WO2022148437A1 - 裸眼三维显示装置 - Google Patents

裸眼三维显示装置 Download PDF

Info

Publication number
WO2022148437A1
WO2022148437A1 PCT/CN2022/070754 CN2022070754W WO2022148437A1 WO 2022148437 A1 WO2022148437 A1 WO 2022148437A1 CN 2022070754 W CN2022070754 W CN 2022070754W WO 2022148437 A1 WO2022148437 A1 WO 2022148437A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
prism
block
microprism
eye
Prior art date
Application number
PCT/CN2022/070754
Other languages
English (en)
French (fr)
Inventor
乔文
陈林森
华鉴瑜
施佳成
李瑞彬
周振
罗明辉
浦东林
朱鹏飞
成堂东
Original Assignee
苏州苏大维格科技集团股份有限公司
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格科技集团股份有限公司, 苏州大学 filed Critical 苏州苏大维格科技集团股份有限公司
Priority to KR1020237018512A priority Critical patent/KR20230113560A/ko
Priority to JP2023535003A priority patent/JP2023553920A/ja
Publication of WO2022148437A1 publication Critical patent/WO2022148437A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0972Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures

Definitions

  • the present invention relates to the field of display technology, and in particular, to a naked-eye three-dimensional display device.
  • 3D display As one of the main sources of information for human beings, vision is particularly important in daily life. Unlike natural scenes, traditional display devices can only present two-dimensional images at present. This lack of depth plane information limits human exploration and cognition of the vast world to a certain extent. Studies have shown that almost 50% of the human brain is involved in the processing of visual information, and the presentation of two-dimensional images leads to reduced brain utilization. Glasses-free 3D (three dimensional, 3D) display has huge application value in film and television, games, education, vehicle, aviation, medical treatment, and military. Taking the military field as an example, from machinery manufacturing, battlefield analysis, military command, remote operation and other links, the visualization of 3D images is required, which will have a huge impact on the improvement of work efficiency. Therefore, 3D display is known as the "next-generation display technology" and has become one of the important research fields and technologies that many display companies are scrambling to study.
  • Mechanisms and methods for realizing naked-eye 3D display based on parallax barrier, cylindrical lens array, space-time multiplexing, or integrated light field, etc. all use optical elements with periodic microstructures or nanostructures to control the phase of the display light field.
  • the image information of different viewing angles is projected to different viewing angles in the form of approximately parallel beams.
  • the autostereoscopic display technology has made great progress, the naked-eye 3D display technology has not yet successfully entered the field of flat panel display. Display problems such as vertigo (convergence to mediate contradictions), image crosstalk/ghosting, and resolution degradation, as well as device structure problems such as ultra-thinning and light utilization, need to be solved urgently.
  • the visually impaired method and the micro-cylindrical lens grating method are based on the principle of parallax. This principle has been invented for more than 100 years, and domestic and foreign companies continue to display prototypes of naked-eye 3D displays based on the parallax principle. However, due to problems such as visual fatigue caused by image crosstalk, it restricts the entry of naked-eye 3D displays into the field of consumer electronics products.
  • Chinese patent CN 105959672 B discloses a naked-eye three-dimensional display device based on active light-emitting display technology, and proposes to use a directional phase plate containing a nano-grating pixel structure to perform wavefront modulation on an incident image to form a multi-view 3D image.
  • the pixels of the phase plate need to fit perfectly with the pixels of the display screen, and the process is difficult and it is difficult to achieve precise alignment.
  • the nano-grating modulated light uses its -1st order light to converge the viewpoint, and its diffraction efficiency is theoretically only 40% at the highest, and the light utilization rate is low.
  • the purpose of the present invention is to provide a naked-eye three-dimensional display device, which can realize different three-dimensional display effects under different viewing angles.
  • the present invention provides a naked-eye three-dimensional display device.
  • the naked-eye three-dimensional display device includes: a display component, which includes a display unit array arranged by a plurality of display unit arrays; a viewing angle controller, which includes a microprism block array arranged by a plurality of microprism block arrays , wherein each microprism block corresponds to a display unit, which includes a first surface close to the display unit and a second surface far away from the display unit, and the light from the display unit passes through the microprism block.
  • the first surface enters the micro-prism block, and then exits the prism block through the second surface of the micro-prism block, and the second surface and the first surface of the micro-prism block form a first clamp in the first direction angle, the second surface of the micro-prism block and the first surface form a second angle in a second direction perpendicular to the first direction, and the light emitted from the second surface of the micro-prism block is opposite to the display
  • the exit angle of the light-emitting surface of the unit is related to the first included angle and the second included angle.
  • micro-prism blocks of the micro-prism block array are divided into multiple groups, and the angle combination of the first included angle and the second included angle of each micro-prism block is set in advance so that the outgoing light rays of the same group of micro-prism blocks converge to the same viewpoint , the outgoing rays of different groups of micro-prism blocks converge into different viewpoints.
  • the micro-prism blocks in the present invention can project the light from the display unit to a specified direction according to the setting.
  • the light from different groups of display units is propagated and converged into different viewpoints through the corresponding micro-prism blocks, so that different three-dimensional display effects can be viewed under different viewing angles.
  • FIG. 1 is a schematic three-dimensional structure diagram of a display assembly in an embodiment of the present invention
  • FIG. 2 is a schematic side view of the structure of the display assembly in one embodiment of the present invention.
  • Fig. 3 is a two-dimensional schematic plan view of the light path of a point light source
  • Figure 4 is a schematic diagram of the optical path of the plane spf mapping plane xoz
  • Figure 5 is a schematic diagram of the optical path of the plane spf mapping plane yoz
  • FIG. 6 is a schematic structural diagram of a naked-eye three-dimensional display device in an embodiment of the present invention.
  • FIG. 7 is a top view of the aperture array diaphragm in FIG. 6;
  • FIG. 8 is a schematic diagram of the light propagation effect of the aperture of the aperture array diaphragm in FIG. 6;
  • FIG. 9 is a schematic structural diagram of a naked-eye three-dimensional display device in another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of adding a blocking device at the junction of the microprism blocks
  • FIG. 11 is an exemplary schematic diagram of each group of microprism blocks in the microprism block array in the naked-eye three-dimensional display device according to the present invention.
  • Figure 12 shows a design flow of the viewing angle controller
  • FIG. 13 is a schematic three-dimensional structure diagram of a display assembly in another embodiment of the present invention.
  • FIG. 14 is a schematic diagram of the light effect of the grating structure.
  • the exit angle of the light emitted from the micro-prism block can be controlled. Based on this principle, the light from the same group of display units can be propagated through the corresponding micro-prism blocks to converge into the same viewpoint, and the light from different groups of display units can be propagated through the corresponding micro-prism blocks to converge into different Viewpoints, so that different three-dimensional display effects can be viewed under different viewing angles.
  • the present invention can provide a display component, which can be a display pixel or a display unit.
  • FIG. 1 is a schematic three-dimensional structure diagram of a display assembly in an embodiment of the present invention.
  • FIG. 2 is a schematic side view of the structure of the display assembly in one embodiment of the present invention.
  • the display assembly 100 includes a display unit 110 and a microprism block 120 .
  • the micro-prism block 120 includes a first surface 121 close to the display unit 110 and a second surface 122 away from the display unit 110 .
  • the light n from the display unit 110 enters the micro-prism block 120 through the first surface 121 , and then exits the micro-prism block 120 through the second surface 122 .
  • the second surface 122 and the first surface 121 form a first angle ⁇ 1 in a first direction x, and the second surface and the first surface are in a second direction y perpendicular to the first direction x
  • a second included angle ⁇ 2 is formed thereon, and the exit angle of the light emitted from the second surface is related to the first included angle ⁇ 1 and the second included angle ⁇ 2 .
  • the first included angle and the second included angle of the micro-prism block are set as a predetermined angle combination, so that the light emitted from the micro-prism block has a predetermined exit angle.
  • the first surface 121 of the micro-prism block is parallel to the light-emitting surface of the display unit 110
  • the second surface 122 is an inclined surface relative to the first surface 121
  • the micro-prism blocks can also be arranged upside down, that is, the second surface (the surface away from the display unit) of the micro-prism block is parallel to the light-emitting surface of the display unit, and the first surface ( The surface close to the display unit) is an inclined surface with respect to the second surface.
  • the microprism block controls the exit angle of the light emitted from the second surface through the principle of refraction.
  • the outgoing angle of the light emitted from the second surface 122 can be defined by two parameters, one parameter is the direction of the outgoing light on the plane xoy, and the other is the included angle of the outgoing light relative to the plane xoy Angle.
  • N times the wavelength of the outgoing light is less than the side length of the microprism block, and N is greater than or equal to 2.
  • the wavelength range of red light: 625-740nm then the side length of the microprism block can be more than 3.7um.
