WO2022148472A1 - 波束质量测量方法和设备 - Google Patents

波束质量测量方法和设备 Download PDF

Info

Publication number
WO2022148472A1
WO2022148472A1 PCT/CN2022/071286 CN2022071286W WO2022148472A1 WO 2022148472 A1 WO2022148472 A1 WO 2022148472A1 CN 2022071286 W CN2022071286 W CN 2022071286W WO 2022148472 A1 WO2022148472 A1 WO 2022148472A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
auxiliary device
wireless auxiliary
beams
layer
Prior art date
Application number
PCT/CN2022/071286
Other languages
English (en)
French (fr)
Inventor
杨坤
姜大洁
秦飞
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP22736633.3A priority Critical patent/EP4277335A1/en
Publication of WO2022148472A1 publication Critical patent/WO2022148472A1/zh
Priority to US18/220,270 priority patent/US20230354071A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a beam quality measurement method and device.
  • the device may include a beam quality measurement apparatus, a terminal, a network side device, a wireless auxiliary device, and the like.
  • Obstructions within the coverage area of a cell usually lead to coverage holes.
  • the strength of the wireless signal in the coverage hole area is weak, and the communication quality is affected. This phenomenon is more common in the high frequency band/millimeter band.
  • some wireless auxiliary devices such as smart surfaces
  • these wireless auxiliary devices provide communication services for the coverage hole area by forwarding the signal of the base station. Through reasonable deployment, wireless auxiliary equipment can ensure good signal coverage.
  • the terminal can distinguish the reference signal and the transmit beam by using a reference signal (Reference Signal, RS) port number or an identifier (ID).
  • RS Reference Signal
  • ID an identifier
  • the wireless auxiliary device has an influence on the reference signal, but the terminal is not aware of it. In this case, if the terminal uses the reference signal affected by the wireless auxiliary device to perform beam quality measurement, accurate measurement results cannot be obtained.
  • Embodiments of the present application provide a beam quality measurement method and device, which can solve the problem of low accuracy of measurement results of beam quality measurement performed by a terminal on a wireless auxiliary device.
  • a first aspect provides a beam quality measurement method, the method comprising: a terminal receiving a reference signal forwarded by a wireless auxiliary device; wherein, the reference signal is sent by a network device, and the wireless auxiliary device uses multiple beams to respectively Forwarding at different times; performing joint processing on the reference signals with the same beam of the network device and the same beam of the wireless auxiliary device to obtain a processing result; the joint processing includes layer one filtering and/or layer three filtering.
  • a beam quality measurement method includes: a network side device sends a reference signal; wherein, the reference signal is forwarded by a wireless auxiliary device through multiple beams at different times; The terminal performs joint processing on the reference signals with the same network equipment beam and the same wireless auxiliary equipment beam to obtain a processing result; the joint processing includes layer one filtering and/or layer three filtering.
  • a beam quality measurement method comprising: a network side device sending configuration information, where the configuration information is used to configure a wireless auxiliary device to forward a reference signal through the same beam within a time window, the time The window is used by the terminal to measure the reference signal.
  • a beam quality measurement method comprising: a wireless auxiliary device receiving configuration information, the configuration information configuring the wireless auxiliary device to forward a reference signal through the same beam within a time window, the time The window is used by the terminal to measure the reference signal; and forward the reference signal according to the configuration information.
  • a beam quality measurement apparatus comprising: a receiving module configured to receive a reference signal forwarded by a wireless auxiliary device; wherein the reference signal is sent by a network device, and the wireless auxiliary device passes through multiple beams are forwarded at different times respectively; a processing module is configured to jointly process the reference signals with the same beam of the network device and the same beam of the wireless auxiliary device to obtain a processing result; the joint processing includes layer-one filtering and/or Layer 3 filtering.
  • a beam quality measurement apparatus comprising: a sending module for sending a reference signal; wherein the reference signal is forwarded by a wireless auxiliary device through multiple beams at different times; the reference signal is used for The terminal performs joint processing on the reference signals of the same beam of the beam quality measurement device and the same beam of the wireless auxiliary device to obtain a processing result; the joint processing includes layer one filtering and/or layer three filtering.
  • a beam quality measurement apparatus comprising: a sending module configured to send configuration information, where the configuration information is used to configure a wireless auxiliary device to forward a reference signal through the same beam within a time window, the time window for the terminal to measure the reference signal.
  • a beam quality measurement apparatus comprising: a receiving module configured to receive configuration information, where the configuration information is used to configure the beam quality measurement apparatus to forward reference signals through the same beam within a time window, so that The time window is used for the terminal to measure the reference signal; the sending module is used for forwarding the reference signal according to the configuration information.
  • a terminal in a ninth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, when the program or instruction is executed by the processor A method as described in the first aspect is implemented.
  • a tenth aspect provides a network-side device, the network-side device includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the When executed by the processor, the method as described in the second aspect or the third aspect is implemented.
  • a wireless auxiliary device comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being The method according to the fourth aspect is implemented when the processor is executed.
  • a twelfth aspect provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, any one of the first to fourth aspects is implemented Methods.
  • a thirteenth aspect provides a computer program product comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being When executed by the processor, the method described in any one of the first aspect to the fourth aspect is implemented.
  • a fourteenth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the first to fourth aspects The method of any of the aspects.
  • the terminal receives the reference signal forwarded by the wireless auxiliary device, and performs joint processing on the reference signal with the same beam of the network device and the same beam of the wireless auxiliary device, and obtains the processing result.
  • the problem of low beam quality measurement accuracy caused by joint processing of reference signals, or joint processing of reference signals of different beams of network-side equipment, can improve the accuracy of beam quality measurement.
  • FIG. 1 is a schematic diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a beam quality measurement method according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of an application scenario of the beam quality measurement method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a specific application of a beam quality measurement method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a specific application of a beam quality measurement method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a beam quality measurement method according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a beam quality measurement method according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a beam quality measurement method according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an apparatus for measuring beam quality according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an apparatus for measuring beam quality according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an apparatus for measuring beam quality according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an apparatus for measuring beam quality according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, but these techniques can also be applied to applications other than NR system applications, such as 6th Generation , 6G) communication system.
  • NR New Radio
  • FIG. 1 shows a schematic diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolution Node-B (evolution Node-B, eNB), Next Generation Node-B (generation Node-B, gNB), Home Node B, Home Evolved Node B, Wireless Local Area Networks (WLAN) access point, Wireless-Fidelity (WiFi) node, Transmitting Receiving Point (TRP) or some other in the field As long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary. It should be noted that in the embodiments of this application, only the base station in the a Base Transceiver Station (BTS), a radio base station, a radio transcei
  • an embodiment of the present application provides a beam quality measurement method 200, which can be executed by a terminal, in other words, the method can be executed by software or hardware installed in the terminal, and the method includes the following steps.
  • the terminal receives the reference signal forwarded by the wireless auxiliary device; wherein, the reference signal is sent by the network device, and is forwarded by the wireless auxiliary device through multiple beams at different times respectively.
  • S204 Perform joint processing on the reference signals with the same beam of the network equipment and the same beam of the wireless auxiliary equipment, to obtain a processing result; the joint processing includes layer 1 filtering and/or layer 3 filtering.
  • the reference signals mentioned in the various embodiments of this application can be used by the terminal to measure the beams of the wireless auxiliary equipment.
  • These reference signals can be synchronization signals and physical broadcast blocks (Synchronization Signal and PBCH Block, SSB).
  • Channel state information reference Signal Channel State Information-Reference Signal, CSI-RS
  • CSI-RS Channel State Information-Reference Signal
  • the wireless auxiliary devices mentioned in various embodiments of the present application may be large intelligent surfaces (Large Intelligent Surfaces, LIS), relay devices, backscatters, satellites, and the like.
  • FIG. 3 is a schematic diagram of an application scenario of the beam quality measurement method according to the embodiment of the present application.
  • the network-side device can send a reference signal to the wireless auxiliary device through a certain beam or multiple beams, and the wireless auxiliary device can receive the reference signal and forward the reference signal through multiple different beams at different times respectively.
  • the network-side device sends a reference signal to the wireless auxiliary device, and the wireless auxiliary device forwards the reference signal at different times respectively through three different beams. Since the relative position and channel conditions between the network-side device and the wireless auxiliary device remain quasi-static, the reference signal has a consistent signal identifier and/or port (port K in FIG. 3 ) on the network-side device, that is, the network The sending parameters of the side device remain unchanged. Since the wireless auxiliary device does not change the sequence information/baseband information of the reference signal, the terminal usually cannot distinguish the reference signals of the same identifier and different beams. It can be understood that if the terminal measures the reference signals of the same identifier but different beams, the obtained measurement result will not be able to accurately reflect the channel conditions of the multiple beams of the wireless auxiliary device.
  • the terminal may perform joint processing on the reference signals having the same beam of the network device and the same beam of the wireless auxiliary device to obtain a processing result.
  • FIG. 4 is a schematic diagram of the reference signal of the forwarding period of the wireless auxiliary device having three forwarding beams (or the forwarding beams are simply referred to as beams).
  • the terminal may perform joint processing of layer 1 filtering on the reference signal of beam 1; the terminal may perform joint processing of layer 1 filtering on the reference signal of beam 2; the terminal may perform joint processing of layer 1 filtering on the reference signal of beam 3 deal with.
  • the terminal can jointly process the reference signals with the same identifier or the same port number, and these reference signals with the same identifier or port number can be sent by the network device to the wireless auxiliary device through the same (or the same) beam. .
  • the terminal may determine the reference signal of the same beam based on the beam execution period of the wireless auxiliary device. For example, if the beam execution period of the wireless auxiliary device is T, the reference signals received by the terminal at time t1 and at time (t1+T) are usually the same beam from the wireless auxiliary device.
  • the network side equipment can configure the wireless auxiliary equipment, and multiple reference signals appearing in a time window W are forwarded by the same beam of the wireless auxiliary equipment, and this time window is used for the terminal to measure the reference signal.
  • the time window W is less than or equal to the beam execution time, and greater than or equal to the period P of the reference signal to be measured.
  • the joint processing mentioned in this embodiment may include layer-1 filtering, layer-3 filtering, or layer-1 filtering + layer-3 filtering.
  • the terminal inputs the result of layer-1 filtering to the corresponding layer-3 filter Layer 3 filtering is performed in the middle.
  • the processing result mentioned in this embodiment includes beam information of multiple beams of the wireless auxiliary device, and this embodiment may further include the following step: the terminal reports the beam information to the network side device, wherein all The beam information includes the identification of the strongest beams.
  • the subsequent network side device also performs beam indication to the terminal based on the identifier of the strongest beam, so that the terminal can communicate with the wireless auxiliary device through the strongest beam, thereby improving the communication quality.
  • the terminal receives the reference signal forwarded by the wireless auxiliary device, and performs joint processing on the reference signal with the same beam of the network device and the same beam of the wireless auxiliary device, and obtains the processing result, so as to avoid the problem of the terminal on the wireless auxiliary device.
  • the problem of low beam quality measurement accuracy caused by the joint processing of reference signals of different beams of the equipment or the joint processing of reference signals of different beams of the network side equipment can improve the accuracy of beam quality measurement.
  • the terminal may further receive configuration information of the reference signal, the configuration information may be sent by the network side device, and the configuration information may include at least one of the following 1) to 4).
  • the identifier or port number of the reference signal For example, the network side device configures the terminal with the identifier or port number of the reference signal that the terminal needs to measure.
  • Time-frequency resource parameters of the reference signal includes the time domain resources of the reference signal to be measured, the frequency domain resources of the reference signal to be measured, the transmission period of the reference signal to be measured, and the like.
  • Time configuration parameters for performing reference signal measurement behavior include: start time and end time of the time window of the measurement behavior, or the time length of the time window of the measurement behavior, the measurement period, and the minimum time interval between two adjacent measurement behaviors of the reference signal.
  • the terminal can obtain the time domain position of the time window in which the reference signal measurement needs to be performed according to the time configuration parameter.
  • the joint processing criterion for the reference signal wherein the joint processing criterion includes: a measurement result processing method based on layer 1 filtering, and a measurement result processing method based on layer 3 filtering.
  • the terminal may perform the operation of jointly processing the reference signals in S204 based on the joint processing criterion.
  • the configuration information received by the terminal may be used to configure all of the above four. In other examples, if the configuration information does not configure some or all of the above four, the terminal may obtain the unconfigured part of the above four through other channels. For example, the configuration information does not configure the joint processing criterion in the above 4), and the terminal can obtain the joint processing criterion of the reference signal based on the protocol agreement, and so on.
  • the joint processing mentioned in S204 of the embodiment 200 includes layer 1 filtering and/or layer 3 filtering.
  • the following will be divided into scheme 1 and scheme 2, and the joint processing process of layer 1 filtering and the layer 3 filtering will be respectively The joint processing procedure is described.
  • the joint processing mentioned in S204 of the embodiment 200 includes layer 1 filtering, and the configuration information mentioned in the foregoing embodiment may further include at least one of the following 1) to 4).
  • the number of beams of the wireless auxiliary device for example, in the example shown in FIG. 3 , the number of beams of the wireless auxiliary device is 3.
  • the total time length of the beam execution can refer to the total time length occupied on the time axis in FIG. 3 .
  • the execution cycle can be referred to FIG. 3 , which schematically shows two execution cycles.
  • the execution period is smaller than the time length of the time window of the measurement behavior.
  • the time length of the time window of the measurement behavior is equal to 2, 3, 4, etc. more execution cycles.
  • the layer 1 filter is configured by default.
  • the number of beams to be measured by the wireless auxiliary device and the beam execution time of the beams to be measured is 3, specifically beam 1 , beam 2 and beam 3 .
  • the configuration information is also used to configure the beam execution time of the above three beams.
  • the length of the beam execution time of each beam is the length occupied by one square on the time axis.
  • the beam screening rule of the wireless auxiliary device includes: selecting the strongest Y beams from the measured multiple beams to perform layer 1 filtering or selecting Y best measurements after layer 1 filtering The result is reported to the high-level, Y is a positive integer.
  • the strongest Y beams or the Y best measurement results mentioned here can be measured based on the following indicators of the reference signal corresponding to the beam: Reference Signal Receiving Power (RSRP), reference signal reception quality (Reference Signal Receiving Quality, RSRQ), Received Signal Strength Indication (Received Signal Strength Indication, RSSI), etc.
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • RSSI Received Signal Strength Indication
  • the terminal can obtain the reference signal with the same beam based on the beam execution period of the wireless auxiliary device.
  • the beam execution period of the wireless auxiliary device is T
  • the reference signals received by the terminal at time t1 and at time (t1+T) are usually the same beam from the wireless auxiliary device.
  • the time interval between two adjacent reference signals used for layer-1 filtering is a fixed value, which is equal to the beam execution period T of the wireless auxiliary device.
  • the length of the time window measured with the reference signal is nT
  • the terminal performs joint processing on the reference signals with the same beam of the network equipment and the same beam of the wireless auxiliary equipment, and obtaining a processing result may include: the terminal, according to the configuration information, converts the network equipment The measurement result of the reference signal with the same beam and the same beam of the wireless auxiliary device is input to the layer 1 filter to obtain the processing result.
  • the terminal may further determine the number N of parallel layer 1 filtering corresponding to the reference signal according to the number of beams of the wireless auxiliary device or the number of beams to be measured by the wireless auxiliary device.
  • the number of beams of the wireless auxiliary device is equal to the number N of parallel layer 1 filtering corresponding to the reference signal, or the number of beams to be measured by the wireless auxiliary device is equal to the number N of parallel layer 1 filtering corresponding to the reference signal .
  • the number of beams of the wireless auxiliary device or the number of beams to be measured by the wireless auxiliary device may be configured by the above configuration information.
  • the terminal can also select Y results from N parallel layer 1 filtering results and report them to the upper layer according to the beam screening rule.
