WO2022148445A1 - 一种名义包填充值的指示方法、确定方法及通信装置 - Google Patents

一种名义包填充值的指示方法、确定方法及通信装置 Download PDF

Info

Publication number
WO2022148445A1
WO2022148445A1 PCT/CN2022/070798 CN2022070798W WO2022148445A1 WO 2022148445 A1 WO2022148445 A1 WO 2022148445A1 CN 2022070798 W CN2022070798 W CN 2022070798W WO 2022148445 A1 WO2022148445 A1 WO 2022148445A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
value
threshold
subfield
nss
Prior art date
Application number
PCT/CN2022/070798
Other languages
English (en)
French (fr)
Inventor
狐梦实
于健
刘辰辰
淦明
曹粔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22736606.9A priority Critical patent/EP4262126A4/en
Priority to KR1020237027304A priority patent/KR20230128554A/ko
Priority to JP2023541999A priority patent/JP2024503843A/ja
Priority to MX2023008195A priority patent/MX2023008195A/es
Priority to AU2022206515A priority patent/AU2022206515B2/en
Priority to CA3204804A priority patent/CA3204804A1/en
Publication of WO2022148445A1 publication Critical patent/WO2022148445A1/zh
Priority to US18/349,510 priority patent/US20230353274A1/en
Priority to AU2024204378A priority patent/AU2024204378A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • H04L1/0008Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length by supplementing frame payload, e.g. with padding bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0075Transmission of coding parameters to receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/06Notations for structuring of protocol data, e.g. abstract syntax notation one [ASN.1]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems

