WO2020218764A1 - 무선 통신 시스템에서 네트워크에 등록을 수행하는 방법 및 이를 위한 장치 - Google Patents
무선 통신 시스템에서 네트워크에 등록을 수행하는 방법 및 이를 위한 장치 Download PDFInfo
- Publication number
- WO2020218764A1 WO2020218764A1 PCT/KR2020/004892 KR2020004892W WO2020218764A1 WO 2020218764 A1 WO2020218764 A1 WO 2020218764A1 KR 2020004892 W KR2020004892 W KR 2020004892W WO 2020218764 A1 WO2020218764 A1 WO 2020218764A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plmn
- terminal
- message
- network
- disaster
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/04—Arrangements for maintaining operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/18—Selecting a network or a communication service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W60/00—Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
- H04W60/04—Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W68/00—User notification, e.g. alerting and paging, for incoming communication, change of service or the like
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/02—Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
Definitions
- the present specification relates to a wireless communication system, and more particularly, to a method for a terminal and a base station to register a terminal in a network in a wireless communication system and an apparatus therefor.
- MIMO Massive Multiple Input Multiple Output
- NOMA Non-Orthogonal Multiple Access
- Super Wideband Various technologies such as wideband support and device networking are being studied.
- the terminal is located in an area where the service provider to which it is subscribed, but if the service provider is temporarily unable to provide the service, the service is provided by roaming to the network of another available service provider. Its purpose is to provide a way to do it.
- the terminal quickly recognizes the problem in the network of the operator to which it has subscribed, and provides the service by moving to a new network as much as possible without interruption of service It is an object to provide a receiving communication system and method.
- An aspect of the present specification provides a method for registering a terminal in a network in a wireless communication system, the method comprising: performing registration with a first public land mobile network (PLMN) through a first base station; Receiving a message related to a disaster applied to the first PLMN or applied to an area in which the terminal is located when the service can no longer be provided from the first PLMN; Displaying a message related to a disaster applied to the first PLMN or applied to an area in which the terminal is located; Selecting a second PLMN providing a disaster roaming service on the basis of a message applied to the first PLMN or related to the disaster, and displaying a message indicating that the second PLMN has been selected; Transmitting a registration request message to the second PLMN; And receiving a response message to the registration request message from the second PLMN; including, wherein the terminal is subscribed to the first PLMN, and the second PLMN is applied to the first PLMN or where the terminal is located. It may be characterized
- the terminal may have a state in which only the limited service is allowed through the second PLMN.
- the status icon may be included in a status bar of the terminal, and the status bar may further include information indicating the strength of a signal received from the second PLMN.
- the notification message may include information indicating the type of the restricted service.
- disabling an icon of an application other than an application related to the type of the restricted service And displaying an icon of the inactive application to have a shaded, black and white or transparent state. It may further include.
- the second PLMN may be selected when a signal for allowing the second PLMN is input through the input button.
- the disaster-related message may include an indicator indicating that the disaster roaming service is provided to terminals related to the first PLMN.
- the disaster-related message may include information indicating that the disaster roaming service is set to be provided to the terminal related to the first PLMN.
- the message related to the disaster may be characterized in that it is a system information block (SIB) message received to the terminal according to a preset period.
- SIB system information block
- the transceiver in a terminal for performing registration in a network in a wireless communication system, the transceiver (transceiver); Memory; A display unit; And a processor for controlling the transceiver, the memory, and the display unit, wherein the processor performs registration as a first public land mobile network (PLMN) through a first base station, and from the first PLMN through the transceiver.
- PLMN public land mobile network
- Display a message related to the applied disaster select a second PLMN that provides a disaster roaming service applied to the first PLMN or based on the message related to the disaster, and display a message for notifying that the second PLMN has been selected .
- the transceiver transmits a registration request message to the second PLMN, receives a response message to the registration request message from the second PLMN, and the terminal subscribes to the first PLMN, and the second PLMN May be set to provide the disaster roaming service to the terminal based on a disaster applied to the first PLMN or applied to an area in which the terminal is located.
- the terminal can roam to another network even in a disaster situation occurring in a specific network, so that a user can continue to use the communication service even in a situation in which the communication service is disconnected.
- FIG 1 shows an AI device 100 according to an embodiment of the present specification.
- FIG 2 shows an AI server 200 according to an embodiment of the present specification.
- FIG 3 shows an AI system 1 according to an embodiment of the present specification.
- E-UTRAN evolved universal terrestrial radio access network
- FIG. 6 is an exemplary diagram showing the architecture of a general E-UTRAN and EPC.
- FIG. 7 is an exemplary diagram showing a structure of a radio interface protocol in a control plane between a UE and an eNB.
- FIG. 8 is an exemplary diagram showing the structure of a radio interface protocol in a user plane between a UE and an eNB.
- FIG. 9 is a diagram illustrating an architecture of a general NR-RAN.
- 10 is an exemplary diagram showing functional separation of a general NG-RAN and 5GC.
- 11 shows an example of a general architecture of 5G.
- FIG. 12 is a flowchart illustrating an example of selecting a PLMN according to an embodiment of the present specification.
- FIG. 13 is an example of a display unit to which the present specification can be applied.
- FIG. 14 is a flowchart illustrating a PLMN selection process according to Method 2-1.
- 15 is a flowchart illustrating a process of selecting a PLMN according to Method 4.
- 16 is an example of a display unit to which the present specification can be applied.
- 17 is an example of a display unit to which the present specification can be applied.
- FIG. 18 is a flowchart illustrating a method for a terminal to register in a network according to an embodiment of the present specification.
- 19 is a flowchart illustrating a method of registering a terminal in a network by a base station according to an embodiment of the present specification.
- FIG. 21 illustrates a block diagram of a communication device according to an embodiment of the present specification.
- FIG. 22 illustrates a block diagram of a communication device according to an embodiment of the present specification.
- 23 is an exemplary diagram showing the structure of a radio interface protocol in a control plane between a UE and an eNodeB.
- a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
- the specific operation described as being performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is apparent that various operations performed for communication with a terminal in a network comprising a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
- A'base station (BS)' may be replaced by terms such as a fixed station, Node B, evolved-NodeB (eNB), base transceiver system (BTS), and access point (AP). .
- 'Terminal' may be fixed or mobile, and UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS ( Advanced Mobile Station), WT (Wireless terminal), MTC (Machine-Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device.
- UE User Equipment
- MS Mobile Station
- UT user terminal
- MSS Mobile Subscriber Station
- SS Subscriber Station
- AMS Advanced Mobile Station
- WT Wireless terminal
- MTC Machine-Type Communication
- M2M Machine-to-Machine
- D2D Device-to-Device
- downlink refers to communication from a base station to a terminal
- uplink refers to communication from a terminal to a base station.
- the transmitter may be part of the base station, and the receiver may be part of the terminal.
- the transmitter may be part of the terminal, and the receiver may be part of the base station.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- NOMA NOMA It can be used in various wireless access systems such as (non-orthogonal multiple access).
- CDMA may be implemented with universal terrestrial radio access (UTRA) or radio technology such as CDMA2000.
- TDMA may be implemented with a radio technology such as global system for mobile communications (GSM)/general packet radio service (GPRS)/enhanced data rates for GSM evolution (EDGE).
- GSM global system for mobile communications
- GPRS general packet radio service
- EDGE enhanced data rates for GSM evolution
- OFDMA may be implemented with a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and E-UTRA (evolved UTRA).
- UTRA is part of a universal mobile telecommunications system (UMTS).
- 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
- LTE-A evolution of 3GPP LTE.
- Embodiments of the present specification may be supported by standard documents disclosed in at least one of IEEE 802, 3GPP, and 3GPP2, which are wireless access systems. That is, among the embodiments of the present specification, steps or parts not described to clearly reveal the technical idea of the present specification may be supported by the documents. In addition, all terms disclosed in this document can be described by the standard document.
- 3GPP LTE/LTE-A is mainly described, but the technical features of the present specification are not limited thereto.
- IP Multimedia Subsystem IP Multimedia Core Network Subsystem
- IP Multimedia Core Network Subsystem An architectural framework for providing standardization for delivering voice or other multimedia services over IP.
- -UMTS Universal Mobile Telecommunications System
- 3G Global System for Mobile Communication
- Evolved Packet System A network system composed of an Evolved Packet Core (EPC), which is an Internet Protocol (IP)-based packet switched core network, and an access network such as LTE and UTRAN.
- EPC Evolved Packet Core
- IP Internet Protocol
- UMTS UMTS is an evolved type of network.
- -NodeB a base station of the UMTS network. It is installed outdoors and its coverage is macro cell scale.
- -eNodeB the base station of the EPS network. It is installed outdoors and its coverage is macro cell scale.
- -Home NodeB Installed indoors as a base station of the UMTS network, and its coverage is microcell scale
- -Home eNodeB It is installed indoors as a base station of EPS network, and its coverage is micro cell scale
- the terminal may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
- the terminal may be a portable device such as a notebook computer, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
- the term terminal or terminal may refer to an MTC terminal.
- MTC Machine Type Communication
- M2M Machine to Machine
- MTC UE or MTC device or MTC device a terminal that has a communication function through a mobile communication network (for example, communicates with an MTC server through a PLMN) and performs an MTC function (for example, a vending machine, Meter reader, etc.).
- MTC UE or MTC device or MTC device a terminal that has a communication function through a mobile communication network (for example, communicates with an MTC server through a PLMN) and performs an MTC function (for example, a vending machine, Meter reader, etc.).
- -RAN Radio Access Network
- RNC Radio Network Controller
- HSS Home Location Register
- HSS Home Subscriber Server
- -PLMN Public Land Mobile Network
- a network configured for the purpose of providing mobile communication services to individuals. It can be divided and configured for each operator.
- -NAS Non-Access Stratum: A functional layer for sending and receiving signaling and traffic messages between the terminal and the core network in the UMTS and EPS protocol stacks. Its main function is to support the mobility of the terminal and to support a session management procedure for establishing and maintaining an IP connection between the terminal and the PDN GW.
- SCEF Service Capability Exposure Function
- -MME Mobility Management Entity: Network node of EPS network that performs mobility management and session management functions
- -PDN-GW Packet Data Network Gateway: Network node of EPS network that performs UE IP address assignment, packet screening and filtering, and charging data collection functions.
- -Serving GW (Serving Gateway): A network node in the EPS network that performs functions such as mobility anchor, packet routing, idle mode packet buffering, and triggering paging for the MME's UE.
- -PCRF Policy and Charging Rule Function
- -OMA DM Open Mobile Alliance Device Management: Protocol designed to manage mobile devices such as cell phones, PDAs, portable computers, etc., such as device configuration, firmware upgrade, and error reports. Performs the function of.
- -OAM Operaation Administration and Maintenance
- a group of network management functions that provide network fault indication, performance information, and data and diagnosis functions.
- -PDN Packet Data Network
- MMS server MMS server
- WAP server WAP server
- connection from the terminal to the PDN that is, the connection (connection) between the terminal expressed by the ip address and the PDN expressed by the APN
- EMM EPS Mobility Management: As a sub-layer of the NAS layer, EMM is in the "EMM-Registered” or “EMM-Deregistered” state depending on whether the UE is attached to the network or attached to the network. There may be.
- ECM connection Management connection connection: a signaling connection (connection) for the exchange (exchange) of NAS messages established (establish) between the UE and the MME.
- the ECM connection is a logical connection consisting of an RRC connection between a UE and an eNB and an S1 signaling connection between the eNB and the MME.
- Established ECM connection means to have an RRC connection established with the eNB to the UE, and to the MME means to have an S1 signaling connection established with the eNB.
- the ECM may have a "ECM-Connected" or "ECM-Idle" state.
- -AS Access-Stratum: Contains a protocol stack between the UE and a wireless (or access) network, and is responsible for transmitting data and network control signals.
- MO Management Object
- MO Management object
- -PDN Packet Data Network
- MMS Multimedia Messaging Service
- WAP Wireless Application Protocol
- -PDN connection a logical connection between the UE and the PDN, expressed by one IP address (one IPv4 address and/or one IPv6 prefix).
- -APN Access Point Name: A string that refers to or identifies a PDN.
- a specific P-GW is passed, which means a predefined name (string) in the network so that this P-GW can be found. (For example, internet.mnc012.mcc345.gprs)
- -ANDSF Access Network Discovery and Selection Function: Provides a policy that allows the UE to discover and select available access on a per operator basis as one network entity.
- E-E-RAB E-UTRAN Radio Access Bearer: refers to the concatenation of the S1 bearer and the data radio bearer. If there is an E-RAB, there is a one-to-one mapping between the E-RAB and the EPS bearer of the NAS.
- GTP GPRS Tunneling Protocol
- GTP-C GPRS Tunneling Protocol
- GTP-U GTP'
- GTP-C is used within the GPRS core network for signaling between gateway GPRS support nodes (GGSN) and serving GPRS support nodes (SGSN).
- GGSN gateway GPRS support nodes
- SGSN serving GPRS support nodes
- GTP-C allows the SGSN to activate a session for the user (e.g., PDN context activation), deactivate the same session, and adjust the quality of service parameters. ), or to update a session for a subscriber who has just operated from another SGSN.
- GTP-U is used to carry user data within the GPRS core network and between radio access networks and core networks.
- the 3GPP LTE/LTE-A system uses the concept of a cell to manage radio resources, and a cell associated with radio resources is a cell in a geographic area. Is distinguished from.
- the "cell" associated with radio resources is defined as a combination of downlink resources and uplink resources, that is, a combination of a DL carrier and a UL carrier.
- the cell may be configured with a DL resource alone or a combination of a DL resource and a UL resource.
- a linkage between a carrier frequency of a DL resource and a carrier frequency of a UL resource may be indicated by system information.
- the carrier frequency means the center frequency of each cell or carrier.
- a cell operating on a primary frequency is referred to as a primary cell (Pcell), and a cell operating on a secondary frequency is referred to as a secondary cell (Scell).
- Scell refers to a cell that can be set after RRC (Radio Resource Control) connection establishment is made and can be used to provide additional radio resources. Depending on the capabilities of the UE, the Scell may form a set of serving cells for the UE together with the Pcell. In the case of a UE that is in the RRC_CONNECTED state but does not support carrier aggregation or does not support carrier aggregation, there is only one serving cell configured as a Pcell.
- RRC Radio Resource Control
- a "cell” in a geographic area may be understood as a coverage in which a node can provide a service using a carrier
- a "cell” of a radio resource is a frequency range configured by the carrier. It is related to bandwidth (BW). Since downlink coverage, which is a range in which a node can transmit a valid signal and uplink coverage, which is a range in which a valid signal can be received from a UE, depends on the carrier that carries the corresponding signal, the coverage of the node is the It is also related to the coverage of the "cell”. Therefore, the term "cell” can sometimes be used to mean coverage of a service by a node, sometimes a radio resource, and sometimes a range within which a signal using the radio resource can reach a valid strength.
- SAE System Architecture Evolution
- SAE is a research project that determines a network structure that supports mobility between various types of networks.
- SAE aims to provide an optimized packet-based system, for example, supporting various wireless access technologies based on IP and providing improved data transmission capability.
- the EPC is a core network of an IP mobile communication system for a 3GPP LTE system, and can support packet-based real-time and non-real-time services.
- the core network is connected through two distinct sub-domains of CS (Circuit-Switched) for voice and PS (Packet-Switched) for data.
- CS Circuit-Switched
- PS Packet-Switched
- the function was implemented.
- 3GPP LTE system which is an evolution of the 3G mobile communication system
- sub-domains of CS and PS are unified into one IP domain.
- the connection between the UE and the UE having IP capability is an IP-based base station (e.g., eNodeB (evolved Node B)), EPC, application domain (e.g., IMS ( IP Multimedia Subsystem)).
- EPC is an essential structure for implementing an end-to-end IP service.
- the EPC may include various components, and in FIG. 1, some of them, SGW (Serving Gateway), PDN GW (Packet Data Network Gateway), MME (Mobility Management Entity), SGSN (Serving General Packet Radio Service) Supporting Node) and ePDG (enhanced packet data gateway) are shown.
- SGW Serving Gateway
- PDN GW Packet Data Network Gateway
- MME Mobility Management Entity
- SGSN Serving General Packet Radio Service
- ePDG enhanced packet data gateway
- the SGW (or S-GW) is an element that functions as a boundary point between the radio access network (RAN) and the core network and maintains a data path between the eNB and the PDN GW.
- the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility within the E-UTRAN (Evolved-UMTS (Universal Mobile Telecommunications System) Terrestrial Radio Access Network defined after 3GPP Release-8).
- the SGW has mobility with other 3GPP networks (RANs defined before 3GPP Release-8, for example, UTRAN or GERAN (Global System for Mobile Communication) / EDGE (Enhanced Data rates for Global Evolution) Radio Access Network). It can also function as an anchor point for.
- the PDN GW corresponds to the termination point of the data interface towards the packet data network.
- PDN GW can support policy enforcement features, packet filtering, charging support, etc.
- mobility management between 3GPP networks and non-3GPP networks e.g., untrusted networks such as I-WLAN (Interworking Wireless Local Area Network), Code Division Multiple Access (CDMA) networks or trusted networks such as WiMax) Can serve as an anchor point for 3GPP networks and non-3GPP networks (e.g., untrusted networks such as I-WLAN (Interworking Wireless Local Area Network), Code Division Multiple Access (CDMA) networks or trusted networks such as WiMax) Can serve as an anchor point for 3GPP networks and non-3GPP networks (e.g., untrusted networks such as I-WLAN (Interworking Wireless Local Area Network), Code Division Multiple Access (CDMA) networks or trusted networks such as WiMax) Can serve as an anchor point for 3GPP networks and non-3GPP networks (e.g., untrusted networks such as I-WLAN (Interworking Wireless Local Area Network
- the three main requirements areas for 5G are (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area, and (3) ultra-reliability and It includes a low-latency communication (Ultra-reliable and Low Latency Communications, URLLC) area.
- eMBB Enhanced Mobile Broadband
- mMTC Massive Machine Type Communication
- URLLC Low Latency Communications
- KPI key performance indicator
- eMBB goes far beyond basic mobile Internet access, covering rich interactive work, media and entertainment applications in the cloud or augmented reality.
- Data is one of the key drivers of 5G, and it may not be possible to see dedicated voice services for the first time in the 5G era.
- voice is expected to be processed as an application program simply using the data connection provided by the communication system.
- the main reasons for the increased traffic volume are an increase in content size and an increase in the number of applications requiring high data rates.
- Streaming services (audio and video), interactive video and mobile Internet connections will become more widely used as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to the user.
- Cloud storage and applications are increasing rapidly in mobile communication platforms, which can be applied to both work and entertainment.
- cloud storage is a special use case that drives the growth of the uplink data rate.
- 5G is also used for remote work in the cloud, and requires much lower end-to-end delays to maintain a good user experience when tactile interfaces are used.
- Entertainment For example, cloud gaming and video streaming is another key factor that is increasing the demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including high mobility environments such as trains, cars and airplanes.
- Another use case is augmented reality and information retrieval for entertainment.
- augmented reality requires very low latency and an instantaneous amount of data.
- one of the most anticipated 5G use cases relates to the ability to seamlessly connect embedded sensors in all fields, i.e. mMTC.
- mMTC massive machine type computer
- Industrial IoT is one of the areas where 5G plays a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
- URLLC includes new services that will transform the industry with ultra-reliable/low-latency links such as self-driving vehicles and remote control of critical infrastructure.
- the level of reliability and delay is essential for smart grid control, industrial automation, robotics, drone control and coordination.
- 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of providing streams rated at hundreds of megabits per second to gigabits per second. This high speed is required to deliver TVs in 4K or higher (6K, 8K and higher) resolutions as well as virtual and augmented reality.
- Virtual Reality (VR) and Augmented Reality (AR) applications involve almost immersive sports events. Certain application programs may require special network settings. In the case of VR games, for example, game companies may need to integrate core servers with network operators' edge network servers to minimize latency.
- Automotive is expected to be an important new driving force in 5G, with many use cases for mobile communication to vehicles. For example, entertainment for passengers demands simultaneous high capacity and high mobility mobile broadband. The reason is that future users will continue to expect high-quality connections, regardless of their location and speed.
- Another application example in the automotive field is an augmented reality dashboard. It identifies an object in the dark on top of what the driver is looking through the front window, and displays information that tells the driver about the distance and movement of the object overlaid.
- wireless modules enable communication between vehicles, exchange of information between the vehicle and supporting infrastructure, and exchange of information between the vehicle and other connected devices (eg, devices carried by pedestrians).
- the safety system allows the driver to lower the risk of accidents by guiding alternative courses of action to make driving safer.
- the next step will be a remote controlled or self-driven vehicle. It is very reliable and requires very fast communication between different self-driving vehicles and between the vehicle and the infrastructure. In the future, self-driving vehicles will perform all driving activities, and drivers will be forced to focus only on traffic abnormalities that the vehicle itself cannot identify.
