WO2022148936A1 - Dispositif d'impression tridimensionnelle à isolation amont et aval des moyens de chauffe de la matière fusible d'impression - Google Patents
Dispositif d'impression tridimensionnelle à isolation amont et aval des moyens de chauffe de la matière fusible d'impression Download PDFInfo
- Publication number
- WO2022148936A1 WO2022148936A1 PCT/FR2022/050042 FR2022050042W WO2022148936A1 WO 2022148936 A1 WO2022148936 A1 WO 2022148936A1 FR 2022050042 W FR2022050042 W FR 2022050042W WO 2022148936 A1 WO2022148936 A1 WO 2022148936A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- downstream
- upstream
- dimensional printing
- outer sleeve
- section
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/118—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to the field of three-dimensional printing, also called additive manufacturing.
- the present invention relates more particularly to a three-dimensional printing device comprising a heating extraction system provided with means for heating the fusible material in order to melt it for the three-dimensional printing of the part and a cooling system preventing an influence of said heating means on the whole of the three-dimensional printing device.
- the invention also relates to a three-dimensional printing machine comprising such a three-dimensional printing device.
- three-dimensional printing device within the meaning of the present invention, is meant throughout the following description a device comprising a set of means allowing the conveyance and/or the generation of molten material to a nozzle ejecting the material in fusion, for example from a tank or a hopper containing the material to be printed.
- the present invention will thus find many advantageous applications in the field of three-dimensional printing, and in particular in the printing of parts based on materials requiring precise temperature control.
- the plurality of materials that can be used including resin, thermoplastics, wax, metal (for example aluminum, steel, titanium, platinum, etc.), plaster, ceramics or even glass, participate in the variety of achievable objects.
- the parts are made by stacking successive layers of material in fusion and progressive cooling.
- three-dimensional printing installations or machines comprising a platen and a printhead provided with a nozzle, the printhead and/or the platen being able to move relative to each other in order to deposit in layers or strata on the plate a stream of molten material extracted from the nozzle.
- the stacking of the layers requiring on the one hand that the preceding layer remains at least partially in fusion the time to receive a successive layer to allow its adhesion, on the other hand that all the layers harden sufficiently to ensure the integrity of the part being printed subject to its own weight and potentially to a plurality of displacements, three-dimensional printing processes must take into account the cooling rate of the molten material and the change in its physical properties. These parameters may vary not only depending on the material selected but also during printing via changes in external conditions and/or the constant heat input resulting from the supply of molten material.
- the transition from a solid material to a molten material requires the use of a heating device, its heat is likely to spread to the rest of the printing device. This propagation is particularly harmful upstream of the heating device, where premature melting of the material can stop its supply, for example by malfunctioning of the hopper. Indeed, a propagation of heat upstream to the fusible material supply zone can cause premature melting of the fusible material and, consequently, a jam in said supply zone. Conversely, the propagation of heat downstream to the printhead of the three-dimensional printing device can influence the cooling of the stream of molten material at the outlet of the nozzle of the printhead.
- the present invention aims to improve the current situation described above.
- the present invention aims more particularly to remedy the above drawbacks by proposing a printing device limiting the propagation of heat upstream and downstream of the heating member, that is to say the influence of the heat generated by the heating device upstream on the area for supplying or storing the fusible material, for example a hopper or any other reservoir, and downstream on the environment of the print head.
- the object of the present invention relates in a first aspect to a three-dimensional printing device comprising a reservoir of fusible material, a printing head provided with a nozzle outlet through which is extracted a stream of material in fusion and a heating extraction system which comprises a conduit for conveying the material connected upstream to the reservoir and downstream to the print head, a member for moving the matter in the conduit for conveying from the reservoir to 'to the print head and a heater arranged around the conveying duct to melt the material during its movement in the conveying duct.
- the heating extraction system makes it possible to transfer fusible material from the reservoir to the print head by actuating the material displacement member inside the duct. routing while bringing the material into a state of fusion by the effect of the heating element.
- the print head thus receives molten material, according to a flow rate determined by the operation of the displacement member and a temperature determined by the operation of the heating member.
- the fusible material reservoir, the conveyance conduit and the material mover will be selected appropriately to the storage and conveyance of the selected impression material and the form in which the material is initially packaged, for example in the form of granules or in filament form.
- the conveying duct may extend in a longitudinal direction, for example along a horizontal or vertical axis, preferably horizontal to avoid the influence of gravity on the movement of the molten material in said duct. routing that may cause the molten material to settle near the print head.
- the device comprises a cooling system comprising a circulation chamber arranged around the conveying duct and a member for blowing a gaseous cooling fluid connected to an inlet of the circulation chamber to convey into the circulation chamber the gaseous cooling fluid, from upstream to downstream of the delivery duct, the circulation chamber having at least one outlet disposed on the downstream side of the delivery duct and oriented so as to eject the heated gaseous fluid without interfering with the printhead and the external space surrounding the nozzle outlet.
- the circulation chamber allows a gaseous cooling fluid to be routed around the conveying duct from upstream to downstream, the gaseous fluid being set in motion by a blower member arranged in upstream of the circulation chamber and circulating from an upstream inlet to which the blower member is connected to a downstream outlet.
- the gaseous fluid gradually heats up during its upstream-downstream circulation, in particular by recovering the heat generated by the heating device.
- the downstream outlet is oriented in such a way as to prevent the heated gaseous fluid from interacting with the printhead, which is also located downstream of the conveying duct and in particular with the nozzle at the end of the printhead through which the molten material is ejected.
- the downstream outlet of the circulation chamber can eject the gaseous fluid into the printing environment, its temperature being controlled by other means globally and/or at certain points according to the cooling requirements of the piece being printed, or even outside the printing environment, for example outside a three-dimensional printing booth comprising the printing device.
- the cooling system makes it possible to evacuate the heat generated by the heating member by sufficiently limiting its propagation upstream, where the fusible material is stored, or downstream, where the printing temperature and cooling of the material is also controlled.
- the printing device may comprise a plurality of additional means allowing the temperature control or the insulation of parts upstream or downstream of the heating extraction system, the cooling system making it possible to limit the impact of the heater on the rest of the printing device.
- the cooling system comprises an outer sleeve in which the delivery duct is housed, the outer sleeve extending over the length of the delivery duct and comprising on its outline in its downstream end portion at least one orifice allowing the heated gaseous fluid to be ejected radially to the outer sleeve.
- the outer sleeve is a hollow element, for example a tubular element, containing the delivery duct.
- the outer sleeve and conduit routing extend for example over a substantially identical length.
- the orientation of the at least one orifice directs the heated gaseous fluid so that the printhead is out of its path. More particularly, the heated gaseous fluid is ejected radially, either perpendicular to the axis along which the delivery duct and the outer sleeve extend, or in a particular case the axis along which the downstream ends extend. delivery conduit and outer sleeve.
- the cooling system comprises an internal sleeve in which the routing duct is at least partially housed, the internal sleeve being housed in the external sleeve, the internal sleeve having a section smaller than the section of the external sleeve so as to maintain a spacing between the inner sleeve and the outer sleeve, the spacing constituting at least a section of the circulation chamber.
- the internal sleeve extends partially or completely over the length of the conveying duct, the spacing between the internal sleeve and the external sleeve constituting the at least one section of the circulation chamber according to their common portion of the length of the delivery duct, so that the gaseous fluid circulates between the inner sleeve and the outer sleeve.
- the gaseous fluid can also circulate inside the internal sleeve, for example in a manner connected to the circulation chamber.
- the routing conduit comprises an upstream section consisting of a first tubular part comprising a connector for connecting an outlet endpiece of the reservoir, the outlet endpiece passing through the outer sleeve, the first tubular part and the outer sleeve being sized to maintain a spacing between the first tubular part and the outer sleeve, the spacing constituting an upstream section of the circulation chamber.
- the first tubular part is housed in the outer sleeve and forms an upstream section of the conveying duct, such that an upstream section of the outer sleeve and the upstream section of the conveying duct form an upstream section of the circulation chamber.
- This upstream section of the circulation chamber is for example completed by a downstream section formed by the inner sleeve and the outer sleeve, as described in more detail below.
- the supply of the conveying duct is carried out via the outlet end piece of the reservoir connected to the first tubular part.
- the outlet fitting passes through, for example, the outer sleeve and the first part tubular to allow the pouring of meltable material inside the first tubular part, which contains an upstream section of the material displacement member as an upstream section of the conveying duct.
- the first tubular part has, for example, a cavity opening onto the material displacement member and configured to receive the outlet nozzle of the reservoir.
- the first tubular part comprises radial fins extending over the length of the first tubular part so that the gaseous cooling fluid circulates between the fins.
- the fins have, in a cross-sectional plane, a stepped, crenellated or fir-tree shape.
- fins makes it possible to maximize the contact surface between the first tubular part and the gaseous cooling fluid, so as to ensure good cooling of the first tubular part and to avoid any rise in heat at the level of the reservoir or of the outlet nozzle of the reservoir, capable of melting the material before it is conveyed by the member for moving the material.
- the shape of the fins makes it possible to break the heat front inside the material and therefore to limit the conduction effects of the first tubular part.
- first tubular part may have a flat end allowing the reception of the outlet nozzle of the reservoir and/or any other assembly means, the fins extending in any other radial direction.
- the routing duct comprises a downstream section consisting of a second tubular part arranged in the extension of the first tubular part and receiving the heating member.
- the heating member is positioned in a downstream part of the downstream section.
- first tubular part and the second tubular part are assembled so as to form the conveying duct around which the heating member is arranged and in which the material displacement member is housed.
- the heating member is positioned as far downstream as possible from the conveying duct to limit any rise in heat upstream while allowing the melting of the material and the production of the device as described in the invention.
- the heating member corresponds for example to a resistive coil wound around the downstream part of the downstream section, and can be associated with temperature measurement means, for example a thermocouple allowing measurement of the heating temperature or of the temperature downstream of the heater.
- the downstream section comprises an upstream part comprising grooves spaced between them making it possible to reduce the conduction of heat from the downstream to the upstream on the conveying duct.
- grooves fulfill a function substantially similar to the fins described above, so as to further limit the rise of heat along the conveying duct.
- downstream and upstream parts of the downstream section are delimited by the presence of the heating member on the downstream part and of the grooves on the upstream part.
- the internal sleeve is arranged in the extension of the first tubular part and extends over the length of the second tubular part, the second tubular part and the heating member being housed in the inner sleeve.