Definitions

  • the present application relates to the technical field of wireless fidelity, and in particular, to a method for indicating a filling value of a nominal packet, a method for determining it, and a communication device.
  • the receiver can indicate a certain number of spatial and time streams (NSTS)/number of spatial and time streams (number of spatial and time streams). , NSTS), the modulation threshold corresponding to the size of a certain resource unit (RU).
  • the transmitter can determine the nominal packet padding value to use based on this modulation threshold. Then, the transmitter determines an actual padding value according to the nominal packet padding value, so as to pad the packet extension that may be included in the data packet sent to the receiver according to the actual padding value.
  • the data in the packet extension is not needed by the receiver, so other data can be processed within the processing time of the packet extension, thereby ensuring that the receiver has enough processing time.
  • One or more of the NSTS, RU size, and modulation mode adopted by the sender are different, and the minimum processing time required by the corresponding receiver is also different, that is, the corresponding nominal packet padding value may be different.
  • the nominal packet filling values corresponding to each NSTS, RU and modulation threshold are given exhaustively or ergodic.
  • the nominal packet filling value corresponding to each NSTS, RU and modulation threshold is given exhaustively or ergodic, and the overhead is relatively large.
  • the present application provides a method for indicating a nominal packet filling value, a method for determining it, and a communication device, which are used to reduce the overhead of indicating the nominal packet filling value, and can flexibly indicate the nominal packet filling value corresponding to each NSTS and each RU size.
  • a first aspect provides a method for indicating a nominal packet filling value, the method can be executed by a first communication device, and the first communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip system.
  • the following description takes the communication device as the first device as an example, where the first device may be an AP.
  • the method includes:
  • the first device generates a physical layer protocol data unit (physical protocol data unit, PPDU), and sends the PPDU to the second device, the PPDU includes a physical layer packet extension threshold existence subfield, a physical layer packet extension threshold field, the physical layer
  • the value of the packet extension threshold existence subfield is 1, and the physical layer packet extension threshold field includes the RU index mask subfield, the NSS subfield, and the physical layer packet extension threshold information field; the physical layer packet extension threshold information field includes corresponding to different names.
  • each packet extension threshold subfield set is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b, and the modulation threshold is used to determine whether the second device is modulating
  • the nominal packet padding value used when the mode is greater than or equal to the modulation threshold where the value range of n is a subset of [1,...,N], N is an integer greater than or equal to 1, and the value range of b is A subset of [m,...,M], m and M are integers greater than or equal to 0, when the value of the RU index mask subfield corresponding to the RU with the serial number y is 0, and the value range of b does not include y;
  • the value of the RU index mask subfield corresponding to the RU with the sequence number y is 0 to indicate the modulation threshold corresponding to the RU with the NSS n and the sequence number y.
  • the largest sequence number among the sequence numbers smaller than the y corresponding to the bit in the index mask subfield is 1.
  • the NSS is n
  • the modulation threshold corresponding to the RU with the serial number y may be the modulation threshold corresponding to the RU with the NSS n and the serial number m1. That is, the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y can be indicated by the packet extension threshold subfield used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is m1. Therefore, the packet extension threshold information field of the physical layer can omit the packet extension threshold subfield used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y.
  • the packet extension threshold subfield of the modulation threshold indicates the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y. That is, the modulation threshold corresponding to a certain RU can also be indicated without traversing all RUs of different sizes. Thus, the overhead of the extension threshold field of the physical layer packet is saved.
  • a method for determining a nominal packet filling value can be executed by a second communication device, and the second communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip system.
  • the following description takes the communication device as a second device as an example, where the second device may be a STA.
  • the method includes:
  • the second device receives the PPDU from the first device.
  • the PPDU includes a physical layer packet extension threshold existence subfield and a physical layer packet extension threshold field.
  • the value of the physical layer packet extension threshold existence subfield is 1, and the physical layer packet extension
  • the threshold field includes an RU index mask subfield, an NSS subfield, and a physical layer packet extension threshold information field;
  • the physical layer packet extension threshold information field includes a plurality of packet extension threshold subfield sets corresponding to different nominal packet filling values, and each The set of packet extension threshold subfields is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b.
  • the modulation threshold is used to determine the nominal packet filling used by the second device when the modulation mode is greater than or equal to the modulation threshold.
  • n is a subset of [1,...,N]
  • N is an integer greater than or equal to 1
  • value range of b is a subset of [m,...,M]
  • m and M is an integer greater than or equal to 0, and when the value of the RU index mask subfield corresponding to the RU whose serial number is y is 0, the value range of b does not include y;
  • the second device determines the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y according to the modulation threshold corresponding to the RU whose NSS is n and the sequence number is m1 indicated by the physical layer packet extension threshold field, where the m1 is the RU
  • the bit in the index mask subfield is 1 and corresponds to the smallest sequence number of the sequence numbers greater than the y, or the m1 is the largest sequence number of the sequence numbers smaller than the y corresponding to the bit in the RU index mask subfield.
  • the second device still The modulation threshold corresponding to the RU whose NSS is n and the sequence number is y can be determined.
  • the second device may determine the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y according to the modulation threshold corresponding to the RU whose NSS is n and the sequence number is m1.
  • m1 is the smallest sequence number in the sequence number greater than the y corresponding to a bit of 1 in the RU index mask subfield, or, m1 is a bit in the RU index mask subfield.
  • m1 is the smallest sequence number in the sequence number greater than the y corresponding to a bit of 1 in the RU index mask subfield.
  • m1 is a bit in the RU index mask subfield.
  • the value of the RU index mask subfield corresponding to the sequence number less than y includes 1. Since the value of the RU index mask subfield is 0, there may be multiple corresponding RUs, that is, there may be multiple sequence numbers less than y. Based on this situation, the scheme further defines the conditions that y needs to meet, that is, when the value of the RU index mask subfield corresponding to the sequence number less than y includes 1, the modulation threshold corresponding to the RU with the NSS of n and the sequence number of y is NSTS The modulation threshold corresponding to the RU of n and serial number m1.
  • the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y may be other possible values, such as a certain fixed value.
  • the second device can directly determine the nominal packet padding value to be used to a certain fixed value, instead of determining the nominal packet padding value to be used according to the modulation threshold corresponding to the RU whose NSS is n and the sequence number is m1, Simpler.
  • the sequence number corresponding to the bit in the RU index mask subfield is 1 is not greater than the y, then the value of the RU index mask subfield corresponding to the RU whose sequence number is y If it is 0, it is used to indicate that the NSS is n, and the nominal packet padding value corresponding to the RU with the sequence number y is 20 microseconds.
  • the second device determines the nominal packet corresponding to the RU with the sequence number y.
  • the padding value is 20 microseconds. This solution means that if there is no m1 that satisfies the condition, the nominal packet filling value corresponding to the RU with the sequence number y may be a fixed value, for example, 20 microseconds.
  • the second device determines the nominal value to be used according to the modulation threshold corresponding to the RU whose NSS is n and the serial number is y+1. Packet padding value, where y sequence number corresponds to multiple RUs of different sizes.
  • DCM dual carrier modulation
  • the second device may not determine the nominal packet padding value to be used according to the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y.
  • the modulation threshold determines the nominal packet padding value to use.
  • the second device determines the nominal packet padding value according to the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y, where y is the sequence number
  • the multiple RUs include at least one type of multi-resource unit MRU, and the RU used by the second device is not the largest RU among the multiple RUs.
  • multiple RUs can be combined. That is, multiple RUs (combinations of RUs and MRUs) correspond to one RU allocation index, that is, correspond to one sequence number.
  • the second device can still correspond to the RU whose NSS is n and the sequence number is y.
  • the modulation threshold of determines the nominal packet filling value to be used, instead of determining the nominal packet filling value to be used according to the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y+1.
  • a method for indicating a nominal packet filling value can be executed by a first communication device, and the first communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip system.
  • the following description takes the communication device as the first device as an example, where the first device may be an AP.
  • the method includes:
  • the first device generates a PPDU, and sends the PPDU to the second device, where the PPDU includes a physical layer packet extension threshold existence subfield and a physical layer packet extension threshold field, where the physical layer packet extension threshold existence subfield has a value of 1.
  • the physical layer packet extension threshold field includes an RU index mask subfield, an NSS subfield, and a physical layer packet extension threshold information field;
  • the physical layer packet extension threshold information field includes a plurality of packets corresponding to different nominal packet padding values Extended threshold subfield set, the each packet extended threshold subfield set is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b, and the modulation threshold is used to determine whether the modulation mode of the second device is greater than or equal to the specified modulation threshold.
  • the nominal packet padding value used when the modulation threshold is described;
  • the value range of n is a subset of [1,...,N], N is an integer greater than or equal to 1, the value range of b is a subset of [m,...,M], m and M are greater than or equal to 1 or an integer equal to 0, when the value of the RU index mask subfield corresponding to the RU with the sequence number y is 0, the physical layer packet extension threshold field indicates that the nominal packet padding value corresponding to the RU with the sequence number y is 0 microseconds, so The range of the value of b does not include y.
  • this solution can also omit the packet extension threshold subfield used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y in the physical layer packet extension threshold field, although the NSS is n is omitted. , the packet extension threshold subfield of the modulation threshold corresponding to the RU with sequence number y, but still indicates that the nominal packet padding value corresponding to the RU with sequence number y is 0 microseconds, thus saving the overhead of the physical layer packet extension threshold field.
  • a method for determining a nominal packet filling value can be executed by a second communication device, and the second communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip system.
  • the following description takes the communication device as a second device as an example, where the second device may be a STA.
  • the method includes:
  • the second device receives the PPDU from the first device.
  • the PPDU includes a physical layer packet extension threshold existence subfield and a physical layer packet extension threshold field.
  • the value of the physical layer packet extension threshold existence subfield is 1.
  • the layer packet extension threshold field includes the RU index mask subfield, the NSS subfield, and the physical layer packet extension threshold information field;
  • the physical layer packet extension threshold information field includes a plurality of packet extension threshold subfield sets corresponding to different nominal packet filling values , the set of each packet extension threshold subfield is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b, and the modulation threshold is used to determine that the second device uses when the modulation mode is greater than or equal to the modulation threshold
  • the second device determines, according to the physical layer packet extension threshold field, that the nominal packet padding value corresponding to the RU whose sequence number is y is 0 microseconds.
  • the PPDU sent by the first device to the second device does not include the packet extension threshold subfield used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y, but the second device can determine If the value of the RU index mask subfield corresponding to the RU with the sequence number y is 0, the second device may determine that the nominal packet padding value to be used is 0 microseconds, which is simpler.
  • the value of the RU index mask subfield corresponding to the sequence number less than y does not include 1. Since the value of the RU index mask subfield is 0, there may be multiple corresponding RUs, that is, there may be multiple sequence numbers less than y. Based on this situation, the scheme further defines the conditions that y needs to meet, that is, when the value of the RU index mask subfield corresponding to the sequence number less than y does not include 1, the nominal packet corresponding to the RU whose NSS is n and whose sequence number is y does not contain 1. Recharge is 0 microseconds.
  • a fifth aspect provides a method for indicating a nominal packet filling value, the method can be executed by a first communication device, and the first communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip system.
  • the following description takes the communication device as the first device as an example, where the first device may be an AP.
  • the method includes:
  • the first device generates a PPDU, and sends the PPDU to the second device, where the PPDU includes a physical layer packet extension threshold existence subfield and a physical layer packet extension threshold field, where the physical layer packet extension threshold existence subfield has a value of 1.
  • the physical layer packet expansion threshold field includes the RU index mask subfield, the NSS subfield, and the physical layer packet expansion threshold information field; the physical layer packet expansion threshold information field includes a plurality of packet expansion threshold subfields corresponding to different nominal packet filling values.
  • the each packet extension threshold subfield set is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b, and the modulation threshold is used to determine whether the modulation mode of the second device is greater than or equal to the modulation threshold
  • the nominal packet padding value used for a limited time
  • the value range of n is a subset of [1,...,N], N is an integer greater than or equal to 1, the value range of b is a subset of [m,...,M], m and M are greater than or equal to 1 or an integer equal to 0, the RU with sequence number y corresponds to the bit set to 0 in the RU index mask subfield, the value range of b does not include y, and the physical layer packet extension threshold field is used to indicate the sequence number y.
  • RUs correspond to nominal packet fill values of 8, 16, or 20 microseconds.
  • this solution may also omit the packet expansion threshold subfield used to indicate the modulation threshold corresponding to the RU with NSS of n and sequence number y in the physical layer packet expansion threshold field.
  • the corresponding nominal packet filling value may be specified as a fixed value, such as 8 microseconds, 16 microseconds or 20 microseconds. That is, although the packet extension threshold subfield of the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y is omitted, the nominal packet padding value corresponding to the RU whose sequence number is y is still indicated, thereby saving the overhead of the physical layer packet extension threshold field. .
  • a sixth aspect provides a method for determining a nominal packet filling value, the method can be executed by a second communication device, and the second communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip system.
  • the following description is made by taking the communication device as a second device as an example, where the second device may be a STA or a STA.
  • the method includes:
  • the second device receives the PPDU from the first device.
  • the PPDU includes a physical layer packet extension threshold existence subfield and a physical layer packet extension threshold field.
  • the value of the physical layer packet extension threshold existence subfield is 1.
  • the layer packet extension threshold field includes the RU index mask subfield, the NSS subfield, and the physical layer packet extension threshold information field;
  • the physical layer packet extension threshold information field includes a plurality of packet extension threshold subfield sets corresponding to different nominal packet filling values , the set of each packet extension threshold subfield is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b, and the modulation threshold is used to determine that the second device uses when the modulation mode is greater than or equal to the modulation threshold
  • the second device determines, according to the physical layer packet extension threshold field, that the nominal packet padding value corresponding to the RU with the sequence number y is 8 microseconds, 16 microseconds, or 20 microseconds.
  • the PPDU sent by the first device to the second device does not include the packet extension threshold subfield used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y, but the second device can determine If the value of the RU index mask subfield corresponding to the RU with the sequence number y is 0, the second device can determine that the nominal packet padding value to be used is a certain fixed value, and does not need to refer to the modulation thresholds corresponding to the RUs with other sequence numbers to determine the desired value. Use the nominal package to fill in the value, which is simpler.
  • this scheme further defines that there are at least 1 bits before the bits set to 0, that is, it further defines the conditions that y needs to meet, and is set in the RU index mask subfield corresponding to the serial number of y. If there is at least a bit 1 of 1 before the bit of 0, the nominal packet padding value corresponding to the RU with the sequence number y is a certain fixed value.
  • the physical layer packet extension threshold field is used to indicate that the nominal packet padding value used by the second device whose adopted NSS is greater than the value indicated by the NSS subfield is 8 microseconds, 16 microseconds or 20 microseconds.
  • the NSS used by the second device is greater than the value indicated by the NSS subfield, and the second device may determine that the nominal packet padding value to be used is 8 microseconds, 16 microseconds microseconds or 20 microseconds.
  • the nominal packet padding value to be used by the second device can be specified to be a fixed value, such as 8 microns seconds, 16 microseconds or 20 microseconds. In this way, the overhead of the extension threshold field of the physical layer packet can be further saved.
  • the physical layer packet extension threshold field is used to indicate that the second device whose adopted NSS is greater than the value indicated by the NSS subfield NSS, the modulation threshold corresponding to the RU with sequence number y determines the nominal packet padding value to be used.
  • the NSTS used by the second device is greater than the value indicated by the NSS subfield, and the second device according to the NSS used by the second device, the serial number Determines the nominal packet padding value to use for the modulation threshold corresponding to the RU of y.
  • This solution also does not need to traverse the NSS, that is, if the NSS used by the second device is greater than the value indicated by the NSS subfield, it can be specified that the second device determines the modulation threshold corresponding to the RU with the serial number y based on the NSS used by the second device.
  • the nominal packet padding value to be used can further save the overhead of the physical layer packet extension threshold field.
  • a seventh aspect provides a method for determining a nominal packet filling value, the method can be executed by a first communication device, and the first communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip system.
  • the following description takes the communication device as the first device as an example, where the first device may be an AP.
  • the method includes:
  • the first device generates a PPDU, and sends the PPDU to the second device, where the PPDU includes a spatial stream number NSS index mask subfield, an NSS subfield, and a physical layer packet extension threshold information field; wherein the physical layer packet extension threshold
  • the information field includes a plurality of packet extension threshold subfield sets corresponding to different nominal packet filling values, each of the packet extension threshold subfield sets includes a plurality of packet extension threshold subfields corresponding to indicating NSS as n, the packet extension The threshold subfield is used to indicate to the second device that the allocated resource unit RU equivalently encoded number of RU blocks is the first value, and when the NSS used by the second device is n, the corresponding packet extension threshold, the packet The extension threshold subfield is used to indicate the nominal packet padding value used by the second device when the first value is greater than or equal to the packet extension threshold, and the value range of n is [1,...,N], where N is Integer greater than 8.
  • a method for determining a nominal packet filling value can be executed by a second communication device, and the second communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip system.
  • the following description takes the communication device as a second device as an example, where the second device may be a STA.
  • the method includes:
  • the second device receives the PPDU from the first device, and the PPDU includes a spatial stream number NSS index mask subfield, an NSS subfield, and a physical layer packet extension threshold information field, wherein the physical layer packet extension threshold information field includes corresponding different A plurality of packet extension threshold subfield sets of nominal packet filling values, each of the packet extension threshold subfield sets includes a plurality of packet extension threshold subfields corresponding to indicating that the NSS is n, and the packet extension threshold subfields are used for Indicate to the second device that the allocated resource unit RU equivalently encoded number of RU blocks is the first value, and when the NSS used by the second device is n, the corresponding packet expansion threshold, the packet expansion threshold subfield is used to indicate the nominal packet padding value used by the second device when the first value is greater than or equal to the packet extension threshold, the value range of n is [1, . . . , N], and N is an integer greater than 8;
  • the second device determines, according to the physical layer packet extension threshold information field and the first value, a nominal packet padding value used when the NSS of j is used, where j is an integer greater than or equal to 1.
  • the physical layer packet expansion threshold information field indicates the number of equivalently encoded RU blocks of the resource unit RU allocated by the second device through a plurality of packet expansion threshold subfield sets corresponding to different nominal packet padding values.
  • the second device can determine the nominal packet padding value to be used according to the packet extension threshold subfield corresponding to the NSS used by itself and the first value. That is, when the NSS is n and the number of RU blocks after the equivalent encoding of the allocated resource unit RU is the first value, the corresponding packet expansion threshold is used instead of the modulation threshold corresponding to the NSS and RU size to indicate the nominal packet filling. recharge.
  • the dimension of the physical layer packet extension threshold information field can be reduced, thereby simplifying the physical layer packet extension threshold information field and saving the overhead of the physical layer packet extension threshold information field.
  • the first value satisfies the following formula:
  • N CBPRU N RU242 * N BPSCS ;
  • N CBPRU is the first value
  • N RU242 is the maximum number of RU242 that the RU can include
  • N BPSCS is the number of encoded bits carried by each subcarrier on a single space-time stream.
  • the first value may be considered to be related to the RU allocated to the second device, and is actually a quantification of the RU allocated to the second device.
  • This solution provides an exemplary way of determining the first value, and the embodiment of the present application does not limit the specific way of determining the first value.
  • the multiple packet expansion threshold subfield sets include a first packet expansion threshold subfield set corresponding to the first nominal packet padding value, and a first packet expansion threshold in the first packet expansion threshold subfield set
  • the subfield is used to indicate to the second device that the allocated resource unit RU equivalently encoded number of RU blocks is the first value, and when the NSS used by the second device is n, the corresponding first packet extension threshold, the The first packet expansion threshold is used to indicate that the nominal packet padding value used by the second device when the first value corresponding to the allocated RU is greater than or equal to the first packet expansion threshold is the first nominal packet padding value.
  • the first nominal packet filling value is 20 microseconds.
  • the second device uses the NSS of j to be used.
  • the nominal packet padding value of the first nominal packet padding value is j and N CBPRU is greater than or equal to the first nominal packet padding value corresponding to the first packet extension threshold subfield of which NSS is the j.
  • the plurality of packet extension threshold subfield sets further include a second packet extension threshold subfield set corresponding to the second nominal padding value, and a second packet extension threshold in the second packet extension threshold subfield set
  • the subfield is used to indicate to the second device that the allocated resource unit RU equivalently encoded number of RU blocks is the first value, and when the NSS used by the second device is n, the corresponding second packet extension threshold, the The second packet expansion threshold is used to indicate that the nominal packet filling value used by the second device when the first value corresponding to the allocated RU is greater than or equal to the second packet expansion threshold is the second nominal packet padding value, the second nominal packet padding value is 16 microseconds.
  • N CBPRU when NSS is j, N CBPRU is greater than or equal to the second nominal packet padding value corresponding to the second packet extension threshold subfield whose NSS is the j, and is smaller than the first packet whose NSS is the j
  • the first nominal packet padding value corresponding to the extension threshold subfield the nominal packet padding value used when the second device determines that the NSS of j is used is the second nominal packet padding value.
  • the plurality of packet extension threshold subfield sets further include a third packet extension threshold subfield set corresponding to the third nominal packet padding value, and a third packet extension in the third packet extension threshold subfield set
  • the threshold subfield is used to indicate to the second device that the allocated resource unit RU equivalently encoded number of RU blocks is the first value, and when the NSS used by the second device is n, the corresponding third packet extension threshold, so
  • the third packet expansion threshold is used to indicate that the nominal packet filling value used by the second device when the first value corresponding to the allocated RU is greater than or equal to the third packet expansion threshold is the third nominal packet padding value, the third nominal packet padding value is 8 microseconds.
  • N CBPRU is greater than or equal to the third nominal packet padding value corresponding to the third packet extension threshold subfield whose NSTS is the j, and is smaller than the second packet whose NSTS is the j
  • the second nominal packet padding value corresponding to the extension threshold subfield, the nominal packet padding value used when the second device determines that the NSS of j is used is the third nominal packet padding value.
  • the NSS index mask subfield occupies at least 8 bits, the i-th bit of the NSS index mask subfield is 0, and the physical layer packet extension threshold information field does not include NSS for the i The set of packet extension threshold subfields.
  • the optional packet extension threshold subfield can be indicated by the NSS index mask subfield, so as to further save the overhead of the physical layer packet extension threshold information field.
  • the NSS used by the second device is greater than the NSS corresponding to the highest non-zero bit in the NSS index mask subfield, and the first value corresponding to the allocated RU by the second device is greater than or equal to the packet extension threshold using a nominal packet padding value of 20 microseconds.
  • the nominal packet padding value used by the second device is a fixed value, such as 20 microseconds. In this way, the second device does not need to compare the NSS with multiple packet extension threshold subfield sets one by one when determining the used nominal packet padding value, which is more direct and simple.
  • a method for determining a nominal packet filling value can be executed by a first communication device, and the first communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip system.
  • the following description takes the communication device as the first device as an example, where the first device may be an AP.
  • the method includes:
  • the first device generates a PPDU, and sends the PPDU to the second device, where the PPDU includes an NSS subfield and a physical layer packet extension threshold information field; wherein the physical layer packet extension threshold information field includes a padding value different from that of a nominal packet Corresponding packet expansion threshold subfield, the packet expansion threshold subfield is used to indicate the packet expansion threshold, and the packet expansion threshold subfield is used to indicate to the second device when the second value is greater than or equal to the packet expansion threshold
  • the nominal packet padding value used the value range of n is [1,...,N], where N is an integer greater than 8, where the second value is the same as the NSS used by the second device and the allocated resource unit
  • the number of RU blocks after RU equivalent encoding is related.
  • the physical packet expansion threshold information field no longer indicates the packet expansion threshold related to the NSS separately, that is, one packet expansion threshold field can indicate the packet expansion threshold corresponding to multiple NSSs,
  • the physical layer packet extension threshold information field can be further simplified to save the overhead of the physical layer packet extension threshold information field.
  • a tenth aspect provides a method for determining a nominal packet filling value, the method can be executed by a second communication device, and the second communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip system.
  • the following description takes the communication device as a second device as an example, where the second device may be a STA.
  • the method includes:
  • the second device receives a PPDU from the first device, where the PPDU includes a spatial stream number NSS subfield and a physical layer packet extension threshold information field, wherein the physical layer packet extension threshold information field includes a value corresponding to different nominal packet padding values.
  • Packet extension threshold subfield, the packet extension threshold subfield is used to indicate the packet extension threshold
  • the packet extension threshold subfield is used to indicate the second device to use when the second value is greater than or equal to the packet extension threshold
  • Nominal packet filling value the value range of n is [1,...,N], where N is an integer greater than 8, where the second value is the same as the NSS used by the second device and the allocated resource unit RU, etc.
  • the number of effectively encoded RU blocks is related.
  • the second device determines the second value according to the adopted NSS and the number of RU blocks equivalently encoded by the allocated resource unit RU, and according to the second value and the physical layer packet extension threshold
  • the information field determines the nominal packet padding value used.
  • the second value may be considered as a value related to the NSS used by the second device and the number of RU blocks after the equivalent encoding of the allocated resource unit RU.
  • the second value may be based on the used NSS and the allocated RU.
  • the number of RU blocks after the equivalent encoding of the resource unit RU is determined.
  • the second device may first determine the second value, so as to determine the used nominal packet padding value according to the second value and the physical layer packet extension threshold information field.
  • the second device determines the second value according to the adopted NSS and the number of RU blocks equivalently encoded by the allocated resource unit RU, including: the second device according to The following relationship determines the second value:
  • NSS the NSS corresponding to the RU allocated by the second device
  • N CBPRU the number of RU equivalently encoded RU blocks allocated by the second device
  • N CBPRU N RU242 * N BPSCS ;
  • N RU242 is the maximum number of RU242 that the RU can include, and N BPSCS is the number of encoded bits carried by each subcarrier on a single space-time stream.
  • the physical layer packet extension threshold information field includes a first packet extension threshold subfield corresponding to a first nominal packet padding value, and the first packet extension The threshold subfield is used to indicate the first packet extension threshold to the second device, and the first packet extension threshold is used to indicate the second device to use when the second value is greater than or equal to the first packet extension threshold.
  • the nominal packet fill value is the first nominal packet fill value, and the first nominal packet fill value is 20 microseconds.
  • the second device determines that the nominal packet padding value used is the first nominal packet padding value.
  • the physical layer packet extension threshold information field includes a second packet extension threshold subfield corresponding to a second nominal packet padding value, the second packet extension The threshold subfield is used to indicate the second packet extension threshold to the second device, and the second packet extension threshold is used to indicate the second packet extension threshold used by the second device when the second value is greater than or equal to the second packet extension threshold.
  • the nominal packet fill value is the second nominal packet fill value, and the second nominal packet fill value is 16 microseconds.
  • the second device determines that the nominal packet padding value used is the specified value. Describe the second nominal packet padding value.
  • the physical layer packet extension threshold information field includes a third packet extension threshold subfield corresponding to a third nominal packet padding value, and the third packet extension The threshold subfield is used to indicate to the second device a third packet expansion threshold, and the third packet expansion threshold is used to indicate the second device to use when the second value is greater than or equal to the third packet expansion threshold.
  • the nominal packet fill value is the third nominal packet fill value, and the third nominal packet fill value is 8 microseconds.
  • the second device determines that the nominal packet padding value used is the specified value.
  • a method for determining a nominal packet filling value may be executed by a first communication device, and the first communication device may be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, for example chip system.
  • the following description takes the communication device as the first device as an example, where the first device may be an AP.
  • the method includes:
  • the first device generates a PPDU, and sends the PPDU and the first packet extension threshold range to the second device, where the first packet extension threshold range is used to indicate that the third value is located in the first packet extension range In the threshold range, the nominal packet padding value used by the second device to send data to the first device, and the nominal packet padding values corresponding to different packet extension threshold ranges are different.
  • a twelfth aspect provides a method for determining a nominal packet filling value, the method may be executed by a second communication device, and the second communication device may be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, for example chip system.
  • the following description takes the communication device as a second device as an example, where the first device may be a STA.
  • the method includes:
  • the second device receives the physical layer protocol data unit PPDU from the first device and a first threshold range, where the first threshold range is used to indicate that when the third value is within the first packet extension threshold range, the second device sends The nominal packet padding value used by the first device to send data, and the nominal packet padding values corresponding to different packet extension threshold ranges are different, wherein the third value is the number of spatial streams NSS, RU used by the second device
  • the size is related to one or more parameters in the modulation method
  • the second device determines that the nominal packet padding value to be used is a nominal packet padding value corresponding to the first packet extension threshold range.
  • multiple packet extension threshold ranges can be defined, and the nominal packet padding values corresponding to different packet extension threshold ranges are different.
  • the first device can indicate a packet expansion threshold range to the second device, and the second device can use a factor that affects the filling value of the nominal packet, such as the NSS, RU used by the second device, and the order of the modulation method used by the second device.
  • One or more types are used to determine a quantized value, and then the nominal packet filling value is determined by comparing the quantized value with the first packet extension threshold range sent by the first device.
  • the overhead of the physical layer packet extension threshold field can be further reduced. Even if indicated by the physical layer packet extension threshold field, since one packet extension threshold range is indicated instead of multiple packet extension threshold ranges, the overhead of the physical layer packet extension threshold field can be reduced.
  • the third value satisfies the following relationship:
  • x is the third value
  • NSS is the NSS used by the second device
  • RU is the size of the RU used by the second device
  • Modulation is the order of the modulation mode used by the second device.
  • This solution exemplifies a way of determining the third value, which means that the third value is related to one or more of the order of the NSS, RU, and modulation modes adopted by the second device. Determination method is not limited in this embodiment of the present application.
  • a thirteenth aspect provides a communication device, for example, the communication device is the aforementioned first device or a device provided in the first device.
  • the communication device may be used to perform the method in the above-mentioned first aspect or any possible implementation manner of the first aspect.
  • the communication apparatus may include a module for performing the method in the first aspect or any possible implementation manner of the first aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication apparatus is the aforementioned first device. in,
  • the processing module is configured to generate a PPDU, and the transceiver module is configured to send the PPDU to the second device, wherein the PPDU includes a physical layer packet extension threshold existence subfield, a physical layer packet extension threshold field, and the physical layer
  • the value of the packet extension threshold existence subfield is 1, and the physical layer packet extension threshold field includes the RU index mask subfield, the NSS subfield, and the physical layer packet extension threshold information field; the physical layer packet extension threshold information field includes corresponding to different names.
  • each packet extension threshold subfield set is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b, and the modulation threshold is used to determine whether the second device is modulating The nominal packet padding value used when the mode is greater than or equal to the modulation threshold;
  • the value range of n is a subset of [1,...,N], N is an integer greater than or equal to 1, the value range of b is a subset of [m,...,M], m and M are greater than or equal to 1 or an integer equal to 0, when the value of the RU index mask subfield corresponding to the RU whose serial number is y is 0, the value range of b does not include y;
  • the value of the RU index mask subfield corresponding to the RU with the sequence number y is 0 to indicate the modulation threshold corresponding to the RU with the NSS n and the sequence number y.
  • the largest sequence number among the sequence numbers smaller than the y corresponding to the bit in the index mask subfield is 1.
  • the value of the RU index mask subfield corresponding to the sequence number less than y includes 1.
  • the sequence number corresponding to the bit in the RU index mask subfield is 1 is not greater than the y, then the value of the RU index mask subfield corresponding to the RU whose sequence number is y is 0, using The nominal packet padding value corresponding to the RU with the indicated NSS of n and the sequence number of y is 20 microseconds.
  • a fourteenth aspect provides a communication device, for example, the communication device is the aforementioned second device or a device provided in the second device.
  • the communication device may be configured to perform the method of the second aspect or any possible implementation of the second aspect.
  • the communication apparatus may include a module for executing the method in the second aspect or any possible implementation manner of the second aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication device is the aforementioned second device. in,
  • the transceiver module is configured to receive a physical layer protocol data unit PPDU from the first device, the PPDU includes a physical layer packet extension threshold existence subfield, a physical layer packet extension threshold field, and the physical layer packet extension threshold exists in the subfield.
  • the value is 1, and the physical layer packet extension threshold field includes a resource unit RU index mask subfield, a spatial stream number NSS subfield, and a physical layer packet extension threshold information field; the physical layer packet extension threshold information field includes corresponding to different nominal packets fill in Multiple packet extension threshold subfield sets for recharge, each packet extension threshold subfield set is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b, and the modulation threshold is used to determine whether the communication device is in the modulation mode
  • the nominal packet padding value used when it is greater than or equal to the modulation threshold; wherein, the value range of n is a subset of [1,...,N], N is an integer greater than or equal to 1, and the value range of b is [
  • the processing module is configured to determine the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y according to the modulation threshold corresponding to the RU whose NSS is n and the sequence number is m1 indicated by the physical layer packet extension threshold field, and the m1 is the minimum sequence number of the sequence numbers greater than the y corresponding to the bit in the RU index mask subfield, or, the m1 is the maximum sequence number of the sequence numbers smaller than the y corresponding to the bit in the RU index mask subfield .
  • the value of the RU index mask subfield corresponding to the sequence number less than y includes 1.
  • the sequence number corresponding to a bit of 1 in the RU index mask subfield is not greater than the y, and the processing module is configured to determine that the nominal packet padding value corresponding to the RU with the sequence number x is 20 microns second.
  • the communication device uses DCM
  • the processing module is configured to determine the nominal packet padding value to be used according to the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y+1, where is The sequence number y corresponds to multiple RUs of different sizes, or the processing module is configured to determine the nominal packet padding value according to the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y, where the sequence number y corresponds to multiple RUs of different sizes.
  • RU and the RU employed by the communication device is not the largest RU among the plurality of RUs of different sizes.
  • a fifteenth aspect provides a communication device, for example, the communication device is the aforementioned first device or a device provided in the first device.
  • the communication device can be used to perform the method in the above third aspect or any possible implementation manner of the third aspect.
  • the communication apparatus may include a module for executing the third aspect or the method in any possible implementation manner of the third aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication apparatus is the aforementioned first device. in,
  • the processing module is configured to generate a PPDU, and the transceiver module is configured to send the PPDU to the second device, wherein the PPDU includes a physical layer packet extension threshold existence subfield, a physical layer packet extension threshold field, and the physical layer packet extension
  • the value of the threshold existence subfield is 1, and the physical layer packet extension threshold field includes a resource unit RU index mask subfield, a spatial stream number NSS subfield, and a physical layer packet extension threshold information field; the physical layer packet extension threshold information
  • the field includes multiple packet extension threshold subfield sets corresponding to different nominal packet padding values, and each packet extension threshold subfield set is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b. for determining the nominal packet padding value used by the second device when the modulation mode is greater than or equal to the modulation threshold;
  • the value range of n is a subset of [1,...,N], N is an integer greater than or equal to 1, the value range of b is a subset of [m,...,M], m and M are greater than or equal to 1 or an integer equal to 0, when the value of the RU index mask subfield corresponding to the RU with the sequence number y is 0, and in the physical layer packet extension threshold subfield corresponding to the same nominal packet padding value, the RU with the sequence number y corresponds to the subfield.
  • a value of 0 in the RU index mask subfield indicates that the nominal packet padding value corresponding to the RU whose sequence number is y is 0 microseconds, and the value range of b does not include y.
  • the value of the RU index mask subfield corresponding to the sequence number smaller than x does not include 1.
  • a sixteenth aspect provides a communication device, for example, the communication device is the aforementioned second device or a device provided in the second device.
  • the communication device can be used to perform the method in the above fourth aspect or any possible implementation manner of the fourth aspect.
  • the communication apparatus may include a module for executing the method in the fourth aspect or any possible implementation manner of the fourth aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication device is the aforementioned second device. in,
  • the transceiver module is configured to receive a PPDU from the first device, the PPDU includes a physical layer packet extension threshold existence subfield, a physical layer packet extension threshold field, and the physical layer packet extension threshold existence subfield has a value of 1,
  • the physical layer packet extension threshold field includes a resource unit RU index mask subfield, a spatial stream number NSS subfield, and a physical layer packet extension threshold information field; the physical layer packet extension threshold information field includes multiple values corresponding to different nominal packet padding values.
  • Each packet extension threshold subfield set is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b, and the modulation threshold is used to determine whether the communication device has a modulation mode greater than or equal to The nominal packet filling value used when the modulation threshold is used; wherein, the value range of n is a subset of [1,...,N], N is an integer greater than or equal to 1, and the value range of b is [m,... , a subset of M], m and M are integers greater than or equal to 0, the value of the RU index mask subfield corresponding to the RU with serial number y is 0, and the value range of b does not include y;
  • the processing module is configured to determine, according to the physical layer packet extension threshold field, that the nominal packet padding value corresponding to the RU whose sequence number is y is 0 microseconds.
  • the value of the RU index mask subfield corresponding to the sequence number less than y does not include 1.
  • a seventeenth aspect provides a communication device, for example, the communication device is the aforementioned first device or a device provided in the first device.
  • the communication device can be used to perform the method in the fifth aspect or any possible implementation manner of the fifth aspect.
  • the communication apparatus may include a module for performing the method in the fifth aspect or any possible implementation manner of the fifth aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication apparatus is the aforementioned first device. in,
  • the processing module is configured to generate a PPDU, and the transceiver module is configured to send the PPDU to the second device, wherein the PPDU includes a physical layer packet extension threshold existence subfield, a physical layer packet extension threshold field, and the physical layer packet extension
  • the value of the threshold existence subfield is 1, and the physical layer packet extension threshold field includes the RU index mask subfield, the NSS subfield, and the physical layer packet extension threshold information field; the physical layer packet extension threshold information field includes corresponding to different nominal packets fill.
  • each packet extension threshold subfield set is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b, and the modulation threshold is used to determine whether the second device is modulating The nominal packet padding value used when the mode is greater than or equal to the modulation threshold;
  • the value range of n is a subset of [1,...,N], N is an integer greater than or equal to 1, the value range of b is a subset of [m,...,M], m and M are greater than or equal to 1 or an integer equal to 0, the RU with sequence number y corresponds to the bit set to 0 in the RU index mask subfield, the value range of b does not include y, and the physical layer packet extension threshold field is used to indicate the sequence number y.
  • RUs correspond to nominal packet fill values of 8, 16, or 20 microseconds.
  • the physical layer packet extension threshold field is used to indicate that the used NSS is greater than the value indicated by the NSS subfield, and the nominal packet padding value used by the second device is 8 microseconds, 16 microseconds microseconds or 20 microseconds; or, the physical layer packet extension threshold field is used to indicate that the second device whose adopted NSS is greater than the value indicated by the NSS subfield corresponds to the second device according to the adopted NSS and the RU with sequence number y.
  • the modulation threshold determines the nominal packet padding value to use.
  • An eighteenth aspect provides a communication device, for example, the communication device is the aforementioned second device or a device provided in the second device.
  • the communication device can be used to perform the method in the above sixth aspect or any possible implementation manner of the sixth aspect.
  • the communication apparatus may include a module for executing the method in the sixth aspect or any possible implementation manner of the sixth aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication device is the aforementioned second device. in,
  • the transceiver module is configured to receive a PPDU from the first device, the PPDU includes a physical layer packet extension threshold existence subfield, a physical layer packet extension threshold field, and the physical layer packet extension threshold existence subfield has a value of 1,
  • the physical layer packet extension threshold field includes an RU index mask subfield, an NSS subfield, and a physical layer packet extension threshold information field; the physical layer packet extension threshold information field includes a plurality of packet extension threshold subfields corresponding to different nominal packet padding values.
  • the subfield set of each packet extension threshold is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b, and the modulation threshold is used to determine when the modulation mode of the communication device is greater than or equal to the modulation threshold
  • the nominal packet padding value used where n is a subset of [1,...,N], N is an integer greater than or equal to 1, and b is a subset of [m,...,M] Set, m and M are integers greater than or equal to 0, the RU with serial number y corresponds to the bit set to 0 in the RU index mask subfield, and the value range of b does not include y;
  • the processing module is configured to determine, according to the physical layer packet extension threshold field, the nominal packet padding value corresponding to the RU with the sequence number y of 8 microseconds, 16 microseconds or 20 microseconds.
  • the NSS used by the communication device is greater than the value indicated by the NSS subfield, and the processing module is further configured to determine that the nominal packet padding value corresponding to the RU with sequence number y is 8 microseconds, 16 microseconds or 20 microseconds; or, the NSS adopted by the communication device is greater than the value indicated by the NSS subfield, and the processing module is further configured to determine the sequence number according to the adopted NSS and the modulation threshold corresponding to the RU with sequence number y Fill in the value for the nominal packet corresponding to the RU of y.
  • a nineteenth aspect provides a communication device, for example, the communication device is the aforementioned first device or a device provided in the first device.
  • the communication device can be used to perform the method in the seventh aspect or any possible implementation manner of the seventh aspect.
  • the communication apparatus may include a module for performing the method in the seventh aspect or any possible implementation manner of the seventh aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication apparatus is the aforementioned first device. in,
  • the processing module is configured to generate a PPDU, and the transceiver module is configured to send the PPDU to the second device, wherein the PPDU includes a spatial stream number NSS index mask subfield, an NSS subfield, and a physical layer packet extension threshold information field, where The physical layer packet expansion threshold information field includes a plurality of packet expansion threshold subfield sets corresponding to different nominal packet padding values, and each packet expansion threshold subfield set includes a plurality of packet expansion threshold subfields for indicating that the NSS is corresponding to n.
  • the packet extension threshold subfield is used to indicate to the second device that the number of RU blocks after the allocated resource unit RU equivalent encoding is the first value, and the NSS used by the second device is n, the corresponding packet expansion threshold, the packet expansion threshold subfield is used to indicate the nominal packet padding value used by the second device when the first value is greater than or equal to the packet expansion threshold, and the value range of n is [1,... , N], N is an integer greater than 8.
  • the first value satisfies the following formula:
  • N CBPRU N RU242 * N BPSCS ;
  • N CBPRU is the first value
  • N RU242 is the maximum number of RU242 that the RU can include
  • N BPSCS is the number of encoded bits carried by each subcarrier on a single space-time stream.
  • the plurality of packet extension threshold subfield sets include a first packet extension threshold subfield set corresponding to the first nominal packet padding value, and the first packet extension threshold subfield set in the first packet extension threshold subfield set
  • a first packet extension threshold subfield is used to indicate to the second device that the allocated resource unit RU equivalently encoded number of RU blocks is the first value, and when the NSS used by the second device is n, the corresponding first value is Packet expansion threshold, where the first packet expansion threshold is used to indicate the nominal packet padding value used by the second device when the first value corresponding to the allocated RU is greater than or equal to the first packet expansion threshold
  • the first nominal packet filling value is 20 microseconds.
  • the plurality of packet expansion threshold subfield sets further include a second packet expansion threshold subfield set corresponding to the second nominal padding value, and the second packet expansion threshold subfield set in the second packet expansion threshold subfield set
  • a second packet extension threshold subfield is used to indicate to the second device that the allocated resource unit RU equivalently encoded number of RU blocks is the first value, and when the NSS used by the second device is n, the corresponding second Packet expansion threshold, where the second packet expansion threshold is used to indicate the nominal packet filling value used by the second device when the first value corresponding to the allocated RU is greater than or equal to the second packet expansion threshold
  • the second nominal packet fill value, the second nominal packet fill value is 16 microseconds.
  • the plurality of packet extension threshold subfield sets further include a third packet extension threshold subfield set corresponding to the third nominal packet padding value, and the third packet extension threshold subfield set includes A third packet extension threshold subfield is used to indicate to the second device that the number of RU blocks after the allocated resource unit RU equivalent encoding is the first value, and when the NSS used by the second device is n, the corresponding Three-pack extension threshold, where the third packet extension threshold is used to indicate the nominal packet padding value used by the second device when the first value corresponding to the allocated RU is greater than or equal to the third packet extension threshold
  • the third nominal packet filling value is 8 microseconds.
  • the NSS index mask subfield occupies at least 8 bits, the ith bit of the NSS index mask subfield is 0, and the physical layer packet extension threshold information field does not include the NSS Set of packet extension threshold subfields for i.
  • the physical layer packet extension threshold information field is used to indicate that when the NSS used by the second device is greater than the NSS corresponding to the highest digit of the non-zero bit of the NSS index mask subfield, the The nominal packet padding value used by the second device when the first value corresponding to the allocated RU is greater than or equal to the packet expansion threshold is 20 microseconds.
  • a twentieth aspect provides a communication device, for example, the communication device is the aforementioned second device or a device provided in the second device.
  • the communication device can be used to perform the method in the eighth aspect or any possible implementation manner of the eighth aspect.
  • the communication apparatus may include a module for executing the method in the eighth aspect or any possible implementation manner of the eighth aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication device is the aforementioned second device. in,
  • the transceiver module is configured to receive a physical layer protocol data unit PPDU from the first device.
  • the PPDU includes a spatial stream number NSS index mask subfield, an NSS subfield, and a physical layer packet extension threshold information field, wherein the physical layer packet
  • the extension threshold information field includes a plurality of packet extension threshold subfield sets corresponding to different nominal packet filling values, and each packet extension threshold subfield set includes a plurality of packet extension threshold subfields for indicating that the NSS is corresponding to n
  • the The packet expansion threshold subfield is used to indicate to the communication device that the number of RU blocks after the allocated resource unit RU equivalent encoding is the first value, and the NSS used by the second device is n, the corresponding packet expansion threshold, the said The packet expansion threshold subfield is used to indicate the nominal packet padding value used by the communication device when the first value is greater than or equal to the packet expansion threshold, and the value range of n is [1,...,N], where N is an integer greater than 8;
  • the processing module is configured to determine, according to the physical layer packet extension threshold information field and the first value, a nominal packet padding value used when using the NSS of j, where j is an integer greater than or equal to 1.
  • the first value satisfies the following formula:
  • N CBPRU N RU242 * N BPSCS ;
  • N CBPRU is the first value
  • N RU242 is the maximum number of RU242 that the RU can include
  • N BPSCS is the number of encoded bits carried by each subcarrier on a single space-time stream.
  • the plurality of packet extension threshold subfield sets include a first packet extension threshold subfield set corresponding to the first nominal packet padding value, and the first packet extension threshold subfield set in the first packet extension threshold subfield set