  • the incident light of the micro-prism block that is, the light emitted from the display unit 110 may be perpendicular to the first surface 121 or may not be perpendicular to the first surface 121 .
  • the display unit is one or more light-emitting pixels, and the light-emitting pixels may be LED pixels or LCD pixels.
  • the display unit may be one or several pixels in a display screen of an electronic product , the content displayed by the LED pixels or LCD pixels can be actively changed.
  • the display unit may also be one or more reflective pixels, the reflective pixels themselves do not actively emit light, and the light projected to the reflective pixels from the outside will be reflected by the reflective pixels.
  • the display unit may be one or several pixels in a static picture.
  • the display units may also be referred to as display pixels.
  • the surface of the display unit is located on the plane xoy, and the normal direction n is parallel to the z axis.
  • the lower surface (ie, the first surface) of the microprism block is parallel to the display unit, and the upper surface (ie, the second surface) forms a certain angle with the xoy plane, that is, the upper surface is an inclined surface.
  • the micro-prism block can also be reversed, that is, the upper surface of the micro-prism block is parallel to the display unit, and the lower surface forms a certain angle with the xoy plane.
  • the first included angle of the inclined surface formed by the inclined surface of the microprism block and the surface xoy is ⁇ 1 on the plane xoz
  • the second included angle of the inclined surface formed with the surface xoy on the plane yoz is ⁇ 2
  • the normal of the inclined surface is ⁇ 2 .
  • the direction is set to n'
  • the sag of the lowest point of the inclined plane is h.
  • the five variables of the inclined plane parameters ( ⁇ 1 , ⁇ 2 , h) and the pixel position (x, y) of the microprism block can fully express the light field information and realize the control of the outgoing light.
  • the sag h of the lowest point of the inclined surface may be 0 or a height other than 0, and the sag h of the lowest point of the inclined surface does not affect the exit angle of the outgoing light.
  • the plane is formed by the normal direction n of the plane where the display unit 110 is located and the normal direction n' of the inclined surface of the micro-prism block.
  • n1 is the refractive index of the incident medium, which is the refractive index of the microprism block in FIG. 2 ;
  • n2 is the refractive index of the outgoing medium, which is the refractive index of air in FIG. 2
  • ⁇ and ⁇ are the light rays on the second surface 122 respectively angle of incidence and exit.
  • any angle of n' relative to the xoy plane within the hemisphere along the z-axis can be realized, that is, the surface composed of the normal direction n of the xoy plane and the normal direction n' of the inclined surface can be xoy
  • Two angle variables can be realized by rotating the plane normal direction n as the center, and then adjusting the exit angle through the Snell's law formula.
  • the independent regulation of at least four variables, together with the pixel position (x, y) regulation, can realize the independent regulation of at least four variables and realize the control of the outgoing light.
  • a light source is located at s(xs, ys, zs), and the light emitted by it is set by the center point p(xp, yp, 0), p of the structural surface (that is, the inclined surface of the microprism block).
  • p the structural surface
  • p the structural surface
  • it converges at point f(xf, yf, zf) after refraction.
  • the normal of the plane formed by the three-dimensional coordinates of s, p, and f is exactly the same as that of the structure.
  • the normals of the faces are vertical.
  • the structural surface is in the air
  • the refractive index of the entire structural surface is n
  • the refractive index of air is 1
  • the total thickness of the photoresist and the substrate is t
  • the structure height of the microprism block is h
  • the inclination angle of each small microprism block is ⁇
  • ⁇ and ⁇ are the angles between the incident light and the outgoing light and the line perpendicular to the structure surface, respectively
  • ⁇ and ⁇ , ⁇ and ⁇ are the incident angle and refraction angle on both sides of the structure entrance surface and structure exit surface, respectively
  • sp and fp are respectively The vertical distance from the light source s and the focal point f to the structure surface.
  • the tilt angle ⁇ of the micro-prism block can be obtained only by obtaining the structural refractive index n, angles A, B and pf, in which A, B, and pf can all pass through three point light sources in two-dimensional space. s, pixel position p and focus point f are obtained.
  • the plane spf is mapped to the two x0z planes and the 0yz planes perpendicular to the structural plane xy0, which can be understood as the phase modulation of the incident light on the x-axis and the phase modulation on the y-axis by the slanted prism.
  • the inclination angle formed by the inclined plane of the microprism block and the surface xoy is the inclination angle ⁇ 2 (ie the second included angle) of yoz.
  • the incident light can be approximately considered as parallel incidence, and the angles Ax and Ay are both 90°, and the formula can be:
  • FIG. 6 is a schematic structural diagram of a naked-eye three-dimensional display device in an embodiment of the present invention.
  • the naked-eye three-dimensional display device 600 includes a display part 610 and a viewing angle controller 620 .
  • the display component 610 includes a display unit array formed by a plurality of display unit arrays.
  • the display unit 610 can be a display screen such as an LED, an LCD, etc. At this time, the display screen will emit light, and the human eye can see the light emitted by the display screen. At this time, each display unit of the display unit 610 is emitting light. pixel.
  • the display component 610 may also be a static picture, which does not actively emit light and needs reflected light to be seen. In this case, each display unit is a reflective pixel, not a light-emitting pixel.
  • the viewing angle controller 620 includes a micro-prism block array arranged by a plurality of micro-prism block arrays.
  • the viewing angle controller 620 includes a micro-prism block array arranged by a plurality of micro-prism block arrays.
  • FIG. 6 only 6 microprism blocks are exemplarily shown, namely 620-1 to 620-6, and it is obvious that there may be hundreds, thousands, tens of thousands or more of microprism blocks.
  • Each microprism block and a corresponding display unit may constitute the display assembly 100 described in the first embodiment. For details about each microprism block, each display unit, and how the two work together, reference may be made to the introduction of the display assembly 100, and the repeated content of this part will not be introduced here.
  • Each display unit may be referred to as 1 pixel, and from another perspective, the combination of each display unit and the corresponding microprism block may also be referred to as 1 pixel.
  • the first surfaces of the micro-prism blocks 620-1 to 620-6 are flat surfaces, and the second surfaces are inclined surfaces relative to the first surfaces.
  • the first surfaces of the blocks 620-1 to 620-6 are coplanar.
  • the viewing angle controller 620 can also be turned over, that is, the inclined surface faces the display unit, and at this time the second surface of the micro-prism block (the surface away from the display unit) ) is a plane, the first surface (the surface close to the display component) is an inclined surface with respect to the second surface, and at this time, the second surfaces of each microprism block are coplanar.
  • the micro-prism blocks of the micro-prism block array are divided into multiple groups, and the angle combination of the first included angle and the second included angle of each micro-prism block is set in advance so that: the outgoing light rays of the same group of micro-prism blocks converge to the same viewpoint, The outgoing rays of different groups of micro-prism blocks converge into different viewpoints. As shown in FIG.
  • each micro-prism block is divided into 3 groups, the micro-prism blocks 620-1 and 620-4 are a group, the outgoing light rays are converged into the viewpoint 1, and the micro-prism blocks 620-2 and 620-5 are a group , the outgoing light rays converge into viewpoint 2, the micro-prism blocks 620-3 and 620-6 are a group, and the outgoing rays converge into viewpoint 3.
  • each microprism block can be divided into at least 3 groups, such as hundreds or thousands of groups, the more groups of microprism blocks, the more independent viewpoints; The number of blocks may also be in the hundreds or thousands or more.
  • the display unit array is configured to simultaneously display a plurality of images with different viewing angles, the display units corresponding to each group of micro-prism blocks display images of one viewing angle, and the display units corresponding to different groups of micro-prism blocks display images of different viewing angles. Since the viewpoint in the present invention is formed by the convergence of outgoing light rays, the viewpoint has high definition and no crosstalk, and is not easy to cause dizziness to the observer.
  • the microprism block in the present invention controls the outgoing direction of light through the principle of refraction, and has high light utilization rate compared with the way of modulating light by nano-grating in the prior art.
  • the first included angle and the second included angle of each micro-prism block are set as a combination of predetermined angles, so that the light emitted by each micro-prism block has a predetermined exit angle, thereby making the exit of the same group of micro-prism blocks.
  • the light rays converge into the same viewpoint, and the outgoing rays of different groups of microprism blocks converge into different viewpoints.
  • an image of one viewing angle displayed by a display unit corresponding to a group of micro-prism blocks corresponding to the viewpoint can be seen.
  • images of different viewing angles displayed by display units corresponding to different groups of microprism blocks can be seen.
  • the images of the first viewing angle displayed by display units 610-1 and 610-4 can be seen, and when viewed from viewpoint 2 in FIG. 6, display units 610-2 and 610-5 can be seen displayed.
  • the image of the second viewing angle, viewed from the viewpoint 3 in FIG. 6 the images of the third viewing angle displayed by the display units 610-3 and 610-6 can be seen.
  • the naked-eye 3D display device in the present invention can have hundreds or thousands of viewpoints, can obtain continuous parallax images without crosstalk, and realize fatigue-free naked-eye 3D display.
  • the incident direction of the light and the exit angle of the light are also determined.
  • the first angle of the inclined surface on the micro-prism block 620-1 is determined.
