WO2022148405A1 - 数据发送处理方法、装置及处理器可读存储介质 - Google Patents

数据发送处理方法、装置及处理器可读存储介质 Download PDF

Info

Publication number
WO2022148405A1
WO2022148405A1 PCT/CN2022/070585 CN2022070585W WO2022148405A1 WO 2022148405 A1 WO2022148405 A1 WO 2022148405A1 CN 2022070585 W CN2022070585 W CN 2022070585W WO 2022148405 A1 WO2022148405 A1 WO 2022148405A1
Authority
WO
WIPO (PCT)
Prior art keywords
small data
rrc
network node
sending
data packet
Prior art date
Application number
PCT/CN2022/070585
Other languages
English (en)
French (fr)
Inventor
傅婧
苗金华
孙建成
曾二林
陈瑞卡
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US18/260,757 priority Critical patent/US20240064846A1/en
Priority to EP22736567.3A priority patent/EP4277430A1/en
Publication of WO2022148405A1 publication Critical patent/WO2022148405A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, the present application relates to a data transmission processing method, an apparatus, and a processor-readable storage medium.
  • the present application proposes a data transmission processing method, an apparatus and a processor-readable storage medium, so as to solve the above-mentioned technical defects.
  • a method for processing data transmission executed by a user equipment UE, including:
  • RRC related procedures and/or non-access stratum NAS related procedures are performed.
  • performing RRC-related procedures including:
  • an RRC related process is performed, including:
  • the UE stops the timer corresponding to the periodic RNA.
  • an RRC related process is performed, including:
  • the UE does not trigger the periodic RNA, wherein, the signaling radio bearer SRB includes at least one of SRB1 and SRB2; or,
  • the UE does not trigger the periodic RNA.
  • a non-access stratum NAS-related process is performed, including:
  • the RRC layer transmits the relevant indication to the NAS layer of the UE;
  • the relevant indication includes at least one or more items: in the RRC inactive state, sending small data packets to the network node; the wireless signaling bearer SRB1 has been restored; the wireless signaling bearer SRB2 has been restored; and the air interface connection has been restored.
  • the triggering of periodic RNA is avoided by at least one of the following ways:
  • the UE When sending a radio resource control connection recovery request RRCResumeRequest message, and sending a small data packet to the network node in the RRC inactive state, the UE stops the timer corresponding to the periodic RNA;
  • the UE stops the timer corresponding to the periodic RNA
  • the UE does not trigger the periodic RNA:
  • the small data packet is sent to the network node in a way involving RRC signaling
  • the small data packet is sent to the network node in a way that does not involve RRC signaling
  • the non-access stratum NAS related procedures include:
  • the RRC layer of the UE transmits the relevant indication to the NAS layer of the UE, and the relevant indication includes at least one of the following:
  • the small data packet is sent to the network node in a way involving RRC signaling
  • the NAS layer of the UE transmits the relevant indication to the NAS layer of the UE, when the NAS related process is performed again, the NAS layer no longer triggers the bottom layer to switch to the RRC_CONNECTED state.
  • the NAS-related process is performed, including:
  • the specified conditions include at least one or more: SRB2 has been restored or established;
  • the data radio bearer DRB for non-small packets is pending, and
  • the request sent by the NAS layer includes a request for resuming a suspended RRC connection.
  • the first message includes at least one of: an RRCResumeRequest message; a newly defined RRC message; and a medium access control unit MAC CE.
  • performing NAS-related procedures including:
  • the AS layer When the AS layer receives a request from the NAS layer to resume the suspended RRC connection, and at least one of the following conditions is met, the corresponding operation is performed:
  • the small data packet is sent to the network node in a way involving RRC signaling
  • the data radio bearer DRB for non-small data packets is pending
  • Performing the corresponding operation includes at least one of the following ways:
  • a first message is sent to the network node, where the first message includes that the UE has a non-small data packet to send or a new NAS message to send.
  • the UE sends the first message to the network node in at least one of the following ways:
  • a data transmission processing method executed by a network node, including:
  • receive a second message sent by the UE where the second message includes that the UE has a non-small data packet to send or has a new NAS message to send; and sends a response message to the UE.
  • the network node determines that the UE is in the RRC inactive state to send small data packets in at least one of the following manners, including:
  • the indication After receiving the indication sent by the current serving network node of the UE, the indication indicates that the UE sends small data packets in the RRC inactive state.
  • the response message is used to make the UE transition to the RRC connected state or restore the SRB2.
  • a data transmission processing device applied to a UE, including a memory, a transceiver, and a processor:
  • the memory is used to store the computer program;
  • the transceiver is used to send and receive data under the control of the processor;
  • the processor is used to read the computer program in the memory and perform the following operations:
  • RRC related procedures and/or non-access stratum NAS related procedures are performed.
  • performing RRC-related procedures including:
  • an RRC related process is performed, including:
  • the UE stops the timer corresponding to the periodic RNA.
  • an RRC related process is performed, including:
  • the UE does not trigger the periodic RNA, wherein, the signaling radio bearer SRB includes at least one of SRB1 and SRB2; or,
  • the UE does not trigger the periodic RNA.
  • a non-access stratum NAS-related process is performed, including:
  • the RRC layer transmits the relevant indication to the NAS layer of the UE;
  • the relevant indication includes at least one or more items: in the RRC inactive state, sending small data packets to the network node; the wireless signaling bearer SRB1 has been restored; the wireless signaling bearer SRB2 has been restored; and the air interface connection has been restored.
  • the triggering of periodic RNA is avoided by at least one of the following ways:
  • the UE When sending a radio resource control connection recovery request RRCResumeRequest message, and sending a small data packet to the network node in the RRC inactive state, the UE stops the timer corresponding to the periodic RNA;
  • the UE stops the timer corresponding to the periodic RNA
  • the UE does not trigger the periodic RNA:
  • the small data packet is sent to the network node in a way involving RRC signaling
  • the non-access stratum NAS related procedures include:
  • the RRC layer of the UE transmits the relevant indication to the NAS layer of the UE, and the relevant indication includes at least one of the following:
  • the small data packet is sent to the network node in a way involving RRC signaling
  • the NAS layer of the UE transmits the relevant indication to the NAS layer of the UE, when the NAS related process is performed again, the NAS layer no longer triggers the bottom layer to switch to the RRC_CONNECTED state.
  • the NAS-related process is performed, including:
  • the network node sending a first message to the network node, the first message including that the UE has a non-small data packet to send or a new NAS message to send;
  • the specified conditions include at least one or more: SRB2 has been restored or established;
  • the data radio bearer DRB for non-small packets is pending, and
  • the request sent by the NAS layer includes a request for resuming a suspended RRC connection.
  • the first message includes at least one of: an RRCResumeRequest message; a newly defined RRC message; and a medium access control unit MAC CE.
  • performing NAS-related processes including:
  • the AS layer When the AS layer receives a request from the NAS layer to resume the suspended RRC connection, and at least one of the following conditions is met, the corresponding operation is performed:
  • the small data packet is sent to the network node in a way involving RRC signaling
  • the data radio bearer DRB for non-small data packets is pending
  • Performing the corresponding operation includes at least one of the following ways:
  • a first message is sent to the network node, where the first message includes that the UE has a non-small data packet to send or a new NAS message to send.
  • the UE sends the first message to the network node in at least one of the following ways:
  • a data transmission and processing device applied to a network node, including a memory, a transceiver, and a processor:
  • the memory is used to store the computer program;
  • the transceiver is used to send and receive data under the control of the processor;
  • the processor is used to read the computer program in the memory and perform the following operations:
  • receive a second message sent by the UE where the second message includes that the UE has a non-small data packet to send or has a new NAS message to send; and sends a response message to the UE.
  • the network node determines that the UE is in the RRC inactive state to send small data packets in at least one of the following manners, including:
  • the indication After receiving the indication sent by the current serving network node of the UE, the indication indicates that the UE sends small data packets in the RRC inactive state.
  • the response message is used to make the UE transition to the RRC connected state or restore the SRB2.
  • the present application provides a data transmission processing device, which is applied to a UE, including:
  • a first processing unit configured to send a small data packet to a network node in a radio resource control RRC inactive state
  • the second processing unit is configured to perform an RRC related process and/or a non-access stratum NAS related process in the process of sending the small data packet to the network node.
  • the present application provides a data transmission processing device, which is applied to a network node, including:
  • the third processing unit is used to stop the timer corresponding to the periodic RNA when it is determined that the UE is in the process of sending the small data packet in the RRC inactive state;
  • the third processing unit is configured to receive a second message sent by the UE, where the second message includes that the UE has a non-small data packet to send or a new NAS message to send; and sends a response message to the UE.
  • a processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the method of the first aspect or the second aspect.
  • the UE can process subsequent RRC related processes and/or NAS related processes.
  • FIG. 1 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a data transmission processing method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another data transmission processing method provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a data transmission processing apparatus provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another data transmission processing apparatus provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a data transmission processing apparatus provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another apparatus for data transmission and processing provided by an embodiment of the present application.
  • a new RAN-controlled RRC state namely the RRC inactive state, is introduced into NR.
  • the non-access stratum state of the UE remains in the connected state, but the air interface connection corresponding to the access stratum of the UE is temporarily suspended, and the area (RNA, RAN-based) can be notified on the RAN side like the idle state. Notification Area) moves inside.
  • UE In the RRC inactive state, the non-access stratum state of the UE remains in the connected state, but the air interface connection corresponding to the access stratum of the UE is temporarily suspended, and the area (RNA, RAN-based) can be notified on the RAN side like the idle state. Notification Area) moves inside.
  • UE UE:
  • RNA renewal occurs periodically, or when RNA is removed.
  • Both the UE and the RAN side save the UE context before the RRC inactive state, so that the UE can quickly enter the connected state.
  • the mobility management of the UE in the inactive state is implemented through cell reselection, which also reduces the signaling interaction (such as measurement reporting, handover, etc.) overhead caused by the UE in the moving process.
  • a periodic RNA update mechanism is introduced in the design of the RRC inactive state.
  • the UE starts the periodic RNA update timer when entering the inactive state, which corresponds to T380 in TS 38.331. If the timer expires, the UE will trigger the RNA update procedure.
  • the UE will also trigger the RNA update process to inform the anchor point gNB that the RNA previously configured is no longer valid.
  • No RRC signaling is involved to transmit small data, that is, when the UE sends UL for the first time, it does not carry any additional RRC message except the small data packet to be transmitted.
  • FIG. 1 A schematic diagram of a network architecture provided by an embodiment of the present application is shown in FIG. 1 .
  • the network architecture includes: a UE and a network node, where the UE is such as UE110 in FIG. 1 , and the network node is such as network node 120 in FIG. 1 .
