WO2022148770A1 - Heating device - Google Patents

Heating device Download PDF

Info

Publication number
WO2022148770A1
WO2022148770A1 PCT/EP2022/050138 EP2022050138W WO2022148770A1 WO 2022148770 A1 WO2022148770 A1 WO 2022148770A1 EP 2022050138 W EP2022050138 W EP 2022050138W WO 2022148770 A1 WO2022148770 A1 WO 2022148770A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
film
heating device
melt adhesive
carrier film
Prior art date
Application number
PCT/EP2022/050138
Other languages
German (de)
French (fr)
Inventor
Manfred Gruber
Original Assignee
Att Advanced Thermal Technologies Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Att Advanced Thermal Technologies Gmbh filed Critical Att Advanced Thermal Technologies Gmbh
Priority to EP22700719.2A priority Critical patent/EP4275452A1/en
Publication of WO2022148770A1 publication Critical patent/WO2022148770A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/005Heaters using a particular layout for the resistive material or resistive elements using multiple resistive elements or resistive zones isolated from each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient

Definitions

  • the invention relates to a heating device made of a film composite with an electrically insulating carrier film and a cover film, with resistance elements being arranged as flat heating elements and electrodes on the carrier film, with the electrodes connecting the resistance elements to connection points for connecting a power supply, according to the preamble of claim 1 .
  • Heating devices of the type mentioned are designed as flexible heaters with different structures and are used, for example, to heat electrical components such as accumulators.
  • the charging and discharging cycles as well as the service life and the safe operation of accumulators are strongly dependent on their temperature control.
  • cooling devices have been proposed, for example, which consist of a film composite with a plurality of film layers, between which cooling channels are formed, into which a coolant can be introduced.
  • the cooling device rests against the accumulator, so that the coolant flowing through the composite film cools the accumulator.
  • the introduction of the coolant inflates the composite film somewhat, which improves the physical contact with the accumulator and thus its cooling.
  • heating devices made of a film composite are known, in which resistance elements are arranged as flat heating elements and electrodes between a carrier film and a cover film.
  • the electrodes connect the resistance elements to connection points for connecting a power supply, so that current can flow through the resistance elements.
  • the resistance elements represent an electrical resistance in which current is converted into heat and thus form the desired heat source in the present application.
  • PTC resistance elements which are also referred to as PTC thermistors, have the property of increasing electrical resistance as the temperature rises.
  • PTC resistance elements with a highly non-linear characteristic are preferably used, the resistance of which initially increases slowly as the temperature rises, and suddenly increases at a temperature that is characteristic of the respective PTC resistance element increases.
  • This characteristic temperature is also referred to as the switch-off temperature, because the PTC resistance element in question only has a low heating capacity when this temperature is exceeded, so that PTC resistance elements with such a non-linear characteristic curve are self-regulating and an equilibrium temperature is set during the course of use.
  • Complex control devices such as temperature sensors, thermostats, current controllers and the like can therefore generally be dispensed with.
  • planar heating elements are made, for example, from fusible pastes that can melt under pressure and temperature increase and, after the above-mentioned process step for connecting film layers, form structural defects when they harden again, which impair the function of the heating field in question.
  • the pressure sensitivity of heating elements results in problems, for example, when used in combination with a cooling device described above, because the inflation of the film composite during the introduction of the coolant exerts pressure on the heating device and its heating elements. With each cooling process, the planar heating elements are also mechanically stressed, resulting in the risk of damage.
  • Claim 1 relates to a heating device made of a film composite with an electrically insulating carrier film and a cover film, with resistance elements being arranged as flat heating elements and electrodes on the carrier film, with the electrodes connecting the resistance elements to connection points for connecting a power supply.
  • the heating elements are designed in the form of a plurality of heating fields lying next to one another on the carrier film, which are each framed in their peripheral area by webs made of cured hot-melt adhesive, the cover film being attached to the carrier film with the aid of the webs made of cured hot-melt adhesive and the webs made of hardened hot-melt adhesive protrude beyond the heating fields in the direction of the cover film.
  • the embodiment according to the invention offers advantages both in the manufacture of the heating device and in the application of the heating device. In the course of manufacture, the framing webs made of hot-melt adhesive protect the heating fields after they have been applied during subsequent process steps in which pressure and heat are applied.
  • the hot-melt adhesive is applied to the carrier film in a structured manner, for example by screen printing, by leaving out the heating fields.
  • the hot-melt adhesive can then dry briefly and thus harden.
  • the quantity of hot-melt adhesive applied is selected in such a way that the webs of hardened hot-melt adhesive protrude beyond the heating fields. The webs thus absorb the pressure that is exerted when the cover film is subsequently attached, and thus protect the heating fields.
  • the amount of heat transferred to the heating fields is greatly reduced, so that thermally induced structural changes in the heating fields and undesired chemical reactions of the cover film material with the heating fields are avoided.
  • the amount of heat introduced in the course of attaching the cover sheet is instead applied to the hot-melt adhesive, which melts and adhesively bonds to the cover film.
  • the framing webs protect the heating fields from mechanical loads, for example when used in combination with the cooling devices described above.
  • the pressure exerted on the heating device is primarily absorbed by the webs, which thus protect the heating fields from mechanical stress.
  • the thickness of the carrier film and the cover film are in the micrometer range and is, for example, 25 mha.
  • the thickness of the heating fields is also approximately of the same order of magnitude. In this case, it is sufficient if the webs protrude only slightly beyond the heating fields, for example in the range of a few micrometers.
  • the entire surface of the webs made of hardened hot-melt adhesive facing the cover film is larger than the entire surface of the heating fields facing the cover film.
  • the heating fields can, for example, each be designed in the form of strips and embedded in the surrounding material of the hot-melt adhesive.
  • a specific embodiment provides for the carrier film and the cover film to be a plastic film, for example a polyethylene terephthalate (PET) film.
  • PET polyethylene terephthalate
  • plastic foils ensure adequate electrical insulation from the electrical components of the composite foil and, on the other hand, enable very thin and flexible designs.
  • plastics are available that can be printed, for example, using screen printing.
  • the resistance elements are made as PTC resistance elements from a hardened, carbon-based paste.
  • Such pastes are commercially available and are also referred to as carbon pastes or carbon lacquer. They are particularly suitable for the execution of heating elements, as they heat up quickly when current flows through and due to the admixture suitable additives reach an equilibrium temperature in a self-regulating manner.