  • An included angle and a second included angle is calculated one by one.
  • the rays of the micro-prism blocks 620-1 and 620-4 are directed to the viewpoint 1
  • the rays of the micro-prism blocks 620-2 and 620-5 are directed to the viewpoint 2
  • the rays of the micro-prism blocks 620-3 and 620-6 Shoot towards viewpoint 3.
  • the naked-eye three-dimensional display device further includes: an aperture array diaphragm 630 located between the display component 610 and the viewing angle regulator 620 .
  • the aperture array diaphragm 630 includes apertures arranged in an array, each aperture corresponds to one display unit, and light emitted by one display unit is propagated to the corresponding microprism block through the corresponding aperture.
  • the aperture array diaphragm 630 can collimate the light emitted from the display part 610 .
  • FIG. 7 is a top view of the aperture array diaphragm in FIG. 6 .
  • the aperture 631 is a square column. In other embodiments, the aperture can also be a circular cylinder or a polygonal cylinder.
  • FIG. 8 is a schematic diagram of the light propagation effect of the aperture of the aperture array diaphragm in FIG. 6 .
  • the diameter of the side of the aperture 631 facing the display unit is smaller than the diameter of the side of the aperture 631 facing the micro-prism block, so that the light shaping effect can be improved.
  • the diameters of the apertures may also be the same.
  • FIG. 9 is a schematic structural diagram of the naked-eye three-dimensional display device in another embodiment of the present invention.
  • the naked-eye three-dimensional display device includes a display part 910 and a viewing angle controller 620 .
  • the structure and principle of the viewing angle controller 620 are the same as those of the viewing angle controller 620 in FIG. 6 .
  • the display component 910 used in the naked-eye three-dimensional display device in FIG. 9 is not a parallel light source, such as the display unit array in FIG. A light source, such as a projection display unit.
  • the position of the projection display unit can be seen as a point light source s (xs, ys, zs), and the pixel array projected by the projection display unit corresponds to each microprism block on the viewing angle controller 620, and the viewing angle controller 620 is fully lined up according to the incident light.
  • the micro-prism block (also called structural pixel) p(xp, yp, 0) whose angle modulates the light exit direction, the light is collected by the micro-prism block of each pixel to the designed viewpoint position f(xf, yf, zf) ,
  • the slope parameters ⁇ 1 and ⁇ 2 of each microprism block structure can be deduced.
  • the eyes of the observer see different viewpoints, and the different viewpoints correspond to two images with parallax, which can produce a 3D effect.
  • the light crosstalk between different micro-prism blocks can be reduced by adding a shielding device 640 .
  • the blocking device 640 may be a separate device located above or below the viewing angle modifier, or integrated (embedded) on the viewing angle modifier.
  • FIG. 11 shows a structure example of each group of micro-prism blocks in the micro-prism block array in the naked-eye three-dimensional display device of the present invention.
  • each micro-prism block in the micro-prism block array 620 is divided into four groups, the first group is marked as 1a, 1b, 1c, 1d respectively, the first group converges the light to obtain the viewpoint 1, at At viewpoint 1, the observer can see the first parallax image composed of the microprism blocks 1a, 1b, 1c, and 1d being lit by the corresponding display unit groups.
  • the second group is marked as 2a, 2b, 2c, and 2d, respectively.
  • the two groups of converging rays get viewpoint 2.
  • viewpoint 2 the observer can watch the second parallax image composed of the micro-prism blocks 2a, 2b, 2c, and 2d being lit by the corresponding display unit groups.
  • the third group is marked as 3a respectively.
  • the third group of condensing rays get viewpoint 3, at viewpoint 3, the observer can watch the third parallax composed of the microprism blocks 3a, 3b, 3c, 3d being lit by the corresponding display unit group
  • the fourth group is marked as 4a, 4b, 4c, 4d respectively, and the fourth group of condensing rays obtains the viewpoint 4, at which the observer can see that the microprism blocks 4a, 4b, 4c, 4d are displayed by the corresponding display unit
  • the fourth parallax image consisting of group lights.
  • the micro-prism blocks in each group of micro-prism blocks are also arranged in an array, that is, the individual micro-prism blocks in each group of micro-prism blocks are arranged in at least two rows and at least two columns. Since the micro-prism blocks in each group of micro-prism blocks are in different positions, but the outgoing light rays need to be converged to a viewpoint, the directions of outgoing light rays of each micro-prism block in each group of micro-prism blocks are different.
  • the microprism blocks in each row in the microprism block array are divided into at least two different groups of microprism blocks, and the microprism blocks in each column in the microprism block array are divided into at least two different groups. group of microprism blocks.
  • Figure 12 shows a design flow of the viewing angle controller.
  • the screen position, viewpoint distribution (including the number of viewpoints, viewpoint interval, visible range, etc.) and incident light distribution are generally determined first according to the application requirements, as shown in Fig. 6
  • the incident light is the incident light of the parallel light
  • the incident light is the incident light of the point light source.
  • the viewpoint allocation method of the screen pixels is determined, that is, which pixels are grouped into a group, and which viewpoint corresponds to each group of pixels.
  • the relative positional relationship between the display screen and the viewpoint distribution is determined, and then, the directions and positions of the incident light rays and the outgoing light rays of the screen pixels are calculated one by one.
  • the exit angle of the outgoing light Based on the direction of the incident light rays and the outgoing angle of the outgoing light rays, and according to Snell's (refraction) law, the normal direction, inclination angle and sag of the inclined surface of the microprism block on the pixel corresponding to the viewing angle controller can be calculated, where the normal direction
  • the inclined plane defined by the inclination angle is the same as the inclined plane defined by the first included angle and the second included angle, but the parameters used are different, and the physical meaning is the same. Thereby, the morphology parameters of the viewing angle control device are obtained.
  • FIG. 13 is a schematic three-dimensional structure diagram of a display assembly in another embodiment of the present invention.
  • the display assembly 200 includes a display unit 210 and a microprism block 220 .
  • the microprism block 220 includes a first surface 221 close to the display unit 210 and a second surface 222 away from the display unit 210 .
  • the light n from the display unit 210 enters the micro-prism block 220 through the first surface 221 , and then exits the micro-prism block 120 through the second surface 222 .
  • the second surface 222 and the first surface 221 form a first angle ⁇ 1 in the first direction x, and the second surface and the first surface are in a second direction y perpendicular to the first direction x
  • a second included angle ⁇ 2 is formed thereon, and the exit angle of the light emitted from the second surface is related to the first included angle ⁇ 1 and the second included angle ⁇ 2 .
  • the first included angle and the second included angle of the micro-prism block are set as a predetermined angle combination, so that the light emitted from the micro-prism block has a predetermined exit angle.
  • the structure of the display assembly 200 in FIG. 13 is basically the same as the structure of the display assembly 100 in FIG. 1 , the difference is that the display assembly 200 further includes a grating structure disposed on the second surface 222 , through the specific angle selectivity of the grating and wavelength selectivity, enabling preset colors to be seen at specific angles.
  • the period and orientation angle of the diffraction grating pixels 101 satisfy the following relationship:
  • ⁇ 1 and ⁇ represent the diffraction angle (the angle between the diffracted ray and the positive direction of the z-axis) and the azimuth angle (the angle between the diffracted ray and the positive direction of the x-axis) of the diffracted light 202
  • ⁇ and ⁇ represent the incident angle of the light source 201 (the incident ray and the z-axis). positive angle) and wavelength, ⁇ and The period and orientation angle of the nano-diffraction grating 101 (the included angle between the groove shape and the positive y-axis direction) are shown in turn, and n is the refractive index of the light wave in the medium.
  • the required period and orientation angle of the nano-grating can be calculated by the above two formulas. For example, red light with a wavelength of 650nm is incident at an angle of 60°, the diffraction angle of the light is 10°, and the diffraction azimuth angle is 45°. Through calculation, the corresponding nano-diffraction grating period is 550nm, and the orientation angle is -5.96°.
  • the matching color can be expressed at the required viewpoint position, which can reduce the prism inclination or the grating period on the machining accuracy.
  • the information such as the groove depth and duty ratio of , changes the diffraction efficiency of the grating at a specific observation position, so that the brightness information can be expressed.
  • the pixelated prism structure is made of transparent material, and the ambient light is refracted and reflected after reaching the prism structure, and the light at this time has weak wavelength selectivity. The light passes through the designed pixelated prism structure and after passing through the grating on the inclined surface, it presents a colorful 3D image to the human eye.
  • the display unit 210 is a light-emitting pixel, and the light emitted by the light-emitting pixel itself is colored, even if no grating structure is provided on the second surface, the display component can be displayed in color of.
  • the grating structure is additionally designed, the color of the light emitted by the display unit 210 can be further changed to increase the light effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种裸眼三维显示装置(600)。裸眼三维显示装置(600)包括:显示部件(610),其包括由多个显示单元(110)阵列排布而成的显示单元阵列;视角调控器(620),其包括由多个微棱镜块(120,620-1, 620-2,620-3,620-4,620-5,620-6)阵列排布而成的微棱镜块阵列。微棱镜块阵列的微棱镜块(120,620-1,620-2,620-3,620-4,620-5,620-6)被分成多组,各个微棱镜块(120,620-1,620-2,620-3,620-4,620-5,620-6)的第一夹角(θ1)和第二夹角(θ2)的角度组合被事先设置以使得:同一组微棱镜块的出射光线汇聚成同一个视点,不同组微棱镜块的出射光线汇聚成不同视点。这样,通过设置各个微棱镜块(120,620-1, 620-2,620-3,620-4,620-5,620-6)的倾斜面的角度来形成多个不同的视点,从而实现了在不同的视角下观看到不同的三维显示效果。