  • the network node is deployed in the access network, for example, the network node 120 is deployed in the access network NG-RAN (New Generation-Radio Access Network, new generation radio access network) in the 5G system.
  • the UE and the network node communicate with each other through a certain air interface technology, for example, they can communicate with each other through the cellular technology.
  • the UE involved in the embodiments of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • Types of UEs include cell phones, vehicle user terminals, tablet computers, laptop computers, personal digital assistants, mobile Internet devices, wearable devices, and the like.
  • the network node involved in the embodiments of the present application may be a base station, and the base station may include a plurality of cells that provide services for the UE.
  • the base station may also be called an access point, or may be a device in the access network that communicates with the UE through one or more sectors on the air interface, or other names.
  • the network node can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the UE and the rest of the access network, which can include the Internet Protocol ( IP) communication network.
  • IP Internet Protocol
  • the network nodes may also coordinate attribute management for the air interface.
  • the network node involved in this embodiment of the present application may be a network device (Base Transceiver Station, BTS) in a Global System for Mobile Communications (GSM) or a Code Division Multiple Access (Code Division Multiple Access, CDMA). ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long term evolution (LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in 5G network architecture (next generation system), or Home evolved Node B (HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., which are not limited in the embodiments of the present application.
  • network nodes may include centralized unit (CU) nodes and distributed unit (DU) nodes, and the centralized units and distributed units may also be geographically separated.
  • An embodiment of the present application provides a data transmission processing method, which is executed by a UE.
  • a schematic flowchart of the method is shown in FIG. 2 , and the method includes:
  • Step S101 in the radio resource control RRC inactive state, a small data packet is sent to the network node.
  • the UE in the process of sending small data in the inactive state (RRC inactive state), the UE processes subsequent RRC related processes and/or NAS (Non-Access Stratum, non-access stratum) related processes, Among them, both the RRC related process and the NAS related process are the subsequent processes in the small data transmission process.
  • RRC inactive state the process of sending small data in the inactive state
  • NAS Non-Access Stratum, non-access stratum
  • Step S102 in the process of sending the small data packet to the network node, perform the RRC related process and/or the non-access stratum NAS related process.
  • performing RRC-related procedures including:
  • the UE handles subsequent RRC related procedures, including avoiding triggering periodic RNAs.
  • the triggering of periodic RNA is avoided by at least one of the following:
  • the UE When sending a radio resource control connection recovery request RRCResumeRequest message, and sending a small data packet to the network node in the RRC inactive state, the UE stops the timer corresponding to the periodic RNA;
  • the UE stops the timer corresponding to the periodic RNA
  • the UE does not trigger the periodic RNA:
  • the small data packet is sent to the network node in a way involving RRC signaling
  • the non-access stratum NAS-related procedures include:
  • the RRC layer of the UE transmits the relevant indication to the NAS layer of the UE, and the relevant indication includes at least one of the following:
  • the small data packet is sent to the network node in a way involving RRC signaling
  • the RRC layer of the UE informs the NAS layer of a relevant indication, and the relevant indication includes one of the following:
  • the NAS layer of the UE transmits the relevant indication to the NAS layer of the UE, when the NAS related process is performed again, the NAS layer no longer triggers the bottom layer to switch to the RRC_CONNECTED state.
  • the NAS message to be transmitted is directly handed over to the AS layer (Access Stratum, access layer).
  • AS layer Access Stratum, access layer
  • performing NAS-related procedures including:
  • the AS layer When the AS layer receives a request from the NAS layer to resume the suspended RRC connection, and at least one of the following conditions is met, the corresponding operation is performed:
  • the small data packet is sent to the network node in a way involving RRC signaling
  • the data radio bearer DRB for non-small data packets is pending
  • Performing the corresponding operation includes at least one of the following ways:
  • a first message is sent to the network node, where the first message includes that the UE has a non-small data packet to send or a new NAS message to send.
  • the UE sends the first message to the network node in at least one of the following manners:
  • the AS layer when the AS layer receives a request from the NAS layer to resume a suspended RRC connection, it finds one or more of the following conditions:
  • the UE is currently in the process of sending small data in an inactive state
  • the UE may perform one or more of the following operations:
  • the NAS message is sent using SRB2, eg, the NAS message is sent directly through the ULInformationTransfer message.
  • the AS layer when the AS layer receives a request from the NAS layer to resume a suspended RRC connection, it finds one or more of the following conditions:
  • the UE is currently in the process of sending small data in an inactive state
  • the UE may perform one or more of the following operations:
  • the UE informs the network node that during the process of sending small data packets in the current inactive state, the UE has another non-small data packet to send:
  • the network node may be informed by the RRCResumeRequest message or a new RRC message; or
  • the network node can be informed through MAC CE;
  • the UE can inform the network node whether there is a new NAS message to be transmitted, or a non-small data packet to be transmitted;
  • the UE processes subsequent RRC-related processes and/or NAS-related processes in the process of sending small data in the RRC inactive state.
  • An embodiment of the present application provides a data transmission processing method, which is executed by a network node.
  • a schematic flowchart of the method is shown in FIG. 3 , and the method includes:
  • Step S201 when it is determined that the UE is in the process of sending small data packets in the RRC inactive state, stop the timer corresponding to the periodic RNA;
  • receive a second message sent by the UE where the second message includes that the UE has a non-small data packet to send or has a new NAS message to send; and sends a response message to the UE.
  • the network node determines that the UE is in the RRC inactive state to send small data packets in at least one of the following manners, including:
  • the indication After receiving the indication sent by the current serving network node of the UE, the indication indicates that the UE sends small data packets in the RRC inactive state.
  • the network node stops the periodic RNA timer if it is found that the small data transmission process in the inactive state is in progress.
  • the network node receives an instruction from the UE, and the UE informs the network node that during the process of sending small data packets in the current inactive state, the UE has another non-small data packet to send.
  • the UE may inform the network node whether there is a new NAS message to transmit, or a non-small data packet to transmit.
  • the response message is used to make the UE transition to RRC connected state or restore SRB2.
  • the inactive UE triggers the small data transmission process, that is, the UE is in the RRC inactive state and is in the process of sending small data; it sends both RRCResumeRequest and UL small data to the network node.
  • periodic RNA may not be needed, so the possible treatments for periodic RNA at this time are:
  • the UE When sending the RRCResumeRequest message, if the small data is sent in the inactive state, the UE stops the timer T380 corresponding to the periodic RNA;
  • the UE stops the timer T380 corresponding to the periodic RNA;
  • the UE does not trigger periodic RNA:
  • the UE is in the process of sending small data in an inactive state
  • SRB2 (signalling radio bearers 2, signaling radio bearers 2) has been restored, where restoring SRB2 can be considered as a step to be performed in the process of sending small data in the inactive state, or it needs to be executed in the process of sending small data in the inactive state using RRC signaling A step of.
  • the inactive UE triggers the small data transmission process and sends small data packets (excluding the RRCResumeRequest message) to the network node.
  • the possible processing methods for periodic RNA include:
  • the UE stops the timer T380 corresponding to the periodic RNA
  • the UE does not trigger periodic RNA:
  • the UE is in the process of sending small data in an inactive state
  • the process of sending small data in an inactive state using without RRC signaling may restore SRB1 or SRB2.
  • the network node will also start the corresponding periodic RNA timer to assist the NG-RAN side node to perform related operations on the inactive UE. For example, the network node may release the UE after the RNA timer expires.
  • the network node If the network node finds that an inactive small data transmission process is in progress, the network node stops the periodic RNA timer.
  • the possible ways include one or more of the following:
  • the network node receives the small data packet sent by the inactive UE
  • the network node receives the small data packet sent by the inactive UE on the preconfigured resource
  • the network node receives the establishment reason or the recovery reason specifically as a small data packet.
  • the above-mentioned network node may be the serving NG-RAN side node to which the UE is currently connected in the inactive state, or may be an anchor node, that is, the NG-RAN side node when the UE is released into the inactive state.
  • the anchor node receives an instruction sent by the serving NG-RAN side node to which the UE is connected, indicating that the UE sends small data packets in the inactive state. In this way, the anchor node finds that the UE is in the inactive state. The data transfer process, in turn, stops the periodic RNA timer.
  • the network node can stop the periodic RNA timer in time to avoid unnecessary operations or erroneous operations caused by the periodic RNA timer timeout. For example, the network node may release the UE after the RNA timer expires.
  • the inactive UE triggers the small data transmission process, and sends RRCResumeRequest and UL small data to the network node at the same time.
  • the NAS layer triggers the relevant process (such as PDU session modification, etc.)
  • the possible processing methods include:
  • the RRC layer of the UE informs the NAS layer of the relevant indication, and the indication can be one of the following:
  • the above indication may be triggered by the RRC layer to inform the NAS layer when the small data in the inactive state is initially triggered, or after the low-level inactive small data has been successfully delivered to the network node.
  • the NAS layer After the NAS layer receives the above instruction, if the NAS-related process is triggered again, the NAS layer does not need to trigger the bottom layer (ie, the AS layer) to switch to the RRC_CONNECTED state.
  • the NAS layer triggers related procedures (eg, PDU session modification, etc.), it is found that the UE is in 5GMM-CONNECTED mode with RRC inactive indication over 3GPP access.
  • the NAS layer triggers the bottom layer (ie the AS layer) to switch to the RRC_CONNECTED state;
  • the AS layer When the AS layer receives a request from the NAS layer to resume a suspended RRC connection, it finds one or more of the following conditions:
  • the UE is currently in the process of sending small data in an inactive state
  • the UE may perform one or more of the following operations:
  • the NAS message is sent directly using SRB2, for example, the NAS message is sent directly through the ULInformationTransfer message.
  • the NAS layer triggers related procedures (such as PDU session modification, or pending UL data, etc.), it is found that the UE is in 5GMM-CONNECTED mode with RRC inactive indication over 3GPP access.
  • the NAS layer triggers the bottom layer (that is, the AS layer) to switch to the RRC_CONNECTED state; when the AS layer receives a request from the NAS layer to restore a suspended RRC connection, it finds one or more of the following conditions:
  • the UE is currently in the process of sending small data in an inactive state
  • the UE may perform one or more of the following operations:
  • the UE can be notified through the RRCResumeRequest message or a new RRC message; or, the UE can be notified through the MAC CE;
  • the network node can be informed whether there is a new NAS message to be transmitted or a non-small data packet to be transmitted.
  • the network node may perform related operations based on the above-mentioned information sent by the UE. For example, the network node finds that in the process of sending small data packets in the current inactive state, the UE has another non-small data packet to send, and the network node sends a message to the UE.