  • the beam screening rule can be configured by the above configuration information, and the Y measurement results can be the terminal The best one or more selected from all the measurement results.
  • the physical layer of the terminal may also measure the correlation of the reference signals of different beams of the wireless auxiliary device, and perform at least one of the following: reporting the correlation measurement result to the upper layer; according to the correlation measurement As a result, it is selected whether to combine and report the measurement results of the reference signals of the different beams of the wireless auxiliary device to the upper layer.
  • the joint processing mentioned in S204 of the embodiment 200 includes layer 3 filtering, and the configuration information mentioned in the foregoing embodiments of the solution 1 may further include at least one of the following 1) to 3).
  • the number of beams of the wireless auxiliary device for example, in the example shown in FIG. 5 , the number of beams of the wireless auxiliary device is 3.
  • the total time length of the beam execution can refer to the total time length occupied on the time axis in FIG. 5 .
  • the total time length of beam execution is equal to the length of the execution period.
  • the number of beams to be measured by the wireless auxiliary device and the beam execution time of the beams to be measured is 3, specifically beam 1 , beam 2 and beam 3 .
  • the configuration information is also used to configure the beam execution time of the above three beams.
  • the execution period of each beam is greater than the time length of the time window of the measurement behavior, eg, the time length of the time window of the measurement behavior is less than or equal to the total time length shown in FIG. 5 .
  • the Layer 3 filter is configured by default.
  • the terminal may further determine the number N of parallel layer 3 filtering corresponding to the reference signal according to the number of beams of the wireless auxiliary device or the number of beams to be measured by the wireless auxiliary device.
  • the number of beams of the wireless auxiliary device is equal to the number N of parallel layer 3 filtering corresponding to the reference signal, or the number of beams to be measured by the wireless auxiliary device is equal to the number N of parallel layer 3 filtering corresponding to the reference signal .
  • the number of beams of the wireless auxiliary device or the number of beams to be measured by the wireless auxiliary device may be configured by the above configuration information.
  • the network side device may also configure the wireless auxiliary device so that the reference signal forwarded by the wireless auxiliary device satisfies at least one of the following 1) and 2).
  • the reference signal occurring within a time window is forwarded by the same beam of the wireless auxiliary device.
  • the time window may be a time window configured by the network side device for the terminal to perform reference signal measurement.
  • the time window of the measurement behavior introduced in the configuration information section above please refer to the time window of the measurement behavior introduced in the configuration information section above.
  • the network device within a time window, the network device will send the reference signal to be measured multiple times, and the wireless auxiliary device uses the same beam to forward the reference signal to be measured within a time window.
  • the time windows of different configurations mentioned in this example may be time windows configured by the network side device for the terminal and used for measuring different beams of the wireless auxiliary device respectively.
  • Jointly processing the reference signals with the same beam of the network equipment and the same beam of the wireless auxiliary equipment mentioned in the second solution, and obtaining the processing result includes: according to the configuration information, the output result of the layer 1 filter is processed. Input to the filter corresponding to the layer three to obtain the processing result.
  • the layer 1 filter and the layer 3 filter have a one-to-one correspondence, and one layer 1 filter corresponds to one forwarding beam of the wireless auxiliary device.
  • the layer-one filter is a filter without after-effect, that is, the filtering result of the current time window will not be affected by the measurement result of the previous time window.
  • the layer one filter is a filter without after-effect, that is, the filtering result of the current time window will not be affected by the measurement result of the previous time window.
  • the output result of the layer 1 filter is input into the corresponding layer 3 filter according to the corresponding relationship of the wireless auxiliary device.
  • the first embodiment corresponds to the first solution in the foregoing.
  • the network-side device configures the parameters of the layer-one filter (L1 filter) for the terminal for the terminal.
  • the filtering rule enables the terminal to filter the measurement results of the same beam.
  • the filtering rules may include the time interval of the same beam, the screening rules of multiple beams, the coordinated reporting of measurement assistance information, and the like.
  • the base station can learn the basic information of the wireless auxiliary device through the interface between the base station and the wireless auxiliary device, for example, including the forwarding beams of the wireless auxiliary device, and the execution time length and execution period of each forwarding beam, from the base station to the wireless auxiliary device
  • the wireless auxiliary device has ensured time synchronization/frame synchronization with the base station.
  • Step 1 The base station configures the base station beam set to be measured for the terminal, and indicates additional measurement criteria. For details, please refer to the introduction of the configuration information part in the previous solution.
  • This step 1 can be implemented by the following method 1 or method 2.
  • Method 1 the method of explicit indication, the base station explicitly instructs the measurement and filtering behavior of the terminal.
  • the reference signal corresponding to one or several base station beams designated by the base station needs to follow additional measurement criteria.
  • the additional measurement criteria may include measurement requirements for the input information of the layer 1 filtering, requiring that the time interval between two adjacent reference signals used for filtering be a fixed value, which is equal to the beam execution period T of the wireless auxiliary device.
  • the base station considers the cycle period T of beam execution of the wireless auxiliary device when configuring the measurement time window of the reference signal. If the input information required for layer 1 filtering is at least n measurement results, the length of the measurement time window should not be less than nT.
  • the terminal determines the required quantity of input data for layer 1 filtering according to the configured time window and the time interval between two adjacent reference signals, for example, dividing the length of the time window by the time interval between two adjacent reference signals.
  • Method 2 Implicit method: The UE transmits the configuration information 1 (the forwarding beam of the wireless auxiliary device, and the execution time length and period of each forwarding beam) and configuration information 2 (the configuration of the reference signal to be measured, at least including the configuration information sent by the base station. The time domain resource where the reference signal is located) to determine the measurement and filtering behavior of the UE.
  • configuration information 1 the forwarding beam of the wireless auxiliary device, and the execution time length and period of each forwarding beam
  • configuration information 2 the configuration of the reference signal to be measured, at least including the configuration information sent by the base station.
  • the time domain resource where the reference signal is located to determine the measurement and filtering behavior of the UE.
  • the UE determines the measurement and filtering behavior of the UE according to the configuration information 1 and configuration information 2 and the first rule defined by the protocol; wherein, the first rule is: the reference signal at the same forwarding beam time of the wireless auxiliary device can only perform layering 1 filtering, or, the forwarding beams of the wireless auxiliary devices corresponding to multiple times when the layer 1 filtering is performed need to be the same.
  • the interval and the number of times of multiple times filtered by layer 1 may be configured by the base station, or defined by a protocol, or implemented by the UE.
  • Additional measurement criteria may include the parallel number of layer-one filtering of reference signals of the same port or ID. It can be understood that in a time window, the reference signal to be measured is sent multiple times, and is forwarded by the wireless auxiliary device with multiple different forwarding beams, and the parallel number of layer 1 filtering represents the number of different beams to be measured.
  • Additional measurement criteria may include screening rules for multiple beams.
  • One screening rule is that the terminal selects the strongest Y beams from the multiple measurable beams to perform layer 1 filtering, or selects Y best results after layer 1 filtering and reports them to the upper layer.
  • Another screening rule is that the base station configures the terminal with the beam that needs to be measured, for example, indicating the position where the beam to be measured appears for the first time in the measurement time window (the time offset from the start boundary of the window).
  • the number of beams measured by the terminal is determined according to the required number of layer-one filters, for example, the number of beams to be measured is equal to the number of layer-one filters.
  • Step 2 The terminal measures the reference signal according to the above-mentioned configuration of the base station, and reports the layer 1 filtering result to the upper layer.
  • the terminal can also receive the reference signals of multiple beams of the wireless auxiliary device, and measure the correlation between the reference signals of different beams; The measurement results are consolidated and reported to the upper level.
  • the terminal may report the signal correlation measurement result.
  • Step 3 The terminal selects several strongest beams to report to the base station after filtering at layer 3.
  • the terminal separately indicates the beam ID in the reporting information, which corresponds to the number of the multiple parallel layer one filters in step 1.
  • the terminal selects N1 strongest beams from the measurement results of the common configuration, and selects N2 strongest beams from the measurement results of the additional configuration, and reports them to the base station respectively.
  • the terminal reports the signal correlation measurement result to the base station for assisting base station scheduling.
  • the second embodiment corresponds to the second solution in the foregoing.
  • the base station by configuring the wireless auxiliary device, ensures that all reference signals to be measured that appear within a time window are forwarded by the same beam of the wireless auxiliary device; different configured time windows correspond to different beams of the wireless auxiliary device.
  • the base station implements the beam measurement function of the wireless auxiliary equipment by configuring the parameters of the third filter of the terminal layer.
  • Step 1 The base station configures the parameters of the Layer 3 filter for the terminal.
  • the additional layer three filtering configuration includes the number of parallel layer three filters for the same layer one filtering input information, the number of which corresponds to the number of beams to be measured for the wireless auxiliary device.
  • the base station configures the beam execution time for the wireless auxiliary device to ensure that the wireless auxiliary device uses the corresponding forwarding beam within the time slot where the reference signal to be measured is located or within the symbol time before and after.
  • the configuration can be semi-statically configured, or dynamically configured.
  • Step 2 The terminal executes N layer three filters in sequence according to the configuration parameters.
  • the measurement result of the i-th measurement period is input into the mod(i, N)-th layer-3 filter, where i is the number of the measurement period, and i is a positive integer.
  • the layer 1 filter and the layer 3 filter have a one-to-one correspondence, both of which are 2.
  • the measurement result of the first measurement cycle is input to the layer 3 filter 1, and the measurement result of the second measurement cycle is input.
  • the measurement result of the 3rd measurement cycle is input to layer 3 filter 1
  • the measurement result of the 4th measurement cycle is input to layer 3 filter 2
  • the measurement result of the 5th measurement cycle is input to layer 3 Three filter 1, and so on.
  • Step 3 The terminal selects several strongest beams to report to the base station after filtering at layer 3.
  • the beam quality measurement method according to the embodiment of the present application is described in detail above with reference to FIG. 2 to FIG. 5 .
  • the beam quality measurement method according to another embodiment of the present application will be described in detail below with reference to FIG. 6 . It can be understood that the interaction between the network side device and the terminal described from the network side device is the same as the description on the terminal side in the method shown in FIG. 2 , and related descriptions are appropriately omitted to avoid repetition.
  • FIG. 6 is a schematic diagram of an implementation flowchart of a beam quality measurement method according to an embodiment of the present application, which can be applied to a network side device. As shown in FIG. 6, the method 600 includes the following steps.
  • the network side device sends a reference signal, and the reference signal is forwarded by the wireless auxiliary device at different times through multiple beams respectively.
  • the reference signal is used by the terminal to perform joint processing on the reference signal with the same beam of the network equipment and the same beam of the wireless auxiliary equipment to obtain a processing result; the joint processing includes layer 1 filtering and/or layer 3 filtering.
  • the network-side device sends a reference signal to the wireless auxiliary device, and the wireless auxiliary device forwards the reference signal at different times respectively through multiple beams.
  • the terminal can receive the reference signal forwarded by the wireless auxiliary device, and perform joint processing on the reference signal with the same beam of the network device and the same beam of the wireless auxiliary device to obtain the processing result, so as to avoid joint processing of the reference signal of different beams of the wireless auxiliary device by the terminal.
  • the problem of low beam quality measurement accuracy caused by joint processing of reference signals of different beams of network side equipment can improve the accuracy of beam quality measurement.
  • the method further includes: sending configuration information of the reference signal, where the configuration information includes at least one of the following 1) to 4): 1) an identifier of the reference signal or port number; 2) the time-frequency resource parameter of the reference signal; 3) the time configuration parameter for executing the reference signal measurement behavior, the time configuration parameter includes: the start time and end time of the time window of the measurement behavior, or The time length of the time window of the measurement behavior, the measurement period, and the minimum time interval of the two adjacent measurement behaviors of the reference signal; 4) the joint processing criterion of the reference signal; wherein, the joint processing criterion includes: layer-based A method for processing measurement results of filtering, and a method for processing measurement results based on layer three filtering.
  • the joint processing includes layer 1 filtering
  • the configuration information further includes at least one of the following 1) to 3): 1) the number of beams of the wireless auxiliary device; the wireless The beam execution time length and execution period of the auxiliary device, the execution period is less than the time length of the time window of the measurement behavior; 2) the number of beams to be measured by the wireless auxiliary device and the beam execution time of the to-be-measured beam; 3)
  • the beam screening rule of the wireless auxiliary device the beam screening rule includes: selecting the strongest Y beams from the measured multiple beams to perform layer 1 filtering or selecting Y best measurements after layer 1 filtering The result is reported to the high-level, Y is a positive integer.
  • the joint processing includes layer three filtering, and the configuration information further includes at least one of the following 1) to 3): 1) the number of beams of the wireless auxiliary device; 2) all the The beam execution time length and execution period of the wireless auxiliary device, the execution period is greater than the time length of the time window of the measurement behavior; 3) The number N of beams to be measured by the wireless auxiliary device, and the corresponding beam execution time.
  • the reference signal satisfies at least one of the following 1) and 2): 1) the reference signal appearing within a time window is forwarded by the same beam of the wireless auxiliary device; 2) The beams of the wireless auxiliary device corresponding to the time windows of different configurations are different.
  • the method further includes at least one of the following 1) and 2): 1) receiving the correlation of the reference signals of different beams of the wireless auxiliary device measured by the physical layer of the terminal measurement results; 2) Receive a combined reporting result of the measurement results of the reference signals of different beams of the wireless auxiliary device.
  • the processing result includes beam information of multiple beams of the wireless auxiliary device, and the method further includes: receiving the beam information, where the beam information includes multiple strongest beams the identifier of the beam.
  • FIG. 7 is a schematic diagram of an implementation flowchart of a beam quality measurement method according to an embodiment of the present application, which can be applied to a network side device. As shown in FIG. 7 , the method 700 includes the following steps.
  • the network side device sends configuration information, where the configuration information is used to configure the wireless auxiliary device to forward the reference signal through the same beam within a time window, where the time window is used by the terminal to measure the reference signal.
  • This embodiment may correspond to the second solution and the second embodiment of the foregoing embodiment.
  • the network-side device sends configuration information, where the configuration information is used to configure the wireless auxiliary device to forward the reference signal through the same beam within a time window.
  • the terminal can jointly process the reference signals with the same beams of the network equipment and the same beams of the wireless auxiliary equipment, and obtain the processing result, avoiding the joint processing of the reference signals of different beams of the wireless auxiliary equipment by the terminal, or the different beams of the network side equipment.
  • the problem of low beam quality measurement accuracy caused by the joint processing of reference signals can improve the beam quality measurement accuracy.
  • FIG. 8 is a schematic diagram of an implementation flowchart of a beam quality measurement method according to an embodiment of the present application, which can be applied to a wireless auxiliary device. As shown in FIG. 8, the method 800 includes the following steps.
  • the wireless auxiliary device receives configuration information, where the configuration information configures the wireless auxiliary device to forward the reference signal through the same beam within a time window, where the time window is used for the terminal to measure the reference signal.
  • This embodiment may correspond to the second solution and the second embodiment of the foregoing embodiment.
  • the wireless auxiliary device may forward the reference signal through the same beam within a time window based on the configuration information.
  • the terminal can jointly process the reference signals with the same beam of the network equipment and the same beam of the wireless auxiliary equipment, and obtain the processing result, avoiding the joint processing of the reference signals of the different beams of the wireless auxiliary equipment by the terminal, or the different beams of the network side equipment.
  • the problem of low beam quality measurement accuracy caused by the joint processing of reference signals can improve the beam quality measurement accuracy.
  • the execution subject may be a beam quality measurement apparatus, or a control module in the beam quality measurement apparatus for executing the beam quality measurement method.
  • the method for measuring the beam quality performed by the beam quality measuring device is used as an example to describe the beam quality measuring device provided in the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an apparatus for measuring beam quality according to an embodiment of the present application, and the apparatus may correspond to terminals in other embodiments. As shown in FIG. 9, the apparatus 900 includes the following modules.