  • a first packet extension threshold subfield is used to indicate to the communication device that the allocated resource unit RU equivalently encoded number of RU blocks is the first value, and when the NSS used by the second device is n, the corresponding first packet an expansion threshold, where the first packet expansion threshold is used to indicate the first nominal packet padding value used by the communication apparatus when the first value corresponding to the allocated RU is greater than or equal to the first packet expansion threshold, so
  • the first nominal packet filling value is 20 microseconds;
  • the communication device determines the nominal packet padding used when using the NSS of j
  • the recharge is the first nominal packet filling value.
  • the plurality of packet extension threshold subfield sets further include a second packet extension threshold subfield set corresponding to the second nominal packet padding value, and the second packet extension threshold subfield set includes A second packet extension threshold subfield is used to indicate to the communication device that the number of RU blocks after the allocated resource unit RU equivalent encoding is the first value, and when the NSS used by the second device is n, the corresponding second a packet expansion threshold, where the second packet expansion threshold is used to indicate the second nominal packet filling value used when the first value corresponding to the allocated RU is greater than or equal to the second packet expansion threshold by the communication device , the second nominal packet filling value is 16 microseconds;
  • N CBPRU When NSS is j, N CBPRU is greater than or equal to the second nominal packet padding value corresponding to the second packet extension threshold subfield where NSS is j, and is smaller than the first packet extension threshold subfield where NSS is j
  • the first nominal packet padding value corresponding to the field the communication device determines the nominal packet padding value to be used when the NSS of j is adopted, and the second nominal packet padding value is used.
  • the plurality of packet extension threshold subfield sets further include a third packet extension threshold subfield set corresponding to the third nominal packet padding value, and the third packet extension threshold subfield set includes A third packet extension threshold subfield is used to indicate to the communication device that the number of RU blocks after the allocated resource unit RU equivalent encoding is the first value, and when the NSS used by the second device is n, the corresponding third a packet expansion threshold, where the third packet expansion threshold is used to indicate a third nominal packet padding value used by the communication apparatus when the first value corresponding to the allocated RU is greater than or equal to the third packet expansion threshold,
  • the third nominal packet filling value is 8 microseconds;
  • N CBPRU When NSS is j, N CBPRU is greater than or equal to the third nominal packet padding value corresponding to the third packet extension threshold subfield where NSTS is j, and is smaller than the second packet extension threshold subfield where NSTS is j
  • the second nominal packet padding value corresponding to the field the communication device determines the nominal packet padding value to be used when the NSS of j is adopted, and the third nominal packet padding value is used.
  • the NSS index mask subfield occupies at least 8 bits, the ith bit of the NSS index mask subfield is 0, and the physical layer packet extension threshold information field does not include the NSS The set of subfields of i.
  • the NSS used by the communication apparatus is larger than the NSS corresponding to the highest digit of the non-zero bit of the NSS index mask subfield, and the processing module is further configured to perform the processing in all the corresponding bits of the allocated RU.
  • the nominal packet padding value used when the first value is greater than or equal to the packet extension threshold is 20 microseconds.
  • a twenty-first aspect provides a communication device, for example, the communication device is the aforementioned first device or a device provided in the first device.
  • the communication device can be used to perform the method in the above ninth aspect or any possible implementation manner of the ninth aspect.
  • the communication apparatus may include a module for performing the method in the ninth aspect or any possible implementation manner of the ninth aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication apparatus is the aforementioned first device. in,
  • the processing module is configured to generate a PPDU, and the transceiver module is configured to send the PPDU to the second device, where the PPDU includes a spatial stream number NSS subfield and a physical layer packet extension threshold information field, wherein the physical layer packet
  • the extension threshold information field includes packet extension threshold subfields corresponding to different nominal packet filling values, the packet extension threshold subfield is used to indicate the packet extension threshold, and the packet extension threshold subfield is used to indicate that the second device is in the first
  • the nominal packet padding value used when the binary value is greater than or equal to the packet expansion threshold the value range of n is [1,...,N], where N is an integer greater than 8, where the second value is the same as the second device
  • the adopted NSS is related to the number of RU blocks after the allocated RU equivalent encoding.
  • the physical layer packet extension threshold information field includes a first packet extension threshold subfield corresponding to the first nominal packet padding value, and the first packet extension threshold subfield is used to indicate the first a packet expansion threshold, where the first packet expansion threshold is used to indicate that the nominal packet padding value used by the second device when the second value is greater than or equal to the first packet expansion threshold is the first nominal packet padding value
  • the first nominal packet filling value is 20 microseconds.
  • the physical layer packet extension threshold information field includes a second packet extension threshold subfield corresponding to the second nominal packet padding value, and the second packet extension threshold subfield is used to indicate the second a packet expansion threshold, where the second packet expansion threshold is used to indicate that the nominal packet padding value used by the second device when the second value is greater than or equal to the second packet expansion threshold is the second nominal packet padding value Recharge, the second nominal packet filling value is 16 microseconds.
  • the physical layer packet extension threshold information field includes a third packet extension threshold subfield corresponding to a third nominal packet padding value, and the third packet extension threshold subfield is used to indicate the third a packet expansion threshold, where the third packet expansion threshold is used to indicate that the nominal packet padding value used by the second device when the second value is greater than or equal to the third packet expansion threshold is the third nominal packet padding value Recharge, the third nominal packet filling value is 8 microseconds.
  • a twenty-second aspect provides a communication device, for example, the communication device is the aforementioned second device or a device provided in the second device.
  • the communication device can be used to perform the method in the tenth aspect or any possible implementation manner of the tenth aspect.
  • the communication apparatus may include a module for executing the method in the tenth aspect or any possible implementation manner of the tenth aspect, for example, including a mutually coupled processing module and a transceiver module.
  • the communication device is the aforementioned second device. in,
  • the transceiver module is configured to receive a PPDU from the first device, and the PPDU includes a spatial stream number NSS subfield and a physical layer packet extension threshold information field, wherein the physical layer packet extension threshold information field includes a packet filled with a different name.
  • the packet expansion threshold subfield corresponding to the recharge, the packet expansion threshold subfield is used to indicate the packet expansion threshold, and the packet expansion threshold subfield is used to instruct the communication device when the second value is greater than or equal to the packet expansion threshold
  • the nominal packet padding value used, the value range of n is [1, .
  • the number of subsequent RU blocks is related;
  • the processing module is used to determine the second value based on the adopted NSS and the number of RU blocks equivalently encoded by the allocated resource unit RU, and according to the second value and the physical layer packet extension threshold
  • the information field determines the nominal packet padding value used.
  • the processing module is specifically configured to determine the second value according to the following relationship:
  • NSS the NSS corresponding to the RU allocated by the communication device
  • N CBPRU the number of RU equivalently encoded RU blocks allocated by the communication device
  • N CBPRU N RU242 * N BPSCS ;
  • N RU242 is the maximum number of RU242 that the RU can include, and N BPSCS is the number of encoded bits carried by each subcarrier on a single space-time stream.
  • the physical layer packet extension threshold information field includes a first packet extension threshold subfield corresponding to the first nominal packet padding value, and the first packet extension threshold subfield is used to indicate the first a packet expansion threshold, where the first packet expansion threshold is used to indicate the first nominal packet padding value to be used by the communication device when the second value is greater than or equal to the first packet expansion threshold , the first nominal packet filling value is 20 microseconds;
  • the processing module determines that the nominal packet filling value used by the communication device is the first nominal packet filling value.
  • the physical layer packet extension threshold information field includes a second packet extension threshold subfield corresponding to the second nominal packet padding value, and the second packet extension threshold subfield is used to indicate the second a packet expansion threshold, where the second packet expansion threshold is used to indicate the second nominal packet padding value used by the communication device when the second value is greater than or equal to the second packet expansion threshold , the second nominal packet filling value is 16 microseconds;
  • the processing module determines that the nominal packet padding value used by the communication device is the second packet expansion threshold Nominal packet padding value.
  • the physical layer packet extension threshold information field includes a third packet extension threshold subfield corresponding to a third nominal packet padding value, and the third packet extension threshold subfield is used to indicate the third a packet expansion threshold, where the third packet expansion threshold is used to indicate the third nominal packet padding value to be used by the communication device when the second value is greater than or equal to the third packet expansion threshold , the third nominal packet filling value is 8 microseconds;
  • the processing module determines that the nominal packet padding value used by the communication device is the third packet expansion threshold Nominal packet padding value.
  • a twenty-third aspect provides a communication device, for example, the communication device is the aforementioned first device or a device provided in the first device.
  • the communication device may be used to perform the method in the eleventh aspect or any possible implementation manner of the eleventh aspect.
  • the communication apparatus may include a module for executing the method in the eleventh aspect or any possible implementation manner of the eleventh aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication apparatus is the aforementioned first device. in,
  • the processing module is configured to generate a PPDU
  • the transceiver module is configured to send the PPDU and a first packet extension threshold range
  • the first packet extension threshold range is used to indicate that when the third value is within the first packet extension threshold range, the communication
  • the nominal packet padding value used by the apparatus to send data to the first device, and the nominal packet padding values corresponding to different packet extension threshold ranges are different.
  • the third value satisfies the following relationship:
  • x is the third value
  • NSS is the NSS used by the communication device
  • RU is the size of the RU used by the communication device
  • Modulation is the order of the modulation scheme used by the communication device.
  • a twenty-fourth aspect provides a communication device, for example, the communication device is the aforementioned second device or a device provided in the second device.
  • the communication device can be used to perform the method in the above twelfth aspect or any possible implementation manner of the twelfth aspect.
  • the communication apparatus may include a module for executing the method in the twelfth aspect or any possible implementation manner of the twelfth aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication device is the aforementioned second device. in,
  • the transceiver module is configured to receive the PPDU from the first device and the first packet extension threshold range, where the first packet extension threshold range is used to indicate that when the third value is within the first packet extension threshold range, the communication device sends the information to the first packet extension threshold range.
  • the nominal packet padding value used by the first device to send data, the nominal packet padding values corresponding to different packet extension threshold ranges are different, wherein the third value is the number of spatial streams NSS, RU size and One or more parameters in the modulation method are related;
  • the processing module determines that the nominal packet padding value used by the communication device is a nominal packet padding value corresponding to the first packet expansion threshold range.
  • the third value satisfies the following relationship:
  • x is the third value
  • NSS is the NSS used by the communication device
  • RU is the size of the RU used by the communication device
  • Modulation is the order of the modulation scheme used by the communication device.
  • an embodiment of the present application provides a communication device, and the communication device may be the communication device of any one of the thirteenth to twenty-fourth aspects in the foregoing embodiments, or a communication device set in the thirteenth aspect.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions or data
  • the processor is coupled with the memory and the communication interface, and when the processor reads the computer program, instructions or data, the communication device is made to execute the above-mentioned first to twelfth aspects A method performed by a first device or a second device in a method embodiment of any one of the aspects.
  • the communication interface can be implemented by an antenna, a feeder, a codec, etc. in the communication device, or, if the communication device is a chip provided in the first device or the second device, the communication interface can be the chip the input/output interface, such as input/output pins, etc.
  • the communication apparatus may also include a transceiver for the communication apparatus to communicate with other devices. Exemplarily, when the communication device is the first device, the other device is the second device; or, when the communication device is the second device, the other device is the first device.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor, and may further include a memory, for implementing the execution of the communication device in any one of the first to twelfth aspects. method.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a communication system, where the communication system includes the communication device of the thirteenth aspect and the fourteenth aspect; or, the communication system includes the fifteenth aspect and the communication device according to the sixteenth aspect; or, the communication system includes the communication device according to the seventeenth aspect and the eighteenth aspect; or, the communication system includes the nineteenth aspect and the the communication device according to the twentieth aspect; or, the communication system includes the communication device according to the twenty-first aspect and the twenty-second aspect; or, the communication system includes the twenty-third aspect and The communication device according to the twenty-fourth aspect.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, the method executed by the first device in the above aspects is implemented; Or implement the method performed by the second device in each of the above aspects.
  • a twenty-ninth aspect provides a computer program product, the computer program product comprising: computer program code, when the computer program code is executed, the method performed by the first device in the above aspects is executed, Or cause the method performed by the second device in the above aspects to be performed.
  • FIG. 1 is a network architecture diagram of a WLAN to which an embodiment of the application is applicable;
  • Fig. 2 is the filling process of PPDU bit in the last coded symbol
  • FIG. 3 is a schematic diagram of a PPDU provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an HE physical layer capability information field provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an HE capability element provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a physical layer packet extension threshold field provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an existing physical layer packet extension threshold information field
  • FIG. 8 is a schematic structural diagram of a physical layer packet extension threshold information field provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a first method for indicating a nominal packet padding value provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a method for indicating a second nominal packet filling value provided by an embodiment of the present application
  • FIG. 11 is a schematic structural diagram of a physical layer packet extension threshold information field provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a third method for indicating a nominal packet filling value according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another physical layer packet extension threshold information field provided by an embodiment of the present application.
  • FIG. 14 is a schematic flowchart of a fourth method for indicating a nominal packet padding value provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 16 is another schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the embodiments of the present application may be applicable to a wireless local area network (wireless local area network, WLAN) scenario, and may be applicable to IEEE 802.11 system standards, such as 802.11a/b/g, 802.11n, 802.11ac, 802.11ax, or the next generation thereof, For example in 802.11be or next generation standards.
  • IEEE 802.11 system standards such as 802.11a/b/g, 802.11n, 802.11ac, 802.11ax, or the next generation thereof, For example in 802.11be or next generation standards.
  • the embodiments of the present application may also be applied to a wireless local area network system such as an internet of things (Internet of things, IoT) network or a vehicle to X (Vehicle to X, V2X) network.
  • IoT internet of things
  • V2X vehicle to X
  • the embodiments of the present application may also be applicable to other possible communication systems, for example, a long term evolution (long term evolution, LTE) system, an LTE frequency division duplex (frequency division duplex, FDD) system, an LTE time division duplex (time division duplex) system duplex, TDD), universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system, and future 5G communication system, etc.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • future 5G communication system etc.
  • WLAN started with the 802.11a/g standard and went through 802.11n, 802.11ac, 802.11ax and now 802.11be which is being discussed.
  • 802.11n can also be called high throughput (HT);
  • 802.11ac can also be called very high throughput (VHT);
  • 802.11ax can also be called high efficient (HE) or Wi-Fi -Fi 6;
  • 802.11be can also be called extremely high throughput (EHT) or (Wi-Fi 7), while for pre-HT standards, such as 802.11a/b/g, they are collectively referred to as non-high throughput (Non-HT).
  • HT high throughput
  • VHT very high throughput
  • 802.11ax can also be called high efficient (HE) or Wi-Fi -Fi 6
  • 802.11be can also be called extremely high throughput (EHT) or (Wi-Fi 7), while for pre-HT standards, such as 802.11a/b/g, they are collectively referred to
  • FIG. 1 a network architecture diagram of a WLAN to which the embodiments of the present application are applied is shown.
  • Figure 1 takes the WLAN including one wireless access point (access point, AP) and two stations (station, STA) as an example.
  • the STA associated with the AP can receive the radio frame sent by the AP, and can also send the radio frame to the AP.
  • the embodiments of the present application are also applicable to communication between APs.
  • APs can communicate with each other through a distributed system (DS), and the embodiments of the present application are also applicable to communication between STAs and STAs. .
  • DS distributed system
  • the number of APs and STAs in FIG. 1 is only an example, and may be more or less.
  • the STAs involved in the embodiments of the present application may be various user terminals, user equipment, access equipment, subscriber stations, subscriber units, mobile stations, user agents, user equipment or other names with wireless communication functions. Including various handheld devices, in-vehicle devices, wearable devices, computing devices or other processing devices connected to wireless modems with wireless communication capabilities, as well as various forms of user equipment (UE), mobile stations (mobile stations, MS), terminal, terminal equipment, portable communication device, handset, portable computing device, entertainment device, gaming device or system, global positioning system device or any other device configured to communicate over a wireless medium over a network other suitable equipment, etc.
  • a STA may be a router, a switch, a network bridge, etc.
  • the above-mentioned devices are collectively referred to as a station or a STA.
  • the APs and STAs involved in the embodiments of this application may be APs and STAs applicable to the IEEE 802.11 system standard.
  • An AP is a device deployed in a wireless communication network to provide wireless communication functions to its associated STAs.
  • the AP can be used as the center of the communication system, and is usually a network-side product that supports the MAC and PHY of the 802.11 system standard, such as a base station. , router, gateway, repeater, communication server, switch or bridge and other communication equipment, wherein, the base station may include various forms of macro base station, micro base station, relay station and so on.
  • the devices mentioned above are collectively referred to as APs.
  • a STA is usually a terminal product that supports the media access control (MAC) and physical layer (physical, PHY) of the 802.11 system standard, such as a mobile phone and a notebook computer.
  • MAC media access control
  • PHY physical layer
  • 802.11ax stipulates that pre-(forward error correction, FEC) padding, post-FEC padding and packet extension can be added to PPDU.
  • pre-FEC padding and excess information occupy approximately one-quarter multiples (eg, one-quarter, two-quarter, three-quarter, and full) subcarriers in the last coded symbol, while The remaining subcarriers can be used to carry post-FEC padding.
  • Decoding the last coded symbol of the PPDU can only decode the sub-carriers that are a quarter multiple occupied by the pre-FEC padding and extension information, instead of decoding the entire coded symbol, thereby saving decoding time and giving the PPDU pre-processing. More processing time is left.
  • Figure 2 shows the stuffing process of the PPDU bits in the last coded symbol.
  • a indicates that the extended information bits and the pre-forward error correction code stuffing bits occupy about a times a quarter of the subcarriers in one symbol after scrambled and encoded.
  • a equal to 1 indicates that the extension information bits and the pre-forward error correction code stuffing bits occupy about a quarter of the subcarriers in a symbol after scrambling and encoding.
  • post-FEC padding pads the remaining subcarriers in a symbol, so that the number of bits occupied by data reaches N CBPS bits, where N CBPS represents the number of coded bits in each symbol (coded bits per symbol).
  • N CBPS represents the number of coded bits in each symbol (coded bits per symbol).
  • the extra processing time reserved for the PPDU may not meet the minimum time required by the receiver.
  • a field that may need to be added is introduced in the last symbol of the PPDU, namely the packet extension (PE) field ( field).
  • FIG. 3 is a schematic diagram of a PPDU.
  • the duration of the PE field may also be referred to as the nominal packet extension time (nominal T PE ).
  • the nominal packet extension time is related to the nominal packet padding value included in the PPDU. It can be seen from Fig. 3 that the nominal packet expansion time is related to the value of a and the nominal packet filling value. Please refer to Table 1 for details.
  • the second row in Table 1 represents the nominal packet fill value, ie, 0 ⁇ s, 8 ⁇ s, or 16 ⁇ s.
  • the post-FEC padding may also provide additional processing time, and the processing time provided by the post-FEC padding and the nominal packet expansion time are combined into the real packet expansion time (T PE ).
  • T PE real packet expansion time
  • the packet expansion time is not necessarily equal to the minimum time required by the receiver (such as 0 ⁇ s, 8 ⁇ s or 16 ⁇ s).
  • the nominal packet filling value is equal to 16 ⁇ s
  • the nominal T PE can be 4 ⁇ s, 8 ⁇ s, 12 ⁇ s or 16 ⁇ s. That is, T PE is greater than or equal to nominal T PE .
  • the value of T PE is the minimum value that meets the requirements.
  • the first device can indicate a certain NSTS, a modulation corresponding to a certain RU size.
  • the second device generates a PPDU according to the duration of the PE field and sends it to the first device, which can ensure that the first device has sufficient processing time, that is, can ensure the minimum processing time requirement of the first device.
  • the first device may indicate to the second device the nominal packet filling value to be used by the second device, and to use here refers to the second device filling the value according to the nominal packet, in combination with the aforementioned a Determine the duration of the PE field.
  • the first device may directly indicate the nominal packet padding value to be used by the second device.
  • the first device may indicate the nominal packet padding value through a nominal packet padding subfield for indicating the nominal packet padding value.
  • the first device may send a PPDU carrying a nominal packet padding subfield to the second device.
  • the first device may indirectly indicate the nominal packet padding value to be used by the second device.
  • the first device may indicate the nominal packet filling value indirectly by indicating a modulation threshold associated with the nominal packet filling value.
  • the first device may send a PPDU carrying a packet extension threshold subfield indicating the modulation threshold to the second device.
  • the method of indicating the nominal packet padding value used by the second device through the nominal packet padding subfield is referred to as the direct indication mode, and the mode of indirectly indicating the nominal packet padding value used by the second device through the packet extension threshold subfield indicating the modulation threshold It is called the indirect instruction method.
  • the PPDU includes a nominal packet padding subfield and a packet extension threshold subfield indicating the modulation threshold. In order to distinguish when the nominal packet padding subfield is used or the packet extension threshold subfield indicating modulation threshold indicates the nominal packet padding value, the PPDU also includes a physical layer packet The extension thresholds present subfield (physical packet extension(PPE)thresholds present subfield).
  • the nominal packet padding subfield is used to indicate the nominal packet padding value.
  • the packet extension threshold subfield indicating the modulation threshold is used to indicate the nominal packet filling value.
  • the physical layer packet extension threshold existence subfield and the nominal packet filling subfield are carried in the HE physical layer capability information field (HE PHY capabilities information field).
  • the HE physical layer capability information field is included in the HE capability element (HE capabilities element), as shown in FIG. 5 .
  • the HE capability element may include an element field, a length field, an element ID extension field, and a HE (medium access control, MAC) capability Information field.
  • HE physical layer capability information field (HE PHY capabilities information), supported high efficiency (HE)-modulation and coding scheme (modulation and coding scheme, MCS) and number of spatial streams (NSS) setting field (Supported HE -MCS and NSS Set)
  • PPE thresholds field This embodiment of the present application does not limit the number of bits occupied by each field or subfield included in the HE capability element. As shown in Figure 5, the element field occupies 1 bit, the length field occupies 1 bit, the element identifier extension field occupies 1 bit, the HE medium access control capability information field occupies 6 bits, the HE physical layer capability information field occupies 11 bits, and the physical layer The number of bits occupied by the packet extension threshold field is variable. And the physical layer packet extension threshold field is optional, that is, not required to be included.
  • the nominal packet padding value indicated by the nominal packet padding subfield can refer to Table 2 for details.
  • the supported modulation method has changed from 1K quadrature amplitude modulation (QAM) to 4KQAM, and the supported bandwidth has changed from 160MHz to 320MHz, which makes the receiving The machine requires more processing time in these cases.
  • QAM quadrature amplitude modulation
  • the supported bandwidth has changed from 160MHz to 320MHz, which makes the receiving The machine requires more processing time in these cases.
  • a nominal packet padding value greater than 16 ⁇ s is proposed, for example, a nominal packet padding value of 20 ⁇ s is proposed.
  • the nominal packet padding value when the value of the nominal packet padding subfield is 3, when the modulation mode is less than or equal to 1KQAM, NSTS is less than or equal to 8, and the size of RU is less than or equal to 2*996, the nominal packet padding value is 16 ⁇ s, otherwise the nominal packet padding value is 20 ⁇ s.
  • the nominal packet padding field in the physical layer capability information field of the HE may be used, and the number of bits occupied by the nominal packet padding field may be increased to indicate how much the nominal packet padding value is.
  • a field indicating the nominal packet padding value may be set in the newly defined EHT Capability element.
  • the nominal packet padding value can be indirectly indicated by the Physical Layer Packet Extension Threshold Presence subfield and the Physical Layer Packet Extension Thresholds field (PPE thresholds field) in the PPDU. For example, if the value of the subfield of the physical layer packet extension threshold exists is 1, then the physical layer packet extension threshold field indicates that the NSTS is n, and the RU is the modulation threshold corresponding to a certain RU. The second device may determine the nominal packet fill value based on the modulation threshold. In this way, different nominal packet filling values can be indicated according to different NSTS, RU size, and modulation mode, which is more flexible.
  • PPE thresholds field Physical Layer Packet Extension Thresholds field
  • FIG. 6 is a schematic structural diagram of a physical layer packet extension threshold field.
  • the physical layer packet extension threshold field includes an NSTS subfield, an RU index mask subfield (RU Index Bitmask subfield), a physical layer packet extension threshold information field, and a physical layer packet extension padding (PPE padding) field.
  • NSTS subfield an NSTS subfield
  • RU index mask subfield RU Index Bitmask subfield
  • PPE padding physical layer packet extension padding
  • the NSTS subfield may be used to indicate the number of space-time streams used for sending data.
  • the NSTS subfield occupies 3 bits, and the values of the 3 bits are 0-7, which can respectively indicate the first stream to the eighth stream. That is, a value of the 3 bits corresponds to a space-time stream number.
  • the RU Index Bitmask subfield can be used to indicate the size of the RU. The relationship between RU Index Bitmask subfield and RU size is shown in Table 3.
  • RU Index Bitmask subfield is a bitmap (bitmap).
  • RU allocation index indicates the number of bits in the bitmap. For example, Table 3 takes RU Index Bitmask occupying 4 bits as an example. The first row of Table 3 indicates that the first bit of the RU Index Bitmask is set to 1, then the corresponding RU indicated in Figure 6 is 242; similarly, the second row indicates that the second bit of the RU Index Bitmask is set to 1, then Figure 6 Indicates that the corresponding RU is 484, and so on.
  • the RU allocation index may also be referred to as the sequence number (number) of the RU, and the smaller the sequence number (number), the smaller the size of the corresponding RU.
  • the granularity of the size of the RU is sub-carriers, for example, 242 refers to 242 sub-carriers, 484 refers to 484 sub-carriers, and so on.
  • the minimum processing time required by the corresponding receiving end is also different, that is, the corresponding nominal packet padding value may be different.
  • the NSTS from the first stream to the Nth stream and the modulation thresholds corresponding to RUs of different sizes indicated from the smallest granularity are given exhaustively or ergodic.
  • the value set of the NSTS subfield may be denoted as [1, . . . NSTN+1].
  • the Nth stream is the NSTS+1th stream, that is, NSTS is equal to N.
  • NSTS may be equivalently replaced with NSS
  • NSTS subfields may be equivalently replaced with NSS subfields.
  • the physical layer packet extension threshold information field includes a set of packet extension threshold subfields for indicating modulation thresholds corresponding to different nominal packet padding values.
  • the physical layer packet extension threshold information field includes a plurality of packet extension threshold subfield sets corresponding to different nominal packet padding values, and each packet extension threshold subfield set includes a plurality of packet extension threshold subfields, and each of the packet extension threshold subfield sets includes a plurality of packet extension threshold subfields.
  • the packet extension threshold subfield is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b. It should be understood that the value range of n is [1, . . . , N].
  • the sequence number b can be regarded as the RU allocation index, which is used to indicate the RU size.
  • the value range of b is [m,...,M], [m,...,M] is the bit list formed by all the bits set to 1 in the RU index mask subfield, m is the bit list in the the lowest bit.
  • the value range of b is [0, . . . , 3], that is, m is equal to 0, and M is equal to 3.
  • the physical layer packet expansion threshold information field includes a packet expansion threshold subfield set for indicating a plurality of packet expansion thresholds corresponding to a nominal packet padding value of 8 ⁇ s and a packet expansion threshold subfield set for indicating the nominal packet padding value.
  • the set of packet expansion threshold subfields used to indicate multiple packet expansion thresholds corresponding to the nominal packet padding value of 8 ⁇ s is referred to as PPET8 NSTSn RUb subfields
  • any subfield in PPET8 NSTSn RUb subfields is referred to as PPET8 NSTSn RUb subfield
  • the PPET8 NSTSn RUb subfield occupies 3 bits, then the PPET8 NSTSn RUb subfields can be used to indicate 8 modulation thresholds.
  • the set of packet expansion threshold subfields with multiple packet expansion thresholds corresponding to the nominal packet filling value of 16 ⁇ s can be called PPET16 NSTSn RUb subfields, and any subfield in PPET16 NSTSn RUb subfields is called PPET16 NSTSn RUb subfield, which is used for Indicates the modulation threshold corresponding to the RU whose NSTS is n and the sequence number is b.
  • the PPET8 NSTSn RUb subfield can be abbreviated as PPET8, that is, PPET8 represents a PPET8 NSTSn RUb subfield.
  • PPET16 NSTSn RUb subfield can be referred to as PPET16 for short.
  • Figure 7 illustrates the RU size that gives the indication from the first stream to the Nth stream exhaustively or ergodic and gives the indication exhaustively or ergodic from the smallest granularity. It can be considered that the value of n is traversed from 1 to N, that is, n is an element in [1,...,N], and b starts from m and traverses to M.
  • the PPET8 NSTSn RUb subfield/PPET16 NSTSn RUb subfield indicates that the NSTS is n
  • the modulation threshold corresponding to the RU with the serial number b can also be considered to indicate the PPET8 NSTSn RUb subfield/PPET16 NSTSn RUb subfield indication NSTS is n, RU is RU with sequence number b, and modulation threshold.
  • the modulation threshold may be used to indicate the modulation method, that is, the modulation threshold indicated by the PPET8 NSTSn RUb subfield/PPET16NSTSn RUb subfield may indicate the modulation method.
  • the correspondence between the PPET8 NSTSn RUb subfield/PPET16 NSTSn RUb subfield and the modulation mode is shown in Table 4.
  • the modulation threshold indicated by the PPET8 NSTSn RUb subfield/PPET16 NSTSn RUb subfield is similar to the constellation index in Table 4, thus indirectly indicating the modulation mode.
  • the structure of the physical layer packet extension threshold field sent by the first device to the second device is shown in Figure 7.
  • the second device obtains the physical layer packet extension threshold field of the first device, which can be obtained through the PPET8 NSTSn RUb subfield and PPET16 NSTSn RUb subfield. combination to determine the nominal packet padding value to use.
  • the second device may determine the nominal packet filling value according to Table 5.
  • the nominal packet fill value is the value corresponding to the row.
  • the modulation modes in Table 5 refer to the modulation modes corresponding to DCM being adjusted by one level on the basis of the modulation modes corresponding to RUb. "None" in Table 5 can be understood as not considering the corresponding conditions. For example, if the PPET8 subfield is set to None, the nominal packet padding value is determined without reference to the indication of the PPET8 subfield.
  • the nominal packet is filled with
  • the recharge value is the value corresponding to the first condition and the second condition.
  • the constellation index x corresponding to the modulation mode adopted by the second device is greater than or equal to the modulation threshold indicated by PPET8, and the constellation index x corresponding to the modulation mode adopted by the second device is smaller than the modulation threshold indicated by PPET16 or PPET16 is set to be empty, and the nominal packet is filled The charge is 8 ⁇ s.
  • the constellation index x corresponding to the modulation mode adopted by the second device is greater than the modulation threshold indicated by PPET8 or the PPET8 is set to null, and the constellation index x corresponding to the modulation mode adopted by the second device is greater than or equal to the modulation threshold indicated by PPET16, and the nominal packet padding value is 16 ⁇ s. That is, if condition 1 and condition 2 of a row in Table 5 are satisfied, then the nominal packet fill value is the value in the row.
  • the supported modulation method has changed from 1K quadrature amplitude modulation (QAM) to 4KQAM, and the supported bandwidth has changed from 160MHz to 320MHz, which makes the receiving The machine requires more processing time in these cases, and needs to indicate a larger nominal packet filling value, such as a nominal packet filling value of 20 ⁇ s or other possible durations.
  • the structure shown in FIG. 7 can be followed, and a field for indicating the nominal packet padding value of 20 ⁇ s is added to the physical layer packet extension threshold information field shown in FIG. 7 .
  • a packet expansion threshold subfield set for indicating multiple packet expansion thresholds corresponding to a nominal packet filling value of 20 ⁇ s is added.
  • the subfield set may be used to indicate modulation thresholds corresponding to different NSTS and different RU sizes, but the nominal packet filling value determined by the second device according to the modulation threshold may be greater than 16 ⁇ s, for example, 20 ⁇ s.
  • this subfield set can be denoted as PPET20 NSTSn RUb subfields, as shown in Figure 8. That is, each PPET20 NSTSn RUb subfield in the PPET20 NSTSn RUb subfields can be used to indicate the modulation threshold corresponding to the RU whose NSTS is n and the sequence number is b.
  • the value range of n in PPET20 NSTSn RUb subfields is [1,...,N], and the value range of b is [m,...,M].
  • the difference is that the length of the NSTS subfield in FIG. 8 is longer than that of the NSTS subfield in FIG. 7 , for example, the NSTS subfield may occupy 4 bits.
  • the value range of n is [1,...,N], and N is equal to 16.
  • the length of the RU Index Bitmask subfield in FIG. 8 can be longer than the length of the RU Index Bitmask subfield in FIG. 7 , that is, the RU Index Bitmask subfield in FIG. 8 occupies more bits.
  • the RU Index Bitmask field can be Occupies 5 bits.
  • the maximum RU granularity indicated by the RU Index Bitmask subfield is 3*996.
  • the RU Index Bitmask subfield may occupy 6 bits. In this case, the maximum RU granularity indicated by the RU Index Bitmask subfield is 4*996.
  • the RU Index Bitmask subfield can occupy more bits, and the RU size is 242+484, 484+996, 242+484+996, 2*996+484, 2*996+996, or 3*996+484, etc.
  • the value range of b is [m, . . . , M], where M can be greater than or equal to 5.
  • the Constellation Index corresponding to any PPET20 NSTSn RUb subfield in the PPET20 NSTSn RUb subfields corresponds to more bits, such as 4 bits, which can indicate 16 modulation thresholds. It should be noted that the embodiments of the present application do not limit the number of bits occupied by the NSTS subfield, do not limit the number of bits occupied by the RU Index Bitmask field, and do not limit the number of bits corresponding to the Constellation Index corresponding to the PPET20 NSTSn RUb subfield.
  • the PPET20 NSTSn RUb subfield, the PPET16 NSTSn RUb subfield, and the PPET8 NSTSn RUb subfield are respectively used to indicate a modulation threshold corresponding to the RU whose NSTS is n and the sequence number is b.
  • the modulation threshold indicated by the PPET20 NSTSn RUb subfield is hereinafter referred to as the first modulation threshold
  • the modulation threshold indicated by the PPET16NSTSn RUb subfield is referred to as the second modulation threshold
  • the modulation threshold indicated by the PPET8 NSTSn RUb subfields is referred to as the third modulation threshold Modulation threshold.
  • the PPET20 NSTSn RUb subfield, PPET16NSTSn RUb subfield, and PPET8 NSTSn RUb subfield may be referred to herein as the PPET20/16/8 NSTSn RUb subfield.
  • PPET20 NSTSn RUb subfields, PPET16 NSTSn RUb subfields, and PPET8 NSTSn RUb subfields may be referred to herein as PPET20/16/8 NSTSn RUb subfields.
  • the second device can determine the nominal packet padding value to use by the combination of the PPET8 NSTSn RUb subfield, PPET16 NSTSn RUb subfield, and PPET20NSTSn RUb subfield. That is, the second device determines the nominal packet filling value according to the comparison result of the adopted modulation mode with the first modulation threshold, the second modulation threshold and the third modulation threshold respectively. Specifically, the second device may determine the nominal packet filling value according to Table 6. If condition 1, condition 2, and condition 3 of a row in Table 6 are satisfied, the second device may determine that the nominal packet padding value used is the value corresponding to the row. That is, if the second device determines that a certain row condition in Table 6 is satisfied, then the second device determines to use the nominal packet filling value as the value indicated in the row.
  • condition 1, condition 2, and condition 3 in row 1 are satisfied, then the nominal packet filling value is 8 ⁇ s; if condition 1, condition 2, and condition 3 in row 2 are satisfied, then the nominal packet filling value is 16 ⁇ s; If conditions 1, 2, and 3 in line 3 are satisfied, then the nominal packet filling value is 20 ⁇ s.
  • the modulation thresholds corresponding to the various RU sizes from the first stream to the Nth stream are indicated by exhaustive or ergodic methods, and then through The modulation threshold indirectly indicates the nominal packet filling value, and the overhead is large. Especially the introduction of more different RUs in 802.11be makes the PPE thresholds field more expensive.
  • some MRUs or RUs can be combined, that is, multiple RUs of different sizes have the same index. That is, on the basis of Table 3, the relationship between RU Index Bitmask subfield and RU size as shown in Table 7 is obtained.
  • RU allocation index RU allocation size 0 (bitmap100000) 242 1 (bitmap 01000) 484 2(bitmap 001000) 242+484/996 3(bitmap 000100) 996+484/2*996/242+484+996 4 (bitmap 000010) 2*996+484/3*996 5(bitmap 000001) 3*996+484/4*996
  • multiple RUs of different sizes have the same index, that is, multiple RUs of different sizes can correspond to a PPET20/16/8 NSTSn RUb subfield, thereby reducing the overhead of the PPE thresholds field.
  • a variety of RUs of different sizes correspond to the same index.
  • the overhead of the PPE thresholds field can be reduced, it is not flexible.
  • the embodiment of the present application provides a method for indicating the nominal packet filling value, which reduces the overhead of the PPE thresholds field, and flexibly indicates the nominal packet filling value corresponding to each NSTS and each RU size.
  • the NSTS in the embodiments of the present application can be replaced with NSS, and the NSS is used as an example below.
  • the receiver is the first device and the transmitter is the second device as an example to illustrate how the first device indicates to the second device the nominal packet padding value used by the second device.
  • FIG. 9 is a schematic flowchart of an indication manner of a nominal packet padding value provided in an embodiment of the present application, and the process is described as follows:
  • the first device generates a PPDU, where the PPDU includes a physical layer packet extension threshold existence subfield, and a physical layer packet extension threshold field, where the physical layer packet extension threshold existence subfield has a value of 1, and the physical layer packet extension threshold field includes NSS subfield, RU index mask subfield and physical layer packet extension threshold information field, the physical layer packet extension threshold information field includes a plurality of packet extension threshold subfield sets corresponding to different nominal packet filling values, each packet extension threshold subfield The field set is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b, and the modulation threshold is used to determine the nominal packet padding value used by the second device when the modulation mode is greater than or equal to the modulation threshold, where n The value range of is a subset of [1,...,N], N is an integer greater than or equal to 1, the value range of b is a subset of [m,...,M], m and M are greater than or equal to 0 If the value of the PPDU
  • the first device sends a PPDU to the second device, and the second device receives the PPDU.
  • the second device determines the nominal packet padding value to be used according to the modulation threshold corresponding to the RU whose NSS is n and the sequence number is m1 indicated by the packet extension threshold field of the physical layer.
  • This embodiment of the present application aims to indicate the modulation threshold corresponding to a certain RU without traversing all RUs of different sizes.
  • the PPE Thresholds field can omit the PPET20 NSSn RUy subfield, PPET16 NSSn RUy subfield and PPET8 NSSn RUy subfield corresponding to the RU whose NSS is n and the serial number is y, but the PPE Thresholds field can still indicate that the NSS is n and the serial number is y corresponding to the RU. Modulation threshold.
  • the value range of n is a subset of [1,...,N], N is an integer greater than or equal to 1, the value range of b is a subset of [m,...,M], m and M are Integer greater than or equal to 0, the value range of b does not include y. That is, the PPET20 NSSn RUy subfield, PPET16 NSSn RUy subfield, and PPET8 NSSn RUy subfield do not exist in the PPE Thresholds field.
  • implementation manner 1 the embodiments of the present application may redefine the setting of some bits in the RU Index Bitmask subfield to 0, for example, the RU corresponding to the bits set to 0 is still Configure the index (that is, the sequence number), but do not indicate the modulation threshold corresponding to the RU corresponding to the bit set to 0 in the RU Index Bitmask subfield.
  • the PPE Thresholds field will omit the PPET20/16/8 NSSn RUb subfield corresponding to the RU corresponding to the bit set to 0, but because the RU corresponding to the bit set to 0 in the embodiment of the present application still configures the index, Therefore, it can be considered that even if the PPE Thresholds field omits the PPET20/16/8 NSSn RUb subfield corresponding to the RU corresponding to the bit set to 0, it can still indicate the modulation threshold corresponding to the RU corresponding to the bit set to 0.
  • the second device may determine the nominal packet filling value corresponding to the RU corresponding to the bit set to 0 according to the modulation threshold.
  • the PPE Thresholds field does not have a PPET20/16/8 NSSn RUy subfield corresponding to an RU with an NSS of n and a serial number of y, but the PPE Thresholds field can still implicitly indicate the modulation threshold corresponding to an RU with an NSS of n and a serial number of y. .
  • the PPE Thresholds field omits the PPET20/16/8 NSSn RUy subfield, the overhead of the PPE Thresholds field can be reduced.
  • the omitted PPET20/16/8 NSSn RUy subfield actually has a corresponding constellation index, which can be considered to be the RU corresponding to the omitted PPET20/16/8 NSSn RUy subfield (that is, the RU with the serial number y) redefines the corresponding Constellation index, so even if there are multiple RUs, different types of RUs can correspond to different constellation indices, which is more flexible than multiple RUs corresponding to the same constellation index.
  • multiple RUs may also correspond to the same constellation index.
  • the following describes how to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y when the PPE Thresholds field omits the PPET20/16/8 NSSn RUy subfield corresponding to the RU whose NSS is n and the sequence number is y. Exemplarily, the following situations may be included.
  • the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y is equal to the modulation threshold corresponding to the RU whose NSS is n and the sequence number is m1. That is, for the same NSS, the value of the RU index mask subfield corresponding to the RU with the serial number y can be used to indicate that the modulation threshold corresponding to the RU with the NSS n and the serial number y is the RU with the NSS n and the serial number m1. the corresponding modulation threshold.
  • m1 is the smallest sequence number among the sequence numbers greater than y corresponding to a bit of 1 in the RU index mask subfield.
  • the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y is equal to the modulation threshold corresponding to the RU whose NSS is n and the sequence number is m1.
  • the bit position is 0, and m1 is the minimum sequence number among the sequence numbers greater than y corresponding to the bit 1 in the RU index mask subfield.
  • Table 8 is the correspondence table of RU Index Bitmask, RU Allocation Index, and RU size and nominal packet padding value.
  • Table 8 means that the nominal packet padding value corresponding to a certain RU is determined by the RU itself.
  • Table 8 takes the inclusion of 6 types of RU/MRU as an example.
  • the 6 types of RU/MRU are denoted as RU0, RU1, RU2, RU3, RU4, and RU5 in Table 8.
  • some bit positions 0 in the RU Index Bitmask subfield are redefined. For example, redefine the bits set to 0 in the RU Index Bitmask subfield corresponding to RU3 and RU4 in Table 8, that is, RU3 and RU4 still have corresponding constellation indexes, instead of directly specifying the nominal packet filling value corresponding to RU3 and RU4 0.
  • this embodiment of the present application may specify that the modulation thresholds corresponding to RU3 and RU4 are the same as the modulation thresholds corresponding to other RUs.
  • the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y is equal to the modulation threshold corresponding to the RU whose NSS is n and the sequence number is m1, where m1 is the bit greater than y corresponding to the bit in the RU index mask subfield.
  • the smallest sequence number in the sequence number is the sequence number.
  • the modulation threshold corresponding to RU3 is the modulation threshold corresponding to RU5.
  • the modulation threshold corresponding to RU4 is the modulation threshold corresponding to RU5.
  • the PPE Thresholds field omits the PPET20/16/8 NSSn RUb subfield corresponding to the RU with the serial number y
  • the PPET20/16/8 NSSn RUb subfield corresponding to other RUs can still determine the corresponding RU of the serial number y. Modulation threshold.
  • the sequence number corresponding to the bit in the RU index mask subfield is 1 is not greater than y
  • the value of the RU index mask subfield corresponding to the RU whose sequence number is y is 0, which is used for Indicates that the NSS is n
  • the nominal packet padding value corresponding to the RU with the sequence number y is a certain fixed value, for example, the nominal packet padding value can be 20 microseconds or other possible values.
  • the protocol can specify the nominal packet padding value to a certain value, for example, the nominal packet padding value can be 20 microseconds, and the second device can determine the nominal packet padding value corresponding to the RU with serial number y is 20 microseconds.
  • the embodiment of the present application may specify that the modulation threshold corresponding to the RU with NSS of n and sequence number y is equal to the modulation threshold of the RU with NSS of n and sequence number m1, and condition 2 must be satisfied.
  • Condition 2 is: the bit position in the RU Index Bitmask corresponding to the RU with the serial number y is 0, m1 is the minimum serial number in the serial number greater than y corresponding to the bit in the RU index mask subfield, and the RU with the serial number less than y corresponds to At least one of the bits of the RU Index Bitmask is set to 1.
  • the modulation threshold corresponding to RU1 may not be determined according to the modulation threshold corresponding to RU2.
  • the nominal packet filling value corresponding to the modulation threshold corresponding to RU1 is 0 microseconds.
  • the nominal packet padding value available to the second device is 0 microseconds; if y It is the minimum sequence number of the sequence number greater than y corresponding to bit 1 in the RU index mask subfield, and the bit bit of the RU Index Bitmask corresponding to the RU whose sequence number is less than y has a bit set to 1, and the RU whose sequence number is greater than y corresponds to the RU Index Bitmask There is a bit set to 1 in the bits of , then the nominal packet padding value used by the second device is determined according to the modulation threshold corresponding to the nearest RU whose serial number is larger than y, where the serial number of the nearest RU refers to the difference between y and y The smallest sequence number; if y is the smallest sequence number of the sequence number greater than y corresponding to the bit 1 in the RU index mask subfield, but
  • m1 may be the largest sequence number among the sequence numbers smaller than the y corresponding to a bit of 1 in the RU index mask subfield.
  • the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y is the modulation threshold corresponding to the RU whose NSS is n and the sequence number is m1
  • the third condition is: the bit position in the RU Index Bitmask corresponding to the RU whose sequence number is y is 0, and m1 may be the largest sequence number in the sequence numbers smaller than the y corresponding to the bit in the RU index mask subfield where the bit is 1.
  • Table 9 is the correspondence table of RU Index Bitmask, RU Allocation Index, and RU size and nominal packet padding value.
  • Table 9 means that the nominal packet filling value corresponding to a certain RU is determined by the RU itself.
  • Table 9 takes the inclusion of 6 types of RU/MRU as an example.
  • the 6 types of RU/MRU are denoted as RU0, RU1, RU2, RU3, RU4, and RU5 in Table 9.
  • this embodiment of the present application may specify that the modulation thresholds corresponding to RU3 or RU5 are the same as the modulation thresholds corresponding to other RUs. For example, when condition 3 is satisfied, the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y is the modulation threshold corresponding to the RU whose NSS is n and the sequence number is m1.
  • the maximum sequence number in the sequence number corresponding to the bit 1 in the RU Index Bitmask corresponding to RU is the sequence number corresponding to RU4, and the sequence number corresponding to RU is 4 less than the sequence number corresponding to RU5, so the NSS is n and the RU with sequence number 5 (ie RU5)
  • the corresponding modulation threshold is equal to the modulation threshold corresponding to the RU (RU4) whose NSS is n and the sequence number is 4.
  • the PPE Thresholds field omits the PPET20/16/8 NSSn RUb subfield corresponding to RU3 and RU5
  • the modulation threshold corresponding to RU3 and RU5 can still be determined through the PPET20/16/8 NSSn RUb subfield corresponding to RU2 and RU4.
  • the nominal packet padding value corresponding to the RU with the sequence number y is a certain fixed value, for example, the nominal packet padding value may be 0 microseconds or other possible values.
  • the protocol may specify that the nominal packet padding value may be a certain value, for example, the nominal packet padding value may be 0 microseconds.
  • the protocol may specify that the nominal packet padding value may be a certain value, eg, the nominal packet padding value may be 0 microseconds.
  • the embodiment of the present application may specify that the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y is the modulation threshold corresponding to the RU whose NSS is n and the sequence number is m1, and condition four needs to be satisfied.
  • Condition 4 can be: the bit position in the RU Index Bitmask corresponding to the RU with the serial number y is 0, and m1 is the largest serial number in the serial number smaller than the y corresponding to the bit in the RU index mask subfield, and the serial number is less than y There is at least one bit set to 1 in the bits of the RU Index Bitmask corresponding to the RU.
  • the RUs with serial numbers less than 5 include RU0, RU1, RU2, RU3, and RU4, among which, there are bits set to 1 in the bits of the RU Index Bitmask corresponding to RU2 and RU4, that is, the condition is satisfied Four.
  • the modulation threshold corresponding to RU5 is equal to the modulation threshold corresponding to RU4.
  • Take RU2 as an example, that is, y 2.
  • the modulation threshold corresponding to RU2 may not be determined according to the modulation threshold corresponding to RU1.
  • the nominal packet filling value corresponding to the modulation threshold corresponding to RU2 may be fixed to 0 microseconds.
  • the nominal packet padding value available to the second device is 0 microseconds; if y It is the maximum sequence number of the sequence number less than y corresponding to the bit in the RU index mask subfield, and the RU whose sequence number is greater than y corresponds to the bit of the RU Index Bitmask, and the RU whose sequence number is less than y corresponds to the RU Index Bitmask There is a bit set to 1 in the bits of , then the nominal packet padding value used by the second device is determined according to the modulation threshold corresponding to the nearest RU whose serial number is smaller than y, where the difference between the serial number of the nearest RU and y is the smallest; If y is the largest sequence number of the sequence numbers less than y corresponding to the bit 1 in the RU index mask subfield, but the bits in the RU index mask subfield of all RUs
  • the nominal packet padding value used by the second device is greater than 16 microseconds, for example, 20 microseconds, in this case, the nominal packet padding value used by the second device can be defaulted to 16 microseconds, so as to be better. It is compatible with the existing regulations of 802.11ax.
  • the solution of the above case 1 can be considered as: the value of all RU index mask subfields before the RU index mask subfield set to 0 is 0, then the RU corresponding to the RU index mask subfield set to 1 corresponds to the nominal packet padding value It can be 0 microseconds; the RU index mask subfield set to 0 is located between two RU index mask subfields set to 1, then the RU corresponding to the RU index mask subfield whose value is 0 corresponds to the modulation threshold according to the distance The modulation threshold of the nearest RU in the RU index mask subfield with a value of 0 is determined.
  • the difference between the sequence number of the latest RU and the sequence number of the RU corresponding to the RU index mask subfield whose value is 0 is the smallest; the value of all RU index mask subfields after the RU index mask subfield set to 0 is the value of 0, then the nominal packet padding value corresponding to the RU corresponding to the RU index mask subfield set to 0 may be 20 microseconds.
  • Table 10 is the correspondence table between RU Index Bitmask, RU Allocation Index, and RU size and nominal packet filling value.
  • the RU Index Bitmask of RU2 is 0, and it is located between RU1 corresponding to the RU Index Bitmask set to 1 and RU4 corresponding to the RU Index Bitmask set to 1, then the modulation threshold corresponding to RU2 can be based on RU4 The corresponding modulation threshold is determined.
  • the value of RU Index Bitmask corresponding to RU0 is 0, and RU0 is located before RU1-RU5, and the value of RU Index Bitmask of RU1 is 1, so the nominal packet filling value corresponding to RU0 is 0 microseconds.
  • the value of the RU Index Bitmask corresponding to RU5 is 0, and RU5 is located after RU0-RU4, then the nominal packet padding value corresponding to RU5 can be 20 microseconds.
  • the bit position in the RU Index Bitmask corresponding to the RU with the serial number y can be specified as 0, and the nominal packet padding value corresponding to the RU with the NSS of n and the serial number of y is a fixed value.
  • the bit position in the RU Index Bitmask corresponding to the RU with the sequence number y is 0, the NSS is n, and the nominal packet padding value corresponding to the RU with the sequence number y is 0 microseconds. That is, unlike the first case, in this case, the second device can directly determine the nominal packet padding value used for sending the data packet to the first device, which is relatively simple.
  • the bit position in the RU Index Bitmask corresponding to the RU with the serial number y is 0, the value of the RU Index Bitmask corresponding to the serial number less than y does not include 1, and the NSS is n, the serial number
  • one serial number corresponds to multiple RUs of different sizes, which are only examples.
  • the RU Allocation Index corresponding to RUs of 242+484 and RUs of 996 are both 2.
  • This embodiment of the present application does not limit the number of RU types corresponding to one RU Allocation Index.
  • one RU may correspond to one RU Allocation Index. That is, the corresponding relationship shown in Table 11 is also applicable to the embodiments of the present application.
  • the RU may be a single RU, for example, a RU with a size of 996 subcarriers (996 is shown in the table), or an MRU, for example, a size of 996 subcarriers and a size of 484
  • An MRU composed of two RUs with a size of 996 subcarriers (indicated as 996+484 in the table), or an MRU composed of two RUs with a size of 996 subcarriers (indicated as 2 ⁇ 996 in the table).