  • the network node finds that in the process of sending small data packets in the current inactive state, the UE has a new NAS message to transmit, then the network node restores SRB2, and informs the UE through signaling to restore SRB2 ; Or the network node finds that, in the process of sending small data packets in the current inactive state, the UE has another non-small data packet to transmit, and the network node sends a message to the UE to switch the UE to the RRC connected state.
  • the inactive UE triggers the small data transmission process and sends small data packets (excluding the RRCResumeRequest message) to the network node.
  • small data packets excluding the RRCResumeRequest message
  • the NAS layer triggers the relevant process (such as PDU session modification, etc.), at this time Possible treatments include:
  • the RRC layer of the UE informs the NAS layer of the relevant indication, and the indication may include one of the following:
  • the above indication may be triggered by the RRC layer to notify the NAS layer when the inactive small data packet is initially sent, or after the bottom layer reports that the inactive small data packet has been successfully delivered to the network node.
  • the NAS layer After the NAS layer receives the above instruction, if the NAS-related process is triggered again, the NAS layer does not need to trigger the bottom layer (ie, the AS layer) to switch to the RRC_CONNECTED state.
  • the NAS layer triggers related procedures (such as PDU session modification, etc.), it is found that the UE is in 5GMM-CONNECTED mode with RRC inactive indication over 3GPP access.
  • the NAS layer triggers the bottom layer (ie, the AS layer) to transition to the RRC_CONNECTED state.
  • the UE may execute One or more of the following actions:
  • the NAS layer triggers related procedures (such as PDU session modification, or pending UL data, etc.), it is found that the UE is in 5GMM-CONNECTED mode with RRC inactive indication over 3GPP access.
  • the NAS layer triggers the bottom layer (ie, the AS layer) to transition to the RRC_CONNECTED state.
  • the AS layer When the AS layer receives a request from the NAS layer to resume a suspended RRC connection, it finds one or more of the following conditions:
  • the UE is currently in the process of sending small data in an inactive state
  • the UE may perform one or more of the following operations:
  • the UE can be notified through the RRCResumeRequest message or a new RRC message; or, the UE can be notified through the MAC CE;
  • the network node can be informed whether there is a new NAS message to be transmitted or a non-small data packet to be transmitted.
  • the network node can perform related operations based on the above-mentioned information sent by the UE. For example, the network node finds that in the process of sending small data packets in the current inactive state, the UE has another non-small data packet to send, and the network node sends a message to the UE.
  • the network node finds that, in the process of sending small data packets in the current inactive state, the UE has a new NAS message to transmit, then the network node restores SRB1 and/or SRB2, and informs by signaling The UE restores SRB1 and/or SRB2; or the network node finds that during the process of sending small data packets in the current inactive state, the UE has another non-small data packet to transmit, and the network node sends a message to the UE to switch the UE to the RRC connected state.
  • the UE processes subsequent RRC-related processes and/or NAS-related processes in the process of sending small data in the RRC inactive state.
  • an embodiment of the present application also provides a data transmission and processing device, which is applied to a UE.
  • the schematic structural diagram of the device is shown in FIG. 4 .
  • the transceiver 1400 is used for receiving and send data.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1410 and various circuits of memory represented by memory 1420 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 1400 may be a number of elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like Transmission medium.
  • the user interface 1430 may also be an interface capable of externally connecting the required equipment, and the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1410 is responsible for managing the bus architecture and general processing, and the memory 1420 may store data used by the processor 1410 in performing operations.
  • the processor 1410 may be a CPU (central processor), an ASIC (Application Specific Integrated Circuit, an application specific integrated circuit), an FPGA (Field-Programmable Gate Array, a field programmable gate array) or a CPLD (Complex Programmable Logic Device) , complex programmable logic devices), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • complex programmable logic devices complex programmable logic devices
  • the processor is configured to execute the method described in the first aspect provided by the embodiments of the present application according to the obtained executable instructions by invoking the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the processor 1410 is used to read the computer program in the memory 1420 and perform the following operations:
  • RRC related procedures and/or non-access stratum NAS related procedures are performed.
  • performing RRC-related procedures including:
  • the triggering of periodic RNA is avoided by at least one of the following:
  • the UE When sending a radio resource control connection recovery request RRCResumeRequest message, and sending a small data packet to the network node in the RRC inactive state, the UE stops the timer corresponding to the periodic RNA;
  • the UE stops the timer corresponding to the periodic RNA
  • the UE does not trigger the periodic RNA:
  • the small data packet is sent to the network node in a way involving RRC signaling
  • the non-access stratum NAS-related procedures include:
  • the RRC layer of the UE transmits the relevant indication to the NAS layer of the UE, and the relevant indication includes at least one of the following:
  • the small data packet is sent to the network node in a way involving RRC signaling
  • the NAS layer of the UE transmits the relevant indication to the NAS layer of the UE, when the NAS related process is performed again, the NAS layer no longer triggers the bottom layer to switch to the RRC_CONNECTED state.
  • performing NAS-related procedures including:
  • the AS layer When the AS layer receives a request from the NAS layer to resume the suspended RRC connection, and at least one of the following conditions is met, the corresponding operation is performed:
  • the small data packet is sent to the network node in a way involving RRC signaling
  • the small data packet is sent to the network node in a way that does not involve RRC signaling
  • the data radio bearer DRB for non-small data packets is pending
  • Performing the corresponding operation includes at least one of the following ways:
  • a first message is sent to the network node, where the first message includes that the UE has a non-small data packet to send or a new NAS message to send.
  • the UE sends the first message to the network node in at least one of the following manners:
  • an embodiment of the present application also provides a data transmission and processing device, which is applied to a network node.
  • the schematic structural diagram of the device is shown in FIG. 5 .
  • the transceiver 1500 is used to receive data under the control of the processor 1510. and send data.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1510 and various circuits of memory represented by memory 1520 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 1500 may be multiple elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 1510 is responsible for managing the bus architecture and general processing, and the memory 1520 may store data used by the processor 1510 in performing operations.
  • the processor 1510 can be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • the processor 1510 is configured to read the computer program in the memory and perform the following operations:
  • receive a second message sent by the UE where the second message includes that the UE has a non-small data packet to send or has a new NAS message to send; and sends a response message to the UE.
  • the network node determines that the UE is in the RRC inactive state to send small data packets in at least one of the following manners, including:
  • the indication After receiving the indication sent by the current serving network node of the UE, the indication indicates that the UE sends small data packets in the RRC inactive state.
  • the response message is used to make the UE transition to RRC connected state or restore SRB2.
  • the embodiments of the present application further provide a data transmission processing apparatus, which is applied to a UE.
  • the schematic structural diagram of the apparatus is shown in FIG. 6 .
  • the data transmission processing apparatus 60 Based on the data transmission processing apparatus 60 , it includes a first processing unit. 601 and the second processing unit 602.
  • the first processing unit 601 is configured to send a small data packet to a network node in a radio resource control RRC inactive state;
  • the second processing unit 602 is configured to perform an RRC related process and/or a non-access stratum NAS related process in the process of sending the small data packet to the network node.
  • the second processing unit 602 is specifically configured to avoid triggering the periodic radio access network notification area RNA.
  • the triggering of periodic RNA is avoided by at least one of the following:
  • the UE When sending a radio resource control connection recovery request RRCResumeRequest message, and sending a small data packet to the network node in the RRC inactive state, the UE stops the timer corresponding to the periodic RNA;
  • the UE stops the timer corresponding to the periodic RNA
  • the UE does not trigger the periodic RNA:
  • the small data packet is sent to the network node in a way involving RRC signaling
  • the non-access stratum NAS-related procedures include:
  • the RRC layer of the UE transmits the relevant indication to the NAS layer of the UE, and the relevant indication includes at least one of the following:
  • the small data packet is sent to the network node in a way involving RRC signaling
  • the NAS layer of the UE transmits the relevant indication to the NAS layer of the UE, when the NAS related process is performed again, the NAS layer no longer triggers the bottom layer to switch to the RRC_CONNECTED state.
  • the second processing unit 602 is specifically configured to perform a corresponding operation when the AS layer receives a request from the NAS layer to resume the suspended RRC connection, and at least one of the following conditions is satisfied:
  • the small data packet is sent to the network node in a way involving RRC signaling
  • the data radio bearer DRB for non-small data packets is pending
  • Performing the corresponding operation includes at least one of the following ways:
  • a first message is sent to the network node, where the first message includes that the UE has a non-small data packet to send or a new NAS message to send.
  • the UE sends the first message to the network node in at least one of the following manners:
  • the embodiments of the present application further provide a data transmission processing device, which is applied to a network node.
  • the schematic structural diagram of the device is shown in FIG. 7 .
  • the data transmission processing device 70 Based on the data transmission processing device 70 , it includes a third processing device. Unit 701.
  • the third processing unit 701 is configured to stop the timer corresponding to the periodic RNA when it is determined that the UE is in the process of sending small data packets in the RRC inactive state;
  • the third processing unit 701 is configured to receive a second message sent by the UE, where the second message includes that the UE has a non-small data packet to send or a new NAS message to send; and sends a response message to the UE.
  • the network node determines that the UE is in the RRC inactive state to send small data packets in at least one of the following manners, including:
  • the indication After receiving the indication sent by the current serving network node of the UE, the indication indicates that the UE sends small data packets in the RRC inactive state.
  • the response message is used to make the UE transition to RRC connected state or restore SRB2.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a stand-alone product, may be stored in a processor-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • the embodiments of the present application further provide a processor-readable storage medium storing a computer program, and the computer program is used to implement any one of the embodiments or any one of the embodiments of the present application when executed by the processor. Steps of any one of the data transmission processing methods provided in this optional implementation manner.
  • a processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including but not limited to magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (eg, CD, DVD, BD, HVD, etc.), and semiconductor memory (eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)), etc.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage eg, CD, DVD, BD, HVD, etc.
  • semiconductor memory eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means including the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据发送处理方法、装置及处理器可读存储介质,该方法包括:处于无线资源控制RRC非激活态下,发送小数据包给网络节点;在发送小数据包给网络节点的过程中,执行RRC相关过程和/或非接入层NAS相关过程。该方法实现了用户设备UE在RRC非激活态发送小数据的过程中,处理后续的RRC相关过程和/或NAS相关过程。