- the circulation chamber is divided into an upstream section between the first tubular part and the outer sleeve and a downstream section between the inner sleeve and the outer sleeve, the second tubular part surrounded by the heating member being housed at inside the inner sleeve.
- the internal sleeve comprises an upstream peripheral edge comprising notches which engage in housings provided on a downstream edge of the first tubular part.
- the housings can be defined by the shape of the fins described above.
- the positioning of the notches and the housings as well as the respective shapes of the first tubular part and of the internal sleeve thus make it possible to define or not a space allowing the circulation of the gaseous cooling fluid between the internal sleeve and the second tubular part.
- the outer sleeve comprises a first opening on its outline
- the inner sleeve comprises on its outline a second opening and a third opening which are arranged facing each other, the second opening of the inner sleeve facing the first opening of the outer sleeve, said openings being arranged in an upstream part of the downstream section.
- first, second and third openings make it possible to generate a circulation of the gaseous cooling fluid perpendicularly to the longitudinal direction of the delivery duct on the upstream part of the downstream section under the effect of the circulation of the gaseous fluid in the longitudinal direction.
- This circulation can result from a Venturi effect generated by the openings and the circulation from upstream to downstream of the gaseous fluid cooling.
- the direction of the perpendicular circulation is defined vis-à-vis the section of the routing duct that it intersects, independently of the direction in which the latter extends over any other section.
- each of the first, second and third openings can be implemented in a variety of shapes, for example a circular opening hole or a plurality of perforations arranged on the upstream part of the downstream section.
- openings of the outer and inner sleeves and the grooves of the second tubular part are, according to one design, both arranged in the same upstream part of the downstream section, so that the circulation of the gaseous cooling fluid takes place on the grooves, cooling being improved by the upper contact surface.
- the material displacement member is an extraction screw which extends over the entire length of the conveying duct.
- the extraction screw makes it possible to transform a rotational movement, for example generated by a motor situated outside the circulation chamber and connected to the extraction screw, into a longitudinal displacement of the fusible material via a movement helical.
- An extraction screw may be particularly suitable for moving granular fusible material stored in a hopper type tank.
- the blower member comprises a plate provided with perforations communicating downstream with the circulation chamber (and therefore arranged upstream thereof), said perforations allowing the entry of the gaseous fluid from cooling in said circulation chamber.
- the perforated plate can be configured to prevent seepage of fusible material out of the heated extraction system and/or to allow assembly of the heated extraction system into a larger printing device and /or to allow the connection of external elements to the heating extraction system, for example a kinematic chain for driving the extraction screw.
- the blower member comprises at least one fan, the gaseous cooling fluid being air, a circulation duct being arranged between the at least one fan and the plate.
- the blower member is connected to an inlet of the circulation chamber via the circulation sheath, the plate provided with perforations communicating upstream with the circulation sheath and downstream with the circulation chamber .
- the cooling system is for example configured to circulate air at an initial temperature corresponding to the outside temperature or to the temperature of the printing environment, the heated air being subsequently rejected by the outlet downstream of the transport conduit in the external environment or the printing environment.
- the gaseous cooling fluid used is preferably air, but other gaseous cooling fluids could be envisaged by implementing the means necessary for its use in complete safety, such as its conditioning before use and its recycling and its treatment after use.
- a second aspect of the present invention relates to a three-dimensional printing machine, which comprises a three-dimensional printing device according to the first aspect of the invention.
- the three-dimensional printing device comprising the cooling system is integrated into the three-dimensional printing machine so as to allow the depositing of a stream of molten material in the three-dimensional printing machine.
- the printing machine may comprise a receiving plate comprising a platen for receiving the molten material arranged to be placed in the path of the stream of molten material.
- the machine may also include a variety of means for moving and/or controlling movement of the platen and/or print head relative to each other, and be configured to transmit power and/or operating information to the three-dimensional printing device and/or the receiving tray.
- the printing device and the machine can be designed jointly so as to facilitate the integration of the printing device with the machine, or even separately allowing assembly according to standardized characteristics.
- the Applicant proposes a three-dimensional printing device equipped with a cooling system making it possible to evacuate the heat generated by the melting of the material without impacting the storage of the fusible material upstream or the printing and cooling of the part downstream.
- FIGS. 1 to 8 illustrating an exemplary embodiment devoid of any limiting character and in which:
- Figure 1 illustrates a side view of a three-dimensional printing device according to an exemplary embodiment of the present invention.
- Figure 2 illustrates a side view of the extraction system and the print head present on the device according to figure 1.
- Figure 3 illustrates a sectional view of Figure 2.
- Figure 4 highlights the heating extraction system and the cooling system present in Figure 3.
- Figure 5 illustrates a rear view of the arrangement in accordance with Figure 1 and showing in particular the first tubular part of the delivery duct.
- Figure 6 illustrates in perspective an inner sleeve assembled with a first tubular part, the inner sleeve and the first tubular part participating in the implementation of the circulation chamber of the gaseous cooling fluid.
- Figure 7 illustrates in perspective the first tubular part of the material conveying duct.
- Figure 8 shows a schematic view of a three-dimensional printing machine on which will be implemented a three-dimensional printing device according to Figure 1.
- the supply of molten material and in particular the heating of fusible material results in the generation and propagation of heat, which can hinder the cooling of the printed parts and/or the supply chain of fusible material.
- One of the objectives of the present invention consists in allowing an evacuation of this heat protecting the supply chain upstream and downstream of the heating of fusible material.
- Figure 1 illustrates a three-dimensional printing device 1000 developed in the context of the present invention, which will be implemented on a three-dimensional printing machine 2000 illustrated in Figure 8, for the three-dimensional printing of a part.
- the three-dimensional printing device and the three-dimensional printing machine are respectively named in the remainder of the description “device 1000” and “machine 2000”.
- the device 1000 is not shown on the machine 2000 for a better reading of this FIG. 8.
- the machine 2000 comprises a reception plate 3000 comprising a plate 3010 configured to receive the molten material in layers or strata during the printing of the part.
- the machine 2000 comprises a carriage 2010 on which the device 1000 will be removably mounted.
- the machine 2000 comprises a first transmission system 2020 enabling the carriage 2010 to be moved along the two directions X and Y of the reference X, Y, Z and a second transmission system 2030 enabling the reception plate 3000 in the direction Z of the X, Y, Z marker.
- a fixed device 1000 designed specifically and integrated into the machine 2000 or even a removable device 1000 and assembled directly on the chassis 2040 of the machine 2000.
- the removable nature of the device 1000 has the advantage of allowing the replacement of said device 1000 by another having or not having the characteristics that are the subject of the invention, for example for an adaptation of the device 1000 on the machine 2000 according to the type of part to be printed and the fusible material used for printing this part.
- this device 1000 comprises a heating extraction system 1200 connected upstream to a reservoir 1300 and downstream to a printing head 1400.
- the device 1000 comprises a material moving member 1220 configured to move material from upstream to downstream, coupled to a heating member 1230 configured to cause the material to pass into a molten state before it enters a material channel 1410 of the printhead 1400, which then ejects a stream of molten material through its nozzle outlet 1411.
- the printing device 1000 is configured for printing material initially packaged in granules, so that the reservoir 1300 is a hopper and the moving member of the material 1220 is an extraction screw housed in a conveying conduit 1210, the reservoir 1300 supplying the displacement member 1220 via an outlet nozzle 1310.
- the reservoir 1300 and displacement members 1220 connected to the print head 1100 for example specific to the material in question or to the packaging of the material, which can also be obtained in wire form or in any other form suitable for three-dimensional printing.
- the displacement member 1220 and the conveying duct 1210 can form a one-piece element making it possible to contain and convey the molten material, or else two distinct elements with separate and/or complementary functions. It is further considered in this description that the delivery conduit 1210 extends in a longitudinal and horizontal direction. Other directions of the routing duct 1210 could be envisaged as variants, for example a vertical or inclined direction. In the example described here in support of Figures 1 to 7, a first axis Xi is thus defined corresponding to the longitudinal direction in which the routing duct 1210 extends, and centered on this same routing duct 1210 .
- the device 1000 also comprises a cooling system making it possible to convey a gaseous fluid around the conveying duct 1210 so as to counterbalance the heat generated by the heating member 1230 and limit its propagation.
- a cooling system making it possible to convey a gaseous fluid around the conveying duct 1210 so as to counterbalance the heat generated by the heating member 1230 and limit its propagation.
- an outer sleeve 1120 extending along the first axis Xi in which the conveying duct 1210 is housed and of section greater than that of the conveying duct 1210, so that a fluid can be conveyed in a chamber circulation 1110 between the outer sleeve 1120 and the delivery conduit 1210.
- the outer sleeve 1120 as the delivery conduit 1210 may for example have a cross section of circular shape, and themselves have a cylindrical shape.
- the entrance to the cooling system is made upstream via a plate 1140 fixed to the upstream end of the outer sleeve 1120 and of the routing duct 1210 and comprising at least one perforation 1141 allowing the introduction of the gaseous fluid into the circulation chamber 1110.
- the gaseous fluid can be conveyed to the inlet of the cooling system by a variety of means depending on the gaseous fluid selected, its source and its packaging.
- a fan-type blower 1150 (partially shown in Figure 4) integrated into the device 1000 or external, generating an air circulation flow and connected to the plate 1140 by a circulation duct 1160 (partially shown in Figures 3 and 4), the fan 1150 being positioned in the circulation duct 1160 or in front of an entrance thereof.
- the outer sleeve 1120 comprises a plurality of orifices 1121, or "ejectors", arranged along the surface of a downstream portion of the outer sleeve 1120 (FIGS. 2 to 4), each constituting an outlet of the cooling system and oriented so that the gaseous fluid escapes radially with respect to the outer sleeve 1120 and therefore with respect to the conveying duct 1210 and to the first axis Xi.
- the gaseous fluid circulates from the at least one perforation 1141 upstream to the orifices 1121 downstream according to a longitudinal circulation flow along the first axis Xi and gradually heats up, in particular near the heating member 1230 , before being ejected in a radial direction so as not to heat the print head 1400 and in particular the outlet of the nozzle 1411.
- This design makes it possible to cool the routing duct 1210 without redirecting the heat recovered by the gaseous fluid on another element of the device 1000.
- the gaseous fluid also makes it possible to cool the delivery conduit 1210 in its upstream part located before the heating member 1230, which attenuates the propagation of heat in said conduit of routing 1210 towards tank 1300.