- the technical requirements of self-driving vehicles call for ultra-low latency and ultra-fast reliability to increase traffic safety to levels unachievable by humans.
- Smart cities and smart homes referred to as smart society, will be embedded with high-density wireless sensor networks.
- a distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of a city or home.
- a similar setup can be done for each household.
- Temperature sensors, window and heating controllers, burglar alarms and appliances are all wirelessly connected. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
- the smart grid interconnects these sensors using digital information and communication technologies to collect information and act accordingly. This information can include the behavior of suppliers and consumers, allowing smart grids to improve efficiency, reliability, economics, sustainability of production and the distribution of fuels such as electricity in an automated way.
- the smart grid can also be viewed as another low-latency sensor network.
- the health sector has many applications that can benefit from mobile communications.
- the communication system can support telemedicine providing clinical care from remote locations. This can help reduce barriers to distance and improve access to medical services that are not consistently available in remote rural areas. It is also used to save lives in critical care and emergencies.
- a wireless sensor network based on mobile communication may provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
- Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with reconfigurable wireless links is an attractive opportunity for many industries. However, achieving this requires that the wireless connection operates with a delay, reliability and capacity similar to that of the cable, and its management is simplified. Low latency and very low error probability are new requirements that need to be connected to 5G.
- Logistics and freight tracking are important use cases for mobile communications that enable tracking of inventory and packages from anywhere using location-based information systems. Logistics and freight tracking use cases typically require low data rates, but require a wide range and reliable location information.
- Machine learning refers to the field of researching methodologies to define and solve various problems dealt with in the field of artificial intelligence. do.
- Machine learning is also defined as an algorithm that improves the performance of a task through continuous experience.
- An artificial neural network is a model used in machine learning, and may refer to an overall model with problem-solving capabilities, composed of artificial neurons (nodes) that form a network by combining synapses.
- the artificial neural network may be defined by a connection pattern between neurons of different layers, a learning process for updating model parameters, and an activation function for generating an output value.
- the artificial neural network may include an input layer, an output layer, and optionally one or more hidden layers. Each layer includes one or more neurons, and the artificial neural network may include neurons and synapses connecting neurons. In an artificial neural network, each neuron can output a function of an activation function for input signals, weights, and biases input through synapses.
- Model parameters refer to parameters determined through learning, and include weights of synaptic connections and biases of neurons.
- hyperparameters refer to parameters that must be set before learning in a machine learning algorithm, and include a learning rate, iteration count, mini-batch size, and initialization function.
- the purpose of learning artificial neural networks can be seen as determining model parameters that minimize the loss function.
- the loss function can be used as an index to determine an optimal model parameter in the learning process of the artificial neural network.
- Machine learning can be classified into supervised learning, unsupervised learning, and reinforcement learning according to the learning method.
- Supervised learning refers to a method of training an artificial neural network when a label for training data is given, and a label indicates the correct answer (or result value) that the artificial neural network should infer when training data is input to the artificial neural network. It can mean.
- Unsupervised learning may refer to a method of training an artificial neural network in a state where a label for training data is not given.
- Reinforcement learning may mean a learning method in which an agent defined in a certain environment learns to select an action or action sequence that maximizes the cumulative reward in each state.
- machine learning implemented as a deep neural network (DNN) including a plurality of hidden layers is sometimes referred to as deep learning (deep learning), and deep learning is a part of machine learning.
- DNN deep neural network
- machine learning is used in the sense including deep learning.
- a robot may refer to a machine that automatically processes or operates a task given by its own capabilities.
- a robot having a function of recognizing the environment and performing an operation by self-determining may be referred to as an intelligent robot.
- Robots can be classified into industrial, medical, household, military, etc. depending on the purpose or field of use.
- the robot may be provided with a driving unit including an actuator or a motor to perform various physical operations such as moving a robot joint.
- a driving unit including an actuator or a motor to perform various physical operations such as moving a robot joint.
- the movable robot includes a wheel, a brake, a propeller, etc. in a driving unit, and can travel on the ground or fly in the air through the driving unit.
- Autonomous driving refers to self-driving technology
- autonomous driving vehicle refers to a vehicle that is driven without a user's manipulation or with a user's minimal manipulation.
- a technology that maintains a driving lane a technology that automatically adjusts the speed such as adaptive cruise control, a technology that automatically drives along a specified route, and a technology that automatically sets a route when a destination is set, etc. All of these can be included.
- the vehicle includes all of a vehicle having only an internal combustion engine, a hybrid vehicle including an internal combustion engine and an electric motor, and an electric vehicle including only an electric motor, and may include not only automobiles, but also trains and motorcycles.
- the autonomous vehicle can be viewed as a robot having an autonomous driving function.
- the extended reality collectively refers to Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR).
- VR technology provides only CG images of real world objects or backgrounds
- AR technology provides virtually created CG images on top of real object images
- MR technology is a computer that mixes and combines virtual objects in the real world. It is a graphic technology.
- MR technology is similar to AR technology in that it shows real and virtual objects together.
- virtual objects are used in a form that complements real objects
- MR technology virtual objects and real objects are used with equal characteristics.
- XR technology can be applied to HMD (Head-Mount Display), HUD (Head-Up Display), mobile phones, tablet PCs, laptops, desktops, TVs, digital signage, etc., and devices applied with XR technology are XR devices. It can be called as.
- HMD Head-Mount Display
- HUD Head-Up Display
- mobile phones tablet PCs, laptops, desktops, TVs, digital signage, etc.
- devices applied with XR technology are XR devices. It can be called as.
- FIG 1 shows an AI device 100 according to an embodiment of the present specification.
- the AI device 100 includes a TV, a projector, a mobile phone, a smartphone, a desktop computer, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), a navigation system, a tablet PC, a wearable device, a set-top box (STB). ), a DMB receiver, a radio, a washing machine, a refrigerator, a desktop computer, a digital signage, a robot, a vehicle, and the like.
- PDA personal digital assistant
- PMP portable multimedia player
- STB set-top box
- the terminal 100 includes a communication unit 110, an input unit 120, a running processor 130, a sensing unit 140, an output unit 150, a memory 170, and a processor 180.
- the communication unit 110 may transmit and receive data with external devices such as other AI devices 100a to 100e or the AI server 200 using wired/wireless communication technology.
- the communication unit 110 may transmit and receive sensor information, a user input, a learning model, and a control signal with external devices.
- the communication technologies used by the communication unit 110 include Global System for Mobile communication (GSM), Code Division Multi Access (CDMA), Long Term Evolution (LTE), 5G, Wireless LAN (WLAN), and Wireless-Fidelity (Wi-Fi). ), Bluetooth, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), ZigBee, and Near Field Communication (NFC).
- GSM Global System for Mobile communication
- CDMA Code Division Multi Access
- LTE Long Term Evolution
- 5G Fifth Generation
- WLAN Wireless LAN
- Wi-Fi Wireless-Fidelity
- Bluetooth Bluetooth
- IrDA Infrared Data Association
- ZigBee ZigBee
- NFC Near Field Communication
- the input unit 120 may acquire various types of data.
- the input unit 120 may include a camera for inputting an image signal, a microphone for receiving an audio signal, a user input unit for receiving information from a user, and the like.
- a camera or microphone for treating a camera or microphone as a sensor, a signal obtained from the camera or microphone may be referred to as sensing data or sensor information.
- the input unit 120 may acquire training data for model training and input data to be used when acquiring an output by using the training model.
- the input unit 120 may obtain unprocessed input data, and in this case, the processor 180 or the running processor 130 may extract an input feature as a preprocess for the input data.
- the learning processor 130 may train a model composed of an artificial neural network using the training data.
- the learned artificial neural network may be referred to as a learning model.
- the learning model can be used to infer a result value for new input data other than the training data, and the inferred value can be used as a basis for a decision to perform a certain operation.
- the learning processor 130 may perform AI processing together with the learning processor 240 of the AI server 200.
- the learning processor 130 may include a memory integrated or implemented in the AI device 100.
- the learning processor 130 may be implemented using the memory 170, an external memory directly coupled to the AI device 100, or a memory maintained in an external device.
- the sensing unit 140 may acquire at least one of internal information of the AI device 100, information about the surrounding environment of the AI device 100, and user information by using various sensors.
- the sensors included in the sensing unit 140 include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and a lidar. , Radar, etc.
- the output unit 150 may generate output related to visual, auditory or tactile sense.
- the output unit 150 may include a display unit that outputs visual information, a speaker that outputs auditory information, and a haptic module that outputs tactile information.
- the memory 170 may store data supporting various functions of the AI device 100.
- the memory 170 may store input data, training data, a learning model, and a learning history acquired from the input unit 120.
- the processor 180 may determine at least one executable operation of the AI device 100 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. Further, the processor 180 may perform the determined operation by controlling the components of the AI device 100.
- the processor 180 may request, search, receive, or utilize data from the learning processor 130 or the memory 170, and perform a predicted or desirable operation among the at least one executable operation.
- the components of the AI device 100 can be controlled to execute.
- the processor 180 may generate a control signal for controlling the corresponding external device and transmit the generated control signal to the corresponding external device.
- the processor 180 may obtain intention information for a user input, and determine a user's requirement based on the obtained intention information.
- the processor 180 uses at least one of a Speech To Text (STT) engine for converting a speech input into a character string or a Natural Language Processing (NLP) engine for obtaining intention information of a natural language. Intention information corresponding to the input can be obtained.
- STT Speech To Text
- NLP Natural Language Processing
- At this time, at least one or more of the STT engine and the NLP engine may be composed of an artificial neural network, at least partially trained according to a machine learning algorithm.
- at least one of the STT engine or the NLP engine is learned by the learning processor 130, learned by the learning processor 240 of the AI server 200, or learned by distributed processing thereof. Can be.
- the processor 180 collects history information including user feedback on the operation content or operation of the AI device 100 and stores it in the memory 170 or the learning processor 130, or the AI server 200 Can be transferred to an external device.
- the collected history information can be used to update the learning model.
- the processor 180 may control at least some of the components of the AI device 100 to drive an application program stored in the memory 170. Furthermore, the processor 180 may operate by combining two or more of the components included in the AI device 100 to drive the application program.
- FIG 2 shows an AI server 200 according to an embodiment of the present specification.
- the AI server 200 may refer to a device that trains an artificial neural network using a machine learning algorithm or uses the learned artificial neural network.
- the AI server 200 may be composed of a plurality of servers to perform distributed processing, or may be defined as a 5G network.
- the AI server 200 may be included as a part of the AI device 100 to perform at least part of AI processing together.
- the AI server 200 may include a communication unit 210, a memory 230, a learning processor 240, and a processor 260.
- the communication unit 210 may transmit and receive data with an external device such as the AI device 100.
- the memory 230 may include a model storage unit 231.
- the model storage unit 231 may store a model (or artificial neural network, 231a) being trained or trained through the learning processor 240.
- the learning processor 240 may train the artificial neural network 231a using the training data.
- the learning model may be used while being mounted on the AI server 200 of the artificial neural network, or may be mounted on an external device such as the AI device 100 and used.
- the learning model can be implemented in hardware, software, or a combination of hardware and software. When part or all of the learning model is implemented in software, one or more instructions constituting the learning model may be stored in the memory 230.
- the processor 260 may infer a result value for new input data using the learning model, and generate a response or a control command based on the inferred result value.
- FIG 3 shows an AI system 1 according to an embodiment of the present specification.
- the AI system 1 includes at least one of an AI server 200, a robot 100a, an autonomous vehicle 100b, an XR device 100c, a smartphone 100d, or a home appliance 100e. It is connected to the cloud network 10.
- the robot 100a to which the AI technology is applied, the autonomous vehicle 100b, the XR device 100c, the smartphone 100d, or the home appliance 100e may be referred to as the AI devices 100a to 100e.
- the cloud network 10 may constitute a part of the cloud computing infrastructure or may mean a network that exists in the cloud computing infrastructure.
- the cloud network 10 may be configured using a 3G network, a 4G or Long Term Evolution (LTE) network, or a 5G network.
- LTE Long Term Evolution
- the devices 100a to 100e and 200 constituting the AI system 1 may be connected to each other through the cloud network 10.
- the devices 100a to 100e and 200 may communicate with each other through a base station, but may communicate with each other directly without through a base station.
- the AI server 200 may include a server that performs AI processing and a server that performs an operation on big data.
- the AI server 200 includes at least one of a robot 100a, an autonomous vehicle 100b, an XR device 100c, a smartphone 100d, or a home appliance 100e, which are AI devices constituting the AI system 1 It is connected through the cloud network 10 and may help at least part of the AI processing of the connected AI devices 100a to 100e.
- the AI server 200 may train an artificial neural network according to a machine learning algorithm in place of the AI devices 100a to 100e, and may directly store the learning model or transmit it to the AI devices 100a to 100e.
- the AI server 200 receives input data from the AI devices 100a to 100e, infers a result value for the received input data using a learning model, and generates a response or control command based on the inferred result value. It can be generated and transmitted to the AI devices 100a to 100e.
- the AI devices 100a to 100e may infer a result value of input data using a direct learning model, and generate a response or a control command based on the inferred result value.
- the AI devices 100a to 100e to which the above-described technology is applied will be described.
- the AI devices 100a to 100e illustrated in FIG. 3 may be viewed as a specific example of the AI device 100 illustrated in FIG. 1.
- the robot 100a is applied with AI technology and may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, and the like.
- the robot 100a may include a robot control module for controlling an operation, and the robot control module may refer to a software module or a chip implementing the same as hardware.
- the robot 100a acquires status information of the robot 100a by using sensor information acquired from various types of sensors, detects (recognizes) the surrounding environment and objects, generates map data, or moves paths and travels. It can decide a plan, decide a response to user interaction, or decide an action.
- the robot 100a may use sensor information obtained from at least one sensor from among a lidar, a radar, and a camera in order to determine a moving route and a driving plan.
- the robot 100a may perform the above operations using a learning model composed of at least one artificial neural network.
- the robot 100a may recognize a surrounding environment and an object using a learning model, and may determine an operation using the recognized surrounding environment information or object information.
- the learning model may be directly learned by the robot 100a or learned by an external device such as the AI server 200.
- the robot 100a may perform an operation by generating a result using a direct learning model, but it transmits sensor information to an external device such as the AI server 200 and performs the operation by receiving the result generated accordingly. You may.
- the robot 100a determines a movement path and a driving plan using at least one of map data, object information detected from sensor information, or object information acquired from an external device, and controls the driving unit to determine the determined movement path and travel plan. Accordingly, the robot 100a can be driven.
- the map data may include object identification information on various objects arranged in a space in which the robot 100a moves.
- the map data may include object identification information on fixed objects such as walls and doors and movable objects such as flower pots and desks.
- the object identification information may include a name, type, distance, and location.
- the robot 100a may perform an operation or run by controlling a driving unit based on a user's control/interaction.
- the robot 100a may acquire interaction intention information according to a user's motion or voice speech, and determine a response based on the obtained intention information to perform an operation.
- the autonomous vehicle 100b may be implemented as a mobile robot, vehicle, or unmanned aerial vehicle by applying AI technology.
- the autonomous driving vehicle 100b may include an autonomous driving control module for controlling an autonomous driving function, and the autonomous driving control module may refer to a software module or a chip implementing the same as hardware.
- the autonomous driving control module may be included inside as a configuration of the autonomous driving vehicle 100b, but may be configured as separate hardware and connected to the exterior of the autonomous driving vehicle 100b.
- the autonomous driving vehicle 100b acquires state information of the autonomous driving vehicle 100b using sensor information obtained from various types of sensors, detects (recognizes) surrounding environments and objects, or generates map data, It is possible to determine a travel route and a driving plan, or to determine an action.
- the autonomous vehicle 100b may use sensor information obtained from at least one sensor from among a lidar, a radar, and a camera, similar to the robot 100a, in order to determine a moving route and a driving plan.
- the autonomous vehicle 100b may recognize an environment or object in an area where the view is obscured or an area greater than a certain distance by receiving sensor information from external devices, or directly recognized information from external devices. .
- the autonomous vehicle 100b may perform the above operations using a learning model composed of at least one artificial neural network.
- the autonomous vehicle 100b may recognize a surrounding environment and an object using a learning model, and may determine a driving movement using the recognized surrounding environment information or object information.
- the learning model may be directly learned by the autonomous vehicle 100b or learned by an external device such as the AI server 200.
- the autonomous vehicle 100b may perform an operation by generating a result using a direct learning model, but it operates by transmitting sensor information to an external device such as the AI server 200 and receiving the result generated accordingly. You can also do
- the autonomous vehicle 100b determines a movement path and a driving plan using at least one of map data, object information detected from sensor information, or object information acquired from an external device, and controls the driving unit to determine the determined movement path and driving.
- the autonomous vehicle 100b can be driven according to a plan.
- the map data may include object identification information on various objects arranged in a space (eg, a road) in which the autonomous vehicle 100b travels.
- the map data may include object identification information on fixed objects such as street lights, rocks, and buildings, and movable objects such as vehicles and pedestrians.
- the object identification information may include a name, type, distance, and location.
- the autonomous vehicle 100b may perform an operation or drive by controlling a driving unit based on a user's control/interaction.
- the autonomous vehicle 100b may acquire interaction intention information according to a user's motion or voice speech, and determine a response based on the obtained intention information to perform the operation.
- the XR device 100c is applied with AI technology, such as HMD (Head-Mount Display), HUD (Head-Up Display) provided in the vehicle, TV, mobile phone, smart phone, computer, wearable device, home appliance, digital signage. , A vehicle, a fixed robot, or a mobile robot.
- HMD Head-Mount Display
- HUD Head-Up Display
- the XR device 100c analyzes 3D point cloud data or image data acquired through various sensors or from an external device to generate location data and attribute data for 3D points, thereby providing information on surrounding spaces or real objects.
- the XR object to be acquired and output can be rendered and output.
- the XR apparatus 100c may output an XR object including additional information on the recognized object in correspondence with the recognized object.
- the XR apparatus 100c may perform the above operations using a learning model composed of at least one artificial neural network.
- the XR device 100c may recognize a real object from 3D point cloud data or image data using a learning model, and may provide information corresponding to the recognized real object.
- the learning model may be directly learned by the XR device 100c or learned by an external device such as the AI server 200.
- the XR device 100c may directly generate a result using a learning model to perform an operation, but transmits sensor information to an external device such as the AI server 200 and receives the result generated accordingly to perform the operation. You can also do it.
- the robot 100a may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, etc. by applying AI technology and autonomous driving technology.
- the robot 100a to which AI technology and autonomous driving technology are applied may refer to a robot having an autonomous driving function or a robot 100a interacting with the autonomous driving vehicle 100b.
- the robot 100a having an autonomous driving function may collectively refer to devices that move by themselves according to a given movement line without the user's control or by determining the movement line by themselves.
- the robot 100a having an autonomous driving function and the autonomous driving vehicle 100b may use a common sensing method to determine one or more of a moving route or a driving plan.
- the robot 100a having an autonomous driving function and the autonomous driving vehicle 100b may determine one or more of a movement route or a driving plan using information sensed through a lidar, a radar, and a camera.
- the robot 100a interacting with the autonomous driving vehicle 100b exists separately from the autonomous driving vehicle 100b and is linked to an autonomous driving function inside or outside the autonomous driving vehicle 100b, or ), you can perform an operation associated with the user on board.
- the robot 100a interacting with the autonomous driving vehicle 100b acquires sensor information on behalf of the autonomous driving vehicle 100b and provides it to the autonomous driving vehicle 100b, or acquires sensor information and information about the surrounding environment or By generating object information and providing it to the autonomous vehicle 100b, it is possible to control or assist the autonomous driving function of the autonomous driving vehicle 100b.
- the robot 100a interacting with the autonomous vehicle 100b may monitor a user in the autonomous vehicle 100b or control the function of the autonomous vehicle 100b through interaction with the user. .
- the robot 100a may activate an autonomous driving function of the autonomous driving vehicle 100b or assist the control of a driving unit of the autonomous driving vehicle 100b.
- the functions of the autonomous vehicle 100b controlled by the robot 100a may include not only an autonomous driving function, but also functions provided by a navigation system or an audio system provided inside the autonomous driving vehicle 100b.
- the robot 100a interacting with the autonomous driving vehicle 100b may provide information or assist a function to the autonomous driving vehicle 100b from outside of the autonomous driving vehicle 100b.
- the robot 100a may provide traffic information including signal information to the autonomous vehicle 100b, such as a smart traffic light, or interact with the autonomous driving vehicle 100b, such as an automatic electric charger for an electric vehicle. You can also automatically connect an electric charger to the charging port.
- the robot 100a may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, a drone, etc., by applying AI technology and XR technology.
- the robot 100a to which the XR technology is applied may refer to a robot that is an object of control/interaction in an XR image.
- the robot 100a is distinguished from the XR device 100c and may be interlocked with each other.
- the robot 100a which is the object of control/interaction in the XR image, acquires sensor information from sensors including a camera
- the robot 100a or the XR device 100c generates an XR image based on the sensor information.