  • Waxes for example, have proven to be suitable as additives for the carbon pastes for the present invention, with the melting temperature of the waxes determining the PTC switch-off temperature, for example 42.degree.
  • the carbon-based paste can be applied at room temperature in a viscous form to the plastic film by means of screen printing in the desired arrangement and thermally cured, as a result of which the heating device can be manufactured at low cost.
  • the electrodes are made from a hardened, silver-based paste.
  • Such silver-based pastes are also referred to as silver paint and can be printed in a similar manner in a viscous form by means of screen printing with the desired gradient onto the carrier film, it having proved expedient to print the electrodes first and then the PTC resistance elements.
  • the carrier foil is designed as a laminate with an aluminum layer and that a measuring device is provided for detecting changes in capacitance between the aluminum layer and the heating fields in order to identify structural loads or damage to the foil composite.
  • a measuring device is provided for detecting changes in capacitance between the aluminum layer and the heating fields in order to identify structural loads or damage to the foil composite.
  • aluminum is a material with comparatively high electrical conductivity, capacitive properties appear between the aluminum layer and the heating fields, which can be used to detect an impact, i.e. a locally strong structural load or impairment of the foil composite.
  • the measurement can be carried out, for example, by high-frequency PWM ("pulse width modulation") operation of the heating elements or by superimposing an AC voltage on the supply voltage of the heating elements.
  • Fig. 1 shows an embodiment of a heating device according to the invention
  • the 2 shows a sectional view through a heating element and the surrounding webs.
  • FIG. 1 shows an embodiment of a heating device according to the invention with a longitudinal direction L and a transverse direction Q.
  • FIG. 1 shows an embodiment of a heating device according to the invention with a longitudinal direction L and a transverse direction Q.
  • the heating fields 1 running in the form of strips in the longitudinal direction L can be seen, with a large number of heating fields 1 being arranged next to one another in the longitudinal direction L and in the transverse direction Q.
  • Webs 2 running in strips in the longitudinal direction L and transverse direction Q are formed between the heating fields 1 and separate two heating fields 1 lying next to one another when viewed in the longitudinal direction L and transverse direction Q.
  • one electrode 3a runs in each case from the first connection points 4a in the longitudinal direction L of the heating device.
  • Another electrode 3b with the opposite polarity runs in the center of the heating device in the longitudinal direction L to a second connection point 4b.
  • heating fields 1 there are between six and nine heating fields 1 distributed over one half of the heating device in the transverse direction Q, and between ten and twelve heating fields 1 distributed in the longitudinal direction L.
  • the number of heating fields 1 is of course dependent on the length and Width of the heater and the required heating power selected. Electrical contact is made with the heating fields 1 via the electrodes 3, for example with the aid of conductor tracks running in the transverse direction Q.
  • the heating device has a layered structure made up of several layers.
  • a lower carrier film 5 is designed, for example, as a laminate of a PET plastic film and an aluminum layer.
  • An upper cover film 6 is designed as a PET plastic film, for example.
  • PTC resistance elements Arranged on the side of the carrier film 5 facing the cover film 6 are PTC resistance elements which form the heating fields 1, as well as all the electrodes 3 and their traces.
  • the electrodes 3 and their conductor tracks are made of a hardened, silver-based paste, which is applied in viscous form by means of screen printing with the desired profile to the carrier film 5 and is thermally cured.
  • the PTC resistance elements are made of a hardened, carbon-based paste, which is also referred to below as carbon paste and is also applied at room temperature in viscous form by means of screen printing in the desired arrangement to the carrier film 5 and is thermally cured.
  • the electrodes 3 and the heating fields 1 can optionally be provided with a protective lacquer layer after they have been applied.
  • a hot-melt adhesive which is also known as "hotmelt" is applied in viscous form by means of screen printing with the desired course.
  • the heating fields 1 are left out and only the areas between the heating fields 1 are covered In this way, webs 2 are formed between the heating fields 1.
  • the amount of hot-melt adhesive applied is chosen such that the webs 2 made of hardened hot-melt adhesive protrude beyond the heating fields 1 in the direction of the cover film 6, as can be seen in Figure 2
  • the cover film 6 is attached using pressure and heat, with the hot-melt adhesive melting due to the amount of heat introduced and adhesively connecting to the cover film 6 .
  • connection surfaces 7 for temperature sensors can be seen in FIG. 1 .
  • These connection surfaces 7 can be provided in the electrode pattern and can be produced with the application of the electrodes 3 using the screen printing process.
  • the connection surfaces 7 are used to connect temperature sensors for monitoring the temperature of the heating device.
  • the Foil composite can thus be used as a heating device, for example for temperature control of accumulators.
  • the design of the heating device as a composite film has the advantage that it can be applied to the cells of the accumulator and thus tolerances of the cells can be compensated for more easily. This significantly improves the heat transfer from the heating device to the cells, and additional measures such as heat-conducting pastes or thermal pads become superfluous.
  • the invention is particularly suitable for application to cooling circuits that consist of film material and expand when coolant flows through them and thus optimally adapt to the surface of the battery cells, whereby the above-described effect of contact with the cells is utilized.
  • This property is particularly advantageous in so-called pouch cells, which have a cambered surface due to their design and deform during operation or as they age.
  • the invention preferably, but not exclusively, uses carbon pastes with a PTC effect as the heating-active layer.
  • PTC resistance elements have the advantage that the active heating of the heating elements is interrupted at a defined target temperature of e.g. 42°C by a rapid increase in the electrical resistance of the material without the need for electronic control, a fuse or any other form of overheating protection. This rules out the possibility of the heating element burning out. After the heating element has cooled down, the electrical conductivity is restored and the heating element resumes its function.
  • the printed hot-melt adhesive layer prevents the PTC layer from flowing across the width.
  • the heating-active layer retains its function both during production of the heating device when the cover film 6 is laminated on and during operation.
  • the hot-melt adhesives also produce the necessary connection with the cover film 6 .
  • a protective lacquer layer can optionally be printed on the PTC layer formed by the heating fields 1 in order to increase the resilience of the PTC layer at high pressures and temperatures.
  • the carrier film 5 is present as a laminate with an aluminum layer
  • the change in the capacitance of the heating layer formed by the heating fields 1 with respect to the aluminum layer can be used to detect an impact.
  • the measurement can be carried out by high-frequency PWM operation of the heating layer or by superimposing an AC voltage on the supply voltage of the heating layer.
  • a heating device is thus realized in which the risk of damage to the flat heating elements under pressure is reduced and their pressure stability is thus increased.