  • the embodiment of the present application may define the nominal packet padding value corresponding to the RU corresponding to the 0 bit in the RU Index Bitmask subfield to be a fixed value, which is more direct.
  • the RU with the serial number y corresponds to the bit set to 0 in the RU Index Bitmask subfield
  • the NSS is n
  • the nominal packet padding value corresponding to the RU with the serial number y is a fixed value.
  • the nominal packet padding value corresponding to the RU whose NSS is n and the sequence number is y may be 8 microseconds, 16 microseconds, or 20 microseconds.
  • the RU with the serial number y corresponds to the bit set to 0 in the RU Index Bitmask subfield, and there is at least a bit with a value of 1 before the set 0 bit, the NSS is n, and the serial number is
  • the nominal packet padding value corresponding to the RU of y is a fixed value.
  • the nominal packet padding value corresponding to the RU whose NSS is n and the sequence number is y may be 8 microseconds, 16 microseconds, or 20 microseconds.
  • the PPE Thresholds field can omit the PPET20/16/8NSSn RUb subfield corresponding to the RU with the serial number y, and also omit the PPET20/16/8 NSSn RUb subfield corresponding to the RU with other serial numbers, which saves more overhead.
  • the embodiment of the present application may assist the second device to determine the nominal packet padding value used when sending data through the NSS range indicated by the NSS subfield in the PPE Thresholds field.
  • the NSS used by the second device is greater than the value indicated by the NSS subfield in the PPE Thresholds field, and the nominal packet padding value that the second device can use is a certain fixed value, such as 8 microseconds, 16 microseconds, or 20 microseconds. microseconds.
  • the PPE Thresholds field can omit the PPET20/16/8 NSSn RUb subfield corresponding to the RU with the serial number y, and the second device only needs to pay attention to the value indicated by the NSS subfield, which is simpler.
  • the second device does not need to refer to the RU indication in the PPE Thresholds field, and can directly determine the nominal packet padding value used. to some fixed value, such as 8 microseconds, 16 microseconds, or 20 microseconds.
  • the NSS used by the second device is greater than the value indicated by the NSS subfield in the PPE Thresholds field, and the nominal packet padding value that the second device can use is based on the value indicated by the NSS subfield, and the RU with sequence number y corresponds to The modulation threshold is determined.
  • the value indicated by the NSS subfield in the PPE Thresholds field is 9, and the NSS used by the second device is 12 streams, then when the second device determines that the RU used is y, the nominal packet padding value used is 9 according to the NSS, and the sequence number Determined for the modulation threshold corresponding to the RU of y.
  • the embodiments of the present application may be applicable to a scenario where one sequence number corresponds to one type of RU, and may also be applicable to a scenario where one sequence number corresponds to multiple RUs of different sizes.
  • the sequence number of y may correspond to multiple RUs of different sizes.
  • the embodiment of the present application also provides a corresponding nominal packet filling value indication method, which may include the following two indication methods.
  • the bit position in the RU Index Bitmask corresponding to the RU with the serial number y is 0.
  • the nominal packet filling value corresponding to the RU with the serial number y is based on the RU corresponding to the serial number y+1.
  • the RU selected by the second device is not the largest RU among multiple RUs with different sizes corresponding to the serial number of y.
  • the RU allocated by the second device is RU2 (242+484), and the second device adopts DCM, then the second device determines the nominal packet filling value according to the modulation threshold corresponding to RU2, if the RU allocated by the second device is RU2 (996) , then the second device may determine the nominal packet filling value according to the modulation threshold corresponding to RU3.
  • the processing time of the first device to process the received data is mainly concentrated in the multiple-in multiple-out (multiple-in multiple-out, MIMO) demodulation module and the FEC decoding module of the first device.
  • MIMO demodulation is positively related to NSS
  • FEC decoding is positively related to the number of RU equivalently encoded RU blocks allocated by the second device.
  • the nominal packet padding value can be assisted by the number of RU blocks after RU equivalent coding, or the nominal packet padding value can be assisted by the number of RU blocks after RU equivalent coding and NSS.
  • the packet expansion threshold corresponding to the number of RU blocks after RU equivalent encoding is set to indicate the nominal packet padding value, or the number of RU blocks after RU equivalent encoding and the packet expansion threshold corresponding to NSS are set to indicate the nominal packet padding value.
  • the embodiment of the present application can simplify the PPE Thresholds field and save the overhead of the PPE Thresholds field.
  • the following introduces the scheme of assisting the determination of the nominal packet padding value by the number of RU blocks after RU equivalent encoding, and the scheme of assisting the determination of the nominal packet padding value by the number of RU blocks after RU equivalent encoding and NSS.
  • the nominal packet filling value is indicated by the number of RU blocks after RU equivalent encoding.
  • the flow of this method is described as follows:
  • the first device generates a PPDU, where the PPDU includes an NSS index mask subfield, an NSS subfield, and a physical layer packet extension threshold information field, wherein the physical layer packet extension threshold information field includes a plurality of packet extensions corresponding to different nominal packet padding values
  • a set of threshold subfields each packet extension threshold subfield set includes a packet extension threshold subfield corresponding to indicating that the NSS is n, and the packet extension threshold subfield is used to indicate to the second device that it adopts an NSS of n, and the When the allocated number of RU equivalently encoded RU blocks is the first value, the corresponding packet expansion threshold, where the packet expansion threshold is used to indicate to the second device when the first value is greater than or equal to the packet expansion threshold
  • the nominal packet padding value used the value range of n is [1,...,N], where N is an integer greater than 8.
  • S1002 The first device sends a PPDU to the second device, and the second device receives the PPDU.
  • the second device determines, according to the physical layer packet extension threshold information field and the first value, a nominal packet padding value used when the NSS is i.
  • the first value is related to the maximum number of RU242 that the RU allocated by the second device can include, and the number of encoded bits carried by each subcarrier on a single space-time stream.
  • the first value may satisfy the following relationship:
  • N CBPRU N RU242 * N BPSCS ;
  • N CBPRU is the first value
  • N RU242 is the maximum number of RU242 that the RU allocated by the second device can include.
  • the value range of the N RU 242 is 0-16.
  • N BPSCS is the number of coded bits carried by each subcarrier on a single space-time stream.
  • BPSK Binary Phase Shift Keying
  • N BPSCS 1
  • the modulation mode 64QAM
  • N BPSCS 6
  • Each NSS can correspond to multiple packet extension thresholds. 11, which is a new structure of a physical packet extension threshold information field provided by an embodiment of the present application.
  • the physical layer packet expansion threshold information field includes multiple packet expansion threshold subfield sets corresponding to different nominal packet padding values, and each packet expansion threshold subfield set includes multiple packet expansion threshold subfields corresponding to indicating NSS as n.
  • the physical layer packet extension threshold information field includes a plurality of packet extension threshold subfield sets for indicating a nominal packet padding value of 20 ⁇ s.
  • the physical layer packet expansion threshold information field also includes a plurality of packet expansion threshold subfield sets for indicating the nominal packet padding value of 16 ⁇ s.
  • the physical layer packet extension threshold information field also includes a plurality of packet extension threshold subfield sets for indicating the nominal packet padding value of 8 ⁇ s.
  • the multiple packet extension threshold subfield sets used to indicate the nominal packet padding value of 20 ⁇ s are referred to as the first subfield set
  • the multiple packet expansion threshold subfields used to indicate the nominal packet padding value of 16 ⁇ s will be referred to as the first subfield set.
  • the set of subfields is called the second set of subfields
  • the set of multiple packet extension threshold subfields used to indicate the nominal packet filling value of 8 ⁇ s is called the third set of subfields.
  • a first subfield in the first subfield set is used to indicate a first packet expansion threshold corresponding to the NSS being n.
  • the first packet expansion threshold is used to indicate the first nominal packet padding value used by the second device when the first value corresponding to the allocated RU is greater than or equal to the first packet expansion threshold, for example, the first nominal packet padding value is 20 microseconds.
  • a second subfield in the second subfield set is used to indicate a second packet extension threshold corresponding to the NSS of n.
  • the second packet expansion threshold is used to indicate the second nominal packet padding value used when the first value corresponding to the allocated RU is greater than or equal to the second packet expansion threshold, for example, the second nominal packet padding value is 16 microseconds.
  • a third subfield in the third subfield set is used to indicate a third packet extension threshold corresponding to the NSS of n.
  • the third packet expansion threshold is used to indicate the third nominal packet padding value used by the second device when the first value corresponding to the allocated RU is greater than or equal to the third packet expansion threshold, for example, the third nominal packet padding value is 8 microseconds.
  • the second device determines that a certain row condition in Table 12 is satisfied, then the second device determines to use the nominal packet filling value as the value indicated in the row.
  • the third package expands the threshold.
  • the NSS used by the second device is i
  • the second device may determine that the nominal packet padding value used is 20 microseconds.
  • the second device may determine the nominal packet filling The recharge is 16 microseconds.
  • N CBPRU When NSS is i, N CBPRU is greater than or equal to the third packet expansion threshold corresponding to the third subfield of which NSS is i, and smaller than the second packet expansion threshold corresponding to the second subfield of which NSS is i, the second device may determine to use The nominal packet padding value of 8 microseconds.
  • the embodiment of the present application may also omit the first subfield, the second subfield and the third subfield corresponding to some NSSs.
  • the NSS index mask subfield may occupy at least 8 bits, and it may be indicated by bit mapping that the packet extension threshold corresponding to a certain NSS does not exist, that is, the physical layer packet extension threshold information field does not include the first subfield corresponding to the NSS. field, second subfield, and third subfield. For example, if the jth bit of the NSS index mask subfield is 0, then the physical layer packet extension threshold information field does not include the first subfield, the second subfield and the third subfield whose NSS is j. It should be understood that j is located in [1, . . . , N].
  • the physical layer packet extension threshold information field includes the first subfield, the second subfield and the third subfield whose NSS is j.
  • the jth bit of the NSS index mask subfield is 1, then the physical layer packet extension threshold information field does not include the first subfield, the second subfield, and the third subfield whose NSS is n.
  • the physical layer packet extension threshold information field includes the first subfield, the second subfield and the third subfield whose NSS is j.
  • the NSS used by the second device is greater than the NSS corresponding to the highest bit of the non-zero bit in the NSS index mask subfield, and the nominal packet padding value used by the second device is a fixed value, such as 20 microseconds, or more for simplicity.
  • the nominal packet padding value is indicated by the number of RU blocks after RU equivalent encoding and the packet extension threshold corresponding to the NSS.
  • the flow of this method is described as follows:
  • the first device generates a PPDU, where the PPDU includes an NSS subfield and a physical layer packet extension threshold information field, wherein the physical layer packet extension threshold information field includes packet extension threshold subfields corresponding to different nominal packet padding values, and the packet
  • the extension threshold field is used to indicate the packet extension threshold to the second device, and the packet extension threshold is used to indicate the nominal packet padding value used when the second value is greater than or equal to the packet extension threshold, wherein the second value is the same as the second value.
  • the number of RU blocks after the equivalent encoding of the resource unit RU allocated by the device is related to the NSS used by the second device.
  • the value range of NSS is [1, .
  • the packet expansion threshold field is used to indicate that the packet expansion threshold can be regarded as the packet expansion threshold field indicating to the second device the number of RU blocks after the NSS is n and the allocated resource unit RU equivalently coded.
  • the packet expansion threshold field indicating to the second device the number of RU blocks after the NSS is n and the allocated resource unit RU equivalently coded.
  • the first device sends a PPDU to the second device, and the second device receives the PPDU.
  • the second device determines a nominal packet padding value to be used according to the physical layer packet extension threshold information field and the second value.
  • the second value is related to the number of RU equivalently encoded RU blocks allocated by the second device and the NSS used by the second device.
  • the second value satisfies the following relationship:
  • NSS is the number of space-time streams corresponding to RUs allocated by the second device
  • N CBPRU is the number of RU equivalently encoded RU blocks allocated by the second device .
  • the physical packet extension threshold information field no longer separately indicates the packet extension threshold related to the NSS, and the physical layer packet extension threshold information field can be further simplified to save the physical layer The overhead of the packet extension threshold information field.
  • the physical layer packet expansion threshold information field includes packet expansion threshold subfields corresponding to different nominal packet padding values.
  • the physical layer packet extension threshold information field includes a packet extension threshold subfield (referred to as the fourth subfield in this embodiment of the present application) corresponding to a nominal packet filling value of 20 ⁇ s.
  • the physical layer packet extension threshold information field includes a packet extension threshold subfield (referred to as the fifth subfield in this embodiment of the present application) corresponding to a nominal packet filling value of 16 ⁇ s.
  • the physical layer packet extension threshold information field includes a packet extension threshold subfield (referred to as the sixth subfield in this embodiment of the present application) corresponding to a nominal packet filling value of 8 ⁇ s.
  • the fourth subfield can be marked as PPET20, which is used to indicate the fourth packet expansion threshold;
  • the fifth subfield can be marked as PPET16, which is used to indicate the fifth packet expansion threshold;
  • the sixth subfield can be marked as PPET8, with to indicate the sixth packet extension threshold.
  • the nominal packet filling value to be used may be determined according to the combination of PPET20, PPET16 and PPET8. That is, the second device first determines the second value according to the adopted NSS and the RU allocated by the second device, and then compares the second value with the fourth packet expansion threshold, the fifth packet expansion threshold, and the sixth packet expansion threshold, respectively. , based on the final comparison result to determine the nominal packet padding value. Specifically, the second device may determine the nominal packet filling value according to Table 13. If condition 1, condition 2, and condition 3 of a row in Table 13 are satisfied, the second device may determine that the nominal packet padding value used is the value corresponding to the row.
  • the second device determines that a certain row condition in Table 13 is satisfied, then the second device determines to use the nominal packet filling value as the value indicated in the row.
  • Table 13 the fourth packet expansion threshold corresponding to PPET20, the fifth packet expansion threshold corresponding to PPET16, and the sixth packet expansion threshold corresponding to PPET8.
  • the second device may determine that the nominal packet padding value to be used is 20 microseconds.
  • the second device may determine to use a nominal packet padding value of 16 microseconds.
  • the second device may determine that the nominal packet padding value to be used is 8 microseconds.
  • an embodiment of the present application also provides a method for indicating a nominal packet filling value.
  • the first device can inform the second device to expand the threshold range of a packet, and the second device can use the NSS, RU, etc. and one or more parameters such as the order of the modulation mode to determine the third value that affects the nominal packet filling value, and then determine the nominal packet filling value used according to the third value and the packet extension threshold range sent by the first device.
  • the first device since the first device sends a packet to extend the threshold range, the overhead of the physical layer packet extension threshold field can be reduced.
  • the nominal packet padding value is indicated by the number of RU blocks after RU equivalent encoding and the packet extension threshold corresponding to the NSS.
  • the flow of this method is described as follows:
  • the first device generates a PPDU.
  • the first device sends a PPDU and a first packet extended threshold range to a second device, and the second device receives the PPDU and the first packet extended threshold range, where the first packet extended threshold range is used to indicate that the third value is located in the first
  • the packet extension threshold range is used, the nominal packet padding value used by the second device to send data to the first device, and the nominal packet padding values corresponding to different packet expansion threshold ranges are different.
  • the second device determines a nominal packet filling value used by the second device according to the received first packet extension threshold range and the third value.
  • the third value is related to one or more factors that affect the nominal packet filling value used by the second device, for example, the third value is one of NSS, RU size, and modulation mode used by the second device or multiple parameters.
  • the third value satisfies the following relationship:
  • NSS is the NSS used by the second device
  • RU is the size of the RU used by the second device
  • Modulation is the order of the modulation mode used by the second device.
  • the embodiments of the present application do not limit the specific correspondence between x and NSS, RU size and modulation mode.
  • the first packet expansion threshold range is [0, p1], and the corresponding nominal packet padding value is 0 microseconds;
  • the second packet expansion threshold range is (p1, p2], and the corresponding nominal packet padding value is 8 microseconds;
  • the third packet extension threshold range is (p2, p3], and the corresponding nominal packet padding value is 20 microseconds.
  • the second device When the second device sends data to the first device, it can calculate a third value according to the adopted NSS, RU size, and Modulation, and then compare the third value with the packet extension threshold range sent by the first device, so as to determine according to the comparison result.
  • the nominal package padding value to use. If the third value is within the packet extension threshold range, the second device determines that the nominal packet padding value used is a nominal packet padding value corresponding to the packet extension threshold range.
  • the second device determines the third value, and is different from determining the nominal packet filling value.
  • the first device can inform the second device of various parameters Regarding the influence range of the nominal packet filling value
  • the second device may determine the nominal packet filling value to be used according to various parameters used for sending data and the influence ranges corresponding to the various parameters. In this way, the influence of NSS, RU size and modulation method on the nominal packet filling value is separately indicated. It is not necessary to combine NSS, RU size and modulation method to indicate the nominal packet filling value. For example, NSS has 16 influence results and RU has 6 influences.
  • the modulation mode has 8 kinds of influence results, then the first device can feed back 16+6+8 kinds of influence results to the second device. Therefore, compared to exhaustively or ergodically giving nominal packet filling values corresponding to each NSS, RU, and modulation threshold respectively, the method for indicating nominal packet filling values provided by the embodiments of the present application further saves overhead.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspective of interaction between the first device and the second device.
  • the first device and the second device may include hardware structures and/or software modules, and implement the above-mentioned functions in the form of hardware structures, software modules, or hardware structures plus software modules. each function. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 15 is a schematic block diagram of a communication apparatus 1500 according to an embodiment of the present application.
  • the communication apparatus 1500 may correspondingly implement the functions or steps implemented by the first device or the second device in the foregoing method embodiments.
  • the communication device may include a processing module 1510 and a transceiver module 1520 .
  • a storage unit may also be included, and the storage unit may be used to store instructions (codes or programs) and/or data.
  • the processing module 1510 and the transceiver module 1520 may be coupled with the storage unit, for example, the processing module 1510 may read instructions (codes or programs) and/or data in the storage unit to implement corresponding methods.
  • the above-mentioned units may be set independently, or may be partially or fully integrated.
  • the communication apparatus 1500 can correspondingly implement the behaviors and functions of the first device in the foregoing method embodiments.
  • the processing module 1510 is configured to generate a PPDU
  • the transceiver module 1520 is configured to send the PPDU to the second device, wherein the PPDU includes a physical layer packet extension threshold existence subfield, a physical layer packet extension threshold field, the physical layer packet extension threshold field, and the physical layer packet extension threshold field.
  • the value of the existence subfield of the layer packet expansion threshold is 1, and the physical layer packet expansion threshold field includes the RU index mask subfield, the NSS subfield, and the physical layer packet expansion threshold information field; the physical layer packet expansion threshold information field includes corresponding different Multiple packet extension threshold subfield sets of nominal packet padding values, each packet extension threshold subfield set is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b, and the modulation threshold is used to determine whether the second device is in The nominal packet filling value used when the modulation mode is greater than or equal to the modulation threshold;
  • the value range of n is a subset of [1,...,N], N is an integer greater than or equal to 1, the value range of b is a subset of [m,...,M], m and M are greater than or equal to 1 or an integer equal to 0, when the value of the RU index mask subfield corresponding to the RU whose serial number is y is 0, the value range of b does not include y;
  • the value of the RU index mask subfield corresponding to the RU with the sequence number y is 0 to indicate that the modulation threshold corresponding to the RU with the NSS n and the sequence number y is NSTS.
  • the value of the RU index mask subfield corresponding to the sequence number less than y includes 1.
  • the sequence number corresponding to the bit in the RU index mask subfield is 1 is not greater than y, and the value of the RU index mask subfield corresponding to the RU with the sequence number y is 0, which is used to indicate that the NSS is n, the nominal packet padding value corresponding to the RU with sequence number y is 20 microseconds.
  • the processing module 1510 is configured to generate a PPDU
  • the transceiver module 1520 is configured to send the PPDU to the second device, wherein the PPDU includes a physical layer packet extension threshold existence subfield, a physical layer packet extension threshold field, the physical layer packet extension threshold field, and the physical layer packet extension threshold field.
  • the value of the layer packet extension threshold existence subfield is 1, and the physical layer packet extension threshold field includes the resource unit RU index mask subfield, the spatial stream number NSS subfield and the physical layer packet extension threshold information field; the physical layer packet extension threshold information field;
  • the extension threshold information field includes multiple packet extension threshold subfield sets corresponding to different nominal packet padding values, and each packet extension threshold subfield set is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b.
  • the modulation threshold is used to determine the nominal packet filling value used by the second device when the modulation mode is greater than or equal to the modulation threshold;
  • the value range of n is a subset of [1,...,N], N is an integer greater than or equal to 1, the value range of b is a subset of [m,...,M], m and M are greater than or equal to 1 or an integer equal to 0, when the value of the RU index mask subfield corresponding to the RU with the sequence number y is 0, the RU index corresponding to the RU with the sequence number y in the physical layer packet extension threshold subfield corresponding to the same nominal packet padding value The value of the mask subfield is 0, indicating that the nominal packet padding value corresponding to the RU whose sequence number is y is 0 microseconds, and the value range of b does not include y.
  • the value of the RU index mask subfield corresponding to the sequence number smaller than x does not include 1.
  • the processing module 1510 is configured to generate a PPDU
  • the transceiver module 1520 is configured to send the PPDU to the second device, where the PPDU includes a physical layer packet extension threshold existence subfield, a physical layer packet extension threshold field, the physical layer packet extension threshold field, and the physical layer packet extension threshold field.
  • the value of the existence subfield of the layer packet expansion threshold is 1, and the physical layer packet expansion threshold field includes the RU index mask subfield, the NSS subfield and the physical layer packet expansion threshold information field; the physical layer packet expansion threshold information field includes corresponding different Multiple packet extension threshold subfield sets of nominal packet filling values, each packet extension threshold subfield set is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b, and the modulation threshold is used to determine the second The nominal packet padding value used by the device when the modulation mode is greater than or equal to the modulation threshold;
  • the value range of n is a subset of [1,...,N], N is an integer greater than or equal to 1, the value range of b is a subset of [m,...,M], m and M are greater than or equal to 1 or an integer equal to 0, the RU with sequence number y corresponds to the bit set to 0 in the RU index mask subfield, the value range of b does not include y, and the physical layer packet extension threshold field is used to indicate that the RU with sequence number y corresponds to The nominal packet fill value of 8 ⁇ s, 16 ⁇ s or 20 ⁇ s.
  • the physical layer packet extension threshold field is used to indicate that the nominal packet padding value used by the communication device whose adopted NSS is greater than the value indicated by the NSS subfield is 8 microseconds, 16 microseconds or 20 microseconds second; or, the physical layer packet extension threshold field is used to indicate that a communication device whose adopted NSS is greater than the value indicated by the NSS subfield determines the nominal packet to be used according to the adopted NSS and the modulation threshold corresponding to the RU with sequence number y Fill value.
  • the processing module 1510 is configured to generate a PPDU
  • the transceiver module 1520 is configured to send the PPDU to the second device
  • the PPDU includes an NSS index mask subfield, an NSS subfield, and a physical layer packet extension threshold information field
  • the physical layer packet expansion threshold information field includes a plurality of packet expansion threshold subfield sets corresponding to different nominal packet padding values
  • each packet expansion threshold subfield set includes a plurality of packet expansion threshold subfields for indicating that the NSS is corresponding to n.
  • the packet expansion threshold subfield is used for the corresponding packet expansion threshold when the number of RU equivalently encoded RU blocks allocated to the second device is the first value, and the NSS used by the second device is n,
  • the packet expansion threshold subfield is used to indicate the nominal packet padding value used by the second device when the first value is greater than or equal to the packet expansion threshold, and the value range of n is [1,...,N] , and N is an integer greater than 8.
  • the first value satisfies the following formula:
  • N CBPRU N RU242 * N BPSCS ;
  • N CBPRU is the first value
  • N RU242 is the maximum number of RU242 that the RU can include
  • N BPSCS is the number of encoded bits carried by each subcarrier on a single space-time stream.
  • the plurality of packet extension threshold subfield sets include a first packet extension threshold subfield set corresponding to the first nominal packet padding value, and a first packet extension threshold subfield set in the first packet extension threshold subfield set
  • the one-packet extension threshold subfield is used to indicate to the second device that the allocated resource unit RU equivalently encoded number of RU blocks is the first value, and when the NSS used by the second device is n, the corresponding first packet extension a threshold, where the first packet expansion threshold is used to indicate that the nominal packet padding value used by the second device when the first value corresponding to the allocated RU is greater than or equal to the first packet expansion threshold
  • a nominal packet fill value, the first nominal packet fill value is 20 microseconds.
  • the plurality of packet extension threshold subfield sets further include a second packet extension threshold subfield set corresponding to the second nominal padding value, and one of the first packet extension threshold subfield sets in the second packet extension threshold subfield set
  • the two-packet extension threshold subfield is used to indicate to the second device that the allocated resource unit RU equivalently encoded number of RU blocks is the first value, and when the NSS used by the second device is n, the corresponding second packet extension threshold, where the second packet expansion threshold is used to indicate that the nominal packet filling value used by the second device when the first value corresponding to the allocated RU is greater than or equal to the second packet expansion threshold
  • the plurality of packet extension threshold subfield sets further include a third packet extension threshold subfield set corresponding to the third nominal packet padding value, one of the third packet extension threshold subfield sets
  • the third packet extension threshold subfield is used to indicate to the second device that the allocated resource unit RU equivalently encoded number of RU blocks is the first value, and when the NSS used by the second device is n, the corresponding third packet an expansion threshold, where the third packet expansion threshold is used to indicate that the nominal packet padding value used by the second device when the first value corresponding to the allocated RU is greater than or equal to the third packet expansion threshold
  • a third nominal packet fill value, the third nominal packet fill value is 8 microseconds.
  • the NSS index mask subfield occupies at least 8 bits, the ith bit of the NSS index mask subfield is 0, and the physical layer packet extension threshold information field does not include the NSS Set of packet extension threshold subfields for i.
  • the physical layer packet extension threshold information field is used to indicate that when the NSS used by the second device is greater than the NSS corresponding to the highest digit of the non-zero bit of the NSS index mask subfield, the The nominal packet filling value used by the second device when the first value corresponding to the allocated RU is greater than or equal to the packet expansion threshold is 20 microseconds.
  • the processing module 1510 is configured to generate a PPDU
  • the transceiver module 1520 is configured to send the PPDU to the second device
  • the PPDU includes an NSS subfield and a physical layer packet extension threshold information field
  • the physical layer packet extension The threshold information field includes packet extension threshold subfields corresponding to different nominal packet padding values
  • the packet extension threshold subfield is used to indicate the packet extension threshold
  • the packet extension threshold subfield is used to indicate that the second device is used when the second value is greater than or equal to the nominal packet padding value used when the packet extension threshold is used
  • the value range of n is [1,...,N], where N is an integer greater than 8, where the second value is the same as the NSS used by the second device It is related to the number of allocated RU equivalently encoded RU blocks.
  • the physical layer packet extension threshold information field includes a first packet extension threshold subfield corresponding to the first nominal packet padding value, and the first packet extension threshold subfield is used to indicate the first a packet expansion threshold, where the first packet expansion threshold is used to indicate that the nominal packet padding value used by the second device when the second value is greater than or equal to the first packet expansion threshold is the first nominal packet padding value
  • the first nominal packet filling value is 20 microseconds.
  • the physical layer packet extension threshold information field includes a second packet extension threshold subfield corresponding to the second nominal packet padding value, and the second packet extension threshold subfield is used to indicate the second a packet expansion threshold, where the second packet expansion threshold is used to indicate that the nominal packet padding value used by the second device when the second value is greater than or equal to the second packet expansion threshold is the second nominal packet padding value Recharge, the second nominal packet filling value is 16 microseconds.
  • the physical layer packet extension threshold information field includes a third packet extension threshold subfield corresponding to a third nominal packet padding value, and the third packet extension threshold subfield is used to indicate the third a packet expansion threshold, where the third packet expansion threshold is used to indicate that the nominal packet padding value used by the second device when the second value is greater than or equal to the third packet expansion threshold is the third nominal packet padding value Recharge, the third nominal packet filling value is 8 microseconds.
  • Example 6 the processing module 1510 is configured to generate a PPDU, and the transceiver module 1520 is configured to send the PPDU and a first packet extension threshold range, where the first packet extension threshold range is used to indicate that the third value is located in the first packet extension In the threshold range, the communication apparatus 1500 uses the nominal packet padding value used for sending data to the first device, and the nominal packet padding values corresponding to different packet extension threshold ranges are different.
  • the third value satisfies the following relationship:
  • x is the third value
  • NSS is the NSS used by the communication device 1500
  • RU is the RU size used by the communication device 1500
  • Modulation is the order of the modulation method used by the communication device 1500 .
  • processing module 1510 in this embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 1520 may be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • the communication apparatus 1500 can correspondingly implement the behaviors and functions of the second device in the foregoing method embodiments.
  • the transceiver module 1520 is configured to receive a physical layer protocol data unit PPDU from the first device, where the PPDU includes a physical layer packet extension threshold presence subfield and a physical layer packet extension threshold field, where the physical layer packet extension threshold exists
  • the value of the subfield is 1, and the physical layer packet extension threshold field includes the resource unit RU index mask subfield, the spatial stream number NSS subfield, and the physical layer packet extension threshold information field; the physical layer packet extension threshold information field includes corresponding different Multiple packet extension threshold subfield sets of nominal packet filling values, each packet extension threshold subfield set is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b, and the modulation threshold is used to determine the communication device 1500
  • the nominal packet padding value used when the modulation mode is greater than or equal to the modulation threshold; wherein, the value range of n is a subset of [1,...,N], N is an integer greater than or equal to 1, and the value of b The value range is a subset of
  • the processing module 1510 is configured to determine the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y according to the modulation threshold corresponding to the RU whose NSS is n and the sequence number is m1 indicated by the physical layer packet extension threshold field.
  • m1 is the smallest sequence number of the sequence numbers greater than the y corresponding to the bit 1 in the RU index mask subfield, or the m1 is the largest sequence number of the sequence numbers smaller than the y corresponding to the bit 1 in the RU index mask subfield serial number.
  • the value of the RU index mask subfield corresponding to the sequence number less than y includes 1.
  • the sequence number corresponding to the bit in the RU index mask subfield being 1 is not greater than the y, and the processing module 1510 is configured to determine that the nominal packet padding value corresponding to the RU whose sequence number is x is 20 microseconds.
  • the communication apparatus 1500 uses DCM, and the processing module 1510 is configured to determine the nominal packet padding value to be used according to the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y+1, wherein , is that the y sequence number corresponds to multiple RUs of different sizes, or the processing module 1510 is configured to determine the nominal packet padding value according to the modulation threshold corresponding to the RU whose NSS is n and the sequence number is y, where the y sequence number corresponds to multiple RUs of different sizes, and the RU employed by the communication device 1500 is not the largest RU of the plurality of RUs of different sizes.
  • the transceiver module 1520 is configured to receive a PPDU from the first device, where the PPDU includes a physical layer packet extension threshold existence subfield and a physical layer packet extension threshold field, where the physical layer packet extension threshold existence subfield has a value is 1, the physical layer packet extension threshold field includes a resource unit RU index mask subfield, a spatial stream number NSS subfield, and a physical layer packet extension threshold information field; the physical layer packet extension threshold information field includes corresponding to different nominal packet fills.
  • each packet extension threshold subfield set is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b, and the modulation threshold is used to determine whether the communication device 1500 is modulating
  • the nominal packet padding value used when the mode is greater than or equal to the modulation threshold; wherein, the value range of n is a subset of [1,...,N], N is an integer greater than or equal to 1, and the value range of b is A subset of [m, .
  • the processing module 1510 is configured to determine, according to the physical layer packet extension threshold field, that the nominal packet padding value corresponding to the RU with the sequence number y is 0 microseconds.
  • the value of the RU index mask subfield corresponding to the sequence number less than y does not include 1.
  • the transceiver module 1520 is configured to receive a PPDU from the first device, where the PPDU includes a physical layer packet extension threshold existence subfield and a physical layer packet extension threshold field, where the physical layer packet extension threshold existence subfield has a value is 1, the physical layer packet extension threshold field includes a resource unit RU index mask subfield, a spatial stream number NSS subfield, and a physical layer packet extension threshold information field; the physical layer packet extension threshold information field includes corresponding to different nominal packet fills.
  • each packet extension threshold subfield set is used to indicate the modulation threshold corresponding to the RU whose NSS is n and the sequence number is b, and the modulation threshold is used to determine whether the communication device 1500 is modulating
  • the nominal packet filling value used when the mode is greater than or equal to the modulation threshold; wherein, the value range of n is a subset of [1,...,N], N is an integer greater than or equal to 1, and the value range of b is A subset of [m,...,M], m and M are integers greater than or equal to 0, the RU with the serial number y corresponds to the bit set to 0 in the RU index mask subfield, and the value range of b does not include y ;
  • the processing module 1510 is configured to determine, according to the physical layer packet extension threshold field, the nominal packet filling value corresponding to the RU with the sequence number y of 8 microseconds, 16 microseconds or 20 microseconds.
  • the NSS used by the communication device 1500 is greater than the value indicated by the NSS subfield, and the processing module 1510 is further configured to determine that the nominal packet padding value corresponding to the RU with the sequence number y is 8 microseconds, 16 microseconds second or 20 microseconds; or, if the NSS adopted by the communication device 1500 is greater than the value indicated by the NSS subfield, the processing module 1510 is further configured to determine the RU with the serial number y according to the adopted NSS and the modulation threshold corresponding to the RU with the serial number y The corresponding nominal packet padding value.
  • the transceiver module 1520 is configured to receive a PPDU from the first device, where the PPDU includes an NSS index mask subfield, an NSS subfield, and a physical layer packet extension threshold information field, wherein the physical layer packet extension threshold information field Including a plurality of packet extension threshold subfield sets corresponding to different nominal packet filling values, each of the packet extension threshold subfield sets includes a plurality of packet extension threshold subfields corresponding to a plurality of indicating NSSs, the packet extension threshold subfields The field is used to indicate to the communication device 1500 the corresponding packet expansion threshold when the NSS is n, and the number of RU blocks after the allocated resource unit RU equivalent encoding is the first value, the packet expansion threshold subfield is used for instructing the communication device 1500 to use a nominal packet padding value when the first value is greater than or equal to the packet extension threshold, the value range of n is [1, . . . , N], and N is an integer greater than 8;
  • the processing module 1510 is configured to determine, according to the physical layer packet extension threshold information field and the first value, a nominal packet padding value used when the NSS of j is adopted, where j is an integer greater than or equal to 1.
  • the first value satisfies the following formula:
  • N CBPRU N RU242 * N BPSCS ;
  • N CBPRU is the first value
  • N RU242 is the maximum number of RU242 that the RU can include
  • N BPSCS is the number of encoded bits carried by each subcarrier on a single space-time stream.
  • the plurality of packet extension threshold subfield sets include a first packet extension threshold subfield set corresponding to the first nominal packet padding value, and the first packet extension threshold subfield set in the first packet extension threshold subfield set
  • a first packet extension threshold subfield is used to indicate to the communication device 1500 that the allocated resource unit RU equivalently encoded number of RU blocks is the first value, and when the NSS used by the communication device 1500 is n, the corresponding first value is a packet expansion threshold, where the first packet expansion threshold is used to instruct the communication apparatus 1500 to use a first nominal packet padding value when the first value corresponding to the allocated RU is greater than or equal to the first packet expansion threshold, so
  • the first nominal packet filling value is 20 microseconds;
  • the communication apparatus 1500 determines the nominal packet padding value used when using the NSS of j Fill in values for the first nominal packet.
  • the plurality of packet extension threshold subfield sets further include a second packet extension threshold subfield set corresponding to the second nominal packet padding value, and the second packet extension threshold subfield set includes A second packet extension threshold subfield is used to indicate to the communication device 1500 that the number of RU blocks after the allocated resource unit RU equivalent encoding is the first value, and when the NSS adopted by the communication device 1500 is n, the corresponding Two-packet expansion threshold, where the second packet expansion threshold is used to indicate the second nominal packet padding value used when the first value corresponding to the allocated RU on the communication apparatus 1500 is greater than or equal to the second packet expansion threshold , the second nominal packet filling value is 16 microseconds;
  • N CBPRU When NSS is j, N CBPRU is greater than or equal to the second nominal packet padding value corresponding to the second packet extension threshold subfield where NSS is j, and is smaller than the first packet extension threshold subfield where NSS is j
  • the first nominal packet padding value corresponding to the field the communication device 1500 determines the nominal packet padding value to be used when the NSS of j is used, and the second nominal packet padding value is the second nominal packet padding value.
  • the plurality of packet extension threshold subfield sets further include a third packet extension threshold subfield set corresponding to the third nominal packet padding value, and the third packet extension threshold subfield set includes A third packet extension threshold subfield is used to indicate to the communication device 1500 that the number of RU blocks after the allocated resource unit RU equivalent encoding is the first value, and when the NSS used by the communication device 1500 is n, the corresponding A three-packet extension threshold, where the third packet extension threshold is used to instruct the communication apparatus 1500 to use a third nominal packet padding value to be used when the first value corresponding to the allocated RU is greater than or equal to the third packet extension threshold,
  • the third nominal packet filling value is 8 microseconds;
  • N CBPRU When NSS is j, N CBPRU is greater than or equal to the third nominal packet padding value corresponding to the third packet extension threshold subfield where NSTS is j, and is smaller than the second packet extension threshold subfield where NSTS is j
  • the second nominal packet padding value corresponding to the field the communication device 1500 determines the third nominal packet padding value to be used when the NSS of j is used.
  • the NSS index mask subfield occupies at least 8 bits, the ith bit of the NSS index mask subfield is 0, and the physical layer packet extension threshold information field does not include the NSS The set of subfields of i.
  • the NSS used by the communication apparatus 1500 is greater than the NSS corresponding to the highest digit of the non-zero bit in the NSS index mask subfield, and the processing module 1510 is further configured to perform the operation in the first RU corresponding to the allocated RU.
  • the nominal packet padding value used when a value is greater than or equal to the packet extension threshold is 20 microseconds.
  • the transceiver module 1520 is configured to receive a PPDU from the first device, where the PPDU includes an NSS subfield and a physical layer packet extension threshold information field, wherein the physical layer packet extension threshold information field includes a packet filled with different nominal values.
  • the packet expansion threshold subfield corresponding to the recharge, the packet expansion threshold subfield is used to indicate the packet expansion threshold, and the packet expansion threshold subfield is used to instruct the communication apparatus 1500 when the second value is greater than or equal to the packet expansion threshold
  • the nominal packet padding value used when extending the threshold, the value range of n is [1,...,N], where N is an integer greater than 8, where the second value is the same as the NSS used by the second device and the allocated RU
  • the number of RU blocks after equivalent encoding is related;
  • the processing module 1510 is configured to determine the second value based on the adopted NSS and the number of RU blocks equivalently encoded by the allocated resource unit RU, and according to the second value and the physical layer packet extension threshold information field determines the nominal packet padding value used.
  • the processing module 1510 is specifically configured to determine the second value according to the following relationship:
  • NSS the NSS corresponding to the RU allocated by the communication device 1500
  • N CBPRU the number of equivalently encoded RU blocks allocated by the communication device 1500 , which satisfies the following relationship:
  • N CBPRU N RU242 * N BPSCS ;
  • N RU242 is the maximum number of RU242 that the RU can include, and N BPSCS is the number of encoded bits carried by each subcarrier on a single space-time stream.
  • the physical layer packet extension threshold information field includes a first packet extension threshold subfield corresponding to the first nominal packet padding value, and the first packet extension threshold subfield is used to indicate the first a packet expansion threshold, where the first packet expansion threshold is used to instruct the communication apparatus 1500 to use a nominal packet padding value when the second value is greater than or equal to the first packet expansion threshold, and the first nominal packet padding value is used,
  • the first nominal packet filling value is 20 microseconds;
  • the processing module 1510 determines that the nominal packet padding value used by the communication device 1500 is the first nominal packet padding value.
  • the physical layer packet extension threshold information field includes a second packet extension threshold subfield corresponding to the second nominal packet padding value, and the second packet extension threshold subfield is used to indicate the second a packet expansion threshold, where the second packet expansion threshold is used to instruct the communication apparatus 1500 to use a nominal packet padding value when the second value is greater than or equal to the second packet expansion threshold, and the second nominal packet padding value is used,
  • the second nominal packet filling value is 16 microseconds;
  • the processing module 1510 determines that the nominal packet padding value used by the communication device 1500 is the second packet expansion threshold Nominal packet padding value.
  • the physical layer packet extension threshold information field includes a third packet extension threshold subfield corresponding to a third nominal packet padding value, and the third packet extension threshold subfield is used to indicate the third a packet expansion threshold, where the third packet expansion threshold is used to instruct the communication apparatus 1500 to use the nominal packet padding value when the second value is greater than or equal to the third packet expansion threshold, and the third nominal packet padding value is used,
  • the third nominal packet filling value is 8 microseconds;
  • the processing module 1510 determines that the nominal packet padding value used by the communication device 1500 is the third packet expansion threshold Nominal packet padding value.
  • the transceiver module 1520 is configured to receive a PPDU from the first device and a first packet extension threshold range, where the first packet extension threshold range is used to indicate that when the third value is within the first packet extension threshold range, The nominal packet padding value used by the communication apparatus 1500 to send data to the first device, and the nominal packet padding values corresponding to different packet extension threshold ranges are different, wherein the third value is the size of the NSS and RU used by the communication apparatus 1500 And one or more parameters in the modulation mode are related;
  • the processing module 1510 determines that the nominal packet padding value used by the communication device 1500 is the nominal packet padding value corresponding to the first packet extension threshold range.
  • the third value satisfies the following relationship:
  • x is the third value
  • NSS is the NSS used by the communication device 1500
  • RU is the RU size used by the communication device 1500
  • Modulation is the order of the modulation method used by the communication device 1500 .
  • processing module 1510 in this embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 1520 may be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • FIG. 16 shows a communication apparatus 1600 provided by an embodiment of the present application, wherein the communication apparatus 1600 may be an AP or a STA, and can implement the function of the first device or the second device in the method provided by the embodiment of the present application; the communication apparatus 1600 It may also be an apparatus capable of supporting the first device to implement the functions corresponding to the methods provided in the embodiments of the present application, or an apparatus capable of supporting the second devices to implement the functions corresponding to the methods provided in the embodiments of the present application.
  • the communication device 1600 may be a chip or a chip system. In this embodiment of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication apparatus 1600 includes at least one processor 1620, configured to implement or support the communication apparatus 1600 to implement the function of the first device or the second device in the method provided in this embodiment of the present application, for example, to generate the aforementioned PPDU.
  • Communication apparatus 1600 may also include at least one memory 1630 for storing program instructions and/or data.
  • Memory 1630 and processor 1620 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 1620 may cooperate with memory 1630.
  • the processor 1620 may execute program instructions and/or data stored in the memory 1630 to cause the communication device 1600 to implement the corresponding method. At least one of the at least one memory may be located in the processor.
  • the communication apparatus 1600 may also include a transceiver 1610 for communicating with other devices through a transmission medium, so that the devices used in the communication apparatus 1600 may communicate with other devices.
  • a transceiver 1610 for communicating with other devices through a transmission medium, so that the devices used in the communication apparatus 1600 may communicate with other devices.
  • the other device is a network device; or, when the communication device is a network device, the other device is a terminal.
  • the processor 1620 may use the transceiver 1610 to transmit and receive data.
  • the transceiver 1610 may specifically be a transceiver.
  • the communication device 1600 may also be a radio frequency unit, and the radio frequency unit may be independent of the communication device 1600 or integrated within the communication device 1600 .
  • the above-mentioned transceiver 1610 may also include an antenna, such as a remote antenna independent of the communication device 1600 , or an antenna integrated in the communication device 1600 .
  • the above-mentioned transceiver module 1520 may be the transceiver 1610 .
  • the specific connection medium between the transceiver 1610, the processor 1620, and the memory 1630 is not limited in the embodiments of the present application.
  • the memory 1630, the processor 1620, and the transceiver 1610 are connected through a bus 1640 in FIG. 16.
  • the bus is represented by a thick line in FIG. 16, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is shown in FIG. 16, but it does not mean that there is only one bus or one type of bus.
  • the processor 1620 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement Alternatively, each method, step, and logic block diagram disclosed in the embodiments of the present application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 1630 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), Such as random-access memory (random-access memory, RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the communication device in the above-mentioned embodiment may be a terminal or a circuit, or may be a chip applied in the terminal or other combined devices or components having the above-mentioned terminal function.
  • the transceiver module may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver module may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver module may be an input/output interface of the chip or the chip system
  • the processing module may be a processor of the chip or the chip system.
  • the AP and STA described in the embodiments of the present application can also be implemented by using the following: one or more field programmable gate arrays (FPGA), programmable logic devices (programmable logic device (PLD), controller, state machine, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGA field programmable gate arrays
  • PLD programmable logic device
  • state machine state machine
  • gate logic discrete hardware components
  • discrete hardware components any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • the first device in this embodiment of the present application may be an AP or a STA.
  • the second device may be an AP or a STA.
  • the APs in the above various product forms have any functions of the APs in the above method embodiments, which will not be repeated here;
  • the STAs in the above various product forms have any functions of the STAs in the above method embodiments, which are not described here. Repeat.
  • An embodiment of the present application further provides a communication system.
  • the communication system includes a second device and a first device, or may further include more first devices and second devices.
  • the communication system includes a second device and a first device for implementing the related functions of FIG. 9 or FIG. 10 or FIG. 12 or FIG. 14 .
  • the first device is used to implement the functions of the first device part related to the above-mentioned FIG. 9 or FIG. 10 or FIG. 12 or FIG. 14 , respectively.
  • the second device is used to implement the functions of the second device related to the above-mentioned FIG. 9 or FIG. 10 or FIG. 12 or FIG. 14 .
  • the first device may execute S901-S902 in the embodiment shown in FIG. 9
  • the second device may execute, for example, S902-S903 in the embodiment shown in FIG. 9
  • the first device may execute the steps shown in FIG. 10 .
  • the second device can execute, for example, S1002-S1003 in the embodiment shown in FIG.
  • the first device can execute S1001-S1002 in the embodiment shown in FIG. 12
  • the second device can execute Execute, for example, S1202-S1203 in the embodiment shown in FIG. 10
  • the first device can execute S1401-S1402 in the embodiment shown in S1403.
  • Embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when executed on a computer, cause the computer to execute the first device or the second device in FIG. 9 or FIG. 10 or FIG. 12 or FIG. 14 . method.
  • the embodiments of the present application also provide a computer program product, including computer program code, when the computer program code runs on the computer, the computer program code causes the computer to execute the first device or the second device in FIG. 9 or FIG. 10 or FIG. 12 or FIG. 14 . method of execution.
  • An embodiment of the present application provides a chip system, where the chip system includes a processor, and may further include a memory, for implementing the function of the first device or the second device in the foregoing method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • An embodiment of the present application further provides a communication device, including a processor and an interface; the processor is configured to execute the method for indicating a nominal packet filling value described in any of the above method embodiments; or, the processor is configured to The method for determining the nominal packet filling value described in any of the above method embodiments is executed.
  • the above communication device may be a chip, and the processor may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor can be a general-purpose processor, which is realized by reading the software codes stored in the memory, and the memory can be integrated in the processor, and can be located outside the processor and exist independently.
  • At least one (a) of a, b or c can represent: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c Can be single or multiple.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, sequence, priority or priority of multiple objects. Importance.
  • the first packet expansion threshold and the second packet expansion threshold are only for distinguishing different packet expansion thresholds, but do not indicate the difference in priority or importance of the two packet expansion thresholds.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the word "exemplary” is used to indicate an example or illustration. Any embodiment or implementation described in this application summary as an “example” should not be construed as preferred over other embodiments or implementations. That is, the use of the word “example” is intended to present concepts in a concrete manner.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, optical fiber, digital subscriber line, DSL for short) or wireless (eg infrared, wireless, microwave, etc.) means.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains an integration of one or more available media.
  • the available media can be magnetic media (eg, floppy disks, hard disks, magnetic tape), optical media (eg, digital video disc (DVD) for short), or semiconductor media (eg, SSD), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Communication Control (AREA)