- the XR device 100c may output the generated XR image.
- the robot 100a may operate based on a control signal input through the XR device 100c or a user's interaction.
- the user can check the XR image corresponding to the viewpoint of the robot 100a linked remotely through an external device such as the XR device 100c, and adjust the autonomous driving path of the robot 100a through the interaction.
- You can control motion or driving, or check information on surrounding objects.
- the autonomous vehicle 100b may be implemented as a mobile robot, a vehicle, or an unmanned aerial vehicle by applying AI technology and XR technology.
- the autonomous driving vehicle 100b to which the XR technology is applied may refer to an autonomous driving vehicle including a means for providing an XR image, or an autonomous driving vehicle that is an object of control/interaction within the XR image.
- the autonomous vehicle 100b, which is an object of control/interaction in the XR image is distinguished from the XR device 100c and may be interlocked with each other.
- the autonomous vehicle 100b provided with a means for providing an XR image may acquire sensor information from sensors including a camera, and may output an XR image generated based on the acquired sensor information.
- the autonomous vehicle 100b may provide an XR object corresponding to a real object or an object in a screen to the occupant by outputting an XR image with a HUD.
- the XR object when the XR object is output to the HUD, at least a part of the XR object may be output to overlap the actual object facing the occupant's gaze.
- the XR object when the XR object is output on a display provided inside the autonomous vehicle 100b, at least a part of the XR object may be output to overlap an object in the screen.
- the autonomous vehicle 100b may output XR objects corresponding to objects such as lanes, other vehicles, traffic lights, traffic signs, motorcycles, pedestrians, and buildings.
- the autonomous driving vehicle 100b which is the object of control/interaction in the XR image, acquires sensor information from sensors including a camera
- the autonomous driving vehicle 100b or the XR device 100c is based on the sensor information.
- An XR image is generated, and the XR device 100c may output the generated XR image.
- the autonomous vehicle 100b may operate based on a control signal input through an external device such as the XR device 100c or a user's interaction.
- the 5G system is an advanced technology from the 4th generation LTE mobile communication technology, and a new radio access technology (RAT: Radio Access Technology), LTE (Long) through an evolution or a clean-state structure of the existing mobile communication network structure.
- RAT Radio Access Technology
- LTE Long
- Term Evolution which supports extended LTE (eLTE) and non-3GPP (eg, WLAN) access.
- the 5G system is defined as service-based, and the interaction between network functions (NF) in the architecture for the 5G system can be expressed in two ways as follows.
- NF network functions
- Network functions eg AMF
- CP Control Plane
- This expression also includes a point-to-point reference point, if necessary.
- the example of the network structure of FIG. 4 shows that the SGW and the PDN GW are configured as separate gateways, but two gateways may be implemented according to a single gateway configuration option.
- the MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming, and handover.
- the MME controls control plane functions related to subscriber and session management.
- the MME manages a number of eNBs and performs signaling for selection of a conventional gateway for handover to other 2G/3G networks.
- the MME performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
- SGSN handles all packet data such as user mobility management and authentication to other 3GPP networks (eg GPRS networks).
- 3GPP networks eg GPRS networks.
- the ePDG serves as a security node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspot, etc.).
- untrusted non-3GPP networks eg, I-WLAN, WiFi hotspot, etc.
- the UE having IP capability is based on 3GPP access as well as non-3GPP access based on IP provided by an operator (ie, operator) through various elements in the EPC.
- Service network eg IMS
- IMS IMS
- reference points such as S1-U and S1-MME may connect two functions existing in different functional entities.
- a conceptual link connecting two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
- Table 1 below summarizes the reference points shown in FIG. 4. In addition to the examples in Table 1, various reference points may exist according to the network structure.
- This reference point can be used within PLMN- or between PLMNs (eg, in case of PLMN-inter-handover)) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state .
- This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
- S4 A reference point between the SGW and SGSN that provides the associated control and mobility support between the GPRS core and the SGW's 3GPP anchor function.
- Direct Tunnel is not established, it provides the user plane tunneling, it provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW.
- S5 A reference point that provides user plane tunneling and tunnel management between SGW and PDN GW. It is used for SGW relocation when connection to a PDN GW not co-located with the SGW is required due to terminal mobility and required PDN connectivity (It provides user plane tunneling and tunnel management between Serving GW and PDN GW. It is used) for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.) S11 Reference point for control plane protocol between MME and SGW SGi PDN A reference point between GW and PDN.
- the PDN may be a public or private PDN outside the operator or an operator-in PDN (eg, IMS service).
- This reference point corresponds to the Gi of 3GPP access (It is the reference point between the PDN GW and the packet data network.Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.)
- S2a and S2b correspond to non-3GPP interfaces.
- S2a is a reference point that provides control and mobility support between trusted non-3GPP access and PDN GW to the user plane.
- S2b is a reference point that provides related control and mobility support between ePDG and PDN GW to the user plane.
- E-UTRAN evolved universal terrestrial radio access network
- the E-UTRAN system is an evolved system from the existing UTRAN system, and may be, for example, a 3GPP LTE/LTE-A system.
- Communication networks are widely deployed to provide various communication services such as voice (eg, Voice over Internet Protocol (VoIP)) through IMS and packet data.
- voice eg, Voice over Internet Protocol (VoIP)
- VoIP Voice over Internet Protocol
- an E-UMTS network includes an E-UTRAN, an EPC, and one or more UEs.
- the E-UTRAN is composed of eNBs that provide a control plane and a user plane protocol to the UE, and the eNBs are connected through the X2 interface.
- the X2 user plane interface (X2-U) is defined between eNBs.
- the X2-U interface provides non-guaranteed delivery of a user plane packet data unit (PDU).
- the X2 control plane interface (X2-CP) is defined between two neighboring eNBs. X2-CP performs functions such as context transfer between eNBs, control of a user plane tunnel between a source eNB and a target eNB, transfer of handover related messages, and uplink load management.
- the eNB is connected to the terminal through a radio interface and to an evolved packet core (EPC) through the S1 interface.
- EPC evolved packet core
- the S1 user plane interface (S1-U) is defined between the eNB and a serving gateway (S-GW).
- the S1 control plane interface (S1-MME) is defined between the eNB and a mobility management entity (MME).
- the S1 interface performs an evolved packet system (EPS) bearer service management function, a non-access stratum (NAS) signaling transport function, network sharing, and MME load balancing function.
- EPS evolved packet system
- NAS non-access stratum
- MME load balancing function The S1 interface supports many-to-many-relation between the eNB and the MME/S-GW.
- MME is a NAS signaling security, AS (Access Stratum) security (security) control, CN (Core Network) inter-node (Inter-CN) signaling to support mobility between 3GPP access networks, (perform and control paging retransmission Including) idle (IDLE) mode UE accessibility (reachability), (for idle and active mode terminals) tracking area identifier (TAI: Tracking Area Identity) management, PDN GW and SGW selection, MME for handover in which the MME is changed Selection, SGSN selection for handover to 2G or 3G 3GPP access network, roaming, authentication, bearer management functions including dedicated bearer establishment, public warning system (PWS: Public Warning) System) (including the Earthquake and Tsunami Warning System (ETWS) and the Commercial Mobile Alert System (CMAS)) message transmission support.
- PWS Public Warning
- ETWS Earthquake and Tsunami Warning System
- CMAS Commercial Mobile Alert System
- FIG. 6 is an exemplary diagram showing the architecture of a general E-UTRAN and EPC.
- the eNB is routing to the gateway, scheduling and transmission of a paging message, scheduling and transmission of a broadcast channel (BCH), in the uplink and downlink while the radio resource control (RRC) connection is active. It is possible to perform functions for dynamic allocation of resources to the UE, configuration and provision for measurement of the eNB, radio bearer control, radio admission control, and connection mobility control.
- EPC paging status, LTE_IDLE state management, user plane encryption, SAE bearer control, NAS signaling encryption and integrity protection functions can be performed.
- Annex J of 3GPP TR 23.799 shows various architectures combining 5G and 4G.
- 3GPP TS 23.501 shows an architecture using NR and NGC.
- FIG. 7 is an exemplary diagram showing a structure of a radio interface protocol in a control plane between a UE and an eNB
- FIG. 8 is an exemplary diagram showing a structure of a radio interface protocol in a user plane between a UE and an eNB .
- the air interface protocol is based on the 3GPP radio access network standard.
- the wireless interface protocol horizontally consists of a physical layer, a data link layer, and a network layer, and vertically, a user plane for data information transmission and control It is divided into a control plane for signal transmission.
- the protocol layers are L1 (Layer 1), L2 (Layer 2), L3 (Layer 3) based on the lower three layers of the Open System Interconnection (OSI) reference model widely known in communication systems. ) Can be separated.
- OSI Open System Interconnection
- the first layer provides an information transfer service using a physical channel.
- the physical layer is connected to an upper medium access control layer through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
- data is transmitted between different physical layers, that is, between the physical layers of the transmitting side and the receiving side through a physical channel.
- the physical channel is composed of several subframes on the time axis and several subcarriers on the frequency axis.
- one subframe is composed of a plurality of OFDM symbols and a plurality of subcarriers on the time axis.
- One subframe is composed of a plurality of resource blocks (Resource Block), and one resource block is composed of a plurality of OFDM symbols (Symbol) and a plurality of subcarriers.
- the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
- the physical channels existing in the physical layer of the transmitting side and the receiving side are according to 3GPP LTE, a data channel PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel), and a control channel PDCCH (Physical Downlink Control Channel), It can be divided into PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and PUCCH (Physical Uplink Control Channel).
- PCFICH Physical Control Format Indicator Channel
- PHICH Physical Hybrid-ARQ Indicator Channel
- PUCCH Physical Uplink Control Channel
- the medium access control (MAC) layer of the second layer plays a role of mapping various logical channels to various transport channels, and also a logical channel that maps several logical channels to one transport channel. It plays the role of multiplexing.
- the MAC layer is connected to the RLC layer, which is the upper layer, through a logical channel, and the logical channel largely includes a control channel that transmits information on the control plane according to the type of transmitted information. It is divided into a traffic channel that transmits information on the user plane.
- the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data through the radio section by segmenting and concatenating the data received from the upper layer. Play a role.
- RLC Radio Link Control
- the second layer's Packet Data Convergence Protocol (PDCP) layer is an IP that is relatively large in size and contains unnecessary control information in order to efficiently transmit in a wireless section with a small bandwidth when transmitting IP packets such as IPv4 or IPv6. It performs a header compression function that reduces the packet header size.
- the PDCP layer also performs a security function, which consists of encryption (Ciphering) to prevent data interception by a third party and integrity protection to prevent data manipulation by a third party.
- the radio resource control (Radio Resource Control; hereinafter abbreviated as RRC) layer located at the top of the third layer is defined only in the control plane, and configuration and reconfiguration of radio bearers (Radio Bearer; abbreviated as RB) -configuration) and release (Release), and is responsible for controlling logical channels, transport channels and physical channels.
- RRC Radio Resource Control
- RB means a service provided by the second layer for data transmission between the UE and the E-UTRAN.
- the UE When an RRC connection between the RRC of the UE and the RRC layer of the radio network is established (established), the UE is in an RRC connected mode, otherwise, it is in an RRC idle mode. .
- the RRC state refers to whether the RRC of the UE is in a logical connection with the RRC of the E-UTRAN, and when it is connected, it is called an RRC_CONNECTED state, and when it is not connected, it is called an RRC_IDLE state. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can determine the existence of the UE at the cell level, and thus can effectively control the UE.
- the UE in the RRC_IDLE state cannot detect the existence of the UE by the E-UTRAN, and is managed by the core network in units of TA (Tracking Area), which is a larger area unit than the cell. That is, the UE in the RRC_IDLE state is only determined whether the UE exists in a larger area unit than the cell, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the RRC_CONNECTED state.
- Each TA is classified through a tracking area identity (TAI).
- the UE may configure the TAI through a tracking area code (TAC), which is information broadcasted from the cell.
- TAC tracking area code
- the UE When the user first turns on the power of the UE, the UE first searches for an appropriate cell, establishes an RRC connection in the cell, and registers the UE information in the core network. After that, the UE stays in the RRC_IDLE state. The UE staying in the RRC_IDLE state (re)selects a cell as necessary, and looks at system information or paging information. This is called camping on the cell. The UE that has stayed in the RRC_IDLE state establishes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state when it is necessary to establish an RRC connection.
- the NAS (Non-Access Stratum) layer located above the RRC layer performs functions such as connection management (Session Management) and mobility management (Mobility Management).
- Evolved Session Management belonging to the NAS layer performs functions such as default bearer management and dedicated bearer management, and controls the UE to use the PS service from the network.
- the default bearer resource has the characteristic that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
- PDN Packet Data Network
- the network allocates an IP address available to the UE so that the UE can use the data service, and also allocates QoS of the default bearer.
- LTE largely supports two types of bearers with guaranteed bit rate (GBR) QoS characteristics that guarantee a specific bandwidth for data transmission/reception, and non-GBR bearers with best effort QoS characteristics without guaranteeing bandwidth.
- GBR guaranteed bit rate
- non-GBR bearer is allocated.
- the bearer allocated to the UE in the network is called an evolved packet service (EPS) bearer, and when allocating the EPS bearer, the network allocates one ID. This is called the EPS bearer ID.
- EPS bearer ID This is called the EPS bearer ID.
- One EPS bearer has QoS characteristics of a maximum bit rate (MBR) or/and a guaranteed bit rate (GBR).
- FIG. 9 is a diagram illustrating an architecture of a general NR-RAN.
- the NG-RAN node may be one of the following.
- the gNB and ng-eNB are connected to each other through the Xn interface.
- the gNB and ng-eNB through the NG interface to 5GC, more specifically through the NG-C interface, access and mobility management function (AMF), user plane function through the NG-U interface ( UPF: User Plane Function) (see 3GPP TS 23.501 [3]).
- AMF access and mobility management function
- UPF User Plane Function
- 10 is an exemplary diagram showing functional separation of a general NG-RAN and 5GC.
- yellow boxes indicate logical nodes and white boxes indicate main functions.
- the gNB and ng-eNB host the following functions.
- Radio resource management function radio bearer control, radio admission control, access mobility control, dynamic resource allocation for UE in both uplink and downlink (scheduling)
- the AMF selection in the IMT-2000 3GPP-UE attachment file If the routing for the AMF cannot be determined from the information provided by the UE, the AMF selection in the IMT-2000 3GPP-UE attachment file;
- the AMF hosts the following main functions (see 3GPP TS 23.501 [3]).
- UPF hosts the following main functions (see 3GPP TS 23.501 [3]).
- -QoS processing for user plane e.g. packet filtering, gate, UL/DL rate enforcement
- the Session Management Function hosts the following main functions (see 3GPP TS 23.501 [3]).
- 11 shows an example of a general architecture of 5G.
- Access and Mobility Management Function is a signaling between CN nodes for mobility between 3GPP access networks, radio access network (RAN) termination of CP interface (N2), NAS It supports functions such as termination of signaling (N1), registration management (registration area management), idle mode UE reachability, support for network slicing, and SMF selection.
- RAN radio access network
- N2 CP interface
- NAS NAS It supports functions such as termination of signaling (N1), registration management (registration area management), idle mode UE reachability, support for network slicing, and SMF selection.
- AMF Access Management Function
- a data network means, for example, an operator service, an Internet connection, or a third party service.
- the DN transmits a downlink protocol data unit (PDU) to the UPF or receives a PDU transmitted from the UE from the UPF.
- PDU downlink protocol data unit
- the policy control function receives packet flow information from an application server and provides a function of determining policies such as mobility management and session management.
- a session management function provides a session management function, and when the UE has multiple sessions, each session may be managed by a different SMF.
- SMF Session Management Function
- Unified data management stores user subscription data and policy data.
- User plane function delivers downlink PDUs received from DN to UE via (R)AN, and uplink PDU received from UE via (R)AN to DN. .
- Application Function provides services (e.g., supports functions such as application impact on traffic routing, network capability exposure access, and interaction with the policy framework for policy control). Interacts with the 3GPP core network for this purpose.
- Radio Access Network (R)AN: (Radio) Access Network
- E-UTRA evolved E-UTRA
- NR New Radio
- gNB has functions for radio resource management (i.e., radio bearer control, radio admission control, connection mobility control), dynamic of resources to the UE in uplink/downlink It supports functions such as dynamic allocation of resources (ie, scheduling).
- radio resource management i.e., radio bearer control, radio admission control, connection mobility control
- dynamic of resources to the UE in uplink/downlink It supports functions such as dynamic allocation of resources (ie, scheduling).
- UE User Equipment
- a conceptual link connecting NFs in the 5G system is defined as a reference point.
- N1 is a reference point between UE and AMF
- N2 is a reference point between (R)AN and AMF
- N3 is a reference point between (R)AN and UPF
- N4 is a reference point between SMF and UPF
- N6 is a reference point between UPF and data network
- N9 is a reference point between the two core UPFs
- N5 is a reference point between PCF and AF
- N7 is a reference point between SMF and PCF
- N24 is a PCF in a visited network and a PCF in a home network.
- N8 is a reference point between UDM and AMF
- N10 is a reference point between UDM and SMF
- N11 is a reference point between AMF and SMF
- N12 is a reference point between AMF and authentication server function (AUSF: Authentication Server function)
- N13 is A reference point between UDM and AUSF
- N14 is a reference point between two AMFs
- N15 is a reference point between PCF and AMF in case of a non-roaming scenario
- N16 is a reference point between two SMFs (in a roaming scenario, a reference point between an SMF in a visited network and an SMF between a home network)
- N17 is a reference point between AMF and 5G-EIR (Equipment Identity Register)
- N18 is AMF and UDSF (Unstructured Data Storage Function)
- N22 is a reference point between AMF and NSSF (Net
- FIG. 11 for convenience of description, a reference model for a case in which the UE accesses one DN using one PDU session is illustrated, but is not limited thereto.
- the EPS system was described using an eNB for convenience, but the eNB is gNB, the MM (mobility management) function of the MME is AMF, and the SM function of the S/P-GW is SMF, S/P- GW's user plane related functions can be replaced with 5G systems using UPF.
- the eNB is gNB
- the MM (mobility management) function of the MME is AMF
- the SM function of the S/P-GW is SMF
- S/P- GW's user plane related functions can be replaced with 5G systems using UPF.
- Table 2 below shows contents related to PLMN selection defined in 3GPP TS 22.011.
- EHPLMN if there is a list of EHPLMNs or if HPLMNs (if derived from IMSI) do not exist for the preferred access technology in the order specified. If there are multiple EHPLMNs, the highest priority EHPLMN should be selected. If all cells identified as belonging to the PLMN do not support the corresponding voice service, the voice-enabled UE must be able to be configured to not attempt to register with the PLMN.
- the allowable PLMN is a PLMN that is not in the “forced PLMN” data field of SIM/USIM or the “forced PLMN for GPRS service” list of ME. If registration is successful, the UE selects the PLMN selected. Should be marked.
- Table 3 below relates to the method of affecting PLMN selection in relation to registration and is described in TS 22.011.
- the HPLMN must be able to search for a specific VPLMN by instructing the UE in automatic mode at any time and move to that VPLMN as soon as possible.
- the EHPLMN or PLMN in the user-controlled PLMN list has a higher priority, but this VPLMN should be considered the highest priority VPLMN defined by the operator. This process should be performed transparently without inconvenience to the user. If the UE is in manual mode, the move request should be ignored. If the UE is registered in the VPLMN in the User Controlled PLMN List, the move request should be ignored.
- PLMNs included in the user-controlled PLMN list shall take precedence over the moved PLMN.
- the UE shall attempt to register with the designated VPLMN, even if the designated VPLMN is on the prohibited list.
- This mechanism allows the VPLMN to which the UE is registered to change the previous release of the 3GPP specification. Even if compliant, it should be usable in HPLMN.
- VPLMN Redirection HPLMN must be able to find and register a VPLMN that is different from the one currently in use or attempting to register the UE in automatic mode if another VPLMN that is not on the ban list is available. Then the original VPLMN should be treated as the lowest priority VPLMN and will not be selected by the UE unless the UE is uniquely available or is selected in manual mode. This process should be performed transparently without inconvenience to the user.
- the redirection request When the UE is in passive mode, the redirection request should be ignored. If the UE is registered with a VPLMN in the User Controlled PLMN List, the redirection request must be ignored. This mechanism must be available to HPLMN even if the VPLMN to which the UE is registered conforms to previous releases of the 3GPP specification.
- each telecommunications service provider is making various attempts to prevent service disruption.
- telecommunications carriers use a plurality of wired networks for core network sections in a wireless network, or install a plurality of core networks such as AMF/MME, so that even if a problem occurs in one network node, other network nodes perform backup. Disconnection of communication service can be prevented.
- roaming can be considered the most efficient way. That is, if a problem occurs in the network of the communication service provider to which the UE has subscribed and cannot receive communication service, it roams to the network of another communication service provider in the vicinity to receive communication service.