- the heating extraction system 1200 can also be designed to limit the propagation of heat from the heating member 1230.
- the routing duct 1210 is made of two distinct elements 1210a and 1210b.
- a first tubular part 1210a illustrated in FIG. 7 forming an upstream section of the conveying duct 1210 and receiving on the one hand the displacement member 1220 and on the other hand the outlet nozzle 1310 of the reservoir 1300.
- the first tubular part 1210a has, for example, a flat surface 1213 having an opening 1214 complementary to the outlet fitting 1310, so that the fusible material is poured inside the first tubular part 1210a and set in motion along the first axis Xi by the displacement member 1220.
- the first tubular part 1210a and the outer sleeve 1120 form an upstream section of the circulation chamber 1110, so that the gaseous fluid circulates between these two elements.
- the first tubular part 1210a has a plurality of fins 1211 arranged lengthwise along the first axis Xi and extending radially with respect to this first axis Xi.
- the circulation of the gaseous cooling fluid between the fins 1211 in the direction of their length makes it possible to increase the heat transfers with the first tubular part 1210a, the fins 1211 also possibly having a cross section facilitating the effects of convection and/or limiting the conduction inside the first tubular part 1210a, for example a cross-section in the shape of a fir tree or a staircase, or any other appropriate shape, as illustrated in FIG. 7.
- This design makes it possible in particular to optimize the cooling on the upstream section of the conveying duct 1210 and therefore of the heating extraction system 1200, so as to keep the hopper 1300 and its outlet endpiece 1310 as much as possible below the melting temperature of the fusible material.
- the heating extraction system 1200 comprises a second tubular part 1210b forming a downstream section of the routing duct 1210 and configured to engage with a downstream end of the first tubular part 1210a.
- the second tubular part 1210b has for example a shoulder 1215 complementary to an opening 1216 of the first tubular part 1210a making it possible to obtain a routing duct 1210 correctly adjusted along the first axis Xi. It is obviously possible to design a variety of means for assembling the first tubular part 1210a and the second tubular part 1210b making it possible to obtain with precision a length, a radial adjustment or any other desired parameter of the routing duct 1210.
- a second tubular part 1210b is provided here comprising a downstream part receiving the heating member 1230 and an upstream part having a plurality of grooves 1212 spaced apart along the first axis Xi, as illustrated in FIGS. 3 and 4.
- This design allows to further reduce the rise of heat upstream by reducing the internal conduction effects of the second tubular part 1210b.
- an internal sleeve 1130 is provided housed in the external sleeve 1120 and receiving the downstream section of the conveying duct 1210, namely the second tubular part 1210b. It is therefore understood that the inner sleeve 1130 has a cross section between that of the second tubular part 1210b and that of the outer sleeve 1120.
- the cross section of the inner sleeve 1130 may have a circular shape similar to that of the outer sleeve 1120 and/or the conveying duct 1210.
- the gaseous fluid circulating from the upstream inlet formed by the at least one perforation 1141 to the downstream outlet formed by the orifices 1121 it also appears that the gaseous fluid circulates mainly between the outer sleeve 1120 and the inner sleeve 1130, the spacing between the outer sleeve 1120 and the inner sleeve 1130 forming a downstream section of the circulation chamber 1110.
- This design thus makes it possible to allow the circulation of the gaseous fluid from the upstream to downstream by limiting or preventing a flow of gaseous fluid directly on the heating member 1230 and the downstream part of the downstream section of the conveyance duct ent 1210 around which the heating element 1230 is positioned, such circulation being able to limit the efficiency of the heating of fusible material in the conveying duct 1210.
- the internal sleeve 1130 extends not only around the downstream part of the downstream section of the routing duct 1210, but also over the upstream part of the downstream section, so that the internal sleeve 1130 completely surrounds the second tubular part 1210b, apart from the portion of the second tubular part 1210b assembled with the first tubular part 1210a.
- the inner sleeve 1130 is thus arranged directly in the extension of the first tubular part 1210a, its spacing with the outer sleeve 1120 forming a downstream section of the circulation chamber 1110 complementary to the upstream section of the circulation chamber 1110.
- the internal sleeve 1130 is for example assembled with the first tubular part 1210a according to the example of FIG. 6, the internal sleeve 1130 comprising a plurality of notches 1131 arranged along the peripheral edge of its upstream end, capable of engaging in housings of the first tubular part 1210a, here housings formed by the spacing between the fins 1211 along the downstream end of the first tubular part 1210a.
- housings of the first tubular part 1210a here housings formed by the spacing between the fins 1211 along the downstream end of the first tubular part 1210a.
- a flow of gaseous fluid occurs inside the internal sleeve 1130.
- the outer sleeve 1120 has a first opening 1122
- the inner sleeve 1130 has a second opening 1132 arranged opposite the first opening 1122 and a third opening 1133 arranged opposite the second opening 1132, so that the first opening 1122 opens onto the second opening 1132 and the second opening 1132 and the third opening 1133 are located around the second tubular part 1120b on either side of the first axis Xi.
- the three openings 1122, 1132 and 1133 are thus aligned along a second axis X2 perpendicular to the first axis Xi and allow circulation of the gaseous fluid along this second axis X2 under the action of the longitudinal circulation of the gaseous fluid inside of the circulation chamber 1110, in particular by Venturi effect.
- This perpendicular circulation makes it possible to improve the cooling of a section of the delivery duct 1210 with respect to the longitudinal circulation and therefore to limit the conduction of heat on this section.
- Apertures 1122, 1132, and 1133 can be made in a variety of shapes, with Figure 6 illustrating, for example, a second aperture 1132 provided by a single through hole and a third aperture 1133 provided by a plurality of perforations.
- the second axis X2 is preferably positioned on the upstream part of the downstream section of the second tubular part 1210b so that the perpendicular circulation of the gaseous fluid takes place directly upstream of the heating member 1230 on the grooves 1212, the structure of the grooves 1212 increasing the heat exchanges by convection with the gaseous fluid and limiting the thermal conduction on this section of the second tubular part 1210b.
- This design thus makes it possible to produce an anti-heat return system effectively stopping the rise of heat from the heating element 1230 upstream of the heating extraction system 1200 and more particularly towards the reservoir 1300.
- the whole of the cooling system, as well as the heating member 1230 can be coupled to means for controlling and/or measuring the temperature.
- means for controlling and/or measuring the temperature comprise, for example, one or more sensors arranged at the level of the routing duct 1210 or of the circulation chamber 1110, for example a thermocouple (not represented here) associated with the heating member 1230, and make it possible to estimate a plurality of parameters such as the temperature of the fusible material or of the elements of the heating extraction system 1200 or else the flow rate of longitudinal and/or perpendicular circulation.
- the control means comprise, for example, an electronic card programmed to receive as input information from the aforementioned sensors and/or parameters relating to the fusible material being printed and to control the actuation of the blowing member and/ or of the heater 1230 to ensure the melting of the fusible material before its arrival in the print head 1400 and/or a sufficient heat dissipation.
- an electronic card can be integrated into the printing device 1000, into the three-dimensional printing machine 2000 or else into an external automaton.
- the present invention provides a three-dimensional printing device equipped with a heating extraction system and a cooling system allowing the evacuation of the heat generated during printing.
- This cooling system is in particular configured to prevent the propagation of heat towards the rest of the printing device, in particular the diffusion of heat towards the print head and the outlet of the nozzle.
- the printing temperature and the cooling of the material after it leaves the nozzle can thus be controlled by limiting the influence of the heating extraction system.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
Abstract
La présente invention concerne un dispositif d'impression tridimensionnelle comprenant un système d'extraction chauffant qui comprend un conduit d'acheminement (1210) de matière fusible connecté en amont à un réservoir et en aval à une tête d'impression (1400) munie d'une buse, un organe de déplacement (1220) de ladite matière dans ledit conduit d'acheminement (1210) et un organe de chauffe (1230) agencé autour dudit conduit d'acheminement (1210) pour faire fondre ladite matière, ledit dispositif comprenant un système de refroidissement comportant une chambre de circulation (1110) d'un fluide gazeux de refroidissement agencée autour dudit conduit d'acheminement (1210), ledit fluide gazeux de refroidissement circulant depuis l'amont jusque l'aval dudit conduit d'acheminement (1210), ladite chambre de circulation (1110) présentant au moins une sortie aval orientée de manière à éjecter le fluide gazeux réchauffé sans interférer sur ladite tête d'impression (1400) en aval et sur l'espace externe environnant la sortie de buse.
Description
Description
Titre : Dispositif d’impression tridimensionnelle à isolation amont et aval des moyens de chauffe de la matière fusible d’impression
Domaine technique
La présente invention concerne le domaine de l’impression tridimensionnelle, aussi appelée fabrication additive.
La présente invention concerne plus particulièrement un dispositif d’impression tridimensionnelle comportant un système d’extraction chauffant muni de moyens de chauffe de la matière fusible afin de la faire fondre pour l’impression tridimensionnelle de la pièce et un système de refroidissement empêchant une influence desdits moyens de chauffe sur l’ensemble du dispositif d’impression tridimensionnelle. L’invention concerne également une machine d’impression tridimensionnelle comprenant un tel dispositif d’impression tridimensionnelle .
Par dispositif d’impression tridimensionnelle au sens de la présente invention, on entend dans toute la description qui suit un dispositif comprenant un ensemble de moyens permettant l’acheminement et/ou la génération de matière en fusion jusqu’à une buse éjectant la matière en fusion, par exemple à partir d’un réservoir ou d’une trémie contenant la matière à imprimer.
La présente invention trouvera ainsi de nombreuses applications avantageuses dans le domaine de l’impression tridimensionnelle, et notamment dans l’impression de pièces à base de matériaux nécessitant un contrôle de température précis.
Etat de la technique
Le Demandeur observe que le développement de l’impression tridimensionnelle permet la fabrication d’une variété de pièces, sur des séries de taille limitée mais progressivement croissante au fur et à mesure des progrès technologiques.
La pluralité de matériaux employables, parmi lesquels la résine, les thermoplastiques, la cire, le métal (par exemple l’aluminium, l’acier, le titane, le platine, etc.), le plâtre, les céramiques ou encore le verre, participent de la variété d’objets réalisables.
Les pièces sont réalisées par empilement de couches successives de matière en fusion et refroidissement progressif. Pour réaliser cet empilement, il est connu d’employer des installations ou machines d’impression tridimensionnelle comportant un plateau et une tête d’impression munie d’une buse, la tête d’impression et/ou le plateau étant aptes à se déplacer
l’un par rapport à l’autre afin de déposer par couches ou strates sur le plateau un filet de matière en fusion extrait de la buse.