Abstract

本申请提供一种名义包填充值的指示方法、确定方法及通信装置,用于降低物理层包扩展门限字段的开销。其中指示方法包括:第一设备生成PPDU,以及向第二设备发送该PPDU,该PPDU包括的物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,当序号为y的RU的RU索引掩码子字段的值为0,b的取值范围不包括y;同一名义包填充值所对应的包扩展门限子字段集合中,序号为y的RU的RU索引掩码子字段的值为0用于指示NSS为n、序号为y的RU的调制门限为NSTS为n、序号为m1的RU对应的调制门限。

Description

一种名义包填充值的指示方法、确定方法及通信装置
相关申请的交叉引用
本申请要求在2021年01月11日提交中国专利局、申请号为202110031666.3、申请名称为“一种名义包填充值的指示方法、确定方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线保真技术领域,尤其涉及一种名义包填充值的指示方法、确定方法及通信装置。
背景技术
为了保证接收机接收来自发送机的数据包能够有足够的处理时间,接收机可指示某个空时流数(number of spatial and time stream,NSTS)/空时流数(number of spatial and time stream,NSTS),某个资源单元(resource unit,RU)大小对应的调制门限。发送机可根据该调制门限确定要使用的名义包填充值。之后发送机根据该名义包填充值确定实际填充值,以根据实际填充值填充发送给接收机的数据包可能包括的包扩展。包扩展里面的数据是接收机不需要的,所以可在包扩展的处理时间内处理其他数据,从而保证接收机有足够的处理时间。
发送端采用的NSTS、RU大小以及调制方式中的一种或多种不同,对应接收端需要的最小处理时间也所有不同,即对应的名义包填充值可能不同。目前穷尽式或遍历式地给出各个NSTS、RU以及调制门限分别对应的名义包填充值。随着设备支持的NSTS的增大,RU大小的增大,通过穷尽式或遍历式地给出各个NSTS、RU以及调制门限对应的名义包填充值,开销较大。
发明内容
本申请提供一种名义包填充值的指示方法、确定方法及通信装置,用于降低指示名义包填充值的开销,且能够较为灵活地指示各个NSTS以及各个RU大小对应的名义包填充值。
第一方面,提供一种名义包填充值的指示方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第一设备为例进行描述,其中,第一设备可以是AP。该方法包括:
第一设备生成物理层协议数据单元(physical protocol data unit,PPDU),以及向第二设备发送该PPDU,该PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,物理层包扩展门限字段包括RU索引掩码子字段、NSS子字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,每个包扩展门限子字段集合用于 指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值,其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,当序号为y的RU对应的RU索引掩码子字段的值为0,b的取值范围不包括y;
同一名义包填充值所对应的包扩展门限子字段集合中,所述序号为y的RU对应的RU索引掩码子字段的值为0用于指示NSS为n、序号为y的RU对应的调制门限为NSTS为n、序号为m1的RU对应的调制门限,其中,所述m1为RU索引掩码子字段中比特为1对应的大于所述y的序号中的最小序号,或者,所述m1为RU索引掩码子字段中比特为1对应的小于所述y的序号中的最大序号。
该方案中,NSS为n,序号为y的RU对应的调制门限可为NSS为n,序号为m1的RU对应的调制门限。即可通过用于指示NSS为n,序号为m1的RU对应的调制门限的包扩展门限子字段指示NSS为n,序号为y的RU对应的调制门限。因此,物理层包扩展门限信息字段可省略用于指示NSS为n,序号为y的RU对应的调制门限的包扩展门限子字段,仍然能够通过用于指示NSS为n,序号为m1的RU对应的调制门限的包扩展门限子字段指示NSS为n,序号为y的RU对应的调制门限。即不需要遍历全部的不同大小的RU,也能够指示某个RU对应的调制门限。从而节省物理层包扩展门限字段的开销。
第二方面,提供一种名义包填充值的确定方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第二设备为例进行描述,其中,第二设备可以是STA。该方法包括:
第二设备接收来自第一设备的PPDU,该PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,物理层包扩展门限字段包括RU索引掩码子字段、NSS子字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值,其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,当序号为y的RU对应的RU索引掩码子字段的值为0,所述b的取值范围不包括y;
所述第二设备根据物理层包扩展门限字段所指示的NSS为n、序号为m1的RU对应的调制门限确定NSS为n、序号为y的RU对应的调制门限,其中,所述m1为RU索引掩码子字段中比特为1对应的大于所述y的序号中的最小序号,或者,所述m1为RU索引掩码子字段中比特为1对应的小于所述y的序号中的最大序号。
与第一方面提供的方案对应,尽管第一设备发送给第二设备的PPDU不包括用于指示NSS为n、序号为y的RU对应的调制门限的包扩展门限子字段集合,第二设备仍然可以确定NSS为n,序号为y的RU对应的调制门限。例如,第二设备可根据NSS为n、序号为m1的RU对应的调制门限确定NSS为n、序号为y的RU对应的调制门限。其中,m1需要满足的条件是:m1为RU索引掩码子字段中比特为1对应的大于所述y的序号中的最小序号,或者,m1为RU索引掩码子字段中比特为1对应的小于所述y的序号中的最大序 号。即第二设备确定有满足条件的m1,则可以确定NSS为n、序号为y的RU对应的调制门限。
在第一方面和第二方面的一种可能的实现方式中,小于y的序号对应的RU索引掩码子字段的值中包括1。由于RU索引掩码子字段的值为0时,对应的RU可能有多个,即有多个小于y的序号。基于这种情况,该方案进一步限定了y需要满足的条件,即小于y的序号对应的RU索引掩码子字段的值中包括1时,NSS为n、序号为y的RU对应的调制门限为NSTS为n、序号为m1的RU对应的调制门限。也就是如果不存在满足此条件的y,NSS为n、序号为y的RU对应的调制门限可以是其他可能的值,例如为某个固定的值。这种情况下,第二设备可直接确定要使用的名义包填充值为某个固定值,而不会根据NSS为n、序号为m1的RU对应的调制门限确定要使用的名义包填充值,更为简单。
在第一方面的一种可能的实现方式中,RU索引掩码子字段中的比特为1对应的序号均不大于所述y,则所述序号为y的RU对应的RU索引掩码子字段的值为0,用于指示NSS为n,序号为y的RU对应的名义包填充值为20微秒。相应的,在第二方面的一种可能的实现方式中,若RU索引掩码子字段中的比特为1对应的序号均不大于所述y,第二设备确定序号为y的RU对应的名义包填充值为20微秒。该方案指的是如果不存在满足条件的m1,那么序号为y的RU对应的名义包填充值可以是固定的某个值,例如为20微秒。
在第二方面的一种可能的实现方式中,若第二设备使用(dual carrier modulation,DCM),第二设备根据NSS为n,序号为y+1的RU对应的调制门限确定要使用的名义包填充值,其中,为y序号对应多个大小不同的RU。
该方案考虑到多种RU(RU与MRU的组合)对应一个RU分配索引,即对应一个序号。由于多种RU合并,所以可减少物理层包扩展门限字段的开销。这种情况下,第二设备可不按照NSS为n,序号为y的RU对应的调制门限确定要使用的名义包填充值,例如第二设备可根据NSS为n,序号为y+1的RU对应的调制门限确定要使用的名义包填充值。
在第二方面的一种可能的实现方式中,若第二设备使用DCM,第二设备根据NSS为n,序号为y的RU对应的调制门限确定所述名义包填充值,其中,为y序号对应多种RU,所述多种RU中至少包括一种多资源单元MRU,且所述第二设备采用的RU不是所述多个RU中的最大RU。
同样,为了减少物理层包扩展门限字段的开销,可合并多种RU。即多种RU(RU与MRU的组合)对应一个RU分配索引,即对应一个序号。这种情况下,如何第二设备发送数据采用的RU并不是这多种RU中的最大RU,那么第二设备即使使用了DCM,第二设备仍然可以根据NSS为n,序号为y的RU对应的调制门限确定要使用的名义包填充值,而不是根据NSS为n,序号为y+1的RU对应的调制门限确定要使用的名义包填充值。
第三方面,提供一种名义包填充值的指示方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第一设备为例进行描述,其中,第一设备可以是AP。该方法包括:
第一设备生成PPDU,以及向第二设备发送所述PPDU,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,所述物理层包扩展门限字段包括RU索引掩码子字段、NSS子字段,以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展 门限子字段集合,所述每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;
其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,当序号为y的RU对应的RU索引掩码子字段的值为0,所述物理层包扩展门限字段指示序号为y的RU对应的名义包填充值为0微秒,所述b的取值范围不包括y。
与第一方面的方案类似,该方案也可以在物理层包扩展门限字段中省略用于指示NSS为n,序号为y的RU对应的调制门限的包扩展门限子字段,尽管省略了NSS为n,序号为y的RU对应的调制门限的包扩展门限子字段,但是仍然指示序号为y的RU对应的名义包填充值为0微秒,从而节约了物理层包扩展门限字段的开销。
第四方面,提供一种名义包填充值的确定方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第二设备为例进行描述,其中,第二设备可以是STA。该方法包括:
第二设备接收来自第一设备的PPDU,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,所述物理层包扩展门限字段包括RU索引掩码子字段、NSS子字段,以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,序号为y的RU对应的RU索引掩码子字段的值为0,所述b的取值范围不包括y;
所述第二设备根据所述物理层包扩展门限字段确定序号为y的RU对应的名义包填充值为0微秒。
与第三方面的方案相应,第一设备发送给第二设备的PPDU中不包括用于指示NSS为n,序号为y的RU对应的调制门限的包扩展门限子字段,但是第二设备可确定如果序号为y的RU对应的RU索引掩码子字段的值为0,那么第二设备可确定要使用的名义包填充值为0微秒,更为简单。
在第三方面和第四方面的一种可能的实现方式中,小于y的序号对应的RU索引掩码子字段的值中不包括1。由于RU索引掩码子字段的值为0时,对应的RU可能有多个,即有多个小于y的序号。基于这种情况,该方案进一步限定了y需要满足的条件,即小于y的序号对应的RU索引掩码子字段的值中不包括1时,NSS为n、序号为y的RU对应的名义包填充值为0微秒。
第五方面,提供一种名义包填充值的指示方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第一设备为例进行描述,其中,第一设备可以是AP。该方法包括:
第一设备生成PPDU,以及向第二设备发送所述PPDU,所述PPDU包括物理层包扩 展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,物理层包扩展门限字段包括RU索引掩码子字段、NSS子字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;
其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,序号为y的RU对应RU索引掩码子字段中置0的比特位,所述b的取值范围不包括y,所述物理层包扩展门限字段用于指示序号为y的RU对应的名义包填充值为8微秒、16微秒或20微秒。
与第三方面的方案类似,该方案也可以在物理层包扩展门限字段中省略用于指示NSS为n,序号为y的RU对应的调制门限的包扩展门限子字段。对于省略了NSS为n,序号为y的RU对应的调制门限可规定对应的名义包填充值为某个固定值,例如8微秒、16微秒或20微秒。即尽管省略了NSS为n,序号为y的RU对应的调制门限的包扩展门限子字段,但是仍然指示序号为y的RU对应的名义包填充值,从而节约了物理层包扩展门限字段的开销。
第六方面,提供一种名义包填充值的确定方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第二设备为例进行描述,其中,第二设备可以是STA,也可以是STA。该方法包括:
第二设备接收来自第一设备的PPDU,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,所述物理层包扩展门限字段包括RU索引掩码子字段、NSS子字段,以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,序号为y的RU对应RU索引掩码子字段中置0的比特位,所述b的取值范围不包括y;
第二设备根据所述物理层包扩展门限字段确定序号为y的RU对应的名义包填充值为8微秒、16微秒或20微秒。
与第五方面的方案相应,第一设备发送给第二设备的PPDU中不包括用于指示NSS为n,序号为y的RU对应的调制门限的包扩展门限子字段,但是第二设备可确定如果序号为y的RU对应的RU索引掩码子字段的值为0,那么第二设备可确定要使用的名义包填充值为某个固定值,不需要参考其他序号的RU对应的调制门限确定要使用的名义包填充值,更为简单。
在第五方面或第六方面的一种可能的实现方式中,所述置0的比特位之前至少存在为1的比特位。由于RU索引掩码子字段的值为0时,对应的RU可能有多个,即有多个小于y的序号。基于这种情况,该方案进一步限定了所述置0的比特位之前至少存在为1的比特位,也就是进一步限定了y需要满足的条件,为y的序号对应的RU索引掩码子字段 中置0的比特位之前至少存在为1的比特位1的情况下,序号为y的RU对应的名义包填充值才为某个固定的值。
在第五方面的一种可能的实现方式中,所述物理层包扩展门限字段用于指示采用的NSS大于所述NSS子字段指示的值的所述第二设备使用的名义包填充值为8微秒、16微秒或20微秒。相应的,在第六方面的一种可能的实现方式中,第二设备采用的NSS大于所述NSS子字段指示的值,第二设备可确定要使用的名义包填充值为8微秒、16微秒或20微秒。
该方案中,可不需要遍历NSS,即如果第二设备采用的NSS大于所述NSS子字段指示的值,那么可规定第二设备要使用的名义包填充值为某个固定的值,例如8微秒、16微秒或20微秒。这样可进一步节约物理层包扩展门限字段的开销。
在第五方面的一种可能的实现方式中,所述物理层包扩展门限字段用于指示采用的NSS大于所述NSS子字段指示的值的所述第二设备根据所述第二设备采用的NSS,序号为y的RU对应的调制门限确定要使用的名义包填充值。相应的,在第六方面的一种可能的实现方式中,所述第二设备采用的NSTS大于所述NSS子字段指示的值,所述第二设备根据所述第二设备采用的NSS,序号为y的RU对应的调制门限确定要使用的名义包填充值。
该方案也不需要遍历NSS,即如果第二设备采用的NSS大于所述NSS子字段指示的值,那么可规定第二设备根据第二设备采用的NSS,序号为y的RU对应的调制门限确定要使用的名义包填充值,可进一步节约物理层包扩展门限字段的开销。
第七方面,提供一种名义包填充值的确定方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第一设备为例进行描述,其中,第一设备可以是AP。该方法包括:
第一设备生成PPDU,并向第二设备发送所述PPDU,所述PPDU包括空间流数NSS索引掩码子字段、NSS子字段、物理层包扩展门限信息字段;其中,所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合包括用于多个指示NSS为n对应的包扩展门限子字段,所述包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且第二设备采用的NSS为n时,对应的包扩展门限,所述包扩展门限子字段用于指示所述第二设备在所述第一值大于或等于所述包扩展门限时使用的名义包填充值,n的取值范围为[1,…,N],N为大于8的整数。
第八方面,提供一种名义包填充值的确定方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第二设备为例进行描述,其中,第二设备可以是STA。该方法包括:
第二设备接收来自第一设备的PPDU,所述PPDU包括空间流数NSS索引掩码子字段、NSS子字段、物理层包扩展门限信息字段,其中,所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合包括用于多个指示NSS为n对应的包扩展门限子字段,所述包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且第二设备采用的NSS为 n时,对应的包扩展门限,所述包扩展门限子字段用于指示所述第二设备在所述第一值大于或等于所述包扩展门限时使用的名义包填充值,n的取值范围为[1,…,N],N为大于8的整数;
所述第二设备根据所述物理层包扩展门限信息字段以及所述第一值确定采用为j的NSS时所使用的名义包填充值,j为大于或等于1的整数。
第七方面的方案中,物理层包扩展门限信息字段通过对应不同名义包填充值的多个包扩展门限子字段集合来指示第二设备所分配的资源单元RU等效编码后的RU块个数为第一值时,且采用NSS为n时,对应的包扩展门限。这样第二设备可根据与自己使用的NSS对应的包扩展门限子字段以及第一值,来确定要使用的名义包填充值。即通过采用NSS为n,且所分配的资源单元RU等效编码后的RU块个数为第一值时,对应的包扩展门限来替代通过NSS和RU大小对应的调制门限来指示名义包填充值。这样可降低物理层包扩展门限信息字段的维度,从而简化物理层包扩展门限信息字段,节省物理层包扩展门限信息字段的开销。
在一种可能的实现方式中,所述第一值满足如下公式:
N CBPRU=N RU242*N BPSCS
其中,N CBPRU为所述第一值,N RU242为所述RU能够最多包括的RU242个数,N BPSCS为单个空时流上的每个子载波所承载的编码后的比特个数。
第一值可认为是与为第二设备分配的RU有关,实际上是对第二设备分配的RU的一种量化。该方案提供了第一值的一种示例性的确定方式,本申请实施例对第一值的具体确定方式不作限制。
应理解,多个包扩展门限子字段集指示的名义包填充值的数量不同,第二设备确定使用的名义包填充值的方式也有所不同,可能包括如下几种情况。
情况一,所述多个包扩展门限子字段集合包括与第一名义包填充值对应的第一包扩展门限子字段集合,所述第一包扩展门限子字段集合中的一个第一包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且第二设备采用的NSS为n时,对应的第一包扩展门限,所述第一包扩展门限用于指示所述第二设备在所分配的RU对应的所述第一值大于或等于所述第一包扩展门限时使用的名义包填充值为所述第一名义包填充值,所述第一名义包填充值为20微秒。相应地,当NSS为j,N CBPRU大于或等于NSS为所述j的所述第一包扩展门限子字段对应的第一名义包填充值,所述第二设备确定采用为j的NSS时使用的名义包填充值为所述第一名义包填充值。
情况二,所述多个包扩展门限子字段集合还包括与第二名义填充值对应的第二包扩展门限子字段集合,所述第二包扩展门限子字段集合中的一个第二包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且第二设备采用的NSS为n时,对应的第二包扩展门限,所述第二包扩展门限用于指示所述第二设备在所分配的RU上对应的所述第一值大于或等于所述第二包扩展门限时使用的名义包填充值为所述第二名义包填充值,所述第二名义包填充值为16微秒。相应地,当NSS为j,N CBPRU大于或等于NSS为所述j的所述第二包扩展门限子字段对应的第二名义包填充值,且小于NSS为所述j的所述第一包扩展门限子字段对应的第一名义包填充值,所述第二设备确定采用为j的NSS时使用的名义包填充值为所述第二名义包填充值。
情况三,所述多个包扩展门限子字段集合还包括与第三名义包填充值对应的第三包扩 展门限子字段集合,所述第三包扩展门限子字段集合中的一个第三包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且第二设备采用的NSS为n时,对应的第三包扩展门限,所述第三包扩展门限用于指示所述第二设备在所分配的RU对应的所述第一值大于或等于所述第三包扩展门限时使用的名义包填充值为所述第三名义包填充值,所述第三名义包填充值为8微秒。相应地,当NSS为j,N CBPRU大于或等于NSTS为所述j的所述第三包扩展门限子字段对应的第三名义包填充值,且小于NSTS为所述j的所述第二包扩展门限子字段对应的第二名义包填充值,所述第二设备确定采用为j的NSS时使用的名义包填充值为所述第三名义包填充值。
在第七方面的一种可能的实现方式中,NSS索引掩码子字段占用至少8比特,NSS索引掩码子字段的第i个比特为0,物理层包扩展门限信息字段不包括NSS为所述i的包扩展门限子字段集合。该方案中,可通过NSS索引掩码子字段来指示可省略的包扩展门限子字段,以进一步节约物理层包扩展门限信息字段的开销。
在第八方面的一种可能的实现方式中,第二设备采用的NSS大于NSS索引掩码子字段非0比特的最高位数对应的NSS,第二设备在所分配的RU对应的第一值大于或等于所述包扩展门限时使用的名义包填充值为20微秒。该方案中,可定义满足特定条件,例如第二设备采用的NSS大于NSS索引掩码子字段非0比特的最高位数对应的NSS时,第二设备使用的名义包填充值为固定值,例如20微秒。这样第二设备在确定使用的名义包填充值是,不需要将NSS与多个包扩展门限子字段集合一一对比,更为直接简单。
第九方面,提供一种名义包填充值的确定方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第一设备为例进行描述,其中,第一设备可以是AP。该方法包括:
第一设备生成PPDU,并向第二设备发送所述PPDU,所述PPDU包括NSS子字段、物理层包扩展门限信息字段;其中,所述物理层包扩展门限信息字段包括与不同名义包填充值对应的包扩展门限子字段,所述包扩展门限子字段用于指示包扩展门限,所述包扩展门限子字段用于指示所述第二设备在第二值大于或等于所述包扩展门限时使用的名义包填充值,n的取值范围为[1,…,N],N为大于8的整数,其中,所述第二值与所述第二设备采用的NSS以及所分配的资源单元RU等效编码后的RU块个数相关。
与第七方面的方案不同之处在于,该方案中,物理包扩展门限信息字段不再单独指示关于NSS的包扩展门限,即一个包扩展门限字段即可指示多个NSS对应的包扩展门限,可以进一步简化物理层包扩展门限信息字段,以节省物理层包扩展门限信息字段的开销。
第十方面,提供一种名义包填充值的确定方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第二设备为例进行描述,其中,第二设备可以是STA。该方法包括:
第二设备接收来自第一设备的PPDU,所述PPDU包括空间流数NSS子字段、物理层包扩展门限信息字段,其中,所述物理层包扩展门限信息字段包括与不同名义包填充值对应的包扩展门限子字段,所述包扩展门限子字段用于指示包扩展门限,所述包扩展门限子字段用于指示所述第二设备在第二值大于或等于所述包扩展门限时使用的名义包填充值,n的取值范围为[1,…,N],N为大于8的整数,其中,所述第二值与所述第二设备采用 的NSS和所分配的资源单元RU等效编码后的RU块个数相关。
所述第二设备根据所采用的NSS和所述所分配的资源单元RU等效编码后的RU块个数确定所述第二值,并根据所述第二值以及所述物理层包扩展门限信息字段确定使用的名义包填充值。
该方案中,第二值可认为是与第二设备采用的NSS和所分配的资源单元RU等效编码后的RU块个数相关的一个值,例如第二值可基于采用的NSS和所分配的资源单元RU等效编码后的RU块个数确定。第二设备在确定使用的名义包填充值之前,可先确定第二值,从而根据第二值以及物理层包扩展门限信息字段确定使用的名义包填充值。
在第十方面的一种可能的实现方式中,第二设备根据所采用的NSS和所述所分配的资源单元RU等效编码后的RU块个数确定第二值,包括:第二设备根据如下关系确定第二值:
P index=f(NSS,?N CBPRU),其中,NSS为所述第二设备所分配的RU对应的NSS,N CBPRU为所述第二设备所分配的RU等效编码后的RU块个数,满足如下关系:
N CBPRU=N RU242*N BPSCS
N RU242为所述RU能够最多包括的RU242个数,N BPSCS为单个空时流上的每个子载波所承载的编码后的比特个数。
应理解,多个包扩展门限子字段指示的名义包填充值的数量不同,第二设备确定使用的名义包填充值的方式也有所不同,可能包括如下几种情况。
在第九方面或第十方面的一种可能的实现方式中,所述物理层包扩展门限信息字段包括与第一名义包填充值对应的第一包扩展门限子字段,所述第一包扩展门限子字段用于向第二设备指示第一包扩展门限,所述第一包扩展门限用于指示所述第二设备在所述第二值大于或等于所述第一包扩展门限时使用的名义包填充值为所述第一名义包填充值,所述第一名义包填充值为20微秒。相应地,所述第二设备在所述第二值大于或等于所述第一包扩展门限时,确定使用的名义包填充值为所述第一名义包填充值。
在第九方面或第十方面的一种可能的实现方式中,所述物理层包扩展门限信息字段包括与第二名义包填充值对应的第二包扩展门限子字段,所述第二包扩展门限子字段用于向第二设备指示第二包扩展门限,所述第二包扩展门限用于指示所述第二设备在所述第二值大于或等于所述第二包扩展门限时使用的名义包填充值为所述第二名义包填充值,所述第二名义包填充值为16微秒。相应地,所述第二设备在所述第二值大于或等于所述第二包扩展门限,且所述第二值小于所述第一包扩展门限时,确定使用的名义包填充值为所述第二名义包填充值。
在第九方面或第十方面的一种可能的实现方式中,所述物理层包扩展门限信息字段包括与第三名义包填充值对应的第三包扩展门限子字段,所述第三包扩展门限子字段用于向第二设备指示第三包扩展门限,所述第三包扩展门限用于指示所述第二设备在所述第二值大于或等于所述第三包扩展门限时使用的名义包填充值为所述第三名义包填充值,所述第三名义包填充值为8微秒。相应地,所述第二设备在所述第二值大于或等于所述第三包扩展门限,且所述第二值小于所述第二包扩展门限时,确定使用的名义包填充值为所述第三名义包填充值。
第十一方面,提供一种名义包填充值的确定方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如 芯片系统。下面以所述通信设备为第一设备为例进行描述,其中,第一设备可以是AP。该方法包括:
第一设备生成PPDU,并向第二设备发送该PPDU和第一包扩展门限范围,第一包扩展门限范围,所述第一包扩展门限范围用于指示第三值位于所述第一包扩展门限范围时,所述第二设备向所述第一设备发送数据所使用的名义包填充值,不同的包扩展门限范围对应的名义包填充值不同。
第十二方面,提供一种名义包填充值的确定方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第二设备为例进行描述,其中,第一设备可以是STA。该方法包括:
第二设备接收来自第一设备的物理层协议数据单元PPDU和第一门限范围,所述第一门限范围用于指示第三值位于所述第一包扩展门限范围时,所述第二设备向所述第一设备发送数据所使用的名义包填充值,不同的包扩展门限范围对应的名义包填充值不同,其中,所述第三值与所述第二设备采用的空间流数NSS、RU大小以及调制方式中的一种或多种参数相关;
若第三值位于所述第一包扩展门限范围,所述第二设备确定要使用的名义包填充值为与所述第一包扩展门限范围对应的名义包填充值。
与前述第七方面或第九方面的方案不同,该方案中,可定义多个包扩展门限范围,不同的包扩展门限范围对应的名义包填充值不同。第一设备可向第二设备指示一个包扩展门限范围,第二设备可根据影响名义包填充值的因素,例如第二设备采用的NSS、RU、第二设备采用的调制方式的阶数等一种或多种来确定一个量化值,再根据该量化值与第一设备发送的第一包扩展门限范围比较,进而确定名义包填充值。这种方式,由于第一包扩展门限范围可不通过物理层包扩展门限字段指示,所以可进一步降低物理层包扩展门限字段的开销。即使通过物理层包扩展门限字段指示,由于指示一个包扩展门限范围,而不用指示多个包扩展门限范围,也可以降低物理层包扩展门限字段的开销。
在第十一方面或第十二方面的一种可能的实现方式中,所述第三值满足如下关系:
x=f(NSTS,RU,Modulation)
其中,x为所述第三值,NSS为所述第二设备采用的NSS,RU为所述第二设备采用的RU大小,Modulation为所述第二设备采用的调制方式的阶数。
该方案示例了第三值的一种确定方式,指的是第三值与第二设备采用的NSS、RU和第二设备采用的调制方式的阶数中的一种或多种相关,具体的确定方式本申请实施例不作限定。
第十三方面,提供一种通信装置,例如该通信装置为如前所述的第一设备或设置在第一设备内的装置。所述通信装置可用于执行上述第一方面或第一方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第一方面或第一方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第一设备。其中,
所述处理模块用于生成PPDU,所述收发模块用于向第二设备发送所述PPDU,其中,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,物理层包扩展门限字段包括RU索引掩码子字段、NSS子 字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;
其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,当序号为y的RU对应的RU索引掩码子字段的值为0,所述b的取值范围不包括y;
同一名义包填充值所对应的包扩展门限子字段集合中,所述序号为y的RU对应的RU索引掩码子字段的值为0用于指示NSS为n、序号为y的RU对应的调制门限为NSTS为n、序号为m1的RU对应的调制门限,其中,所述m1为RU索引掩码子字段中比特为1对应的大于所述y的序号中的最小序号,或者,所述m1为RU索引掩码子字段中比特为1对应的小于所述y的序号中的最大序号。
在一种可能的实现方式中,小于y的序号对应的RU索引掩码子字段的值中包括1。
在一种可能的实现方式中,RU索引掩码子字段中的比特为1对应的序号均不大于所述y,则所述序号为y的RU对应的RU索引掩码子字段的值为0,用于指示NSS为n,序号为y的RU对应的名义包填充值为20微秒。
第十四方面,提供一种通信装置,例如该通信装置为如前所述的第二设备或设置在第二设备内的装置。所述通信装置可用于执行上述第二方面或第二方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第二方面或第二方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第二设备。其中,
所述收发模块用于接收来自第一设备的物理层协议数据单元PPDU,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,物理层包扩展门限字段包括资源单元RU索引掩码子字段、空间流数NSS子字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定通信装置在调制方式大于或等于所述调制门限时使用的名义包填充值;其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,当序号为y的RU对应的RU索引掩码子字段的值为0,所述b的取值范围不包括y;
所述处理模块用于根据所述物理层包扩展门限字段所指示的NSS为n、序号为m1的RU对应的调制门限,确定NSS为n、序号为y的RU对应的调制门限,所述m1为RU索引掩码子字段中比特为1对应的大于所述y的序号中的最小序号,或者,所述m1为RU索引掩码子字段中比特为1对应的小于所述y的序号中的最大序号。
在一种可能的实现方式中,小于y的序号对应的RU索引掩码子字段的值中包括1。
在一种可能的实现方式中,RU索引掩码子字段中的比特为1对应的序号均不大于所述y,所述处理模块用于确定序号为x的RU对应的名义包填充值为20微秒。
在一种可能的实现方式中,所述通信装置使用DCM,所述处理模块用于根据NSS为n,序号为y+1的RU对应的调制门限确定要使用的名义包填充值,其中,为y序号对应多个大小不同的RU,或者所述处理模块用于根据NSS为n,序号为y的RU对应的调制门 限确定所述名义包填充值,其中,为y序号对应多个大小不同的RU,且所述通信装置采用的RU不是所述多个大小不同的RU中的最大RU。
第十五方面,提供一种通信装置,例如该通信装置为如前所述的第一设备或设置在第一设备内的装置。所述通信装置可用于执行上述第三方面或第三方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第三方面或第三方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第一设备。其中,
所述处理模块用于生成PPDU,所述收发模块用于向第二设备发送所述PPDU,其中,PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,所述物理层包扩展门限字段包括资源单元RU索引掩码子字段、空间流数NSS子字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;
其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,当序号为y的RU对应的RU索引掩码子字段的值为0,同一名义包填充值所对应的物理层包扩展门限子字段中,所述序号为y的RU对应的RU索引掩码子字段的值为0指示序号为y的RU对应的名义包填充值为0微秒,所述b的取值范围不包括y。
在一种可能的实现方式中,小于x的序号对应的RU索引掩码子字段的值中不包括1。
第十六方面,提供一种通信装置,例如该通信装置为如前所述的第二设备或设置在第二设备内的装置。所述通信装置可用于执行上述第四方面或第四方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第四方面或第四方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第二设备。其中,
所述收发模块用于接收来自第一设备的PPDU,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,所述物理层包扩展门限字段包括资源单元RU索引掩码子字段、空间流数NSS子字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定通信装置在调制方式大于或等于所述调制门限时使用的名义包填充值;其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,序号为y的RU对应的RU索引掩码子字段的值为0,所述b的取值范围不包括y;
所述处理模块用于根据所述物理层包扩展门限字段确定序号为y的RU对应的名义包填充值为0微秒。
在一种可能的实现方式中,小于y的序号对应的RU索引掩码子字段的值中不包括1。
第十七方面,提供一种通信装置,例如该通信装置为如前所述的第一设备或设置在第 一设备内的装置。所述通信装置可用于执行上述第五方面或第五方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第五方面或第五方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第一设备。其中,
所述处理模块用于生成PPDU,所述收发模块用于向第二设备发送所述PPDU,其中,PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,物理层包扩展门限字段包括RU索引掩码子字段、NSS子字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;
其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,序号为y的RU对应RU索引掩码子字段中置0的比特位,所述b的取值范围不包括y,所述物理层包扩展门限字段用于指示序号为y的RU对应的名义包填充值为8微秒、16微秒或20微秒。
在一种可能的实现方式中,所述置0的比特位之前至少存在为1的比特位。
在一种可能的实现方式中,所述物理层包扩展门限字段用于指示采用的NSS大于所述NSS子字段指示的值的所述第二设备使用的名义包填充值为8微秒、16微秒或20微秒;或者,所述物理层包扩展门限字段用于指示采用的NSS大于所述NSS子字段指示的值的所述第二设备根据采用的NSS以及序号为y的RU对应的调制门限确定要使用的名义包填充值。
第十八方面,提供一种通信装置,例如该通信装置为如前所述的第二设备或设置在第二设备内的装置。所述通信装置可用于执行上述第六方面或第六方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第六方面或第六方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第二设备。其中,
所述收发模块用于接收来自第一设备的PPDU,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,所述物理层包扩展门限字段包括RU索引掩码子字段、NSS子字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定通信装置在调制方式大于或等于所述调制门限时使用的名义包填充值;其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,序号为y的RU对应RU索引掩码子字段中置0的比特位,所述b的取值范围不包括y;
所述处理模块用于根据所述物理层包扩展门限字段确定序号为y的RU对应的名义包填充值为8微秒、16微秒或20微秒。
在一种可能的实现方式中,所述置0的比特位之前至少存在为1的比特位。
在一种可能的实现方式中,所述通信装置采用的NSS大于所述NSS子字段指示的值,所述处理模块还用于确定序号为y的RU对应的名义包填充值为8微秒、16微秒或20微 秒;或者,所述通信装置采用的NSS大于所述NSS子字段指示的值,所述处理模块还用于根据采用的NSS以及序号为y的RU对应的调制门限确定序号为y的RU对应的名义包填充值。
第十九方面,提供一种通信装置,例如该通信装置为如前所述的第一设备或设置在第一设备内的装置。所述通信装置可用于执行上述第七方面或第七方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第七方面或第七方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第一设备。其中,
所述处理模块用于生成PPDU,所述收发模块用于向第二设备发送所述PPDU,其中,PPDU包括空间流数NSS索引掩码子字段、NSS子字段、物理层包扩展门限信息字段,所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合包括用于多个指示NSS为n对应的包扩展门限子字段,所述包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且第二设备采用的NSS为n时,对应的包扩展门限,所述包扩展门限子字段用于指示所述第二设备在所述第一值大于或等于所述包扩展门限时使用的名义包填充值,n的取值范围为[1,…,N],N为大于8的整数。
在一种可能的实现方式中,所述第一值满足如下公式:
N CBPRU=N RU242*N BPSCS
其中,N CBPRU为所述第一值,N RU242为所述RU能够最多包括的RU242个数,N BPSCS为单个空时流上的每个子载波所承载的编码后的比特个数。
在一种可能的实现方式中,所述多个包扩展门限子字段集合包括与第一名义包填充值对应的第一包扩展门限子字段集合,所述第一包扩展门限子字段集合中的一个第一包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且第二设备采用的NSS为n时,对应的第一包扩展门限,所述第一包扩展门限用于指示所述第二设备在所分配的RU对应的所述第一值大于或等于所述第一包扩展门限时使用的名义包填充值为所述第一名义包填充值,所述第一名义包填充值为20微秒。
在一种可能的实现方式中,所述多个包扩展门限子字段集合还包括与第二名义填充值对应的第二包扩展门限子字段集合,所述第二包扩展门限子字段集合中的一个第二包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且第二设备采用的NSS为n时,对应的第二包扩展门限,所述第二包扩展门限用于指示所述第二设备在所分配的RU上对应的所述第一值大于或等于所述第二包扩展门限时使用的名义包填充值为所述第二名义包填充值,所述第二名义包填充值为16微秒。
在一种可能的实现方式中,所述多个包扩展门限子字段集合还包括与第三名义包填充值对应的第三包扩展门限子字段集合,所述第三包扩展门限子字段集合中的一个第三包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且第二设备采用的NSS为n时,对应的第三包扩展门限,所述第三包扩展门限用于指示所述第二设备在所分配的RU对应的所述第一值大于或等于所述第三包扩展门限时使用的名义包填充值为所述第三名义包填充值,所述第三名义包填充值为8微秒。
在一种可能的实现方式中,所述NSS索引掩码子字段占用至少8比特,所述NSS索 引掩码子字段的第i个比特为0,所述物理层包扩展门限信息字段不包括NSS为所述i的包扩展门限子字段集合。
在一种可能的实现方式中,所述物理层包扩展门限信息字段用于指示所述第二设备采用的NSS大于所述NSS索引掩码子字段非0比特的最高位数对应的NSS时,所述第二设备在所分配的RU对应的所述第一值大于或等于所述包扩展门限时使用的名义包填充值为20微秒。
第二十方面,提供一种通信装置,例如该通信装置为如前所述的第二设备或设置在第二设备内的装置。所述通信装置可用于执行上述第八方面或第八方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第八方面或第八方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第二设备。其中,
所述收发模块用于接收来自第一设备的物理层协议数据单元PPDU所述PPDU包括空间流数NSS索引掩码子字段、NSS子字段、物理层包扩展门限信息字段,其中,所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合包括用于多个指示NSS为n对应的包扩展门限子字段,所述包扩展门限子字段用于向通信装置指示所分配的资源单元RU等效编码后的RU块个数为第一值,且第二设备采用的NSS为n时,对应的包扩展门限,所述包扩展门限子字段用于指示所述通信装置在所述第一值大于或等于所述包扩展门限时使用的名义包填充值,n的取值范围为[1,…,N],N为大于8的整数;
所述处理模块用于根据所述物理层包扩展门限信息字段以及所述第一值确定采用为j的NSS时所使用的名义包填充值,j为大于或等于1的整数。
在一种可能的实现方式中,所述第一值满足如下公式:
N CBPRU=N RU242*N BPSCS
其中,N CBPRU为所述第一值,N RU242为所述RU能够最多包括的RU242个数,N BPSCS为单个空时流上的每个子载波所承载的编码后的比特个数。
在一种可能的实现方式中,所述多个包扩展门限子字段集合包括与第一名义包填充值对应的第一包扩展门限子字段集合,所述第一包扩展门限子字段集合中的一个第一包扩展门限子字段用于向通信装置指示所分配的资源单元RU等效编码后的RU块个数为第一值,且第二设备采用的NSS为n时,对应的第一包扩展门限,所述第一包扩展门限用于指示所述通信装置在所分配的RU对应的所述第一值大于或等于所述第一包扩展门限时使用的第一名义包填充值,所述第一名义包填充值为20微秒;
当NSS为j,N CBPRU大于或等于NSS为所述j的所述第一包扩展门限子字段对应的第一名义包填充值,所述通信装置确定采用为j的NSS时使用的名义包填充值为所述第一名义包填充值。
在一种可能的实现方式中,所述多个包扩展门限子字段集合还包括与第二名义包填充值对应的第二包扩展门限子字段集合,所述第二包扩展门限子字段集合中的一个第二包扩展门限子字段用于向通信装置指示所分配的资源单元RU等效编码后的RU块个数为第一值,且第二设备采用的NSS为n时,对应的第二包扩展门限,所述第二包扩展门限用于指示所述通信装置在所分配的RU上对应的所述第一值大于或等于所述第二包扩展门限时使用的第二名义包填充值,所述第二名义包填充值为16微秒;
当NSS为j,N CBPRU大于或等于NSS为所述j的所述第二包扩展门限子字段对应的第二名义包填充值,且小于NSS为所述j的所述第一包扩展门限子字段对应的第一名义包填充值,所述通信装置确定采用为j的NSS时使用的名义包填充值为所述第二名义包填充值。
在一种可能的实现方式中,所述多个包扩展门限子字段集合还包括与第三名义包填充值对应的第三包扩展门限子字段集合,所述第三包扩展门限子字段集合中的一个第三包扩展门限子字段用于向通信装置指示所分配的资源单元RU等效编码后的RU块个数为第一值,且第二设备采用的NSS为n时,对应的第三包扩展门限,所述第三包扩展门限用于指示所述通信装置在所分配的RU对应的所述第一值大于或等于所述第三包扩展门限时使用的第三名义包填充值,所述第三名义包填充值为8微秒;
当NSS为j,N CBPRU大于或等于NSTS为所述j的所述第三包扩展门限子字段对应的第三名义包填充值,且小于NSTS为所述j的所述第二包扩展门限子字段对应的第二名义包填充值,所述通信装置确定采用为j的NSS时使用的名义包填充值为所述第三名义包填充值。
在一种可能的实现方式中,所述NSS索引掩码子字段占用至少8比特,所述NSS索引掩码子字段的第i个比特为0,所述物理层包扩展门限信息字段不包括NSS为所述i的子字段集合。
在一种可能的实现方式中,所述通信装置采用的NSS大于所述NSS索引掩码子字段非0比特的最高位数对应的NSS,所述处理模块还用于在所分配的RU对应的所述第一值大于或等于所述包扩展门限时使用的名义包填充值为20微秒。
第二十一方面,提供一种通信装置,例如该通信装置为如前所述的第一设备或设置在第一设备内的装置。所述通信装置可用于执行上述第九方面或第九方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第九方面或第九方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第一设备。其中,
所述处理模块用于生成PPDU,所述收发模块用于向第二设备发送所述PPDU,所述PPDU包括空间流数NSS子字段、物理层包扩展门限信息字段,其中,所述物理层包扩展门限信息字段包括与不同名义包填充值对应的包扩展门限子字段,所述包扩展门限子字段用于指示包扩展门限,所述包扩展门限子字段用于指示所述第二设备在第二值大于或等于所述包扩展门限时使用的名义包填充值,n的取值范围为[1,…,N],N为大于8的整数,其中,所述第二值与第二设备采用的NSS和所分配的RU等效编码后的RU块个数相关。
在一种可能的实现方式中,所述物理层包扩展门限信息字段包括与第一名义包填充值对应的第一包扩展门限子字段,所述第一包扩展门限子字段用于指示第一包扩展门限,所述第一包扩展门限用于指示所述第二设备在所述第二值大于或等于所述第一包扩展门限时使用的名义包填充值为所述第一名义包填充值,所述第一名义包填充值为20微秒。
在一种可能的实现方式中,所述物理层包扩展门限信息字段包括与第二名义包填充值对应的第二包扩展门限子字段,所述第二包扩展门限子字段用于指示第二包扩展门限,所述第二包扩展门限用于指示所述第二设备在所述第二值大于或等于所述第二包扩展门限时使用的名义包填充值为所述第二名义包填充值,所述第二名义包填充值为16微秒。
在一种可能的实现方式中,所述物理层包扩展门限信息字段包括与第三名义包填充值对应的第三包扩展门限子字段,所述第三包扩展门限子字段用于指示第三包扩展门限,所 述第三包扩展门限用于指示所述第二设备在所述第二值大于或等于所述第三包扩展门限时使用的名义包填充值为所述第三名义包填充值,所述第三名义包填充值为8微秒。
第二十二方面,提供一种通信装置,例如该通信装置为如前所述的第二设备或设置在第二设备内的装置。所述通信装置可用于执行上述第十方面或第十方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第十方面或第十方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第二设备。其中,
所述收发模块用于接收来自第一设备的PPDU,所述PPDU包括空间流数NSS子字段、物理层包扩展门限信息字段,其中,所述物理层包扩展门限信息字段包括与不同名义包填充值对应的包扩展门限子字段,所述包扩展门限子字段用于指示包扩展门限,所述包扩展门限子字段用于指示所述通信装置在第二值大于或等于所述包扩展门限时使用的名义包填充值,n的取值范围为[1,…,N],N为大于8的整数,其中,所述第二值与第二设备采用的NSS和所分配的RU等效编码后的RU块个数相关;
所述处理模块用于所采用的NSS和所述所分配的资源单元RU等效编码后的RU块个数确定所述第二值,并根据所述第二值以及所述物理层包扩展门限信息字段确定使用的名义包填充值。
在一种可能的实现方式中,所述处理模块具体用于根据如下关系确定所述第二值:
P index=f(NSS,?N CBPRU),其中,NSS为所述通信装置所分配的RU对应的NSS,N CBPRU为所述通信装置所分配的RU等效编码后的RU块个数,满足如下关系:
N CBPRU=N RU242*N BPSCS
N RU242为所述RU能够最多包括的RU242个数,N BPSCS为单个空时流上的每个子载波所承载的编码后的比特个数。
在一种可能的实现方式中,所述物理层包扩展门限信息字段包括与第一名义包填充值对应的第一包扩展门限子字段,所述第一包扩展门限子字段用于指示第一包扩展门限,所述第一包扩展门限用于指示所述通信装置在所述第二值大于或等于所述第一包扩展门限时使用的名义包填充值为所述第一名义包填充值,所述第一名义包填充值为20微秒;
所述处理模块在所述第二值大于或等于所述第一包扩展门限,确定通信装置使用的名义包填充值为所述第一名义包填充值。
在一种可能的实现方式中,所述物理层包扩展门限信息字段包括与第二名义包填充值对应的第二包扩展门限子字段,所述第二包扩展门限子字段用于指示第二包扩展门限,所述第二包扩展门限用于指示所述通信装置在所述第二值大于或等于所述第二包扩展门限时使用的名义包填充值为所述第二名义包填充值,所述第二名义包填充值为16微秒;
所述处理模块在所述第二值大于或等于所述第二包扩展门限,且所述第二值小于所述第一包扩展门限,确定通信装置使用的名义包填充值为所述第二名义包填充值。
在一种可能的实现方式中,所述物理层包扩展门限信息字段包括与第三名义包填充值对应的第三包扩展门限子字段,所述第三包扩展门限子字段用于指示第三包扩展门限,所述第三包扩展门限用于指示所述通信装置在所述第二值大于或等于所述第三包扩展门限时使用的名义包填充值为所述第三名义包填充值,所述第三名义包填充值为8微秒;
所述处理模块在所述第二值大于或等于所述第三包扩展门限,且所述第二值小于所述第二包扩展门限,确定通信装置使用的名义包填充值为所述第三名义包填充值。
第二十三方面,提供一种通信装置,例如该通信装置为如前所述的第一设备或设置在第一设备内的装置。所述通信装置可用于执行上述第十一方面或第十一方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第十一方面或第十一方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第一设备。其中,
处理模块用于生成PPDU,收发模块用于发送该PPDU和第一包扩展门限范围,所述第一包扩展门限范围用于指示第三值位于所述第一包扩展门限范围时,所述通信装置向所述第一设备发送数据所使用的名义包填充值,不同的包扩展门限范围对应的名义包填充值不同。
在一种可能的实现方式中,第三值满足如下关系:
x=f(NSTS,RU,Modulation)
其中,x为所述第三值,NSS为所述通信装置采用的NSS,RU为所述通信装置采用的RU大小,Modulation为所述通信装置采用的调制方式的阶数。
第二十四方面,提供一种通信装置,例如该通信装置为如前所述的第二设备或设置在第二设备内的装置。所述通信装置可用于执行上述第十二方面或第十二方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第十二方面或第十二方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的第二设备。其中,
收发模块用于接收来自第一设备的PPDU和第一包扩展门限范围,所述第一包扩展门限范围用于指示第三值位于所述第一包扩展门限范围时,所述通信装置向所述第一设备发送数据所使用的名义包填充值,不同的包扩展门限范围对应的名义包填充值不同,其中,所述第三值与所述通信装置采用的空间流数NSS、RU大小以及调制方式中的一种或多种参数相关;
若第三值位于所述第一包扩展门限范围,所述处理模块确定所述通信装置使用的名义包填充值为与所述第一包扩展门限范围对应的名义包填充值。
在一种可能的实现方式中,第三值满足如下关系:
x=f(NSTS,RU,Modulation)
其中,x为所述第三值,NSS为所述通信装置采用的NSS,RU为所述通信装置采用的RU大小,Modulation为所述通信装置采用的调制方式的阶数。
第二十五方面,本申请实施例提供一种通信装置,该通信装置可以为上述实施例中第十三方面至第二十四方面中任一方面的通信装置,或者为设置在第十三方面至第二十四方面中任一方面的通信装置中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令或者数据,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令或数据时,使通信装置执行上述第一方面至第十二方面中任一方面方法实施例中由第一设备或第二设备所执行的方法。
应理解,该通信接口可以通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果通信装置为设置在第一设备或第二设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。所述通信装置还可以包括收发器,用于该通信装置与其 它设备进行通信。示例性地,当该通信装置为第一设备时,该其它设备为第二设备;或者,当该通信装置为第二设备时,该其它设备为第一设备。
第二十六方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第一方面至第十二方面中任一方面中的通信装置执行的方法。在一种可能的实现方式中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第二十七方面,本申请实施例提供了一种通信系统,所述通信系统包括第十三方面和所述第十四方面所述的通信装置;或者,所述通信系统包括第十五方面和所述第十六方面所述的通信装置;或者,所述通信系统包括第十七方面和所述第十八方面所述的通信装置;或者,所述通信系统包括第十九方面和所述第二十方面所述的通信装置;或者,所述通信系统包括第二十一方面和所述第二十二方面所述的通信装置;或者,所述通信系统包括第二十三方面和所述第二十四方面所述的通信装置。
第二十八方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由第一设备执行的方法;或实现上述各方面中由第二设备执行的方法。
第二十九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由第一设备执行的方法被执行,或使得上述各方面中由第二设备执行的方法被执行。
上述第十三方面至第二十九方面及其实现方式的有益效果可以参考对第一方面至第十二方面的方法及其实现方式的有益效果的描述。
附图说明
图1为本申请实施例适用的一种WLAN的网络架构图;
图2为最后一个编码符号中PPDU比特的填充流程;
图3为本申请实施例提供的PPDU的一种示意图;
图4为本申请实施例提供的HE物理层能力信息字段的结构示意图;
图5为本申请实施例提供的HE能力元素的结构示意图;
图6为本申请实施例提供的物理层包扩展门限字段的结构示意图;
图7为现有的物理层包扩展门限信息字段的一种结构示意图;
图8为本申请实施例提供的物理层包扩展门限信息字段的一种结构示意图;
图9为本申请实施例提供的第一种名义包填充值的指示方法的流程示意图;
图10为本申请实施例提供的第二种名义包填充值的指示方法的流程示意图;
图11为本申请实施例提供的一种物理层包扩展门限信息字段的结构示意图;
图12为本申请实施例提供的第三种名义包填充值的指示方法的流程示意图;
图13为本申请实施例提供的另一种物理层包扩展门限信息字段的结构示意图;
图14为本申请实施例提供的第四种名义包填充值的指示方法的流程示意图;
图15为本申请实施例提供的通信装置的一种结构示意图;
图16为本申请实施例提供的通信装置的另一种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例可以适用于无线局域网(wireless local area network,WLAN)的场景,可以适用于IEEE 802.11系统标准,例如802.11a/b/g、802.11n、802.11ac、802.11ax,或其下一代,例如802.11be或更下一代的标准中。或者本申请实施例也可以适用于物联网(internet of things,IoT)网络或车联网(Vehicle to X,V2X)网络等无线局域网系统中。当然,本申请实施例还可以适用于其他可能的通信系统,例如,长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、以及未来的5G通信系统等。
下文以本申请实施例可以适用于WLAN的场景为例。应理解,WLAN从802.11a/g标准开始,历经802.11n、802.11ac、802.11ax和如今正在讨论的802.11be。其中802.11n也可称为高吞吐率(high throughput,HT);802.11ac也可称为非常高吞吐率(very high throughput,VHT);802.11ax也可称为高效(high efficient,HE)或者Wi-Fi 6;802.11be也可称为极高吞吐率(extremely high throughput,EHT)或者(Wi-Fi 7),而对于HT之前的标准,如802.11a/b/g等统称叫做非高吞吐率(Non-HT)。
请参见图1,示出了本申请实施例适用的一种WLAN的网络架构图。图1以该WLAN包括1个无线接入点(access point,AP)和2个站点(station,STA)为例。与AP关联的STA,能够接收该AP发送的无线帧,也能够向该AP发送无线帧。另外,本申请实施例同样适用于AP与AP之间的通信,例如各个AP之间可通过分布式系统(distributed system,DS)相互通信,本申请实施例也适用于STA与STA之间的通信。应理解,图1中的AP和STA的数量仅是举例,还可以更多或者更少。
本申请实施例涉及到的STA可以是各种具有无线通信功能的用户终端、用户装置,接入装置,订户站,订户单元,移动站,用户代理,用户装备或其他名称,其中,用户终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),终端(terminal),终端设备(terminal equipment),便携式通信设备,手持机,便携式计算设备,娱乐设备,游戏设备或系统,全球定位系统设备或被配置为经由无线介质进行网络通信的任何其他合适的设备等。例如STA可以是路由器、交换机和网桥等,在此,为了描述方便,上面提到的设备统称为站点或STA。
本申请实施例所涉及到的AP和STA可以为适用于IEEE 802.11系统标准的AP和STA。AP是部署在无线通信网络中为其关联的STA提供无线通信功能的装置,该AP可用作该通信系统的中枢,通常为支持802.11系统标准的MAC和PHY的网络侧产品,例如可以为基站、路由器、网关、中继器,通信服务器,交换机或网桥等通信设备,其中,所述基站可以包括各种形式的宏基站,微基站,中继站等。在此,为了描述方便,上面提到的设备统称为AP。STA通常为支持802.11系统标准的介质访问控制(media access control,MAC)和物理层(physical,PHY)的终端产品,例如手机、笔记本电脑等。
802.11ax规定可在PPDU中加入预前向纠错码填充(pre-(forward error correction,FEC) padding)、后前向纠错码填充(post-FEC padding)和包拓展(packet extension)。其中,pre-FEC padding和扩展信息(excess information)在最后一个编码符号中占用约四分之一倍数(例如四分之一、四分之二、四分之三和全部)的子载波,而余下的子载波则可以用于承载post-FEC padding。对PPDU的最后一个编码符号解码可只针对pre-FEC padding和扩展信息所占用的四分之一倍数的子载波进行解码,而不需要对整个编码符号进行解码,从而节约解码时间,给PPDU预留了更多的处理时间。
为了便于理解,下面结合图2对此进行说明。
图2示出了最后一个编码符号中PPDU比特的填充流程。图2中a表示扩展信息比特和预前向纠错码填充比特在扰码和编码后约占一个符号内子载波的四分之一的a倍。例如图2中,a等于1表示扩展信息比特和预前向纠错码填充比特在扰码和编码后约占一个符号内子载波的四分之一。同理,a=2表示扩展信息比特和预前向纠错码填充比特在扰码和编码后约占一个符号内子载波的四分之二;a=3表示扩展信息比特和预前向纠错码填充比特在扰码和编码后约占一个符号内子载波的四分之三;a=3表示扩展信息比特和预前向纠错码填充比特在扰码和编码后占一个符号内的全部子载波。
如图2所示,post-FEC padding对一个符号内的其余子载波进行了填充,使数据占用的比特数达到N CBPS比特,其中,N CBPS表示每个符号中编码的比特数(coded bits per symbol)。应理解,由于明确规定pre-FEC padding bits和excess information bits在最后一个编码符号中占用约四分之一倍数的子载波,那么接收端接收到PPDU,对PPDU的最后一个编码符号解码可只针对这四分之一倍数的子载波进行解码,而不需要对整个编码符号进行解码,所以可节约解码时间,从而给PPDU预留了更多的处理时间。
然而由于post-FEC padding对应的时长的不确定性和总时长的限制,导致为PPDU预留的额外处理时间可能不满足接收机所要求的最少时间。为了使得为PPDU预留的额外处理时间达到接收机要求的最少时间(如8μs和16μs),在PPDU的最后一个符号中引入了可能需要添加的字段,即包扩展(packet extension,PE)字段(field)。
请参见图3,为PPDU的一种示意图。图3示出了图2中a=1,a=2,a=3,a=4的情况下,PPDU中PE字段的持续时间。PE字段的持续时间也可以称为名义包扩展时间(nominal T PE)。名义包扩展时间与PPDU包括的名义包填充值(nominal packet padding value)相关。从图3可以看出名义包扩展时间与a的取值以及名义包填充值相关,具体请参见表1。
表1名义包扩展时间值(nominal T PE value)
Figure PCTCN2022070798-appb-000001
表1中的第二行表示名义包填充值,即可为0μs、8μs或16μs。应理解,post-FEC padding也可以提供额外的处理时间,post-FEC padding提供的处理时间和名义包扩展时间合起来为真实的包扩展时间(T PE)。从表1中可以看出包扩展时间不一定等于接收机所要求的最少时间(如0μs、8μs或16μs),例如名义包填充值等于16μs,nominal T PE可为4μs、8μs、 12μs或16μs。即T PE大于等于nominal T PE。通常T PE的取值为满足要求的最小值。
通信的两端,例如第一设备和第二设备,为了保证第一设备接收来自第二设备的数据包能够有足够的处理时间,第一设备可指示某个NSTS,某个RU大小对应的调制门限,第二设备可根据该调制门限确定要使用的名义包填充值。之后第二设备根据该名义包填充值结合前述的a确定PE字段的持续时间,进而根据PE的持续时间来填充发送给第一设备的PPDU可能包括的PE字段。第二设备按照PE字段的持续时间生成PPDU发送给第一设备,可保证第一设备有足够的处理时间,即能够保证第一设备的最小处理时间需求。可以理解的是,本申请实施例中,第一设备可向第二设备指示第二设备要使用的名义包填充值,这里要使用指的是第二设备根据名义包填充值,并结合前述的a确定PE字段的持续时间。
在一些实施例中,第一设备可直接指示第二设备要使用的名义包填充值。作为一种示例,第一设备可通过用于指示名义包填充值的名义包填充子字段(nominal packet padding subfield)来指示名义包填充值。例如,第一设备可向第二设备发送携带名义包填充子字段的PPDU。
在另一些实施例中,第一设备可间接指示第二设备要使用的名义包填充值。作为一种示例,第一设备可通过用于指示与名义包填充值相关的调制门限来间接指示名义包填充值。例如,第一设备可向第二设备发送携带指示调制门限的包扩展门限子字段的PPDU。
本文将通过名义包填充子字段指示第二设备使用的名义包填充值的方式称为直接指示方式,将通过指示调制门限的包扩展门限子字段间接指示第二设备使用的名义包填充值的方式称为间接指示方式。PPDU包括名义包填充子字段和指示调制门限的包扩展门限子字段,为了区分何时使用名义包填充子字段或指示调制门限的包扩展门限子字段指示名义包填充值,PPDU还包括物理层包扩展门限存在子字段(physical packet extension(PPE)thresholds present subfield)。当物理层包扩展门限存在子字段的取值为0,名义包填充子字段用于指示名义包填充值。当物理层包扩展门限存在子字段的取值为1,指示调制门限的包扩展门限子字段用于指示名义包填充值。
下面分别介绍名义包填充值的直接指示方式和间接指示方式。
直接指示方式:
如图4所示,物理层包扩展门限存在子字段和名义包填充子字段携带在HE物理层能力信息字段(HE PHY capabilities information field)中。其中,HE物理层能力信息字段包括在HE能力元素(HE capabilities element)中,如图5所示。HE能力元素可包括元素字段(element field)、长度字段(length field)、元素标识扩展字段(element ID extension field)、HE媒体接入控制能力信息字段(HE(medium access control,MAC)capabilities Information)、HE物理层能力信息字段(HE PHY capabilities information)、支持的高效(HE)-调制与编码策略(modulation and coding scheme,MCS)和空间流数量(number of spatial streams,NSS)设置字段(Supported HE-MCS and NSS Set),还可以包括物理层包扩展门限字段(PPE thresholds field)。本申请实施例对HE能力元素包括的各个字段或子字段占用的比特数不作限制。如图5所示,元素字段占用1比特,长度字段占用1比特,元素标识扩展字段占用1比特,HE媒体接入控制能力信息字段占用6比特,HE物理层能力信息字段占用11比特,物理层包扩展门限字段占用的比特数是可变(variable)的。且物理层包扩展门限字段是可选的,即不是必须包括的。
当物理层包扩展门限存在子字段的取值为0,名义包填充子字段指示的名义包填充值 具体可参见表2。
表2名义包填充子字段(nominal packet padding subfield)
Figure PCTCN2022070798-appb-000002
随着每个设备支持的流数从8流变为了16流,支持的调制方式从1K正交振幅调制(quadrature amplitude modulation,QAM)变为了4KQAM,支持的带宽由160MHz变为了320MHz,这使得接收机在这些情况下需要更多的处理时间。基于此提出了大于16μs的名义包填充值,例如提出支持20μs的名义包填充值。
沿用表2,可在名义包填充子字段中增加value 3的指示。例如,如果STA支持的星座<=1024、NSTS<=8,且分配的RU<=996*2的模式对应的名义包填充值为16μs,则名义包填充子字段设置为3,其余模式对应的名义包填充值为20μs。(Set to 3 if the nominal packet padding is 16μs for all modes with constellation<=1024,NSTS<=8and RU<=996*2,and 20μs for all other modes the STA supports)。换句话说,名义包填充子字段的值为3时,当调制方式小于等于1KQAM,NSTS小于等于8,RU的大小小于等于2*996时,名义包填充值为16μs,否则名义包填充值为20μs。
作为一种示例,可沿用HE物理层能力信息字段中的名义包填充字段,可增加名义包填充字段占用的比特数从而指示多大名义包填充值。作为另一种示例,可在新定义的EHT能力元素中设置用于指示名义包填充值的字段。
间接指示方式:
可通过PPDU中的物理层包扩展门限存在子字段以及物理层包扩展门限字段(PPE thresholds field)来间接指示名义包填充值。例如物理层包扩展门限存在子字段的取值为1,那么通过物理层包扩展门限字段来指示NSTS为n,RU为某个RU对应的调制门限。第二设备可根据该调制门限确定名义包填充值。这种方式可以根据不同的NSTS、RU大小、调制方式来指示不同的名义包填充值,更为灵活。
示例性的,请参见图6,为物理层包扩展门限字段的结构示意图。物理层包扩展门限字段包括NSTS子字段、RU索引掩码子字段(RU Index Bitmask subfield)、物理层包扩展门限信息字段和物理层包扩展填充(PPE padding)字段。
其中,NSTS子字段可用于指示发送数据所采用的空时流数,例如NSTS子字段占用3比特,该3比特的值为0-7,可以分别指示第1流到第8流。也就是说,该3比特的一个值,对应一个空时流数。RU Index Bitmask subfield可用于指示RU的大小。RU Index Bitmask subfield与RU大小关系如表3所示。
表3
RU allocation index RU allocation size
0(bitmap1000) 242
1(bitmap 0100) 484
2(bitmap 0010) 996
3(bitmap 0001) 2*996
RU Index Bitmask subfield是一个比特位图(bitmap),表3中,RU allocation index表示的是比特位图中的第几个比特。例如表3以RU Index Bitmask占用4比特为例。表3的第一行表示RU Index Bitmask的第一个比特置1,那么图6中指示对应的RU为242;同理,第二行表示RU Index Bitmask的第2个比特置1,那么图6中指示对应的RU为484,以此类推。其中,RU allocation index也可以称为RU的序号(编号),序号(编号)越小,其对应的RU的大小越小。本文中,RU的大小以的粒度是子载波,例如242指的是242个子载波,484指的是484个子载波,等等。
应理解,发送端采用的NSTS、RU大小以及调制方式中的一种或多种不同,对应接收端需要的最小处理时间也有所不同,即对应的名义包填充值可能不同。一种实现方式中,穷尽式或遍历式地给出从第一流到第N流的NSTS,以及从最小粒度开始指示的不同大小的RU对应的调制门限。N的值可以是NSTS子字段采用的比特的最大值+1;例如,NSTS子字段采用3比特,其最大值为7,则NSTS子字段可以指示的最大流数为8流(7+1=8);例如,NSTS子字段采用6比特,其最大值为15,则NSTS子字段可以指示的最大流数为16流(15+1=16)。在本文中,可将NSTS子字段的取值集合记为[1,…NSTN+1]。那么第N流即第NSTS+1流,即NSTS等于N。在本文中,NSTS可以等同替换为NSS,NSTS子字段可以等同替换为NSS子字段。
作为一种示例,物理层包扩展门限信息字段包括用于指示与不同名义包填充值对应的调制门限的包扩展门限子字段集合。换句话说,物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合包括多个包扩展门限子字段,所述每个包扩展门限子字段用于指示NSS为n,序号为b的RU对应的调制门限。应理解,n的取值范围为[1,…,N]。这里序号b可认为是RU分配索引,用 于指示RU大小。例如b的取值范围为[m,…,M],[m,…,M]为RU索引掩码子字段中设置为1的所有比特位顺序形成的比特位列表,m为该比特位列表中的最低位。以表3为例,b的取值范围为[0,…,3],即m等于0,M等于3。
示例性的,请参见图7,示出了物理层包扩展门限信息字段包括用于指示名义包填充值为8μs对应的多个包扩展门限的包扩展门限子字段集合和用于指示名义包填充值为16μs对应的多个包扩展门限的包扩展门限子字段集合。本文中将用于指示名义包填充值为8μs对应的多个包扩展门限的包扩展门限子字段集合称为PPET8 NSTSn RUb subfields,PPET8 NSTSn RUb subfields中的任意一个子字段称为PPET8 NSTSn RUb subfield,用于指示NSTS为n,序号为b的RU对应的调制门限。例如PPET8 NSTSn RUb subfield占用3个比特,那么PPET8 NSTSn RUb subfields可用于指示8种调制门限。同理,名义包填充值为16μs对应的多个包扩展门限的包扩展门限子字段集合可称为PPET16 NSTSn RUb subfields,PPET16 NSTSn RUb subfields中的任意一个子字段称为PPET16 NSTSn RUb subfield,用于指示NSTS为n,序号为b的RU对应的调制门限。或者需要更为简便,可将PPET8 NSTSn RUb subfield简称为PPET8,也就是PPET8表示一个PPET8 NSTSn RUb subfield。同理,PPET16 NSTSn RUb subfield可简称为PPET16。