- Each service provider installs wireless networks and core networks in their respective licensed areas, installs them in different buildings, and constructs networks in different ways. Accordingly, the disasters listed as examples in the previous description may not have the same impact on all telecommunications providers.
- Each operator actively installs wireless networks and core networks in areas where they have obtained licenses from actual legal authorities and obtained business rights. However, since there is no business right in other regions, wireless/core networks cannot be installed. For example, when a terminal leaves the region or country to which it subscribes, it receives roaming service through the communication network of another operator. However, when the terminal is located in a region or country to which it is subscribed, the roaming service cannot be received in the region due to the relationship between communication service providers in competition with each other.
- the terminal when the terminal is turned on in a new region, the terminal automatically activates the roaming service because it cannot find the network of the telecommunication service provider to which it subscribes.
- the terminal when the terminal is located in an area where its own business operator mainly conducts business, the terminal does not activate the roaming service, and thus the roaming service cannot be received in the above-described disaster situation.
- the service disconnection time in which the terminal does not actually receive the service may vary in various ways. For example, when the power supply to the wireless network is interrupted, the wireless network does not generate any radio waves, and thus the terminal may detect a radio wave reception failure and recognize a problem of its subscription communication network. However, if the wired communication line between the wireless network and the core network is disconnected, since the wireless network still generates radio waves, it is highly likely that the terminal recognizes that the communication network is still alive and does not take any action. At this time, if someone tries to make a call to the terminal, the terminal may not be able to recognize it.
- the present specification intends to provide a method of minimizing disconnection of communication service by allowing the terminal to efficiently move to another communication network when a problem occurs in the communication network to which a terminal is connected and the communication service cannot be provided from the communication network. .
- the present specification informs the terminal when the wireless network cannot smoothly provide the communication service to the terminals within the area it manages. I can.
- the terminal is notified that the communication service is not to be provided in the communication network to which it is currently connected or registered, then performs a new PLMN selection process, selects a communication network other than the currently registered network, and registers the selected communication network. Carry out the process.
- FIG. 12 is a flowchart illustrating an example of selecting a PLMN according to an embodiment of the present specification.
- the terminal 1210 may register with the first PLMN 1213 (CN 1) through the first base station 1211 (RAN 1) (S1201).
- the terminal may perform the registration process by discovering the HPLMN to which the terminal is subscribed and selecting its own PLMN. Thereafter, the terminal may be placed in an idle mode or a connected mode based on the active state of the traffic.
- the first base station may transmit the Heartbeat Protocol to the first PLMN (S1203).
- the first base station may detect an abnormality in the first PLMN (S1205).
- the first base station may find a problem in the first system including the first base station and the first PLMN.
- the first base station may recognize that the first system cannot provide a communication service to the terminal (user).
- the first base station may inform the terminal of whether the first PLMN is abnormal (S1207).
- the first base station may transmit a message to terminals receiving services from the first system informing that the first system cannot normally provide services to terminals (users).
- the terminal based on the message transmitted from the first base station, the terminal recognizes that the terminal itself cannot receive a communication service normally from the registered first PLMN, and may perform a PLMN selection process.
- the terminal may select a new PLMN and perform a camping and/or registration process on the selected second PLMN (S1209).
- FIG. 13 is an example of a display unit to which the present specification can be applied.
- the terminal may display a notification message related thereto.
- notification information for notifying this may be displayed.
- a notification message related thereto may be displayed.
- notification information for notifying this may be displayed.
- the PFCP HearBeat protocol described in standard document TS 23.527 can be used as a method for the first base station (first wireless network) to recognize an abnormality problem of the first PLMN (first core network).
- the first base station e.g., gNB or eNB
- the first base station periodically sends and receives packets with the UPF/AMF/MME/S-GW, etc., which are connected to itself, but if there are no packets sent and received for a certain period of time, the first PLMN 1 It is judged that a problem has occurred in the core network).
- a plurality of terminals may be present/connected, and each of the terminals is placed in various states such as RRC Connected, RRC Connected inactive, RRC Idle, etc. according to each data generation state or voice call progress state.
- the terminal can immediately exchange information with the base station, and can exchange information with the base station at a specific time.
- the base station that is, the wireless network
- PLMN core wireless network
- SIB system information block
- the MBMS method cannot be used because the first base station cannot generate the MBMS content.
- the first base station (or network) performs an operation such as paging to inform the terminal that there is an update of SIB information, and then informs the terminal of the problem occurring in the first PLMN through SIB information, or to the terminal. Move to the PLMN can be ordered.
- FIG. 14 is a flowchart illustrating a PLMN selection process according to Method 2-1.
- the first base station may detect an abnormality in the first PLMN (S1401).
- the first base station may transmit an SIB update notification message to the terminal (S1403).
- the terminal may check (monitor) whether there is paging information (or message) to be received during its predetermined reception period (a time period set to attempt reception from the first base station) (S1405). If paging information to be received is not monitored, the terminal can maintain the existing operation.
- the first base station when the first base station detects an abnormality in the first PLMN and cannot provide a communication service to the terminal and the terminal needs to move to another system, it may notify the terminal through an updated SIB message (S1407).
- the terminal may receive (monitor) the SIB according to a predetermined SIB transmission period (S1409).
- the terminal may determine to switch to another PLMN (network) based on the indication in the SIB message (S1411).
- the terminal may select a new PLMN (network) and request camping and/or registration to the selected new PLMN (core network 2) (S1413).
- a new PLMN network
- core network 2 core network 2
- the SIB may include the following.
- SIB1 contains related information when evaluating whether the UE can access the cell, and defines scheduling of other system information. It also includes radio resource configuration information common to all UEs and blocking information applied to integrated access control.
- the contents of the SIB1 message are as follows.
- Table 4 is an example of an SIB1 message.
- Table 5 is an example of description of the SIB1 field.
- Parameter "Qrxlevminoffset” in q-RxLevMinOffsetTS 38.304[20]. Actual value Qrxlevminoffset field value * 2 [dB]. If there is no such value, the UE applies (default) 0dB for Qrxlevminoffset. This affects the minimum Rx level required in the cell.
- Parameter "QrxlevminSUL" in TS 38.304 applied to q-RxLevMinSUL serving cell uac-BarringForCommon Common access control parameters for each access category. The common value is used in all PLMNs unless overridden by the PLMN-specific settings provided in uac-BarringPerPLMN-List.
- Table 6 is a description of the SIB1 field.
- the wireless network may transmit information of the same or similar purpose or name as SelectOther PLMN to the terminal, so that the terminals may select a PLMN other than the current PLMN. If the information such as the SelectOther PLMN includes a meaning such as yes or true, the UE may attempt registration by selecting a different PLMN except for the currently selected PLMN.
- the SelectOther PLMN information may optionally include a target PLMN ID. That is, when pre-designated information exists in the wireless network, the wireless network may transmit a message related to which available PLMNs exist to the terminal.
- the terminal may first select and register the PLMN included therein.
- the above message may be expressed in various ways, and may be included in other messages, for example, MIBs or other information elements. For example, as shown in Table 5 below.
- the MIB includes the system information transmitted on BCH.
- Table 7 is an example of an MI message.
- MIB-- ASN1START-- TAG-MIB-STARTMIB :: SEQUENCE ⁇ systemFrameNumber BIT STRING (SIZE (6)), subCarrierSpacingCommon ENUMERATED ⁇ scs15or60, scs30or120 ⁇ , ssb-SubcarrierOffset INTEGER (0..15), dmrs-TypeA-Position ENUMERATED ⁇ pos2, pos3 ⁇ , pdcch-ConfigSIB1 PDCCH-ConfigSIB1, cellBarred ENUMERATED ⁇ barred, notBarred ⁇ , intraFreqReselection ENUMERATED ⁇ allowed, notAllowed ⁇ , spare BIT STRING (SIZE (1)) SelectOtherPLMN ⁇ -- TAG-MIB-STOP-- ASN1STOP
- Table 8 is an example of description of the MIB field.
- MIB field descriptions As defined in cellBarredTS 38.304 [20], Barred means that the cell is blocked. dmrs-TypeA-Position (first) position of the DM-RS for downlink (TS 38.211, section 7.4.1.1.1) and uplink (TS 38.211, section 6.4.1.1.3) As defined in intraFreqReselectionTS 38.304 [20], when the highest-order cell is blocked or blocked by the UE, intra-frequency cell selection/reselection is controlled. Defined in pdcch-ConfigSIB1TS 38.213 [13]. Common ControlResourceSet (CORESET) Determines the common search space and required PDCCH parameters.
- CORESET Common ControlResourceSet
- the field pdcch-ConfigSIB1 indicates a frequency location at which the UE can find an SS/PBCH block with SIB1 or a frequency range in which the network does not provide an SS/PBCH block with SIB1.
- Kssb is the frequency domain offset between the SSB and the entire resource block grid in the number of subcarriers. (TS 38.211). As defined in TS 38.213 [13], the value range of this field is the most significant additional bit encoded in the PBCH. Can be extended.
- This field may indicate that this beam does not provide SIB1 and thus there is no common CORESET.
- the pdcch-ConfigSIB1 field may indicate a frequency location at which the UE can find a control resource set and an SS/PBCH having a search space for SIB1.
- TS 38.213 [13], section 13 subCarrierSpacingCommonSubcarrier spacing for SIB1, Msg.2/4 for initial access and broadcast SI-messages. SIB1 for initial access and SI-messages broadcast, subcarrier space for Msg.2/4.
- the value scs15or60 corresponds to 15Khz
- the value scs30or120 corresponds to 30kHz.
- the scs15or60 value corresponds to 60Khz
- the scs30or120 value corresponds to 120kHz.
- systemFrameNumber The 4 LSBs of the most important 6-bit (MSB) SFN among 10-bit system frame numbers are delivered to the PBCH transport block as part of channel coding (ie, outside MIB encoding).
- the method of notifying the current network problem through SIB or MIB can be applied to a terminal in an idle mode or an RRC inactive mode.
- the base station may instruct to move to another PLMN faster using information such as RRC Release.
- the RRCRelease message is used to command RRC connection release or RRC connection stop.
- the RRCRelease message is shown in Table 9 below.
- the FFS Whether RejectWaitTimer is included in the RRCRelease message.
- Table 10 is an example of the description of the RRCRelease field.
- RRCRelease field descriptions Indicates that cnTypeUE is indicated by EPC or 5GC.
- deprioritisationReq Indicates whether to release the priority of the current frequency or RAT. The UE must be able to store deprivation requests for up to X frequencies (applies when receiving other frequency-specific deprivation requests before the expiration of T325).
- deprioritisationTimer Indicates the period during which the current carrier frequency or NR is deprived. The value minN corresponds to N minutes.
- suspendConfig Indicates the setting for the RRC_INACTIVE state. Refers to the timer that triggers the periodic RNAU procedure in t380UE. The value min5 corresponds to 5 minutes, and the value min10 is 10 minutes.
- ran-PagingCycleRAN refers to a cycle for each UE of initiated paging.
- the value rf32 corresponds to 32 radio frames, and rf64 corresponds to 64 radio frames.
- redirectedCarrierInfo represents a carrier frequency (downlink for FDD), and is used to redirect the UE to the NR or inter-RAT carrier frequency by selecting a cell when leaving RRC_CONNECTED. (TS 38.304 [20]) indicates whether selectotherPLMNUE should select another PLMN. This information may additionally include the PLMN ID of the PLMN candidate.
- the terminal receiving the message as described above performs a new PLMN selection process, and in the process, selects other PLMNs excluding the current PLMN to perform registration.
- a terminal that is currently camping or instructed to select a network other than the current network (PLMN) from a connected cell (base station) performs a PLMN selection process.
- the network (first PLMN) is excluded from the candidate.
- the terminal includes the network to which it is currently connected or the network that has transmitted information to select another network in the prohibited PLMN list.
- the network of another service provider is in competition. That is, when there are MNO A and MNO B in a certain area, if a certain terminal subscribes to MNO A, from the point of view of MNO B, the terminal is not allowed to access because it belongs to the network of competitor MNO A. will be. This is different from international roaming, because MNO A does not own the network abroad, and MNO A is a cooperative partner in the position of MNO abroad.
- the base station when the terminal needs to move to another competitor's network due to a problem in the network of the operator to which it subscribes, the base station must inform the terminal not to reject the registration of the terminal in the other competitor's network. In other words, a method of rejecting access when it is not in a general crisis situation and allowing registration when access is due to an emergency is required.
- the terminal accesses a wireless network or accesses a core network, the terminal informs that it is registered due to a disaster situation.
- 15 is a flowchart illustrating a process of selecting a PLMN according to Method 4.
- the terminal may select core network 2 (second PLMN) based on the instruction of the first base station of FIGS. 12 and 14 (S1501).
- second PLMN core network 2
- the terminal may transmit an RRC connection request to the selected core network 2 (second PLMN) (S1503).
- the terminal may notify that the terminal attempts to access the second PLMN based on a problem such as a home network of the terminal or an indication from a previous network. That is, while sending the connection request message to the second PLMN, the terminal may include in the connection request message that the cause of the connection request is disaster roaming.
- the terminal may perform registration with the core network 2 based on the RRC connection established in step S1503 (S1505).
- the RRC message and the NAS message may be illustrated as follows.
- the RRCSetupRequest message is used to request an RRC connection.
- Radio bearer signal SRB0
- Table 11 is an example of an RRCSetupRequest message.
- Table 12 describes the RRCSetupRequest-IE field.
- EstablishmentCause Provides the reason for setting RRC requests according to the information received from the upper layer.
- the gNB is not expected to reject the RRCSetupRequest due to an unknown cause value being used by the UE. If the UE wants to establish an RRC connection due to emergency roaming, this cause can be used to indicate. Includes UE ID to facilitate contention resolution by lower layer ue-Identity.
- Table 13 describes the InitialUE-Identity field.
- the terminal may attempt connection by setting a cause value through disaster roaming.
- the cause of disaster roaming is an example, and may be set to a similar name or other value for a similar purpose.
- a terminal attempts to access a PLMN of an MCC, such as an MCC of a PLMN (network) to which it subscribes, using its IMSI, the following cause field may be used.
- the REGISTRATION REQUEST message may be transmitted from the UE to the AMF. It is illustrated in Table 8.2.6.1.1 of the standard document.
- Table 14 is Table8.2.6.1.1 of the standard document and exemplifies the elements of the REGISTRATION REQUEST message.
- the content of the registration request message is FFS when the restricted IE set including the IE set required to set security in the initial message is FFS.
- the purpose of the 5GS registration type information element is to indicate the type of registration requested.
- the 5GS registration type information elements are coded as shown in Tables 15 and 16.
- the 5GS registration type is a type 4 information element with a length of 3 octets.
- the terminal when the terminal accesses another network (eg, CN 2) due to a problem of the current network (HPLMN), the terminal may be able to use only limited services, for example, call and message services.
- CN 2 another network
- HPLMN HPLMN
- 16 is an example of a display unit to which the present specification can be applied.
- the terminal may display a message indicating that only limited services are available.
- the terminal may display a message 1620 indicating that only limited services are available on the display.
- a message may be displayed via SMS, and may include a hyperlink 1621 to additionally provide information on a limited service.
- the user wants to additionally know the information of the limited service, it can be provided through a hyperlink, and this information can be provided to the terminal through a network selected by the terminal.
- the terminal may display an icon 1611 indicating that a corresponding situation has been recognized or has been converted to a corresponding mode on a status bar of the display unit.
- the icon 1611 may include a string of "LS" representing a limited service.
- such an icon 1611 may have a unique shape different from a widely used icon.
- the icon 1611 may have the same shape as a simple icon, but may have a different display form.
- the icon 1611 may be displayed while several icons representing different information are displayed together or changed.
- information 1612 indicating signal strength received from a base station of another network may be displayed on a status bar of the display unit.
- information (eg, No Service) 1613 indicating that the service of the current network HPLMN is impossible may be displayed on a status bar of the display unit.
- the terminal may display a guide saying that only emergency calls are available on the screen of a phone application for a limited service (eg, when only emergency calls are available).
- the icon 1611 may include a string of "LS" representing a limited service.
- the icon 1611 may have a unique shape different from a widely used icon.
- the icon 1611 may have the same shape as a simple icon, but may have a different display form.
- the icon 1611 may be displayed while several icons representing different information are displayed together or changed.
- the icon 1611 may indicate information that only emergency calls are available.
- information 1612 indicating signal strength received from the base station of system 2 may be displayed on a status bar of the display unit.
- information indicating that system 1 service is impossible (eg, No Service) 1613 may be displayed on a status bar of the display unit.
- 17 is an example of a display to which the present specification can be applied.
- the terminal may display icons of applications other than calls and messages in an inactive state.
- the terminal may display icons of applications other than phone calls and messages in shades or in black and white.
- the terminal can transparently display icons of applications other than calls and messages.
- the terminal may display information (eg, limited service) indicating that other applications cannot be used on the display unit.
- the terminal may display a notification message, a pop-up message, or a guide message indicating that the use is not possible.
- a terminal may display a guide message including an input field for receiving a setting on whether to use a limited service from another network. . Through this, the terminal may receive a setting for using a limited service from a user.
- the terminal can notify that it is urgent roaming through its registration type information.
- the terminal including the above information may be based on the PLMN code. That is, when the terminal accesses the same PLMN among its PLMN codes, it notifies that it registers for an urgent reason as described above, and does not notify other cases.
- the server that manages the contents of the disaster text constructs the disaster text and transmits it to each communication network, and the communication network that receives it will transmit the PWS to the terminals in their network.
- the present specification describes, when a terminal newly registers in another network, or when accessing a network in a different area of the same network, each terminal provides information on the last PWS or PWS received by the terminal. Information on whether or not it has been received can be transmitted. Based on this, if the network determines that the PWS to be received by the terminal has not been received, the network transmits it to the terminal.
- the terminal when it performs a registration process from a new network (network B) or a new TA to the network, it may transmit information about the last PWS or identifier information received, and this information will be a message ID. I can. In contrast, if there is no corresponding information, the terminal may notify the network that there is no corresponding information. Based on this, the network can compare with the message ID that it has most recently transmitted, and determine whether the terminal has properly received the latest PWS.
- the terminal may transmit information about the time or area information when the PWS was last received. Based on this, the network can determine whether the terminal has properly received the latest PWS by checking the time and the time of the PWS transmitted most recently.
- the network delivers the PWS message stored by the network, or there is a terminal that has not yet received PWS at the PWS transmission institution. By notifying, it is possible to enable the PWS transmission institution to perform retransmission.
- the network may store the previous PWS by itself.
- the PWS organization informs the PWS message along with information such as the identifier of the related message, for example, the message ID.
- the PWS transmission organization does not retransmit PWS to all regions, but decides to send a specific message only to the terminal. May be.
- the PWS may transmit the contents of the PWS message to the network and instruct to transmit only to the terminal.
- the network transmits the message to the terminal by using a text message or transmits the message to the terminal by using a NAS message.
- each terminal when each terminal receives a PWS message, each terminal may store the message ID of each PWS message and the reception time of the message in memory or manage it in a NAS message. .
- the terminal transmits information related to PWS reception only when the network instructs the terminal to transmit the information through an SIB or the like or through a NAS message.
- Method 3-1 may be automatically attempted when the network last registered by the terminal and the network to be currently registered are different. Or, in a disaster roaming situation, it can be delivered when the terminal accesses a new network.
- the operation of the method 3-1 may be performed when the terminal does not access any network or the time when not discovering is greater than a predetermined time.
- FIG. 18 is a flowchart illustrating a method for a terminal to register in a network according to an embodiment of the present specification.
- the terminal may register with the first PLMN through the first base station (S1801).
- the terminal may receive a message from the first base station related to a disaster applied to the first PLMN or applied to the area where the terminal is located. Yes (S1803).
- the terminal may register with the second PLMN that provides the disaster roaming service based on the disaster-related message (S1805).
- 19 is a flowchart illustrating a method of registering a terminal in a network by a base station according to an embodiment of the present specification.
- the base station may register the terminal in the first PLMN (S1901).
- the base station may transmit a message related to a disaster applied to the first PLMN or applied to an area in which the terminal is located to the terminal (S1903).
- a terminal subscribes to a first PLMN, and a second PLMN may be configured to provide a disaster roaming service to a terminal based on a disaster applied to a first PLMN or applied to an area in which the terminal is located.
- the terminal registers with the first PLMN through the first base station (S2010).
- the terminal When the terminal can no longer receive a service from the first PLMN (e.g., a disaster occurs), the terminal receives a message related to a disaster applied to the first PLMN or applied to the area where the terminal is located from the first base station (S2020) .
- a disaster e.g., a disaster occurs
- the terminal receives a message related to a disaster applied to the first PLMN or applied to the area where the terminal is located from the first base station (S2020) .
- the terminal displays a message related to a disaster applied to the first PLMN or applied to an area in which the terminal is located (S2030).