Description

数据发送处理方法、装置及处理器可读存储介质 技术领域
本申请涉及无线通信技术领域,具体而言,本申请涉及数据发送处理方法、装置及处理器可读存储介质。
背景技术
现有技术中当UE(User Equipment,用户设备)处于RRC(Radio Resource Control,无线资源控制)非激活态RRC inactive时,如果允许直接进行小数据发送,那么将避免UE频繁进入RRC连接态,可以减低信令开销。但是在UE处于RRC inactive态下发送多个小数据包的过程中,没有考虑小数据发送中涉及的后续过程。
发明内容
本申请针对现有的方式的缺点,提出一种数据发送处理方法、装置及处理器可读存储介质,用以解决上述的技术缺陷。
第一方面,提供了一种数据发送处理方法,由用户设备UE执行,包括:
处于无线资源控制RRC非激活态下,发送小数据包给网络节点;
在发送小数据包给网络节点的过程中,执行RRC相关过程和/或非接入层NAS相关过程。
优选地,执行RRC相关过程,包括:
避免触发周期性无线接入网通知区域RNA。
优选地,在发送所述小数据包给所述网络节点的过程中,执行RRC相关过程,包括:
在发送所述小数据包给所述网络节点的过程中,若发送无线资源控制连接恢复请求RRCResumeRequest消息,和/或,所述UE的底层反馈的信 息包括所述UE处于RRC非激活态下发送小数据包给所述网络节点的过程已成功,则所述UE停止所述周期性RNA对应的定时器。
优选地,在发送所述小数据包给所述网络节点的过程中,执行RRC相关过程,包括:
在发送所述小数据包给所述网络节点的过程中,若所述周期性RNA对应的定时器超时,且满足信令无线承载SRB已恢复,则所述UE不触发所述周期性RNA,其中,所述信令无线承载SRB包含SRB1、SRB2中的至少一种;或者,
若所述周期性RNA对应的定时器超时,则所述UE不触发所述周期性RNA。
优选地,在发送所述小数据包给所述网络节点的过程中,执行非接入层NAS相关过程,包括:
在发送所述小数据包给所述网络节点的过程中,RRC层将相关指示传递至所述UE的NAS层;
其中,所述相关指示包含至少一项或者多项:处于RRC非激活态下,发送小数据包给网络节点;无线信令承载SRB1已恢复;无线信令承载SRB2已恢复;空口连接已恢复。
优选地,避免触发周期性RNA,通过以下至少一种方式实现:
当发送无线资源控制连接恢复请求RRCResumeRequest消息,且处于RRC非激活态下发送小数据包给网络节点,则UE停止周期性RNA对应的定时器;
当UE的底层反馈的信息包括UE处于RRC非激活态下发送小数据包给网络节点的过程已成功,则UE停止周期性RNA对应的定时器;
当周期性RNA对应的定时器超时,且满足以下至少一种情形,则UE不触发周期性RNA:
处于RRC非激活态下,发送小数据包给网络节点;
处于RRC非激活态下,采用涉及RRC信令的方式发送小数据包给网络节点;
处于RRC非激活态下,采用不涉及RRC信令的方式发送小数据包给 网络节点;
信令无线承载SRB1已恢复;
信令无线承载SRB2已恢复。
优选地,非接入层NAS相关过程,包括:
UE的RRC层将相关指示传递至UE的NAS层,相关指示包括以下至少一项:
处于RRC非激活态下,发送小数据包给网络节点;
处于RRC非激活态下,采用涉及RRC信令的方式发送小数据包给网络节点;
处于RRC非激活态下,采用不涉及RRC信令的方式发送小数据包给网络节点;
SRB1已恢复;
SRB2已恢复;
空口连接已恢复。
优选地,在UE的RRC层将相关指示传递至UE的NAS层之后,当再次执行NAS相关过程,NAS层不再触发底层转换到无线资源控制连接RRC_CONNECTED态。
优选地,在发送所述小数据包给所述网络节点的过程中,执行所述NAS相关过程,包括:
在发送所述小数据包给所述网络节点的过程中,若所述UE的AS层接收到所述NAS层发送的请求或者消息,且满足指定条件,则执行:
跳过接入控制过程;
不触发无线资源控制连接恢复RRC Resume过程;
通过信令无线承载SRB2发送NAS消息;
发送第一消息给所述网络节点,所述第一消息包括所述UE有非小数据包要发送或有新的NAS消息要发送;
其中,所述指定条件包含至少一个或者多个:SRB2已恢复或已建立;
SRB1处于挂起中;
SRB2处于挂起中;
非小数据包的数据无线承载DRB处于挂起中,并且
其中,所述NAS层发送的请求包含恢复挂起的RRC连接请求。
优选地,所述第一消息包含:RRCResumeRequest消息;新定义的RRC消息;媒体接入控制单元MAC CE中的至少一种。
优选地,执行NAS相关过程,包括:
当AS层接收到NAS层请求恢复挂起的RRC连接,且满足以下至少一种条件,则执行相应操作:
处于RRC非激活态下,发送小数据包给网络节点;
处于RRC非激活态下,采用涉及RRC信令的方式发送小数据包给网络节点;
处于RRC非激活态下,采用不涉及RRC信令的方式发送小数据包给网络节点;
SRB2已恢复或已建立;
SRB1处于挂起中;
SRB2处于挂起中;
非小数据包的数据无线承载DRB处于挂起中;
执行相应操作包括以下至少一种方式:
跳过接入控制过程;
不触发无线资源控制连接恢复RRC Resume过程;
通过SRB2发送NAS消息;
发送第一消息给网络节点,第一消息包括UE有非小数据包要发送或有新的NAS消息要发送。
优选地,UE通过以下至少一种方式,将第一消息发送给网络节点:
RRCResumeRequest消息;
新的RRC消息;
媒体接入控制单元MAC CE。
第二方面,提供了一种数据发送处理方法,由网络节点执行,包括:
当确定UE处于RRC非激活态下发送小数据包的过程,停止周期性RNA对应的定时器;
或,接收UE发送的第二消息,第二消息包括UE有非小数据包要发送或有新的NAS消息要发送;发送响应消息给UE。
优选地,网络节点通过以下至少一种方式,确定UE处于RRC非激活态下发送小数据包的过程,包括:
接收到UE发送的小数据包;
接收到UE在预配置资源上发送的小数据包;
接收到UE发送的RRC建立原因或RRC恢复原因,原因具体为小数据包;
接收到UE的当前服务网络节点发送的指示,指示指明UE在RRC非激活态下发送小数据包。
优选地,响应消息用于使UE转换到RRC连接态或恢复SRB2。
第三方面,提供了一种数据发送处理装置,应用于UE,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在处理器的控制下收发数据;处理器,用于读取存储器中的计算机程序并执行以下操作:
处于无线资源控制RRC非激活态下,发送小数据包给网络节点;
在发送小数据包给网络节点的过程中,执行RRC相关过程和/或非接入层NAS相关过程。
优选地,执行RRC相关过程,包括:
避免触发周期性无线接入网通知区域RNA。
优选地,在发送所述小数据包给所述网络节点的过程中,执行RRC相关过程,包括:
在发送所述小数据包给所述网络节点的过程中,若发送无线资源控制连接恢复请求RRCResumeRequest消息,和/或,所述UE的底层反馈的信息包括所述UE处于RRC非激活态下发送小数据包给所述网络节点的过程已成功,则所述UE停止所述周期性RNA对应的定时器。
优选地,在发送所述小数据包给所述网络节点的过程中,执行RRC相关过程,包括:
在发送所述小数据包给所述网络节点的过程中,若所述周期性RNA 对应的定时器超时,且满足信令无线承载SRB已恢复,则所述UE不触发所述周期性RNA,其中,所述信令无线承载SRB包含SRB1、SRB2中的至少一种;或者,
若所述周期性RNA对应的定时器超时,则所述UE不触发所述周期性RNA。
优选地,在发送所述小数据包给所述网络节点的过程中,执行非接入层NAS相关过程,包括:
在发送所述小数据包给所述网络节点的过程中,RRC层将相关指示传递至所述UE的NAS层;
其中,所述相关指示包含至少一项或者多项:处于RRC非激活态下,发送小数据包给网络节点;无线信令承载SRB1已恢复;无线信令承载SRB2已恢复;空口连接已恢复。
优选地,避免触发周期性RNA,通过以下至少一种方式实现:
当发送无线资源控制连接恢复请求RRCResumeRequest消息,且处于RRC非激活态下发送小数据包给网络节点,则UE停止周期性RNA对应的定时器;
当UE的底层反馈的信息包括UE处于RRC非激活态下发送小数据包给网络节点的过程已成功,则UE停止周期性RNA对应的定时器;
当周期性RNA对应的定时器超时,且满足以下至少一种情形,则UE不触发周期性RNA:
处于RRC非激活态下,发送小数据包给网络节点;
处于RRC非激活态下,采用涉及RRC信令的方式发送小数据包给网络节点;
处于RRC非激活态下,采用不涉及RRC信令的方式发送小数据包给网络节点;
信令无线承载SRB1已恢复;
信令无线承载SRB2已恢复。
优选地,非接入层NAS相关过程,包括:
UE的RRC层将相关指示传递至UE的NAS层,相关指示包括以下 至少一项:
处于RRC非激活态下,发送小数据包给网络节点;
处于RRC非激活态下,采用涉及RRC信令的方式发送小数据包给网络节点;
处于RRC非激活态下,采用不涉及RRC信令的方式发送小数据包给网络节点;
SRB1已恢复;
SRB2已恢复;
空口连接已恢复。
优选地,在UE的RRC层将相关指示传递至UE的NAS层之后,当再次执行NAS相关过程,NAS层不再触发底层转换到无线资源控制连接RRC_CONNECTED态。
优选地,在发送所述小数据包给所述网络节点的过程中,执行所述NAS相关过程,包括:
在发送所述小数据包给所述网络节点的过程中,若所述UE的AS层接收到所述NAS层发送的请求或者消息,且满足指定条件,则执行:
跳过接入控制过程;
不触发无线资源控制连接恢复RRC Resume过程;
通过信令无线承载SRB2发送NAS消息;
发送第一消息给所述网络节点,所述第一消息包括所述UE有非小数据包要发送或有新的NAS消息要发送;
其中,所述指定条件包含至少一个或者多个:SRB2已恢复或已建立;
SRB1处于挂起中;
SRB2处于挂起中;
非小数据包的数据无线承载DRB处于挂起中,并且
其中,所述NAS层发送的请求包含恢复挂起的RRC连接请求。
优选地,所述第一消息包含:RRCResumeRequest消息;新定义的RRC消息;媒体接入控制单元MAC CE中的至少一种。
优选地,执行NAS相关过程,包括:
当AS层接收到NAS层请求恢复挂起的RRC连接,且满足以下至少一种条件,则执行相应操作:
处于RRC非激活态下,发送小数据包给网络节点;
处于RRC非激活态下,采用涉及RRC信令的方式发送小数据包给网络节点;
处于RRC非激活态下,采用不涉及RRC信令的方式发送小数据包给网络节点;
SRB2已恢复或已建立;
SRB1处于挂起中;
SRB2处于挂起中;
非小数据包的数据无线承载DRB处于挂起中;
执行相应操作包括以下至少一种方式:
跳过接入控制过程;
不触发无线资源控制连接恢复RRC Resume过程;
通过SRB2发送NAS消息;
发送第一消息给网络节点,第一消息包括UE有非小数据包要发送或有新的NAS消息要发送。
优选地,UE通过以下至少一种方式,将第一消息发送给网络节点:
RRCResumeRequest消息;
新的RRC消息;
媒体接入控制单元MAC CE。
第四方面,提供了一种数据发送处理装置,应用于网络节点,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在处理器的控制下收发数据;处理器,用于读取存储器中的计算机程序并执行以下操作:
当确定UE处于RRC非激活态下发送小数据包的过程,停止周期性RNA对应的定时器;
或,接收UE发送的第二消息,第二消息包括UE有非小数据包要发送或有新的NAS消息要发送;发送响应消息给UE。
优选地,网络节点通过以下至少一种方式,确定UE处于RRC非激活态下发送小数据包的过程,包括:
接收到UE发送的小数据包;
接收到UE在预配置资源上发送的小数据包;
接收到UE发送的RRC建立原因或RRC恢复原因,原因具体为小数据包;
接收到UE的当前服务网络节点发送的指示,指示指明UE在RRC非激活态下发送小数据包。
优选地,响应消息用于使UE转换到RRC连接态或恢复SRB2。
第五方面,本申请提供了一种数据发送处理装置,应用于UE,包括:
第一处理单元,用于处于无线资源控制RRC非激活态下,发送小数据包给网络节点;
第二处理单元,用于在发送小数据包给网络节点的过程中,执行RRC相关过程和/或非接入层NAS相关过程。
第六方面,本申请提供了一种数据发送处理装置,应用于网络节点,包括:
第三处理单元,用于当确定UE处于RRC非激活态下发送小数据包的过程,停止周期性RNA对应的定时器;
或,第三处理单元,用于接收UE发送的第二消息,第二消息包括UE有非小数据包要发送或有新的NAS消息要发送;发送响应消息给UE。
第七方面,提供了一种处理器可读存储介质,其特征在于,处理器可读存储介质存储有计算机程序,计算机程序用于使处理器执行第一方面或第二方面所述的方法。
本申请提供的技术方案,至少具有如下有益效果:
实现了UE在RRC非激活态发送小数据的过程中,处理后续的RRC相关过程和/或NAS相关过程。
本申请附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例描述中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的系统架构的示意图;
图2为本申请实施例提供的一种数据发送处理方法的流程示意图;
图3为本申请实施例提供的另一种数据发送处理方法的流程示意图;
图4为本申请实施例提供的一种数据发送处理装置的结构示意图;
图5为本申请实施例提供的另一种数据发送处理装置的结构示意图;
图6为本申请实施例提供的一种数据发送处理装置的结构示意图;
图7为本申请实施例提供的另一种数据发送处理装置的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本申请的限制。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本申请的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本申请实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请实施例中术语“多个”是指两个或两个以上,其它 量词与之类似。
为了更好的理解及说明本公开实施例的方案,下面对本公开实施例中所涉及到的一些技术用语进行简单说明。
(1)非激活inactive态
为了实现让UE快速进入连接态发送数据,同时减少移动过程及状态转移过程中所带来的信令开销,NR中引入了一个新的RAN控制的RRC状态,即RRC非激活态。
在RRC非激活态下,UE的非接入层状态仍保持在连接态,但UE的接入层对应的空口连接暂时挂起,可以像空闲态那样在RAN侧通知区域(RNA,RAN-based Notification Area)内部移动。此时UE:
保存着进入RRC非激活态前的UE上下文;
监听寻呼;
进行测量以及小区重选;
周期性地进行RNA更新,或者当移出RNA时,进行RNA更新。
UE和RAN侧都保存着RRC非激活态前的UE上下文,从而实现UE快速进入连接态。而UE在非激活态的移动性管理通过小区重选实现,也减少了UE在移动过程中导致的信令交互(例如测量上报、切换等)开销。