图7示意了穷尽式或遍历式地给出从第一流到第N流的指示以及穷尽式或遍历式地给出从最小粒度开始指示的RU大小。可认为n的取值从1遍历到N,即n为[1,…,N]中的某个元素,b从m开始遍历到M。即The PPET16 NSTSn RUb and PPET8 NSTSn RUb subfields are present for all values of n and b where 1≤n≤(N)and where b=[m,…,M]is the set of integers equal to the ordered list of bit positions of all bits that are set to 1in the RU Index Bitmask subfield,with m being the lowest value。
需要说明的是,在本申请实施例中,PPET8 NSTSn RUb subfield/PPET16 NSTSn RUb subfield指示NSTS为n,序号为b的RU对应的调制门限,也可以认为指示PPET8 NSTSn RUb subfield/PPET16 NSTSn RUb subfield指示NSTS为n,RU为序号为b的RU,以及调制门限。应理解,调制门限可用于指示调制方式,即PPET8 NSTSn RUb subfield/PPET16NSTSn RUb subfield指示的调制门限可指示调制方式。
例如PPET8 NSTSn RUb subfield/PPET16 NSTSn RUb subfield与调制方式的对应关系如表4所示。PPET8 NSTSn RUb subfield/PPET16 NSTSn RUb subfield指示的调制门限类似表4中的星座索引,从而间接指示调制方式。
表4 Constellation Index(星座索引)
Figure PCTCN2022070798-appb-000003
Figure PCTCN2022070798-appb-000004
第一设备向第二设备发送的物理层包扩展门限字段的结构如图7所示,第二设备获取第一设备的物理层包扩展门限字段,可通过PPET8 NSTSn RUb subfield和PPET16 NSTSn RUb subfield的组合来决定要使用的名义包填充值。具体的,第二设备可根据表5确定名义包填充值。即第二设备采用的调制方式跟PPET8 NSTSn RUb subfields指示的调制门限的比较结果,以及第二设备采用的调制方式跟PPET16 NSTSn RUb subfields指示的调制门限的比较结果满足表5某行的条件,那么名义包填充值为该行对应的取值。
表5 PPET8和PPET16的PPE门限表(PE thresholds per PPET8and PPET16)
Figure PCTCN2022070798-appb-000005
Figure PCTCN2022070798-appb-000006
需要说明的是,表5中的调制方式指的是在RUb对应的调制方式的基础上调一档DCM对应的调制方式。表5中的“None”可以理解为不考虑对应的条件。例如,PPET8子字段中设置为None,则名义包填充值的确定不参考PPET8子字段的指示。
如表5所示,第二设备采用的调制方式跟PPET8指示的调制门限的比较结果满足条件一,以及第二设备采用的调制方式跟PPET16指示的调制门限的比较结果条件二,那么名义包填充值为该条件一以及条件二对应的取值。
即第二设备采用的调制方式对应的星座索引x大于或等于PPET8指示的调制门限,且第二设备采用的调制方式对应的星座索引x小于PPET16指示的调制门限或者PPET16设置为空,名义包填充值为8μs。第二设备采用的调制方式对应的星座索引x大于PPET8指示的调制门限或者PPET8设置为空,且第二设备采用的调制方式对应的星座索引x大于或等于PPET16指示的调制门限,名义包填充值为16μs。也就是满足表5中某一行的条件一和条件二,那么名义包填充值为该行中的取值。
随着每个设备支持的流数从8流变为了16流,支持的调制方式从1K正交振幅调制(quadrature amplitude modulation,QAM)变为了4KQAM,支持的带宽由160MHz变为了320MHz,这使得接收机在这些情况下需要更多的处理时间,需要指示更大的名义包填充值,例如指示20μs或其它可能时长的名义包填充值。
举例来说,可沿用图7所示的结构,在图7所示的物理层包扩展门限信息字段中添加用于指示20μs的名义包填充值的字段。例如在图7所示的物理层包扩展门限信息字段中添加用于指示名义包填充值为20μs对应的多个包扩展门限的包扩展门限子字段集合。该子字段集合可用于指示不同的NSTS以及不同RU大小对应的调制门限,但是第二设备根据该调制门限确定的名义包填充值可大于16μs,例如为20μs。与PPET8 NSTSn RUb subfields类似,为便于描述可将该子字段集合记为PPET20 NSTSn RUb subfields,如图8所示。即PPET20 NSTSn RUb subfields中每个PPET20 NSTSn RUb subfield可用于指示NSTS为n,序号为b的RU对应的调制门限。
与PPET16 NSTSn RUb subfields相同,PPET20 NSTSn RUb subfields中n的取值范围为[1,…,N],b的取值范围为[m,…,M]。不同之处在于,图8中的NSTS子字段的长度比图7中的NSTS子字段的长度更长,例如NSTS子字段可占用4比特。那么n的取值范围为[1,…,N],N等于16。
同理,图8中的RU Index Bitmask子字段的长度可比图7中的RU Index Bitmask子字段的长度更长,即图8中的RU Index Bitmask子字段占用更多比特,例如RU Index Bitmask字段可占用5比特。这种情况下,RU Index Bitmask子字段指示的RU最大粒度为3*996。又例如RU Index Bitmask子字段可占用6比特,这种情况下,RU Index Bitmask子字段指示的RU最大粒度为4*996。当然RU Index Bitmask子字段可占用更多比特,RU大小为242+484、484+996、242+484+996、2*996+484、2*996+996或3*996+484等。那么b的取值范围为[m,…,M]中M可大于或等于5。
同理,考虑到更高调制方式的出现,PPET20 NSTSn RUb subfields中的任意一个PPET20 NSTSn RUb subfield对应的Constellation Index对应更多比特数,例如4比特,可指示16种调制门限。需要说明的是,本申请实施例对NSTS子字段占用的比特数不作限制, 对RU Index Bitmask字段占用的比特数不作限制,对PPET20 NSTSn RUb subfield对应的Constellation Index对应的比特数也不作限制。
应理解,PPET20 NSTSn RUb subfield、PPET16 NSTSn RUb subfield和PPET8 NSTSn RUb subfield分别用于指示NSTS为n,序号为b的RU对应的一个调制门限。为了便于描述,下文中将PPET20 NSTSn RUb subfield指示的调制门限称为第一调制门限,将PPET16NSTSn RUb subfield指示的调制门限称为第二调制门限,将PPET8 NSTSn RUb subfields指示的调制门限称为第三调制门限。为便于描述,PPET20 NSTSn RUb subfield、PPET16NSTSn RUb subfield和PPET8 NSTSn RUb subfield在本文中可称为PPET20/16/8 NSTSn RUb subfield。PPET20 NSTSn RUb subfields、PPET16 NSTSn RUb subfields和PPET8 NSTSn RUb subfields在本文中可称为PPET20/16/8 NSTSn RUb subfields。
第二设备可通过PPET8 NSTSn RUb subfield、PPET16 NSTSn RUb subfield和PPET20NSTSn RUb subfield的组合来决定要使用的名义包填充值。也就是第二设备根据采用的调制方式分别与第一调制门限、第二调制门限以及第三调制门限的比较结果来确定名义包填充值。具体的,第二设备可根据表6确定名义包填充值。若满足表6中某行的条件一、条件二以及条件三,那么第二设备可确定使用的名义包填充值为该行对应的取值。也就是第二设备确定满足表6中的某一行条件,那么第二设备确定使用名义包填充值为该行示意的值。
表6 PPET8和PPET16以及PPET20的PPE门限表
Figure PCTCN2022070798-appb-000007
Figure PCTCN2022070798-appb-000008
如表6所示,满足第1行的条件一、条件二、条件三,那么名义包填充值为8μs;满足第2行的条件一、条件二、条件三,那么名义包填充值为16μs;满足第3行的条件一、条件二、条件三,那么名义包填充值为20μs。
从图7和图8中可以看出,随着流数的增加、RU大小种类的增加,通过穷尽式或遍历式指示从第一流到第N流,各种RU大小对应的调制门限,进而通过调制门限间接指示名义包填充值,开销较大。尤其是在802.11be中引入更多不同的RU,使得PPE thresholds field的开销更大。
为了降低PPE thresholds field的开销,可将部分MRU或RU合并,即多种不同大小的RU具有相同的索引。也就是在表3的基础上扩展,得到如表7所示的RU Index Bitmask subfield与RU大小关系。
表7
RU allocation index RU allocation size
0(bitmap100000) 242
1(bitmap 01000) 484
2(bitmap 001000) 242+484/996
3(bitmap 000100) 996+484/2*996/242+484+996
4(bitmap 000010) 2*996+484/3*996
5(bitmap 000001) 3*996+484/4*996
表7中,多种不同大小的RU具有相同的索引,即多种不同大小的RU可对应一个PPET20/16/8 NSTSn RUb subfield,从而降低PPE thresholds field的开销。但是如表7所示,多种不同大小的RU对应相同的索引,虽然可降低PPE thresholds field的开销,但是不灵活。
鉴于此,本申请实施例提供了一种名义包填充值的指示方法,降低PPE thresholds field的开销,且较为灵活地指示各个NSTS以及各个RU大小对应的名义包填充值。需要说明的是,在不冲突的情况下,本申请实施例中的NSTS都可以替换成NSS,下文以NSS为例。
下面结合附图介绍本申请实施例提供的技术方案。在下文的描述中,以接收机是第一设备,发送机是第二设备为例说明第一设备如何向第二设备指示第二设备使用的名义包填充值。请参见图9,为本申请实施例提供的名义包填充值的指示方式的流程示意图,该流程描述如下:
S901、第一设备生成PPDU,该PPDU包括物理层包扩展门限存在子字段,以及物理层包扩展门限字段,物理层包扩展门限存在子字段的取值为1,物理层包扩展门限字段包 括NSS子字段、RU索引掩码子字段以及物理层包扩展门限信息字段,该物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值,其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,当序号为y的RU对应的RU索引掩码子字段的值为0,所述b的取值范围不包括y。
S902、第一设备向第二设备发送PPDU,第二设备接收该PPDU。
S903、第二设备根据物理层包扩展门限字段所指示的NSS为n、序号为m1的RU对应的调制门限确定要使用的名义包填充值。
本申请实施例旨在不需要遍历全部的不同大小的RU,也能够指示某个RU对应的调制门限。例如PPE Thresholds field可省略NSS为n、序号为y的RU对应的PPET20 NSSn RUy subfield、PPET16 NSSn RUy subfield和PPET8 NSSn RUy subfield,但是PPE Thresholds field仍然能够指示NSS为n、序号为y的RU对应的调制门限。也就是,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,b的取值范围不包括y。也就是,PPE Thresholds field不存在PPET20 NSSn RUy subfield、PPET16 NSSn RUy subfield和PPET8 NSSn RUy subfield。
在一种可能的实现方式(在本文中称为实现方式一)中,本申请实施例可对RU Index Bitmask subfield中的部分比特置0进行重新定义,例如对置0的比特位对应的RU仍然配置索引(即序号),但不指示该RU Index Bitmask subfield中比特置0对应的RU对应的调制门限。应理解,按照802.11ax的规定,PPE Thresholds field会省略置0的比特对应的RU对应的PPET20/16/8 NSSn RUb subfield,但是由于本申请实施例对置0的比特对应的RU仍然配置索引,所以可认为即使PPE Thresholds field省略置0的比特对应的RU对应的PPET20/16/8 NSSn RUb subfield,仍然能够指示置0的比特对应的RU对应的调制门限。第二设备可根据该调制门限确定置0的比特对应的RU对应的名义包填充值。
换句话说,假设置0的比特位对应的RU的序号为y,即序号为y的RU对应的RU索引掩码子字段的值为0,b的取值范围可不包括y。也就是,PPE Thresholds field不存在NSS为n、序号为y的RU对应的PPET20/16/8 NSSn RUy subfield,但是PPE Thresholds field仍然能够隐性指示NSS为n、序号为y的RU对应的调制门限。由于PPE Thresholds field省略PPET20/16/8 NSSn RUy subfield,所以可降低PPE Thresholds field的开销。且省略的PPET20/16/8 NSSn RUy subfield,实际上有对应的星座索引,可认为,为与省略的PPET20/16/8 NSSn RUy subfield对应的RU(即序号为y的RU)重新定义对应的星座索引,所以即使存在多种RU,不同种的RU可对应不同的星座索引,相较于多种RU对应相同的星座索引来说,更为灵活。当然,本申请实施例中,多种RU也可对应相同的星座索引。
下面介绍PPE Thresholds field省略NSS为n、序号为y的RU对应的PPET20/16/8 NSSn RUy subfield的情况下,如何指示NSS为n、序号为y的RU对应的调制门限。示例性的,可包括如下几种情况。
情况一,可规定同一名义包填充值所对应的包扩展门限子字段集合中,NSS为n、序号为y的RU对应的调制门限等于NSS为n、序号为m1的RU对应的调制门限。也就是 对于同一NSS来说,序号为y的RU对应的RU索引掩码子字段的值为0可用于指示NSS为n、序号为y的RU对应的调制门限为NSS为n、序号为m1的RU对应的调制门限。示例性的,m1为RU索引掩码子字段中比特为1对应的大于y的序号中的最小序号。换句话说,NSS为n、序号为y的RU对应的调制门限等于NSS为n、序号为m1的RU对应的调制门限,需满足条件一,即序号为y的RU对应的RU Index Bitmask中的比特位置0,m1为RU索引掩码子字段中比特为1对应的大于y的序号中的最小序号。
为了便于理解,请参见表8,为RU Index Bitmask、RU Allocation Index以及RU大小和名义包填充值的对应关系表。
表8
Figure PCTCN2022070798-appb-000009
需要说明的是,表8中自定义指的是某个RU对应的名义包填充值由该RU自身确定。表8以包括6种RU/MRU为例,为便于描述,表8中将这6种RU/MRU记为RU0、RU1、RU2、RU3、RU4和RU5。
在本申请实施例中,对RU Index Bitmask subfield中的部分比特位置0重新定义。例如对表8中的RU3和RU4对应的RU Index Bitmask subfield中置0的比特位重新定义,即为RU3和RU4仍然有对应的星座索引,而不是直接规定RU3和RU4对应的名义包填充值为0。
由于RU3和RU4对应的RU Index Bitmask subfield的值为0,PPE Thresholds field可省略RU3或RU4对应的PPET20/16/8 NSSn RUb subfield,应理解,b=3或4。为了给出RU3和RU4对应的调制门限,本申请实施例可规定RU3和RU4对应的调制门限与其他RU对应的调制门限相同。例如,可规定NSS为n、序号为y的RU对应的调制门限等于NSS为n、序号为m1的RU对应的调制门限,其中,m1为RU索引掩码子字段中比特为1对应的大于y的序号中的最小序号。
以RU3为例,即y=3为例,如表8所示,m1=5。即RU3对应的调制门限为RU5对应的调制门限。同理,RU4对应的调制门限为RU5对应的调制门限。再以RU1为例,即y=1,如表8所示,y=1,m1=2。即RU1对应的调制门限为RU2对应的调制门限。可见,尽管PPE Thresholds field省略序号为y的RU对应的PPET20/16/8 NSSn RUb subfield的情 况下,但是通过其他RU对应的PPET20/16/8 NSSn RUb subfield仍然能够确定序号为y的RU对应的调制门限。
当然,如果不存在满足条件一的m1,也就是RU索引掩码子字段中的比特为1对应的序号均不大于y,序号为y的RU对应的RU索引掩码子字段的值为0,用于指示NSS为n,序号为y的RU对应的名义包填充值为某个固定值,例如名义包填充值可为20微秒或者其他可能的值。即表8中不存在RU5的一列,那么协议可规定名义包填充值为某个值,例如名义包填充值可为20微秒,第二设备可确定序号为y的RU对应的名义包填充值为20微秒。
作为一种可替换的方案,本申请实施例可规定:NSS为n、序号为y的RU对应的调制门限等于NSS为n、序号为m1的RU对应的调制门限,需满足条件二。条件二为:序号为y的RU对应的RU Index Bitmask中的比特位置0,m1为RU索引掩码子字段中比特为1对应的大于y的序号中的最小序号,且小于y的序号的RU对应的RU Index Bitmask的比特位中至少有一个置为1的比特位。
请继续参考表8,以RU3为例,即y=3。当y=3,m1=5,且序号小于3的RU包括RU0、RU1和RU2,其中,RU2对应的RU Index Bitmask的比特位中有置1的比特位,即满足条件二。这种情况下,RU3对应的调制门限等于RU5对应的调制门限。以RU2为例,即y=1。当y=1,m1=2,且序号小于2的RU包括RU0和RU1,其中,RU0和RU1对应的RU Index Bitmask的比特位中没有置1的比特位,即不满足条件二。这种情况下,RU1对应的调制门限可不按照RU2对应的调制门限确定。例如表8中,RU1对应的调制门限对应的名义包填充值为0微秒。
也就是,如表8所示,如果RU索引掩码子字段中比特为1对应的大于y的序号中的所有序号为0,那么第二设备可使用的名义包填充值为0微秒;如果y是RU索引掩码子字段中比特为1对应的大于y的序号的最小序号,且序号小于y的RU对应RU Index Bitmask的比特位中有置1的比特位,序号大于y的RU对应RU Index Bitmask的比特位中有置1的比特位,那么第二设备使用的名义包填充值根据序号比y大的最近RU对应的调制门限确定,其中,最近RU的序号是指与y之间的差值最小的序号;如果y是RU索引掩码子字段中比特为1对应的大于y的序号的最小序号,但是序号小于y的所有RU的RU索引掩码子字段中的比特置0,那么第二设备可使用的名义包填充值为20微秒。
作为一种可替换的方案,m1可为RU索引掩码子字段中比特为1对应的小于所述y的序号中的最大序号。换句话说,NSS为n、序号为y的RU对应的调制门限为NSS为n、序号为m1的RU对应的调制门限,需满足条件三。条件三为:序号为y的RU对应的RU Index Bitmask中的比特位置0,m1可为RU索引掩码子字段中比特为1对应的小于所述y的序号中的最大序号。
为了便于理解,请参见表9,为RU Index Bitmask、RU Allocation Index以及RU大小和名义包填充值的对应关系表。
表9
Figure PCTCN2022070798-appb-000010
需要说明的是,表9中自定义指的是某个RU对应的名义包填充值由该RU自身确定。表9以包括6种RU/MRU为例,为便于描述,表9中将这6种RU/MRU记为RU0、RU1、RU2、RU3、RU4和RU5。
与表8类似,由于RU3和RU5对应的RU Index Bitmask subfield的值为0,PPE Thresholds field可省略RU3或RU5对应的PPET20/16/8 NSSn RUb subfield,应理解,b=3或5。为了给出RU3和RU5对应的调制门限,本申请实施例可规定RU3或RU5对应的调制门限与其他RU对应的调制门限相同。例如,可规定满足条件三的情况下,NSS为n、序号为y的RU对应的调制门限为NSS为n、序号为m1的RU对应的调制门限。
以RU3为例,即y=3。由于RU2的序号m1为2,小于3,且m1为RU对应的RU Index Bitmask中比特为1对应的序号中的最大序号。所以NSS为n、序号为3的RU(即RU3)对应的调制门限等于NSS为n、序号为2的RU(RU2)对应的调制门限。同理,以表9中的RU5为例,即y=5。RU对应的RU Index Bitmask中比特为1对应的序号中的最大序号为RU4对应的序号,且RU对应的序号为4小于RU5对应的序号,所以NSS为n、序号为5的RU(即RU5)对应的调制门限等于NSS为n、序号为4的RU(RU4)对应的调制门限。可见,尽管PPE Thresholds field省略RU3和RU5对应的PPET20/16/8 NSSn RUb subfield的情况下,但是通过RU2和RU4对应的PPET20/16/8 NSSn RUb subfield仍然能够确定RU3和RU5对应的调制门限。
当然,如果不存在满足条件三的m1,也就是RU索引掩码子字段中的比特为1对应的序号均不小于y,序号为y的RU对应的RU索引掩码子字段的值为0,用于指示NSS为n,序号为y的RU对应的名义包填充值为某个固定值,例如名义包填充值可为0微秒或者其他可能的值。例如对于RU3来说,表9中不存在RU2的一列,那么协议可规定名义包填充值为某个值,例如名义包填充值可为0微秒。或者,例如对于RU5来说,表9中不存在RU4的一列,那么协议可规定名义包填充值为某个值,例如名义包填充值可为0微秒。
作为一种可替换的方案,本申请实施例可规定:NSS为n、序号为y的RU对应的调 制门限为NSS为n、序号为m1的RU对应的调制门限,需满足条件四。条件四可为:序号为y的RU对应的RU Index Bitmask中的比特位置0,m1为RU索引掩码子字段中比特为1对应的小于所述y的序号中的最大序号,且小于y的序号的RU对应的RU Index Bitmask的比特位中至少有一个置为1的比特位。
沿用表9的例子,以RU3为例,即y=3。当y=3,m1=2,且序号小于3的RU包括RU0、RU1和RU2,其中,RU2对应的RU Index Bitmask的比特位中有置1的比特位,即满足条件四。这种情况下,RU3对应的调制门限等于RU2对应的调制门限。以RU5为例,即y=5。当y=5,m1=4,且序号小于5的RU包括RU0、RU1、RU2、RU3和RU4,其中,RU2和RU4对应的RU Index Bitmask的比特位中有置1的比特位,即满足条件四。这种情况下,RU5对应的调制门限等于RU4对应的调制门限。以RU2为例,即y=2。当y=2,m1=1,且序号小于1的RU包括RU0,其中,RU0对应的RU Index Bitmask的比特位中没有置1的比特位,即不满足条件四。这种情况下,RU2对应的调制门限可不按照RU1对应的调制门限确定。例如表9中,RU2对应的调制门限对应的名义包填充值可固定为0微秒。
也就是,如表9所示,如果RU索引掩码子字段中比特为1对应的小于y的序号中的所有序号为0,那么第二设备可使用的名义包填充值为0微秒;如果y是RU索引掩码子字段中比特为1对应的小于y的序号的最大序号,且序号大于y的RU对应RU Index Bitmask的比特位中有置1的比特位,序号小于y的RU对应RU Index Bitmask的比特位中有置1的比特位,那么第二设备使用的名义包填充值根据序号比y小的最近RU对应的调制门限确定,其中,最近RU的序号与y之间的差值最小;如果y是RU索引掩码子字段中比特为1对应的小于y的序号的最大序号,但是序号大于y的所有RU的RU索引掩码子字段中的比特置0,那么第二设备可使用的名义包填充值为20微秒。
需要说明的是,如果序号为y的RU Index Bitmask的值为0,但是第二设备采用的RU小于或等于2*996且流数小于等于8且调制方式小于等于1KQAM,按照表8或表9所示的方式,第二设备使用的名义包填充值如果大于16微秒,例如为20微秒,这种情况下,可默认第二设备使用的名义包填充值为16微秒,以更好地兼容802.11ax已有的规定。
上述情况一的方案可认为是:位于置为0的RU索引掩码子字段之前的所有RU索引掩码子字段的值为0,那么置为1的RU索引掩码子字段对应的RU对应名义包填充值可为0微秒;位于置为0的RU索引掩码子字段位于两个置为1的RU索引掩码子字段之间,那么值为0的该RU索引掩码子字段对应的RU对应调制门限根据距离值为0的RU索引掩码子字段最近的RU的调制门限确定。其中,最近的RU的序号与值为0的该RU索引掩码子字段对应的RU的序号之间的差值最小;置为0的RU索引掩码子字段之后的所有RU索引掩码子字段的值为0,那么置为0的RU索引掩码子字段对应的RU对应的名义包填充值可为20微秒。
为了便于理解,请参见表10,为RU Index Bitmask、RU Allocation Index以及RU大小和名义包填充值的对应关系表。
表10
Figure PCTCN2022070798-appb-000011
以表10中RU2为例,RU2的RU Index Bitmask为0,位于置为1的RU Index Bitmask对应的RU1和置为1的RU Index Bitmask对应的RU4之间,那么RU2对应的调制门限可根据RU4对应的调制门限确定。以RU0为例,RU0对应的RU Index Bitmask的值为0,且RU0位于RU1-RU5之前,RU1的RU Index Bitmask的值为1,所以RU0对应的名义包填充值为0微秒。以RU5为例,RU5对应的RU Index Bitmask的值为0,且RU5位于RU0-RU4之后,那么RU5对应的名义包填充值可为20微秒。
情况二,可规定序号为y的RU对应的RU Index Bitmask中的比特位置0,NSS为n、序号为y的RU对应的名义包填充值为固定值。例如,序号为y的RU对应的RU Index Bitmask中的比特位置0,NSS为n、序号为y的RU对应的名义包填充值为0微秒。即与情况一的不同,这种情况下,第二设备可直接确定向第一设备发送数据包所使用的名义包填充值,较为简单。
作为情况二的一种可替换的方案,可规定序号为y的RU对应的RU Index Bitmask中的比特位置0,小于y的序号对应的RU Index Bitmask的值中不包括1,NSS为n、序号为y的RU对应的名义包填充值为固定值,例如0微秒。以表9中的RU3为例,即y=3,小于3的序号对应的RU包括RU0、RU1和RU2,由于RU2对应的RU Index Bitmask的值中包括1,所以RU3对应的名义包填充值可根据其他RU对应的调制门限确定。以表9中的RU2为例,即y=2,小于2的序号对应的RU包括RU0和RU1,由于RU0和RU1对应的RU Index Bitmask的值中不包括1,所以RU2对应的名义包填充值为固定值。
需要说明的是,上述表8和表9中,一个序号(即RU Allocation Index)对应多种大小不同的RU仅是举例。例如表9中,242+484的RU和996的RU对应的RU Allocation Index都是2。本申请实施例不限制一个RU Allocation Index对应的RU种类个数。例如一个RU可对应一个RU Allocation Index。即如表11所示的对应关系,同样适用于本申请实施例。还应理解,上述的大小不同的RU中,RU可以是单RU,例如大小为996个子载波的RU(表中示意为996),也可以是MRU,例如由大小为996个子载波和大小为484个子载波 的两个RU组成的MRU(表中示意为996+484),或者由两个大小为996个子载波的RU组成的MRU(表中示意为2×996)。
表11
Figure PCTCN2022070798-appb-000012
不同于实现方式一,在可能的实现方式二中,本申请实施例可定义RU Index Bitmask subfield中的置0比特位对应的RU对应的名义包填充值为某个固定值,更为直接。
示例性的,序号为y的RU对应RU Index Bitmask subfield中置0的比特位,那么NSS为n、序号为y的RU对应的名义包填充值为固定值。例如,NSS为n、序号为y的RU对应的名义包填充值可为8微秒,也可以为16微秒,也可以为20微秒。
另一示例性的,序号为y的RU对应RU Index Bitmask subfield中置0的比特位,且所述置0的比特位之前至少存在值为1的比特位的情况下,NSS为n、序号为y的RU对应的名义包填充值为固定值。例如,NSS为n、序号为y的RU对应的名义包填充值可为8微秒,也可以为16微秒,也可以为20微秒。
在实现方式二中,PPE Thresholds field除了可省略序号为y的RU对应的PPET20/16/8NSSn RUb subfield,还可以省略其他序号的RU对应的PPET20/16/8 NSSn RUb subfield,更加节省开销。
在可能的实现方式三中,本申请实施例可通过PPE Thresholds field中NSS子字段指示的NSS范围辅助第二设备确定发送数据时所使用的名义包填充值。
示例性的,可定义第二设备采用的NSS大于PPE Thresholds field中NSS子字段指示的值,第二设备可使用的名义包填充值为某个固定值,例如8微秒、16微秒或20微秒。这样PPE Thresholds field除了可省略序号为y的RU对应的PPET20/16/8 NSSn RUb subfield之外,第二设备只需关注NSS子字段指示的值,更为简单。
例如,PPE Thresholds field中NSS子字段指示的值为9,第二设备采用的NSS为12流,那么第二设备不需要参考PPE Thresholds field中关于RU的指示,直接可确定使用的名义包填充值为某个固定值,例如8微秒、16微秒或20微秒。
另一示例性的,可定义第二设备采用的NSS大于PPE Thresholds field中NSS子字段指示的值,第二设备可使用的名义包填充值根据NSS子字段指示的值,序号为y的RU对应的调制门限确定。例如,PPE Thresholds field中NSS子字段指示的值为9,第二设备采用的NSS为12流,那么第二设备确定采用的RU为y时,使用的名义包填充值根据NSS为9,且序号为y的RU对应的调制门限确定。
本申请实施例可适用于一个序号对应一种RU的场景,也可以适用于一个序号对应多个大小不同的RU的场景。在一个序号对应多个大小不同的RU场景中,如果第二设备采用DCM,那么为y的序号可能对应多个大小不同的RU。针对这种情况,本申请实施例还提供了相应的名义包填充值指示方法,可包括如下的两种指示方法。
指示方法一,可规定序号为y的RU对应的RU Index Bitmask中的比特位置0,第二设备使用DCM时,序号为y的RU对应的名义包填充值根据序号为y+1的RU对应的调 制门限确定。也就是,如果第二设备采用DCM,那么第二设备可根据PPET20/16/8 NSSn RU(y+1)subfield对应的调制门限确定名义包填充值。例如,以表9中的RU2为例,即y=2。如果第二设备采用DCM,那么第二设备可确定RU2对应的名义包填充值根据RU3对应的调制门限确定。
指示方法二,第二设备选取的RU不是为y的序号对应多个大小不同的RU中的最大RU时,可规定序号为y的RU对应的RU Index Bitmask中的比特位置0,第二设备使用DCM时,序号为y的RU对应的名义包填充值根据NSS为n,序号为y的RU对应的调制门限确定。例如,例如,以表9中的RU2为例,即y=2。如果第二设备采用DCM,那么第二设备可确定RU2对应的名义包填充值仍然根据RU2对应的调制门限确定,而不是根据RU3的调制门限确定。应理解,第二设备选取的RU不是为y的序号对应多个大小不同的RU中的最大RU。例如,第二设备分配的RU为RU2(242+484),第二设备采用DCM,那么第二设备根据RU2对应的调制门限确定名义包填充值,如果第二设备分配的RU为RU2(996),那么第二设备可根据RU3对应的调制门限确定名义包填充值。
应理解,第二设备向第一设备发送数据时,进行名义包填充的目的是为了留给第一设备足够的处理时间。通常,第一设备处理所接收的数据耗时主要集中在第一设备的多输入多输出(multiple-in multipleout,MIMO)解调模块和FEC解码模块。MIMO解调的复杂度跟NSS正相关,FEC解码的复杂度跟第二设备所分配的RU等效编码后的RU块个数正相关。基于此,可通过RU等效编码后的RU块个数来辅助确定名义包填充值,或者,通过RU等效编码后的RU块个数和NSS来辅助确定名义包填充值。即设置RU等效编码后的RU块个数对应的包扩展门限来指示名义包填充值,或者设置RU等效编码后的RU块个数和NSS对应的包扩展门限来指示名义包填充值。相较于通过NSS和RU大小对应的调制门限来指示名义包填充值来说,本申请实施例可简化PPE Thresholds field,节省PPE Thresholds field的开销。
下面分别介绍通过RU等效编码后的RU块个数来辅助确定名义包填充值的方案,以及通过RU等效编码后的RU块个数和NSS来辅助确定名义包填充值的方案。
请参见图10,为本申请实施例提供了另一种名义包填充值的指示方法,即通过RU等效编码后的RU块个数来指示名义包填充值。该方法的流程描述如下:
S1001、第一设备生成PPDU,该PPDU包括NSS索引掩码子字段、NSS子字段、物理层包扩展门限信息字段,其中,物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,每个包扩展门限子字段集合包括用于指示NSS为n对应的包扩展门限子字段,所述包扩展门限子字段用于向第二设备指示其采用NSS为n,且所分配的RU等效编码后的RU块个数为第一值时,对应的包扩展门限,所述包扩展门限用于指示所述第二设备在第一值大于或等于所述包扩展门限时使用的名义包填充值,n的取值范围为[1,…,N],N为大于8的整数。
S1002、第一设备向第二设备发送PPDU,第二设备接收该PPDU。
S1003、第二设备根据物理层包扩展门限信息字段以及第一值确定NSS为i时所使用的名义包填充值。
作为一种示例,第一值与第二设备所分配的RU能够最多包括的RU242个数,以及单个空时流上的每个子载波所承载的编码后的比特个数相关。示例性的,第一值可满足如下关系:
N CBPRU=N RU242*N BPSCS
其中,N CBPRU为所述第一值,N RU242为第二设备所分配的RU能够最多包括的RU242个数,例如,第二设备所分配的RU为RU996,RU996可以包含4个RU242,所以N RU242=4。应理解,在带宽不大于320MHz的情况下,N RU242的取值范围为0-16。N BPSCS为单个空时流上的每个子载波所承载的编码后的比特个数。例如,调制方式为二进制相移键控(Binary Phase Shift Keying,BPSK),N BPSCS=1;调制方式为64QAM,N BPSCS=6;调制方式为4096QAM,N BPSCS=12等。应理解,如果第二设备采用DCM调制方式,N RU242为第二设备没有采用DCM调制方式时的2倍。
每个NSS可对应多个包扩展门限。示例性的,请参见图11,为本申请实施例提供的一种物理包扩展门限信息字段的一种新的结构。物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,每个包扩展门限子字段集合包括用于多个指示NSS为n对应的包扩展门限子字段。如图11所示,物理层包扩展门限信息字段包括用于指示名义包填充值为20μs的多个包扩展门限子字段集合。物理层包扩展门限信息字段还包括用于指示名义包填充值为16μs的多个包扩展门限子字段集合。物理层包扩展门限信息字段还包括用于指示名义包填充值为8μs的多个包扩展门限子字段集合。为了便于描述,本文中,将用于指示名义包填充值为20μs的多个包扩展门限子字段集合称为第一子字段集合,将用于指示名义包填充值为16μs的多个包扩展门限子字段集合称为第二子字段集合,将用于指示名义包填充值为8μs的多个包扩展门限子字段集合称为第三子字段集合。
其中,第一子字段集合中的一个第一子字段用于指示一个与NSS为n对应的第一包扩展门限。所述第一包扩展门限用于指示第二设备在所分配的RU对应的第一值大于或等于第一包扩展门限时使用的第一名义包填充值,例如第一名义包填充值为20微秒。如图11,第一子字段可记为PPET20 NSS=n,其中,n的取值范围为[1,…,N],N为大于或等于8的整数。
同理,第二子字段集合中的一个第二子字段用于指示一个与NSS为n对应的第二包扩展门限。所述第二包扩展门限用于指示第二设备在所分配的RU上对应的第一值大于或等于第二包扩展门限时使用的第二名义包填充值,例如第二名义包填充值为16微秒。如图11,第二子字段可记为PPET16 NSS=n,其中,n的取值范围为[1,…,N],N为大于或等于8的整数。第三子字段集合中的一个第三子字段用于指示一个与NSS为n对应的第三包扩展门限。所述第三包扩展门限用于指示第二设备在所分配的RU对应的第一值大于或等于第三包扩展门限时使用的第三名义包填充值,例如第三名义包填充值为8微秒。如图11,第三子字段可记为PPET8 NSS=n,其中,n的取值范围为[1,…,N],N为大于或等于8的整数。
第二设备向第一设备发送数据时,可根据PPET20 NSS=n、PPET16 NSS=n以及PPET8 NSS=n的组合来决定要使用的名义包填充值。也就是针对某一NSS来说,第二设备根据N CBPRU分别与第一包扩展门限、第二包扩展门限以及第三包扩展门限的比较结果来确定名义包填充值。具体的,第二设备可根据表12确定名义包填充值。若满足表12中某行的条件一、条件二以及条件三,那么第二设备可确定使用的名义包填充值为该行对应的取值。也就是第二设备确定满足表12中的某一行条件,那么第二设备确定使用名义包填充值为该行示意的值。其中,表12中,PPET20 NSS=n表示NSS为n时对应的第一包扩展门限,PPET16 NSS=n表示NSS为n时对应的第二包扩展门限,PPET8 NSS=n表示NSS为n时对应的第三包扩展 门限。
表12
Figure PCTCN2022070798-appb-000013
示例性的,第二设备采用的NSS为i,当N CBPRU大于或等于NSS为i的第一子字段对应的第一包扩展门限,第二设备可确定采用的名义包填充值为20微秒。当N CBPRU大于或等于NSS为i的第二子字段对应的第二包扩展门限,且小于NSS为i的第一子字段对应的第一包扩展门限,第二设备可确定采用的名义包填充值为16微秒。当NSS为i,N CBPRU大于或等于NSS为i的第三子字段对应的第三包扩展门限,且小于NSS为i的第二子字段对应的第二包扩展门限,第二设备可确定采用的名义包填充值为8微秒。
进一步地,为了降低物理层包扩展门限信息字段的开销,本申请实施例还可以省略部分NSS对应的第一子字段、第二子字段以及第三子字段。
作为一种示例,NSS索引掩码子字段可占用至少8比特,通过比特映射方式可指示某个NSS对应的包扩展门限不存在,即物理层包扩展门限信息字段不包括该NSS对应的第一子字段、第二子字段以及第三子字段。例如,NSS索引掩码子字段的第j个比特为0,那么物理层包扩展门限信息字段不包括NSS为j的第一子字段、第二子字段以及第三子字段。应理解,j位于[1,…,N]。相应的,NSS索引掩码子字段的第j个比特为1,那么物理层包扩展门限信息字段包括NSS为j的第一子字段、第二子字段以及第三子字段。或者,NSS索引掩码子字段的第j个比特为1,那么物理层包扩展门限信息字段不包括NSS为n的第一子字段、第二子字段以及第三子字段。相应的,NSS索引掩码子字段的第j个比特为0,那么物理层包扩展门限信息字段包括NSS为j的第一子字段、第二子字段以及第三子字段。
作为另一种示例,可定义第二设备采用的NSS大于NSS索引掩码子字段中非0比特的最高位对应的NSS,第二设备采用的名义包填充值为固定值,例如20微秒,更为简单。
请参见图12,为本申请实施例提供了另一种名义包填充值的指示方法,即通过RU等效编码后的RU块个数以及NSS对应的包扩展门限来指示名义包填充值。该方法的流程描述如下:
S1201、第一设备生成PPDU,该PPDU包括NSS子字段、物理层包扩展门限信息字段,其中,物理层包扩展门限信息字段包括与不同名义包填充值对应的包扩展门限子字段,所述包扩展门限字段用于向第二设备指示包扩展门限,所述包扩展门限用于指示第二值大于或等于所述包扩展门限时使用的名义包填充值,其中,第二值是与第二设备所分配的资源单元RU等效编码后的RU块个数以及第二设备采用的NSS相关,NSS的取值范围为[1,…,N],N为大于8的整数。需要说明的是,所述包扩展门限字段用于指示包扩展门限可认为是包扩展门限字段向第二设备指示其采用NSS为n以及所分配的资源单元RU等 效编码后的RU块个数量化(等效)后获得的第二值时,对应的包扩展门限。
S1202、第一设备向第二设备发送PPDU,第二设备接收该PPDU。
S1203、第二设备根据物理层包扩展门限信息字段以及第二值确定要使用的名义包填充值。
在本申请实施例中,第二值与第二设备所分配的RU等效编码后的RU块个数以及第二设备采用的NSS相关。示例性的,第二值满足如下关系:
P index=f(NSTS,?N CBPRU)
其中,P index为所述第二值,NSS为所述第二设备所分配的RU对应的空时流数,N CBPRU为所述第二设备所分配的RU等效编码后的RU块个数。
需要说明的是,P index=f(NSTS,?N CBPRU)示意P index的值可通过 NSTS和N CBPRU来确定,或者还可以通过其他可能的参数来确定。 NSTS和N CBPRU确定P index的方式并不唯一。作为一种示例,P index=NSTS×N CBPRU
本申请实施例与前述图10所示的实施例不同之处在于,物理包扩展门限信息字段不再单独指示关于NSS的包扩展门限,可以进一步简化物理层包扩展门限信息字段,以节省物理层包扩展门限信息字段的开销。
示例性的,请参见图13,为本申请实施例提供的一种物理包扩展门限信息字段的一种新的结构。物理层包扩展门限信息字段包括与不同名义包填充值对应的包扩展门限子字段。例如,物理层包扩展门限信息字段包括名义包填充值为20μs对应的包扩展门限子字段(在本申请实施例中称为第四子字段)。物理层包扩展门限信息字段包括名义包填充值为16μs对应的包扩展门限子字段(在本申请实施例中称为第五子字段)。物理层包扩展门限信息字段包括名义包填充值为8μs对应的包扩展门限子字段(在本申请实施例中称为第六子字段)。如图13,第四子字段可记为PPET20,用于指示第四包扩展门限;第五子字段可记为PPET16,用于指示第五包扩展门限;第六子字段可记为PPET8,用于指示第六包扩展门限。
第二设备向第一设备发送数据时,可根据PPET20、PPET16以及PPET8的组合来决定要使用的名义包填充值。也就是第二设备先根据采用的NSS,以及第二设备所分配的RU确定第二值,再将第二值分别与第四包扩展门限、第五包扩展门限以及第六包扩展门限进行比较,根据最终的比较结果来确定名义包填充值。具体的,第二设备可根据表13确定名义包填充值。若满足表13中某行的条件一、条件二以及条件三,那么第二设备可确定使用的名义包填充值为该行对应的取值。也就是第二设备确定满足表13中的某一行条件,那么第二设备确定使用名义包填充值为该行示意的值。其中,表13中,PPET20对应的第四包扩展门限,PPET16对应的第五包扩展门限,PPET8对应的第六包扩展门限。
表13
Figure PCTCN2022070798-appb-000014
即当第二值大于第四包扩展门限,第二设备可确定采用的名义包填充值为20微秒。 当第二值大于或等于第五包扩展门限,且小于第四包扩展门限,第二设备可确定采用的名义包填充值为16微秒。当第二值大于或等于第六包扩展门限,且小于第五包扩展门限,第二设备可确定采用的名义包填充值为8微秒。
应理解,第二设备采用的NSS、RU大小以及调制方式中的一种或多种不同,第二设备所使用的名义包填充值可能不同。前述实施例联合NSS、RU大小以及调制方式来指示名义包填充值。为了进一步节省开销,本申请实施例还提供了一种名义包填充值的指示方法,该方法中,第一设备可告知第二设备一个包扩展门限范围,第二设备可根据采用的NSS、RU以及调制方式的阶数等参数的一种或多种来确定影响名义包填充值的第三值,进而根据第三值和第一设备发送的包扩展门限范围来确定使用的名义包填充值。该方法中,由于第一设备发送一个包扩展门限范围,所以可降低物理层包扩展门限字段的开销。
请参见图14,为本申请实施例提供了另一种名义包填充值的指示方法,即通过RU等效编码后的RU块个数以及NSS对应的包扩展门限来指示名义包填充值。该方法的流程描述如下:
S1401、第一设备生成PPDU。
S1402、第一设备向第二设备发送PPDU和第一包扩展门限范围,第二设备接收该PPDU和第一包扩展门限范围,其中,第一包扩展门限范围用于指示第三值位于第一包扩展门限范围时,第二设备向第一设备发送数据所使用的名义包填充值,不同的包扩展门限范围对应的名义包填充值不同。
S1403、第二设备根据接收的第一包扩展门限范围以及第三值确定第二设备使用的名义包填充值。
在本申请实施例中,第三值与影响第二设备使用的名义包填充值的一种或多种因素相关,例如第三值第二设备采用的NSS、RU大小以及调制方式中的一种或多种参数相关。示例性的,第三值满足如下关系:
x=f(NSTS,RU,Modulation)
其中,x为第三值,NSS为所述第二设备采用的NSS,RU为第二设备采用的RU大小,Modulation为第二设备采用的调制方式的阶数。
需要说明的是,x=f(NSTS,?RU,Modulation)仅示意x与NSS、RU大小以及调制方式相关,本申请实施例并不限制x与NSS、RU大小以及调制方式的具体对应关系。
示例性的,当NSS=a时,对应的包扩展门限值为b;当NSS=c时,对应的包扩展门限值为d;当NSS=e时,对应的包扩展门限值为f。x可认为是与b、d、f相关的函数,例如x=b+d+f;又例如x=b*(d+f)。
可预定义多种包扩展门限范围,不同的包扩展门限范围对应的名义包填充值不同。例如,第一包扩展门限范围是[0,p1],对应的名义包填充值为0微秒;第二包扩展门限范围是(p1,p2],对应的名义包填充值为8微秒;第三包扩展门限范围是(p2,p3],对应的名义包填充值为20微秒。
第二设备向第一设备发送数据时,可根据采用的NSS、RU大小以及Modulation,计算第三值,再将第三值与第一设备发送的包扩展门限范围进行比较,从而根据比较结果确定要使用的名义包填充值。如果第三值位于该包扩展门限范围,那么第二设备确定所使用的名义包填充值为该包扩展门限范围对应的名义包填充值。
与前述第一设备告知第二设备一个包扩展门限范围,第二设备确定第三值,在确定名义包填充值不同,作为一种可替换的方案,第一设备可告诉第二设备各种参数对名义包填充值的影响范围,第二设备可根据发送数据所采用的各种参数,以及各种参数分别对应的影响范围来确定要使用的名义包填充值。这样单独指示NSS、RU大小以及调制方式分别对名义包填充值的影响,不需要联合NSS、RU大小以及调制方式来指示名义包填充值,例如,NSS有16种影响结果、RU有6种影响结果,调制方式有8种影响结果,那么第一设备可向第二设备反馈16+6+8种影响结果。因此,相较于穷尽式或遍历式地给出各个NSS、RU以及调制门限分别对应的名义包填充值来说,本申请实施例提供的名义包填充值的指示方法进一步节约开销。
上述本申请提供的实施例中,分别从第一设备和第二设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,第一设备和第二设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图15为本申请实施例提供的通信装置1500的示意性框图。该通信装置1500可以对应实现上述各个方法实施例中由第一设备或第二设备实现的功能或者步骤。该通信装置可以包括处理模块1510和收发模块1520。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块1510和收发模块1520可以与该存储单元耦合,例如,处理模块1510可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。
在一些可能的实施方式中,通信装置1500能够对应实现上述方法实施例中第一设备的行为和功能。
在示例一中,处理模块1510用于生成PPDU,收发模块1520用于向第二设备发送该PPDU,其中,该PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,物理层包扩展门限字段包括RU索引掩码子字段、NSS子字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;
其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,当序号为y的RU对应的RU索引掩码子字段的值为0,所述b的取值范围不包括y;
同一名义包填充值所对应的包扩展门限子字段集合中,序号为y的RU对应的RU索引掩码子字段的值为0用于指示NSS为n、序号为y的RU对应的调制门限为NSTS为n、序号为m1的RU对应的调制门限,其中,m1为RU索引掩码子字段中比特为1对应的大于所述y的序号中的最小序号,或者,m1为RU索引掩码子字段中比特为1对应的小于所述y的序号中的最大序号。
在一种可能的实现方式中,小于y的序号对应的RU索引掩码子字段的值中包括1。
在一种可能的实现方式中,RU索引掩码子字段中的比特为1对应的序号均不大于y,则序号为y的RU对应的RU索引掩码子字段的值为0,用于指示NSS为n,序号为y的RU对应的名义包填充值为20微秒。
在示例二中,处理模块1510用于生成PPDU,收发模块1520用于向第二设备发送该PPDU,其中,该PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,所述物理层包扩展门限字段包括资源单元RU索引掩码子字段、空间流数NSS子字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;
其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,当序号为y的RU对应的RU索引掩码子字段的值为0,同一名义包填充值所对应的物理层包扩展门限子字段中,序号为y的RU对应的RU索引掩码子字段的值为0指示序号为y的RU对应的名义包填充值为0微秒,所述b的取值范围不包括y。
在示例二的一种可能的实现方式中,小于x的序号对应的RU索引掩码子字段的值中不包括1。
在示例三中,处理模块1510用于生成PPDU,收发模块1520用于向第二设备发送该PPDU,其中,该PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,物理层包扩展门限字段包括RU索引掩码子字段、NSS子字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;
其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,序号为y的RU对应RU索引掩码子字段中置0的比特位,b的取值范围不包括y,所述物理层包扩展门限字段用于指示序号为y的RU对应的名义包填充值为8微秒、16微秒或20微秒。
在一种可能的实现方式中,所述置0的比特位之前至少存在为1的比特位。
在一种可能的实现方式中,所述物理层包扩展门限字段用于指示采用的NSS大于NSS子字段指示的值的通信装置使用的名义包填充值为8微秒、16微秒或20微秒;或者,所述物理层包扩展门限字段用于指示采用的NSS大于所述NSS子字段指示的值的通信装置根据采用的NSS以及序号为y的RU对应的调制门限确定要使用的名义包填充值。
在示例四中,处理模块1510用于生成PPDU,收发模块1520用于向第二设备发送该PPDU,其中,该PPDU包括NSS索引掩码子字段、NSS子字段、物理层包扩展门限信息字段,所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合包括用于多个指示NSS为n对应的包扩展门限子 字段,所述包扩展门限子字段用于向第二设备所分配的RU等效编码后的RU块个数为第一值,且第二设备采用的NSS为n时,对应的包扩展门限,所述包扩展门限子字段用于指示所述第二设备在所述第一值大于或等于所述包扩展门限时使用的名义包填充值,n的取值范围为[1,…,N],N为大于8的整数。
在一种可能的实现方式中,所述第一值满足如下公式:
N CBPRU=N RU242*N BPSCS
其中,N CBPRU为所述第一值,N RU242为所述RU能够最多包括的RU242个数,N BPSCS为单个空时流上的每个子载波所承载的编码后的比特个数。
在一种可能的实现方式中,所述多个包扩展门限子字段集合包括与第一名义包填充值对应的第一包扩展门限子字段集合,第一包扩展门限子字段集合中的一个第一包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且第二设备采用的NSS为n时,对应的第一包扩展门限,所述第一包扩展门限用于指示所述第二设备在所分配的RU对应的所述第一值大于或等于所述第一包扩展门限时使用的名义包填充值为所述第一名义包填充值,所述第一名义包填充值为20微秒。
在一种可能的实现方式中,所述多个包扩展门限子字段集合还包括与第二名义填充值对应的第二包扩展门限子字段集合,第二包扩展门限子字段集合中的一个第二包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且第二设备采用的NSS为n时,对应的第二包扩展门限,所述第二包扩展门限用于指示所述第二设备在所分配的RU上对应的所述第一值大于或等于所述第二包扩展门限时使用的名义包填充值为所述第二名义包填充值,所述第二名义包填充值为16微秒。
在一种可能的实现方式中,所述多个包扩展门限子字段集合还包括与第三名义包填充值对应的第三包扩展门限子字段集合,第三包扩展门限子字段集合中的一个第三包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且第二设备采用的NSS为n时,对应的第三包扩展门限,所述第三包扩展门限用于指示所述第二设备在所分配的RU对应的所述第一值大于或等于所述第三包扩展门限时使用的名义包填充值为所述第三名义包填充值,所述第三名义包填充值为8微秒。
在一种可能的实现方式中,所述NSS索引掩码子字段占用至少8比特,所述NSS索引掩码子字段的第i个比特为0,所述物理层包扩展门限信息字段不包括NSS为所述i的包扩展门限子字段集合。
在一种可能的实现方式中,所述物理层包扩展门限信息字段用于指示所述第二设备采用的NSS大于所述NSS索引掩码子字段非0比特的最高位数对应的NSS时,所述第二设备在所分配的RU对应的所述第一值大于或等于所述包扩展门限时使用的名义包填充值为20微秒。
在示例五中,处理模块1510用于生成PPDU,收发模块1520用于向第二设备发送a该PPDU,该PPDU包括NSS子字段、物理层包扩展门限信息字段,其中,所述物理层包扩展门限信息字段包括与不同名义包填充值对应的包扩展门限子字段,所述包扩展门限子字段用于指示包扩展门限,所述包扩展门限子字段用于指示第二设备在第二值大于或等于所述包扩展门限时使用的名义包填充值,n的取值范围为[1,…,N],N为大于8的整数,其中,第二值与所述第二设备采用的NSS以及所分配的RU等效编码后的RU块个数相关。
在一种可能的实现方式中,所述物理层包扩展门限信息字段包括与第一名义包填充值对应的第一包扩展门限子字段,所述第一包扩展门限子字段用于指示第一包扩展门限,所述第一包扩展门限用于指示所述第二设备在所述第二值大于或等于所述第一包扩展门限时使用的名义包填充值为所述第一名义包填充值,所述第一名义包填充值为20微秒。
在一种可能的实现方式中,所述物理层包扩展门限信息字段包括与第二名义包填充值对应的第二包扩展门限子字段,所述第二包扩展门限子字段用于指示第二包扩展门限,所述第二包扩展门限用于指示所述第二设备在所述第二值大于或等于所述第二包扩展门限时使用的名义包填充值为所述第二名义包填充值,所述第二名义包填充值为16微秒。
在一种可能的实现方式中,所述物理层包扩展门限信息字段包括与第三名义包填充值对应的第三包扩展门限子字段,所述第三包扩展门限子字段用于指示第三包扩展门限,所述第三包扩展门限用于指示所述第二设备在所述第二值大于或等于所述第三包扩展门限时使用的名义包填充值为所述第三名义包填充值,所述第三名义包填充值为8微秒。
在示例六中,处理模块1510用于生成PPDU,收发模块1520用于发送该PPDU和第一包扩展门限范围,所述第一包扩展门限范围用于指示第三值位于所述第一包扩展门限范围时,通信装置1500向所述第一设备发送数据所使用的名义包填充值,不同的包扩展门限范围对应的名义包填充值不同。
在一种可能的实现方式中,第三值满足如下关系:
x=f(NSTS,RU,Modulation)
其中,x为所述第三值,NSS为通信装置1500采用的NSS,RU为通信装置1500采用的RU大小,Modulation为通信装置1500采用的调制方式的阶数。
应理解,本申请实施例中的处理模块1510可以由处理器或处理器相关电路组件实现,收发模块1520可以由收发器或收发器相关电路组件或者通信接口实现。
在一些可能的实施方式中,通信装置1500能够对应实现上述方法实施例中第二设备的行为和功能。
在示例一中,收发模块1520用于接收来自第一设备的物理层协议数据单元PPDU,该PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,物理层包扩展门限字段包括资源单元RU索引掩码子字段、空间流数NSS子字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定通信装置1500在调制方式大于或等于所述调制门限时使用的名义包填充值;其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,当序号为y的RU对应的RU索引掩码子字段的值为0,所述b的取值范围不包括y;
所述处理模块1510用于根据所述物理层包扩展门限字段所指示的NSS为n、序号为m1的RU对应的调制门限,确定NSS为n、序号为y的RU对应的调制门限,所述m1为RU索引掩码子字段中比特为1对应的大于所述y的序号中的最小序号,或者,所述m1为RU索引掩码子字段中比特为1对应的小于所述y的序号中的最大序号。
在一种可能的实现方式中,小于y的序号对应的RU索引掩码子字段的值中包括1。
在一种可能的实现方式中,RU索引掩码子字段中的比特为1对应的序号均不大于所述y,所述处理模块1510用于确定序号为x的RU对应的名义包填充值为20微秒。
在一种可能的实现方式中,所述通信装置1500使用DCM,所述处理模块1510用于根据NSS为n,序号为y+1的RU对应的调制门限确定要使用的名义包填充值,其中,为y序号对应多个大小不同的RU,或者所述处理模块1510用于根据NSS为n,序号为y的RU对应的调制门限确定所述名义包填充值,其中,为y序号对应多个大小不同的RU,且所述通信装置1500采用的RU不是所述多个大小不同的RU中的最大RU。
在示例二中,收发模块1520用于接收来自第一设备的PPDU,该PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,所述物理层包扩展门限字段包括资源单元RU索引掩码子字段、空间流数NSS子字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定通信装置1500在调制方式大于或等于所述调制门限时使用的名义包填充值;其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,序号为y的RU对应的RU索引掩码子字段的值为0,所述b的取值范围不包括y;
处理模块1510用于根据所述物理层包扩展门限字段确定序号为y的RU对应的名义包填充值为0微秒。
在一种可能的实现方式中,小于y的序号对应的RU索引掩码子字段的值中不包括1。
在示例三中,收发模块1520用于接收来自第一设备的PPDU,该PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,所述物理层包扩展门限字段包括资源单元RU索引掩码子字段、空间流数NSS子字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定通信装置1500在调制方式大于或等于所述调制门限时使用的名义包填充值;其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,序号为y的RU对应RU索引掩码子字段中置0的比特位,所述b的取值范围不包括y;
处理模块1510用于根据所述物理层包扩展门限字段确定序号为y的RU对应的名义包填充值为8微秒、16微秒或20微秒。
在一种可能的实现方式中,所述置0的比特位之前至少存在为1的比特位。
在一种可能的实现方式中,通信装置1500采用的NSS大于所述NSS子字段指示的值,处理模块1510还用于确定序号为y的RU对应的名义包填充值为8微秒、16微秒或20微秒;或者,通信装置1500采用的NSS大于所述NSS子字段指示的值,处理模块1510还用于根据采用的NSS以及序号为y的RU对应的调制门限确定序号为y的RU对应的名义包填充值。
在示例四中,收发模块1520用于接收来自第一设备的PPDU,该PPDU包括NSS索引掩码子字段、NSS子字段、物理层包扩展门限信息字段,其中,所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合包括用于多个指示NSS为n对应的包扩展门限子字段,所述包扩展门限子字段用于向通信装置1500指示其采用NSS为n,且所分配的资源单元RU等效编码后的RU块个数为第一值时,对应的包扩展门限,所述包扩展门限子字段用于指示所述通信装置1500在所述第一值大于或等于所述包扩展门限时使用的名义包填充值,n的取值范围为[1,…,N],N为大于8的整数;
处理模块1510用于根据所述物理层包扩展门限信息字段以及所述第一值确定采用为j的NSS时所使用的名义包填充值,j为大于或等于1的整数。
在一种可能的实现方式中,所述第一值满足如下公式:
N CBPRU=N RU242*N BPSCS
其中,N CBPRU为所述第一值,N RU242为所述RU能够最多包括的RU242个数,N BPSCS为单个空时流上的每个子载波所承载的编码后的比特个数。
在一种可能的实现方式中,所述多个包扩展门限子字段集合包括与第一名义包填充值对应的第一包扩展门限子字段集合,所述第一包扩展门限子字段集合中的一个第一包扩展门限子字段用于向通信装置1500指示所分配的资源单元RU等效编码后的RU块个数为第一值,且通信装置1500采用的NSS为n时,对应的第一包扩展门限,所述第一包扩展门限用于指示通信装置1500在所分配的RU对应的所述第一值大于或等于所述第一包扩展门限时使用的第一名义包填充值,所述第一名义包填充值为20微秒;
当NSS为j,N CBPRU大于或等于NSS为所述j的所述第一包扩展门限子字段对应的第一名义包填充值,通信装置1500确定采用为j的NSS时使用的名义包填充值为所述第一名义包填充值。
在一种可能的实现方式中,所述多个包扩展门限子字段集合还包括与第二名义包填充值对应的第二包扩展门限子字段集合,所述第二包扩展门限子字段集合中的一个第二包扩展门限子字段用于向通信装置1500指示所分配的资源单元RU等效编码后的RU块个数为第一值,且通信装置1500采用的NSS为n时,对应的第二包扩展门限,所述第二包扩展门限用于指示通信装置1500在所分配的RU上对应的所述第一值大于或等于所述第二包扩展门限时使用的第二名义包填充值,所述第二名义包填充值为16微秒;
当NSS为j,N CBPRU大于或等于NSS为所述j的所述第二包扩展门限子字段对应的第二名义包填充值,且小于NSS为所述j的所述第一包扩展门限子字段对应的第一名义包填充值,通信装置1500确定采用为j的NSS时使用的名义包填充值为所述第二名义包填充值。
在一种可能的实现方式中,所述多个包扩展门限子字段集合还包括与第三名义包填充值对应的第三包扩展门限子字段集合,所述第三包扩展门限子字段集合中的一个第三包扩展门限子字段用于向通信装置1500指示所分配的资源单元RU等效编码后的RU块个数为第一值,且通信装置1500采用的NSS为n时,对应的第三包扩展门限,所述第三包扩展门限用于指示通信装置1500在所分配的RU对应的所述第一值大于或等于所述第三包扩展门限时使用的第三名义包填充值,所述第三名义包填充值为8微秒;
当NSS为j,N CBPRU大于或等于NSTS为所述j的所述第三包扩展门限子字段对应的第三名义包填充值,且小于NSTS为所述j的所述第二包扩展门限子字段对应的第二名义 包填充值,通信装置1500确定采用为j的NSS时使用的名义包填充值为所述第三名义包填充值。
在一种可能的实现方式中,所述NSS索引掩码子字段占用至少8比特,所述NSS索引掩码子字段的第i个比特为0,所述物理层包扩展门限信息字段不包括NSS为所述i的子字段集合。
在一种可能的实现方式中,通信装置1500采用的NSS大于所述NSS索引掩码子字段非0比特的最高位数对应的NSS,处理模块1510还用于在所分配的RU对应的所述第一值大于或等于所述包扩展门限时使用的名义包填充值为20微秒。
在示例五中,收发模块1520用于接收来自第一设备的PPDU,该PPDU包括NSS子字段、物理层包扩展门限信息字段,其中,所述物理层包扩展门限信息字段包括与不同名义包填充值对应的包扩展门限子字段,所述包扩展门限子字段用于指示包扩展门限,所述包扩展门限子字段用于指示所述通信装置1500在所述第二值大于或等于所述包扩展门限时使用的名义包填充值,n的取值范围为[1,…,N],N为大于8的整数,其中,第二值与所述第二设备采用的NSS以及所分配的RU等效编码后的RU块个数相关;
处理模块1510用于所采用的NSS和所述所分配的资源单元RU等效编码后的RU块个数确定所述第二值,并根据所述第二值以及所述物理层包扩展门限信息字段确定使用的名义包填充值。
在一种可能的实现方式中,处理模块1510具体用于根据如下关系确定所述第二值:
P index=f(NSS,?N CBPRU),其中,NSS为所述通信装置1500所分配的RU对应的NSS,N CBPRU为所述通信装置1500所分配的RU等效编码后的RU块个数,满足如下关系:
N CBPRU=N RU242*N BPSCS
N RU242为所述RU能够最多包括的RU242个数,N BPSCS为单个空时流上的每个子载波所承载的编码后的比特个数。
在一种可能的实现方式中,所述物理层包扩展门限信息字段包括与第一名义包填充值对应的第一包扩展门限子字段,所述第一包扩展门限子字段用于指示第一包扩展门限,所述第一包扩展门限用于指示通信装置1500在所述第二值大于或等于所述第一包扩展门限时使用的名义包填充值为所述第一名义包填充值,所述第一名义包填充值为20微秒;
处理模块1510在所述第二值大于或等于所述第一包扩展门限,确定通信装置1500使用的名义包填充值为所述第一名义包填充值。
在一种可能的实现方式中,所述物理层包扩展门限信息字段包括与第二名义包填充值对应的第二包扩展门限子字段,所述第二包扩展门限子字段用于指示第二包扩展门限,所述第二包扩展门限用于指示通信装置1500在所述第二值大于或等于所述第二包扩展门限时使用的名义包填充值为所述第二名义包填充值,所述第二名义包填充值为16微秒;
处理模块1510在所述第二值大于或等于所述第二包扩展门限,且所述第二值小于所述第一包扩展门限,确定通信装置1500使用的名义包填充值为所述第二名义包填充值。
在一种可能的实现方式中,所述物理层包扩展门限信息字段包括与第三名义包填充值对应的第三包扩展门限子字段,所述第三包扩展门限子字段用于指示第三包扩展门限,所述第三包扩展门限用于指示通信装置1500在所述第二值大于或等于所述第三包扩展门限时使用的名义包填充值为所述第三名义包填充值,所述第三名义包填充值为8微秒;
处理模块1510在所述第二值大于或等于所述第三包扩展门限,且所述第二值小于所述第二包扩展门限,确定通信装置1500使用的名义包填充值为所述第三名义包填充值。
在示例六中,收发模块1520用于接收来自第一设备的PPDU和第一包扩展门限范围,所述第一包扩展门限范围用于指示第三值位于所述第一包扩展门限范围时,通信装置1500向所述第一设备发送数据所使用的名义包填充值,不同的包扩展门限范围对应的名义包填充值不同,其中,所述第三值与通信装置1500采用的NSS、RU大小以及调制方式中的一种或多种参数相关;
若第三值位于所述第一包扩展门限范围,处理模块1510确定通信装置1500使用的名义包填充值为与所述第一包扩展门限范围对应的名义包填充值。
在一种可能的实现方式中,第三值满足如下关系:
x=f(NSTS,RU,Modulation)
其中,x为所述第三值,NSS为通信装置1500采用的NSS,RU为通信装置1500采用的RU大小,Modulation为通信装置1500采用的调制方式的阶数。
应理解,本申请实施例中的处理模块1510可以由处理器或处理器相关电路组件实现,收发模块1520可以由收发器或收发器相关电路组件或者通信接口实现。
如图16所示为本申请实施例提供的通信装置1600,其中,通信装置1600可以是AP或STA,能够实现本申请实施例提供的方法中第一设备或第二设备的功能;通信装置1600也可以是能够支持第一设备实现本申请实施例提供的方法中对应的功能的装置,或者能够支持第二设备实现本申请实施例提供的方法中对应的功能的装置。其中,该通信装置1600可以为芯片或芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置1600包括至少一个处理器1620,用于实现或用于支持通信装置1600实现本申请实施例提供的方法中第一设备或第二设备的功能,例如生成前述的PPDU。通信装置1600还可以包括至少一个存储器1630,用于存储程序指令和/或数据。存储器1630和处理器1620耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1620可能和存储器1630协同操作。处理器1620可能执行存储器1630中存储的程序指令和/或数据,以使得通信装置1600实现相应的方法。所述至少一个存储器中的至少一个可以位于处理器中。
通信装置1600还可以包括收发器1610,用于通过传输介质和其它设备进行通信,从而用于通信装置1600中的装置可以和其它设备进行通信。示例性地,当该通信装置为终端时,该其它设备为网络设备;或者,当该通信装置为网络设备时,该其它设备为终端。处理器1620可以利用收发器1610收发数据。收发器1610具体可以是收发器。该通信装置1600还可以射频单元,该射频单元可以独立于通信装置1600之外,也可以是集成在通信装置1600之内。当然,上述的该收发器1610还可以包括天线,例如独立于通信装置1600之外的拉远的天线,也可以是集成在通信装置1600之内的天线。在硬件实现上,上述收发模块1520可以为收发器1610。
本申请实施例中不限定上述收发器1610、处理器1620以及存储器1630之间的具体连接介质。本申请实施例在图16中以存储器1630、处理器1620以及收发器1610之间通过 总线1640连接,总线在图16中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器1620可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器1630可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
需要说明的是,上述实施例中的通信装置可以是终端也可以是电路,也可以是应用于终端中的芯片或者其他具有上述终端功能的组合器件、部件等。当通信装置是终端时,收发模块可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理模块(central processing unit,CPU)。当通信装置是具有上述终端功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片或芯片系统时,收发模块可以是芯片或芯片系统的输入输出接口、处理模块可以是芯片或芯片系统的处理器。
作为一种可能的产品形态,本申请实施例所述的AP和STA,还可以使用下述来实现:一个或多个现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
本申请实施例中的第一设备可以是AP,也可以是STA。第二设备可以是AP,也可以是STA。应理解,上述各种产品形态的AP,具有上述方法实施例中AP的任意功能,此处不再赘述;上述各种产品形态的STA,具有上述方法实施例中STA的任意功能,此处不再赘述。
本申请实施例还提供一种通信系统,具体的,通信系统包括第二设备和第一设备,或者还可以包括更多个第一设备和第二设备。示例性的,该通信系统包括用于实现上述图9或图10或图12或图14的相关功能的第二设备和第一设备。
所述第一设备分别用于实现上述图9或图10或图12或图14相关第一设备部分的功能。所述第二设备用于实现上述图9或图10或图12或图14相关第二设备的功能。例如,第一设备可执行图9所示的实施例中的S901-S902,第二设备可执行例如图9所示的实施例中的S902-S903;例如,第一设备可执行图10所示的实施例中的S1001-S1002,第二设备可执行例如图10所示的实施例中的S1002-S1003;第一设备可执行图12所示的实施例中的S1001-S1002,第二设备可执行例如图10所示的实施例中的S1202-S1203;第一设备可执行图14所示的实施例中的S1401-S1402,第二设备可执行例如图14所示的实施例中的S1402-S1403。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时, 使得计算机执行图9或图10或图12或图14中第一设备或第二设备执行的方法。
本申请实施例中还提供一种计算机程序产品,包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行图9或图10或图12或图14中第一设备或第二设备执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中第一设备或第二设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种通信装置,包括处理器和接口;所述处理器,用于执行上述任一方法实施例所述的名义包填充值的指示方法;或者,所述处理器用于执行上述任一方法实施例所述的名义包填充值的确定方法。
应理解,上述通信装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
应理解,本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一包扩展门限和第二包扩展门限,只是为了区分不同的包扩展门限,而并不是表示这两种包扩展门限的优先级、或者重要程度等的不同。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,在本申请实施例中,“示例性的”一词用于表示例子或说明。本申请实施例汇总被描述为“示例”的任何实施例或实现方案不应被解释为比其他实施例或实现方案更优选。也就是,使用“示例”一词旨在以具体方式呈现概念。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。 所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (56)