Description

裸眼三维显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种裸眼三维显示装置。
背景技术
作为人类获取信息的主要来源之一,视觉在日常生活中显得尤为重要。与自然景物不同,目前传统显示器件只能呈现二维图像。这种缺乏深度的平面信息在一定程度上限制了人类对广阔世界的探索与认知。研究显示,人类的大脑几乎50%的部分均用于参与视觉信息的处理,二维图像的呈现方式导致大脑利用率降低。裸眼3D(three dimensional,3D)显示在影视、游戏、教育、车载、航空、医疗、军事都有巨大的应用价值。以军事领域为例,从机械制造、战场分析、军队指挥、远程操作等各个环节,都需要3D图像的可视化,对工作效率提升将具有巨大影响。因此,3D显示被誉为“下一代显示技术”,成为重要研究领域和诸多显示公司争相研究的技术之一。
基于视差屏障、柱透镜阵列、时空复用、亦或是集成光场等实现裸眼3D显示的机理和方法,均是利用具有周期性微结构或纳结构的光学元件对显示光场进行相位调控,将不同视角图像信息以近似平行光束的方式投射至不同视角。尽管自由立体显示技术已取得巨大进展,裸眼3D显示技术尚未成功进入平板显示领域。眩晕感(辐辏调解矛盾)、图像串扰/鬼影、分辨率下降等显示问题,以及超薄化、光利用率等器件结构问题亟待解决。
视障法、微柱透镜光栅法,都是依据视差原理。该原理已发明100多年,国内外企业不断有基于视差原理的裸眼3D显示样机展示,但是,由于图像串扰易引起视觉疲劳等问题,制约了裸眼3D显示器真正进入消费电子产品领域。
中国专利CN 105959672 B公开了一种基于主动发光型显示技术的裸眼三维显示装置,提出利用包含纳米光栅像素结构的指向型相位板对入射图像进行波前调制,形成多视角3D图像。然而其相位板的像素需要与显示屏的像素完美贴合,工艺难度较大,难以实现精密对准。此外,纳米光栅调制光线使用其-1级光进行会聚视点,其衍射效率理论最高只有40%,光利用率低。
因此,有必要提出一种改进的方案来克服上述问题。
发明内容
本发明的目的在于提供一种裸眼三维显示装置,其可以实现在不同的视角下观看到不同的三维显示效果。
为实现发明目的,根据本发明的一个方面,本发明提供一种裸眼三维显示装置。所述裸眼三维显示装置包括:显示部件,其包括由多个显示单元阵列排布而成的显示单元阵列;视角调控器,其包括由多个微棱镜块阵列排布而成的微棱镜块阵列,其中每个微棱镜块与一个显示单元相对应,其包括靠近所述显示单元的第一表面以及远离所述显示单元的第二表面,来自所述显示单元的光线通过所述微棱镜块的第一表面进入所述微棱镜块,之后再经过所述微棱镜块的第二表面射出所述棱镜块,所述微棱镜块的第二表面与第一表面在第一方向上形成第一夹角,所述微棱镜块的第二表面与第一表面在与第一方向垂直的第二方向上形成第二夹角,自所述微棱镜块的第二表面射出的光线相对于所述显示单元的显光面的出射角度与第一夹角和第二夹角相关。其中微棱镜块阵列的微棱镜块被分成多组,各个微棱镜块的第一夹角和第二夹角的角度组合被事先设置以使得:同一组微棱镜块的出射光线汇聚成同一个视点,不同组微棱镜块的出射光线汇聚成不同视点。
与现有技术相比,本发明中的微棱镜块可以将来自所述显示单元的光线按照设定投射至指定方向,根据这样的方式,来自同一组显示单元的光线通过对应的微棱镜块被传播出去汇聚成的同一个视点,来自不同组显示单元的光线通过对应的微棱镜块被传播出去汇聚成的不同视点,从而实现了在不同的视角下观看到不同的三维显示效果。
附图说明
图1为本发明中的显示组件在一个实施例中的立体结构示意图;
图2为本发明中的显示组件在一个实施例中的侧面结构示意图;
图3为点光源光线光路二维平面示意图;
图4为平面spf映射平面xoz的光路原理图;
图5为平面spf映射平面yoz的光路原理图;
图6为本发明中的裸眼三维显示装置在一个实施例中的结构示意图;
图7为图6中的孔径阵列光阑的俯视图;
图8为图6中的孔径阵列光阑的孔径的光线传播效果示意图;
图9为本发明中的裸眼三维显示装置在另一个实施例中的结构示意图;
图10为在微棱镜块的交界处增加遮挡装置的结构示意图;
图11为本发明中的裸眼三维显示装置中的微棱镜块阵列的各组微棱镜块的示例示意图;
图12示出了视角调控器的一种设计流程;
图13为本发明中的显示组件在另一个实施例中的立体结构示意图;
图14为光栅结构的光效原理图。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如下。
本发明通过设置微棱镜块的倾斜面的角度,可以控制自所述微棱镜块出射的光线的出射角度。基于这样的原理,可以将来自同一组显示单元的光线通过对应的微棱镜块被传播出去以汇聚成同一个视点,来自不同组显示单元的光线通过对应的微棱镜块被传播出去以汇聚成不同视点,从而实现了在不同的视角下观看到不同的三维显示效果。
第一实施例
在第一实施例中,本发明可以提供一个显示组件,所述显示组件可以是一个显示像素或一个显示单位。图1为本发明中的显示组件在一个实施例中的立体结构示意图。图2为本发明中的显示组件在一个实施例中的侧面结构示意图。如图1和2所示的,所述显示组件100包括一个显示单元110和一个微棱镜块120。
所述微棱镜块120包括靠近所述显示单元110的第一表面121以及远离所述显示单元110的第二表面122。来自所述显示单元110的光线n通过所述第一表面121进入所述微棱镜块120,之后再经过所述第二表面122射出所述微棱镜块120。所述第二表面122与所述第一表面121在第一方向x上形成第一夹角θ 1,所述第二表面与所述第一表面在与第一方向x垂直的第二方向y上形成第二夹角θ 2,自所述第二表面射出的光线的出射角度与第一夹角θ 1和第二夹角θ 2 相关。具体的,设置所述微棱镜块的第一夹角和第二夹角为预定角度组合,使得所述微棱镜块射出的光线具有预定的出射角度。
图1和2中,所述微棱镜块的第一表面121与所述显示单元110的显光面平行,所述第二表面122相对于第一表面121为倾斜面。在另一个实施例中,所述微棱镜块也可以颠倒过来设置,即所述微棱镜块的第二表面(远离显示单元的表面)平行于所述显示单元的显光面,第一表面(靠近显示单元的表面)相对于第二表面为倾斜表面。
所述微棱镜块是通过折射原理来控制所述第二表面出射的光线的出射角度。如图1所示的,所述第二表面122出射的光线的出射角度可以由两个参数定义,一个参数是出射光线在平面xoy上的方向,另一个是出射光线相对于平面xoy的夹角的角度。出射的光线的波长的N倍小于所述微棱镜块的边长,N大于等于2。比如,红光的波长范围:625~740nm,那么微棱镜块的边长可以是3.7um以上。在图1和2中,所述微棱镜块的入射光线,即所述显示单元110射出的光线可以垂直于第一表面121,也可以不垂直于第一表面121。
在一个实施例中,所述显示单元为一个或多个发光像素,所述发光像素可以为LED像素或LCD像素,此时所述显示单元可以是电子产品的显示屏幕中的一个或几个像素,所述LED像素或LCD像素显示的内容可以主动变化。在另一个实施例中,所述显示单元也可以是一个或多个反光像素,所述反光像素本身并不主动发光,外部投射至所述反光像素的光线会被所述反光像素进行反射,此时所述显示单元可以是静态画面中的一个或几个像素。所述显示单元也可以被称为显示像素。
下面就结合图1-5来详细介绍所述微棱镜块控制出射光线的出射角度的原理。
