りリンク制御チャネルを受信してもよい。
(ユーザ端末)
 図13は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、上位レイヤシグナリングにより、物理上りリンク共有チャネルの送信に関する設定を受信してもよい。送受信部220は、前記設定に基づいて、コヒーレント又はノンコヒーレントな複数のパネルを用いて、前記物理上りリンク共有チャネルを同時に送信してもよい。
 送受信部220は、コヒーレントな複数のパネルを用いた場合、空間分割多重を適用した前記物理上りリンク共有チャネルの繰り返し送信を、同じ時間リソース及び同じ周波数リソースにおいて送信してもよい。
 送受信部220は、コヒーレントな複数のパネルを用いた場合、周波数分割多重を適用した前記物理上りリンク共有チャネルの繰り返し送信を、同じ時間リソース及び異なる周波数リソースにおいて送信してもよい。
 送受信部220は、ノンコヒーレントな複数のパネルを用いた場合、符号分割多重グループと対応する、測定用参照信号リソースインジケータ、送信プリコーディング行列指標、送信電力制御コマンドの少なくとも1つを含む下りリンク制御情報を受信してもよい。送受信部220は、前記下りリンク制御情報に基づいて、前記物理上りリンク共有チャネルを送信してもよい。
 制御部210は、最も低い識別子を有する物理上りリンク制御チャネルのリソース又は最も低い識別子を有する制御リソースセットに基づいて、物理上りリンク共有チャネルの空間関係を決定してもよい。送受信部220は、複数のパネルを用いて、前記物理上りリンク共有チャネルを同時に送信してもよい。
 送受信部220は、前記物理上りリンク共有チャネルをスケジュールする単一の下りリンク制御情報を受信してもよい。1以上の物理上りリンク制御チャネルリソースが、2つの送信構成指示(TCI)状態とともに設定される場合、前記物理上りリンク共有チャネルの空間関係は、前記1以上の物理上りリンク制御チャネルリソースのうちの最も低い識別子を有する物理上りリンク制御チャネルのリソースの前記2つのTCI状態に従ってもよい。
 送受信部220は、前記物理上りリンク共有チャネルをスケジュールする単一の下りリンク制御情報を受信してもよい。1以上の制御リソースセットが、2つの送信構成指示(TCI)状態とともに設定される場合、前記物理上りリンク共有チャネルの空間関係は、前記1以上の制御リソースセットのうちの最も低い識別子を有する制御リソースセットの前記2つのTCI状態に従ってもよい。
 送受信部220は、前記物理上りリンク共有チャネルをスケジュールする複数の下りリンク制御情報を受信してもよい。前記複数の下りリンク制御情報においてスケジュールされる各物理上りリンク共有チャネルの空間関係は、同じ制御リソースセットプールインデックスに関連する1以上の物理上りリンク制御チャネルリソースのうちの最も低い識別子を有する物理上りリンク制御チャネルのリソースの送信構成指示(TCI)状態、又は、同じ制御リソースセットプールインデックスに関連する1以上の制御リソースセットのうちの最も低い識別子を有する前記制御リソースセットの送信構成指示(TCI)状態に従ってもよい。
 制御部210は、最も低い識別子を有する制御リソースセットに基づいて、物理上りリンク制御チャネルの空間関係を決定してもよい。送受信部220は、前記空間関係に基づいて、コヒーレントな複数のパネルを用いて、前記物理上りリンク制御チャネルを同時に送信してもよい。
 制御部210は、制御リソースセットプールインデックスが設定されず、前記複数のパネルを用いて空間分割多重を適用した前記物理上りリンク制御チャネルの繰り返し送信を行う場合、前記最も低い識別子を有する制御リソースセットの2つの送信構成指示(TCI)状態に基づいて、前記空間関係を決定してもよい。
 制御部210は、制御リソースセットプールインデックスが設定され、前記複数のパネルを用いて空間分割多重を適用した前記物理上りリンク制御チャネルの繰り返し送信を行う場合、同じ制御リソースセットプールインデックスに関連する1以上の制御リソースセットのうちの前記最も低い識別子を有する制御リソースセットの送信構成指示(TCI)状態に基づいて、前記空間関係を決定してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (5)