  1. 一种名义包填充值的指示方法,其特征在于,包括:
    第一设备生成物理层协议数据单元PPDU,以及向第二设备发送所述PPDU,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,物理层包扩展门限字段包括资源单元RU索引掩码子字段、空间流数NSS子字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的一个或多个包扩展门限子字段集合,每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU或多资源单元MRU对应的调制门限,所述调制门限用于确定第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;
    其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,当序号为y的RU或MRU对应的RU索引掩码子字段的值为0,所述b的取值范围不包括y;
    同一名义包填充值所对应的包扩展门限子字段集合中,所述序号为y的RU或MRU对应的RU索引掩码子字段的值为0用于指示NSS为n、序号为y的RU或MRU对应的调制门限为NSTS为n、序号为m1的RU或MRU对应的调制门限,其中,所述m1为RU索引掩码子字段中比特为1对应的大于所述y的序号中的最小序号,或者,所述m1为RU索引掩码子字段中比特为1对应的小于所述y的序号中的最大序号。
  2. 如权利要求1所述的方法,其特征在于,小于y的序号对应的RU索引掩码子字段的值中包括1。
  3. 如权利要求1或2所述的方法,其特征在于,RU索引掩码子字段中的比特为1对应的序号均不大于所述y,则所述序号为y的RU或MRU对应的RU索引掩码子字段的值为0,用于指示NSS为n,序号为y的RU或MRU对应的名义包填充值为20微秒。
  4. 如权利要求1或2所述的方法,其特征在于,序号小于y的RU或MRU对应的RU索引掩码子字段的值不包括1,所述序号为y的RU或MRU对应的RU索引掩码子字段的值为0,用于指示NSS为n,序号为y的RU或MRU对应的名义包填充值为0微秒。
  5. 如权利要求1所述的方法,其特征在于,所述NSS子字段指示的NSS小于所述第二设备使用的NSS,所述第二设备使用的名义包填充值为16微秒。
  6. 如权利要求1所述的方法,其特征在于,多种不同大小的RU或MRU对应相同的分配索引。
  7. 一种名义包填充值的确定方法,其特征在于,包括:
    第二设备接收来自第一设备的物理层协议数据单元PPDU,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,物理层包扩展门限字段包括资源单元RU索引掩码子字段、空间流数NSS子字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的一个或多个包扩展门限子字段集合,所述每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU或多资源单元MRU对应的调制门限,所述调制门限用于确定第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,当序号为y的RU或MRU对应的RU索引掩码子字段的值为0,所述 b的取值范围不包括y;
    所述第二设备根据所述物理层包扩展门限字段所指示的NSS为n、序号为m1的RU或MRU对应的调制门限,确定NSS为n、序号为y的RU或MRU对应的调制门限,所述m1为RU索引掩码子字段中比特为1对应的大于所述y的序号中的最小序号,或者,所述m1为RU索引掩码子字段中比特为1对应的小于所述y的序号中的最大序号。
  8. 如权利要求7所述的方法,其特征在于,小于y的序号对应的RU索引掩码子字段的值中包括1。
  9. 如权利要求7或8所述的方法,其特征在于,所述方法还包括:
    RU索引掩码子字段中的比特为1对应的序号均不大于所述y,所述第二设备确定序号为y的RU对应的名义包填充值为20微秒。
  10. 如权利要求7或8所述的方法,其特征在于,所述方法还包括:
    序号小于y的RU或MRU对应的RU索引掩码子字段的值不包括1,所述第二设备确定序号为y的RU或MRU对应的名义包填充值为0微秒。
  11. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第二设备使用的NSS大于所述NSS子字段指示的NSS,所述第二设备确定使用的名义包填充值为16微秒。
  12. 如权利要求7所述的方法,其特征在于,多种不同大小的RU或MRU对应相同的分配索引。
  13. 如权利要求1-12任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备使用双载波调制DCM,所述第二设备根据NSS为n,序号为y+1的RU或MRU对应的调制门限确定要使用的名义包填充值,其中,为y序号对应多个大小不同的RU或MRU;或者,
    所述第二设备使用双载波调制DCM,所述第二设备根据NSS为n,序号为y的RU或MRU对应的调制门限确定所述名义包填充值,其中,为y序号对应多个大小不同的RU或MRU,且所述第二设备采用的RU或MRU不是所述多个大小不同的RU或MRU中的最大RU或MRU。
  14. 一种名义包填充值的指示方法,其特征在于,包括:
    第一设备生成发送物理层协议数据单元PPDU,并向第二设备发送所述PPDU,所述PPDU包括空间流数NSS索引掩码子字段、NSS子字段、物理层包扩展门限信息字段;
    其中,所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合包括用于多个指示NSS为n对应的包扩展门限子字段,所述包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且所述第二设备采用的NSS为n时,对应的包扩展门限,所述包扩展门限子字段用于指示所述第二设备在所述第一值大于或等于所述包扩展门限时使用的名义包填充值,n的取值范围为[1,…,N],N为大于8的整数。
  15. 如权利要求14所述的方法,其特征在于,所述第一值满足如下公式:
    N CBPRU=N RU242*N BPSCS
    其中,N CBPRU为所述第一值,N RU242为所述RU能够最多包括的RU242个数,N BPSCS为单个空时流上的每个子载波所承载的编码后的比特个数。
  16. 如权利要求15所述的方法,其特征在于,所述多个包扩展门限子字段集合包括与 第一名义包填充值对应的第一包扩展门限子字段集合,所述第一包扩展门限子字段集合中的一个第一包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且所述第二设备采用的NSS为n时,对应的第一包扩展门限,所述第一包扩展门限用于指示所述第二设备在所分配的RU对应的所述第一值大于或等于所述第一包扩展门限时使用的名义包填充值为所述第一名义包填充值,所述第一名义包填充值为20微秒。
  17. 如权利要求15或16所述的方法,其特征在于,所述多个包扩展门限子字段集合还包括与第二名义填充值对应的第二包扩展门限子字段集合,所述第二包扩展门限子字段集合中的一个第二包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且所述第二设备采用的NSS为n时,对应的第二包扩展门限,所述第二包扩展门限用于指示所述第二设备在所分配的RU上对应的所述第一值大于或等于所述第二包扩展门限时使用的名义包填充值为所述第二名义包填充值,所述第二名义包填充值为16微秒。
  18. 如权利要求15-17任一项所述的方法,其特征在于,所述多个包扩展门限子字段集合还包括与第三名义包填充值对应的第三包扩展门限子字段集合,所述第三包扩展门限子字段集合中的一个第三包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且所述第二设备采用的NSS为n时,对应的第三包扩展门限,所述第三包扩展门限用于指示所述第二设备在所分配的RU对应的所述第一值大于或等于所述第三包扩展门限时使用的名义包填充值为所述第三名义包填充值,所述第三名义包填充值为8微秒。
  19. 如权利要求14-18任一项所述的方法,其特征在于,所述NSS索引掩码子字段占用至少8比特,所述NSS索引掩码子字段的第i个比特为0,所述物理层包扩展门限信息字段不包括NSS为所述i的包扩展门限子字段集合。
  20. 如权利要求14或15所述的方法,其特征在于,所述物理层包扩展门限信息字段用于指示所述第二设备采用的NSS大于所述NSS索引掩码子字段非0比特的最高位数对应的NSS时,所述第二设备在所分配的RU对应的所述第一值大于或等于所述包扩展门限时使用的名义包填充值为20微秒。
  21. 一种名义包填充值的确定方法,其特征在于,包括:
    第二设备接收来自第一设备的物理层协议数据单元PPDU所述PPDU包括空间流数NSS索引掩码子字段、NSS子字段、物理层包扩展门限信息字段,其中,所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合包括用于多个指示NSS为n对应的包扩展门限子字段,所述包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值时,且所述第二设备采用的NSS为n时,对应的包扩展门限,所述包扩展门限子字段用于指示所述第二设备在所述第一值大于或等于所述包扩展门限时使用的名义包填充值,n的取值范围为[1,…,N],N为大于8的整数;
    所述第二设备根据所述物理层包扩展门限信息字段以及所述第一值确定采用为j的NSS时所使用的名义包填充值,j为大于或等于1的整数。
  22. 如权利要求21所述的方法,其特征在于,所述第一值满足如下公式:
    N CBPRU=N RU242*N BPSCS
    其中,N CBPRU为所述第一值,N RU242为所述RU能够最多包括的RU242个数,N BPSCS为单个空时流上的每个子载波所承载的编码后的比特个数。
  23. 如权利要求22所述的方法,其特征在于,所述多个包扩展门限子字段集合包括与第一名义包填充值对应的第一包扩展门限子字段集合,所述第一包扩展门限子字段集合中的一个第一包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且所述第二设备采用的NSS为n时,对应的第一包扩展门限,所述第一包扩展门限用于指示所述第二设备在所分配的RU对应的所述第一值大于或等于所述第一包扩展门限时使用的第一名义包填充值,所述第一名义包填充值为20微秒;
    当NSS为j,N CBPRU大于或等于NSS为所述j的所述第一包扩展门限子字段对应的第一名义包填充值,所述第二设备确定采用为j的NSS时使用的名义包填充值为所述第一名义包填充值。
  24. 如权利要求22或23所述的方法,其特征在于,所述多个包扩展门限子字段集合还包括与第二名义包填充值对应的第二包扩展门限子字段集合,所述第二包扩展门限子字段集合中的一个第二包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且所述第二设备采用的NSS为n时,对应的第二包扩展门限,所述第二包扩展门限用于指示所述第二设备在所分配的RU上对应的所述第一值大于或等于所述第二包扩展门限时使用的第二名义包填充值,所述第二名义包填充值为16微秒;
    当NSS为j,N CBPRU大于或等于NSS为所述j的所述第二包扩展门限子字段对应的第二名义包填充值,且小于NSS为所述j的所述第一包扩展门限子字段对应的第一名义包填充值,所述第二设备确定采用为j的NSS时使用的名义包填充值为所述第二名义包填充值。
  25. 如权利要求22-24任一项所述的方法,其特征在于,所述多个包扩展门限子字段集合还包括与第三名义包填充值对应的第三包扩展门限子字段集合,所述第三包扩展门限子字段集合中的一个第三包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且所述第二设备采用的NSS为n时,对应的第三包扩展门限,所述第三包扩展门限用于指示所述第二设备在所分配的RU对应的所述第一值大于或等于所述第三包扩展门限时使用的第三名义包填充值,所述第三名义包填充值为8微秒;
    当NSS为j,N CBPRU大于或等于NSTS为所述j的所述第三包扩展门限子字段对应的第三名义包填充值,且小于NSTS为所述j的所述第二包扩展门限子字段对应的第二名义包填充值,所述第二设备确定采用为j的NSS时使用的名义包填充值为所述第三名义包填充值。
  26. 如权利要求21-25任一项所述的方法,其特征在于,所述NSS索引掩码子字段占用至少8比特,所述NSS索引掩码子字段的第i个比特为0,所述物理层包扩展门限信息字段不包括NSS为所述i的子字段集合。
  27. 如权利要求21或22所述的方法,其特征在于,所述方法还包括:
    所述第二设备采用的NSS大于所述NSS索引掩码子字段非0比特的最高位数对应的NSS,所述第二设备在所分配的RU对应的所述第一值大于或等于所述包扩展门限时使用的名义包填充值为20微秒。
  28. 一种通信装置,其特征在于,包括处理模块和收发模块,其中,
    所述处理模块用于生成物理层协议数据单元PPDU,所述收发模块用于向第二设备发送所述PPDU,其中,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,物理层包扩展门限字段包括资源单 元RU索引掩码子字段、空间流数NSS子字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的一个或多个包扩展门限子字段集合,每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU或多资源单元MRU对应的调制门限,所述调制门限用于确定第二设备在调制方式大于或等于所述调制门限时使用的名义包填充值;
    其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,当序号为y的RU或MRU对应的RU索引掩码子字段的值为0,所述b的取值范围不包括y;
    同一名义包填充值所对应的包扩展门限子字段集合中,所述序号为y的RU或MRU对应的RU索引掩码子字段的值为0用于指示NSS为n、序号为y的RU或MRU对应的调制门限为NSTS为n、序号为m1的RU对应的调制门限,其中,所述m1为RU索引掩码子字段中比特为1对应的大于所述y的序号中的最小序号,或者,所述m1为RU索引掩码子字段中比特为1对应的小于所述y的序号中的最大序号。
  29. 如权利要求28所述的通信装置,其特征在于,小于y的序号对应的RU索引掩码子字段的值中包括1。
  30. 如权利要求28或29所述的通信装置,其特征在于,RU索引掩码子字段中的比特为1对应的序号均不大于所述y,则所述序号为y的RU或MRU对应的RU索引掩码子字段的值为0,用于指示NSS为n,序号为y的RU或MRU对应的名义包填充值为20微秒。
  31. 如权利要求28或29所述的通信装置,其特征在于,序号小于y的RU对应的RU索引掩码子字段的值不包括1,所述序号为y的RU对应的RU索引掩码子字段的值为0,用于指示NSS为n,序号为y的RU对应的名义包填充值为0微秒。
  32. 如权利要求28所述的通信装置,其特征在于,所述NSS子字段指示的NSS小于所述第二设备使用的NSS,所述第二设备使用的名义包填充值为16微秒。
  33. 如权利要求32所述的通信装置,其特征在于,多种不同大小的RU或MRU对应相同的分配索引。
  34. 一种通信装置,其特征在于,包括处理模块和收发模块,其中,
    所述收发模块用于接收来自第一设备的物理层协议数据单元PPDU,所述PPDU包括物理层包扩展门限存在子字段、物理层包扩展门限字段,所述物理层包扩展门限存在子字段的取值为1,物理层包扩展门限字段包括资源单元RU索引掩码子字段、空间流数NSS子字段以及物理层包扩展门限信息字段;所述物理层包扩展门限信息字段包括对应不同名义包填充值的一个或多个包扩展门限子字段集合,所述每个包扩展门限子字段集合用于指示NSS为n,序号为b的RU对应的调制门限,所述调制门限用于确定所述通信装置在调制方式大于或等于所述调制门限时使用的名义包填充值;其中,n的取值范围为[1,…,N]的子集,N为大于或等于1的整数,b的取值范围为[m,…,M]的子集,m和M为大于或等于0的整数,当序号为y的RU或多资源单元MRU对应的RU索引掩码子字段的值为0,所述b的取值范围不包括y;
    所述处理模块用于根据所述物理层包扩展门限字段所指示的NSS为n、序号为m1的RU或MRU对应的调制门限,确定NSS为n、序号为y的RU或MRU对应的调制门限,所述m1为RU索引掩码子字段中比特为1对应的大于所述y的序号中的最小序号,或者,所述m1为RU索引掩码子字段中比特为1对应的小于所述y的序号中的最大序号。
  35. 如权利要求34所述的通信装置,其特征在于,小于y的序号对应的RU索引掩码子字段的值中包括1。
  36. 如权利要求34或35所述的通信装置,其特征在于,所述处理模块还用于:
    RU索引掩码子字段中的比特为1对应的序号均不大于所述y,确定序号为x的RU对应的名义包填充值为20微秒。
  37. 如权利要求34或35所述的通信装置,其特征在于,所述处理模块还用于:
    序号小于y的RU或MRU对应的RU索引掩码子字段的值不包括1,确定序号为y的RU或MRU对应的名义包填充值为0微秒。
  38. 如权利要求34所述的通信装置,其特征在于,所述通信装置使用的NSS大于所述NSS子字段指示的NSS,所述处理模块还用于:确定使用的名义包填充值为16微秒。
  39. 如权利要求34所述的通信装置,其特征在于,多种不同大小的RU或MRU对应相同的分配索引。
  40. 如权利要求34-39任一项所述的通信装置,其特征在于,
    所述通信装置使用双载波调制DCM,所述处理模块用于根据NSS为n,序号为y+1的RU或MRU对应的调制门限确定要使用的名义包填充值,其中,为y序号对应多个大小不同的RU或MRU;或者,
    所述通信装置使用双载波调制DCM,所述处理模块用于根据NSS为n,序号为y的RU或MRU对应的调制门限确定所述名义包填充值,其中,为y序号对应多个大小不同的RU或MRU,且所述第二设备采用的RU或MRU不是所述多个大小不同的RU或MRU中的最大RU或MRU。
  41. 一种通信装置,其特征在于,包括处理模块和收发模块,其中,
    所述处理模块用于生成发送物理层协议数据单元PPDU,所述收发模块用于向第二设备发送所述PPDU,所述PPDU包括空间流数NSS索引掩码子字段、NSS子字段、物理层包扩展门限信息字段;
    其中,所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合包括用于多个指示NSS为n对应的包扩展门限子字段,所述包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且所述第二设备采用的NSS为n时,对应的包扩展门限,所述包扩展门限子字段用于指示所述第二设备在所述第一值大于或等于所述包扩展门限时使用的名义包填充值,n的取值范围为[1,…,N],N为大于8的整数。
  42. 如权利要求41所述的通信装置,其特征在于,所述第一值满足如下公式:
    N CBPRU=N RU242*N BPSCS
    其中,N CBPRU为所述第一值,N RU242为所述RU能够最多包括的RU242个数,N BPSCS为单个空时流上的每个子载波所承载的编码后的比特个数。
  43. 如权利要求42所述的通信装置,其特征在于,所述多个包扩展门限子字段集合包括与第一名义包填充值对应的第一包扩展门限子字段集合,所述第一包扩展门限子字段集合中的一个第一包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且所述第二设备采用的NSS为n时,对应的第一包扩展门限,所述第一包扩展门限用于指示所述第二设备在所分配的RU对应的所述第一值大于或等于所述第一包扩展门限时使用的名义包填充值为所述第一名义包填充值,所述第一名义包填充 值为20微秒。
  44. 如权利要求42或43所述的通信装置,其特征在于,所述多个包扩展门限子字段集合还包括与第二名义填充值对应的第二包扩展门限子字段集合,所述第二包扩展门限子字段集合中的一个第二包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且所述第二设备采用的NSS为n时,对应的第二包扩展门限,所述第二包扩展门限用于指示所述第二设备在所分配的RU上对应的所述第一值大于或等于所述第二包扩展门限时使用的名义包填充值为所述第二名义包填充值,所述第二名义包填充值为16微秒。
  45. 如权利要求42-44任一项所述的通信装置,其特征在于,所述多个包扩展门限子字段集合还包括与第三名义包填充值对应的第三包扩展门限子字段集合,所述第三包扩展门限子字段集合中的一个第三包扩展门限子字段用于向第二设备指示所分配的资源单元RU等效编码后的RU块个数为第一值,且所述第二设备采用的NSS为n时,对应的第三包扩展门限,所述第三包扩展门限用于指示所述第二设备在所分配的RU对应的所述第一值大于或等于所述第三包扩展门限时使用的名义包填充值为所述第三名义包填充值,所述第三名义包填充值为8微秒。
  46. 如权利要求41-45任一项所述的通信装置,其特征在于,所述NSS索引掩码子字段占用至少8比特,所述NSS索引掩码子字段的第i个比特为0,所述物理层包扩展门限信息字段不包括NSS为所述i的包扩展门限子字段集合。
  47. 如权利要求41或42所述的通信装置,其特征在于,所述物理层包扩展门限信息字段用于指示所述第二设备采用的NSS大于所述NSS索引掩码子字段非0比特的最高位数对应的NSS时,所述第二设备在所分配的RU对应的所述第一值大于或等于所述包扩展门限时使用的名义包填充值为20微秒。
  48. 一种通信装置,其特征在于,包括处理模块和收发模块,其中,
    所述收发模块用于接收来自第一设备的物理层协议数据单元PPDU,所述PPDU包括空间流数NSS索引掩码子字段、NSS子字段、物理层包扩展门限信息字段,其中,所述物理层包扩展门限信息字段包括对应不同名义包填充值的多个包扩展门限子字段集合,所述每个包扩展门限子字段集合包括用于多个指示NSS为n对应的包扩展门限子字段,所述包扩展门限子字段用于向通信装置指示所分配的资源单元RU等效编码后的RU块个数为第一值,且所述第二设备采用的NSS为n时,对应的包扩展门限,所述包扩展门限子字段用于指示所述通信装置在所述第一值大于或等于所述包扩展门限时使用的名义包填充值,n的取值范围为[1,…,N],N为大于8的整数;
    所述处理模块用于根据所述物理层包扩展门限信息字段以及所述第一值确定采用为j的NSS时所使用的名义包填充值,j为大于或等于1的整数。
  49. 如权利要求48所述的通信装置,其特征在于,所述第一值满足如下公式:
    N CBPRU=N RU242*N BPSCS
    其中,N CBPRU为所述第一值,N RU242为所述RU能够最多包括的RU242个数,N BPSCS为单个空时流上的每个子载波所承载的编码后的比特个数。
  50. 如权利要求49所述的通信装置,其特征在于,所述多个包扩展门限子字段集合包括与第一名义包填充值对应的第一包扩展门限子字段集合,所述第一包扩展门限子字段集合中的一个第一包扩展门限子字段用于向所述通信装置指示所分配的资源单元RU等效编 码后的RU块个数为第一值,且所述第二设备采用的NSS为n时,对应的第一包扩展门限,所述第一包扩展门限用于指示所述通信装置在所分配的RU对应的所述第一值大于或等于所述第一包扩展门限时使用的第一名义包填充值,所述第一名义包填充值为20微秒;
    当NSS为j,N CBPRU大于或等于NSS为所述j的所述第一包扩展门限子字段对应的第一名义包填充值,所述处理模块确定采用为j的NSS时使用的名义包填充值为所述第一名义包填充值。
  51. 如权利要求50所述的通信装置,其特征在于,所述多个包扩展门限子字段集合还包括与第二名义包填充值对应的第二包扩展门限子字段集合,所述第二包扩展门限子字段集合中的一个第二包扩展门限子字段用于向所述通信装置指示所分配的资源单元RU等效编码后的RU块个数为第一值,且所述第二设备采用的NSS为n时,对应的第二包扩展门限,所述第二包扩展门限用于指示所述通信装置在所分配的RU上对应的所述第一值大于或等于所述第二包扩展门限时使用的第二名义包填充值,所述第二名义包填充值为16微秒;
    当NSS为j,N CBPRU大于或等于NSS为所述j的所述第二包扩展门限子字段对应的第二名义包填充值,且小于NSS为所述j的所述第一包扩展门限子字段对应的第一名义包填充值,所述处理模块确定采用为j的NSS时使用的名义包填充值为所述第二名义包填充值。
  52. 如权利要求51所述的通信装置,其特征在于,所述多个包扩展门限子字段集合还包括与第三名义包填充值对应的第三包扩展门限子字段集合,所述第三包扩展门限子字段集合中的一个第三包扩展门限子字段用于向所述通信装置指示所分配的资源单元RU等效编码后的RU块个数为第一值,且所述第二设备采用的NSS为n时,对应的第三包扩展门限,所述第三包扩展门限用于指示所述通信装置在所分配的RU对应的所述第一值大于或等于所述第三包扩展门限时使用的第三名义包填充值,所述第三名义包填充值为8微秒;
    当NSS为j,N CBPRU大于或等于NSTS为所述j的所述第三包扩展门限子字段对应的第三名义包填充值,且小于NSTS为所述j的所述第二包扩展门限子字段对应的第二名义包填充值,所述处理模块确定采用为j的NSS时使用的名义包填充值为所述第三名义包填充值。
  53. 如权利要求48-52任一项所述的通信装置,其特征在于,所述NSS索引掩码子字段占用至少8比特,所述NSS索引掩码子字段的第i个比特为0,所述物理层包扩展门限信息字段不包括NSS为所述i的子字段集合。
  54. 如权利要求48或49所述的通信装置,其特征在于,所述通信装置采用的NSS大于所述NSS索引掩码子字段非0比特的最高位数对应的NSS,所述通信装置在所分配的RU对应的所述第一值大于或等于所述包扩展门限时使用的名义包填充值为20微秒。
  55. 一种芯片,其特征在于,所述芯片包括至少一个处理器和接口,所述处理器用于读取并执行存储器中存储的指令,当所述指令被运行时,使得所述芯片执行如权利要求1-27任一项所述的方法。
  56. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被计算机执行时,使所述计算机执行如权利要求1-27任一项所述的方法。
PCT/CN2022/070798 2021-01-11 2022-01-07 一种名义包填充值的指示方法、确定方法及通信装置 WO2022148445A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP22736606.9A EP4262126A4 (en) 2021-01-11 2022-01-07 INDICATION METHOD AND DETERMINATION METHOD FOR NOMINAL VALUE OF PACKET FILLING, AND COMMUNICATION APPARATUS
KR1020237027304A KR20230128554A (ko) 2021-01-11 2022-01-07 공칭 패킷 패딩 값 표시 방법, 결정 방법 및 통신 장치
JP2023541999A JP2024503843A (ja) 2021-01-11 2022-01-07 ノミナルパケットパディング値指示方法、決定方法および通信装置
MX2023008195A MX2023008195A (es) 2021-01-11 2022-01-07 Método de indicación de valor de relleno de paquete nominales, método de determinación y aparato de comunicación.
AU2022206515A AU2022206515B2 (en) 2021-01-11 2022-01-07 Indication method and determination method for nominal packet padding value, and communication apparatus
CA3204804A CA3204804A1 (en) 2021-01-11 2022-01-07 Nominal packet padding value indication method, determining method, and communication apparatus
US18/349,510 US20230353274A1 (en) 2021-01-11 2023-07-10 Nominal packet padding value indication method, determining method, and communication apparatus
AU2024204378A AU2024204378A1 (en) 2021-01-11 2024-06-26 Indication method and determination method for nominal packet padding value, and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110031666.3 2021-01-11
CN202110031666.3A CN114760019A (zh) 2021-01-11 2021-01-11 一种名义包填充值的指示方法、确定方法及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/349,510 Continuation US20230353274A1 (en) 2021-01-11 2023-07-10 Nominal packet padding value indication method, determining method, and communication apparatus