为了保证锚点gNB之中存储的非激活态UE位置信息的时效性,RRC非激活态设计中引入了周期性RNA更新机制。UE在进入非激活态时启动周期性RNA更新定时器,在TS 38.331中对应T380。如果该定时器超时,UE将触发RNA更新过程。另外,当UE移出网络节点配置的RNA时,UE也会触发RNA更新过程,以告知锚点gNB先前所配置的RNA不再有效。
(2)小数据传输方式
NR中正在讨论如何在非激活态发送小数据。当中包括涉及RRC signaling传输小数据,以及不涉及RRC signaling(即w/o RRC signaling)方式传输小数据。
涉及RRC signaling传输小数据,即RRCResumeRequest消息与所要 传输的小数据包一起发送给网络节点,触发后续的流程;
不涉及RRC signaling传输小数据,即UE第一次发送UL时除了所要传输的小数据包外没有携带额外的RRC消息。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供的一种网络架构的示意图如图1所示,该网络架构包括:UE和网络节点,其中,UE例如图1中UE110,网络节点例如图1中的网络节点120。网络节点部署在接入网中,例如,网络节点120部署在5G系统中的接入网NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。UE与网络节点之间通过某种空口技术互相通信,例如可以通过蜂窝技术相互通信。
本申请实施例涉及的UE,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。UE的类型包括手机、车辆用户终端、平板电脑、膝上型电脑、个人数字助理、移动上网装置、可穿戴式设备等。
本申请实施例涉及的网络节点,可以是基站,该基站可以包括多个为UE提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与UE通信的设备,或者其它名称。网络节点可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为UE与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络节点还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络节点可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band  Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。在一些网络结构中,网络节点可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例中提供了一种数据发送处理方法,由UE执行,该方法的流程示意图如图2所示,该方法包括:
步骤S101,处于无线资源控制RRC非激活态下,发送小数据包给网络节点。
在一个实施例中,UE处于非激活态(RRC非激活态)下发送小数据的过程中,UE处理后续的RRC相关过程和/或NAS(Non-Access Stratum,非接入层)相关过程,其中,RRC相关过程和NAS相关过程都是小数据发送中处理的后续过程。
步骤S102,在发送小数据包给网络节点的过程中,执行RRC相关过程和/或非接入层NAS相关过程。
在一个实施例中,执行RRC相关过程,包括:
避免触发周期性无线接入网通知区域RNA。
在一个实施例中,UE处理后续的RRC相关过程,包括避免触发周期性RNA。
在一个实施例中,避免触发周期性RNA,通过以下至少一种方式实现:
当发送无线资源控制连接恢复请求RRCResumeRequest消息,且处于RRC非激活态下发送小数据包给网络节点,则UE停止周期性RNA对应的定时器;
当UE的底层反馈的信息包括UE处于RRC非激活态下发送小数据包给网络节点的过程已成功,则UE停止周期性RNA对应的定时器;
当周期性RNA对应的定时器超时,且满足以下至少一种情形,则UE不触发周期性RNA:
处于RRC非激活态下,发送小数据包给网络节点;
处于RRC非激活态下,采用涉及RRC信令的方式发送小数据包给网络节点;
处于RRC非激活态下,采用不涉及RRC信令的方式发送小数据包给网络节点;
信令无线承载SRB1已恢复;
信令无线承载SRB2已恢复。
在一个实施例中,非接入层NAS相关过程,包括:
UE的RRC层将相关指示传递至UE的NAS层,相关指示包括以下至少一项:
处于RRC非激活态下,发送小数据包给网络节点;
处于RRC非激活态下,采用涉及RRC信令的方式发送小数据包给网络节点;
处于RRC非激活态下,采用不涉及RRC信令的方式发送小数据包给网络节点;
SRB1已恢复;
SRB2已恢复;
空口连接已恢复。
在一个实施例中,UE的RRC层告知NAS层相关指示,该相关指示包括以下中的一种:
正在进行非激活态发送小数据的过程;
处于使用with RRC signalling非激活态发送小数据的过程中;
处于使用without RRC signalling非激活态发送小数据的过程中;
SRB1已恢复;
SRB2已恢复;
空口连接已恢复。
在一个实施例中,在UE的RRC层将相关指示传递至UE的NAS层之后,当再次执行NAS相关过程,NAS层不再触发底层转换到无线资源控制连接RRC_CONNECTED态。
在一个实施例中,将待传输的NAS消息直接交给AS层(Access Stratum,接入层)。
在一个实施例中,执行NAS相关过程,包括:
当AS层接收到NAS层请求恢复挂起的RRC连接,且满足以下至少一种条件,则执行相应操作:
处于RRC非激活态下,发送小数据包给网络节点;
处于RRC非激活态下,采用涉及RRC信令的方式发送小数据包给网络节点;
处于RRC非激活态下,采用不涉及RRC信令的方式发送小数据包给网络节点;
SRB2已恢复或已建立;
SRB1处于挂起中;
SRB2处于挂起中;
非小数据包的数据无线承载DRB处于挂起中;
执行相应操作包括以下至少一种方式:
跳过接入控制过程;
不触发无线资源控制连接恢复RRC Resume过程;
通过SRB2发送NAS消息;
发送第一消息给网络节点,第一消息包括UE有非小数据包要发送或有新的NAS消息要发送。
在一个实施例中,UE通过以下至少一种方式,将第一消息发送给网络节点:
RRCResumeRequest消息;
新的RRC消息;
媒体接入控制单元MAC CE。
在一个实施例中,AS层收到NAS层请求恢复一个suspended RRC连接时,发现以下一种或多种条件时:
UE当前正处于非激活态发送小数据过程中;
处于使用with RRC signalling非激活态发送小数据的过程中;
处于使用without RRC signalling非激活态发送小数据的过程中;
SRB2已恢复或已建立;
则UE可能执行如下中的一种或多种操作:
跳过接入控制过程(即认为允许接入);
不触发RRC Resume过程;
使用SRB2发送NAS消息,例如直接通过ULInformationTransfer消息发送NAS消息。
在一个实施例中,AS层收到NAS层请求恢复一个suspended RRC连接时,发现如下一种或多种条件时:
UE当前正处于非激活态发送小数据过程中;
处于使用with RRC signalling非激活态发送小数据的过程中;
处于使用without RRC signalling非激活态发送小数据的过程中;
SRB1还处于挂起中;
SRB2还处于挂起中;
非小数据包的DRB还处于挂起中;
则UE可能执行如下中的一种或多种操作:
跳过接入控制过程(即认为允许接入);
不触发RRC Resume过程;
UE告知网络节点当前非激活态发送小数据包过程中,UE又有非小数据包要发送:
可以通过RRCResumeRequest消息或者一条新的RRC消息告知网络节点;或者
可以通过MAC CE告知网络节点;
进一步的,UE可以告知网络节点是有新的NAS消息要传,还是非小数据包要传;
本申请实施例中,实现了UE在RRC非激活态发送小数据的过程中,处理后续的RRC相关过程和/或NAS相关过程。
本申请实施例中提供了一种数据发送处理方法,由网络节点执行,该方法的流程示意图如图3所示,该方法包括:
步骤S201,当确定UE处于RRC非激活态下发送小数据包的过程,停止周期性RNA对应的定时器;
或,接收UE发送的第二消息,第二消息包括UE有非小数据包要发送或有新的NAS消息要发送;发送响应消息给UE。
在一个实施例中,网络节点通过以下至少一种方式,确定UE处于RRC非激活态下发送小数据包的过程,包括:
接收到UE发送的小数据包;
接收到UE在预配置资源上发送的小数据包;
接收到UE发送的RRC建立原因或RRC恢复原因,原因具体为小数据包;
接收到UE的当前服务网络节点发送的指示,指示指明UE在RRC非激活态下发送小数据包。
在一个实施例中,如果发现正在进行非激活态的小数据传输过程时,网络节点停止周期性RNA定时器。
在一个实施例中,网络节点收到UE的指示,UE告知网络节点当前非激活态发送小数据包过程中,UE又有非小数据包要发送。
在一个实施例中,UE可以告知网络节点是有新的NAS消息要传,还是非小数据包要传。
在一个实施例中,响应消息用于使UE转换到RRC连接态或恢复SRB2。
通过如下实施例来对本申请上述实施例的资源配置方法进行全面详尽的介绍:
本申请的第一方面:周期性RNA相关处理
在本申请的一个实施例中:
在非激活态发送小数据的过程(with RRC signalling方式)中。
非激活态UE触发小数据传输过程,即UE处于RRC非激活态,发送小数据的过程中;向网络节点同时发送RRCResumeRequest以及UL小数据,此时由于终端与网络节点已经有空口连接,周期性RNA可以不需要,因此此时对周期性RNA的可能处理方式有:
在发送RRCResumeRequest消息时,若为非激活态发送小数据,则UE停止周期性RNA对应的定时器T380;
若底层反馈RRCResumeRequest或者第一个小数据包或者第一个UL-SCH上传输的信息已成功传递给网络节点,则UE停止周期性RNA对应的定时器T380;
当T380超时,若满足如下一种或多种条件,则UE不触发周期性RNA:
UE处于非激活态发送小数据过程中;
处于使用with RRC signalling进行非激活态发送小数据的过程中;
SRB2(signalling radio bearers 2,信令无线承载2)已恢复,其中恢复SRB2可以认为是非激活态发送小数据过程中需要执行的步骤,或者使用RRC signalling在非激活态发送小数据的过程中需要执行的步骤。
通过上述方式,可以避免不必要的周期性RNA。
在本申请的另一个实施例中:
在非激活态发送小数据的过程(without RRC signalling方式)中。非激活态UE触发小数据传输过程,向网络节点发送小数据包(当中不包括RRCResumeRequest消息),此时对周期性RNA的可能处理方式包括:
若底层反馈第一个小数据包或者第一个UL-SCH上传输的信息已成功传递给网络节点,则UE停止周期性RNA对应的定时器T380;
T380超时,若满足如下一种或多种条件,则UE不触发周期性RNA:
UE处于非激活态发送小数据过程中;
处于使用without RRC signalling非激活态发送小数据的过程中;
SRB1已恢复;
SRB2已恢复;
需要说明的是,使用without RRC signalling进行非激活态发送小数据的过程,可能恢复SRB1,也可能恢复SRB2。
通过上述方式,可以避免不必要的周期性RNA。
在本申请的又一个实施例中:
网络节点对周期性RNA的处理。
网络节点针对inactive UE,也会启动相应的周期性RNA定时器,辅助NG-RAN侧节点对非激活态UE执行相关操作,比如网络节点在RNA定时器超时后,可能释放UE。
网络节点如果发现正在进行非激活态的小数据传输过程时,网络节点停止周期性RNA定时器。
网络节点如何发现正在进行非激活态的小数据传输过程,可能的方式包括以下中的一种或多种:
网络节点收到非激活态UE发送的小数据包;
网络节点收到非激活态UE在预配置资源上发送的小数据包;
网络节点收到建立原因或恢复原因具体为小数据包。
上述网络节点可以是当前非激活态UE连接的服务NG-RAN侧节点,也可以是锚(anchor)节点,即释放UE进入到非激活态时的NG-RAN侧节点。
另外一种可能,锚节点接收到UE连接的服务NG-RAN侧节点发送的指示,指示指明UE在非激活态发送小数据包,通过此方式,锚节点发现该UE正在进行非激活态的小数据传输过程,进而停止周期性RNA定时器。
通过上述方式,网络节点可以及时停止周期性RNA定时器,避免周期性RNA定时器超时带来的不必要的操作或者错误操作,例如,网络节点在RNA定时器超时后,可能释放UE。
本申请的第二方面:NAS相关过程处理
在本申请的一个实施例中:
在非激活态发送小数据的过程(with RRC signalling方式)中。
非激活态UE触发小数据传输过程,向网络节点同时发送RRCResumeRequest以及UL小数据,若NAS层触发了相关过程(比如PDU session修改等),此时可能的处理方式包括:
1)在发送RRCResumeRequest消息时,若为非激活态发送小数据,则UE的RRC层告知NAS层相关指示,该指示可以是以下中的一种:
正在进行非激活态发送小数据的过程;
处于使用with RRC signalling非激活态发送小数据的过程中;
SRB1已恢复;
SRB2已恢复;
空口连接已恢复。
上述指示可以是触发非激活态发送小数据初始时,或者在底层非激活态小数据已成功传递给网络节点后,RRC层告知NAS层的。
NAS层收到上述指示后,如果再次触发NAS相关过程时,则NAS层无需触发底层(即AS层)转换到RRC_CONNECTED态。
2)NAS层触发相关过程(例如,PDU session修改等)时,发现UE处于5GMM-CONNECTED mode with RRC inactive indication over 3GPP access。NAS层触发底层(即AS层)转换到RRC_CONNECTED态;
AS层收到NAS层请求恢复一个suspended RRC连接时,发现以下一种或多种条件时:
UE当前正处于非激活态发送小数据过程中;
处于使用with RRC signalling非激活态发送小数据的过程中;
SRB2已恢复或已建立;
则UE可能执行如下中的一种或多种操作:
跳过接入控制过程(即认为允许接入);
不触发RRC Resume过程;
直接使用SRB2发送NAS消息,比如直接通过ULInformationTransfer消息发送NAS消息。
通过上述方式,可以避免一些不必要的操作,例如跳过接入控制过程,不触发RRC Resume过程;而直接使用SRB2发送NAS消息。
3)NAS层触发相关过程(比如PDU session修改,或者有pending的UL数据等)时,发现UE处于5GMM-CONNECTED mode with RRC inactive indication over 3GPP access。NAS层触发底层(即AS层)转换到 RRC_CONNECTED态;AS层收到NAS层请求恢复一个suspended RRC连接时,发现以下一种或多种条件时:
UE当前正处于非激活态发送小数据过程中;
处于使用with RRC signalling非激活态发送小数据的过程中;