Abstract

The invention relates to a heating device made of a composite film having an electrically insulating carrier film (5) and a cover film (6), wherein resistor elements as planar heating elements as well as electrodes (3) are located on the carrier film (5), wherein the electrodes (3) connect the resistor elements to connection points (4) for connecting a power supply. According to the invention, the heating elements are in the form of a plurality of heating panels (1) which are positioned next to one another on the carrier film (5) and which are each surrounded in their circumferential region by ribs (2) made of cured hot-melt adhesive, wherein the cover film (6) is fastened to the carrier film (5) by means of the ribs (2) made of cured hot-melt adhesive, and the ribs (2) made of cured hot-melt adhesive project beyond the heating panels (1) in the direction of the cover film (6). In this way, a heating device is provided in which the risk of damage to the planar heating elements under pressure is reduced, and the pressure resistance thereof is thus increased.

Description

HEIZVORRICHTUNG HEATER
Die Erfindung betrifft eine Heizvorrichtung aus einem Folienverbund mit einer elektrisch isolierenden Trägerfolie und einer Deckfolie, wobei auf der Trägerfolie Widerstandselemente als flächenförmige Heizelemente sowie Elektroden angeordnet sind, wobei die Elektroden die Widerstandselemente mit Anschlussstellen für den Anschluss einer Stromversorgung verbinden, gemäß dem Oberbegriff von Anspruch 1. The invention relates to a heating device made of a film composite with an electrically insulating carrier film and a cover film, with resistance elements being arranged as flat heating elements and electrodes on the carrier film, with the electrodes connecting the resistance elements to connection points for connecting a power supply, according to the preamble of claim 1 .
Heizvorrichtungen der genannten Art werden als biegeelastische Heizungen mit unterschiedlichem Aufbau ausgeführt und dienen beispielsweise zur Beheizung von elektrischen Komponenten wie Akkumulatoren. Die Lade- und Entladezyklen sowie die Lebensdauer und der sichere Betrieb von Akkumulatoren sind stark von deren Temperierung abhängig. Daher wurden etwa Kühlvorrichtungen vorgeschlagen, die aus einem Folienverbund mit mehreren Folienlagen bestehen, zwischen denen Kühlkanäle gebildet werden, in die ein Kühlmittel eingeleitet werden kann. Die Kühlvorrichtung liegt am Akkumulator an, sodass das den Folienverbund durchströmende Kühlmittel den Akkumulator kühlt. Durch die Einleitung des Kühlmittels bläht sich der Folienverbund etwas auf, was den physischen Kontakt zum Akkumulator und somit dessen Kühlung verbessert. Heating devices of the type mentioned are designed as flexible heaters with different structures and are used, for example, to heat electrical components such as accumulators. The charging and discharging cycles as well as the service life and the safe operation of accumulators are strongly dependent on their temperature control. For this reason, cooling devices have been proposed, for example, which consist of a film composite with a plurality of film layers, between which cooling channels are formed, into which a coolant can be introduced. The cooling device rests against the accumulator, so that the coolant flowing through the composite film cools the accumulator. The introduction of the coolant inflates the composite film somewhat, which improves the physical contact with the accumulator and thus its cooling.
Des Weiteren sind Heizvorrichtungen aus einem Folienverbund bekannt, bei denen Widerstandselemente als flächenförmige Heizelemente sowie Elektroden zwischen einer Trägerfolie und einer Deckfolie angeordnet sind. Die Elektroden verbinden die Widerstandselemente mit Anschlussstellen für den Anschluss einer Stromversorgung, sodass die Widerstandselemente mit Strom durchflossen werden können. Die Widerstandselemente stellen dabei einen elektrischen Widerstand dar, in denen Strom in Wärme umgewandelt wird, und in der vorliegenden Anwendung somit die gewünschte Wärmequelle bilden. PTC-Widerstandselemente, die auch als Kaltleiter bezeichnet werden, verfügen dabei über die Eigenschaft eines zunehmenden elektrischen Widerstandes bei steigender Temperatur. Vorzugsweise werden PTC- Widerstandselemente mit stark nicht-linearer Kennlinie verwendet, deren Widerstand bei steigender Temperatur zunächst langsam zunimmt, und bei einer für das jeweilige PTC- Widerstandselement charakteristischen Temperatur sprunghaft ansteigt. Diese charakteristische Temperatur wird auch als Abschalttemperatur bezeichnet, weil das betreffende PTC- Widerstandselement bei Überschreiten dieser Temperatur nur mehr geringe Heizleistung aufweist, sodass PTC-Widerstandselemente mit einer solchen nicht-linearen Kennlinie selbstregulierend sind und sich im Zuge der Anwendung eine Gleichgewichtstemperatur einstellt. Auf aufwändige Regelungseinrichtungen wie Temperaturfühler, Thermostate, Stromregler und dergleichen kann daher in der Regel verzichtet werden . Furthermore, heating devices made of a film composite are known, in which resistance elements are arranged as flat heating elements and electrodes between a carrier film and a cover film. The electrodes connect the resistance elements to connection points for connecting a power supply, so that current can flow through the resistance elements. The resistance elements represent an electrical resistance in which current is converted into heat and thus form the desired heat source in the present application. PTC resistance elements, which are also referred to as PTC thermistors, have the property of increasing electrical resistance as the temperature rises. PTC resistance elements with a highly non-linear characteristic are preferably used, the resistance of which initially increases slowly as the temperature rises, and suddenly increases at a temperature that is characteristic of the respective PTC resistance element increases. This characteristic temperature is also referred to as the switch-off temperature, because the PTC resistance element in question only has a low heating capacity when this temperature is exceeded, so that PTC resistance elements with such a non-linear characteristic curve are self-regulating and an equilibrium temperature is set during the course of use. Complex control devices such as temperature sensors, thermostats, current controllers and the like can therefore generally be dispensed with.
Die als flächenförmige Heizelemente ausgeführtenThe ones designed as flat heating elements
Widerstandselemente sind allerdings druckempfindlich, was sowohl in der Fertigung als auch in der Anwendung zu Problemen führen kann. Im Zuge der Fertigung eines Folienverbundes sind nach dem Aufbringen der flächenförmigen Heizelemente Verfahrensschritte zum Verbinden von Folienschichten durchzuführen, die unter Druck und Temperaturerhöhung stattfinden, wodurch die flächenförmigen Heizelemente beschädigt werden können. So werden die flächenförmigen Heizelemente beispielsweise aus schmelzbaren Pasten gefertigt, die unter Druck und Temperaturerhöhung zerfließen können und nach dem oben erwähnten Verfahrensschritt zum Verbinden von Folienschichten beim erneuten Aushärten strukturelle Fehlstellen ausbilden, die die Funktion des betreffenden Heizfeldes beeinträchtigen. However, resistance elements are sensitive to pressure, which can lead to problems both in production and in use. In the course of the production of a film composite, after the application of the flat heating elements, process steps for connecting film layers must be carried out, which take place under pressure and temperature increase, as a result of which the flat heating elements can be damaged. The planar heating elements are made, for example, from fusible pastes that can melt under pressure and temperature increase and, after the above-mentioned process step for connecting film layers, form structural defects when they harden again, which impair the function of the heating field in question.