  • the receiving module 902 can be configured to receive the reference signal forwarded by the wireless auxiliary device; wherein, the reference signal is sent by the network device, and is forwarded by the wireless auxiliary device at different times through multiple beams respectively.
  • the processing module 904 may be configured to perform joint processing on the reference signals with the same beam of the network device and the same beam of the wireless auxiliary device to obtain a processing result; the joint processing includes layer 1 filtering and/or layer 3 filtering.
  • the beam quality measurement apparatus receives the reference signal forwarded by the wireless auxiliary device, and performs joint processing on the reference signal with the same beam of the network device and the same beam of the wireless auxiliary device, and obtains the processing result, so as to avoid the terminal to the wireless auxiliary device.
  • the problem of low beam quality measurement accuracy caused by joint processing of reference signals of different beams, or joint processing of reference signals of different beams of network-side equipment, can improve the accuracy of beam quality measurement.
  • the receiving module 902 may be further configured to receive configuration information of the reference signal, where the configuration information includes at least one of the following 1) to 4): 1) the reference signal identification or port number; 2) the time-frequency resource parameter of the reference signal; 3) the time configuration parameter used to perform the reference signal measurement behavior, the time configuration parameter includes: the start time and the end time of the time window of the measurement behavior , or the time length of the time window of the measurement behavior, the measurement period, and the minimum time interval of two adjacent measurement behaviors of the reference signal; 4) the joint processing criterion of the reference signal; wherein, the joint processing criterion includes: A measurement result processing method based on layer one filtering, and a measurement result processing method based on layer three filtering.
  • the joint processing includes layer 1 filtering
  • the configuration information further includes at least one of the following 1) to 4): 1) the number of beams of the wireless auxiliary device; 2) all the The beam execution time length and execution period of the wireless auxiliary device, the execution period is less than the time length of the time window of the measurement behavior; 3) The number of beams to be measured by the wireless auxiliary device and the beam execution of the to-be-measured beam time; 4) the beam screening rule of the wireless auxiliary device, the beam screening rule includes: selecting the strongest Y beams from the measured multiple beams to perform layer-one filtering or selecting Y best beams after layer-one filtering The measurement results of y are reported to the upper layer, and Y is a positive integer.
  • the processing module 904 may be configured to input, according to the configuration information, the measurement result of the reference signal with the same beam of the network device and the same beam of the wireless auxiliary device into the layer a filter to obtain the processing result.
  • the processing module 904 may be further configured to determine the parallel layer 1 corresponding to the reference signal according to the number of beams of the wireless auxiliary device or the number of beams to be measured by the wireless auxiliary device.
  • the number of filters N may be further configured to determine the parallel layer 1 corresponding to the reference signal according to the number of beams of the wireless auxiliary device or the number of beams to be measured by the wireless auxiliary device. The number of filters N.
  • the processing module 904 may be further configured to select Y results from the N parallel layer-1 filtering results according to the beam screening rule and report them to a higher layer.
  • the processing module 904 may be further configured to measure the correlation of the reference signals of different beams of the wireless auxiliary device, and perform at least one of the following: reporting the correlation measurement result to a higher layer; According to the correlation measurement result, it is selected whether to combine the measurement results of the reference signals of different beams of the wireless auxiliary device and report to the upper layer.
  • the joint processing includes layer three filtering, and the configuration information further includes at least one of the following 1) to 3): 1) the number of beams of the wireless auxiliary device; 2) all the The beam execution time length and execution period of the wireless auxiliary device, the execution period is greater than the time length of the time window of the measurement behavior; 3) The number of beams to be measured by the wireless auxiliary device and the beam execution of the to-be-measured beam time.
  • the processing module 904 may be further configured to determine the parallel layer 3 filtering corresponding to the reference signal according to the number of beams of the wireless auxiliary device or the number of beams to be measured by the wireless auxiliary device. the number N.
  • the reference signal satisfies at least one of the following 1) and 2): 1) the reference signal appearing within a time window is forwarded by the same beam of the wireless auxiliary device; 2) The beams of the wireless auxiliary device corresponding to the time windows of different configurations are different.
  • the processing module 904 may be configured to input the output result of the layer 1 filter to the corresponding layer 3 filter according to the configuration information to obtain the processing result.
  • the processing result includes beam information of multiple beams of the wireless auxiliary device
  • the apparatus includes a sending module configured to report the beam information, where the beam information includes multiple beams the identification of the strongest beam.
  • the apparatus 900 may refer to the process of the method 200 corresponding to the embodiment of the present application, and each unit/module and the above-mentioned other operations and/or functions in the apparatus 900 are respectively in order to implement the corresponding process in the method 200, And can achieve the same or equivalent technical effects, for the sake of brevity, details are not repeated here.
  • the beam quality measurement apparatus in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the beam quality measuring apparatus in this embodiment of the present application may be an apparatus having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the beam quality measurement apparatus provided in the embodiment of the present application can implement each process implemented by the method embodiment in FIG. 2 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • FIG. 10 is a schematic structural diagram of an apparatus for measuring beam quality according to an embodiment of the present application, and the apparatus may correspond to network-side equipment in other embodiments. As shown in FIG. 10 , the apparatus 1000 includes the following modules.
  • the sending module 1002 can be used to send a reference signal; wherein, the reference signal is forwarded by the wireless auxiliary device through multiple beams at different times; the reference signal is used by the terminal to measure the beam quality of the device with the same beam and the The reference signals with the same beams of the wireless auxiliary equipment are jointly processed to obtain a processing result; the joint processing includes layer one filtering and/or layer three filtering.
  • the beam quality measurement apparatus sends a reference signal to the wireless auxiliary device, and the wireless auxiliary device forwards the reference signal at different times respectively through multiple beams.
  • the terminal can receive the reference signal forwarded by the wireless auxiliary device, and perform joint processing on the reference signal with the same beam of the network device and the same beam of the wireless auxiliary device to obtain the processing result, so as to avoid joint processing of the reference signal of different beams of the wireless auxiliary device by the terminal.
  • the problem of low beam quality measurement accuracy caused by joint processing of reference signals of different beams of network side equipment can improve the accuracy of beam quality measurement.
  • the sending module 1002 may be further configured to send configuration information of the reference signal, where the configuration information includes at least one of the following 1) to 4): 1) the reference signal identification or port number; 2) the time-frequency resource parameter of the reference signal; 3) the time configuration parameter used to perform the reference signal measurement behavior, the time configuration parameter includes: the start time and the end time of the time window of the measurement behavior , or the time length of the time window of the measurement behavior, the measurement period, and the minimum time interval of two adjacent measurement behaviors of the reference signal; 4) the joint processing criterion of the reference signal; wherein, the joint processing criterion includes: A measurement result processing method based on layer one filtering, and a measurement result processing method based on layer three filtering.
  • the joint processing includes layer 1 filtering
  • the configuration information further includes at least one of the following 1) to 4): 1) the number of beams of the wireless auxiliary device; 2) all the The beam execution time length and execution period of the wireless auxiliary device, the execution period is less than the time length of the time window of the measurement behavior; 3) The number of beams to be measured by the wireless auxiliary device and the beam execution of the to-be-measured beam time; 4) the beam screening rule of the wireless auxiliary device, the beam screening rule includes: selecting the strongest Y beams from the measured multiple beams to perform layer-one filtering or selecting Y best beams after layer-one filtering The measurement results of y are reported to the upper layer, and Y is a positive integer.
  • the joint processing includes layer three filtering, and the configuration information further includes at least one of the following 1) to 3): 1) the number of beams of the wireless auxiliary device; 2) all the The beam execution time length and execution period of the wireless auxiliary device, the execution period is greater than the time length of the time window of the measurement behavior; 3) The number N of beams to be measured by the wireless auxiliary device, and the corresponding beam execution time.
  • the reference signal satisfies at least one of the following 1) and 2): 1) the reference signal appearing within a time window is forwarded by the same beam of the wireless auxiliary device; 2) The beams of the wireless auxiliary device corresponding to the time windows of different configurations are different.
  • the apparatus further includes a receiving module, configured to at least one of the following 1) and 2): 1) receiving the different beams of the wireless auxiliary device measured by the physical layer of the terminal Correlation measurement results of reference signals; 2) Receive a combined reporting result of the measurement results of the reference signals of different beams of the wireless auxiliary device.
  • a receiving module configured to at least one of the following 1) and 2): 1) receiving the different beams of the wireless auxiliary device measured by the physical layer of the terminal Correlation measurement results of reference signals; 2) Receive a combined reporting result of the measurement results of the reference signals of different beams of the wireless auxiliary device.
  • the processing result includes beam information of multiple beams of the wireless auxiliary device, and the method further includes: receiving the beam information, wherein the beam information includes multiple strongest beams the identifier of the beam.
  • FIG. 11 is a schematic structural diagram of an apparatus for measuring beam quality according to an embodiment of the present application, and the apparatus may correspond to network-side equipment in other embodiments. As shown in FIG. 11 , the apparatus 1100 includes the following modules.
  • the sending module 1102 is configured to send configuration information, where the configuration information is used to configure the wireless auxiliary device to forward the reference signal through the same beam within a time window, and the time window is used for the terminal to measure the reference signal.
  • the beam quality measurement apparatus sends configuration information, where the configuration information is used to configure the wireless auxiliary device to forward the reference signal through the same beam within a time window.
  • the terminal can jointly process the reference signals of the same beam of the beam quality measurement device and the same beam of the wireless auxiliary equipment, and obtain the processing result, so as to avoid joint processing of the reference signals of different beams of the wireless auxiliary equipment by the terminal, or different equipment on the network side.
  • the problem of low beam quality measurement accuracy caused by the joint processing of beam reference signals can improve the beam quality measurement accuracy.
  • the apparatus 1100 may refer to the process of the method 700 corresponding to the embodiment of the present application, and each unit/module and the above-mentioned other operations and/or functions in the apparatus 1100 are respectively in order to realize the corresponding process in the method 700, And can achieve the same or equivalent technical effects, for the sake of brevity, details are not repeated here.
  • FIG. 12 is a schematic structural diagram of an apparatus for measuring beam quality according to an embodiment of the present application, and the apparatus may correspond to a wireless auxiliary device in other embodiments. As shown in FIG. 12, the apparatus 1200 includes the following modules.
  • the receiving module 1202 may be configured to receive configuration information, where the configuration information is used to configure the beam quality measuring apparatus to forward the reference signal through the same beam within a time window, where the time window is used for the terminal to measure the reference signal.
  • the sending module 1204 may be configured to forward the reference signal according to the configuration information.
  • the beam quality measuring apparatus may forward the reference signal through the same beam within a time window based on the configuration information.
  • the terminal can jointly process the reference signals with the same beam of the network equipment and the same beam of the beam quality measurement device, and obtain the processing result, so as to avoid joint processing of the reference signals of different beams of the beam quality measurement device by the terminal, or different equipment on the network side.
  • the problem of low beam quality measurement accuracy caused by the joint processing of beam reference signals can improve the beam quality measurement accuracy.
  • an embodiment of the present application further provides a communication device 1300, including a processor 1301, a memory 1302, a program or instruction stored in the memory 1302 and executable on the processor 1301,
  • a communication device 1300 including a processor 1301, a memory 1302, a program or instruction stored in the memory 1302 and executable on the processor 1301,
  • the communication device 1300 is a terminal, when the program or instruction is executed by the processor 1301, each process of the foregoing beam quality measurement method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 1300 is a wireless auxiliary device, when the program or instruction is executed by the processor 1301, each process of the above beam quality measurement method embodiment can be realized, and the same technical effect can be achieved.
  • the communication device 1300 is a network side device, when the program or instruction is executed by the processor 1301, each process of the above beam quality measurement method embodiment can be achieved, and the same technical effect can be achieved.
  • FIG. 14 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1400 includes but is not limited to: a radio frequency unit 1401, a network module 1402, an audio output unit 1403, an input unit 1404, a sensor 1405, a display unit 1406, a user input unit 1407, an interface unit 1408, a memory 1409, a processor 1410 and other components .
  • the terminal 1400 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 1410 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 14 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1404 may include a graphics processor (Graphics Processing Unit, GPU) 14041 and a microphone 14042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1406 may include a display panel 14061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1407 includes a touch panel 14071 and other input devices 14072 .
  • the touch panel 14071 is also called a touch screen.
  • the touch panel 14071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 14072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described herein again.
  • the radio frequency unit 1401 receives the downlink data from the network side device, and then processes it to the processor 1410; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1401 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 1409 may be used to store software programs or instructions as well as various data.
  • the memory 1409 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1409 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM) ), erasable programmable read-only memory (ErasablePROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • ErasablePROM ErasablePROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1410 may include one or more processing units; optionally, the processor 1410 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1410.
  • the radio frequency unit 1401 is used to receive the reference signal forwarded by the wireless auxiliary device; wherein, the reference signal is sent by the network device and forwarded by the wireless auxiliary device through multiple beams at different times; the processor 1410 is used for Joint processing is performed on the reference signals with the same beam of the network equipment and the same beam of the wireless auxiliary equipment to obtain a processing result; the joint processing includes layer one filtering and/or layer three filtering.
  • the terminal receives the reference signal forwarded by the wireless auxiliary device, and performs joint processing on the reference signal with the same beam of the network device and the same beam of the wireless auxiliary device, and obtains the processing result.
  • the problem of low beam quality measurement accuracy caused by joint processing of reference signals, or joint processing of reference signals of different beams of network-side equipment, can improve the accuracy of beam quality measurement.
  • the terminal 1400 provided in this embodiment of the present application can also implement the various processes of the above-mentioned beam quality measurement method embodiments, and can achieve the same technical effect, which is not repeated here to avoid repetition.
  • the network side device 1500 includes: an antenna 151 , a radio frequency device 152 , and a baseband device 153 .
  • the antenna 151 is connected to the radio frequency device 152 .
  • the radio frequency device 152 receives information through the antenna 151, and sends the received information to the baseband device 153 for processing.
  • the baseband device 153 processes the information to be sent and sends it to the radio frequency device 152
  • the radio frequency device 152 processes the received information and sends it out through the antenna 151 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 153 , and the method performed by the network-side device in the above embodiments may be implemented in the baseband apparatus 153 .
  • the baseband apparatus 153 includes a processor 154 and a memory 155 .
  • the baseband device 153 may include, for example, at least one baseband board on which multiple chips are arranged, as shown in FIG. 15 , one of the chips is, for example, the processor 154 , which is connected to the memory 155 to call the program in the memory 155 to execute
  • the network-side device shown in the above method embodiments operates.
  • the baseband device 153 may further include a network interface 156 for exchanging information with the radio frequency device 152, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present invention further includes: an instruction or program stored in the memory 155 and executable on the processor 154 , and the processor 154 invokes the instruction or program in the memory 155 to execute FIG. 10 or FIG. 11 or
  • the method performed by each module shown in FIG. 12 achieves the same technical effect, and is not repeated here in order to avoid repetition.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the foregoing beam quality measurement method embodiment can be achieved, and can achieve The same technical effect, in order to avoid repetition, will not be repeated here.
  • the processor may be the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the above beam quality measurement method embodiments and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network side device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种波束质量测量方法和设备,该方法包括:终端接收无线辅助设备转发的参考信号;其中,所述参考信号由网络设备发送,由所述无线辅助设备通过多个波束分别在不同时刻转发;对所述网络设备波束相同且所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果;所述联合处理包括层一滤波和/或层三滤波。