- the terminal selects a second PLMN that provides a disaster roaming service based on a message applied to the first PLMN or related to the disaster, and displays a message indicating that the second PLMN has been selected (S2040). For example, the terminal displays a window including an input button for allowing the second PLMN based on a message related to a disaster applied to the first PLMN or applied to an area in which the terminal is located, and the second PLMN May be selected when a signal for allowing the second PLMN is input through the input button.
- the terminal may register with the second PLMN (S2050 and S2060).
- the terminal displays a notification message or a status icon indicating that only limited services are available, and the terminal may have a state in which only the limited services are allowed through the second PLMN.
- the status icon may be included in a status bar of the terminal, and the status bar may further include information indicating strength of a signal received from the second PLMN.
- the notification message may include information indicating the type of the restricted service.
- the terminal may disable an icon of an application other than an application related to the type of the limited service, and display the icon of the inactive application to have a shaded, black and white or transparent state. If an operation for executing an inactive application is detected through the icon of the inactive application, the terminal may display a notification message indicating that the inactive application cannot be used.
- FIG. 21 illustrates a block diagram of a communication device according to an embodiment of the present specification.
- a wireless communication system includes a network node 2110 and a plurality of UEs 2120.
- the network node 2110 includes a processor (processor, 2111), a memory (memory, 2112), and a communication module (communication module, 2113) (transceiver).
- the processor 2111 implements the functions, processes and/or methods proposed in FIGS. 1 to 14 above. Layers of the wired/wireless interface protocol may be implemented by the processor 2111.
- the memory 2112 is connected to the processor 2111 and stores various information for driving the processor 2111.
- the communication module 2113 is connected to the processor 2111 and transmits and/or receives a wired/wireless signal.
- a base station As an example of the network node 2110, a base station, AMF, SMF, UDF, and the like may correspond to this.
- the communication module 2113 may include a radio frequency unit (RF) for transmitting/receiving a radio signal.
- RF radio frequency unit
- the terminal 2120 includes a processor 2121, a memory 2122, and a communication module (or RF unit) 2123 (transceiver).
- the processor 2121 implements the functions, processes and/or methods proposed in FIGS. 1 to 14 above. Layers of the air interface protocol may be implemented by the processor 2121. In particular, the processor may include a NAS layer and an AS layer.
- the memory 2122 is connected to the processor 2121 and stores various information for driving the processor 2121.
- the communication module 2123 is connected to the processor 2121 and transmits and/or receives a radio signal.
- the memories 2112 and 2122 may be inside or outside the processors 2111 and 2121, and may be connected to the processors 2111 and 2121 by various well-known means. Further, the network node 2110 (in the case of a base station) and/or the terminal 2120 may have one antenna or multiple antennas.
- FIG. 22 illustrates a block diagram of a communication device according to an embodiment of the present specification.
- FIG. 22 is a diagram illustrating the terminal of FIG. 21 in more detail above.
- the communication module shown in FIG. 21 includes an RF module (or RF unit) of FIG. 22.
- the processor shown in FIG. 21 corresponds to the processor (or digital signal processor (DSP) 2210) in FIG. 22.
- the memory shown in FIG. 21 corresponds to the memory 2230 of FIG. .
- a terminal is a processor (or digital signal processor (DSP) 2210), an RF module (or RF unit) 2235, a power management module (power management module) 2205 ), antenna (2240), battery (2255), display (2215), keypad (2220), memory (2230), SIM card (Subscriber Identification Module (SIM) ) card) 2225 (this configuration is optional), a speaker 2245 and a microphone 2250.
- the terminal may also include a single antenna or multiple antennas. I can.
- the processor 2210 implements the functions, processes and/or methods proposed above.
- the layer of the air interface protocol may be implemented by the processor 2210.
- the memory 2230 is connected to the processor 2210 and stores information related to the operation of the processor 2210.
- the memory 2230 may be inside or outside the processor 2210, and may be connected to the processor 2210 by various well-known means.
- the user inputs command information such as a telephone number, for example, by pressing (or touching) a button on the keypad 2220 or by voice activation using the microphone 2250.
- the processor 2210 receives this command information and processes to perform an appropriate function, such as dialing a phone number. Operational data may be extracted from the SIM card 2225 or the memory 2230.
- the processor 2210 may display command information or driving information on the display 2215 for user recognition and convenience.
- the RF module 2235 is connected to the processor 2210 and transmits and/or receives an RF signal.
- the processor 2210 transmits command information to the RF module 2235 to transmit, for example, a radio signal constituting voice communication data to initiate communication.
- the RF module 2235 is composed of a receiver and a transmitter to receive and transmit radio signals.
- the antenna 2240 functions to transmit and receive radio signals.
- the RF module 2235 may transmit the signal for processing by the processor 2210 and convert the signal to baseband.
- the processed signal may be converted into audible or readable information output through the speaker 2245.
- 23 is an exemplary diagram showing the structure of a radio interface protocol in a control plane between a UE and an eNodeB.
- the air interface protocol is based on the 3GPP radio access network standard.
- the radio interface protocol horizontally consists of a physical layer (Physical layer), a data link layer (Data Link layer), and a network layer (Network layer), and vertically, a user plane and control for data information transmission. It is divided into a control plane for signal transmission.
- the protocol layers are L1 (layer 1), L2 (layer 2), and L3 (layer 3) based on the lower 3 layers of the Open System Interconnection (OSI) reference model widely known in communication systems. ) Can be separated.
- OSI Open System Interconnection
- the first layer provides an information transfer service using a physical channel.
- the physical layer is connected to an upper medium access control layer through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
- data is transmitted between different physical layers, that is, between the physical layers of the transmitting side and the receiving side through a physical channel.
- the physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis.
- one sub-frame is composed of a plurality of symbols and a plurality of subcarriers on the time axis.
- One subframe is composed of a plurality of resource blocks (Resource Block), and one resource block is composed of a plurality of symbols (Symbol) and a plurality of subcarriers.
- the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
- the physical channels existing in the physical layer of the transmitting side and the receiving side are according to 3GPP LTE, a physical downlink shared channel (PDSCH) and a physical uplink shared channel (PUSCH), and a physical downlink control channel (PDCCH) as a control channel, It can be divided into PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and PUCCH (Physical Uplink Control Channel).
- PCFICH Physical Control Format Indicator Channel
- PHICH Physical Hybrid-ARQ Indicator Channel
- PUCCH Physical Uplink Control Channel
- the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
- CFI control format indicator
- the wireless device first receives the CFI on the PCFICH and then monitors the PDCCH.
- the PCFICH is transmitted through a fixed PCFICH resource of a subframe without using blind decoding.
- the PHICH carries a positive-acknowledgement (ACK)/negative-acknowledgement (NACK) signal for UL hybrid automatic repeat request (HARQ).
- ACK positive-acknowledgement
- NACK negative-acknowledgement
- HARQ hybrid automatic repeat request
- the ACK/NACK signal for UL (uplink) data on the PUSCH transmitted by the wireless device is transmitted on the PHICH.
- PBCH Physical Broadcast Channel
- SIB system information block
- PDCCH is a resource allocation and transmission format of a downlink-shared channel (DL-SCH), resource allocation information of an uplink shared channel (UL-SCH), paging information on PCH, system information on DL-SCH, random access transmitted on PDSCH Resource allocation of a higher layer control message such as a response, a set of transmission power control commands for individual UEs within a certain UE group, and activation of voice over internet protocol (VoIP) may be carried.
- a plurality of PDCCHs may be transmitted within the control region, and the UE may monitor the plurality of PDCCHs.
- the PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs).
- CCEs control channel elements
- CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
- CCE corresponds to a plurality of resource element groups.
- the format of the PDCCH and the number of bits of the allowed PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
- DCI downlink control information
- PDSCH also referred to as a DL grant (downlink grant)
- resource allocation of a PUSCH also referred to as a UL grant (uplink grant)
- VoIP Voice over Internet Protocol
- the medium access control (MAC) layer plays a role of mapping various logical channels to various transport channels, and also, a logical channel multiplexing method that maps several logical channels to one transport channel. Play a role.
- the MAC layer is connected to the RLC layer, which is the upper layer, through a logical channel, and the logical channel has a control channel that transmits information on the control plane according to the type of information transmitted. It is divided into a traffic channel that transmits information on the user plane.
- the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data through the radio section by segmenting and concatenating the data received from the upper layer. Play a role.
- RLC Radio Link Control
- TM Transparent mode, transparent mode
- UM Un-acknowledged mode, non-response mode
- AM Acknowledged mode, Response mode
- AM RLC performs a retransmission function through an automatic repeat and request (ARQ) function for reliable data transmission.
- the second layer's Packet Data Convergence Protocol (PDCP) layer is an IP that is relatively large in size and contains unnecessary control information for efficient transmission in a wireless section with a small bandwidth when transmitting an IP packet such as IPv4 or IPv6. It performs a header compression function that reduces the packet header size. This serves to increase transmission efficiency of a wireless section by transmitting only necessary information in the header part of the data.
- the PDCP layer also performs a security function, which consists of encryption (Ciphering) to prevent data interception by a third party and integrity protection (Integrity protection) to prevent data manipulation by a third party.
- the radio resource control (Radio Resource Control; hereinafter abbreviated as RRC) layer located at the top of the third layer is defined only in the control plane, and the setting (setting) and reconfiguration of radio bearers (Radio Bearer; abbreviated as RB) (Re -It is in charge of control of logical channels, transport channels and physical channels related to setting) and release.
- RRC Radio Resource Control
- RB means a service provided by the second layer for data transmission between the UE and the E-UTRAN.
- the terminal When there is an RRC connection between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in an RRC connected state (connected mode), and otherwise, it is in an RRC idle state (Idle mode).
- the RRC state refers to whether the RRC of the terminal is in a logical connection with the RRC of the E-UTRAN, and when it is connected, it is called an RRC_CONNECTED state, and when it is not connected, it is called an RRC_IDLE state. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can determine the existence of the UE at the cell level, and thus can effectively control the UE.
- the E-UTRAN cannot determine the existence of the UE, and the core network is managed by the TA (Tracking Area) unit, which is a larger area unit than the cell. That is, the UE in the RRC_IDLE state is only aware of the existence of the corresponding UE in a larger area unit than the cell, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the RRC_CONNECTED state.
- Each TA is classified through a tracking area identity (TAI).
- the terminal may configure the TAI through a tracking area code (TAC), which is information broadcasted from the cell.
- TAC tracking area code
- the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, establishes an RRC connection in the cell, and registers the terminal information in the core network. After this, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state selects a cell (re) if necessary, and looks at system information or paging information. This is called camping on the cell. The UE that has stayed in the RRC_IDLE state establishes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state when it is necessary to establish an RRC connection.
- the NAS (Non-Access Stratum) layer performs functions such as connection management (Session Management) and mobility management (Mobility Management).
- the NAS layer is divided into a NAS entity for MM (Mobility Management) and a NAS entity for SM (Session Management).
- NAS entity for MM provides the following functions in general.
- NAS procedures related to AMF including the following.
- AMF supports the following functions.
- the NAS entity for the SM performs session management between the UE and the SMF.
- the SM signaling message is processed, that is, generated and processed at the NAS-SM layer of the UE and SMF.
- the contents of the SM signaling message are not interpreted by the AMF.
- the NAS entity for the MM generates a NAS-MM message that derives how and where to deliver the SM signaling message through the security header representing the NAS transmission of SM signaling, and additional information about the receiving NAS-MM.
- the NAS entity for the SM upon receiving the SM signaling, performs an integrity check of the NAS-MM message, analyzes the additional information, and derives a method and place to derive the SM signaling message.
- an RRC layer, an RLC layer, a MAC layer, and a PHY layer located below the NAS layer are collectively referred to as an access layer (AS).
- the wireless device includes a base station, a network node, a transmitting terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a drone (Unmanned Aerial Vehicle, UAV), an AI (Artificial Intelligence) module, Robots, Augmented Reality (AR) devices, Virtual Reality (VR) devices, MTC devices, IoT devices, medical devices, fintech devices (or financial devices), security devices, climate/environment devices, or other 4th industrial revolution fields or It may be a device related to 5G service.
- a drone may be a vehicle that is not human and is flying by a radio control signal.
- the MTC device and the IoT device are devices that do not require direct human intervention or manipulation, and may be smart meters, bending machines, thermometers, smart light bulbs, door locks, and various sensors.
- a medical device is a device used for the purpose of diagnosing, treating, alleviating, treating or preventing diseases, as a device used for the purpose of examining, replacing or modifying a structure or function, such as medical equipment, surgical devices, ( In vitro) diagnostic devices, hearing aids, surgical devices, and the like.
- a security device is a device installed to prevent a risk that may occur and maintain safety, and may be a camera, a CCTV, or a black box.
- a fintech device is a device capable of providing financial services such as mobile payment, and may be a payment device, a point of sales (POS), or the like.
- the climate/environment device may mean a device that monitors and predicts climate/environment.
- Mobile terminals described in this specification include mobile phones, smart phones, laptop computers, digital broadcasting terminals, personal digital assistants (PDAs), portable multimedia players (PMPs), navigation systems, and slate PCs.
- Tablet PC tablet PC
- ultrabook ultrabook
- wearable device wearable device, for example, smartwatch, glass-type terminal (smart glass), HMD (head mounted display)
- IoT Internet of Things
- embodiments of the present specification may be implemented through various means.
- the embodiments of the present specification may be implemented by hardware, firmware, software, or a combination thereof.
- the method according to the embodiments of the present specification includes one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). , Field Programmable Gate Arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal Processors
- DSPDs Digital Signal Processing Devices
- PLDs Programmable Logic Devices
- FPGAs Field Programmable Gate Arrays
- processors controllers
- microcontrollers microcontrollers
- microprocessors and the like.
- the method according to the embodiments of the present specification may be implemented in the form of an apparatus, procedure, or function that performs the functions or operations described above.
- the software code may be stored in a memory unit and driven by a processor.
- the memory unit may be located inside or outside the processor, and may exchange data with the processor through various known means.
- the above-described specification is allowed to be implemented as a computer-readable code on a medium in which a program is recorded.
- the computer-readable medium includes all types of recording devices storing data that can be read by a computer system. Examples of computer-readable media include HDD (Hard Disk Drive), SSD (Solid State Disk), SDD (Silicon Disk Drive), ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, etc. There is also a carrier wave (e.g., transmission over the Internet). Further, the computer may include a processor Y120 of the terminal. Therefore, the detailed description above should not be construed as restrictive in all respects and should be considered as illustrative. The scope of this specification should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of this specification are included in the scope of this specification.
- the communication method as described above is allowed to be applied not only to the 3GPP system, but also to various wireless communication systems including IEEE 802.16x and 802.11x systems. Furthermore, the proposed method can be applied to a mmWave communication system using an ultra-high frequency band.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 명세서는, 무선 통신 시스템에서 단말이 네트워크에 등록을 수행하는 방법에 있어서, 제1 기지국을 통해 제1 PLMN(Public Land Mobile Network)으로 등록을 수행하는 단계; 상기 제1 PLMN으로부터 더 이상 서비스를 제공받을 수 없는 경우, 상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난과 관련된 메시지를 수신하는 단계; 상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난과 관련된 메시지를 디스플레이 하는 단계; 상기 제1 PLMN에 적용된 또는 상기 재난과 관련된 메시지에 근거하여 재난 로밍 서비스를 제공하는 제2 PLMN를 선택하고, 상기 제2 PLMN이 선택되었음을 알리기 위한 메시지를 디스플레이하는 단계; 상기 제2 PLMN으로 등록 요청 메시지를 전송하는 단계; 및 상기 제2 PLMN으로부터 상기 등록 요청 메시지에 대한 응답 메시지를 수신하는 단계;를 포함하되, 상기 단말은 상기 제1 PLMN에 가입되고, 상기 제2 PLMN은 상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난에 기반하여 상기 단말에게 상기 재난 로밍 서비스를 제공하도록 설정되는 것을 특징으로 할 수 있다.
Description
본 명세서는 무선 통신 시스템에 관한 것으로서, 보다 상세하게는 무선 통신 시스템에서 단말 및 기지국이 네트워크에 단말의 등록을 수행하는 방법 및 이를 위한 장치에 관한 것이다.
무선 통신 시스템에 있어서, 이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동 통신 시스템은 음성뿐만 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 단말 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 단말이 자신이 가입한 사업자가 서비스를 제공하는 지역에 위치해 있으나, 가입한 사업자가 일시적으로 서비스를 제공할 수 없을 경우, 주변에 가용한 다른 사업자의 망으로 로밍을 수행하여 서비스를 제공하기 위한 방법을 제공함에 목적이 있다.
또한, 단말이 자동 네트워크 선택 모드에서 타사의 망을 접속하는 과정에서, 상기 단말이 신속하게 자신이 가입한 사업자의 망에서의 문제를 인식하여, 최대한 서비스의 단절없이 새로운 망으로 이동하여 서비스를 제공받는 통신 시스템 및 방법을 제공함에 목적이 있다.
본 명세서에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 명세서가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서의 일 양상은, 무선 통신 시스템에서 단말이 네트워크에 등록을 수행하는 방법에 있어서, 제1 기지국을 통해 제1 PLMN(Public Land Mobile Network)으로 등록을 수행하는 단계; 상기 제1 PLMN으로부터 더 이상 서비스를 제공받을 수 없는 경우, 상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난과 관련된 메시지를 수신하는 단계; 상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난과 관련된 메시지를 디스플레이 하는 단계; 상기 제1 PLMN에 적용된 또는 상기 재난과 관련된 메시지에 근거하여 재난 로밍 서비스를 제공하는 제2 PLMN를 선택하고, 상기 제2 PLMN이 선택되었음을 알리기 위한 메시지를 디스플레이하는 단계; 상기 제2 PLMN으로 등록 요청 메시지를 전송하는 단계; 및 상기 제2 PLMN으로부터 상기 등록 요청 메시지에 대한 응답 메시지를 수신하는 단계;를 포함하되, 상기 단말은 상기 제1 PLMN에 가입되고, 상기 제2 PLMN은 상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난에 기반하여 상기 단말에게 상기 재난 로밍 서비스를 제공하도록 설정되는 것을 특징으로 할 수 있다.
또한, 상기 제2 PLMN과 관련하여, 제한된 서비스만 이용가능함을 나타내는 알림 메시지 또는 상태 아이콘을 디스플레이하는 단계; 를 더 포함하며, 상기 단말은 상기 제2 PLMN을 통해, 상기 제한된 서비스만 허용되는 상태를 갖을 수 있다.
또한, 상기 상태 아이콘은 상기 단말의 상태 바(bar)에 포함되며, 상기 상태 바는 상기 제2 PLMN로부터 수신되는 신호의 세기를 나타내는 정보를 더 포함할 수 있다.
또한, 상기 알림 메시지는 상기 제한된 서비스의 종류를 나타내는 정보를 포함할 수 있다.
또한, 상기 제한된 서비스의 종류와 관련된 어플리케이션 이외의 어플리케이션의 아이콘을 비활성(disable)하는 단계; 및 상기 비활성된 어플리케이션의 아이콘이 음영, 흑백 또는 투명한 상태를 갖도록 디스플레이하는 단계; 를 더 포함할 수 있다.
또한, 상기 비활성된 어플리케이션의 아이콘을 통해, 비활성된 어플리케이션을 실행하기 위한 동작이 감지되는 경우, 상기 비활성된 어플리케이션의 이용이 불가능함을 알리기 위한 알림 메시지를 디스플레이하는 단계;를 더 포함할 수 있다.
또한, 상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난과 관련된 메시지에 근거하여, 상기 제2 PLMN을 허용하기 위한 입력버튼이 포함된 윈도우를 표시하는 단계; 를 더 포함하며, 상기 제2 PLMN은 상기 입력버튼을 통해, 상기 제2 PLMN을 허용하기 위한 신호가 입력된 경우, 선택될 수 있다.
또한, 상기 재난과 관련된 메시지는, 상기 재난 로밍 서비스가 상기 제1 PLMN과 관련된 단말들에게 제공됨을 지시하는 인디케이터를 포함하는 것을 특징으로 할 수 있다.
또한, 상기 재난과 관련된 메시지는 제1 PLMN과 관련된 상기 단말에게, 상기 재난 로밍 서비스가 제공될 수 있도록 설정되었음을 나타내는 정보를 포함하는 것을 특징으로 할 수 있다.
또한, 상기 재난과 관련된 메시지는 미리 설정된 주기에 따라 상기 단말로 수신되는 SIB(System Information Block) 메시지인 것을 특징으로 할 수 있다.
또한, 상기 제2 PLMN과 연결된 제2 기지국으로 RRC 연결 요청 메시지를 전송하는 단계; 및 상기 RRC 연결 요청 메시지에 대한 응답 메시지를 수신하여 상기 제2 기지국을 통해 상기 제2 PLMN과 RRC 연결을 수립하는 단계; 를 포함하며, 상기 RRC 연결 요청 메시지는 재난 로밍을 원인으로 전송되는 것을 특징으로 할 수 있다.