In der Anwendung einer gattungsgemäßen Heizvorrichtung ergeben sich aus der Druckempfindlichkeit von Heizelementen beispielsweise Probleme bei einer kombinierten Verwendung mit einer oben beschriebenen Kühlvorrichtung, weil das Aufblähen des Folienverbundes im Zuge des Einleitens des Kühlmittels Druck auf die Heizvorrichtung und deren Heizelemente ausübt. Bei jedem Kühlvorgang werden somit auch die flächenförmigen Heizelemente mechanisch belastet, wodurch sich die Gefahr von Beschädigungen ergibt. In the application of a generic heating device, the pressure sensitivity of heating elements results in problems, for example, when used in combination with a cooling device described above, because the inflation of the film composite during the introduction of the coolant exerts pressure on the heating device and its heating elements. With each cooling process, the planar heating elements are also mechanically stressed, resulting in the risk of damage.
Es besteht daher das Ziel der Erfindung darin eine Heizvorrichtung mit flächenförmigen Heizelementen so auszuführen, dass das Risiko von Beschädigungen der flächenförmigen Heizelemente unter Druckbelastung verringert und deren Druckstabilität somit erhöht wird. Diese Ziele werden durch die Merkmale von Anspruch 1 erreicht. Anspruch 1 bezieht sich auf eine Heizvorrichtung aus einem Folienverbund mit einer elektrisch isolierenden Trägerfolie und einer Deckfolie, wobei auf der Trägerfolie Widerstandselemente als flächenförmige Heizelemente sowie Elektroden angeordnet sind, wobei die Elektroden die Widerstandselemente mit Anschlussstellen für den Anschluss einer Stromversorgung verbinden. Erfindungsgemäß wird hierbei vorgeschlagen, dass die Heizelemente in Form mehrerer auf der Trägerfolie nebeneinander liegender Heizfelder ausgeführt sind, die jeweils in ihrem ümfangsbereich von Stegen aus ausgehärtetem Schmelzklebstoff umrahmt sind, wobei die Deckfolie mithilfe der Stege aus ausgehärtetem Schmelzklebstoff an der Trägerfolie befestigt ist und die Stege aus ausgehärtetem Schmelzklebstoff die Heizfelder in Richtung der Deckfolie überragen. Die erfindungsgemäße Ausführung bietet Vorteile sowohl bei der Fertigung der Heizvorrichtung als auch bei der Anwendung der Heizvorrichtung. Im Zuge der Fertigung schützen die umrahmenden Stege aus Schmelzklebstoff die Heizfelder nach deren Aufbringen bei nachfolgenden Verfahrensschritten, in denen Druck und Wärme angewendet werden. In der Regel wird die Fertigung so erfolgen, dass zunächst die Elektroden und die Heizfelder auf die Trägerfolie aufgebracht werden, und danach die Deckfolie an der Trägerfolie befestigt wird, beispielsweise durch Laminieren. Erfindungsgemäß wird nach dem Aufbringen der Heizfelder der Schmelzklebstoff auf die Trägerfolie strukturiert aufgebracht, beispielsweise durch Siebdruck, indem die Heizfelder ausgespart werden. Der Schmelzklebstoff kann anschließend kurz trocknen und somit erhärten. Die Menge des aufgebrachten Schmelzklebstoffes ist dabei so gewählt, dass die Stege aus ausgehärtetem Schmelzklebstoff die Heizfelder überragen. Die Stege nehmen somit den Druck auf, der beim anschließenden Befestigen der Deckfolie ausgeübt wird, und schützen somit die Heizfelder. The aim of the invention is therefore to design a heating device with flat heating elements in such a way that the risk of damage to the flat heating elements under pressure load is reduced and their pressure stability is thus increased. These aims are achieved by the features of claim 1. Claim 1 relates to a heating device made of a film composite with an electrically insulating carrier film and a cover film, with resistance elements being arranged as flat heating elements and electrodes on the carrier film, with the electrodes connecting the resistance elements to connection points for connecting a power supply. According to the invention, it is proposed here that the heating elements are designed in the form of a plurality of heating fields lying next to one another on the carrier film, which are each framed in their peripheral area by webs made of cured hot-melt adhesive, the cover film being attached to the carrier film with the aid of the webs made of cured hot-melt adhesive and the webs made of hardened hot-melt adhesive protrude beyond the heating fields in the direction of the cover film. The embodiment according to the invention offers advantages both in the manufacture of the heating device and in the application of the heating device. In the course of manufacture, the framing webs made of hot-melt adhesive protect the heating fields after they have been applied during subsequent process steps in which pressure and heat are applied. As a rule, production will take place in such a way that the electrodes and the heating fields are first applied to the carrier film and then the cover film is attached to the carrier film, for example by lamination. According to the invention, after the heating fields have been applied, the hot-melt adhesive is applied to the carrier film in a structured manner, for example by screen printing, by leaving out the heating fields. The hot-melt adhesive can then dry briefly and thus harden. The quantity of hot-melt adhesive applied is selected in such a way that the webs of hardened hot-melt adhesive protrude beyond the heating fields. The webs thus absorb the pressure that is exerted when the cover film is subsequently attached, and thus protect the heating fields.
Zudem wird die auf die Heizfelder übertragene Wärmemenge stark reduziert, sodass thermische bedingte Strukturänderungen der Heizfelder und unerwünschte chemische Reaktionen des Deckfolienmaterials mit den Heizfeldern vermieden werden. Die im Zuge der Befestigung der Deckfolie eingebrachte Wärmemenge wird stattdessen auf den Schmelzklebstoff aufgebracht, der dadurch aufschmilzt und sich mit der Deckfolie adhäsiv verbindet. In addition, the amount of heat transferred to the heating fields is greatly reduced, so that thermally induced structural changes in the heating fields and undesired chemical reactions of the cover film material with the heating fields are avoided. The amount of heat introduced in the course of attaching the cover sheet is instead applied to the hot-melt adhesive, which melts and adhesively bonds to the cover film.
Im Zuge der Anwendung der Heizvorrichtung schützen die umrahmenden Stege die Heizfelder bei mechanischen Belastungen, beispielsweise bei der kombinierten Verwendung mit den oben beschriebenen Kühlvorrichtungen. Der auf die Heizvorrichtung ausgeübte Druck wird dabei vornehmlich durch die Stege aufgenommen, die somit die Heizfelder vor mechanischen Belastungen schützen. In the course of using the heating device, the framing webs protect the heating fields from mechanical loads, for example when used in combination with the cooling devices described above. The pressure exerted on the heating device is primarily absorbed by the webs, which thus protect the heating fields from mechanical stress.
Die Dicke der Trägerfolie und der Deckfolie liegen im Mikrometerbereich und beträgt beispielsweise 25mha. Auch die Dicke der Heizfelder liegt in etwa derselben Größenordnung. Es ist dabei ausreichend, wenn die Stege die Heizfelder nur geringfügig überragen, etwa im Bereich weniger Mikrometer. The thickness of the carrier film and the cover film are in the micrometer range and is, for example, 25 mha. The thickness of the heating fields is also approximately of the same order of magnitude. In this case, it is sufficient if the webs protrude only slightly beyond the heating fields, for example in the range of a few micrometers.