如图1所示,所述显示单元的表面位于平面xoy,法线方向n与z轴平行。微棱镜块的下表面(即第一表面)与所述显示单元平行,上表面(即第二表面)与xoy平面成一定夹角,即上表面为倾斜表面。在另一个实施例中,微棱镜块颠倒过来也可以,即微棱镜块的上表面与显示单元平行,下表面与xoy平面成一定夹角。微棱镜块的倾斜表面与表面xoy形成的倾斜角在平面xoz的第一夹角为θ 1,与表面xoy形成的倾斜角在平面yoz的第二夹角为θ 2,该倾斜表面的法线方向设为n’,该倾斜面最低点矢高为h。微棱镜块的倾斜面参数(θ 1,θ 2, h)和像素位置(x,y)五个变量可完整表达光场信息,实现对出射光的控制。该倾斜面的最低点矢高h可以是0,也可以为不是0的高度,该倾斜面的最低点矢高h不影响出射光线的出射角度。
如图2所示,由显示单元110所在平面法线方向n和所述微棱镜块的倾斜表面法线方向n’所组成的平面。
当入射光波波长λ远小于单个像素尺寸P(比如所述微棱镜块的边长)时(P≥2λ),其出射方向遵循斯涅尔定律:
n1 sinα=n2 sinβ
其中n1为入射介质折射率,在图2中为所述微棱镜块的折射率;n2为出射介质折射率,在图2中为空气的折射率,α和β分别为光线在第二表面122的入射角和出射角。
因此通过改变θ 1与θ 2,可以实现n’相对于xoy平面的沿z轴半球范围内的任意角度,即xoy平面法线方向n和倾斜表面的法线方向n’组成的面可以以xoy平面法线方向n为中心旋转一周,再通过斯涅尔定律公式调控出射角度,即可实现两个角度变量
Figure PCTCN2022070754-appb-000001
的独立调控,再配合像素位置(x,y)调控,即可实现至少四个变量的独立调控,实现对出射光的控制。
在裸眼3D显示中,如图3所示,为使点光源发出的光线可以会聚到指定的会聚点,需要计算出每一显示像素所对应的微棱镜块的第一夹角和第二夹角,由此来确定每一显示单元的面型。
如图3所示的,有一点光源位于s(xs,ys,zs)处,其发出的光线经结构面(即微棱镜块的倾斜面)中心点p(xp,yp,0),p设置在一个微棱镜块的中心,且为微棱镜块的半高处,折射后在f(xf,yf,zf)点会聚,此处假设s、p、f三维坐标形成平面的法线正好与结构面的法线垂直。结构面处于空气中,整个结构面的折射率为n,空气折射率为1,光刻胶和基底总厚度为t,微棱镜块结构高度为h,每个小微棱镜块的倾角为θ,Φ和δ分别为入射光线和出射光线与结构面垂直的线的夹角,θ和β、Ψ和σ分别为结构入射面和结构出射面两侧的入射角和折射角,sp和fp分别为光源s和聚焦点f到结构面的垂直距离。
根据已知条件进行平面推导:
Figure PCTCN2022070754-appb-000002
Figure PCTCN2022070754-appb-000003
根据斯涅尔定律,结构入射面:
n sinβ=sin a=sin(φ+θ)
Figure PCTCN2022070754-appb-000004
Figure PCTCN2022070754-appb-000005
Figure PCTCN2022070754-appb-000006
出射面:
Figure PCTCN2022070754-appb-000007
Θθ=β+ψ
Figure PCTCN2022070754-appb-000008
∴将(2)代入(1)
Figure PCTCN2022070754-appb-000009
从上面式子可以看出,只需得到结构折射率n、角度A、B以及pf即可获得微棱镜块的倾斜角θ,其中A、B、pf都可以通过二维空间中三个点点光源s、像素位置p和聚焦点f求得。
实际上,光源s(xs,ys,zs)、结构面像素点p(xp,yp,0)和聚焦点f(xf,yf,zf)在三维空间中,平面spf的法线与结构面的法线不是垂直的,且具有一定夹角。
在这里将平面spf映射到与结构面xy0垂直的两个x0z面和0yz面,可理解为棱台斜面分别对入射光在x轴上的相位调制和y轴上的相位调制。
如图4所示,可得:
Figure PCTCN2022070754-appb-000010
求解上述隐函数,可得微棱镜块的倾斜面与表面xoy形成的倾斜角在xoz平面的倾斜角θ 1(即第一夹角)。
如图5所示,可得:
Figure PCTCN2022070754-appb-000011
求解上述隐函数,可得微棱镜块的斜面与表面xoy形成的倾斜角在yoz的倾斜角θ 2(即第二夹角)。
当光源是由LCD、LED等平面显示器发出的光的时候,入射光可近似认为平行入射,角度Ax、Ay都为90°,公式可为:
Figure PCTCN2022070754-appb-000012
Figure PCTCN2022070754-appb-000013
第二实施例
在第二实施例中,本发明可以提供一种裸眼三维显示装置。图6为本发明中的裸眼三维显示装置在一个实施例中的结构示意图。如图6所示的,所述裸眼三维显示装置600包括显示部件610和视角调控器620。
所述显示部件610包括由多个显示单元阵列排布而成的显示单元阵列。所述显示部件610可以是LED、LCD等显示屏,此时,所述显示屏会发光,人眼可以看到所述显示屏发出的光线,此时所述显示部件610的各个显示单元是发 光像素。在另一个实施例中,所述显示部件610也可以是一个静态画面,该静态画面不主动发光,需要反射光线才能被看到,此时各个显示单元是反光像素,不是发光像素。
在图6中,仅仅示例性的给出了6个显示单元,分别为610-1至610-6,很显然可以有成百上千,上万个或更多个显示单元。所述视角调控器620包括由多个微棱镜块阵列排布而成的微棱镜块阵列。在图6中,仅仅示例性的给出了6个微棱镜块,分别为620-1至620-6,很显然可以有成百上千,上万个或更多个微棱镜块。每个微棱镜块和一个对应的显示单元均可以构成第一实施例中所述的显示组件100。关于每个微棱镜块、每个显示单元以及两者的如何配合工作等详细内容,可以参考显示组件100部分的介绍,这部分重复的内容这里就不再介绍了。
每个显示单元可以被称为1个像素,从另一个角度看,每个显示单元和对应的微棱镜块的组合也可以被称为1个像素。
如图6所示的,所述微棱镜块620-1至620-6的第一表面(靠近显示部件的表面)为平面,所述第二表面相对于第一表面为倾斜面,各个微棱镜块620-1至620-6的第一表面共面。如上文所述的,在另一个实施例中,所述视角调控器620也可以翻过来,即倾斜表面朝向所述显示单元,此时所述微棱镜块的第二表面(远离显示部件的表面)为平面,第一表面(靠近显示部件的表面)相对于第二表面为倾斜表面,此时各个微棱镜块的第二表面共面。
微棱镜块阵列的微棱镜块被分成多组,各个微棱镜块的第一夹角和第二夹角的角度组合被事先设置以使得:同一组微棱镜块的出射光线汇聚成同一个视点,不同组微棱镜块的出射光线汇聚成不同视点。如图6所示的,各个微棱镜块被分成3组,微棱镜块620-1和620-4为一组,出射光线汇聚成视点1,微棱镜块620-2和620-5为一组,出射光线汇聚成视点2,微棱镜块620-3和620-6为一组,出射光线汇聚成视点3。实际使用时,各个微棱镜块可以被分成至少3组,比如可以是几百组或几千组,微棱镜块的组数越多,独立的视点就越多;每组微棱镜块的微棱镜块的数目也会有成百上千或者更多个。所述显示单元阵列被配置的同时显示视角各不相同的多个图像,每组微棱镜块对应的显示单元显示一个视角的图像,不同组微棱镜块对应的显示单元显示不同视角的图像。由于本发明中的视点是出射光线汇聚而成的,因此该视点的清晰度高、无串扰, 不容易造成观察者眩晕。本发明中的微棱镜块通过折射原理来控制光线的出射方向,相较于现有技术中纳米光栅调制光线的方式,光利用率高。