Description

波束质量测量方法和设备
交叉引用
本发明要求在2021年01月11日提交中国专利局、申请号为202110034373.0、发明名称为“波束质量测量方法和设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于通信技术领域,具体涉及一种波束质量测量方法和设备,该设备可以包括波束质量测量装置,终端,网络侧设备和无线辅助设备等。
背景技术
小区覆盖范围内的遮挡物通常会导致覆盖空洞,无线信号在覆盖空洞区域内的强度较弱,通信质量受到影响,这种现象在高频波段/毫米波段更加常见。为了提高通信质量,相关技术中通常会引入一些无线辅助设备(如智能表面),这些无线辅助设备通过转发基站的信号为覆盖空洞区域提供通信服务。通过合理部署,无线辅助设备可以保证良好的信号覆盖。
终端可以通过参考信号(Reference Signal,RS)端口号或者标识(ID)来区分参考信号和发送波束。无线辅助设备对参考信号有影响,但是终端无法察觉。这种情况下,如果终端使用受无线辅助设备影响的参考信号进行波束质量测量,则无法获得准确的测量结果。
发明内容
本申请实施例提供一种波束质量测量方法和设备,能够解决终端对无线辅助设备进行波束质量测量的测量结果准确度低的问题。
第一方面,提供了一种波束质量测量方法,所述方法包括:终端接收无 线辅助设备转发的参考信号;其中,所述参考信号由网络设备发送,由所述无线辅助设备通过多个波束分别在不同时刻转发;对所述网络设备波束相同且所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果;所述联合处理包括层一滤波和/或层三滤波。
第二方面,提供了一种波束质量测量方法,所述方法包括:网络侧设备发送参考信号;其中,所述参考信号由无线辅助设备通过多个波束分别在不同时刻转发;所述参考信号用于终端对所述网络设备波束相同且所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果;所述联合处理包括层一滤波和/或层三滤波。
第三方面,提供了一种波束质量测量方法,所述方法包括:网络侧设备发送配置信息,所述配置信息用于配置无线辅助设备在一个时间窗口内通过相同波束转发参考信号,所述时间窗口用于终端测量所述参考信号。
第四方面,提供了一种波束质量测量方法,所述方法包括:无线辅助设备接收配置信息,所述配置信息配置所述无线辅助设备在一个时间窗口内通过相同波束转发参考信号,所述时间窗口用于终端测量所述参考信号;根据所述配置信息转发所述参考信号。
第五方面,提供了一种波束质量测量装置,包括:接收模块,用于接收无线辅助设备转发的参考信号;其中,所述参考信号由网络设备发送,由所述无线辅助设备通过多个波束分别在不同时刻转发;处理模块,用于对所述网络设备波束相同且所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果;所述联合处理包括层一滤波和/或层三滤波。
第六方面,提供了一种波束质量测量装置,包括:发送模块,用于发送参考信号;其中,所述参考信号由无线辅助设备通过多个波束分别在不同时刻转发;所述参考信号用于终端对所述波束质量测量装置波束相同且所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果;所述联合处理包括层一滤波和/或层三滤波。
第七方面,提供了一种波束质量测量装置,包括:发送模块,用于发送 配置信息,所述配置信息用于配置无线辅助设备在一个时间窗口内通过相同波束转发参考信号,所述时间窗口用于终端测量所述参考信号。
第八方面,提供了一种波束质量测量装置,包括:接收模块,用于接收配置信息,所述配置信息用于配置所述波束质量测量装置在一个时间窗口内通过相同波束转发参考信号,所述时间窗口用于终端测量所述参考信号;发送模块,用于根据所述配置信息转发所述参考信号。
第九方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法。
第十方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面或第三方面所述的方法。
第十一方面,提供了一种无线辅助设备,该无线辅助设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第四方面所述的方法。
第十二方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面至第四方面任一方面所述的方法。
第十三方面,提供了一种计算机程序产品,该计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时,实现如第一方面至第四方面任一方面所述的方法。
第十四方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面至第四方面任一方面所述的方法。
在本申请实施例中,终端接收无线辅助设备转发的参考信号,并对网络设备波束相同且无线辅助设备波束相同的参考信号进行联合处理,得到处理 结果,避免因终端对无线辅助设备不同波束的参考信号进行联合处理,或对网络侧设备不同波束的参考信号进行联合处理造成的波束质量测量准确度低的问题,可以提高波束质量测量的准确度。
附图说明
图1是根据本申请实施例的无线通信系统的示意图;
图2是根据本申请实施例的波束质量测量方法的示意性流程图;
图3是根据本申请实施例的波束质量测量方法应用场景示意图;
图4是根据本申请实施例的波束质量测量方法具体应用示意图;
图5是根据本申请实施例的波束质量测量方法具体应用示意图;
图6是根据本申请实施例的波束质量测量方法的示意性流程图;
图7是根据本申请实施例的波束质量测量方法的示意性流程图;
图8是根据本申请实施例的波束质量测量方法的示意性流程图;
图9是根据本申请实施例的波束质量测量装置的结构示意图;
图10是根据本申请实施例的波束质量测量装置的结构示意图;
图11是根据本申请实施例的波束质量测量装置的结构示意图;
图12是根据本申请实施例的波束质量测量装置的结构示意图;
图13是根据本申请实施例的通信设备的结构示意图;
图14是根据本申请实施例的终端的结构示意图;
图15是根据本申请实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别 类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(NewRadio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 thGeneration,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的示意图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备 12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(evolution Node-B,eNB)、下一代节点B(generation Node-B,gNB)、家用B节点、家用演进型B节点、无线局域网(Wireless Local Area Networks,WLAN)接入点、无线保真(Wireless-Fidelity,WiFi)节点、发送接收点(TransmittingReceivingPoint,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的波束质量测量方法和设备进行详细地说明。
如图2所示,本申请实施例提供一种波束质量测量方法200,该方法可以由终端执行,换言之,该方法可以由安装在终端的软件或硬件来执行,该方法包括如下步骤。
S202:终端接收无线辅助设备转发的参考信号;其中,所述参考信号由网络设备发送,由所述无线辅助设备通过多个波束分别在不同时刻转发。
S204:对所述网络设备波束相同且所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果;所述联合处理包括层一滤波和/或层三滤波。
本申请各个实施例中提到的参考信号,可以用于终端对无线辅助设备的波束进行测量,这些参考信号可以是同步信号和物理广播块(Synchronization Signal and PBCH Block,SSB),信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)等下行参考信号。
本申请各个实施例中提到的无线辅助设备可以是大型智能表面(Large Intelligent Surfaces,LIS),中继设备,背向散射体(backscatter),卫星等。
如图3所示,图3是本申请实施例的波束质量测量方法应用场景示意图。 该实施例中,网络侧设备可以通过某一个波束或多个波束向无线辅助设备发送参考信号,无线辅助设备可以接收该参考信号,并通过多个不同的波束分别在不同时刻转发该参考信号。
在图3所示的实施例中,具体地,网络侧设备向无线辅助设备发送参考信号,无线辅助设备通过三个不同的波束分别在不同时刻转发该参考信号。由于网络侧设备与无线辅助设备之间的相对位置和信道条件保持准静态,所述参考信号在网络侧设备的具有一致的信号标识和/或端口(如图3中的端口K),即网络侧设备的发送参数不变。由于无线辅助设备不会改变所述参考信号的序列信息/基带信息,终端通常无法区分相同标识、不同波束的参考信号。可以理解,如果终端对相同标识、不同波束的参考信号进行测量,获得的测量结果将无法准确反映无线辅助设备的多个波束的信道情况。
该实施例中,终端可以对所述网络设备波束相同且所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果。
如图4所示,图4所示的是具有三个转发波束(或将转发波束简称为波束)的无线辅助设备转发周期参考信号示意图。该例子中,终端可以对波束1的参考信号进行层一滤波的联合处理;终端可以对波束2的参考信号进行层一滤波的联合处理;终端可以对波束3的参考信号进行层一滤波的联合处理。
该实施例中,终端可以对相同标识或相同端口号的参考信号进行联合处理,这些标识或端口号相同的参考信号可以是网络设备通过相同的(或称同一个)波束发送给无线辅助设备的。
同时,为了实现终端对无线辅助设备波束相同的参考信号进行联合处理,在一个例子中,终端可以基于无线辅助设备的波束执行周期,来确定波束相同的参考信号。例如,无线辅助设备的波束执行周期为T,那么终端在时刻t1和在时刻(t1+T)接收到的参考信号通常是来自无线辅助设备的同一个波束。在另一个例子中,网络侧设备可以对无线辅助设备进行配置,在一个时间窗口W内出现的多个参考信号由无线辅助设备的相同波束转发,该时间窗 口用于终端测量参考信号。所述时间窗口W小于等于波束执行时间,大于等于所述待测量参考信号的周期P。
该实施例中提到的联合处理可以包括层一滤波,还可以包括层三滤波,还可以包括层一滤波+层三滤波,例如,终端将层一滤波的结果输入到对应的层三滤波器中进行层三滤波。
可选地,该实施实例中提到的处理结果包括所述无线辅助设备的多个波束的波束信息,该实施例还可以包括如下步骤:终端向网络侧设备上报所述波束信息,其中,所述波束信息包括多个最强的波束的标识。这样,后续网络侧设备还基于最强的波束的标识对终端进行波束指示,使得终端可以和无线辅助设备之间通过最强的波束进行通信,提高通信质量。
本申请实施例提供的波束质量测量方法,终端接收无线辅助设备转发的参考信号,并对网络设备波束相同且无线辅助设备波束相同的参考信号进行联合处理,得到处理结果,避免因终端对无线辅助设备不同波束的参考信号进行联合处理,或对网络侧设备不同波束的参考信号进行联合处理造成的波束质量测量准确度低的问题,可以提高波束质量测量的准确度。
可选地,实施例200的S202之前,终端还可以接收所述参考信号的配置信息,该配置信息可以由网络侧设备发送,该配置信息可以包括如下1)至4)中的至少之一。
1)所述参考信号的标识或端口号。例如,网络侧设备为终端配置终端需要测量的参考信号的标识或端口号。
2)所述参考信号的时频资源参数。例如,包括待测量的参考信号的时域资源,待测量的参考信号的频域资源,待测量的参考信号的发送周期等。
3)用于执行参考信号测量行为的时间配置参数。所述时间配置参数包括:测量行为的时间窗口的起始时间和结束时间,或者测量行为的时间窗口的时间长度、测量周期和相邻两次所述参考信号的测量行为的最小时间间隔。
终端可以根据该时间配置参数,得到需要进行参考信号测量的时间窗口的时域位置。
4)所述参考信号的联合处理准则;其中,所述联合处理准则包括:基于层一滤波的测量结果处理方法,以及基于层三滤波的测量结果处理方法。终端可以基于该联合处理准则来执行S204中的对参考信号联合处理的操作。
在一个例子中,终端接收到的配置信息可以用于配置上述四者的全部。在其他的例子中,如果配置信息未配置上述四者中的部分或全部,则终端可以通过其他的途径来获得上述四者中未配置的部分。例如,配置信息未配置上述4)中的联合处理准则,终端可以基于协议约定得到参考信号的联合处理准则等等。
如前所示,实施例200的S204中提到的联合处理包括层一滤波和/或层三滤波,以下将分方案一和方案二,分别对层一滤波的联合处理过程和层三滤波的联合处理过程进行说明。
方案一
实施例200的S204中提到的联合处理包括层一滤波,上述实施例中提到的配置信息还可以包括如下1)至4)中的至少之一。
1)所述无线辅助设备的波束数量,例如,在图3所示的例子中,无线辅助设备的波束数量为3。
2)所述无线辅助设备的波束执行的总时间长度和执行周期,所述执行周期小于测量行为的时间窗口的时间长度。
该波束执行的总时间长度可以参见图3中在时间轴上占用的总时间长度。该执行周期可以参见图3,图3示意性地显示出两个执行周期。
该例子中提到执行周期小于测量行为的时间窗口的时间长度,例如,测量行为的时间窗口的时间长度等于2个,3个,4个等更多个数的执行周期。可选的,通过协议预定义,当测量行为的时间窗口包含多个无线辅助设备的执行周期时,默认对层一滤波器进行配置。
3)所述无线辅助设备待测量的波束的数量以及所述待测量的波束的波束执行时间。例如,在图4所示的例子中,待测量的波束的数量为3,具体为波束1、波束2和波束3。该配置信息还用于配置上述三个波束的波束执行时 间。在图4所示的例子中,每个波束的波束执行时间的长度为一个方格在时间轴上占用的长度。
4)所述无线辅助设备的波束筛选规则,所述波束筛选规则包括:从测量的多个波束中选择最强的Y个波束进行层一滤波或在层一滤波后选择Y个最好的测量结果上报给高层,Y是正整数。
该处提到的最强的Y个波束或Y个最好的测量结果,可以基于波束对应的参考信号的如下指标来衡量:参考信号接收功率(Reference Signal Receiving Power,RSRP),参考信号接收质量(Reference Signal Receiving Quality,RSRQ),接收信号强度指示(Received Signal Strength Indication,RSSI)等。
在方案一中,终端可以基于无线辅助设备的波束执行周期,来得到波束相同的参考信号。例如,无线辅助设备的波束执行周期为T,那么终端在时刻t1和在时刻(t1+T)接收到的参考信号通常是来自无线辅助设备的同一个波束。具体例如,该方案一中用于层一滤波的相邻两次参考信号的时间间隔是一个固定值,等于无线辅助设备的波束执行周期T。例如,用与参考信号测量的时间窗口的长度为nT,则时间窗口内有n个参考信号对应于无线辅助设备的相同波束。即可以从上述n个参考信号中选择若干个符合层一滤波的要求的测量结果输入到层一滤波器中。