Für eine optimale Schutzwirkung wird vorzugsweise vorgeschlagen, dass die der Deckfolie zugewandte gesamte Oberfläche der Stege aus ausgehärtetem Schmelzklebstoff größer ist als die der Deckfolie zugewandte gesamte Oberfläche der Heizfelder. Die Heizfelder können beispielsweise jeweils streifenförmig ausgeführt und in das sie umgebende Material des Schmelzklebstoffes eingebettet sein. For an optimal protective effect, it is preferably proposed that the entire surface of the webs made of hardened hot-melt adhesive facing the cover film is larger than the entire surface of the heating fields facing the cover film. The heating fields can, for example, each be designed in the form of strips and embedded in the surrounding material of the hot-melt adhesive.
Eine konkrete Ausführung sieht etwa vor, dass es sich bei der Trägerfolie und der Deckfolie um eine Kunststofffolie handelt, beispielsweise um eine Polyethylenterephthalat (PET)-Folie. Kunststofffolien stellen einerseits eine ausreichende elektrische Isolierung gegenüber den elektrischen Komponenten des Folienverbundes sicher, und ermöglichen andererseits sehr dünne und biegsame Ausführungen. Zudem stehen Kunststoffe zur Verfügung, die beispielsweise über Siebdruck bedruckbar sind.A specific embodiment provides for the carrier film and the cover film to be a plastic film, for example a polyethylene terephthalate (PET) film. On the one hand, plastic foils ensure adequate electrical insulation from the electrical components of the composite foil and, on the other hand, enable very thin and flexible designs. In addition, plastics are available that can be printed, for example, using screen printing.
Gemäß einer vorzugsweisen Ausführung wird daher vorgeschlagen, dass die Widerstandselemente als PTC-Widerstandselemente aus einer erhärteten, kohlenstoffbasierenden Paste gefertigt sind. Solche Pasten sind kommerziell erhältlich und werden auch als Carbon-Pasten oder Carbonlack bezeichnet. Sie eignen sich besonders für die Ausführung von Heizelementen, da sie bei Stromdurchfluss rasch aufheizen und aufgrund der Beimengung geeigneter Additive selbstregelnd eine Gleichgewichtstemperatur erreichen. Für die vorliegende Erfindung haben sich beispielsweise Wachse als Additive für die Carbon-Pasten als geeignet erwiesen, wobei die Schmelztemperatur der Wachse die PTC-Abschalttemperatur , beispielsweise 42°C, bestimmt. Die kohlenstoffbasierende Paste kann bei Raumtemperatur in viskoser Form mittels Siebdruck in der gewünschten Anordnung auf die Kunststofffolie aufgebracht und thermisch gehärtet werden, wodurch eine kostengünstige Herstellung der Heizvorrichtung möglich ist. In entsprechender Form wird auch vorgeschlagen, dass die Elektroden aus einer erhärteten, silberbasierenden Paste gefertigt sind. Solche silberbasierenden Pasten werden auch als Silberlack bezeichnet und können in ähnlicher Weise in viskoser Form mittels Siebdruck mit dem gewünschten Verlauf auf die Trägerfolie aufgedruckt werden, wobei es sich als zweckmäßig erwiesen hat, zuerst die Elektroden aufzudrucken und danach die PTC-Widerstandselemente . According to a preferred embodiment, it is therefore proposed that the resistance elements are made as PTC resistance elements from a hardened, carbon-based paste. Such pastes are commercially available and are also referred to as carbon pastes or carbon lacquer. They are particularly suitable for the execution of heating elements, as they heat up quickly when current flows through and due to the admixture suitable additives reach an equilibrium temperature in a self-regulating manner. Waxes, for example, have proven to be suitable as additives for the carbon pastes for the present invention, with the melting temperature of the waxes determining the PTC switch-off temperature, for example 42.degree. The carbon-based paste can be applied at room temperature in a viscous form to the plastic film by means of screen printing in the desired arrangement and thermally cured, as a result of which the heating device can be manufactured at low cost. In a corresponding form, it is also proposed that the electrodes are made from a hardened, silver-based paste. Such silver-based pastes are also referred to as silver paint and can be printed in a similar manner in a viscous form by means of screen printing with the desired gradient onto the carrier film, it having proved expedient to print the electrodes first and then the PTC resistance elements.
Des Weiteren wird vorgeschlagen, dass die Trägerfolie als Laminat mit einer Aluminiumschicht ausgeführt ist und eine Messvorrichtung zur Detektion von Kapazitätsänderungen zwischen der Aluminiumschicht und den Heizfeldern zur Erkennung struktureller Belastungen oder Beschädigungen des Folienverbundes vorgesehen ist. Da Aluminium ein Material mit vergleichsweise hoher elektrischer Leitfähigkeit ist, stellen sich zwischen der Aluminiumschicht und den Heizfeldern kapazitive Eigenschaften ein, die zur Erkennung eines Impakts verwendet werden können, also einer lokal starken strukturellen Belastung oder Beeinträchtigung des Folienverbundes. Die Messung kann etwa durch hochfrequenten PWM („puls width modulation")- Betrieb der Heizelemente oder durch Überlagerung einer Wechselspannung auf die Versorgungsspannung der Heizelemente erfolgen. Furthermore, it is proposed that the carrier foil is designed as a laminate with an aluminum layer and that a measuring device is provided for detecting changes in capacitance between the aluminum layer and the heating fields in order to identify structural loads or damage to the foil composite. Since aluminum is a material with comparatively high electrical conductivity, capacitive properties appear between the aluminum layer and the heating fields, which can be used to detect an impact, i.e. a locally strong structural load or impairment of the foil composite. The measurement can be carried out, for example, by high-frequency PWM ("pulse width modulation") operation of the heating elements or by superimposing an AC voltage on the supply voltage of the heating elements.
Die Erfindung wird in weiterer Folge anhand von Ausführungsbeispielen mithilfe der beiliegenden Zeichnungen näher erläutert. Es zeigen hierbei die The invention is explained in more detail below on the basis of exemplary embodiments with the aid of the accompanying drawings. The
Fig. 1 eine Ausführungsform einer erfindungsgemäßen Heizvorrichtung, und die Fig. 2 eine Schnittansicht durch ein Heizelement und die umrahmenden Stege. Fig. 1 shows an embodiment of a heating device according to the invention, and the 2 shows a sectional view through a heating element and the surrounding webs.