更为具体的,设置每个微棱镜块的第一夹角和第二夹角为预定角度组合,使得每个微棱镜块射出的光线具有预定的出射角度,进而使得同一组微棱镜块的出射光线汇聚成同一个视点,不同组微棱镜块的出射光线汇聚成不同视点。
在一个视点观看,可以看到该视点对应的一组微棱镜块对应的显示单元显示的一个视角的图像。在不同的视点观察,可以看到不同组组微棱镜块对应的显示单元显示的不同视角的图像。比如从图6的视点1观看,可以看到显示单元610-1和610-4显示的第一视角的图像,从图6的视点2观看,可以看到显示单元610-2和610-5显示的第二视角的图像,从图6的视点3观看,可以看到显示单元610-3和610-6显示的第三视角的图像。
由于人眼的两个眼睛存在一定的间距,因此会位于不同的两个视点处。这样,用户裸眼就能看到3D图像。随着人的移动后,人的双眼也一直位于两个不同的视点处。举例来说,如图6所示的,用户的右眼位于视点1,左眼位于视点2,看到了第一视角的图像和第二视角的图像(两张图像具有是视角差)合成的3D图像。用户向左移动后,用户的右眼位于视点2,左眼位于视点3,看到了第二视角的图像和第三视角的图像合成的3D图像。如上文所示的,实际上本发明中的裸眼三维显示装置可以具有几百或几千个视点,能获得连续无串扰的视差图像,实现无疲劳裸眼3D显示。
对于微棱镜块620-1,由于其预定的汇聚视点已经确定,这样其光线的入射方向和以及光线的出射角度也就确定下来了,通过计算可知微棱镜块620-1上的倾斜面的第一夹角和第二夹角。之后逐一计算微棱镜块620-2至620-6的倾斜面的第一夹角和第二夹角。最后可以得到,微棱镜块620-1和620-4的光线射向视点1,微棱镜块620-2和620-5的光线射向视点2,微棱镜块620-3和620-6的光线射向视点3。
如图6所示的,所述裸眼三维显示装置还包括:位于所述显示部件610和所述视角调控器620之间的孔径阵列光阑630。所述孔径阵列光阑630包括排布成阵列的孔径,每个孔径与一个显示单元相对应,一个显示单元发出的光线经过对应的孔径被传播至对应的微棱镜块。所述孔径阵列光阑630可以对显示部件610出射的光线进行准直。图7为图6中的孔径阵列光阑的俯视图。如图 7所示的,所述孔径631为方形柱。在其他实施例中,所述孔径也可以是圆形柱或多边形柱。图8为图6中的孔径阵列光阑的孔径的光线传播效果示意图。在图8中,所述孔径631的面向所述显示单元的一侧的直径小于所述孔径631的面向所述微棱镜块的一侧的直径,这样可以提高光线整形效果。当然,在其他实施例中,所述孔径的直径也可以是一致的。
图9为本发明中的裸眼三维显示装置在另一个实施例中的结构示意图。如图9所示的,所述裸眼三维显示装置包括显示部件910和视角调控器620。所述视角调控器620的结构和原理与图6中的视角调控器620的结构和原理相同。
图9中的裸眼三维显示装置采用的显示部件910不是平行光源,比如图6中的由多个显示单元阵列排布而成的显示单元阵列,比如LED显示屏或LCD显示屏等,而是点光源,比如投影显示单元。
投影显示单元位置处可看为点光源s(xs,ys,zs),投影显示单元投出的像素阵列对应视角调控器620上的每个微棱镜块,视角调控器620上排满根据入射光角度调制光线出射方向的微棱镜块(也可称为结构像素)p(xp,yp,0),通过每个像素的微棱镜块汇聚光线到设计的视点位置为f(xf,yf,zf),设置固定的微棱镜块的倾斜面参数矢高h,根据点光源、像素、视点位置和自由角基础公式可以推导出每个微棱镜块结构的倾斜面参数θ 1,θ 2。观察者的双眼观看到不同的视点,不同视点对应相应的两张具有视差的图象,这样可以产生3D效果。
如图10所示的,同时在微棱镜块的交界处,可以通过增加遮挡装置640减小不同微棱镜块间的光线串扰。遮挡装置640可以是单独器件位于视角调控器上方或下方,或集成(嵌入)在视角调控器上。
为进一步的了解所述微棱镜块阵列的工作原理,图11示意出了本发明中的裸眼三维显示装置中的微棱镜块阵列的各组微棱镜块的结构示例。如图11所示的,所述微棱镜块阵列620中的各个微棱镜块被分成四组,第一组分别标记为1a、1b,1c,1d,该第一组汇聚光线得到视点1,在视点1处观察者可以观看到由微棱镜块1a、1b,1c,1d被对应显示单元组点亮组成的第一幅视差图像,第二组分别标记为2a、2b,2c,2d,该第二组汇聚光线得到视点2,在视点2处观察者可以观看到由微棱镜块2a、2b,2c,2d被对应显示单元组点亮组成的第二幅视差图像,第三组分别标记为3a、3b,3c,3d,该第三组聚光线得到视点3,在视点3处观察者可以观看到由微棱镜块3a、3b,3c,3d被对应显示单 元组点亮组成的第三幅视差图像,第四组分别标记为4a、4b,4c,4d,该第四组聚光线得到视点4,在视点4处观察者可以观看到由微棱镜块4a、4b,4c,4d被对应显示单元组点亮组成的第四幅视差图像。可见,每组微棱镜块中的各个微棱镜块也阵列排布,即每组微棱镜块中的各个微棱镜块排成至少两行和至少两列。由于每组微棱镜块中的各个微棱镜块处于不同的位置,但是需要将出射光线汇聚至一个视点,因此每组微棱镜块中的各个微棱镜块的出射光线的方向都不同。所述微棱镜块阵列中的每行中的微棱镜块被至少分到不同的两组微棱镜块中,所述微棱镜块阵列中的每列中的微棱镜块被至少分到不同的两组微棱镜块中。
下面介绍视角调控器620的设计过程。图12示出了视角调控器的一种设计流程。
如结合图6和图12所示的,在3D显示设计中,一般首先根据应用需求确定屏幕位置、视点分布(包括视点数目,视点间隔,可视范围等)和入射光线分布,如图6所示的,入射光线为平行光入射,如图9所示的,入射光线为点光源入射。之后,根据显示屏幕像素大小和排列方式确定屏幕像素的视点分配方法,即哪些像素被化为一组,各组像素对应的视点是哪个。由此,确定显示屏幕与视点分布相对位置关系,随后,逐一计算屏幕像素入射光线和出射光线的方向与位置,这里的屏幕像素的出射光线的方向是指所述显示单元对应的微棱镜块的出射光线的出射角度。基于入射光线方向和出射光线的出射角度,依据斯涅尔(折射)定律,可计算视角调控器对应像素上的微棱镜块的倾斜面的法线方向、倾斜角度和矢高,这里的法线方向和倾斜角度定义的倾斜面与第一夹角和第二夹角定义的倾斜面是一致的,只是采用的参数不同,物理含义相同。由此获得视角调控器件形貌参数。最后,根据实际加工需求,决定是否对倾斜面进行切割,并最终实现视角调控器的制备与加工。
图13为本发明中的显示组件在另一个实施例中的立体结构示意图。如图13所示的,所述显示组件200包括一个显示单元210和一个微棱镜块220。所述微棱镜块220包括靠近所述显示单元210的第一表面221以及远离所述显示单元210的第二表面222。来自所述显示单元210的光线n通过所述第一表面221进入所述微棱镜块220,之后再经过所述第二表面222射出所述微棱镜块120。所述第二表面222与所述第一表面221在第一方向x上形成第一夹角θ 1, 所述第二表面与所述第一表面在与第一方向x垂直的第二方向y上形成第二夹角θ 2,自所述第二表面射出的光线的出射角度与第一夹角θ 1和第二夹角θ 2相关。具体的,设置所述微棱镜块的第一夹角和第二夹角为预定角度组合,使得所述微棱镜块射出的光线具有预定的出射角度。