Pour une pluralité de raisons, une maîtrise précise de la génération de chaleur est souhaitable en tout point du dispositif, du réservoir de matière à imprimer jusqu’à la dépose et le refroidissement de la matière en fusion.
Notamment, l’empilement des couches nécessitant d’une part que la couche précédente reste au moins partiellement en fusion le temps de recevoir une couche successive pour permettre son adhérence, d’autre part que l’ensemble des couches durcisse suffisamment pour assurer l’intégrité de la pièce en cours d’impression soumise à son propre poids et potentiellement à une pluralité de déplacements, les procédés d’impression tridimensionnelle doivent tenir compte de la vitesse de refroidissement de la matière en fusion et du changement de ses propriétés physiques. Ces paramètres peuvent varier non seulement selon le matériau sélectionné mais aussi en cours d’impression via des changements de conditions externes et/ou l’apport de chaleur constant résultant de l’approvisionnement de matière en fusion.
Le passage d’une matière solide à une matière en fusion nécessitant l’emploi d’un organe de chauffe, sa chaleur est susceptible de se propager au reste du dispositif d’impression. Cette propagation est particulièrement délétère en amont de l’organe de chauffe, où une fusion prématurée de la matière peut stopper son approvisionnement, par exemple par dysfonctionnement de la trémie. En effet, une propagation de la chaleur en amont jusqu’à la zone d’approvisionnement en matière fusible peut engendrer une fusion prématurée de la matière fusible et, en conséquence, un bourrage dans ladite zone d’approvisionnement. Inversement, la propagation de la chaleur en aval jusqu’à la tête d’impression du dispositif d’impression tridimensionnel peut influencer le refroidissement du filet de matière en fusion en sortie de la buse de la tête d’impression.
Le Demandeur soumet par conséquent qu’il n’existe à ce jour aucune solution alternative satisfaisante permettant d’éviter suffisamment l’influence néfaste de l’organe de chauffe sur le bon fonctionnement du dispositif d’impression tridimensionnelle.
Résumé de l’invention
La présente invention vise à améliorer la situation actuelle décrite ci-dessus.
La présente invention vise plus particulièrement à remédier aux inconvénients ci-dessus en proposant un dispositif d’impression limitant la propagation de chaleur en amont et en aval de l’organe de chauffe, c’est-à-dire l’influence de la chaleur engendrée par l’organe de chauffe
en amont sur la zone d’approvisionnement ou de stockage de la matière fusible, par exemple une trémie ou tout autre réservoir, et en aval sur l’environnement de la tête d’impression.
A cet effet, l’objet de la présente invention concerne dans un premier aspect un dispositif d’impression tridimensionnelle comprenant un réservoir de matière fusible, une tête d’impression munie d’une sortie de buse par laquelle est extrait un filet de matière en fusion et un système d’extraction chauffant qui comprend un conduit d’acheminement de la matière connecté en amont au réservoir et en aval à la tête d’impression, un organe de déplacement de la matière dans le conduit d’acheminement depuis le réservoir jusqu’à la tête d’impression et un organe de chauffe agencé autour du conduit d’acheminement pour faire fondre la matière durant son déplacement dans le conduit d’acheminement.
En d’autres termes, le système d’extraction chauffant permet de transférer de la matière fusible du réservoir jusqu’à la tête d’impression par l’actionnement de l’organe de déplacement de la matière à l’intérieur du conduit d’acheminement tout en amenant la matière dans un état de fusion par l’effet de l’organe de chauffe. La tête d’impression reçoit ainsi de la matière en fusion, selon un débit déterminé par le fonctionnement de l’organe de déplacement et une température déterminée par le fonctionnement de l’organe de chauffe.
On entend ici et dans toute la description ci-après que les notions d’amont et d’aval seront prises en considération du flux de circulation de matière du réservoir (amont) vers la tête d’impression (aval), le système d’extraction chauffant et plus particulièrement l’organe de déplacement générant le flux de circulation de matière de l’amont vers l’aval.
On comprend additionnellement que le réservoir de matière fusible, le conduit d’acheminement et l’organe de déplacement de matière seront sélectionnés de manière appropriée au stockage et à l’acheminement du matériau d’impression sélectionné et à la forme selon laquelle le matériau est initialement conditionné, par exemple sous forme de granulés ou sous forme fïlaire. Le conduit d’acheminement peut s’étendre selon une direction longitudinale, par exemple le long d’un axe horizontal ou vertical, de préférence horizontal pour éviter l’influence de la gravité sur le déplacement de la matière en fusion dans ledit conduit d’acheminement pouvant engendrer un tassement de la matière en fusion à proximité de la tête d’impression.
Avantageusement, le dispositif comprend un système de refroidissement comportant une chambre de circulation agencée autour du conduit d’acheminement et un organe de soufflage d’un fluide gazeux de refroidissement connecté à une entrée de la chambre de circulation pour véhiculer dans la chambre de circulation le fluide gazeux de refroidissement, depuis l’amont jusque l’aval du conduit d’acheminement, la chambre de circulation présentant au moins une
sortie disposée du côté aval du conduit d’acheminement et orientée de manière à éjecter le fluide gazeux réchauffé sans interférer sur la tête d’impression et sur l’espace externe environnant la sortie de buse.
En d’autres termes, la chambre de circulation permet l’acheminement d’un fluide gazeux de refroidissement autour du conduit d’acheminement de l’amont vers l’aval, le fluide gazeux étant mis en mouvement par un organe de soufflage disposé en amont de la chambre de circulation et circulant d’une entrée amont à laquelle l’organe de soufflage est connecté jusqu’à une sortie aval. Le fluide gazeux se réchauffe progressivement lors de sa circulation amont-aval, notamment en récupérant la chaleur générée par l’organe de chauffe. La sortie aval est orientée de façon à éviter que le fluide gazeux réchauffé n’interagisse avec la tête d’impression disposée elle aussi en aval du conduit d’acheminement et en particulier avec la buse en extrémité de la tête d’impression par laquelle la matière en fusion est éjectée. Selon la conception, la sortie aval de la chambre de circulation peut éjecter le fluide gazeux dans l’environnement d’impression, sa température étant contrôlée par d’autres moyens de manière globale et/ou en certains points selon les exigences de refroidissement de la pièce en cours d’impression, ou encore à l’extérieur de l’environnement d’impression, par exemple à l’extérieur d’une cabine d’impression tridimensionnelle comprenant le dispositif d’impression.
Grâce à la présente invention, le système de refroidissement permet d’évacuer la chaleur générée par l’organe de chauffe en limitant suffisamment sa propagation en amont, où la matière fusible est stockée, ou en aval, où la température d’impression et de refroidissement de la matière est également contrôlée.
On comprend additionnellement que le dispositif d’impression peut comporter une pluralité de moyens supplémentaires permettant le contrôle de la température ou l’isolation de pièces en amont ou en aval du système d’extraction chauffant, le système de refroidissement permettant de limiter au minimum l’impact de l’organe de chauffe sur le reste du dispositif d’impression.
Dans un mode de réalisation avantageux de l’invention, le système de refroidissement comprend un manchon externe dans lequel est logé le conduit d’acheminement, le manchon externe s’étendant sur la longueur du conduit d’acheminement et comprenant sur son contour dans sa portion d’extrémité aval au moins un orifice permettant d’éjecter le fluide gazeux réchauffé radialement au manchon externe.
On comprend ici que le manchon externe est un élément creux, par exemple un élément tubulaire, contenant le conduit d’acheminement. Le manchon externe et le conduit
d’acheminement s’étendent par exemple sur une longueur sensiblement identique. L’orientation de l’au moins un orifice permet de diriger le fluide gazeux réchauffé de sorte que la tête d’impression se situe hors de sa trajectoire. Plus particulièrement, le fluide gazeux réchauffé est éjecté radialement, soit de manière perpendiculaire à l’axe selon lequel s’étendent le conduit d’acheminement et le manchon externe, ou dans un cas particulier l’axe selon lequel s’étendent les extrémités aval du conduit d’acheminement et du manchon externe.
De préférence, le système de refroidissement comporte un manchon interne dans lequel est logé au moins partiellement le conduit d’acheminement, le manchon interne étant logé dans le manchon externe, le manchon interne ayant une section inférieure à la section du manchon externe de manière à conserver un espacement entre le manchon interne et le manchon externe, l’espacement constituant au moins un tronçon de la chambre de circulation.
On comprend ici que le manchon interne s’étend partiellement ou complètement sur la longueur du conduit d’acheminement, l’espacement entre le manchon interne et le manchon externe constituant l’au moins un tronçon de la chambre de circulation selon leur portion commune de la longueur du conduit d’acheminement, de sorte que le fluide gazeux circule entre le manchon interne et le manchon externe. Selon une conception particulière, le fluide gazeux peut également circuler à l’intérieur du manchon interne, par exemple de manière connectée à la chambre de circulation.
Dans un mode de réalisation particulier, le conduit d’acheminement comprend un tronçon amont constitué d’une première pièce tubulaire comprenant un connecteur pour le raccordement d’un embout de sortie du réservoir, l’embout de sortie passant au travers du manchon externe, la première pièce tubulaire et le manchon externe étant dimensionnés pour conserver un espacement entre la première pièce tubulaire et le manchon externe, l’espacement constituant un tronçon amont de la chambre de circulation.
On comprend ici que la première pièce tubulaire est logée dans le manchon externe et forme un tronçon amont du conduit d’acheminement, de sorte qu’un tronçon amont du manchon externe et le tronçon amont du conduit d’acheminement forment un tronçon amont de la chambre de circulation. Ce tronçon amont de la chambre de circulation est par exemple complété par un tronçon aval formé par le manchon interne et le manchon externe, comme décrit plus en détail ci-après.
On comprend additionnellement que l’approvisionnement du conduit d’acheminement est effectué par l’intermédiaire de l’embout de sortie du réservoir connecté à la première pièce tubulaire. L’embout de sortie traverse par exemple le manchon externe et la première pièce
tubulaire pour permettre le déversement de matière fusible à l’intérieur de la première pièce tubulaire, laquelle contient un tronçon amont de l’organe de déplacement de la matière en tant que tronçon amont du conduit d’acheminement. La première pièce tubulaire présente par exemple une cavité débouchant sur l’organe de déplacement de matière et configurée pour recevoir l’embout de sortie du réservoir.