Publications (1)

Publication Number Publication Date
WO2022148445A1 true WO2022148445A1 (zh) 2022-07-14

Family

ID=82325201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070798 WO2022148445A1 (zh) 2021-01-11 2022-01-07 一种名义包填充值的指示方法、确定方法及通信装置

Country Status (10)

Country Link
US (1) US20230353274A1 (zh)
EP (1) EP4262126A4 (zh)
JP (1) JP2024503843A (zh)
KR (1) KR20230128554A (zh)
CN (2) CN114760019A (zh)
AU (2) AU2022206515B2 (zh)
CA (1) CA3204804A1 (zh)
MX (1) MX2023008195A (zh)
TW (1) TWI792842B (zh)
WO (1) WO2022148445A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160227437A1 (en) * 2015-02-03 2016-08-04 Broadcom Corporation Packet extension for wireless communication
CN108234093A (zh) * 2016-12-14 2018-06-29 华为技术有限公司 控制信息指示方法及网元
CN111200480A (zh) * 2018-11-19 2020-05-26 马维尔国际贸易有限公司 用于满足接收器最小处理时间要求的wlan触发帧填充

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016197349A1 (zh) * 2015-06-10 2016-12-15 华为技术有限公司 物理层协议数据单元的传输方法和装置
WO2017100741A1 (en) * 2015-12-11 2017-06-15 Marvell World Trade Ltd. Signal field encoding in a high efficiency wireless local area network (wlan) data unit
CN116405159A (zh) * 2018-07-17 2023-07-07 华为技术有限公司 一种通信方法及装置
US10952216B2 (en) * 2018-07-30 2021-03-16 Marvell Asia Pte, Ltd. Wireless local area network management
US11128505B2 (en) * 2019-02-06 2021-09-21 Intel Corporation And Intel Ip Corporation Channel width, spatial streams, and short packet signaling
CN116488774A (zh) * 2019-03-18 2023-07-25 华为技术有限公司 信息指示方法及装置、数据传输系统
US11252749B2 (en) * 2019-06-03 2022-02-15 Mediatek Singapore Pte. Ltd. Virtual resource unit for multi-resource unit assignment to a single station in WLAN

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160227437A1 (en) * 2015-02-03 2016-08-04 Broadcom Corporation Packet extension for wireless communication
CN108234093A (zh) * 2016-12-14 2018-06-29 华为技术有限公司 控制信息指示方法及网元
CN111200480A (zh) * 2018-11-19 2020-05-26 马维尔国际贸易有限公司 用于满足接收器最小处理时间要求的wlan触发帧填充

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4262126A4 *
YOUHAN KIM: "IEEE P802.11 Wireless LANs D4.0 Comment Resolution – Part 4", IEEE 802.11-19/1226R0, 16 July 2019 (2019-07-16), Piscataway, NJ USA, pages 1 - 10, XP009538602 *

Also Published As

Publication number Publication date
MX2023008195A (es) 2023-09-29
AU2022206515A9 (en) 2024-05-16
AU2022206515B2 (en) 2024-03-28
AU2024204378A1 (en) 2024-07-11
CN114760019A (zh) 2022-07-15
EP4262126A4 (en) 2024-05-29
CN116647314A (zh) 2023-08-25
US20230353274A1 (en) 2023-11-02
TWI792842B (zh) 2023-02-11
CN116647314B (zh) 2024-03-26
AU2022206515A1 (en) 2023-07-27
TW202228429A (zh) 2022-07-16
EP4262126A1 (en) 2023-10-18
KR20230128554A (ko) 2023-09-05
JP2024503843A (ja) 2024-01-29
CA3204804A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
EP3337077B1 (en) Wireless local area network information transmission method and apparatus
WO2020019928A1 (zh) 资源单元指示方法、装置及存储介质
EP3758269B1 (en) Physical layer protocol data unit transmission method and apparatus
CN103039029A (zh) 用于信道状态信息反馈的协议
US11757585B2 (en) Data transmission method and related apparatus
US11979342B2 (en) Resource indication method, access point, and station
US20210360628A1 (en) Apparatus and method of communication based on extended bandwidth and multi-resource unit in wireless local area network system
WO2022148445A1 (zh) 一种名义包填充值的指示方法、确定方法及通信装置
WO2023020349A1 (zh) 发送物理层协议数据单元的方法和通信装置
JP6430641B2 (ja) 情報送信方法、アクセスポイントおよびユーザ装置
WO2022068686A1 (zh) 一种名义包填充值的指示方法、确定方法及通信装置
WO2021244647A1 (zh) 发送触发帧的方法、接收触发帧的方法和通信装置
CN114338829B (zh) 一种名义包填充值的指示方法、确定方法及通信装置
US20230388165A1 (en) Information indication method and apparatus
JP7525667B2 (ja) リソースインジケーション方法、アクセスポイント、及びステーション
US20240214163A1 (en) Physical Layer Protocol Data Unit Transmission Method and Apparatus
WO2022252679A1 (zh) 一种物理层协议数据单元、触发帧的传输方法以及装置
EP4250811A1 (en) Communication method, apparatus and system
CN115604849A (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736606

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/008195

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 3204804

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023541999

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023013788

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022736606

Country of ref document: EP

Effective date: 20230713

WWE Wipo information: entry into national phase

Ref document number: 202317049860

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2022206515

Country of ref document: AU

Date of ref document: 20220107

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112023013788

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230710

ENP Entry into the national phase

Ref document number: 20237027304

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237027304

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202305293X

Country of ref document: SG