Zunächst wird auf die Fig. 1 Bezug genommen, die eine Äusführungsform einer erfindungsgemäßen Heizvorrichtung mit einer Längsrichtung L und einer Querrichtung Q zeigt. Dabei sind die in Längsrichtung L streifenförmig verlaufenden Heizfelder 1 ersichtlich, wobei eine Vielzahl an Heizfeldern 1 in Längsrichtung L und in Querrichtung Q nebeneinander liegend angeordnet sind. Zwischen den Heizfeldern 1 sind in Längsrichtung L und Querrichtung Q jeweils streifenförmig verlaufende Stege 2 ausgebildet, die jeweils zwei in Längsrichtung L und Querrichtung Q gesehen nebeneinander liegende Heizfelder 1 trennen. Im Bereich der beiden Längsrandkanten der Heizvorrichtung verläuft jeweils eine Elektrode 3a von ersten Anschlussstellen 4a in Längsrichtung L der Heizvorrichtung. Eine weitere Elektrode 3b mit entgegengesetzter Polarität verläuft mittig der Heizvorrichtung in Längsrichtung L zu einer zweiten Anschlussstelle 4b. Reference is first made to FIG. 1, which shows an embodiment of a heating device according to the invention with a longitudinal direction L and a transverse direction Q. FIG. The heating fields 1 running in the form of strips in the longitudinal direction L can be seen, with a large number of heating fields 1 being arranged next to one another in the longitudinal direction L and in the transverse direction Q. Webs 2 running in strips in the longitudinal direction L and transverse direction Q are formed between the heating fields 1 and separate two heating fields 1 lying next to one another when viewed in the longitudinal direction L and transverse direction Q. In the area of the two longitudinal edges of the heating device, one electrode 3a runs in each case from the first connection points 4a in the longitudinal direction L of the heating device. Another electrode 3b with the opposite polarity runs in the center of the heating device in the longitudinal direction L to a second connection point 4b.
Im gezeigten Ausführungsbeispiel sind zudem jeweils zwischen sechs und neun über eine Hälfte der Heizvorrichtung in Querrichtung Q verteilt angeordnete Heizfelder 1 angeordnet, sowie zwischen zehn und zwölf in Längsrichtung L verteilt angeordnete Heizfelder 1. Die Anzahl der Heizfelder 1 wird freilich in Abhängigkeit von der Länge und Breite der Heizvorrichtung sowie der benötigten Heizleistung gewählt. Die Heizfelder 1 werden über die Elektroden 3 elektrisch kontaktiert, beispielsweise mithilfe von in Querrichtung Q verlaufenden Leiterbahnen. In the exemplary embodiment shown, there are between six and nine heating fields 1 distributed over one half of the heating device in the transverse direction Q, and between ten and twelve heating fields 1 distributed in the longitudinal direction L. The number of heating fields 1 is of course dependent on the length and Width of the heater and the required heating power selected. Electrical contact is made with the heating fields 1 via the electrodes 3, for example with the aid of conductor tracks running in the transverse direction Q.
Ein möglicher Aufbau einer erfindungsgemäßen Heizvorrichtung soll anhand der Fig. 2 erläutert werden. Gemäß des gezeigten Ausführungsbeispiels weist die Heizvorrichtung einen Schichtaufbau aus mehreren Schichten auf. Eine untere Trägerfolie 5 ist beispielsweise als Laminat aus einer PET- Kunststofffolie und einer Aluminiumschicht ausgeführt. Eine obere Deckfolie 6 ist beispielsweise als PET-Kunststofffolie ausgeführt. Auf der der Deckfolie 6 zugewandten Seite der Trägerfolie 5 sind PTC-Widerstandselemente angeordnet, die die Heizfelder 1 bilden, sowie sämtliche Elektroden 3 und deren Leiterbahnen. Die Elektroden 3 und deren Leiterbahnen sind aus einer erhärteten, silberbasierenden Paste gefertigt, die in viskoser Form mittels Siebdruck mit dem gewünschten Verlauf auf die Trägerfolie 5 aufgebracht und thermisch ausgehärtet wird.A possible structure of a heating device according to the invention will be explained with reference to FIG. According to the exemplary embodiment shown, the heating device has a layered structure made up of several layers. A lower carrier film 5 is designed, for example, as a laminate of a PET plastic film and an aluminum layer. An upper cover film 6 is designed as a PET plastic film, for example. Arranged on the side of the carrier film 5 facing the cover film 6 are PTC resistance elements which form the heating fields 1, as well as all the electrodes 3 and their traces. The electrodes 3 and their conductor tracks are made of a hardened, silver-based paste, which is applied in viscous form by means of screen printing with the desired profile to the carrier film 5 and is thermally cured.
Die PTC-Widerstandselemente sind aus einer erhärteten, kohlenstoffbasierenden Paste gefertigt, die in weiterer Folge auch als Carbon-Paste bezeichnet wird und ebenfalls bei Raumtemperatur in viskoser Form mittels Siebdruck in der gewünschten Anordnung auf die Trägerfolie 5 aufgebracht und thermisch ausgehärtet wird. Die Elektroden 3 und die Heizfelder 1 können nach ihrem Auftrag wahlweise mit einer Schutzlackschicht versehen werden. The PTC resistance elements are made of a hardened, carbon-based paste, which is also referred to below as carbon paste and is also applied at room temperature in viscous form by means of screen printing in the desired arrangement to the carrier film 5 and is thermally cured. The electrodes 3 and the heating fields 1 can optionally be provided with a protective lacquer layer after they have been applied.
Nach dem Aufbringen der Heizfelder 1 sowie einer allfälligen Schutzlackschicht wird ein Schmelzklebstoff, der auch als „Hotmelt" bezeichnet wird, in viskoser Form mittels Siebdruck mit dem gewünschten Verlauf aufgetragen. Dabei werden die Heizfelder 1 ausgespart und nur die zwischen den Heizfeldern 1 liegenden Bereiche mit Schmelzklebstoff versehen. Auf diese Weise werden Stege 2 zwischen den Heizfeldern 1 ausgebildet. Die Menge des aufgebrachten Schmelzklebstoffes ist dabei so gewählt, dass die Stege 2 aus ausgehärtetem Schmelzklebstoff die Heizfelder 1 in Richtung der Deckfolie 6 überragen, wie in der Fig. 2 ersichtlich ist. In einem abschließenden Verfahrensschritt wird die Deckfolie 6 mithilfe von Druck und Wärme befestigt, wobei der Schmelzklebstoff aufgrund der eingebrachten Wärmemenge aufschmilzt und sich mit der Deckfolie 6 adhäsiv verbindet. After the application of the heating fields 1 and any protective lacquer layer, a hot-melt adhesive, which is also known as "hotmelt", is applied in viscous form by means of screen printing with the desired course. The heating fields 1 are left out and only the areas between the heating fields 1 are covered In this way, webs 2 are formed between the heating fields 1. The amount of hot-melt adhesive applied is chosen such that the webs 2 made of hardened hot-melt adhesive protrude beyond the heating fields 1 in the direction of the cover film 6, as can be seen in Figure 2 In a final process step, the cover film 6 is attached using pressure and heat, with the hot-melt adhesive melting due to the amount of heat introduced and adhesively connecting to the cover film 6 .
In der Fig. 1 sind des Weiteren Anschlussflächen 7 für Temperatursensoren ersichtlich. Diese Anschlussflächen 7 können im Elektrodenbild vorgesehen sein und mit dem Aufbringen der Elektroden 3 im Siebdruckverfahren gefertigt werden. Die Anschlussflächen 7 dienen dem Anschluss von Temperatursensoren zur Temperaturüberwachung der Heizvorrichtung. Furthermore, connection surfaces 7 for temperature sensors can be seen in FIG. 1 . These connection surfaces 7 can be provided in the electrode pattern and can be produced with the application of the electrodes 3 using the screen printing process. The connection surfaces 7 are used to connect temperature sensors for monitoring the temperature of the heating device.