Dans un mode de réalisation spécifique combiné avec le mode précédent, la première pièce tubulaire comprend des ailettes radiales s’étendant sur la longueur de la première pièce tubulaire de sorte que le fluide gazeux de refroidissement circule entre les ailettes.
De préférence, les ailettes présentent dans un plan de coupe transversal une forme en escalier, crénelée ou encore en sapin.
L’homme du métier comprend que l’ajout d’ailettes permet de maximiser la surface de contact entre la première pièce tubulaire et le fluide gazeux de refroidissement, de manière à assurer un bon refroidissement de la première pièce tubulaire et à éviter toute remontée de chaleur au niveau du réservoir ou de l’embout de sortie du réservoir, susceptible de faire fondre la matière avant son acheminement par l’organe de déplacement de la matière. La forme des ailettes permet de casser le front de chaleur à l’intérieur de la matière et donc de limiter les effets de conduction de la première pièce tubulaire.
On comprend additionnellement que la première pièce tubulaire peut présenter une extrémité plane permettant la réception de l’embout de sortie du réservoir et/ou de tout autre moyen d’assemblage, les ailettes s’étendant dans toute autre direction radiale.
Dans un mode de réalisation additionnel, le conduit d’acheminement comprend un tronçon aval constitué d’une seconde pièce tubulaire disposée dans le prolongement de la première pièce tubulaire et recevant l’organe de chauffe.
De préférence, l’organe de chauffe est positionné dans une partie aval du tronçon aval.
On comprend ici que la première pièce tubulaire et la seconde pièce tubulaire s’assemblent de façon à former le conduit d’acheminement autour duquel l’organe de chauffe est agencé et dans lequel l’organe de déplacement de matière est logé. L’organe de chauffe est positionné le plus en aval possible du conduit d’acheminement pour limiter toute remontée de chaleur en amont tout en permettant la fusion de la matière et la réalisation du dispositif tel que décrit dans l’invention. L’organe de chauffe correspond par exemple à une spire résistive enroulée autour de la partie aval du tronçon aval, et peut être associé à des moyens de mesure de température, par exemple un thermocouple permettant la mesure de la température de chauffe ou de la température en aval de l’organe de chauffe.
De préférence, le tronçon aval comprend une partie amont comportant des gorges espacées entre elles permettant de réduire la conduction de chaleur de l’aval vers l’amont sur le conduit d’ acheminement.
On comprend ici que les gorges remplissent une fonction sensiblement similaire aux ailettes décrites ci-avant, de sorte à limiter d’autant plus la remontée de chaleur le long du conduit d’ acheminement.
On comprend additionnellement que les parties aval et amont du tronçon aval sont délimitées par la présence de l’organe de chauffe sur la partie aval et des gorges sur la partie amont.
Dans encore un mode de réalisation combiné avec les modes de réalisation précédents, le manchon interne est disposé dans le prolongement de la première pièce tubulaire et s’étend sur la longueur de la seconde pièce tubulaire, la seconde pièce tubulaire et l’organe de chauffe étant logés dans le manchon interne.
On comprend ici que la chambre de circulation est divisée en un tronçon amont entre la première pièce tubulaire et le manchon externe et un tronçon aval entre le manchon interne et le manchon externe, la seconde pièce tubulaire entourée de l’organe de chauffe étant logés à l’intérieur du manchon interne.
De préférence, le manchon interne comprend un bord périphérique amont comprenant des crans qui s’engagent dans des logements prévus sur un bord aval de la première pièce tubulaire.
On comprend ici que les logements peuvent être définis par la forme des ailettes décrites ci- avant. Le positionnement des crans et des logements ainsi que les formes respectives de la première pièce tubulaire et du manchon interne permettent ainsi de définir ou non un espace permettant la circulation du fluide gazeux de refroidissement entre le manchon interne et la seconde pièce tubulaire.
Dans un autre mode de réalisation combiné avec le mode précédent, le manchon externe comprend sur son contour une première ouverture, le manchon interne comprend sur son contour une deuxième ouverture et une troisième ouverture qui sont disposées en vis-à-vis, la deuxième ouverture du manchon interne étant en regard de la première ouverture du manchon externe, lesdites ouvertures étant disposées dans une partie amont du tronçon aval.
L’homme du métier comprend que les première, deuxième et troisième ouvertures permettent de générer une circulation du fluide gazeux de refroidissement perpendiculairement au sens longitudinal du conduit d’acheminement sur la partie amont du tronçon aval sous l’effet de la circulation du fluide gazeux dans le sens longitudinal. Cette circulation peut résulter d’un effet Venturi généré par les ouvertures et la circulation de l’amont vers l’aval du fluide gazeux
de refroidissement. Bien évidemment, la direction de la circulation perpendiculaire est définie vis-à-vis du tronçon du conduit d’acheminement qu’elle intersecte, indépendamment de la direction dans laquelle celui-ci s’étend sur un quelconque autre tronçon.
On comprend ici que chacune des première, deuxième et troisième ouvertures peut être mise en œuvre selon une variété de formes, par exemple un trou circulaire débouchant ou une pluralité de perforations disposées sur la partie amont du tronçon aval.
On comprend additionnellement que les ouvertures des manchons externe et interne et les gorges de la seconde pièce tubulaire sont, selon une conception, toutes deux disposées dans une même partie amont du tronçon aval, de sorte que la circulation du fluide gazeux de refroidissement s’effectue sur les gorges, le refroidissement étant amélioré par la surface de contact supérieure.
Dans un mode de mise en œuvre, l’organe de déplacement de la matière est une vis d’extraction qui s’étend sur toute la longueur du conduit d’acheminement.
On comprend ici que la vis d’extraction permet de transformer un mouvement de rotation, par exemple généré par un moteur situé hors de la chambre de circulation et relié à la vis d’extraction, en un déplacement longitudinal de la matière fusible via un mouvement hélicoïdal. Une vis d’extraction peut être particulièrement adaptée au déplacement de matière fusible en granulés stockée dans un réservoir de type trémie.
Dans un mode de mise en œuvre particulier, l’organe de soufflage comprend une plaque munie de perforations communiquant en aval avec la chambre de circulation (et donc disposée en amont de celle-ci), lesdites perforations permettant l’entrée du fluide gazeux de refroidissement dans ladite chambre de circulation.
Selon la conception, la plaque munie de perforations peut être configurée pour empêcher l’infiltration de matière fusible hors du système d’extraction chauffant et/ou pour permettre l’assemblage du système d’extraction chauffant dans un dispositif d’impression plus grand et/ou pour permettre la connexion d’éléments externes au système d’extraction chauffant, par exemple une chaîne cinématique d’entraînement de la vis d’extraction.
De préférence, l’organe de soufflage comprend au moins un ventilateur, le fluide gazeux de refroidissement étant de l’air, une gaine de circulation étant agencée entre l’au moins un ventilateur et la plaque.
On comprend ici que l’organe de soufflage est connecté à une entrée de la chambre de circulation par l’intermédiaire de la gaine de circulation, la plaque munie de perforations communiquant en amont avec la gaine de circulation et en aval avec la chambre de circulation.
Le système de refroidissement est par exemple configuré pour faire circuler de l’air à une température initiale correspondant à la température extérieure ou à la température de l’environnement d’impression, l’air réchauffé étant par la suite rejeté par la sortie en aval du conduit d’acheminement dans l’environnement extérieur ou l’environnement d’impression. Le fluide gazeux de refroidissement utilisé est préférentiellement de l’air, mais d’autres fluides gazeux de refroidissement pourraient être envisagés en mettant en œuvre des moyens nécessaires à son usage en toute sécurité tels que son conditionnement avant usage et son recyclage et son traitement après usage.
Un second aspect de la présente invention concerne une machine d’impression tridimensionnelle, laquelle comprend un dispositif d’impression tridimensionnelle selon le premier aspect de l’invention.
On comprend ici que le dispositif d’impression tridimensionnelle comprenant le système de refroidissement est intégré à la machine d’impression tridimensionnelle de manière à permettre la dépose d’un filet de matière en fusion dans la machine d’impression tridimensionnelle .
La machine d’impression peut comprendre un plateau de réception comportant une platine de réception de la matière en fusion agencée pour être disposée dans la trajectoire du filet de matière en fusion. La machine peut également comprendre une variété de moyens permettant le déplacement et/ou la commande du déplacement de la platine et/ou de la tête d’impression l’un par rapport à l’autre, et être configurée pour transmettre de l’énergie et/ou des informations de fonctionnement envers le dispositif d’impression tridimensionnelle et/ou le plateau de réception.
Le dispositif d’impression et la machine peuvent être conçus de manière conjointe de sorte à faciliter l’intégration du dispositif d’impression avec la machine, ou encore de manière séparée permettant un assemblage selon des caractéristiques standardisées.
Ainsi, par les différentes caractéristiques techniques fonctionnelles et structurelles ci-dessus, le Demandeur propose un dispositif d’impression tridimensionnelle équipé d’un système de refroidissement permettant d’évacuer la chaleur générée par la mise en fusion de la matière sans impacter le stockage de la matière fusible en amont ou l’impression et le refroidissement de la pièce en aval.
Brève description des figures
D’autres caractéristiques et avantages de la présente invention ressortiront de la description ci-dessous en référence aux figures 1 à 8 annexées illustrant un exemple de réalisation dépourvu de tout caractère limitatif et sur lesquelles :
[Fig. 1] La figure 1 illustre une vue de côté d’un dispositif d’impression tridimensionnelle selon un exemple de réalisation de la présente invention.
[Fig. 2] La figure 2 illustre une vue de côté du système d’extraction et de la tête d’impression présents sur le dispositif conforme à la figure 1.
[Fig. 3] La figure 3 illustre une vue en coupe de la figure 2.
[Fig. 4] La figure 4 met en évidence le système d’extraction chauffant et le système de refroidissement présents sur la figure 3.
[Fig. 5] La figure 5 illustre une vue de derrière du disposition conforme à la figure 1 et montrant notamment la première pièce tubulaire du conduit d’acheminement.
[Fig. 6] La figure 6 illustre en perspective un manchon interne assemblé avec une première pièce tubulaire, le manchon interne et la première pièce tubulaire participant à la mise en œuvre de la chambre de circulation du fluide gazeux de refroidissement.
[Fig. 7] La figure 7 illustre en perspective la première pièce tubulaire du conduit d’acheminement de la matière.