본 명세서의 또 다른 일 양상은, 무선 통신 시스템에서 네트워크에 등록을 수행하는 단말에 있어서, 송수신기(transceiver); 메모리; 디스플레이부; 및 상기 송수신기, 상기 메모리 및 상기 디스플레이부를 제어하는 프로세서를 포함하고, 상기 프로세서는 제1 기지국을 통해 제1 PLMN(Public Land Mobile Network)으로 등록을 수행하며, 상기 송수신기를 통해, 상기 제1 PLMN으로부터 더 이상 서비스를 제공받을 수 없는 경우, 상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난과 관련된 메시지를 수신하고, 상기 디스플레이부를 통해, 상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난과 관련된 메시지를 디스플레이 하며, 상기 제1 PLMN에 적용된 또는 상기 재난과 관련된 메시지에 근거하여 재난 로밍 서비스를 제공하는 제2 PLMN를 선택하고, 상기 제2 PLMN이 선택되었음을 알리기 위한 메시지를 디스플레이하고, 상기 송수신기를 통해, 상기 제2 PLMN으로 등록 요청 메시지를 전송하며, 상기 제2 PLMN으로부터 상기 등록 요청 메시지에 대한 응답 메시지를 수신하고, 상기 단말은 상기 제1 PLMN에 가입되며, 상기 제2 PLMN은 상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난에 기반하여 상기 단말에게 상기 재난 로밍 서비스를 제공하도록 설정될 수 있다.
본 명세서에 따르면, 단말이 특정 네트워크로부터 제공받던 서비스의 단절을 방지할 수 있다.
또한, 본 명세서에 따르면, 단말이 특정 네트워크에서 발생한 재난 상황에서도 다른 네트워크로의 로밍 이동이 가능하여, 사용자는 통신 서비스가 단절되는 상황에서도 지속적으로 통신 서비스를 이용할 수 있다.
본 명세서에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 명세서가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 명세서에 대한 실시예를 제공하고, 상세한 설명과 함께 본 명세서의 기술적 특징을 설명한다.
도 1은 본 명세서의 일 실시 예에 따른 AI 장치(100)를 나타낸다.
도 2는 본 명세서의 일 실시 예에 따른 AI 서버(200)를 나타낸다.
도 3은 본 명세서의 일 실시 예에 따른 AI 시스템(1)을 나타낸다.
도 4는 다양한 참조 포인트(reference point)들을 도시한다.
도 5는 본 명세서가 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
도 6은 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도 7은 UE와 eNB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이다.
도 8은 UE와 eNB 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 9는 일반적인 NR-RAN의 아키텍쳐를 예시하는 도면이다.
도 10은 일반적인 NG-RAN과 5GC의 기능적 분리를 나타낸 예시도이다.
도 11은 5G의 일반적인 아키텍쳐의 예를 보여주고 있다.
도 12는 본 명세서의 실시예에 따른 PLMN을 선택하는 하나의 예시를 나타낸 흐름도이다.
도 13은 본 명세서가 적용될 수 있는 디스플레이부의 예시이다.
도 14는 방법 2-1에 따른 PLMN 선택 과정을 예시한 흐름도이다.
도 15는 방법 4에 따라 PLMN을 선택하는 과정을 예시한 흐름도이다.
도 16은 본 명세서가 적용될 수 있는 디스플레이부의 예시이다.
도 17은 본 명세서가 적용될 수 있는 디스플레이부의 예시이다.
도 18은 본 명세서의 실시예에 따라 단말이 네트워크에 등록을 수행하는 방법을 나타낸 흐름도이다.
도 19는 본 명세서의 실시예에 따라 기지국이 단말을 네트워크에 등록하는 방법을 나타낸 흐름도이다.
도 20은 본 명세서가 적용될 수 있는 일 실시예이다.
도 21은 본 명세서의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 22는 본 명세서의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 23은 UE과 eNodeB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이다.
이하, 본 명세서에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 명세서의 예시적인 실시형태를 설명하고자 하는 것이며, 본 명세서가 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 명세서의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 명세서가 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 명세서의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서의 용어 설명
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 명세서의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 명세서의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 명세서의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 명세서의 실시예들 중 본 명세서의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 명세서의 기술적 특징이 이에 제한되는 것은 아니다.
본 문서에서 사용될 수 있는 용어들은 다음과 같이 정의된다.
- IMS(IP Multimedia Subsystem or IP Multimedia Core Network Subsystem): IP 상으로 음성 또는 다른 멀티미디어 서비스를 배달하기 위한 표준화를 제공하기 위한 구조적(architectural) 프레임워크(framework).
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 패킷 교환(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE, UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: UMTS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: EPS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- Home NodeB: UMTS 망의 Base station으로 옥내에 설치하며 커버리지는 마이크로 셀 규모
- Home eNodeB: EPS 망의 Base station으로 옥내에 설치하며 coverage는 마이크로 셀 규모
- 단말(User Equipment): 사용자 기기. 단말은 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수 있다. 또한, 단말은 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 단말 또는 단말이라는 용어는 MTC 단말을 지칭할 수 있다.
- MTC(Machine Type Communication): 사람의 개입 없이 머신에 의해 수행되는 통신. M2M(Machine to Machine) 통신이라고 지칭할 수도 있다.
- MTC 단말(MTC UE 또는 MTC device 또는 MTC 장치): 이동 통신 네트워크를 통한 통신(예를 들어, PLMN을 통해 MTC 서버와 통신) 기능을 가지고, MTC 기능을 수행하는 단말(예를 들어, 자판기, 검침기 등).
- RAN(Radio Access Network): 3GPP 네트워크에서 Node B 및 이를 제어하는 RNC(Radio Network Controller), eNodeB를 포함하는 단위. 단말 단에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 식별자 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- PLMN(Public Land Mobile Network): 개인들에게 이동 통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- NAS(Non-Access Stratum): UMTS, EPS 프로토콜 스택에서 단말과 코어 네트워크 간의 시그널링, 트래픽 메시지를 주고받기 위한 기능적인 계층. 단말의 이동성을 지원하고, 단말과 PDN GW 간의 IP 연결을 수립 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
- SCEF(Service Capability Exposure Function): 3GPP 네트워크 인터페이스에 의해 제공되는 서비스 및 능력(capability)를 안전하게 노출하기 위한 수단을 제공하는 서비스 능력 노출(service capability exposure)을 위한 3GPP 아키텍처 내 엔티티.
- MME(Mobility Management Entity): 이동성 관리 및 세션 관리 기능을 수행하는 EPS 망의 네트워크 노드
- PDN-GW(Packet Data Network Gateway): UE IP 주소 할당, 패킷 스크리닝 및 필터링, 충전 데이터 수집(Charging data collection) 기능을 수행하는 EPS 망의 네트워크 노드
- Serving GW(Serving Gateway): 이동성 앵커, 패킷 라우팅, Idle 모드 패킷 버퍼링, MME의 UE에 대한 페이징을 트리거링하는 등의 기능을 수행하는 EPS망의 네트워크 노드
- PCRF (Policy and Charging Rule Function): 서비스 플로우 별로 차별화된 QoS 및 과금 정책을 동적(dynamic)으로 적용하기 위한 정책 결정(Policy decision)을 수행하는 EPS 망의 노드
- OMA DM (Open Mobile Alliance Device Management): 핸드폰, PDA, 휴대용 컴퓨터 등과 같은 모바일 디바이스들 관리를 위해 디자인된 프로토콜로써, 디바이스 설정(configuration), 펌웨어 업그레이드(firmware upgrade), 오류 보고 (Error Report)등의 기능을 수행함.
- OAM (Operation Administration and Maintenance): 네트워크 결함 표시, 성능정보, 그리고 데이터와 진단 기능을 제공하는 네트워크 관리 기능군.
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS server, WAP server 등)가 위치하고 있는 네트워크.
- PDN 연결: 단말에서 PDN으로의 연결, 즉, ip 주소로 표현되는 단말과 APN으로 표현되는 PDN과의 연관(연결)
- EMM (EPS Mobility Management): NAS 계층의 서브-계층으로서, UE가 네트워크 어태치(attach)되어 있는지 디태치(detach)되어 있는지에 따라 EMM은 "EMM-Registered" 아니면 "EMM-Deregistered" 상태에 있을 수 있다.
- ECM (EMM Connection Management) 연결(connection): UE와 MME가 사이에 수립(establish)된, NAS 메시지의 교환(exchange)을 위한 시그널링 연결(connection). ECM 연결은 UE와 eNB 사이의 RRC 연결과 상기 eNB와 MME 사이의 S1 시그널링 연결로 구성된 논리(logical) 연결이다. ECM 연결이 수립(establish)/종결(terminate)되면, 상기 RRC 및 S1 시그널링 연결은 마찬가지로 수립/종결된다. 수립된 ECM 연결은 UE에게는 eNB와 수립된 RRC 연결을 갖는 것을 의미하며, MME에게는 상기 eNB와 수립된 S1 시그널링 연결을 갖는 것을 의미한다. NAS 시그널링 연결, 즉, ECM 연결이 수립되어 있는지에 따라, ECM은 "ECM-Connected" 아니면 "ECM-Idle" 상태를 가질 수 있다.
- AS (Access-Stratum): UE와 무선(혹은 접속) 네트워크 간의 프로토콜 스택을 포함하며, 데이터 및 네트워크 제어 신호 전송 등을 담당한다.
- NAS 설정(configuration) MO (Management Object): NAS 기능(Functionality)과 연관된 파라미터들(parameters)을 UE에게 설정하는 과정에서 사용되는 MO (Management object).
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결.
- APN (Access Point Name): PDN을 지칭하거나 구분하는 문자열. 요청한 서비스나 네트워크에 접속하기 위해서는 특정 P-GW를 거치게 되는데, 이 P-GW를 찾을 수 있도록 네트워크 내에서 미리 정의한 이름(문자열)을 의미한다. (예를 들어, internet.mnc012.mcc345.gprs)
- ANDSF(Access Network Discovery and Selection Function): 하나의 네트워크 엔티티(entity)로서 사업자 단위로 UE가 사용 가능한 접속(access)을 발견하고 선택하도록 하는 Policy를 제공.
- EPC 경로(또는 infrastructure data path): EPC를 통한 사용자 평면 커뮤니케이션 경로
- E-RAB (E-UTRAN Radio Access Bearer): S1 베어러와 해당 데이터 무선 베어러의 연결(concatenation)을 말한다. E-RAB가 존재하면 상기 E-RAB와 NAS의 EPS 베어러 사이에 일대일 매핑이 있다.
- GTP (GPRS Tunneling Protocol): GSM, UMTS 및 LTE 네트워크들 내에서 일반 패킷 무선 서비스(general packet radio service, GPRS)를 나르기 위해 사용되는 IP-기반 통신들 프로토콜들의 그룹. 3GPP 아키텍쳐 내에는, GTP 및 프록시 모바일 IPv6 기반 인터페이스들이 다양한 인터페이스 포인트 상에 특정(specify)되어 있다. GTP는 몇몇 프로토콜들(예, GTP-C, GTP-U 및 GTP')으로 분해(decompose)될 수 있다. GTP-C는 게이트웨이 GPRS 지원 노드들(GGSN) 및 서빙 GPRS 지원 노드들(SGSN) 간 시그널링을 위해 GPRS 코어(core) 네트워크 내에서 사용된다. GTP-C는 상기 SGSN이 사용자를 위해 세션을 활성화(activate)(예, PDN 컨텍스트 활성화(activation))하는 것, 동일 세션을 비활성화(deactivate)하는 것, 서비스 파라미터들의 품질(quality)를 조정(adjust)하는 것, 또는 다른 SGSN으로부터 막 동작한 가입자(subscriber)를 위한 세션을 갱신하는 것을 허용한다. GTP-U는 상기 GPRS 코어 네트워크 내에서 그리고 무선 접속 네트워크 및 코어 네트워크 간에서 사용자 데이터를 나르기 위해 사용된다.
- 무선 자원으로서의 셀(cell): 3GPP LTE/LTE-A 시스템은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용하고 있는데, 무선 자원과 연관된 셀(cell)은 지리적 영역의 셀(cell)과 구분된다. 무선 자원과 연관된 "셀"이라 함은 하향링크 자원(DL resources)와 상향링크 자원(UL resources)의 조합, 즉, DL 반송파와 UL 반송파의 조합으로 정의된다. 셀은 DL 자원 단독, 또는 DL 자원과 UL 자원의 조합으로 설정될(configured) 수 있다. 반송파 집성이 지원되는 경우, DL 자원의 반송파 주파수(carrier frequency)와 UL 자원의 반송파 주파수(carrier frequency) 사이의 링키지(linkage)는 시스템 정보에 의해 지시될 수 있다. 여기서, 반송파 주파수라 함은 각 셀 혹은 반송파의 중심 주파수(center frequency)를 의미한다. 특히 1차 주파수(primary frequency) 상에서 동작하는 셀을 1차 셀(primary cell, Pcell)로 지칭되고, 2차 주파수(Secondary frequency) 상에서 동작하는 셀을 2차 셀(secondary cell, Scell)로 지칭된다. Scell이라 함은 RRC(Radio Resource Control) 연결 개설(connection establishment)이 이루어진 이후에 설정 가능하고 추가적인 무선 자원을 제공을 위해 사용될 수 있는 셀을 의미한다. UE의 성능(capabilities)에 따라, Scell이 Pcell과 함께, 상기 UE를 위한 서빙 셀의 모음(set)을 형성할 수 있다. RRC_CONNECTED 상태에 있지만 반송파 집성이 설정되지 않았거나 반송파 집성을 지원하지 않는 UE의 경우, Pcell로만 설정된 서빙 셀이 단 하나 존재한다. 한편, 지리적 영역의 "셀"은 노드가 반송파를 이용하여 서비스를 제공할 수 있는 커버리지(coverage)라고 이해될 수 있으며, 무선 자원의 "셀"은 상기 반송파에 의해 설정(configure)되는 주파수 범위인 대역폭(bandwidth, BW)와 연관된다. 노드가 유효한 신호를 전송할 수 있는 범위인 하향링크 커버리지와 UE로부터 유효한 신호를 수신할 수 있는 범위인 상향링크 커버리지는 해당 신호를 나르는 반송파에 의해 의존하므로 노드의 커버리지는 상기 노드가 사용하는 무선 자원의 "셀"의 커버리지와 연관되기도 한다. 따라서 "셀"이라는 용어는 때로는 노드에 의한 서비스의 커버리지를, 때로는 무선 자원을, 때로는 상기 무선 자원을 이용한 신호가 유효한 세기로 도달할 수 있는 범위를 의미하는 데 사용될 수 있다.
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 UE와 UE 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, UE가 eNB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
이하, 위와 같이 정의된 용어를 바탕으로 본 명세서에 대하여 기술한다.
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.
일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
다음으로, 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.
본 명세서에서 후술할 본 명세서는 전술한 5G의 요구 사항을 만족하도록 각 실시예를 조합하거나 변경하여 구현될 수 있다.
이하에서는 후술할 본 명세서가 응용될 수 있는 기술분야와 관련하여 구체적으로 설명한다.
인공 지능(AI: Artificial Intelligence)
인공 지능은 인공적인 지능 또는 이를 만들 수 있는 방법론을 연구하는 분야를 의미하며, 머신 러닝(기계 학습, Machine Learning)은 인공 지능 분야에서 다루는 다양한 문제를 정의하고 그것을 해결하는 방법론을 연구하는 분야를 의미한다. 머신 러닝은 어떠한 작업에 대하여 꾸준한 경험을 통해 그 작업에 대한 성능을 높이는 알고리즘으로 정의하기도 한다.
인공 신경망(ANN: Artificial Neural Network)은 머신 러닝에서 사용되는 모델로써, 시냅스의 결합으로 네트워크를 형성한 인공 뉴런(노드)들로 구성되는, 문제 해결 능력을 가지는 모델 전반을 의미할 수 있다. 인공 신경망은 다른 레이어의 뉴런들 사이의 연결 패턴, 모델 파라미터를 갱신하는 학습 과정, 출력값을 생성하는 활성화 함수(Activation Function)에 의해 정의될 수 있다.
인공 신경망은 입력층(Input Layer), 출력층(Output Layer), 그리고 선택적으로 하나 이상의 은닉층(Hidden Layer)를 포함할 수 있다. 각 층은 하나 이상의 뉴런을 포함하고, 인공 신경망은 뉴런과 뉴런을 연결하는 시냅스를 포함할 수 있다. 인공 신경망에서 각 뉴런은 시냅스를 통해 입력되는 입력 신호들, 가중치, 편향에 대한 활성 함수의 함숫값을 출력할 수 있다.
모델 파라미터는 학습을 통해 결정되는 파라미터를 의미하며, 시냅스 연결의 가중치와 뉴런의 편향 등이 포함된다. 그리고, 하이퍼파라미터는 머신 러닝 알고리즘에서 학습 전에 설정되어야 하는 파라미터를 의미하며, 학습률(Learning Rate), 반복 횟수, 미니 배치 크기, 초기화 함수 등이 포함된다.
인공 신경망의 학습의 목적은 손실 함수를 최소화하는 모델 파라미터를 결정하는 것으로 볼 수 있다. 손실 함수는 인공 신경망의 학습 과정에서 최적의 모델 파라미터를 결정하기 위한 지표로 이용될 수 있다.
머신 러닝은 학습 방식에 따라 지도 학습(Supervised Learning), 비지도 학습(Unsupervised Learning), 강화 학습(Reinforcement Learning)으로 분류할 수 있다.
지도 학습은 학습 데이터에 대한 레이블(label)이 주어진 상태에서 인공 신경망을 학습시키는 방법을 의미하며, 레이블이란 학습 데이터가 인공 신경망에 입력되는 경우 인공 신경망이 추론해 내야 하는 정답(또는 결과 값)을 의미할 수 있다. 비지도 학습은 학습 데이터에 대한 레이블이 주어지지 않는 상태에서 인공 신경망을 학습시키는 방법을 의미할 수 있다. 강화 학습은 어떤 환경 안에서 정의된 에이전트가 각 상태에서 누적 보상을 최대화하는 행동 혹은 행동 순서를 선택하도록 학습시키는 학습 방법을 의미할 수 있다.
인공 신경망 중에서 복수의 은닉층을 포함하는 심층 신경망(DNN: Deep Neural Network)으로 구현되는 머신 러닝을 딥 러닝(심층 학습, Deep Learning)이라 부르기도 하며, 딥 러닝은 머신 러닝의 일부이다. 이하에서, 머신 러닝은 딥 러닝을 포함하는 의미로 사용된다.
로봇(Robot)
로봇은 스스로 보유한 능력에 의해 주어진 일을 자동으로 처리하거나 작동하는 기계를 의미할 수 있다. 특히, 환경을 인식하고 스스로 판단하여 동작을 수행하는 기능을 갖는 로봇을 지능형 로봇이라 칭할 수 있다.
로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류할 수 있다.
로봇은 액츄에이터 또는 모터를 포함하는 구동부를 구비하여 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 이동 가능한 로봇은 구동부에 휠, 브레이크, 프로펠러 등이 포함되어, 구동부를 통해 지상에서 주행하거나 공중에서 비행할 수 있다.
자율 주행(Self-Driving, Autonomous-Driving)
자율 주행은 스스로 주행하는 기술을 의미하며, 자율 주행 차량은 사용자의 조작 없이 또는 사용자의 최소한의 조작으로 주행하는 차량(Vehicle)을 의미한다.
예컨대, 자율 주행에는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등이 모두 포함될 수 있다.
차량은 내연 기관만을 구비하는 차량, 내연 기관과 전기 모터를 함께 구비하는 하이브리드 차량, 그리고 전기 모터만을 구비하는 전기 차량을 모두 포괄하며, 자동차뿐만 아니라 기차, 오토바이 등을 포함할 수 있다.
이때, 자율 주행 차량은 자율 주행 기능을 가진 로봇으로 볼 수 있다.
확장 현실(XR: eXtended Reality)
확장 현실은 가상 현실(VR: Virtual Reality), 증강 현실(AR: Augmented Reality), 혼합 현실(MR: Mixed Reality)을 총칭한다. VR 기술은 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하고, AR 기술은 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 제공하며, MR 기술은 현실 세계에 가상 객체들을 섞고 결합시켜서 제공하는 컴퓨터 그래픽 기술이다.
MR 기술은 현실 객체와 가상 객체를 함께 보여준다는 점에서 AR 기술과 유사하다. 그러나, AR 기술에서는 가상 객체가 현실 객체를 보완하는 형태로 사용되는 반면, MR 기술에서는 가상 객체와 현실 객체가 동등한 성격으로 사용된다는 점에서 차이점이 있다.
XR 기술은 HMD(Head-Mount Display), HUD(Head-Up Display), 휴대폰, 태블릿 PC, 랩탑, 데스크탑, TV, 디지털 사이니지 등에 적용될 수 있고, XR 기술이 적용된 장치를 XR 장치(XR Device)라 칭할 수 있다.