图13中的显示组件200的结构与图1中的显示组件100的结构基本相同,不同之处在于:显示组件200还包括设置于第二表面222上的光栅结构,通过光栅特有的角度选择性和波长选择性,可实现在特定角度看到预设的颜色。
所述光栅结构的原理请参见图14,结构尺度在纳米级别的衍射光栅在XY平面和XZ平面下的结构图。根据光栅方程,衍射光栅像素101的周期、取向角满足以下关系:
(1)
Figure PCTCN2022070754-appb-000014
(2)
Figure PCTCN2022070754-appb-000015
其中,光线以一定的角度入射到XY平面,θ1和
Figure PCTCN2022070754-appb-000016
依次表示衍射光202的衍射角(衍射光线与z轴正方向夹角)和方位角(衍射光线与x轴正方向夹角),θ和λ依次表示光源201的入射角(入射光线与z轴正方向夹角)和波长,∧和
Figure PCTCN2022070754-appb-000017
依次表示纳米衍射光栅101的周期和取向角(槽型方向与y轴正方向夹角),n表示光波在介质中的折射率。换言之,在规定好入射光线波长、入射角以及衍射光线衍射角和衍射方位角之后,就可以通过上述两个公式计算出所需的纳米光栅的周期和取向角了。例如,650nm波长红光以60°角入射,光的衍射角为10°、衍射方位角为45°,通过计算,对应的纳米衍射光栅周期为550nm,取向角为-5.96°。这样,通过设计棱镜结构以及光栅结构的周期和取向角就能在所需要的视点位置表达相匹配的颜色,这样可以减小棱镜倾斜度或者光栅周期对加工精度的需求,同时还可以通过改变光栅的槽深和占空比等信息改变特定观察位置光栅的衍射效率,从而能够表达亮度信息。制作像素化棱镜结构为透明材料,环境光达到棱镜结构后进行折射和反射,此时的光具有较弱的波长选择性。光线通过设计的像素化棱镜结构后,并通过斜表面上的光栅后,在人眼中呈现出彩色的3D图像。
另外,需要说明书的是,如果所述显示单元210为发光像素,并且所述发光像素发出的光本身就是彩色的,即便没有在第二表面上设置光栅结构,那么 所述显示组件可以显示为彩色的。当然,如果额外设计光栅结构,那么可以进一步的变换所述显示单元210发出的光线的颜色,增加光效。
在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,除了包含所列的那些要素,而且还可包含没有明确列出的其他要素。
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种裸眼三维显示装置,其特征在于,其包括:
    显示部件;
    视角调控器,其包括由多个微棱镜块阵列排布而成的微棱镜块阵列,其中每个微棱镜块包括靠近所述显示部件的第一表面以及远离所述显示部件的第二表面,来自所述显示部件的光线通过所述微棱镜块的第一表面进入所述微棱镜块,之后再经过所述微棱镜块的第二表面射出所述棱镜块,所述微棱镜块的第二表面与第一表面在第一方向上形成第一夹角,所述微棱镜块的第二表面与第一表面在与第一方向垂直的第二方向上形成第二夹角,自所述微棱镜块的第二表面射出的光线的出射角度与第一夹角和第二夹角相关,
    其中微棱镜块阵列的微棱镜块被分成多组,各个微棱镜块的第一夹角和第二夹角的角度组合被事先设置以使得:同一组微棱镜块的出射光线汇聚成同一个视点,不同组微棱镜块的出射光线汇聚成不同视点。
  2. 如权利要求1所述的裸眼三维显示装置,其特征在于,所述显示部件包括由多个显示单元阵列排布而成的显示单元阵列,所述显示单元阵列被配置的同时显示视角各不相同的多个图像,每组微棱镜块对应的显示单元显示一个视角的图像,不同组微棱镜块对应的显示单元显示不同视角的图像。
  3. 如权利要求2所述的裸眼三维显示装置,其特征在于,所述裸眼三维显示装置还包括:位于所述显示部件和所述视角调控器之间的孔径阵列光阑,所述孔径阵列光阑包括排布成阵列的孔径,每个孔径与一个显示单元相对应,一个显示单元发出的光线经过对应的孔径被传播至对应的微棱镜块。
  4. 如权利要求3所述的裸眼三维显示装置,其特征在于,所述孔径的面向所述显示单元的一侧的直径小于所述孔径的面向所述微棱镜块的一侧的直径,
    所述孔径的形状为圆形柱、方形柱或多边形柱。
  5. [根据细则26改正03.03.2022]
    如权利要求1所述的裸眼三维显示装置,其特征在于,所述微棱镜块的第一表面为平面,所述第二表面相对于第一表面为倾斜面,各个微棱镜块的第一表面共面;或者,
    所述微棱镜块的第二表面为平面,第一表面相对于第二表面为倾斜表面,各个微棱镜块的第二表面共面。
  6. [根据细则26改正03.03.2022]
    如权利要求1所述的裸眼三维显示装置,其特征在于,所述微棱镜块通过折射原理来控制所述第二表面出射的光线的出射角度,
    出射的光线的波长的N倍小于所述微棱镜块的边长,N大于等于2,
    属于同一组的各个微棱镜块散落分布在不同位置,属于不同组的微棱镜块交错排布。
  7. [根据细则26改正03.03.2022]
    如权利要求1所述的裸眼三维显示装置,其特征在于,
    所述显示单元为一个或多个发光像素或者一个或多个反光像素,
    所述发光像素为LED像素或LCD像素,
    或者所述显示部件为点光源。
  8. [根据细则26改正03.03.2022]
    如权利要求1所述的裸眼三维显示装置,其特征在于,其还包括:
    设置于各个微棱镜块的交界处的遮挡装置,所述遮挡装置是单独器件位于视角调控器上方或下方,或集成在所述视角调控器上。
  9. [根据细则26改正03.03.2022] 
    如权利要求1所述的裸眼三维显示装置,其特征在于,设置每个微棱镜块的第一夹角和第二夹角为预定角度组合,使得每个微棱镜块射出的光线具有预定的出射角度,进而使得同一组微棱镜块的出射光线汇聚成同一个视点,不同组微棱镜块的出射光线汇聚成不同视点。
  10. [根据细则26改正03.03.2022] 
    如权利要求1所述的裸眼三维显示装置,其特征在于,每个微棱镜块的第二表面上设置有光栅结构。
  11. [根据细则26改正03.03.2022]
    如权利要求1所述的裸眼三维显示装置,其特征在于,
    每组微棱镜块中的各个微棱镜块排成至少两行和至少两列,由于每组微棱镜块中的各个微棱镜块处于不同的位置,每组微棱镜块中的各个微棱镜块的出射光线的方向都不同,以将出射光线汇聚至一个视点。
PCT/CN2022/070754 2021-01-11 2022-01-07 裸眼三维显示装置 WO2022148437A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237018512A KR20230113560A (ko) 2021-01-11 2022-01-07 육안 삼차원 디스플레이 장치
JP2023535003A JP2023553920A (ja) 2021-01-11 2022-01-07 非メガネ方式の3d表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110031925.2 2021-01-11
CN202110031925.2A CN112799237A (zh) 2021-01-11 2021-01-11 裸眼三维显示装置