SRB2还处于挂起中;
非小数据包的DRB还处于挂起中;
则UE可能执行如下中的一种或多种操作:
跳过接入控制过程(即认为允许接入);
不触发RRC Resume过程;
告知网络节点当前非激活态发送小数据包过程中,UE又有非小数据包要发送:
可以通过RRCResumeRequest消息或者一条新的RRC消息告知UE;或者,可以通过MAC CE告知UE;
进一步的,可以告知网络节点是有新的NAS消息要传,还是非小数据包要传。
网络节点可以基于UE发送的上述信息,执行相关的操作,例如网络节点发现,在当前非激活态发送小数据包过程中,UE又有非小数据包要发送,则网络节点向UE发送消息,将UE转换到RRC连接态;或者网络节点发现,在当前非激活态发送小数据包过程中,UE又有新的NAS消息要传,则网络节点恢复SRB2,并通过信令通知UE,恢复SRB2;或者网络节点发现,在当前非激活态发送小数据包过程中,UE又有非小数据包要传,网络节点向UE发送消息,将UE转换到RRC连接态。
在本申请的另一个实施例中:
在非激活态发送小数据的过程(without RRC signalling方式)中。
非激活态UE触发小数据传输过程,向网络节点发送小数据包(当中不包括RRCResumeRequest消息),后续在该过程未完成时,若NAS层触发了相关过程(比如PDU session修改等),此时可能的处理方式包括:
1)若为非激活态发送小数据,则UE的RRC层告知NAS层相关指示,该指示可以包括以下中的一种:
正在进行非激活态发送小数据的过程;
处于使用without RRC signalling非激活态发送小数据的过程中;
SRB1已恢复;
SRB2已恢复。
上述指示可以是触发非激活态发送小数据初始时,或在底层反馈非激活态小数据包已成功传递给网络节点后,RRC层告知NAS层的。
NAS层收到上述指示后,如果再次触发NAS相关过程时,则NAS层无需触发底层(即AS层)转换到RRC_CONNECTED态。
2)NAS层触发相关过程(例如PDU session修改等)时,发现UE处于5GMM-CONNECTED mode with RRC inactive indication over 3GPP access。NAS层触发底层(即AS层)转换到RRC_CONNECTED态。
AS层收到NAS层请求恢复一个suspended RRC连接时,发现UE当前正处于非激活态发送小数据过程中,或者正处于使用without RRC signalling在非激活态发送小数据的过程时,则UE可能执行以下中的一种或多种操作:
跳过接入控制过程(即认为允许接入);
触发RRC Resume过程;
使用SRB2发送NAS消息;其中,触发“RRC Resume过程”与“使用SRB2发送NAS消息”为二选一的过程。
通过上述方式,可以避免一些不必要的操作。
3)NAS层触发相关过程(比如PDU session修改,或者有pending的UL数据等)时,发现UE处于5GMM-CONNECTED mode with RRC inactive indication over 3GPP access。NAS层触发底层(即AS层)转换到RRC_CONNECTED态。
AS层收到NAS层请求恢复一个suspended RRC连接时,发现以下一种或多种条件时:
UE当前正处于非激活态发送小数据过程中;
处于使用without RRC signalling非激活态发送小数据的过程中;
SRB1还处于挂起中;
SRB2还处于挂起中;
非小数据包的DRB还处于挂起中;
则UE可能执行以下中的一种或多种操作:
跳过接入控制过程(即认为允许接入);
不触发RRC Resume过程;
告知网络节点当前非激活态发送小数据包过程中,UE又有非小数据包要发送:
可以通过RRCResumeRequest消息或者一条新的RRC消息告知UE;或者,可以通过MAC CE告知UE;
进一步的,可以告知网络节点是有新的NAS消息要传,还是非小数据包要传。
网络节点可以基于UE发送的上述信息,执行相关的操作,比如网络节点发现,在当前非激活态发送小数据包过程中,UE又有非小数据包要发送,则网络节点向UE发送消息,将UE转换到RRC连接态;或者网络节点发现,在当前非激活态发送小数据包过程中,UE又有新的NAS消息要传,则网络节点恢复SRB1和/或SRB2,并通过信令通知UE,恢复SRB1和/或SRB2;或者网络节点发现,在当前非激活态发送小数据包过程中,UE又有非小数据包要传,网络节点向UE发送消息,将UE转换到RRC连接态。
本申请实施例提供的技术方案,至少具有如下有益效果:
本申请实施例中,实现了UE在RRC非激活态发送小数据的过程中,处理后续的RRC相关过程和/或NAS相关过程。
基于相同的发明构思,本申请实施例还提供了一种数据发送处理装置,应用于UE,该装置的结构示意图如图4所示,收发机1400,用于在处理器1410的控制下接收和发送数据。
其中,在图4中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1410代表的一个或多个处理器和存储器1420代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因 此,本文不再对其进行进一步描述。总线接口提供接口。收发机1400可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口1430还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1410负责管理总线架构和通常的处理,存储器1420可以存储处理器1410在执行操作时所使用的数据。
可选的,处理器1410可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本申请实施例提供的第一方面所述的方法。处理器与存储器也可以物理上分开布置。
处理器1410,用于读取存储器1420中的计算机程序并执行以下操作:
处于无线资源控制RRC非激活态下,发送小数据包给网络节点;
在发送小数据包给网络节点的过程中,执行RRC相关过程和/或非接入层NAS相关过程。
在一个实施例中,执行RRC相关过程,包括:
避免触发周期性无线接入网通知区域RNA。
在一个实施例中,避免触发周期性RNA,通过以下至少一种方式实现:
当发送无线资源控制连接恢复请求RRCResumeRequest消息,且处于RRC非激活态下发送小数据包给网络节点,则UE停止周期性RNA对应的定时器;
当UE的底层反馈的信息包括UE处于RRC非激活态下发送小数据包给网络节点的过程已成功,则UE停止周期性RNA对应的定时器;
当周期性RNA对应的定时器超时,且满足以下至少一种情形,则UE 不触发周期性RNA:
处于RRC非激活态下,发送小数据包给网络节点;
处于RRC非激活态下,采用涉及RRC信令的方式发送小数据包给网络节点;
处于RRC非激活态下,采用不涉及RRC信令的方式发送小数据包给网络节点;
信令无线承载SRB1已恢复;
信令无线承载SRB2已恢复。
在一个实施例中,非接入层NAS相关过程,包括:
UE的RRC层将相关指示传递至UE的NAS层,相关指示包括以下至少一项:
处于RRC非激活态下,发送小数据包给网络节点;
处于RRC非激活态下,采用涉及RRC信令的方式发送小数据包给网络节点;
处于RRC非激活态下,采用不涉及RRC信令的方式发送小数据包给网络节点;
SRB1已恢复;
SRB2已恢复;
空口连接已恢复。
在一个实施例中,在UE的RRC层将相关指示传递至UE的NAS层之后,当再次执行NAS相关过程,NAS层不再触发底层转换到无线资源控制连接RRC_CONNECTED态。
在一个实施例中,执行NAS相关过程,包括:
当AS层接收到NAS层请求恢复挂起的RRC连接,且满足以下至少一种条件,则执行相应操作:
处于RRC非激活态下,发送小数据包给网络节点;
处于RRC非激活态下,采用涉及RRC信令的方式发送小数据包给网络节点;
处于RRC非激活态下,采用不涉及RRC信令的方式发送小数据包给 网络节点;
SRB2已恢复或已建立;
SRB1处于挂起中;
SRB2处于挂起中;
非小数据包的数据无线承载DRB处于挂起中;
执行相应操作包括以下至少一种方式:
跳过接入控制过程;
不触发无线资源控制连接恢复RRC Resume过程;
通过SRB2发送NAS消息;
发送第一消息给网络节点,第一消息包括UE有非小数据包要发送或有新的NAS消息要发送。
在一个实施例中,UE通过以下至少一种方式,将第一消息发送给网络节点:
RRCResumeRequest消息;
新的RRC消息;
媒体接入控制单元MAC CE。
在此需要说明的是,本发明实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于相同的发明构思,本申请实施例还提供了一种数据发送处理装置,应用于网络节点,该装置的结构示意图如图5所示,收发机1500,用于在处理器1510的控制下接收和发送数据。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1510代表的一个或多个处理器和存储器1520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1500可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输 介质。处理器1510负责管理总线架构和通常的处理,存储器1520可以存储处理器1510在执行操作时所使用的数据。
处理器1510可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器1510,用于读取所述存储器中的计算机程序并执行以下操作:
当确定UE处于RRC非激活态下发送小数据包的过程,停止周期性RNA对应的定时器;
或,接收UE发送的第二消息,第二消息包括UE有非小数据包要发送或有新的NAS消息要发送;发送响应消息给UE。
在一个实施例中,网络节点通过以下至少一种方式,确定UE处于RRC非激活态下发送小数据包的过程,包括:
接收到UE发送的小数据包;
接收到UE在预配置资源上发送的小数据包;
接收到UE发送的RRC建立原因或RRC恢复原因,原因具体为小数据包;
接收到UE的当前服务网络节点发送的指示,指示指明UE在RRC非激活态下发送小数据包。
在一个实施例中,响应消息用于使UE转换到RRC连接态或恢复SRB2。
在此需要说明的是,本发明实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于前述实施例相同的发明构思,本申请实施例还提供了一种数据发送处理装置,应用于UE,该装置的结构示意图如图6所示,基于数据发送处理装置60,包括第一处理单元601和第二处理单元602。
第一处理单元601,用于处于无线资源控制RRC非激活态下,发送小数据包给网络节点;
第二处理单元602,用于在发送小数据包给网络节点的过程中,执行RRC相关过程和/或非接入层NAS相关过程。
在一个实施例中,第二处理单元602,具体用于避免触发周期性无线接入网通知区域RNA。
在一个实施例中,避免触发周期性RNA,通过以下至少一种方式实现:
当发送无线资源控制连接恢复请求RRCResumeRequest消息,且处于RRC非激活态下发送小数据包给网络节点,则UE停止周期性RNA对应的定时器;
当UE的底层反馈的信息包括UE处于RRC非激活态下发送小数据包给网络节点的过程已成功,则UE停止周期性RNA对应的定时器;
当周期性RNA对应的定时器超时,且满足以下至少一种情形,则UE不触发周期性RNA:
处于RRC非激活态下,发送小数据包给网络节点;
处于RRC非激活态下,采用涉及RRC信令的方式发送小数据包给网络节点;
处于RRC非激活态下,采用不涉及RRC信令的方式发送小数据包给网络节点;
信令无线承载SRB1已恢复;
信令无线承载SRB2已恢复。
在一个实施例中,非接入层NAS相关过程,包括:
UE的RRC层将相关指示传递至UE的NAS层,相关指示包括以下至少一项:
处于RRC非激活态下,发送小数据包给网络节点;
处于RRC非激活态下,采用涉及RRC信令的方式发送小数据包给网络节点;
处于RRC非激活态下,采用不涉及RRC信令的方式发送小数据包给网络节点;
SRB1已恢复;
SRB2已恢复;
空口连接已恢复。
在一个实施例中,在UE的RRC层将相关指示传递至UE的NAS层之后,当再次执行NAS相关过程,NAS层不再触发底层转换到无线资源控制连接RRC_CONNECTED态。
在一个实施例中,第二处理单元602,具体用于当AS层接收到NAS层请求恢复挂起的RRC连接,且满足以下至少一种条件,则执行相应操作:
处于RRC非激活态下,发送小数据包给网络节点;
处于RRC非激活态下,采用涉及RRC信令的方式发送小数据包给网络节点;
处于RRC非激活态下,采用不涉及RRC信令的方式发送小数据包给网络节点;
SRB2已恢复或已建立;
SRB1处于挂起中;
SRB2处于挂起中;
非小数据包的数据无线承载DRB处于挂起中;
执行相应操作包括以下至少一种方式:
跳过接入控制过程;
不触发无线资源控制连接恢复RRC Resume过程;
通过SRB2发送NAS消息;
发送第一消息给网络节点,第一消息包括UE有非小数据包要发送或有新的NAS消息要发送。
在一个实施例中,UE通过以下至少一种方式,将第一消息发送给网络节点:
RRCResumeRequest消息;
新的RRC消息;
媒体接入控制单元MAC CE。
在此需要说明的是,本发明实施例提供的上述装置,能够实现上述方 法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于前述实施例相同的发明构思,本申请实施例还提供了一种数据发送处理装置,应用于网络节点,该装置的结构示意图如图7所示,基于数据发送处理装置70,包括第三处理单元701。
第三处理单元701,用于当确定UE处于RRC非激活态下发送小数据包的过程,停止周期性RNA对应的定时器;
或,第三处理单元701,用于接收UE发送的第二消息,第二消息包括UE有非小数据包要发送或有新的NAS消息要发送;发送响应消息给UE。
在一个实施例中,网络节点通过以下至少一种方式,确定UE处于RRC非激活态下发送小数据包的过程,包括:
接收到UE发送的小数据包;
接收到UE在预配置资源上发送的小数据包;
接收到UE发送的RRC建立原因或RRC恢复原因,原因具体为小数据包;
接收到UE的当前服务网络节点发送的指示,指示指明UE在RRC非激活态下发送小数据包。
在一个实施例中,响应消息用于使UE转换到RRC连接态或恢复SRB2。
在此需要说明的是,本发明实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品 销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于相同的发明构思,本申请实施例还提供了一种处理器可读存储介质,存储有计算机程序,该计算机程序用于被处理器执行时实现本申请实施例中任意一个实施例或任意一种可选实施方式提供的任意一种数据发送处理方法的步骤。
处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的 指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (27)