在方案一中,终端对所述网络设备波束相同且所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果可以包括:终端根据所述配置信息,将所述所述网络设备波束相同且所述无线辅助设备波束相同的所述参考信号的测量结果输入到层一滤波器,得到所述处理结果。
在方案一中,终端还可以根据所述无线辅助设备的波束数量或者所述无线辅助设备待测量的波束的数量,确定所述参考信号对应的并行的层一滤波的数量N。例如,无线辅助设备的波束数量等于所述参考信号对应的并行的层一滤波的数量N,或者,无线辅助设备待测量的波束的数量等于所述参考信号对应的并行的层一滤波的数量N。其中,无线辅助设备的波束数量或者 所述无线辅助设备待测量的波束的数量可以由上述配置信息配置。
在方案一中,终端还可以根据所述波束筛选规则从N个并行层一滤波结果中选择Y个结果上报给高层,该波束筛选规则可以由上述配置信息配置,这Y个测量结果可以是终端全部的测量结果中选择出的最好的一个或多个。
在方案一中,终端的物理层还可以测量所述无线辅助设备不同波束的所述参考信号的相关性,并执行以下至少一项:将相关性测量结果上报给高层;根据所述相关性测量结果,选择是否将所述无线辅助设备不同波束的所述参考信号的测量结果合并上报给高层。
方案二
实施例200的S204中提到的联合处理包括层三滤波,方案一前文的实施例中提到的配置信息还可以包括如下1)至3)中的至少之一。
1)所述无线辅助设备的波束数量,例如,在图5所示的例子中,无线辅助设备的波束数量为3。
2)所述无线辅助设备的波束执行的总时间长度和执行周期,所述执行周期大于测量行为的时间窗口的时间长度。
该波束执行的总时间长度可以参见图5中在时间轴上占用的总时间长度。在图5所示的例子中,波束执行的总时间长度等于执行周期的长度。
3)所述无线辅助设备待测量的波束的数量以及所述待测量的波束的波束执行时间。例如,在图5所示的例子中,待测量的波束的数量为3,具体为波束1、波束2和波束3。该配置信息还用于配置上述三个波束的波束执行时间。
该例子中提到每个波束的执行周期大于测量行为的时间窗口的时间长度,例如,测量行为的时间窗口的时间长度小于或等于图5中所示的总时间长度。可选的,通过协议预定义,当测量行为的时间窗口小于波束执行的总时间长度时,默认对层三滤波器进行配置。
可选地,所述终端还可以根据所述无线辅助设备的波束数量或者所述无线辅助设备待测量的波束的数量确定所述参考信号对应的并行的层三滤波的 数量N。例如,无线辅助设备的波束数量等于所述参考信号对应的并行的层三滤波的数量N,或者,无线辅助设备待测量的波束的数量等于所述参考信号对应的并行的层三滤波的数量N。其中,无线辅助设备的波束数量或者所述无线辅助设备待测量的波束的数量可以由上述配置信息配置。
在方案二中,网络侧设备还可以对无线辅助设备进行配置,使得无线辅助设备转发的参考信号满足如下1)和2)至少之一。
1)在一个时间窗口内出现的所述参考信号由所述无线辅助设备的相同波束转发。该时间窗口可以是网络侧设备配置的用于终端进行参考信号测量,详见前文配置信息部分介绍的测量行为的时间窗口。
该例子中,在一个时间窗口内,网络设备会发送多次待测量参考信号,无线辅助设备在一个时间窗口内使用同一个波束对待测量参考信号进行转发。
2)不同配置的时间窗口对应的所述无线辅助设备的波束不同。
该例子中提到的不同配置的所述时间窗口,可以是网络侧设备为终端配置的、分别用于测量无线辅助设备的不同波束的时间窗口。
在方案二中提到的对所述网络设备波束相同且所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果包括:根据所述配置信息,将层一滤波器的输出结果输入到对应所述层三滤波器,得到所述处理结果。
可选地,在一个例子中,层一滤波器和层三滤波器是一一对应关系,一个层一滤波器对应无线辅助设备的一个转发波束。
或者,可选地,层一滤波器是无后效的滤波器,即当前时间窗口的滤波结果不会受到前一时间窗口的测量结果的影响。层一滤波器与层三滤波器是一对多的对应关系。层一滤波器的输出结果根据无线辅助设备的对应关系输入到对应的层三滤波器中。
为详细说明本申请实施例提供的波束质量测量方法,以下将结合两个具体的实施例进行说明。
实施例一
该实施例一对应于前文中的方案一。
该实施例中,如果终端需要测量的波束是通过无线辅助设备转发的多个波束,并且在无线辅助设备的转发波束的时间段内包含多个可以用于测量的参考信号(例如,属于同一RS配置的(例如周期的RS),但在不同时间上的RS对应于无线辅助设备的不同波束),那么网络侧设备(基站)为终端配置层一滤波器(L1filter)的参数,用于终端的滤波规则,使终端将相同波束的测量结果进行滤波。滤波规则可以包括相同波束的时间间隔,多个波束的筛选规则,测量辅助信息的协同上报等。
该实施例之前,基站可以通过基站与无线辅助设备的接口获知无线辅助设备的基本信息,例如包括无线辅助设备的转发波束,以及每个转发波束的执行时间长度和执行周期,基站到无线辅助设备的发送波束,该实施例中,假设无线辅助设备已经与基站保证时间同步/帧同步。
该实施例可以包括如下步骤:
步骤1:基站为终端配置需要测量的基站波束集合,并指示额外的测量准则,具体可以参见前文方案一中的配置信息部分的介绍。该步骤1可以通过以下方法一或方法二实施。
方法一:显式指示的方法,基站显式指示终端的测量和滤波行为。
例如,基站指定某个或者某几个基站波束对应的参考信号需要遵循额外的测量准则。
额外测量准则可以包括层一滤波的输入信息的测量要求,要求用于滤波的相邻两次参考信号的时间间隔是一个固定值,等于无线辅助设备的波束执行周期T。基站在配置参考信号的测量时间窗口时考虑无线辅助设备的波束执行的循环周期T。如果层一滤波要求的输入信息是至少n个测量结果,那么所述测量时间窗口的长度应不小于nT。
该例子中,终端根据配置的时间窗口和相邻两次参考信号的时间间隔确定层一滤波的输入数据的数量要求,例如,将时间窗口的长度除以相邻两次参考信号的时间间隔。
方法二:隐式方法:UE根据基站发送的配置信息1(无线辅助设备的转 发波束,以及每个转发波束的执行时间长度和周期)和配置信息2(需要测量的参考信号的配置,至少包括参考信号所在的时域资源),确定UE的测量和滤波行为。
例如,UE根据配置信息1和配置信息2,以及协议定义的第一规则,确定UE的测量和滤波行为;其中,第一规则为:无线辅助设备的相同转发波束时刻所在的参考信号才能进行层一滤波,或者,进行层一滤波的多个时刻对应的无线辅助设备的转发波束需要相同。
可选的,层一滤波的多个时刻的间隔和时刻数量,可以是基站配置的,或者协议定义的,或者是UE实现。
额外测量准则可以包括同一端口或ID的参考信号的层一滤波的并行数量。可以理解,在一个时间窗口中,待测量参考信号被发送多次,并且被无线辅助设备以多个不同转发波束进行转发,层一滤波并行数量表示了需要测量的不同波束的数量。
额外测量准则可以包括多波束的筛选规则。一种筛选规则是终端从可测量的多个波束中选择最强的Y个波束进行层一滤波或者在层一滤波后选择Y个最好结果上报给高层。另一种筛选规则是基站为终端配置需要测量的波束,例如指示待测量波束在测量时间窗口中第一次出现的位置(距窗口开始边界的时间偏移量)。
可选地,终端测量的波束数量按照以需要的层一滤波器数量来判断,例如,待测量的波束数量等于层一滤波器数量。
步骤2:终端按照上述基站配置对参考信号进行测量,并将层一滤波结果上报给高层。
可选的,终端还可以接收无线辅助设备的多个波束的参考信号,并测量不同波束的参考信号间的相关性;终端根据相关性测量结果选择是否将两个或多个波束的参考信号的测量结果合并上报给高层。
可选的,终端可以上报信号相关性测量结果。
步骤3:终端在层三滤波后选择若干最强波束上报给基站。
如果上报波束中包含无线辅助设备的转发波束,终端在上报信息中单独指示波束ID,对应于步骤1中多个并行层一滤波器的编号。
可选的,通过协议规定或者基站配置,终端从普通配置的测量结果中选择N1个最强波束,从额外配置的测量结果中选择N2个最强波束,分别上报给基站。
可选的,终端将信号相关性测量结果上报给基站,用于辅助基站调度。
实施例二
该实施例二对应于前文中的方案二。
该实施例中,基站通过配置无线辅助设备,保证在一个时间窗口内出现的待测量参考信号都由无线辅助设备的同一个波束进行转发;不同配置的时间窗口对应于无线辅助设备的不同波束。基站通过配置终端层三滤波器的参数实现无线辅助设备的波束测量功能。
该实施例可以包括如下步骤:
步骤1:基站为终端配置层三滤波器的参数。
额外的层三滤波配置包含对于同一层一滤波输入信息的并行层三滤波器的数量,其数量对应于无线辅助设备的待测量波束的数量。
基站为无线辅助设备配置波束执行时间,保证待测量参考信号所在时隙或者前后附近的符号时间内无线辅助设备使用对应的转发波束。该配置可以是半静态配置的,或者是动态配置的。
步骤2:终端按照配置参数,依次执行N个层三滤波器。
例如,对于第i个测量周期的测量结果,输入到第mod(i,N)个层三滤波器中,i测量周期的编号,i为正整数。
该例子具体例如,层一滤波器和层三滤波器为一一对应关系,均为2个,第1个测量周期的测量结果输入到层三滤波器1,第2个测量周期的测量结果输入到层三滤波器2,第3个测量周期的测量结果输入到层三滤波器1,第4个测量周期的测量结果输入到层三滤波器2,第5个测量周期的测量结果输入到层三滤波器1,等等。
步骤3:终端在层三滤波后选择若干最强波束上报给基站。
该步骤可以参见实施例一的步骤3。
以上结合图2至图5详细描述了根据本申请实施例的波束质量测量方法。下面将结合图6详细描述根据本申请另一实施例的波束质量测量方法。可以理解的是,从网络侧设备描述的网络侧设备与终端的交互与图2所示的方法中的终端侧的描述相同,为避免重复,适当省略相关描述。
图6是本申请实施例的波束质量测量方法实现流程示意图,可以应用在网络侧设备。如图6所示,该方法600包括如下步骤。
S602:网络侧设备发送参考信号,所述参考信号由无线辅助设备通过多个波束分别在不同时刻转发。
所述参考信号用于终端对所述网络设备波束相同且所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果;所述联合处理包括层一滤波和/或层三滤波。
在本申请实施例中,网络侧设备向无线辅助设备发送参考信号,无线辅助设备通过多个波束分别在不同时刻转发该参考信号。终端可以接收无线辅助设备转发的参考信号,并对网络设备波束相同且无线辅助设备波束相同的参考信号进行联合处理,得到处理结果,避免因终端对无线辅助设备不同波束的参考信号进行联合处理,或对网络侧设备不同波束的参考信号进行联合处理造成的波束质量测量准确度低的问题,可以提高波束质量测量的准确度。
可选地,作为一个实施例,所述方法还包括:发送所述参考信号的配置信息,所述配置信息包括如下1)至4)中的至少之一:1)所述参考信号的标识或端口号;2)所述参考信号的时频资源参数;3)用于执行参考信号测量行为的时间配置参数,所述时间配置参数包括:测量行为的时间窗口的起始时间和结束时间,或者测量行为的时间窗口的时间长度、测量周期和相邻两次所述参考信号的测量行为的最小时间间隔;4)所述参考信号的联合处理准则;其中,所述联合处理准则包括:基于层一滤波的测量结果处理方法,以及基于层三滤波的测量结果处理方法。
可选地,作为一个实施例,所述联合处理包括层一滤波,所述配置信息还包括如下1)至3)中的至少之一:1)所述无线辅助设备的波束数量;所述无线辅助设备的波束执行时间长度和执行周期,所述执行周期小于测量行为的时间窗口的时间长度;2)所述无线辅助设备待测量的波束的数量以及所述待测量的波束的波束执行时间;3)所述无线辅助设备的波束筛选规则,所述波束筛选规则包括:从测量的多个波束中选择最强的Y个波束进行层一滤波或在层一滤波后选择Y个最好的测量结果上报给高层,Y是正整数。
可选地,作为一个实施例,所述联合处理包括层三滤波,所述配置信息还包括如下1)至3)中的至少之一:1)所述无线辅助设备的波束数量;2)所述无线辅助设备的波束执行时间长度和执行周期,所述执行周期大于测量行为的时间窗口的时间长度;3)所述无线辅助设备待测量的波束的数量N,以及对应的波束执行时间。
可选地,作为一个实施例,所述参考信号满足如下1)和2)至少之一:1)在一个时间窗口内出现的所述参考信号由所述无线辅助设备的相同波束转发;2)不同配置的所述时间窗口对应的所述无线辅助设备的波束不同。
可选地,作为一个实施例,所述方法还包括如下1)和2)至少之一:1)接收所述终端的物理层测量的所述无线辅助设备不同波束的所述参考信号的相关性测量结果;2)接收将所述无线辅助设备不同波束的所述参考信号的测量结果的合并上报结果。
可选地,作为一个实施例,所述处理结果包括所述无线辅助设备的多个波束的波束信息,所述方还包括:接收所述波束信息,其中,所述波束信息包括多个最强的波束的标识。
图7是本申请实施例的波束质量测量方法实现流程示意图,可以应用在网络侧设备。如图7所示,该方法700包括如下步骤。
S702:网络侧设备发送配置信息,所述配置信息用于配置无线辅助设备在一个时间窗口内通过相同波束转发参考信号,所述时间窗口用于终端测量所述参考信号。
该实施例可以对应于前文实施例的方案二以及实施例二。
在本申请实施例中,网络侧设备发送配置信息,该配置信息用于配置无线辅助设备在一个时间窗口内通过相同波束转发参考信号。这样,终端可以对网络设备波束相同且无线辅助设备波束相同的参考信号进行联合处理,得到处理结果,避免因终端对无线辅助设备不同波束的参考信号进行联合处理,或对网络侧设备不同波束的参考信号进行联合处理造成的波束质量测量准确度低的问题,可以提高波束质量测量的准确度。
图8是本申请实施例的波束质量测量方法实现流程示意图,可以应用在无线辅助设备。如图8所示,该方法800包括如下步骤。
S802:无线辅助设备接收配置信息,所述配置信息配置所述无线辅助设备在一个时间窗口内通过相同波束转发参考信号,所述时间窗口用于终端测量所述参考信号。
S804:根据所述配置信息转发所述参考信号。
该实施例可以对应于前文实施例的方案二以及实施例二。
在本申请实施例中,无线辅助设备基于配置信息可以在一个时间窗口内通过相同波束转发参考信号。这样,终端可以对网络设备波束相同且无线辅助设备波束相同的参考信号进行联合处理,得到处理结果,避免因终端对无线辅助设备不同波束的参考信号进行联合处理,或对网络侧设备不同波束的参考信号进行联合处理造成的波束质量测量准确度低的问题,可以提高波束质量测量的准确度。
需要说明的是,本申请实施例提供的波束质量测量方法,执行主体可以为波束质量测量装置,或者,该波束质量测量装置中的用于执行波束质量测量方法的控制模块。本申请实施例中以波束质量测量装置执行波束质量测量方法为例,说明本申请实施例提供的波束质量测量装置。
图9是根据本申请实施例的波束质量测量装置的结构示意图,该装置可以对应于其他实施例中的终端。如图9所示,装置900包括如下模块。
接收模块902,可以用于接收无线辅助设备转发的参考信号;其中,所 述参考信号由网络设备发送,由所述无线辅助设备通过多个波束分别在不同时刻转发。
处理模块904,可以用于对所述网络设备波束相同且所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果;所述联合处理包括层一滤波和/或层三滤波。
在本申请实施例中,波束质量测量装置接收无线辅助设备转发的参考信号,并对网络设备波束相同且无线辅助设备波束相同的参考信号进行联合处理,得到处理结果,避免因终端对无线辅助设备不同波束的参考信号进行联合处理,或对网络侧设备不同波束的参考信号进行联合处理造成的波束质量测量准确度低的问题,可以提高波束质量测量的准确度。