Publications (1)

Publication Number Publication Date
WO2022148437A1 true WO2022148437A1 (zh) 2022-07-14

Family

ID=75809823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070754 WO2022148437A1 (zh) 2021-01-11 2022-01-07 裸眼三维显示装置

Country Status (4)

Country Link
JP (1) JP2023553920A (zh)
KR (1) KR20230113560A (zh)
CN (1) CN112799237A (zh)
WO (1) WO2022148437A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047558A (zh) * 2022-07-15 2022-09-13 深圳小豆视觉科技有限公司 光学复合膜及显示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112799237A (zh) * 2021-01-11 2021-05-14 苏州苏大维格科技集团股份有限公司 裸眼三维显示装置
CN114840165A (zh) * 2022-04-22 2022-08-02 南方科技大学 图像显示方法、图像显示装置、设备及存储介质
CN114942528B (zh) * 2022-06-17 2023-12-08 恒大恒驰新能源汽车研究院(上海)有限公司 三维显示装置
CN115236872A (zh) * 2022-09-19 2022-10-25 深圳臻像科技有限公司 一种像素级控光的三维显示系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW448312B (en) * 2000-11-02 2001-08-01 Ind Tech Res Inst Microprism automatic stereoscopic display
JP2012133128A (ja) * 2010-12-21 2012-07-12 Stanley Electric Co Ltd 立体表示装置
TW201344244A (zh) * 2012-04-24 2013-11-01 Univ Minghsin Sci & Tech 裸眼三維背投影顯示裝置
CN105629621A (zh) * 2016-04-06 2016-06-01 京东方科技集团股份有限公司 液晶棱镜及其驱动方法、显示装置
CN208818934U (zh) * 2018-09-18 2019-05-03 宁波视睿迪光电有限公司 一种电湿润微棱镜及3d显示器
CN112799237A (zh) * 2021-01-11 2021-05-14 苏州苏大维格科技集团股份有限公司 裸眼三维显示装置
CN214751131U (zh) * 2021-01-11 2021-11-16 苏州苏大维格科技集团股份有限公司 裸眼三维显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW448312B (en) * 2000-11-02 2001-08-01 Ind Tech Res Inst Microprism automatic stereoscopic display
JP2012133128A (ja) * 2010-12-21 2012-07-12 Stanley Electric Co Ltd 立体表示装置
TW201344244A (zh) * 2012-04-24 2013-11-01 Univ Minghsin Sci & Tech 裸眼三維背投影顯示裝置
CN105629621A (zh) * 2016-04-06 2016-06-01 京东方科技集团股份有限公司 液晶棱镜及其驱动方法、显示装置
CN208818934U (zh) * 2018-09-18 2019-05-03 宁波视睿迪光电有限公司 一种电湿润微棱镜及3d显示器
CN112799237A (zh) * 2021-01-11 2021-05-14 苏州苏大维格科技集团股份有限公司 裸眼三维显示装置
CN214751131U (zh) * 2021-01-11 2021-11-16 苏州苏大维格科技集团股份有限公司 裸眼三维显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047558A (zh) * 2022-07-15 2022-09-13 深圳小豆视觉科技有限公司 光学复合膜及显示装置

Also Published As

Publication number Publication date
CN112799237A (zh) 2021-05-14
JP2023553920A (ja) 2023-12-26
KR20230113560A (ko) 2023-07-31

Similar Documents

Publication Publication Date Title
WO2022148437A1 (zh) 裸眼三维显示装置
TWI658298B (zh) 基於繞射多光束元件的背光板、系統及方法
TWI627451B (zh) 多光束繞射格柵式近眼顯示器
TWI639854B (zh) 具有頭部追蹤功能的多視角顯示器、系統及方法
TWI697693B (zh) 多光束元件式近眼顯示器、系統、與方法
TWI645235B (zh) 具有匯聚視像的多光束元件式背光板、顯示器及方法
TWI638212B (zh) 利用位移的多光束繞射格柵顯現角度子像素的多視角顯示器及方法
CN104204905B (zh) 图像显示设备、图像生成装置以及透射式空间光调制装置
KR102390375B1 (ko) 백라이트 유닛 및 이를 포함한 입체 영상 표시 장치
CN106291958B (zh) 一种显示装置及图像显示方法
KR101998495B1 (ko) 멀티-뷰 픽셀 지향성 백라이트 모듈 및 나안 3d 디스플레이 장치
WO2019179136A1 (zh) 显示装置及显示方法
US20210405255A1 (en) Optical metalenses
TW201736916A (zh) 分時多工背光板、該背光板的操作方法以及使用該背光板的多視角顯示器
JP2021508965A (ja) クロスレンダリングマルチビューカメラ、システム、及び方法
CN214751131U (zh) 裸眼三维显示装置
TWI765842B (zh) 裸視立體顯示裝置及顯示方法
CN111948808A (zh) 一种抬头显示器
CN114815298A (zh) 一种用于裸眼三维显示的波导型高均匀度定向背光系统
CN115004287B (zh) 多用户多视图显示器、系统及方法
US11119253B2 (en) Direct projection light field display
CN210666197U (zh) 一种主动发光像源
US20230314665A1 (en) Light field projection method
CN118091974A (zh) 一种裸眼三维显示装置及方法
KR20230159539A (ko) 다중-축 조명을 갖는 멀티뷰 백라이트, 디스플레이 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736598

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023535003

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22736598

Country of ref document: EP

Kind code of ref document: A1