  1. 一种数据发送处理方法,由用户设备UE执行,所述方法包括:
    处于无线资源控制RRC非激活态下,发送小数据包给网络节点;
    在发送所述小数据包给所述网络节点的过程中,执行RRC相关过程和/或非接入层NAS相关过程。
  2. 根据权利要求1所述的方法,其中,所述执行RRC相关过程,包括:
    避免触发周期性无线接入网通知区域RNA。
  3. 根据权利要求1或2所述的方法,其中,在发送所述小数据包给所述网络节点的过程中,执行RRC相关过程,包括:
    在发送所述小数据包给所述网络节点的过程中,若发送无线资源控制连接恢复请求RRCResumeRequest消息,和/或,所述UE的底层反馈的信息包括所述UE处于RRC非激活态下发送小数据包给所述网络节点的过程已成功,则所述UE停止所述周期性RNA对应的定时器。
  4. 根据权利要求1或2所述的方法,其中,在发送所述小数据包给所述网络节点的过程中,执行RRC相关过程,包括:
    在发送所述小数据包给所述网络节点的过程中,若所述周期性RNA对应的定时器超时,且满足信令无线承载SRB已恢复,则所述UE不触发所述周期性RNA,其中,所述信令无线承载SRB包含SRB1、SRB2中的至少一种;或者,
    若所述周期性RNA对应的定时器超时,则所述UE不触发所述周期性RNA。
  5. 根据权利要求1所述的方法,其中,在发送所述小数据包给所述网络节点的过程中,执行非接入层NAS相关过程,包括:
    在发送所述小数据包给所述网络节点的过程中,RRC层将相关指示传递至所述UE的NAS层;
    其中,所述相关指示包含至少一项或者多项:处于RRC非激活态下,发送小数据包给网络节点;无线信令承载SRB1已恢复;无线信令承载 SRB2已恢复;空口连接已恢复。
  6. 根据权利要求5所述的方法,其中,所述方法还包括:在所述UE的RRC层将相关指示传递至所述UE的NAS层之后,若再次执行所述NAS相关过程,则所述UE的所述NAS层不再触发所述底层转换到无线资源控制连接RRC_CONNECTED态。
  7. 根据权利要求1所述的方法,其中,在发送所述小数据包给所述网络节点的过程中,执行所述NAS相关过程,包括:
    在发送所述小数据包给所述网络节点的过程中,若所述UE的AS层接收到所述NAS层发送的请求或者消息,且满足指定条件,则执行:
    跳过接入控制过程;
    不触发无线资源控制连接恢复RRC Resume过程;
    通过信令无线承载SRB2发送NAS消息;
    发送第一消息给所述网络节点,所述第一消息包括所述UE有非小数据包要发送或有新的NAS消息要发送;
    其中,所述指定条件包含至少一个或者多个:SRB2已恢复或已建立;
    SRB1处于挂起中;
    SRB2处于挂起中;
    非小数据包的数据无线承载DRB处于挂起中。
  8. 根据权利要求7所述的方法,其中,所述第一消息包含:RRCResumeRequest消息;新定义的RRC消息;媒体接入控制单元MAC CE中的至少一种。
  9. 根据权利要求1所述的方法,处于无线资源控制RRC非激活态下,发送小数据包给网络节点,包括:
    处于RRC非激活态下,采用涉及RRC信令的方式发送小数据包给所述网络节点;或者,
    处于RRC非激活态下,采用不涉及RRC信令的方式发送小数据包给所述网络节点。
  10. 一种数据发送处理方法,由网络节点执行,所述方法包括:
    当确定UE处于RRC非激活态下发送小数据包的过程,停止周期性 RNA对应的定时器;
    或,接收所述UE发送的第二消息,所述第二消息包括所述UE有非小数据包要发送或有新的NAS消息要发送;发送响应消息给所述UE。
  11. 根据权利要求10所述的方法,其中,所述网络节点通过以下至少一种方式,确定UE处于RRC非激活态下发送小数据包的过程,包括:
    接收到所述UE发送的小数据包;
    接收到所述UE在预配置资源上发送的小数据包;
    接收到所述UE发送的RRC建立原因或RRC恢复原因,所述原因具体为所述小数据包;
    接收到所述UE的当前服务网络节点发送的指示,所述指示指明所述UE在RRC非激活态下发送小数据包。
  12. 根据权利要求10所述的方法,其中,所述响应消息用于使所述UE转换到RRC连接态或恢复SRB2。
  13. 一种数据发送处理装置,应用于UE,所述装置包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    处于无线资源控制RRC非激活态下,发送小数据包给网络节点;
    在发送所述小数据包给所述网络节点的过程中,执行RRC相关过程和/或非接入层NAS相关过程。
  14. 根据权利要求13所述的装置,其中,所述执行RRC相关过程,包括:
    避免触发周期性无线接入网通知区域RNA。
  15. 根据权利要求13或14所述的装置,其中,在发送所述小数据包给所述网络节点的过程中,执行RRC相关过程,包括:
    在发送所述小数据包给所述网络节点的过程中,若发送无线资源控制连接恢复请求RRCResumeRequest消息,和/或,所述UE的底层反馈的信息包括所述UE处于RRC非激活态下发送小数据包给所述网络节点的过程已成功,则所述UE停止所述周期性RNA对应的定时器。
  16. 根据权利要求13或14所述的装置,其中,在发送所述小数据包给所述网络节点的过程中,执行RRC相关过程,包括:
    在发送所述小数据包给所述网络节点的过程中,若所述周期性RNA对应的定时器超时,且满足信令无线承载SRB已恢复,则所述UE不触发所述周期性RNA,其中,所述信令无线承载SRB包含SRB1、SRB2中的至少一种;或者,
    若所述周期性RNA对应的定时器超时,则所述UE不触发所述周期性RNA。
  17. 根据权利要求13所述的装置,其中,在发送所述小数据包给所述网络节点的过程中,执行非接入层NAS相关过程,包括:
    在发送所述小数据包给所述网络节点的过程中,RRC层将相关指示传递至所述UE的NAS层;
    其中,所述相关指示包含至少一项或者多项:处于RRC非激活态下,发送小数据包给网络节点;无线信令承载SRB1已恢复;无线信令承载SRB2已恢复;空口连接已恢复。
  18. 根据权利要求17所述的装置,其中,在所述UE的RRC层将相关指示传递至所述UE的NAS层之后,若再次执行所述NAS相关过程,则所述UE的所述NAS层不再触发所述底层转换到无线资源控制连接RRC_CONNECTED态。
  19. 根据权利要求13所述的装置,其中,在发送所述小数据包给所述网络节点的过程中,执行所述NAS相关过程,包括:
    在发送所述小数据包给所述网络节点的过程中,若所述UE的AS层接收到所述NAS层发送的请求或者消息,且满足指定条件,则执行:
    跳过接入控制过程;
    不触发无线资源控制连接恢复RRC Resume过程;
    通过信令无线承载SRB2发送NAS消息;
    发送第一消息给所述网络节点,所述第一消息包括所述UE有非小数据包要发送或有新的NAS消息要发送;
    其中,所述指定条件包含至少一个或者多个:SRB2已恢复或已建立;
    SRB1处于挂起中;
    SRB2处于挂起中;
    非小数据包的数据无线承载DRB处于挂起中。
  20. 根据权利要求19所述的装置,其中,所述第一消息包含:RRCResumeRequest消息;新定义的RRC消息;媒体接入控制单元MAC CE中的至少一种。
  21. 根据权利要求13所述的装置,处于无线资源控制RRC非激活态下,发送小数据包给网络节点,包括:
    处于RRC非激活态下,采用涉及RRC信令的方式发送小数据包给所述网络节点;或者,
    处于RRC非激活态下,采用不涉及RRC信令的方式发送小数据包给所述网络节点。
  22. 一种数据发送处理装置,应用于网络节点,所述装置包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    当确定UE处于RRC非激活态下发送小数据包的过程,停止周期性RNA对应的定时器;
    或,接收所述UE发送的第二消息,所述第二消息包括所述UE有非小数据包要发送或有新的NAS消息要发送;发送响应消息给所述UE。
  23. 根据权利要求22所述的装置,其中,所述网络节点通过以下至少一种方式,确定UE处于RRC非激活态下发送小数据包的过程,包括:
    接收到所述UE发送的小数据包;
    接收到所述UE在预配置资源上发送的小数据包;
    接收到所述UE发送的RRC建立原因或RRC恢复原因,所述原因具体为所述小数据包;
    接收到所述UE的当前服务网络节点发送的指示,所述指示指明所述UE在RRC非激活态下发送小数据包。
  24. 根据权利要求22所述的装置,其中,所述响应消息用于使所述 UE转换到RRC连接态或恢复SRB2。
  25. 一种数据发送处理装置,应用于UE,所述装置包括:
    第一处理单元,用于处于无线资源控制RRC非激活态下,发送小数据包给网络节点;
    第二处理单元,用于在发送所述小数据包给所述网络节点的过程中,执行RRC相关过程和/或非接入层NAS相关过程。
  26. 一种数据发送处理装置,应用于网络节点,所述装置包括:
    第三处理单元,用于当确定UE处于RRC非激活态下发送小数据包的过程,停止周期性RNA对应的定时器;
    或,第三处理单元,用于接收所述UE发送的第二消息,所述第二消息包括所述UE有非小数据包要发送或有新的NAS消息要发送;发送响应消息给所述UE。
  27. 一种处理器可读存储介质,其中,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至9中任一项或10至12中任一项所述的方法。
PCT/CN2022/070585 2021-01-08 2022-01-06 数据发送处理方法、装置及处理器可读存储介质 WO2022148405A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/260,757 US20240064846A1 (en) 2021-01-08 2022-01-06 Method of processing data transmission, apparatus, and processor-readable storage medium
EP22736567.3A EP4277430A1 (en) 2021-01-08 2022-01-06 Data sending and processing method, apparatus, and processor-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110025454.4A CN114760712A (zh) 2021-01-08 2021-01-08 数据发送处理方法、装置及处理器可读存储介质
CN202110025454.4 2021-01-08