可选地,作为一个实施例,接收模块902,还可以用于接收所述参考信号的配置信息,所述配置信息包括如下1)至4)中的至少之一:1)所述参考信号的标识或端口号;2)所述参考信号的时频资源参数;3)用于执行参考信号测量行为的时间配置参数,所述时间配置参数包括:测量行为的时间窗口的起始时间和结束时间,或者测量行为的时间窗口的时间长度、测量周期和相邻两次所述参考信号的测量行为的最小时间间隔;4)所述参考信号的联合处理准则;其中,所述联合处理准则包括:基于层一滤波的测量结果处理方法,以及基于层三滤波的测量结果处理方法。
可选地,作为一个实施例,所述联合处理包括层一滤波,所述配置信息还包括如下1)至4)中的至少之一:1)所述无线辅助设备的波束数量;2)所述无线辅助设备的波束执行时间长度和执行周期,所述执行周期小于测量行为的时间窗口的时间长度;3)所述无线辅助设备待测量的波束的数量以及所述待测量的波束的波束执行时间;4)所述无线辅助设备的波束筛选规则,所述波束筛选规则包括:从测量的多个波束中选择最强的Y个波束进行层一滤波或在层一滤波后选择Y个最好的测量结果上报给高层,Y是正整数。
可选地,作为一个实施例,处理模块904,可以用于根据所述配置信息,将所述所述网络设备波束相同且所述无线辅助设备波束相同的所述参考信号 的测量结果输入到层一滤波器,得到所述处理结果。
可选地,作为一个实施例,处理模块904,还可以用于根据所述无线辅助设备的波束数量或者所述无线辅助设备待测量的波束的数量,确定所述参考信号对应的并行的层一滤波的数量N。
可选地,作为一个实施例,处理模块904,还可以用于根据所述波束筛选规则从N个并行层一滤波结果中选择Y个结果上报给高层。
可选地,作为一个实施例,处理模块904,还可以用于测量所述无线辅助设备不同波束的所述参考信号的相关性,并执行以下至少一项:将相关性测量结果上报给高层;根据所述相关性测量结果,选择是否将所述无线辅助设备不同波束的所述参考信号的测量结果合并上报给高层。
可选地,作为一个实施例,所述联合处理包括层三滤波,所述配置信息还包括如下1)至3)中的至少之一:1)所述无线辅助设备的波束数量;2)所述无线辅助设备的波束执行时间长度和执行周期,所述执行周期大于测量行为的时间窗口的时间长度;3)所述无线辅助设备待测量的波束的数量以及所述待测量的波束的波束执行时间。
可选地,作为一个实施例,处理模块904,还可以用于根据所述无线辅助设备的波束数量或者所述无线辅助设备待测量的波束的数量确定所述参考信号对应的并行的层三滤波的数量N。
可选地,作为一个实施例,所述参考信号满足如下1)和2)至少之一:1)在一个时间窗口内出现的所述参考信号由所述无线辅助设备的相同波束转发;2)不同配置的所述时间窗口对应的所述无线辅助设备的波束不同。
可选地,作为一个实施例,处理模块904,可以用于根据所述配置信息,将层一滤波器的输出结果输入到对应所述层三滤波器,得到所述处理结果。
可选地,作为一个实施例,所述处理结果包括所述无线辅助设备的多个波束的波束信息,所述装置包括发送模块,用于上报所述波束信息,其中,所述波束信息包括多个最强的波束的标识。
根据本申请实施例的装置900可以参照对应本申请实施例的方法200的 流程,并且,该装置900中的各个单元/模块和上述其他操作和/或功能分别为了实现方法200中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
本申请实施例中的波束质量测量装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的波束质量测量装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的波束质量测量装置能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图10是根据本申请实施例的波束质量测量装置的结构示意图,该装置可以对应于其他实施例中的网络侧设备。如图10所示,装置1000包括如下模块。
发送模块1002,可以用于发送参考信号;其中,所述参考信号由无线辅助设备通过多个波束分别在不同时刻转发;所述参考信号用于终端对所述波束质量测量装置波束相同且所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果;所述联合处理包括层一滤波和/或层三滤波。
在本申请实施例中,波束质量测量装置向无线辅助设备发送参考信号,无线辅助设备通过多个波束分别在不同时刻转发该参考信号。终端可以接收无线辅助设备转发的参考信号,并对网络设备波束相同且无线辅助设备波束相同的参考信号进行联合处理,得到处理结果,避免因终端对无线辅助设备不同波束的参考信号进行联合处理,或对网络侧设备不同波束的参考信号进行联合处理造成的波束质量测量准确度低的问题,可以提高波束质量测量的 准确度。
可选地,作为一个实施例,发送模块1002,还可以用于发送所述参考信号的配置信息,所述配置信息包括如下1)至4)中的至少之一:1)所述参考信号的标识或端口号;2)所述参考信号的时频资源参数;3)用于执行参考信号测量行为的时间配置参数,所述时间配置参数包括:测量行为的时间窗口的起始时间和结束时间,或者测量行为的时间窗口的时间长度、测量周期和相邻两次所述参考信号的测量行为的最小时间间隔;4)所述参考信号的联合处理准则;其中,所述联合处理准则包括:基于层一滤波的测量结果处理方法,以及基于层三滤波的测量结果处理方法。
可选地,作为一个实施例,所述联合处理包括层一滤波,所述配置信息还包括如下1)至4)中的至少之一:1)所述无线辅助设备的波束数量;2)所述无线辅助设备的波束执行时间长度和执行周期,所述执行周期小于测量行为的时间窗口的时间长度;3)所述无线辅助设备待测量的波束的数量以及所述待测量的波束的波束执行时间;4)所述无线辅助设备的波束筛选规则,所述波束筛选规则包括:从测量的多个波束中选择最强的Y个波束进行层一滤波或在层一滤波后选择Y个最好的测量结果上报给高层,Y是正整数。可选地,作为一个实施例,所述联合处理包括层三滤波,所述配置信息还包括如下1)至3)中的至少之一:1)所述无线辅助设备的波束数量;2)所述无线辅助设备的波束执行时间长度和执行周期,所述执行周期大于测量行为的时间窗口的时间长度;3)所述无线辅助设备待测量的波束的数量N,以及对应的波束执行时间。
可选地,作为一个实施例,所述参考信号满足如下1)和2)至少之一:1)在一个时间窗口内出现的所述参考信号由所述无线辅助设备的相同波束转发;2)不同配置的所述时间窗口对应的所述无线辅助设备的波束不同。
可选地,作为一个实施例,所述装置还包括接收模块,用于如下1)和2)至少之一:1)接收所述终端的物理层测量的所述无线辅助设备不同波束的所述参考信号的相关性测量结果;2)接收将所述无线辅助设备不同波束的所述 参考信号的测量结果的合并上报结果。
可选地,作为一个实施例,所述处理结果包括所述无线辅助设备的多个波束的波束信息,所述方法还包括:接收所述波束信息,其中,所述波束信息包括多个最强的波束的标识。
根据本申请实施例的装置1000可以参照对应本申请实施例的方法600的流程,并且,该装置1000中的各个单元/模块和上述其他操作和/或功能分别为了实现方法600中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
图11是根据本申请实施例的波束质量测量装置的结构示意图,该装置可以对应于其他实施例中的网络侧设备。如图11所示,装置1100包括如下模块。
发送模块1102,用于发送配置信息,所述配置信息用于配置无线辅助设备在一个时间窗口内通过相同波束转发参考信号,所述时间窗口用于终端测量所述参考信号。
在本申请实施例中,波束质量测量装置发送配置信息,该配置信息用于配置无线辅助设备在一个时间窗口内通过相同波束转发参考信号。这样,终端可以对波束质量测量装置波束相同且无线辅助设备波束相同的参考信号进行联合处理,得到处理结果,避免因终端对无线辅助设备不同波束的参考信号进行联合处理,或对网络侧设备不同波束的参考信号进行联合处理造成的波束质量测量准确度低的问题,可以提高波束质量测量的准确度。
根据本申请实施例的装置1100可以参照对应本申请实施例的方法700的流程,并且,该装置1100中的各个单元/模块和上述其他操作和/或功能分别为了实现方法700中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
图12是根据本申请实施例的波束质量测量装置的结构示意图,该装置可以对应于其他实施例中的无线辅助设备。如图12所示,装置1200包括如下模块。
接收模块1202,可以用于接收配置信息,所述配置信息用于配置所述波束质量测量装置在一个时间窗口内通过相同波束转发参考信号,所述时间窗口用于终端测量所述参考信号。
发送模块1204,可以用于根据所述配置信息转发所述参考信号。
在本申请实施例中,波束质量测量装置基于配置信息可以在一个时间窗口内通过相同波束转发参考信号。这样,终端可以对网络设备波束相同且波束质量测量装置波束相同的参考信号进行联合处理,得到处理结果,避免因终端对波束质量测量装置不同波束的参考信号进行联合处理,或对网络侧设备不同波束的参考信号进行联合处理造成的波束质量测量准确度低的问题,可以提高波束质量测量的准确度。
根据本申请实施例的装置1200可以参照对应本申请实施例的方法800的流程,并且,该装置1200中的各个单元/模块和上述其他操作和/或功能分别为了实现方法800中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
可选的,如图13所示,本申请实施例还提供一种通信设备1300,包括处理器1301,存储器1302,存储在存储器1302上并可在所述处理器1301上运行的程序或指令,例如,该通信设备1300为终端时,该程序或指令被处理器1301执行时实现上述波束质量测量方法实施例的各个过程,且能达到相同的技术效果。该通信设备1300为无线辅助设备时,该程序或指令被处理器1301执行时实现上述波束质量测量方法实施例的各个过程,且能达到相同的技术效果。该通信设备1300为网络侧设备时,该程序或指令被处理器1301执行时实现上述波束质量测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图14为实现本申请实施例的一种终端的硬件结构示意图。
该终端1400包括但不限于:射频单元1401、网络模块1402、音频输出单元1403、输入单元1404、传感器1405、显示单元1406、用户输入单元1407、接口单元1408、存储器1409、以及处理器1410等部件。
本领域技术人员可以理解,终端1400还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图14中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1404可以包括图形处理器(Graphics Processing Unit,GPU)14041和麦克风14042,图形处理器14041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1406可包括显示面板14061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板14061。用户输入单元1407包括触控面板14071以及其他输入设备14072。触控面板14071,也称为触摸屏。触控面板14071可包括触摸检测装置和触摸控制器两个部分。其他输入设备14072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1401将来自网络侧设备的下行数据接收后,给处理器1410处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1401包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1409可用于存储软件程序或指令以及各种数据。存储器1409可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1409可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-OnlyMemory,ROM)、可编程只读存储器(ProgrammableROM,PROM)、可擦除可编程只读存储器(ErasablePROM,EPROM)、电可擦除可编程只读存储器(ElectricallyEPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1410可包括一个或多个处理单元;可选的,处理器1410可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1410中。
其中,射频单元1401,用于接收无线辅助设备转发的参考信号;其中,所述参考信号由网络设备发送,由所述无线辅助设备通过多个波束分别在不同时刻转发;处理器1410,用于对所述网络设备波束相同且所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果;所述联合处理包括层一滤波和/或层三滤波。
在本申请实施例中,终端接收无线辅助设备转发的参考信号,并对网络设备波束相同且无线辅助设备波束相同的参考信号进行联合处理,得到处理结果,避免因终端对无线辅助设备不同波束的参考信号进行联合处理,或对网络侧设备不同波束的参考信号进行联合处理造成的波束质量测量准确度低的问题,可以提高波束质量测量的准确度。
本申请实施例提供的终端1400还可以实现上述波束质量测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图15所示,该网络侧设备1500包括:天线151、射频装置152、基带装置153。天线151与射频装置152连接。在上行方向上,射频装置152通过天线151接收信息,将接收的信息发送给基带装置153进行处理。在下行方向上,基带装置153对要发送的信息进行处理,并发送给射频装置152,射频装置152对收到的信息进行处理后经过天线151发送出去。
上述频带处理装置可以位于基带装置153中,以上实施例中网络侧设备执行的方法可以在基带装置153中实现,该基带装置153包括处理器154和存储器155。
基带装置153例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图15所示,其中一个芯片例如为处理器154,与存储器155连接,以 调用存储器155中的程序,执行以上方法实施例中所示的网络侧设备操作。
该基带装置153还可以包括网络接口156,用于与射频装置152交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器155上并可在处理器154上运行的指令或程序,处理器154调用存储器155中的指令或程序执行图10或图11或图12所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述波束质量测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器可以为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述波束质量测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申 请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络侧设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (29)