[Fig. 8] La figure 8 représente une vue schématique d’une machine d’impression tridimensionnelle sur laquelle sera mis en œuvre un dispositif d’impression tridimensionnelle conforme à la figure 1.
Description détaillée
La présente invention va maintenant être décrite dans ce qui va suivre en référence conjointement aux figures 1 à 8 annexées à la description. Des mêmes éléments sont identifiés avec des mêmes signes de référence tout au long de la description qui va suivre.
Comme indiqué dans le préambule de la description, l’approvisionnement de matière en fusion et notamment la chauffe de matière fusible résulte en une génération et une propagation de chaleur, laquelle peut entraver le refroidissement des pièces imprimées et/ou la chaîne d’approvisionnement de matière fusible.
Un des objectifs de la présente invention consiste à permettre une évacuation de cette chaleur protégeant la chaîne d’approvisionnement en amont et en aval de la chauffe de matière fusible.
Ceci est rendu possible dans l’exemple décrit ci-après.
On comprendra ici que cet exemple n’est pas limitatif et que l’invention trouvera d’autres applications pour la fabrication additive selon d’autres critères, par exemple l’impression de matériaux nécessitant un contrôle précis de la température en tout point de la chaîne d’ approvisionnement.
La figure 1 illustre un dispositif d’impression tridimensionnelle 1000 développé dans le cadre de la présente invention, lequel sera mis en œuvre sur une machine d’impression tridimensionnelle 2000 illustrée en figure 8, pour l’impression tridimensionnelle d’une pièce. Le dispositif d’impression tridimensionnelle et la machine d’impression tridimensionnelle sont respectivement nommés dans la suite de la description « dispositif 1000 » et « machine 2000 ». Sur la figure 8, le dispositif 1000 n’est pas représenté sur la machine 2000 pour une meilleure lecture de cette figure 8. La machine 2000 comporte un plateau de réception 3000 comprenant une platine 3010 configurée pour recevoir par couches ou strates la matière en fusion durant l’impression de la pièce. La machine 2000 comporte un chariot 2010 sur lequel sera monté de manière amovible le dispositif 1000. Le plateau de réception 3000 et/ou la platine 3010 et/ou le chariot 2010 peuvent être articulés de manière à pouvoir être déplacés à l’intérieur de la machine 2000 ou encore l’un vis-à-vis de l’autres selon une pluralité de mouvements, par exemple selon trois axes de translation, selon la forme de la pièce à imprimer en tri-dimensions. Sur l’exemple de la figure 8, la machine 2000 comprend un premier système de transmission 2020 permettant de déplacer le chariot 2010 selon les deux directions X et Y du repère X, Y, Z et un second système de transmission 2030 permettant de déplacer le plateau de réception 3000 selon la direction Z du repère X, Y, Z. Des variantes sont envisageables, par exemple un dispositif 1000 fixe, conçu spécifiquement et de manière intégrée à la machine 2000 ou encore un dispositif 1000 amovible et assemblé directement sur le châssis 2040 de la machine 2000. Le caractère amovible du dispositif 1000 présente pour avantage de permettre le remplacement dudit dispositif 1000 par un autre présentant ou non les caractéristiques objets de l’invention, par exemple pour une adaptation du dispositif 1000 sur la machine 2000 en fonction du type de pièce à imprimer et de la matière fusible employé pour l’impression de cette pièce.
Comme illustré en figure 1, ce dispositif 1000 comporte un système d’extraction chauffant 1200 connecté en amont à un réservoir 1300 et en aval à une tête d’impression 1400. Selon l’exemple des figures 3 et 4, le dispositif 1000 comporte un organe de déplacement de la matière 1220 configuré pour déplacer la matière de l’amont vers l’aval, couplé à un organe de chauffe 1230 configuré pour faire passer la matière dans un état de fusion avant son entrée dans un canal de matière 1410 de la tête d’impression 1400, laquelle éjecte ensuite un filet de
matière en fusion par sa sortie de buse 1411. Dans cet exemple, le dispositif d’impression 1000 est configuré pour l’impression de matière initialement conditionnée en granulés, de sorte que le réservoir 1300 est une trémie et l’organe de déplacement de la matière 1220 est une vis d’extraction logée dans un conduit d’acheminement 1210, le réservoir 1300 alimentant l’organe de déplacement 1220 via un embout de sortie 1310. Bien évidemment, il est possible d’envisager une variété de réservoirs 1300 et d’organes de déplacement 1220 raccordés à la tête d’impression 1100, par exemple spécifiques au matériau considéré ou au conditionnement de la matière, laquelle peut également être obtenue sous forme fïlaire ou sous toute autre forme appropriée à l’impression tridimensionnelle. Selon la conception, l’organe de déplacement 1220 et le conduit d’acheminement 1210 peuvent former un élément monobloc permettant de contenir et de véhiculer la matière en fusion, ou encore deux éléments distincts aux fonctions séparées et/ou complémentaires. On considère en outre dans cette description que le conduit d’acheminement 1210 s’étend dans une direction longitudinale et horizontale. D’autres directions du conduit d’acheminement 1210 pourraient être envisagées en variantes, par exemple une direction verticale ou inclinée. Sur l’exemple décrit ici à l’appui des figures 1 à 7, on définit ainsi un premier axe Xi correspondant à la direction longitudinale dans laquelle s’étend le conduit d’acheminement 1210, et centré sur ce même conduit d’acheminement 1210.
Dans ce même exemple, le dispositif 1000 comprend également un système de refroidissement permettant de véhiculer un fluide gazeux autour du conduit d’acheminement 1210 de manière à contrebalancer la chaleur générée par l’organe de chauffe 1230 et limiter sa propagation. On prévoit ainsi un manchon externe 1120 s’étendant selon le premier axe Xi dans lequel le conduit d’acheminement 1210 est logé et de section supérieure à celle du conduit d’acheminement 1210, de sorte qu’un fluide puisse être véhiculé dans une chambre de circulation 1110 entre le manchon externe 1120 et le conduit d’acheminement 1210. Le manchon externe 1120 comme le conduit d’acheminement 1210 peuvent par exemple présenter une section transversale de forme circulaire, et eux-mêmes présenter une forme cylindrique.
Selon l’exemple de la figure 5, l’entrée du système de refroidissement est effectuée en amont via une plaque 1140 fixée à l’extrémité amont du manchon externe 1120 et du conduit d’acheminement 1210 et comprenant au moins une perforation 1141 permettant l’introduction du fluide gazeux dans la chambre de circulation 1110. Le fluide gazeux peut être acheminé jusqu’à l’entrée du système de refroidissement par une variété de moyens selon le fluide gazeux sélectionné, sa source et son conditionnement. On peut par exemple prévoir au moins
un organe de soufflage de type ventilateur 1150 (représenté partiellement sur la figure 4) intégré au dispositif 1000 ou externe, générant un flux de circulation d’air et connecté à la plaque 1140 par une gaine de circulation 1160 (représentée partiellement sur les figures 3 et 4), le ventilateur 1150 étant positionné dans la gaine de circulation 1160 ou devant une entrée de celle-ci.
Ce système de refroidissement peut en outre être amélioré pour accroître les effets de refroidissement et/ou contrôler l’évacuation de chaleur, de manière indépendante ou conjointe au système d’extraction chauffant 1200 et plus généralement au dispositif d’impression 1000. En accord avec le concept sous-jacent de l’invention, le manchon externe 1120 comporte une pluralité d’orifices 1121, ou encore « éjecteurs », disposés selon la surface d’une portion aval du manchon externe 1120 (figures 2 à 4), constituant chacun une sortie du système de refroidissement et orientés de sorte que le fluide gazeux s’échappe radialement par rapport au manchon externe 1120 et donc par rapport au conduit d’acheminement 1210 et au premier axe Xi.
Ainsi, le fluide gazeux circule de l’au moins une perforation 1141 en amont jusqu’aux orifices 1121 en aval selon un flux de circulation longitudinal le long du premier axe Xi et se réchauffe progressivement, notamment à proximité de l’organe de chauffe 1230, avant d’être éjecté dans une direction radiale de manière à ne pas réchauffer la tête d’impression 1400 et en particulier la sortie de la buse 1411. Cette conception permet de refroidir le conduit d’acheminement 1210 sans rediriger la chaleur récupérée par le fluide gazeux sur un autre élément du dispositif 1000. Le fluide gazeux permet en outre de refroidir le conduit d’acheminement 1210 dans sa partie amont située avant l’organe de chauffe 1230, ce qui atténue la propagation de la chaleur dans ledit conduit d’acheminement 1210 en direction du réservoir 1300.
Comme énoncé ci-avant, le système d’extraction chauffant 1200 peut également être conçu pour limiter la propagation de chaleur de l’organe de chauffe 1230. Selon l’exemple des figures 3 et 4, le conduit d’acheminement 1210 est réalisé en deux éléments distincts 1210a et 1210b. Ainsi, on prévoit une première pièce tubulaire 1210a illustrée en figure 7 formant un tronçon amont du conduit d’acheminement 1210 et recevant d’une part l’organe de déplacement 1220 et d’autre part l’embout de sortie 1310 du réservoir 1300. La première pièce tubulaire 1210a présente par exemple une surface plane 1213 présentant une ouverture 1214 complémentaire de l’embout de sortie 1310, de sorte que la matière fusible soit déversée à l’intérieur de la première pièce tubulaire 1210a et mise en mouvement le long du premier axe Xi par l’organe de déplacement 1220. Bien évidemment, le conduit d’acheminement 1210
et par extension la première pièce tubulaire 1210a étant logés à l’intérieur du manchon externe 1120, le manchon externe 1120 présente additionnellement une ouverture 1123 permettant l’insertion de l’embout de sortie 1310, l’ajustement de l’embout de sortie 1310 traversant le manchon externe 1120 étant effectué de préférence manière à éviter toute fuite de fluide gazeux, par exemple par l’emploi de joints d’étanchéité.
Il apparaît par conséquent que la première pièce tubulaire 1210a et le manchon externe 1120 forment un tronçon amont de la chambre de circulation 1110, de sorte que le fluide gazeux circule entre ces deux éléments. Comme illustré en figure 7, la première pièce tubulaire 1210a présente une pluralité d’ailettes 1211 disposées en longueur selon le premier axe Xi et s’étendant radialement vis-à-vis de ce premier axe Xi. La circulation du fluide gazeux de refroidissement entre les ailettes 1211 dans le sens de leur longueur permet d’augmenter les transferts de chaleur avec la première pièce tubulaire 1210a, les ailettes 1211 pouvant également présenter une section transversale facilitant les effets de convection et/ou limitant la conduction à l’intérieur de la première pièce tubulaire 1210a, par exemple une section transversale en forme de sapin ou d’escalier, ou toute autre forme appropriée, telle qu’illustrée sur la figure 7. Cette conception permet en particulier d’optimiser le refroidissement sur le tronçon amont du conduit d’acheminement 1210 et donc du système d’extraction chauffant 1200, de manière à conserver autant que possible la trémie 1300 et son embout de sortie 1310 sous la température de fusion de la matière fusible.