Wird an die Elektroden 3 eine Wechselspannung angelegt, so fließt durch die Leiterbahnen der Elektroden 3 ein Strom, der in den PTC-Widerstandselementen der Heizfelder 1 in Wärme umgewandelt wird, die zunächst die PTC-Widerstandselemente und in weiterer Folge den gesamten Folienverbund erwärmt. Der Folienverbund kann somit als Heizvorrichtung beispielsweise zur Temperierung von Akkumulatoren eingesetzt werden. Die Ausführung der Heizvorrichtung als Folienverbund hat den Vorteil, dass sie sich an die Zellen des Akkumulators anlegen und somit Toleranzen der Zellen einfacher ausgleichen kann. Damit wird der Wärmeübergang von der Heizvorrichtung auf die Zellen deutlich verbessert, und zusätzliche Maßnahmen wie Wärmeleitpasten oder Thermalpads werden überflüssig. Die Erfindung eignet sich insbesondere zur Aufbringung auf Kühlkreise, die aus Folienmaterial bestehen und sich bei Durchströmung mit Kühlflüssigkeit aufblähen und so an die Oberfläche der Batteriezellen optimal anpassen, wodurch der oben beschriebene Effekt einer Anlegung an die Zellen ausgenützt wird. Besonders vorteilhaft ist diese Eigenschaft bei sogenannten Pouch-Zellen, die konstruktionsbedingt eine bombierte Oberfläche aufweisen und sich im Betrieb oder im Zuge ihrer Alterung verformen. If an AC voltage is applied to the electrodes 3, a current flows through the conductor tracks of the electrodes 3, which is converted into heat in the PTC resistance elements of the heating fields 1, which first heats the PTC resistance elements and then the entire film composite. Of the Foil composite can thus be used as a heating device, for example for temperature control of accumulators. The design of the heating device as a composite film has the advantage that it can be applied to the cells of the accumulator and thus tolerances of the cells can be compensated for more easily. This significantly improves the heat transfer from the heating device to the cells, and additional measures such as heat-conducting pastes or thermal pads become superfluous. The invention is particularly suitable for application to cooling circuits that consist of film material and expand when coolant flows through them and thus optimally adapt to the surface of the battery cells, whereby the above-described effect of contact with the cells is utilized. This property is particularly advantageous in so-called pouch cells, which have a cambered surface due to their design and deform during operation or as they age.
Die Erfindung verwendet als heizaktive Schicht vorzugsweise, aber nicht ausschließlich Carbonpasten mit PTC-Effekt. PTC- Widerstandselemente haben den Vorteil, dass die aktive Erwärmung der Heizelemente bei einer definierten Zieltemperatur von beispielsweise 42°C durch einen raschen Anstieg des elektrischen Widerstands des Materials unterbrochen wird, ohne dass dafür eine elektronische Steuerung, eine Sicherung oder ein anderer Überhitzungsschutz nötig wäre. Ein Durchbrennen des Heizelements ist damit ausgeschlossen. Nach Abkühlung des Heizelements stellt sich die elektrische Leitfähigkeit wieder ein, und das Heizelement nimmt seine Funktion wieder auf. The invention preferably, but not exclusively, uses carbon pastes with a PTC effect as the heating-active layer. PTC resistance elements have the advantage that the active heating of the heating elements is interrupted at a defined target temperature of e.g. 42°C by a rapid increase in the electrical resistance of the material without the need for electronic control, a fuse or any other form of overheating protection. This rules out the possibility of the heating element burning out. After the heating element has cooled down, the electrical conductivity is restored and the heating element resumes its function.
Beim Aufbringen auf Batteriezellen entstehen im Zuge des Fertigungsprozesses mitunter hohe Drücke. Hohe Drücke sind auch beim Aufblasen eines Kühlkreises aus einem Folienverbundmaterial, auf den zuvor eine Heizvorrichtung aufgebracht wurde, zu beobachten. Diese Drücke können, insbesondere wenn sie gleichzeitig mit hohen Temperaturen auftreten, zu einer Beschädigung der Heizfelder 1 führen, da die verwendeten Carbonpasten mitunter druck- und temperaturempfindlich sind und zerfließen können. Dadurch kann es zu Funktionsbeeinträchtigungen, Funktionsverlust und auch Kurzschlüssen kommen. Die Erfindung vermeidet diese unterwünschten Effekte durch Aufbringen einer Schicht aus Schmelzklebstoff auf die Heizschicht, wobei diese Aufbringung im Siebdruckverfahren strukturiert erfolgt, sodass die Carbonfelder ausgespart und von Stegen 2 aus Schmelzklebstoff umrahmt werden, deren Höhe die Dicke der Carbonschicht der Heizfelder 1 übertrifft . When applied to battery cells, high pressures sometimes occur during the manufacturing process. High pressures can also be observed when inflating a cooling circuit made of a foil composite material to which a heating device has previously been applied. These pressures can lead to damage to the heating panels 1, particularly if they occur simultaneously with high temperatures, since the carbon pastes used are sometimes sensitive to pressure and temperature and can melt. This can lead to functional impairments, loss of function and short circuits. The invention avoids these undesired effects by applying a layer of hot-melt adhesive to the heating layer, this application being structured using the screen printing process, so that the carbon fields are recessed and framed by webs 2 made of hot-melt adhesive, the height of which exceeds the thickness of the carbon layer of the heating fields 1.
In den nachfolgenden Fertigungsprozessen und im Betrieb werden Druckkräfte somit von der Schmelzklebstoff-Schicht aufgenommen, und eine mechanische Belastung der Heizfelder 1 kann vermieden werden. Des Weiteren verhindert die gedruckte Schmelzklebstoff- Schicht ein Zerfließen der PTC-Schicht in die Breite. Die heizaktive Schicht behält sowohl bei der Fertigung der Heizvorrichtung beim Auflaminieren der Deckfolie 6 als auch im Betrieb ihre Funktion. Neben der Schutzfunktion für die heizaktive Schicht stellen die Schmelzklebstoffe auch die erforderliche Verbindung mit der Deckfolie 6 her. Des Weiteren kann optional auf die von den Heizfeldern 1 gebildete PTC- Schicht eine Schutzlackschicht gedruckt werden, um die Belastbarkeit der PTC-Schicht bei hohen Drücken und Temperaturen zu erhöhen. In the subsequent manufacturing processes and during operation, compressive forces are thus absorbed by the layer of hot-melt adhesive, and mechanical loading of the heating fields 1 can be avoided. Furthermore, the printed hot-melt adhesive layer prevents the PTC layer from flowing across the width. The heating-active layer retains its function both during production of the heating device when the cover film 6 is laminated on and during operation. In addition to the protective function for the heating-active layer, the hot-melt adhesives also produce the necessary connection with the cover film 6 . Furthermore, a protective lacquer layer can optionally be printed on the PTC layer formed by the heating fields 1 in order to increase the resilience of the PTC layer at high pressures and temperatures.
Falls die Trägerfolie 5 als Laminat mit einer Aluminiumschicht vorliegt, kann die Veränderung der Kapazität der von den Heizfeldern 1 gebildeten Heizschicht zur Aluminiumschicht zur Erkennung eines Impakts genutzt werden. Die Messung kann durch hochfrequenten PWM-Betrieb der Heizschicht oder durch Überlagerung einer Wechselspannung auf die Versorgungsspannung der Heizschicht erfolgen. If the carrier film 5 is present as a laminate with an aluminum layer, the change in the capacitance of the heating layer formed by the heating fields 1 with respect to the aluminum layer can be used to detect an impact. The measurement can be carried out by high-frequency PWM operation of the heating layer or by superimposing an AC voltage on the supply voltage of the heating layer.
Somit wird eine Heizvorrichtung verwirklicht, bei der das Risiko von Beschädigungen der flächenförmigen Heizelemente unter Druckbelastung verringert und deren Druckstabilität somit erhöht wird. A heating device is thus realized in which the risk of damage to the flat heating elements under pressure is reduced and their pressure stability is thus increased.