  1. 一种波束质量测量方法,所述方法包括:
    终端接收无线辅助设备转发的参考信号;其中,所述参考信号由网络设备发送,由所述无线辅助设备通过多个波束分别在不同时刻转发;
    对所述网络设备波束相同且所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果;所述联合处理包括层一滤波和/或层三滤波。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:接收所述参考信号的配置信息,所述配置信息包括如下至少之一:
    所述参考信号的标识或端口号;
    所述参考信号的时频资源参数;
    用于执行参考信号测量行为的时间配置参数,所述时间配置参数包括:测量行为的时间窗口的起始时间和结束时间,或者测量行为的时间窗口的时间长度、测量周期和相邻两次所述参考信号的测量行为的最小时间间隔;
    所述参考信号的联合处理准则;其中,所述联合处理准则包括:基于层一滤波的测量结果处理方法,以及基于层三滤波的测量结果处理方法。
  3. 根据权利要求2所述的方法,其中,所述联合处理包括层一滤波,所述配置信息还包括如下至少之一:
    所述无线辅助设备的波束数量;
    所述无线辅助设备的波束执行时间长度和执行周期,所述执行周期小于测量行为的时间窗口的时间长度;
    所述无线辅助设备待测量的波束的数量以及所述待测量的波束的波束执行时间;
    所述无线辅助设备的波束筛选规则,所述波束筛选规则包括:从测量的多个波束中选择最强的Y个波束进行层一滤波或在层一滤波后选择Y个最好的测量结果上报给高层,Y是正整数。
  4. 根据权利要求3所述的方法,其中,所述对所述网络设备波束相同且 所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果包括:
    根据所述配置信息,将所述所述网络设备波束相同且所述无线辅助设备波束相同的所述参考信号的测量结果输入到层一滤波器,得到所述处理结果。
  5. 根据权利要求3或4所述方法,其中,所述方法还包括:
    所述终端根据所述无线辅助设备的波束数量或者所述无线辅助设备待测量的波束的数量,确定所述参考信号对应的并行的层一滤波的数量N。
  6. 根据权利要求3或4所述方法,其中,所述方法还包括:
    所述终端根据所述波束筛选规则从N个并行层一滤波结果中选择Y个结果上报给高层。
  7. 根据权利要求3所述的方法,其中,所述方法还包括:
    所述终端的物理层测量所述无线辅助设备不同波束的所述参考信号的相关性,并执行以下至少一项:
    将相关性测量结果上报给高层;
    根据所述相关性测量结果,选择是否将所述无线辅助设备不同波束的所述参考信号的测量结果合并上报给高层。
  8. 根据权利要求2所述的方法,其中,所述联合处理包括层三滤波,所述配置信息还包括如下至少之一:
    所述无线辅助设备的波束数量;
    所述无线辅助设备的波束执行时间长度和执行周期,所述执行周期大于测量行为的时间窗口的时间长度;
    所述无线辅助设备待测量的波束的数量以及所述待测量的波束的波束执行时间。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    所述终端根据所述无线辅助设备的波束数量或者所述无线辅助设备待测量的波束的数量确定所述参考信号对应的并行的层三滤波的数量N。
  10. 根据权利要求8所述的方法,其中,所述参考信号满足如下至少之 一:
    在一个时间窗口内出现的所述参考信号由所述无线辅助设备的相同波束转发;
    不同配置的所述时间窗口对应的所述无线辅助设备的波束不同。
  11. 根据权利要求8所述的方法,其中,所述对所述网络设备波束相同且所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果包括:
    根据所述配置信息,将层一滤波器的输出结果输入到对应所述层三滤波器,得到所述处理结果。
  12. 根据权利要求1所述的方法,其中,所述处理结果包括所述无线辅助设备的多个波束的波束信息,所述方还包括:
    上报所述波束信息,其中,所述波束信息包括多个最强的波束的标识。
  13. 一种波束质量测量方法,所述方法包括:
    网络侧设备发送参考信号;
    其中,所述参考信号由无线辅助设备通过多个波束分别在不同时刻转发;
    所述参考信号用于终端对所述网络设备波束相同且所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果;所述联合处理包括层一滤波和/或层三滤波。
  14. 根据权利要求13所述的方法,其中,所述方法还包括:发送所述参考信号的配置信息,所述配置信息包括如下至少之一:
    所述参考信号的标识或端口号;
    所述参考信号的时频资源参数;
    用于执行参考信号测量行为的时间配置参数,所述时间配置参数包括:测量行为的时间窗口的起始时间和结束时间,或者测量行为的时间窗口的时间长度、测量周期和相邻两次所述参考信号的测量行为的最小时间间隔;
    所述参考信号的联合处理准则;其中,所述联合处理准则包括:基于层一滤波的测量结果处理方法,以及基于层三滤波的测量结果处理方法。
  15. 根据权利要求14所述的方法,其中,所述联合处理包括层一滤波,所述配置信息还包括如下至少之一:
    所述无线辅助设备的波束数量;
    所述无线辅助设备的波束执行时间长度和执行周期,所述执行周期小于测量行为的时间窗口的时间长度;
    所述无线辅助设备待测量的波束的数量以及所述待测量的波束的波束执行时间;
    所述无线辅助设备的波束筛选规则,所述波束筛选规则包括:从测量的多个波束中选择最强的Y个波束进行层一滤波或在层一滤波后选择Y个最好的测量结果上报给高层,Y是正整数。
  16. 根据权利要求14所述的方法,其中,所述联合处理包括层三滤波,所述配置信息还包括如下至少之一:
    所述无线辅助设备的波束数量;
    所述无线辅助设备的波束执行时间长度和执行周期,所述执行周期大于测量行为的时间窗口的时间长度;
    所述无线辅助设备待测量的波束的数量N,以及对应的波束执行时间。
  17. 根据权利要求16所述的方法,其中,所述参考信号满足如下至少之一:
    在一个时间窗口内出现的所述参考信号由所述无线辅助设备的相同波束转发;
    不同配置的所述时间窗口对应的所述无线辅助设备的波束不同。
  18. 根据权力要求13所述的方法,其中,所述方法还包括如下至少之一:
    接收所述终端的物理层测量的所述无线辅助设备不同波束的所述参考信号的相关性测量结果;
    接收将所述无线辅助设备不同波束的所述参考信号的测量结果的合并上报结果。
  19. 根据权利要求13所述的方法,其中,所述处理结果包括所述无线辅 助设备的多个波束的波束信息,所述方还包括:
    接收所述波束信息,其中,所述波束信息包括多个最强的波束的标识。
  20. 一种波束质量测量方法,所述方法包括:
    网络侧设备发送配置信息,所述配置信息用于配置无线辅助设备在一个时间窗口内通过相同波束转发参考信号,所述时间窗口用于终端测量所述参考信号。
  21. 一种波束质量测量方法,所述方法包括:
    无线辅助设备接收配置信息,所述配置信息配置所述无线辅助设备在一个时间窗口内通过相同波束转发参考信号,所述时间窗口用于终端测量所述参考信号;
    根据所述配置信息转发所述参考信号。
  22. 一种波束质量测量装置,包括:
    接收模块,用于接收无线辅助设备转发的参考信号;其中,所述参考信号由网络设备发送,由所述无线辅助设备通过多个波束分别在不同时刻转发;
    处理模块,用于对所述网络设备波束相同且所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果;所述联合处理包括层一滤波和/或层三滤波。
  23. 一种波束质量测量装置,包括:
    发送模块,用于发送参考信号;
    其中,所述参考信号由无线辅助设备通过多个波束分别在不同时刻转发;
    所述参考信号用于终端对所述波束质量测量装置波束相同且所述无线辅助设备波束相同的所述参考信号进行联合处理,得到处理结果;所述联合处理包括层一滤波和/或层三滤波。
  24. 一种波束质量测量装置,包括:
    发送模块,用于发送配置信息,所述配置信息用于配置无线辅助设备在一个时间窗口内通过相同波束转发参考信号,所述时间窗口用于终端测量所述参考信号。
  25. 一种波束质量测量装置,包括:
    接收模块,用于接收配置信息,所述配置信息用于配置所述波束质量测量装置在一个时间窗口内通过相同波束转发参考信号,所述时间窗口用于终端测量所述参考信号;
    发送模块,用于根据所述配置信息转发所述参考信号。
  26. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至12任一项所述的波束质量测量方法。
  27. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求13至20任一项所述的波束质量测量方法。
  28. 一种无线辅助设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求21所述的波束质量测量方法。
  29. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至21任一项所述的波束质量测量方法。
PCT/CN2022/071286 2021-01-11 2022-01-11 波束质量测量方法和设备 WO2022148472A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22736633.3A EP4277335A1 (en) 2021-01-11 2022-01-11 Beam quality measurement method and device
US18/220,270 US20230354071A1 (en) 2021-01-11 2023-07-11 Beam quality measurement method and devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110034373.0A CN114765792A (zh) 2021-01-11 2021-01-11 波束质量测量方法和设备
CN202110034373.0 2021-01-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/220,270 Continuation US20230354071A1 (en) 2021-01-11 2023-07-11 Beam quality measurement method and devices