En complément de la première pièce tubulaire 1210a, le système d’extraction chauffant 1200 comprend une seconde pièce tubulaire 1210b formant un tronçon aval du conduit d’acheminement 1210 et configurée pour s’engager avec une extrémité aval de la première pièce tubulaire 1210a. Comme illustré dans les figures 3 et 4, la seconde pièce tubulaire 1210b présente par exemple un épaulement 1215 complémentaire d’une ouverture 1216 de la première pièce tubulaire 1210a permettant d’obtenir un conduit d’acheminement 1210 correctement ajusté selon le premier axe Xi. On peut bien évidemment concevoir une variété de moyens d’assemblage de la première pièce tubulaire 1210a et de la seconde pièce tubulaire 1210b permettant d’obtenir avec précision une longueur, un ajustement radial ou tout autre paramètre recherché du conduit d’acheminement 1210.
On prévoit ici une seconde pièce tubulaire 1210b comportant une partie aval recevant l’organe de chauffe 1230 et une partie amont présentant une pluralité de gorges 1212 espacées le long du premier axe Xi, comme l’illustrent les figures 3 et 4. Cette conception permet de réduire encore la remontée de chaleur vers l’amont en réduisant les effets de conduction internes de la seconde pièce tubulaire 1210b.
Dans ce même exemple, on prévoit un manchon interne 1130 logé dans le manchon externe 1120 et recevant le tronçon aval du conduit d’acheminement 1210, à savoir la second pièce tubulaire 1210b. On comprend donc que le manchon interne 1130 présente une section transversale comprise entre celle de la seconde pièce tubulaire 1210b et celle du manchon externe 1120. Comme énoncé ci-avant, la section transversale du manchon interne 1130 peut présenter une forme circulaire similaire à celle du manchon externe 1120 et/ou du conduit d’acheminement 1210. Le fluide gazeux circulant de l’entrée amont formée par l’au moins une perforation 1141 à la sortie aval formée par les orifices 1121, il apparaît en outre que le fluide gazeux circule principalement entre le manchon externe 1120 et le manchon interne 1130, l’espacement entre le manchon externe 1120 et le manchon interne 1130 formant un tronçon aval de la chambre de circulation 1110. Cette conception permet ainsi de permettre la circulation du fluide gazeux de l’amont vers l’aval en limitant ou en empêchant une circulation de fluide gazeux directement sur l’organe de chauffe 1230 et la partie aval du tronçon aval du conduit d’acheminement 1210 autour duquel l’organe de chauffe 1230 est positionné, une telle circulation pouvant limiter l’efficacité de la chauffe de matière fusible dans le conduit d’acheminement 1210.
Toujours dans ce même exemple, le manchon interne 1130 s’étend non seulement autour de la partie aval du tronçon aval du conduit d’acheminement 1210, mais également sur la partie amont du tronçon aval, de sorte que le manchon interne 1130 entoure complètement la seconde pièce tubulaire 1210b, mis à part la portion de la seconde pièce tubulaire 1210b assemblée avec la première pièce tubulaire 1210a. Le manchon interne 1130 est ainsi disposé directement dans le prolongement de la première pièce tubulaire 1210a, son espacement avec le manchon externe 1120 formant un tronçon aval de la chambre de circulation 1110 complémentaire du tronçon amont de la chambre de circulation 1110.
Le manchon interne 1130 est par exemple assemblé avec la première pièce tubulaire 1210a selon l’exemple de la figure 6, le manchon interne 1130 comportant une pluralité de crans 1131 disposés selon le bord périphérique de son extrémité amont, aptes à s’engager dans des logements de la première pièce tubulaire 1210a, ici des logements formés par l’espacement entre les ailettes 1211 selon l’extrémité aval de la première pièce tubulaire 1210a. Selon l’ajustement entre les crans 1131 et les logements de la première pièce tubulaire 1210a, il est également possible qu’un écoulement de fluide gazeux se produise à l’intérieur du manchon interne 1130.
Comme illustré sur les figures 3 et 4, le manchon externe 1120 comporte une première ouverture 1122, tandis que le manchon interne 1130 comporte une deuxième ouverture 1132
disposée en regard de la première ouverture 1122 et une troisième ouverture 1133 disposée en vis-à-vis de la deuxième ouverture 1132, de sorte que la première ouverture 1122 débouche sur la deuxième ouverture 1132 et que la deuxième ouverture 1132 et la troisième ouverture 1133 soient situées autour de la seconde pièce tubulaire 1120b de part et d’autre du premier axe Xi. Les trois ouvertures 1122, 1132 et 1133 sont ainsi alignées selon un second axe X2 perpendiculaire au premier axe Xi et permettent une circulation du fluide gazeux le long de ce second axe X2 sous l’action de la circulation longitudinale du fluide gazeux à l’intérieur de la chambre de circulation 1110, notamment par effet Venturi. Cette circulation perpendiculaire permet d’améliorer le refroidissement d’un tronçon du conduit d’acheminement 1210 par rapport à la circulation longitudinale et donc de limiter la conduction de chaleur sur ce tronçon. Les ouvertures 1122, 1132 et 1133 peuvent être réalisées selon une variété de formes, la figure 6 illustrant par exemple une deuxième ouverture 1132 réalisée par un trou débouchant unique et une troisième ouverture 1133 réalisée par une pluralité de perforations. Dans une conception optimisée, le second axe X2 est préférentiellement positionné sur la partie amont du tronçon aval de la seconde pièce tubulaire 1210b de sorte que la circulation perpendiculaire du fluide gazeux s’effectue directement en amont de l’organe de chauffe 1230 sur les gorges 1212, la structure des gorges 1212 augmentant les échanges thermiques par convection avec le fluide gazeux et limitant la conduction thermique sur ce tronçon de la seconde pièce tubulaire 1210b. Cette conception permet ainsi de réaliser un système anti retour de chaleur stoppant efficacement la remontée de chaleur de l’organe de chauffe 1230 vers l’amont du système d’extraction chauffant 1200 et plus particulièrement vers le réservoir 1300.
Optionnellement, l’ensemble du système de refroidissement, ainsi que l’organe de chauffe 1230, peuvent être couplés à des moyens de contrôle et/ou de mesure de la température. De tels moyens comprennent par exemple un ou plusieurs capteurs disposés au niveau du conduit d’acheminement 1210 ou de la chambre de circulation 1110, par exemple un thermocouple (non représenté ici) associé à l’organe de chauffe 1230, et permettent d’estimer une pluralité de paramètres comme la température de la matière fusible ou des éléments du système d’extraction chauffant 1200 ou encore le débit de circulation longitudinale et/ou perpendiculaire. Les moyens de contrôle comprennent par exemple une carte électronique programmée pour recevoir en entrée des informations issues des capteurs susmentionnés et/ou des paramètres relatifs à la matière fusible en cours d’impression et pour commander l’actionnement de l’organe de soufflage et/ou de l’organe de chauffe 1230 pour assurer la fusion de la matière fusible avant son arrivée dans la tête d’impression 1400 et/ou une
évacuation de chaleur suffisante. Selon la conception, une telle carte électronique peut être intégrée au dispositif d’impression 1000, à la machine d’impression tridimensionnelle 2000 ou encore à un automate externe.
Ainsi, on comprendra que la présente invention prévoit un dispositif d’impression tridimensionnelle équipé d’un système d’extraction chauffant et un système de refroidissement permettant l’évacuation de la chaleur générée en cours d’impression. Ce système de refroidissement est en particulier configuré pour empêcher la propagation de chaleur envers le reste du dispositif d’impression, notamment la diffusion de chaleur en direction de la tête d’impression et de la sortie de la buse. La température d’impression et le refroidissement de la matière après sa sortie de buse peuvent ainsi être contrôlés en limitant l’influence du système d’extraction chauffant.
Il devra être observé que cette description détaillée porte sur un exemple de réalisation particulier de la présente invention, mais qu’en aucun cas cette description ne revêt un quelconque caractère limitatif à l’objet de l’invention ; bien au contraire, elle a pour objectif d’ôter toute éventuelle imprécision ou toute mauvaise interprétation des revendications qui suivent.
Il devra également être observé que les signes de références mis entre parenthèses dans les revendications qui suivent ne présentent en aucun cas un caractère limitatif ; ces signes ont pour seul but d’améliorer l’intelligibilité et la compréhension des revendications qui suivent ainsi que la portée de la protection recherchée.
Claims
Revendications
1. Dispositif (1000) d’impression tridimensionnelle comprenant un réservoir (1300) de matière fusible, une tête d’impression (1400) munie d’une sortie de buse par laquelle est extrait un filet de matière en fusion et un système d’extraction chauffant (1200) qui comprend un conduit d’acheminement (1210) de ladite matière connecté en amont audit réservoir (1300) et en aval à ladite tête d’impression (1400), un organe de déplacement (1220) de ladite matière dans ledit conduit d’acheminement (1210) depuis ledit réservoir (1300) jusqu’à ladite tête d’impression (1400), un organe de chauffe (1230) agencé autour dudit conduit d’acheminement (1210) pour faire fondre ladite matière durant son déplacement dans ledit conduit d’acheminement (1210), un système de refroidissement comportant une chambre de circulation (1110) agencée autour dudit conduit d’acheminement (1210) et un organe de soufflage d’un fluide gazeux de refroidissement connecté à une entrée de ladite chambre de circulation (1110) pour véhiculer dans ladite chambre de circulation (1110) ledit fluide gazeux de refroidissement, depuis l’amont jusque l’aval dudit conduit d’acheminement (1210), ladite chambre de circulation (1110) présentant au moins une sortie disposée du côté aval dudit conduit d’acheminement (1210) et orientée de manière à éjecter le fluide gazeux réchauffé sans interférer sur ladite tête d’impression (1400) et sur l’espace externe environnant la sortie de buse, ledit système de refroidissement comprenant un manchon externe (1120) dans lequel est logé ledit conduit d’acheminement (1210), ledit manchon externe (1120) s’étendant sur la longueur dudit conduit d’acheminement (1210) et comprenant sur son contour dans sa portion d’extrémité aval au moins un orifice (1121) permettant d’éjecter ledit fluide gazeux réchauffé radialement audit manchon externe (1120), caractérisé en ce que ledit conduit d’acheminement (1210) comprend un tronçon amont constitué d’une première pièce tubulaire (1210a) comprenant un connecteur pour le raccordement d’un embout de sortie (1310) dudit réservoir (1300), ledit embout de sortie (1310) passant au travers dudit manchon externe (1120), ladite première pièce tubulaire (1210a) et ledit manchon externe (1120) étant dimensionnés pour conserver un espacement entre ladite première pièce tubulaire (1210a) et ledit manchon externe (1120), ledit espacement constituant un tronçon amont de ladite chambre de circulation (1110).