Claims

Patentansprüche: Patent Claims:
1.Heizvorrichtung aus einem Folienverbund mit einer elektrisch isolierenden Trägerfolie (5) und einer Deckfolie (6), wobei auf der Trägerfolie (5) Widerstandselemente als flächenförmige Heizelemente sowie Elektroden (3) angeordnet sind, wobei die Elektroden (3) die Widerstandselemente mit Anschlussstellen (4) für den Anschluss einer1. Heating device made of a film composite with an electrically insulating carrier film (5) and a cover film (6), with resistance elements as flat heating elements and electrodes (3) being arranged on the carrier film (5), with the electrodes (3) containing the resistance elements with connection points (4) for connecting a
Stromversorgung verbinden, dadurch gekennzeichnet, dass die Heizelemente in Form mehrerer auf der Trägerfolie (5) nebeneinander liegender Heizfelder (1) ausgeführt sind, die jeweils in ihrem ümfangsbereich von Stegen (2) aus ausgehärtetem Schmelzklebstoff umrahmt sind, wobei die Deckfolie (6) mithilfe der Stege (2) aus ausgehärtetem Schmelzklebstoff an der Trägerfolie (5) befestigt ist und die Stege (2) aus ausgehärtetem Schmelzklebstoff die Heizfelder (1) in Richtung der Deckfolie (6) überragen.Connect the power supply, characterized in that the heating elements are designed in the form of a plurality of heating fields (1) lying next to one another on the carrier film (5), which are each framed in their peripheral area by webs (2) made of hardened hot-melt adhesive, the cover film (6) being the webs (2) made of cured hot-melt adhesive are attached to the carrier film (5) and the webs (2) made of cured hot-melt adhesive protrude beyond the heating fields (1) in the direction of the cover film (6).
2. Heizvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die der Deckfolie (6) zugewandte gesamte Oberfläche der Stege (2) aus ausgehärtetem Schmelzklebstoff größer ist als die der Deckfolie (6) zugewandte, gesamte Oberfläche der Heizfelder (1). 2. Heating device according to claim 1, characterized in that the entire surface of the webs (2) made of hardened hot-melt adhesive facing the cover film (6) is larger than the entire surface of the heating fields (1) facing the cover film (6).
3. Heizvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich bei der Trägerfolie (5) und der Deckfolie (6) um eine Kunststofffolie handelt. 3. Heating device according to claim 1 or 2, characterized in that it is a plastic film in the carrier film (5) and the cover film (6).
4. Heizvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Widerstandselemente als PTC- Widerstandselemente aus einer erhärteten, kohlenstoffbasierenden Paste gefertigt sind. 4. Heating device according to one of claims 1 to 3, characterized in that the resistance elements are made as PTC resistance elements from a hardened, carbon-based paste.
5. Heizvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Elektroden (3) aus einer erhärteten, silberbasierenden Paste gefertigt sind. 5. Heating device according to one of claims 1 to 4, characterized in that the electrodes (3) are made of a hardened, silver-based paste.
6. Heizvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Trägerfolie (5) als Laminat mit einer Aluminiumschicht ausgeführt ist und eine Messvorrichtung zur Detektion von Kapazitätsänderungen zwischen der Aluminiumschicht und den Heizfeldern (1) zur Erkennung struktureller Belastungen oder Beschädigungen des Folienverbundes vorgesehen ist. 6. Heating device according to one of claims 1 to 5, characterized in that the carrier film (5) is designed as a laminate with an aluminum layer and a measuring device for detecting changes in capacitance between the aluminum layer and the heating fields (1). Detection of structural loads or damage to the composite film is provided.
7.Akkumulator mit einer Heizvorrichtung nach einem der Ansprüche 1 bis 6. 7. Accumulator with a heating device according to one of claims 1 to 6.
PCT/EP2022/050138 2021-01-05 2022-01-05 Heating device WO2022148770A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22700719.2A EP4275452A1 (en) 2021-01-05 2022-01-05 Heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA60001/2021 2021-01-05
AT600012021 2021-01-05

Publications (1)

Publication Number Publication Date
WO2022148770A1 true WO2022148770A1 (en) 2022-07-14

Family

ID=80035032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/050138 WO2022148770A1 (en) 2021-01-05 2022-01-05 Heating device

Country Status (2)

Country Link
EP (1) EP4275452A1 (en)
WO (1) WO2022148770A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080083721A1 (en) * 2006-10-04 2008-04-10 T-Ink, Inc. Heated textiles and methods of making the same
WO2008091001A2 (en) * 2007-01-22 2008-07-31 Panasonic Corporation Sheet heating element
JP2018203580A (en) * 2017-06-07 2018-12-27 大日本印刷株式会社 Heated electrode sheet and heated electrode sheet roll
EP3726926A1 (en) * 2019-04-17 2020-10-21 ATT advanced thermal technologies GmbH Heating mat

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080083721A1 (en) * 2006-10-04 2008-04-10 T-Ink, Inc. Heated textiles and methods of making the same
WO2008091001A2 (en) * 2007-01-22 2008-07-31 Panasonic Corporation Sheet heating element
JP2018203580A (en) * 2017-06-07 2018-12-27 大日本印刷株式会社 Heated electrode sheet and heated electrode sheet roll
EP3726926A1 (en) * 2019-04-17 2020-10-21 ATT advanced thermal technologies GmbH Heating mat

Also Published As

Publication number Publication date
EP4275452A1 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
DE2543314C2 (en) Self-regulating electrical device
DE69333149T2 (en) ELECTRIC HEATING PILLOW AND ITS PRODUCTION PROCESS
EP3111506B1 (en) Process for producing an assembly of an energy storage module and a cooling element and assembly of an energy storage module and a cooling element
DE2904839A1 (en) HEATING CONSTRUCTION
DE1803554A1 (en) Electrical device, in particular as a fuse or heating device
DE112013005730B4 (en) Temperature sensor
EP2815626B1 (en) Method for manufacturing of a vehicle heating and vehicle heating
DE112015000608T5 (en) Heating for electric vehicle batteries
WO2011120946A1 (en) Electric heating system, in particular for a hybrid vehicle or electric vehicle
DE3910861C2 (en) Organic PTC thermistor
WO2012041278A1 (en) Electrochemical cell of an accumulator
WO2013121010A1 (en) Vehicle heater and method for monitoring a vehicle heater
DE102012219082A1 (en) Safety device for mounting in a battery cell of a lithium-ion battery, lithium-ion battery cell with safety device
EP1616692B1 (en) Laminator to produce parts
EP3195389B1 (en) Heat exchanger for controlling the temperature of energy storage elements of an energy store
AT520444A4 (en) FITTING PLATE WITH A FLAT HEATING ELEMENT
DE2655543C2 (en)
EP3726926B1 (en) Heating mat
WO2022148770A1 (en) Heating device
DE102017101262A1 (en) Ultrathin foil thermistors
DE4012643A1 (en) Efficient element for water heaters - is polyester of polyimide film, silk screen printed with conductor pattern, laid up with copper contact plus plain film, and hot pressed
WO2017167653A1 (en) Heatable surface element and method for the production thereof
EP4122008A1 (en) Connection of components
EP1704753B1 (en) Closing mechanism comprising a heating means, and method for producing one such closing mechanism
WO2000047965A1 (en) Compensating element for a sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22700719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022700719

Country of ref document: EP

Effective date: 20230807