Publications (1)

Publication Number Publication Date
WO2022148472A1 true WO2022148472A1 (zh) 2022-07-14

Family

ID=82357993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071286 WO2022148472A1 (zh) 2021-01-11 2022-01-11 波束质量测量方法和设备

Country Status (4)

Country Link
US (1) US20230354071A1 (zh)
EP (1) EP4277335A1 (zh)
CN (1) CN114765792A (zh)
WO (1) WO2022148472A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190081696A1 (en) * 2015-10-30 2019-03-14 Kyocera Corporation Selection of decoding level at signal forwarding devices
CN111245492A (zh) * 2020-01-10 2020-06-05 北京邮电大学 基于接收功率排序的联合波束训练和智能反射面选择方法
CN111917448A (zh) * 2020-08-13 2020-11-10 深圳大学 一种毫米波通信的波束训练方法、装置、系统及存储介质
US20200396679A1 (en) * 2019-06-13 2020-12-17 Qualcomm Incorporated Power savings with beam-specific repeater operation
US20210126694A1 (en) * 2019-10-29 2021-04-29 Qualcomm Incorporated System and method for beam training with relay links

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190081696A1 (en) * 2015-10-30 2019-03-14 Kyocera Corporation Selection of decoding level at signal forwarding devices
US20200396679A1 (en) * 2019-06-13 2020-12-17 Qualcomm Incorporated Power savings with beam-specific repeater operation
US20210126694A1 (en) * 2019-10-29 2021-04-29 Qualcomm Incorporated System and method for beam training with relay links
CN111245492A (zh) * 2020-01-10 2020-06-05 北京邮电大学 基于接收功率排序的联合波束训练和智能反射面选择方法
CN111917448A (zh) * 2020-08-13 2020-11-10 深圳大学 一种毫米波通信的波束训练方法、装置、系统及存储介质

Also Published As

Publication number Publication date
EP4277335A1 (en) 2023-11-15
US20230354071A1 (en) 2023-11-02
CN114765792A (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
CN114826448B (zh) 波束测量方法及波束测量装置
CN114071611B (zh) 测量上报方法、装置及设备
JP2020504573A (ja) セル切り替え方法および装置
US20230126936A1 (en) Measurement indication method, terminal, and network-side device
WO2022028475A1 (zh) 参考信号测量方法、终端及网络侧设备
CN115150036B (zh) 信道状态信息csi报告的映射方法、终端及网络侧设备
US20230217448A1 (en) Information Transmission Method, Terminal, and Network Side Device
WO2023025017A1 (zh) 传输处理方法、装置及设备
WO2022148472A1 (zh) 波束质量测量方法和设备
WO2022206740A1 (zh) 波束切换方法、装置及存储介质
WO2022242556A1 (zh) 测量间隙的确定方法、终端及网络侧设备
WO2022156751A1 (zh) 路径切换的方法、终端及网络侧设备
WO2022078311A1 (zh) 定位方法、终端及网络侧设备
WO2022022635A1 (zh) 接入控制方法、装置、终端及网络设备
CN114258058A (zh) 测量方法、测量装置、终端及网络设备
WO2023011535A1 (zh) 低移动性状态的确定方法、装置、终端及网络侧设备
CN114339713B (zh) 传输处理方法、终端及网络侧设备
WO2022214024A1 (zh) 信息获取、配置方法、装置及通信设备
WO2024022351A1 (zh) 测量方法、装置及设备
WO2022218305A1 (zh) 信息信号的更新方法、终端及网络侧设备
WO2024104078A1 (zh) 测量放松方法、终端及网络侧设备
WO2023284800A1 (zh) Srs的传输方法、装置、终端及网络侧设备
CN113923686B (zh) 辅助信息处理方法、辅助信息发送方法及相关设备
WO2022228526A1 (zh) 移动性管理的配置方法、装置、终端、网络侧设备及介质
WO2023051529A1 (zh) 参考信号处理方法、装置、终端及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022736633

Country of ref document: EP

Effective date: 20230811