2. Dispositif (1000) d’impression tridimensionnelle selon la revendication 1, dans lequel ledit système de refroidissement comporte un manchon interne (1130) dans lequel est logé au moins partiellement ledit conduit d’acheminement (1210), ledit manchon interne (1130) étant logé dans ledit manchon externe (1120), ledit manchon interne (1130) ayant une section
inférieure à la section dudit manchon externe (1120) de manière à conserver un espacement entre ledit manchon interne (1130) et ledit manchon externe (1120), ledit espacement constituant au moins un tronçon de ladite chambre de circulation (1110).
3. Dispositif (1000) d’impression tridimensionnelle selon l’une quelconque des revendications 1 ou 2, dans lequel ladite première pièce tubulaire (1210a) comprend des ailettes radiales (1211) s’étendant sur la longueur de ladite première pièce tubulaire (1210a) de sorte que ledit fluide gazeux de refroidissement circule entre lesdites ailettes (1211).
4. Dispositif (1000) d’impression tridimensionnelle selon la revendication 3, dans lequel lesdites ailettes (1211) présentent dans un plan de coupe transversal une forme en escalier.
5. Dispositif (1000) d’impression tridimensionnelle selon l’une quelconque des revendications 1 à 4, dans lequel ledit conduit d’acheminement (1210) comprend un tronçon aval constitué d’une seconde pièce tubulaire (1210b) disposée dans le prolongement de ladite première pièce tubulaire (1210a) et recevant ledit organe de chauffe (1230).
6. Dispositif (1000) d’impression tridimensionnelle selon la revendication 5, dans lequel ledit organe de chauffe (1230) est positionné dans une partie aval dudit tronçon aval.
7. Dispositif (1000) d’impression tridimensionnelle selon la revendication 6, dans lequel ledit tronçon aval comprend une partie amont comportant des gorges (1212) espacées entre elles permettant de réduire la conduction de chaleur de l’aval vers l’amont sur ledit conduit d ’ acheminement (1210).
8. Dispositif (1000) d’impression tridimensionnelle selon l’une quelconque des revendications 5 à 7 rattachée à la revendication 2, dans lequel ledit manchon interne (1130) est disposé dans le prolongement de ladite première pièce tubulaire (1210a) et s’étend sur la longueur de ladite seconde pièce tubulaire (1210b), ladite seconde pièce tubulaire (1210b) et ledit organe de chauffe (1230) étant logés dans ledit manchon interne (1130).
9. Dispositif (1000) d’impression tridimensionnelle selon la revendication 8, dans lequel ledit manchon interne (1130) comprend un bord périphérique amont comprenant des crans (1131) qui s’engagent dans des logements prévus sur un bord aval de ladite première pièce tubulaire (1210a).
10. Dispositif (1000) d’impression tridimensionnelle selon l’une quelconque des revendications 8 ou 9, dans lequel ledit manchon externe (1120) comprend sur son contour une première ouverture (1122), ledit manchon interne (1130) comprend sur son contour une deuxième ouverture (1132) et une troisième ouverture (1133) qui sont disposées en vis-à-vis, ladite deuxième ouverture (1132) dudit manchon interne (1130) étant en regard de ladite
première ouverture (1122) dudit manchon externe (1120), lesdites ouvertures (1122, 1132, 1133) étant disposées dans une partie amont dudit tronçon aval.
11. Dispositif (1000) d’impression tridimensionnelle selon l’une quelconque des revendications 1 à 10, dans lequel ledit organe de déplacement (1220) de ladite matière est une vis d’extraction qui s’étend sur toute la longueur dudit conduit d’acheminement (1210).
12. Dispositif (1000) d’impression tridimensionnelle selon l’une quelconque des revendications 1 à 11, dans lequel ledit organe de soufflage comprend une plaque (1140) munie de perforations (1141) communiquant en aval avec ladite chambre de circulation
(1110), lesdites perforations (1141) permettant l’entrée du fluide gazeux de refroidissement dans ladite chambre de circulation (1110).
13. Dispositif (1000) d’impression tridimensionnelle selon la revendication 12, dans lequel ledit organe de soufflage comprend au moins un ventilateur, ledit fluide gazeux de refroidissement étant de l’air, une gaine de circulation étant agencée entre ledit au moins un ventilateur et ladite plaque (1140). 14. Machine (2000) d’impression tridimensionnelle, laquelle comprend un dispositif
(1000) d’impression selon l’une quelconque des revendications précédentes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22702508.7A EP4274727A1 (fr) | 2021-01-07 | 2022-01-07 | Dispositif d'impression tridimensionnelle à isolation amont et aval des moyens de chauffe de la matière fusible d'impression |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2100119 | 2021-01-07 | ||
FR2100119A FR3118600B1 (fr) | 2021-01-07 | 2021-01-07 | Dispositif d’impression tridimensionnelle à isolation amont et aval des moyens de chauffe de la matière fusible d’impression |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022148936A1 true WO2022148936A1 (fr) | 2022-07-14 |
Family
ID=75438960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2022/050042 WO2022148936A1 (fr) | 2021-01-07 | 2022-01-07 | Dispositif d'impression tridimensionnelle à isolation amont et aval des moyens de chauffe de la matière fusible d'impression |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4274727A1 (fr) |
FR (1) | FR3118600B1 (fr) |
WO (1) | WO2022148936A1 (fr) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008100467A1 (fr) * | 2007-02-12 | 2008-08-21 | Stratasys, Inc. | Pompe haute viscosité pour systèmes de dépôt basés sur le principe de l'extrusion |
US20160200024A1 (en) * | 2015-01-13 | 2016-07-14 | Bucknell University | Dynamically controlled screw-driven extrusion |
-
2021
- 2021-01-07 FR FR2100119A patent/FR3118600B1/fr active Active
-
2022
- 2022-01-07 WO PCT/FR2022/050042 patent/WO2022148936A1/fr unknown
- 2022-01-07 EP EP22702508.7A patent/EP4274727A1/fr active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008100467A1 (fr) * | 2007-02-12 | 2008-08-21 | Stratasys, Inc. | Pompe haute viscosité pour systèmes de dépôt basés sur le principe de l'extrusion |
US20160200024A1 (en) * | 2015-01-13 | 2016-07-14 | Bucknell University | Dynamically controlled screw-driven extrusion |
Also Published As
Publication number | Publication date |
---|---|
EP4274727A1 (fr) | 2023-11-15 |
FR3118600A1 (fr) | 2022-07-08 |
FR3118600B1 (fr) | 2023-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1927424B1 (fr) | Dispositif de rechargement d'une face concave d'une pièce tubulaire par apport de matière de rechargement et d'énergie par laser | |
EP2392442B2 (fr) | Four pour le conditionnement thermique de préformes et procédé de commande d'un dispositif de refroidissement par air équipant un tel four | |
EP2566684B1 (fr) | Dispositif d'assemblage de deux pieces en materiaux thermoplastiques par soudage laser par transparence, procede d'assemblage et embout de bridage associe | |
EP3280560A1 (fr) | Dispositif d'impression en trois dimensions utilisant des dispositifs inductifs et resistifs | |
EP2934811B1 (fr) | Tête et procede de soudage laser | |
FR3044944A1 (fr) | Dispositif et procede pour la fabrication d'une piece tridimensionnelle par fusion selective sur lit de poudre | |
FR2868467A1 (fr) | Carter de turbine a crochets refractaires obtenu par procede mdp | |
EP3902650B1 (fr) | Tête optique d'impression 3d par projection de poudre | |
EP3736106B1 (fr) | Tete d'impression 3d | |
WO2018029432A1 (fr) | Procédé de protection, par soufflage fluidique, d'un appareil d'émission et/ou de réception des ondes électromagnétiques, dispositif convenant a sa mise en oeuvre et un tel appareil équipé dudit dispositif | |
EP2240291A2 (fr) | Dispositif d'alimentation en gaz d'une machine de brasage ou etamage a la vague | |
WO2022148936A1 (fr) | Dispositif d'impression tridimensionnelle à isolation amont et aval des moyens de chauffe de la matière fusible d'impression | |
FR3016549A1 (fr) | Dispositif d'impression en trois dimensions d'une piece | |
FR2950284A1 (fr) | Dispositif pour la protection thermique des cols de preformes dans un four | |
WO2022148937A1 (fr) | Dispositif d'impression tridimensionnelle muni de moyens de réduction de la propagation de la chaleur en direction du réservoir de stockage de la matière fusible | |
EP1737315B1 (fr) | Dispositif de distribution de produits a obturateur rotatif | |
EP4017673B1 (fr) | Système de dépôt laser de métal | |
FR2906172A1 (fr) | Procede de retouche locale par brasage induction | |
FR3042065A1 (fr) | Procede de fabrication d'un drain thermique et drain thermique associe | |
FR3092778A1 (fr) | « Procédé de brasure d’éléments chauffants pour réaliser une source chauffante, plaque de cuisson, thermoplongeur ou source infrarouge » | |
EP4274728A1 (fr) | Dispositif d'impression tridimensionnelle à contrôle du refroidissement de matière en fusion | |
EP4274726A1 (fr) | Dispositif d'impression tridimensionnelle à température stabilisée de la tête d'impression | |
EP3782797A1 (fr) | Dispositif d'impression 3d muni d'une vis sans fin entrainee par un moteur et de moyens de refroidissement du moteur | |
FR3086573A1 (fr) | Unite de transfert de recipients | |
WO2023052232A1 (fr) | Bloc d'impression pour machine de fabrication additive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22702508 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022702508 Country of ref document: EP Effective date: 20230807 |