도 1은 본 명세서의 일 실시 예에 따른 AI 장치(100)를 나타낸다.
AI 장치(100)는 TV, 프로젝터, 휴대폰, 스마트폰, 데스크탑 컴퓨터, 노트북, 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), DMB 수신기, 라디오, 세탁기, 냉장고, 데스크탑 컴퓨터, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.
도 1을 참조하면, 단말기(100)는 통신부(110), 입력부(120), 러닝 프로세서(130), 센싱부(140), 출력부(150), 메모리(170) 및 프로세서(180) 등을 포함할 수 있다.
통신부(110)는 유무선 통신 기술을 이용하여 다른 AI 장치(100a 내지 100e)나 AI 서버(200) 등의 외부 장치들과 데이터를 송수신할 수 있다. 예컨대, 통신부(110)는 외부 장치들과 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등을 송수신할 수 있다.
이때, 통신부(110)가 이용하는 통신 기술에는 GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), LTE(Long Term Evolution), 5G, WLAN(Wireless LAN), Wi-Fi(Wireless-Fidelity), 블루투스(Bluetooth), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), ZigBee, NFC(Near Field Communication) 등이 있다.
입력부(120)는 다양한 종류의 데이터를 획득할 수 있다.
이때, 입력부(120)는 영상 신호 입력을 위한 카메라, 오디오 신호를 수신하기 위한 마이크로폰, 사용자로부터 정보를 입력 받기 위한 사용자 입력부 등을 포함할 수 있다. 여기서, 카메라나 마이크로폰을 센서로 취급하여, 카메라나 마이크로폰으로부터 획득한 신호를 센싱 데이터 또는 센서 정보라고 할 수도 있다.
입력부(120)는 모델 학습을 위한 학습 데이터 및 학습 모델을 이용하여 출력을 획득할 때 사용될 입력 데이터 등을 획득할 수 있다. 입력부(120)는 가공되지 않은 입력 데이터를 획득할 수도 있으며, 이 경우 프로세서(180) 또는 러닝 프로세서(130)는 입력 데이터에 대하여 전처리로써 입력 특징점(input feature)을 추출할 수 있다.
러닝 프로세서(130)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 여기서, 학습된 인공 신경망을 학습 모델이라 칭할 수 있다. 학습 모델은 학습 데이터가 아닌 새로운 입력 데이터에 대하여 결과 값을 추론해 내는데 사용될 수 있고, 추론된 값은 어떠한 동작을 수행하기 위한 판단의 기초로 이용될 수 있다.
이때, 러닝 프로세서(130)는 AI 서버(200)의 러닝 프로세서(240)과 함께 AI 프로세싱을 수행할 수 있다.
이때, 러닝 프로세서(130)는 AI 장치(100)에 통합되거나 구현된 메모리를 포함할 수 있다. 또는, 러닝 프로세서(130)는 메모리(170), AI 장치(100)에 직접 결합된 외부 메모리 또는 외부 장치에서 유지되는 메모리를 사용하여 구현될 수도 있다.
센싱부(140)는 다양한 센서들을 이용하여 AI 장치(100) 내부 정보, AI 장치(100)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 획득할 수 있다.
이때, 센싱부(140)에 포함되는 센서에는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 라이다, 레이더 등이 있다.
출력부(150)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다.
이때, 출력부(150)에는 시각 정보를 출력하는 디스플레이부, 청각 정보를 출력하는 스피커, 촉각 정보를 출력하는 햅틱 모듈 등이 포함될 수 있다.
메모리(170)는 AI 장치(100)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예컨대, 메모리(170)는 입력부(120)에서 획득한 입력 데이터, 학습 데이터, 학습 모델, 학습 히스토리 등을 저장할 수 있다.
프로세서(180)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 장치(100)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 프로세서(180)는 AI 장치(100)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다.
이를 위해, 프로세서(180)는 러닝 프로세서(130) 또는 메모리(170)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 상기 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 장치(100)의 구성 요소들을 제어할 수 있다.
이때, 프로세서(180)는 결정된 동작을 수행하기 위하여 외부 장치의 연계가 필요한 경우, 해당 외부 장치를 제어하기 위한 제어 신호를 생성하고, 생성한 제어 신호를 해당 외부 장치에 전송할 수 있다.
프로세서(180)는 사용자 입력에 대하여 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 사용자의 요구 사항을 결정할 수 있다.
이때, 프로세서(180)는 음성 입력을 문자열로 변환하기 위한 STT(Speech To Text) 엔진 또는 자연어의 의도 정보를 획득하기 위한 자연어 처리(NLP: Natural Language Processing) 엔진 중에서 적어도 하나 이상을 이용하여, 사용자 입력에 상응하는 의도 정보를 획득할 수 있다.
이때, STT 엔진 또는 NLP 엔진 중에서 적어도 하나 이상은 적어도 일부가 머신 러닝 알고리즘에 따라 학습된 인공 신경망으로 구성될 수 있다. 그리고, STT 엔진 또는 NLP 엔진 중에서 적어도 하나 이상은 러닝 프로세서(130)에 의해 학습된 것이나, AI 서버(200)의 러닝 프로세서(240)에 의해 학습된 것이거나, 또는 이들의 분산 처리에 의해 학습된 것일 수 있다.
프로세서(180)는 AI 장치(100)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리(170) 또는 러닝 프로세서(130)에 저장하거나, AI 서버(200) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.
프로세서(180)는 메모리(170)에 저장된 응용 프로그램을 구동하기 위하여, AI 장치(100)의 구성 요소들 중 적어도 일부를 제어할 수 있다. 나아가, 프로세서(180)는 상기 응용 프로그램의 구동을 위하여, AI 장치(100)에 포함된 구성 요소들 중 둘 이상을 서로 조합하여 동작시킬 수 있다.
도 2는 본 명세서의 일 실시 예에 따른 AI 서버(200)를 나타낸다.
도 2를 참조하면, AI 서버(200)는 머신 러닝 알고리즘을 이용하여 인공 신경망을 학습시키거나 학습된 인공 신경망을 이용하는 장치를 의미할 수 있다. 여기서, AI 서버(200)는 복수의 서버들로 구성되어 분산 처리를 수행할 수도 있고, 5G 네트워크로 정의될 수 있다. 이때, AI 서버(200)는 AI 장치(100)의 일부의 구성으로 포함되어, AI 프로세싱 중 적어도 일부를 함께 수행할 수도 있다.
AI 서버(200)는 통신부(210), 메모리(230), 러닝 프로세서(240) 및 프로세서(260) 등을 포함할 수 있다.
통신부(210)는 AI 장치(100) 등의 외부 장치와 데이터를 송수신할 수 있다.
메모리(230)는 모델 저장부(231)를 포함할 수 있다. 모델 저장부(231)는 러닝 프로세서(240)을 통하여 학습 중인 또는 학습된 모델(또는 인공 신경망, 231a)을 저장할 수 있다.
러닝 프로세서(240)는 학습 데이터를 이용하여 인공 신경망(231a)을 학습시킬 수 있다. 학습 모델은 인공 신경망의 AI 서버(200)에 탑재된 상태에서 이용되거나, AI 장치(100) 등의 외부 장치에 탑재되어 이용될 수도 있다.
학습 모델은 하드웨어, 소프트웨어 또는 하드웨어와 소프트웨어의 조합으로 구현될 수 있다. 학습 모델의 일부 또는 전부가 소프트웨어로 구현되는 경우 학습 모델을 구성하는 하나 이상의 명령어(instruction)는 메모리(230)에 저장될 수 있다.
프로세서(260)는 학습 모델을 이용하여 새로운 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수 있다.
도 3은 본 명세서의 일 실시 예에 따른 AI 시스템(1)을 나타낸다.
도 3을 참조하면, AI 시스템(1)은 AI 서버(200), 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 중에서 적어도 하나 이상이 클라우드 네트워크(10)와 연결된다. 여기서, AI 기술이 적용된 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 등을 AI 장치(100a 내지 100e)라 칭할 수 있다.
클라우드 네트워크(10)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(10)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.
즉, AI 시스템(1)을 구성하는 각 장치들(100a 내지 100e, 200)은 클라우드 네트워크(10)를 통해 서로 연결될 수 있다. 특히, 각 장치들(100a 내지 100e, 200)은 기지국을 통해서 서로 통신할 수도 있지만, 기지국을 통하지 않고 직접 서로 통신할 수도 있다.
AI 서버(200)는 AI 프로세싱을 수행하는 서버와 빅 데이터에 대한 연산을 수행하는 서버를 포함할 수 있다.
AI 서버(200)는 AI 시스템(1)을 구성하는 AI 장치들인 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 중에서 적어도 하나 이상과 클라우드 네트워크(10)를 통하여 연결되고, 연결된 AI 장치들(100a 내지 100e)의 AI 프로세싱을 적어도 일부를 도울 수 있다.
이때, AI 서버(200)는 AI 장치(100a 내지 100e)를 대신하여 머신 러닝 알고리즘에 따라 인공 신경망을 학습시킬 수 있고, 학습 모델을 직접 저장하거나 AI 장치(100a 내지 100e)에 전송할 수 있다.
이때, AI 서버(200)는 AI 장치(100a 내지 100e)로부터 입력 데이터를 수신하고, 학습 모델을 이용하여 수신한 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성하여 AI 장치(100a 내지 100e)로 전송할 수 있다.
또는, AI 장치(100a 내지 100e)는 직접 학습 모델을 이용하여 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수도 있다.
이하에서는, 상술한 기술이 적용되는 AI 장치(100a 내지 100e)의 다양한 실시 예들을 설명한다. 여기서, 도 3에 도시된 AI 장치(100a 내지 100e)는 도 1에 도시된 AI 장치(100)의 구체적인 실시 예로 볼 수 있다.
본 명세서가 적용될 수 있는 AI 및 로봇
로봇(100a)은 AI 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
로봇(100a)은 동작을 제어하기 위한 로봇 제어 모듈을 포함할 수 있고, 로봇 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다.
로봇(100a)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 로봇(100a)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 사용자 상호작용에 대한 응답을 결정하거나, 동작을 결정할 수 있다.
여기서, 로봇(100a)은 이동 경로 및 주행 계획을 결정하기 위하여, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
로봇(100a)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 로봇(100a)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 동작을 결정할 수 있다. 여기서, 학습 모델은 로봇(100a)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, 로봇(100a)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
로봇(100a)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 로봇(100a)을 주행시킬 수 있다.
맵 데이터에는 로봇(100a)이 이동하는 공간에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 벽, 문 등의 고정 객체들과 화분, 책상 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 로봇(100a)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 로봇(100a)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
본 명세서가 적용될 수 있는 AI 및 자율주행
자율 주행 차량(100b)은 AI 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
자율 주행 차량(100b)은 자율 주행 기능을 제어하기 위한 자율 주행 제어 모듈을 포함할 수 있고, 자율 주행 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다. 자율 주행 제어 모듈은 자율 주행 차량(100b)의 구성으로써 내부에 포함될 수도 있지만, 자율 주행 차량(100b)의 외부에 별도의 하드웨어로 구성되어 연결될 수도 있다.
자율 주행 차량(100b)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 자율 주행 차량(100b)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 동작을 결정할 수 있다.
여기서, 자율 주행 차량(100b)은 이동 경로 및 주행 계획을 결정하기 위하여, 로봇(100a)과 마찬가지로, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
특히, 자율 주행 차량(100b)은 시야가 가려지는 영역이나 일정 거리 이상의 영역에 대한 환경이나 객체는 외부 장치들로부터 센서 정보를 수신하여 인식하거나, 외부 장치들로부터 직접 인식된 정보를 수신할 수 있다.
자율 주행 차량(100b)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 자율 주행 차량(100b)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 주행 동선을 결정할 수 있다. 여기서, 학습 모델은 자율 주행 차량(100b)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, 자율 주행 차량(100b)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
자율 주행 차량(100b)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 자율 주행 차량(100b)을 주행시킬 수 있다.
맵 데이터에는 자율 주행 차량(100b)이 주행하는 공간(예컨대, 도로)에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 가로등, 바위, 건물 등의 고정 객체들과 차량, 보행자 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 자율 주행 차량(100b)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 자율 주행 차량(100b)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
본 명세서가 적용될 수 있는 AI 및 XR
XR 장치(100c)는 AI 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수 있다.
XR 장치(100c)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 속성 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR 장치(100c)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.
XR 장치(100c)는 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, XR 장치(100c)는 학습 모델을 이용하여 3차원 포인트 클라우드 데이터 또는 이미지 데이터에서 현실 객체를 인식할 수 있고, 인식한 현실 객체에 상응하는 정보를 제공할 수 있다. 여기서, 학습 모델은 XR 장치(100c)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, XR 장치(100c)는 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
본 명세서가 적용될 수 있는 AI, 로봇 및 자율주행
로봇(100a)은 AI 기술 및 자율 주행 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
AI 기술과 자율 주행 기술이 적용된 로봇(100a)은 자율 주행 기능을 가진 로봇 자체나, 자율 주행 차량(100b)과 상호작용하는 로봇(100a) 등을 의미할 수 있다.
자율 주행 기능을 가진 로봇(100a)은 사용자의 제어 없이도 주어진 동선에 따라 스스로 움직이거나, 동선을 스스로 결정하여 움직이는 장치들을 통칭할 수 있다.
자율 주행 기능을 가진 로봇(100a) 및 자율 주행 차량(100b)은 이동 경로 또는 주행 계획 중 하나 이상을 결정하기 위해 공통적인 센싱 방법을 사용할 수 있다. 예를 들어, 자율 주행 기능을 가진 로봇(100a) 및 자율 주행 차량(100b)은 라이다, 레이더, 카메라를 통해 센싱된 정보를 이용하여, 이동 경로 또는 주행 계획 중 하나 이상을 결정할 수 있다.
자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)과 별개로 존재하면서, 자율 주행 차량(100b)의 내부 또는 외부에서 자율 주행 기능에 연계되거나, 자율 주행 차량(100b)에 탑승한 사용자와 연계된 동작을 수행할 수 있다.
이때, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)을 대신하여 센서 정보를 획득하여 자율 주행 차량(100b)에 제공하거나, 센서 정보를 획득하고 주변 환경 정보 또는 객체 정보를 생성하여 자율 주행 차량(100b)에 제공함으로써, 자율 주행 차량(100b)의 자율 주행 기능을 제어하거나 보조할 수 있다.
또는, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)에 탑승한 사용자를 모니터링하거나 사용자와의 상호작용을 통해 자율 주행 차량(100b)의 기능을 제어할 수 있다. 예컨대, 로봇(100a)은 운전자가 졸음 상태인 경우로 판단되는 경우, 자율 주행 차량(100b)의 자율 주행 기능을 활성화하거나 자율 주행 차량(100b)의 구동부의 제어를 보조할 수 있다. 여기서, 로봇(100a)이 제어하는 자율 주행 차량(100b)의 기능에는 단순히 자율 주행 기능뿐만 아니라, 자율 주행 차량(100b)의 내부에 구비된 네비게이션 시스템이나 오디오 시스템에서 제공하는 기능도 포함될 수 있다.
또는, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)의 외부에서 자율 주행 차량(100b)에 정보를 제공하거나 기능을 보조할 수 있다. 예컨대, 로봇(100a)은 스마트 신호등과 같이 자율 주행 차량(100b)에 신호 정보 등을 포함하는 교통 정보를 제공할 수도 있고, 전기 차량의 자동 전기 충전기와 같이 자율 주행 차량(100b)과 상호작용하여 충전구에 전기 충전기를 자동으로 연결할 수도 있다.
본 명세서가 적용될 수 있는 AI, 로봇 및 XR
로봇(100a)은 AI 기술 및 XR 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇, 드론 등으로 구현될 수 있다.
XR 기술이 적용된 로봇(100a)은 XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇을 의미할 수 있다. 이 경우, 로봇(100a)은 XR 장치(100c)와 구분되며 서로 연동될 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇(100a)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 로봇(100a) 또는 XR 장치(100c)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(100c)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 로봇(100a)은 XR 장치(100c)를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
예컨대, 사용자는 XR 장치(100c) 등의 외부 장치를 통해 원격으로 연동된 로봇(100a)의 시점에 상응하는 XR 영상을 확인할 수 있고, 상호작용을 통하여 로봇(100a)의 자율 주행 경로를 조정하거나, 동작 또는 주행을 제어하거나, 주변 객체의 정보를 확인할 수 있다.
본 명세서가 적용될 수 있는 AI, 자율주행 및 XR
자율 주행 차량(100b)은 AI 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
XR 기술이 적용된 자율 주행 차량(100b)은 XR 영상을 제공하는 수단을 구비한 자율 주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(100b)은 XR 장치(100c)와 구분되며 서로 연동될 수 있다.
XR 영상을 제공하는 수단을 구비한 자율 주행 차량(100b)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR 영상을 출력할 수 있다. 예컨대, 자율 주행 차량(100b)은 HUD를 구비하여 XR 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR 객체를 제공할 수 있다.
이때, XR 객체가 HUD에 출력되는 경우에는 XR 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR 객체가 자율 주행 차량(100b)의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율 주행 차량(100b)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR 객체들을 출력할 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(100b)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 자율 주행 차량(100b) 또는 XR 장치(100c)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(100c)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 자율 주행 차량(100b)은 XR 장치(100c) 등의 외부 장치를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
본 명세서가 적용될 수 있는 5G 시스템 아키텍처
5G 시스템은 4세대 LTE 이동 통신 기술로부터 진보된 기술로서 기존 이동 통신망 구조의 개선(Evolution) 혹은 클린-스테이트(Clean-state) 구조를 통해 새로운 무선 액세스 기술(RAT: Radio Access Technology), LTE(Long Term Evolution)의 확장된 기술로서 eLTE(extended LTE), non-3GPP(예를 들어, WLAN) 액세스 등을 지원한다.
5G 시스템은 서비스-기반으로 정의되고, 5G 시스템을 위한 아키텍처(architecture) 내 네트워크 기능(NF: Network Function)들 간의 상호동작(interaction)은 다음과 같이 2가지 방식으로 나타낼 수 있다.
- 참조 포인트 표현(representation): 2개의 NF들(예를 들어, AMF 및 SMF) 간의 점-대-점 참조 포인트(예를 들어, N11)에 의해 기술되는 NF들 내 NF 서비스들 간의 상호 동작을 나타낸다.
- 서비스-기반 표현(representation): 제어 평면(CP: Control Plane) 내 네트워크 기능들(예를 들어, AMF)은 다른 인증된 네트워크 기능들이 자신의 서비스에 액세스하는 것을 허용한다. 이 표현은 필요한 경우 점-대-점(point-to-point) 참조 포인트(reference point)도 포함한다.
3GPP 시스템 일반
도 4는 다양한 참조 포인트(reference point)들을 도시한다.
도 4의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 휴지 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 4를 참조하여 설명한 바와 같이, IP 능력(capability)를 가지는 UE는, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 운영자(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 예를 들어, S1-U, S1-MME 등의 참조 포인트들은 상이한 기능 엔티티들에 존재하는 2개의 기능을 연결할 수 있다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 엔티티(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 참조 포인트라고 정의한다. 다음의 표 1은 도 4에 도시된 참조 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 참조 포인트들이 존재할 수 있다.
reference point | 설명(description) |
S1-MME | E-UTRAN와 MME 간의 제어 평면 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME) |
S1-U | 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 평면 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트 (Reference point between E-UTRAN and Serving GW for the per bearer user plane tunneling and inter eNodeB path switching during handover) |
S3 | 유휴(idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).) |
S4 | GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으며, 사용자 플레인 터널링을 제공함 (It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunneling.) |
S5 | SGW와 PDN GW 간의 사용자 평면 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. 단말 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨 (It provides user plane tunneling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.) |
S11 | MME와 SGW 간의 제어 평면 프로토콜에 대한 레퍼런스 포인트 |
SGi | PDN GW와 PDN 간의 레퍼런스 포인트. 여기서, PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 오퍼레이터-내 PDN(예를 들어, IMS 서비스)이 해당될 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함 (It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.) |
도 4에 도시된 참조 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 참조 포인트다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 참조 포인트다.
도 5는 본 명세서가 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
E-UTRAN 시스템은 기존 UTRAN 시스템에서 진화한 시스템으로, 예를 들어, 3GPP LTE/LTE-A 시스템일 수 있다. 통신 네트워크는 IMS 및 패킷 데이터를 통해 음성(voice)(예를 들어, VoIP(Voice over Internet Protocol))과 같은 다양한 통신 서비스를 제공하기 위하여 광범위하게 배치된다.
도 5를 참조하면, E-UMTS 네트워크는 E-UTRAN, EPC 및 하나 이상의 UE를 포함한다. E-UTRAN은 단말에게 제어 평면(control plane)과 사용자 평면(user plane) 프로토콜을 제공하는 eNB들로 구성되고, eNB들은 X2 인터페이스를 통해 연결된다.