Publications (1)

Publication Number Publication Date
WO2022148405A1 true WO2022148405A1 (zh) 2022-07-14

Family

ID=82325801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070585 WO2022148405A1 (zh) 2021-01-08 2022-01-06 数据发送处理方法、装置及处理器可读存储介质

Country Status (4)

Country Link
US (1) US20240064846A1 (zh)
EP (1) EP4277430A1 (zh)
CN (1) CN114760712A (zh)
WO (1) WO2022148405A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107371278A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 Rrc状态的处理方法及装置
CN108366398A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种数据传输方法、网络设备及终端设备
CN109246811A (zh) * 2017-05-11 2019-01-18 中兴通讯股份有限公司 一种数据传输方法及装置
CN110278612A (zh) * 2018-03-16 2019-09-24 华硕电脑股份有限公司 无线通信中处理多个无线电资源控制程序的方法和设备
US20190306884A1 (en) * 2018-06-21 2019-10-03 Intel Corporation Apparatus, system and method of communication over common control channels
CN110856276A (zh) * 2019-11-15 2020-02-28 展讯通信(上海)有限公司 非连接态ue的数据传输、接收方法及装置、终端、基站
US20200092939A1 (en) * 2018-09-19 2020-03-19 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in wireless communication system
CN111182539A (zh) * 2017-03-24 2020-05-19 华为技术有限公司 通信方法与设备
CN111630900A (zh) * 2018-05-07 2020-09-04 Oppo广东移动通信有限公司 一种恢复rrc连接的方法及装置、计算机存储介质
WO2020198234A1 (en) * 2019-03-26 2020-10-01 Apple Inc. Methods, systems and computer readable storage devices for integrity protection of uplink data in early data transmission (edt)
WO2020218764A1 (ko) * 2019-04-26 2020-10-29 엘지전자 주식회사 무선 통신 시스템에서 네트워크에 등록을 수행하는 방법 및 이를 위한 장치

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107371278A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 Rrc状态的处理方法及装置
CN108366398A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种数据传输方法、网络设备及终端设备
CN111182539A (zh) * 2017-03-24 2020-05-19 华为技术有限公司 通信方法与设备
CN109246811A (zh) * 2017-05-11 2019-01-18 中兴通讯股份有限公司 一种数据传输方法及装置
CN110278612A (zh) * 2018-03-16 2019-09-24 华硕电脑股份有限公司 无线通信中处理多个无线电资源控制程序的方法和设备
CN111630900A (zh) * 2018-05-07 2020-09-04 Oppo广东移动通信有限公司 一种恢复rrc连接的方法及装置、计算机存储介质
US20190306884A1 (en) * 2018-06-21 2019-10-03 Intel Corporation Apparatus, system and method of communication over common control channels
US20200092939A1 (en) * 2018-09-19 2020-03-19 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in wireless communication system
WO2020198234A1 (en) * 2019-03-26 2020-10-01 Apple Inc. Methods, systems and computer readable storage devices for integrity protection of uplink data in early data transmission (edt)
WO2020218764A1 (ko) * 2019-04-26 2020-10-29 엘지전자 주식회사 무선 통신 시스템에서 네트워크에 등록을 수행하는 방법 및 이를 위한 장치
CN110856276A (zh) * 2019-11-15 2020-02-28 展讯通信(上海)有限公司 非连接态ue的数据传输、接收方法及装置、终端、基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Considerations on general aspects and subsequent SDT", 3GPP DRAFT; R2-2009367, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), vol. RAN WG2, no. Online; 20201102 - 20201113, 23 October 2020 (2020-10-23), XP051942328 *

Also Published As

Publication number Publication date
US20240064846A1 (en) 2024-02-22
CN114760712A (zh) 2022-07-15
EP4277430A1 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
US20210227378A1 (en) Transmission method and network device
US11356886B2 (en) Method of processing network slice based congestion, device and system thereof
CN110447285B (zh) 用户装置
US11224085B2 (en) Method and apparatus for initiating user plane path re-establishment and communications system
WO2018171514A1 (zh) 信息指示的方法和装置
CN113228736B (zh) 条件切换中的暂停-恢复
JP5184586B2 (ja) 異無線アクセス技術間ハンドオーバーを行う方法および装置
CN111819879B (zh) 在rrc非活动状态下暂停/恢复测量
WO2018059299A1 (zh) 小区切换的方法、装置及系统和计算机存储介质
US20090279502A1 (en) Internetworking between wman and wlan networks
RU2763519C2 (ru) Способ передачи обслуживания, терминальное устройство и сетевое устройство
WO2018127215A1 (zh) 一种终端位置信息上报、下行传输方法及装置
TWI772827B (zh) 在rrc連接中閒置量測結果之處理
WO2020088305A1 (zh) 一种通信方法、通信装置及系统
JP2020505811A (ja) 通信方法、アクセスネットワークデバイス、及び端末
EP4017075A1 (en) Information transmission method and apparatus
WO2014169862A1 (zh) 一种业务迁移方法、相关装置及计算机存储介质
JP2021503749A (ja) Ueの非アクティブ状態に関する方法、装置およびシステム
WO2022083484A1 (zh) 数据传输控制方法、装置及存储介质
WO2023066383A1 (zh) 数据传输方法、装置及存储介质
TW201813439A (zh) 確定終端裝置狀態的方法和裝置
WO2018191917A1 (zh) 通信方法、接入网设备和终端设备
WO2020220978A1 (zh) 多小区配置方法及装置、存储介质、终端、基站
WO2020073875A1 (zh) 信号传输方法及装置
WO2017032197A1 (zh) 一种通信控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18260757

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022736567

Country of ref document: EP

Effective date: 20230808