  1.  最も低い識別子を有する制御リソースセットに基づいて、物理上りリンク制御チャネルの空間関係を決定する制御部と、
     前記空間関係に基づいて、コヒーレントな複数のパネルを用いて、前記物理上りリンク制御チャネルを同時に送信する送信部と、
     を有する端末。
  2.  前記制御部は、制御リソースセットプールインデックスが設定されず、前記複数のパネルを用いて空間分割多重を適用した前記物理上りリンク制御チャネルの繰り返し送信を行う場合、前記最も低い識別子を有する制御リソースセットの2つの送信構成指示(TCI)状態に基づいて、前記空間関係を決定する
     請求項1に記載の端末。
  3.  前記制御部は、制御リソースセットプールインデックスが設定され、前記複数のパネルを用いて空間分割多重を適用した前記物理上りリンク制御チャネルの繰り返し送信を行う場合、同じ制御リソースセットプールインデックスに関連する1以上の制御リソースセットのうちの前記最も低い識別子を有する制御リソースセットの送信構成指示(TCI)状態に基づいて、前記空間関係を決定する
     請求項1に記載の端末。
  4.  最も低い識別子を有する制御リソースセットに基づいて、物理上りリンク制御チャネルの空間関係を決定する工程と、
     前記空間関係に基づいて、コヒーレントな複数のパネルを用いて、前記物理上りリンク制御チャネルを同時に送信する工程と、
     を有する端末の無線通信方法。
  5.  最も低い識別子を有する制御リソースセットに基づいて、物理上りリンク制御チャネルの空間関係を決定する制御部と、
     前記空間関係に基づいてコヒーレントな複数のパネルを用いて同時に送信された、前記物理上りリンク制御チャネルを受信する受信部と、
     を有する基地局。
PCT/JP2021/000547 2021-01-08 2021-01-08 端末、無線通信方法及び基地局 WO2022149274A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/260,130 US20240064527A1 (en) 2021-01-08 2021-01-08 Terminal, radio communication method, and base station
CN202180095406.0A CN116965079A (zh) 2021-01-08 2021-01-08 终端、无线通信方法以及基站
PCT/JP2021/000547 WO2022149274A1 (ja) 2021-01-08 2021-01-08 端末、無線通信方法及び基地局
JP2022573888A JPWO2022149274A5 (ja) 2021-01-08 端末、無線通信方法、基地局及びシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/000547 WO2022149274A1 (ja) 2021-01-08 2021-01-08 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2022149274A1 true WO2022149274A1 (ja) 2022-07-14

Family

ID=82357873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000547 WO2022149274A1 (ja) 2021-01-08 2021-01-08 端末、無線通信方法及び基地局

Country Status (3)

Country Link
US (1) US20240064527A1 (ja)
CN (1) CN116965079A (ja)
WO (1) WO2022149274A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065403A1 (en) * 2022-09-29 2024-04-04 Apple Inc. Systems and methods for single downlink control information simultaneous spatial division multiplexing physical uplink shared channel transmission with single sounding reference signal resource set
WO2024095392A1 (ja) * 2022-11-02 2024-05-10 株式会社Nttドコモ 端末、無線通信方法及び基地局
EP4333348A3 (en) * 2022-08-24 2024-05-22 Nokia Technologies Oy Dynamic uplink transmission scheme indication for multi-panel user equipment

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
APPLE INC.: "Remaining Issues on Multi-beam operation", 3GPP DRAFT; R1-2008437, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 17 October 2020 (2020-10-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051940151 *
APPLE: "Considerations on multi-panel and MPE in FR2", 3GPP DRAFT; R1-1904983 CONSIDERATIONS ON MULTI-PANEL AND MPE IN FR2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051700101 *
CATT: "Discussion on enhancements on multi-TRP/panel for PDCCH, PUCCH and PUSCH", 3GPP DRAFT; R1-2005684, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917659 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4333348A3 (en) * 2022-08-24 2024-05-22 Nokia Technologies Oy Dynamic uplink transmission scheme indication for multi-panel user equipment
WO2024065403A1 (en) * 2022-09-29 2024-04-04 Apple Inc. Systems and methods for single downlink control information simultaneous spatial division multiplexing physical uplink shared channel transmission with single sounding reference signal resource set
WO2024095392A1 (ja) * 2022-11-02 2024-05-10 株式会社Nttドコモ 端末、無線通信方法及び基地局

Also Published As

Publication number Publication date
JPWO2022149274A1 (ja) 2022-07-14
US20240064527A1 (en) 2024-02-22
CN116965079A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
WO2022149272A1 (ja) 端末、無線通信方法及び基地局
WO2021090403A1 (ja) 端末及び無線通信方法
WO2022149274A1 (ja) 端末、無線通信方法及び基地局
WO2021002018A1 (ja) 端末及び無線通信方法
WO2021064962A1 (ja) 端末及び無線通信方法
WO2022029933A1 (ja) 端末、無線通信方法及び基地局
WO2022153395A1 (ja) 端末、無線通信方法及び基地局
WO2021181666A1 (ja) 端末、無線通信方法及び基地局
WO2020209281A1 (ja) ユーザ端末及び無線通信方法
WO2022024378A1 (ja) 端末、無線通信方法及び基地局
WO2020250450A1 (ja) 端末及び無線通信方法
WO2022085155A1 (ja) 端末、無線通信方法及び基地局
WO2020202517A1 (ja) ユーザ端末及び無線通信方法
WO2022029979A1 (ja) 端末、無線通信方法及び基地局
WO2022029899A1 (ja) 端末、無線通信方法及び基地局
WO2022024377A1 (ja) 端末、無線通信方法及び基地局
WO2020183721A1 (ja) ユーザ端末及び無線通信方法
WO2022085198A1 (ja) 端末、無線通信方法及び基地局
WO2022044290A1 (ja) 端末、無線通信方法及び基地局
WO2022029934A1 (ja) 端末、無線通信方法及び基地局
WO2022029900A1 (ja) 端末、無線通信方法及び基地局
WO2022014055A1 (ja) 端末、無線通信方法及び基地局
WO2022030003A1 (ja) 端末、無線通信方法及び基地局
WO2021181667A1 (ja) 端末、無線通信方法及び基地局
WO2021171565A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573888

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18260130

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202180095406.0

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21917500

Country of ref document: EP

Kind code of ref document: A1