X2 사용자 평면 인터페이스(X2-U)는 eNB들 사이에 정의된다. X2-U 인터페이스는 사용자 평면 PDU(packet data unit)의 보장되지 않은 전달(non guaranteed delivery)을 제공한다. X2 제어 평면 인터페이스(X2-CP)는 두 개의 이웃 eNB 사이에 정의된다. X2-CP는 eNB 간의 컨텍스트(context) 전달, 소스 eNB와 타겟 eNB 사이의 사용자 평면 터널의 제어, 핸드오버 관련 메시지의 전달, 상향링크 부하 관리 등의 기능을 수행한다.
eNB은 무선인터페이스를 통해 단말과 연결되고 S1 인터페이스를 통해 EPC(evolved packet core)에 연결된다.
S1 사용자 평면 인터페이스(S1-U)는 eNB와 서빙 게이트웨이(S-GW: serving gateway) 사이에 정의된다. S1 제어 평면 인터페이스(S1-MME)는 eNB와 이동성 관리 개체(MME: mobility management entity) 사이에 정의된다. S1 인터페이스는 EPS(evolved packet system) 베어러 서비스 관리 기능, NAS(non-access stratum) 시그널링 트랜스포트 기능, 네트워크 쉐어링, MME 부하 밸런싱 기능 등을 수행한다. S1 인터페이스는 eNB와 MME/S-GW 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다.
MME는 NAS 시그널링 보안(security), AS(Access Stratum) 보안(security) 제어, 3GPP 액세스 네트워크 간 이동성을 지원하기 위한 CN(Core Network) 노드 간(Inter-CN) 시그널링, (페이징 재전송의 수행 및 제어 포함하여) 아이들(IDLE) 모드 UE 접근성(reachability), (아이들 및 액티브 모드 단말을 위한) 트래킹 영역 식별자(TAI: Tracking Area Identity) 관리, PDN GW 및 SGW 선택, MME가 변경되는 핸드오버를 위한 MME 선택, 2G 또는 3G 3GPP 액세스 네트워크로의 핸드오버를 위한 SGSN 선택, 로밍(roaming), 인증(authentication), 전용 베어러 확립(dedicated bearer establishment)를 포함하는 베어러 관리 기능, 공공 경고 시스템(PWS: Public Warning System)(지진 및 쓰나미 경고 시스템(ETWS: Earthquake and Tsunami Warning System) 및 상용 모바일 경고 시스템(CMAS: Commercial Mobile Alert System) 포함) 메시지 전송의 지원 등의 다양한 기능을 수행할 수 있다.
도 6은 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도 6에 도시된 바와 같이, eNB는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 방송 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNB의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 상황, LTE_IDLE 상태 관리, 사용자 평면의 암호화, SAE 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
3GPP TR 23.799의 Annex J에는 5G 및 4G를 조합한 다양한 아키텍쳐를 보여주고 있다. 그리고 3GPP TS 23.501에는 NR 및 NGC를 이용한 아키텍쳐가 나와 있다.
도 7은 UE와 eNB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이며, 도 8은 UE와 eNB 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
상기 무선 인터페이스 프로토콜은 3GPP 무선 접속 네트워크 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 7에 도시된 제어 평면의 무선프로토콜과, 도 8에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 전송측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간 축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 부반송파(subcarrier)로 구성된다. 여기서, 하나의 서브프레임(subframe)은 시간 축 상에 복수의 OFDM 심볼 (symbol)들과 복수의 부반송파들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 OFDM 심볼(Symbol)들과 복수의 부반송파들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 전송 측과 수신 측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel) 등으로 나눌 수 있다.
제2 계층에는 여러 가지 계층이 존재한다. 먼저, 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.
제2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.
제2 계층의 패킷 데이터 수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더 압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선 자원 제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 베어러(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 UE와 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
UE의 RRC와 무선 네트워크의 RRC 계층 사이에 RRC 연결(RRC connection)이 수립된(established) 경우 UE는 RRC 연결 모드(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 모드(Idle Mode)에 있게 된다.
이하 UE의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 UE의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 UE는 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 UE의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 UE는 E-UTRAN이 UE의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 코어 네트워크가 관리한다. 즉, RRC_IDLE 상태의 UE는 셀에 비하여 큰 지역 단위로 해당 UE의 존재 여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 UE가 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. UE는 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 UE의 전원을 맨 처음 켰을 때, UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 코어 네트워크에 UE의 정보를 등록한다. 이 후, UE는 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 UE는 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on)한다고 한다. RRC_IDLE 상태에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 7에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층에 속하는 ESM (Evolved Session Management)은 디폴트 베어러(default bearer) 관리, 전용 베어러(dedicated bearer) 관리와 같은 기능을 수행하여, UE가 네트워크로부터 PS 서비스를 이용하기 위한 제어를 담당한다. 디폴트 베어러 자원은 특정 Packet Data Network(PDN)에 최초 접속할 시에 네트워크에 접속될 때 네트워크로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 UE가 데이터 서비스를 사용할 수 있도록 UE가 사용 가능한 IP 주소를 할당하며, 또한 디폴트 베어러의 QoS를 할당해준다. LTE에서는 크게 데이터 전송/수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 베어러와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR 베어러의 두 종류를 지원한다. 디폴트 베어러의 경우 Non-GBR 베어러를 할당 받는다. 전용 베어러의 경우에는 GBR 또는 Non-GBR의 QoS 특성을 가지는 베어러를 할당 받을 수 있다.
네트워크에서 UE에게 할당한 베어러를 EPS(evolved packet service) 베어러라고 부르며, EPS 베어러를 할당할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS 베어러 ID라고 부른다. 하나의 EPS 베어러는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.
도 9는 일반적인 NR-RAN의 아키텍쳐를 예시하는 도면이다.
도 9를 참조하면, NG-RAN 노드는 다음 중 하나일 수 있다.
- UE를 향하는 NR 사용자 평면 및 제어 평면 프로토콜을 제공하는 gNB; 또는
- UE를 향하는 E-UTRA 사용자 평면 및 제어 평면 프로토콜을 제공하는 ng-eNB.
gNB와 ng-eNB는 Xn 인터페이스를 통해 서로 연결된다. 또한 gNB와 ng-eNB는 5GC에 대한 NG 인터페이스를 통해, 보다 자세히는 NG-C 인터페이스를 통해, 액세스 및 이동성 관리 기능(AMF : Access and Mobility Management Function), NG-U 인터페이스를 통한 사용자 평면 기능(UPF : User Plane Function) 에 연결된다(3GPP TS 23.501 [3] 참조).
참고로 기능적 분리를 위한 아키텍쳐와 F1 인터페이스는 3GPP TS 38.401 [4]에 정의되어 있다.
도 10은 일반적인 NG-RAN과 5GC의 기능적 분리를 나타낸 예시도이다.
도 10을 참조하면, 노란색 박스는 논리적인 노드들을 나타내고 흰색 박스는 주요 기능을 나타낸다.
gNB 및 ng-eNB는 다음과 같은 기능을 호스트한다.
- 무선자원관리 기능 : 업링크와 다운링크(스케줄링) 모두에서 무선 베어러 제어, 무선 승인 제어, 접속 이동성 제어, UE에 대한 동적 자원 할당
- IP 헤더 압축, 암호화 및 데이터 무결성 보호;
- UE가 제공하는 정보로부터 AMF에 대한 라우팅을 결정할 수 없는 경우, IMT-2000 3GPP-UE 첨부파일에서 AMF 선택;
- UPF로 사용자 평면 데이터 라우팅;
- AMF로 제어 평면 정보 전달;
- 연결 설정 및 해제;
- 페이징 메시지 스케줄링 및 전송
- 시스템 방송 정보 스케줄링 및 전송(AMF 또는 OAM에서 제공)
- 이동성 및 스케줄링을 위한 측정 및 측정 보고 구성
- 업링크의 전송 수준 패킷 표시
- 세션 관리;
- 네트워크 슬라이싱 지원;
- 데이터 무선 베어러에 대한 QoS 흐름 관리 및 매핑
- RRC_INACTIVE 상태에서 UE의 지원
- NAS 메시지 배포 기능;
- 무선 액세스 네트워크 공유;
- 이중 연결;
- NR과 E-UTRA 간 긴밀한 연동
AMF는 다음과 같은 주요 기능을 호스트한다(3GPP TS 23.501 [3] 참조).
- NAS 신호 종료;
- NAS 신호 보안;
- AS 보안 제어;
- 3GPP 접속망 간 이동을 위한 CN 노드 간 신호 전달;
- 유휴 모드 UE 접속성(페이징 재전송 제어 및 실행 포함)
- 등록영역관리;
- 시스템 내부 및 시스템 간 이동성 지원
- 액세스 인증;
- 로밍 권한 확인을 포함한 액세스 권한 부여;
- 이동성 관리 통제(구독 및 정책)
- 네트워크 슬라이싱 지원;
- SMF 선택
UPF는 다음과 같은 주요 기능을 호스트한다(3GPP TS 23.501 [3] 참조).
- Intra-/Inter-RAT 이동성을 위한 앵커 포인트(해당하는 경우)
- 데이터 네트워크에 상호 연결되는 외부 PDU 세션 지점
- 패킷 라우팅 및 포워딩;
- 정책 규칙 시행의 패킷 검사 및 사용자 평면 부분
- 트래픽 사용량 보고;
- 데이터 네트워크로의 트래픽 흐름을 지원하는 업링크 분류기
- multi-homed PDU 세션 지원을 위한 분기점;
- 사용자 평면에 대한 QoS 처리(예: 패킷 필터링, 게이트, UL/DL 속도 시행)
- 업링크 트래픽 검증(SDF와 QoS 흐름 매핑)
- 다운링크 패킷 버퍼링 및 다운링크 데이터 알림 트리거링(triggering)
세션 관리 기능(SMF)은 다음과 같은 주요 기능을 호스트한다(3GPP TS 23.501 [3] 참조).
- 세션 관리;
- UE IP 주소 할당 및 관리
- UP 기능 선택 및 제어;
- UPF에서 트래픽을 적절한 대상으로 라우팅하도록 트래픽 스티어링(steering) 구성
- 정책 집행 및 QoS의 일부 통제
- Downlink Data Notification(다운링크 데이터 알림)
도 11은 5G의 일반적인 아키텍쳐의 예를 보여주고 있다.
다음은 도 11에서의 각 참조 인터페이스(reference interface)및 node에 대한 설명이다.
액세스 및 이동성 관리 기능(AMF: Access and Mobility Management Function)은 3GPP 액세스 네트워크들 간의 이동성을 위한 CN 노드 간 시그널링, 무선 액세스 네트워크(RAN: Radio Access Network) CP 인터페이스(N2)의 종단(termination), NAS 시그널링의 종단(N1), 등록 관리(등록 영역(Registration Area) 관리), 아이들 모드 UE 접근성(reachability), 네트워크 슬라이싱(Network Slicing)의 지원, SMF 선택 등의 기능을 지원한다.
AMF의 일부 또는 전체의 기능들은 하나의 AMF의 단일 인스턴스(instance) 내에서 지원될 수 있다.
데이터 네트워크(DN: Data network)는 예를 들어, 운영자 서비스, 인터넷 접속 또는 서드파티(3rd party) 서비스 등을 의미한다. DN은 UPF로 하향링크 프로토콜 데이터 유닛(PDU: Protocol Data Unit)을 전송하거나, UE로부터 전송된 PDU를 UPF로부터 수신한다.
정책 제어 기능(PCF: Policy Control function)은 어플리케이션 서버로부터 패킷 흐름에 대한 정보를 수신하여, 이동성 관리, 세션 관리 등의 정책을 결정하는 기능을 제공한다.
세션 관리 기능(SMF: Session Management Function)은 세션 관리 기능을 제공하며, UE가 다수 개의 세션을 가지는 경우 각 세션 별로 서로 다른 SMF에 의해 관리될 수 있다.
SMF의 일부 또는 전체의 기능들은 하나의 SMF의 단일 인스턴스(instance) 내에서 지원될 수 있다.
통합된 데이터 관리(UDM: Unified Data Management)는 사용자의 가입 데이터, 정책 데이터 등을 저장한다.
사용자 평면 기능(UPF: User plane Function)은 DN으로부터 수신한 하향링크 PDU를 (R)AN을 경유하여 UE에게 전달하며, (R)AN을 경유하여 UE로부터 수신한 상향링크 PDU를 DN으로 전달한다.
어플리케이션 기능(AF: Application Function)은 서비스 제공(예를 들어, 트래픽 라우팅 상에서 어플리케이션 영향, 네트워크 능력 노출(Network Capability Exposure) 접근, 정책 제어를 위한 정책 프레임워크와의 상호동작 등의 기능을 지원)을 위해 3GPP 코어 네트워크와 상호동작한다.
(무선) 액세스 네트워크((R)AN: (Radio) Access Network)는 4G 무선 액세스 기술의 진화된 버전인 진화된 E-UTRA(evolved E-UTRA)와 새로운 무선 액세스 기술(NR: New Radio)(예를 들어, gNB)을 모두 지원하는 새로운 무선 액세스 네트워크를 총칭한다.
gNB은 무선 자원 관리를 위한 기능들(즉, 무선 베어러 제어(Radio Bearer Control), 무선 허락 제어(Radio Admission Control), 연결 이동성 제어(Connection Mobility Control), 상향링크/하향링크에서 UE에게 자원의 동적 할당(Dynamic allocation of resources)(즉, 스케줄링)) 등의 기능을 지원한다.
사용자 장치(UE: User Equipment)는 사용자 기기를 의미한다.
3GPP 시스템에서는 5G 시스템 내 NF들 간을 연결하는 개념적인 링크를 참조 포인트(reference point)라고 정의한다.
N1는 UE와 AMF 간의 참조 포인트, N2는 (R)AN과 AMF 간의 참조 포인트, N3는 (R)AN과 UPF 간의 참조 포인트, N4는 SMF와 UPF 간의 참조 포인트, N6 UPF와 데이터 네트워크 간의 참조 포인트, N9는 2개의 코어 UPF들 간의 참조 포인트, N5는 PCF와 AF 간의 참조 포인트, N7는 SMF와 PCF 간의 참조 포인트, N24는 방문 네트워크(visited network) 내 PCF와 홈 네트워크(home network) 내 PCF 간의 참조 포인트, N8는 UDM과 AMF 간의 참조 포인트, N10는 UDM과 SMF 간의 참조 포인트, N11는 AMF와 SMF 간의 참조 포인트, N12는 AMF와 인증 서버 기능(AUSF: Authentication Server function) 간의 참조 포인트, N13는 UDM과 AUSF 간의 참조 포인트, N14는 2개의 AMF들 간의 참조 포인트, N15는 비-로밍 시나리오의 경우, PCF와 AMF 간의 참조 포인트, 로밍 시나리오의 경우 방문 네트워크(visited network) 내 PCF와 AMF 간의 참조 포인트, N16은 두 개의 SMF 간의 참조 포인트(로밍 시나리오에서는 방문 네트워크 내 SMF와 홈 네트워크 간의 SMF 간의 참조 포인트), N17은 AMF와 5G-EIR(Equipment Identity Register) 간의 참조 포인트, N18은 AMF와 UDSF(Unstructured Data Storage Function) 간의 참조 포인트, N22는 AMF와 NSSF(Network Slice Selection Function) 간의 참조 포인트, N23은 PCF와 NWDAF(Network Data Analytics Function) 간의 참조 포인트, N24는 NSSF와 NWDAF 간의 참조 포인트, N27은 방문 네트워크 내 NRF(Network Repository Function)와 홈 네트워크 내 NRF 간의 참조 포인트, N31은 방문 네트워크 내 NSSF와 홈 네트워크 내 NSSF 간의 참조 포인트, N32는 방문 네트워크 내 SEPP(Security Protection Proxy)와 홈 네트워크 내 SEPP 간의 참조 포인트, N33은 NEF(Network Exposure Function)와 AF 간의 참조 포인트, N40은 SMF와 CHF(charging function) 간의 참조 포인트, N50은 AMF와 CBCF(Circuit Bearer Control Function) 간의 참조 포인트를 의미한다.
한편, 도 11에서는 설명의 편의 상 UE가 하나의 PDU 세션을 이용하여 하나의 DN에 액세스하는 경우에 대한 참조 모델을 예시하나 이에 한정되지 않는다.
상기에서는 설명의 편의를 위해서 eNB를 이용하여 EPS 시스템을 기준으로 설명하였으나, eNB는 gNB로, MME의 MM(mobility management)기능은 AMF, S/P-GW의 SM기능은 SMF, S/P-GW의 user plane관련 기능은 UPF 등을 이용하여 5G 시스템으로 대체될 수 있다.
상기에서, 본 명세서는 EPS 를 기준으로 설명하였으나, 해당 내용은 5G system에서도 유사한 목적의 과정/메시지/정보 등을 통해서 유사한 동작을 거쳐 지원될 수 있다.
PLMN 선택 절차
하기의 표 2는 3GPP TS 22.011에서 정의된 PLMN 선택에 관련한 내용이다.
UE는 위치 영역이 "로밍용 금지 LA" 목록에 없고 추적 영역이 "로밍용 금지 TA" 목록에 없는 경우, 다음 순서로 다른 PLMN에 대한 등록을 선택하고 시도해야 한다(3GPP TS 23.122 [3] 참조):i) EHPLMN 목록이 있는 경우 또는 HPLMN(IMSI에서 파생된 경우)이 지정된 순서에 따라 우선 접속 기술에 대해 존재하지 않는 경우 EHPLMN. 복수의 EHPLMN이 존재하는 경우, 최고 우선순위 EHPLMN을 선택해야 한다. PLMN에 속하는 것으로 확인된 모든 셀이 해당 음성 서비스를 지원하지 않는 경우 PLMN에 등록을 시도하지 않도록 음성 지원 UE를 구성할 수 있어야 한다.ii) SIM/USIM의 "User Controlled PLMN Selector with Access Technology" 데이터 필드의 각 항목(우선 순위). PLMN에 속하는 것으로 확인된 모든 셀이 해당 음성 서비스를 지원하지 않는 경우 PLMN에 등록을 시도하지 않도록 음성 지원 UE를 구성할 수 있어야 한다.iii) SIM/USIM의 "Operator Controlled PLMN Selector with Access Technology" 데이터 필드의 각 항목(우선 순위). PLMN에 속하는 것으로 확인된 모든 셀이 해당 음성 서비스를 지원하지 않는 경우 PLMN에 등록을 시도하지 않도록 음성 지원 UE를 구성할 수 있어야 한다.iv) 충분한 수신 신호 품질을 가진 기타 PLMN/액세스 기술 조합(3GPP TS 23.122[3] 참조). PLMN에 속하는 것으로 확인된 모든 셀이 해당 음성 서비스를 지원하지 않는 경우 PLMN에 등록을 시도하지 않도록 음성 지원 UE를 구성할 수 있어야 한다.v) 신호 품질을 떨어뜨리기 위한 다른 모든 PLMN/액세스 기술 조합 PLMN에 속하는 것으로 확인된 모든 셀이 해당 음성 서비스를 지원하지 않는 경우 PLMN에 등록을 시도하지 않도록 음성 지원 UE를 구성할 수 있어야 한다.UE 운전모드 A 또는 B에서 동작하는 UE의 경우, 허용 가능한 PLMN은 SIM/USIM의 "강제 PLMN" 데이터 필드가 아닌 PLMN이다. 이 데이터 필드는 ME 메모리에서 확장될 수 있다(조항 3.2.2.4 참조). UE 운전모드 C에서 동작하는 UE의 경우, 허용 가능한 PLMN은 SIM/USIM의 "강제 PLMN" 데이터 필드 또는 ME의 "GPRS 서비스를 위한 강제 PLMN" 목록에 없는 PLMN이다.등록에 성공하면 UE는 선택한 PLMN을 표시해야 한다. |
로밍 이동(Roaming Steering)
하기의 표 3은 등록과 관련해서 PLMN 선택에 영향을 주는 방법에 관한 것이며, TS 22.011에 기술되어 있다
특정 VPLMN으로의 이동(Steering)HPLMN은 언제든지 자동 모드에 있는 UE를 지시하여 특정 VPLMN을 검색하고 가능한 경우 가능한 한 빨리 해당 VPLMN으로 이동할 수 있어야 한다. 사용자 제어 PLMN 목록의 EHPLMN 또는 PLMN은 우선순위가 더 높지만, 이 VPLMN은 운영자가 정의한 가장 높은 우선 순위 VPLMN으로 간주해야 한다. 이 과정은 사용자에게 불편함이 없이 투명하게 수행해야 한다.UE가 수동 모드인 경우 이동 요청을 무시해야 한다.UE가 User Controlled PLMN List에 있는 VPLMN에 등록된 경우, 이동 요청은 무시되어야 한다. 사용자 제어 PLMN 목록에 포함된 PLMN은 이동된 PLMN보다 우선해야 한다.UE는 지정된 VPLMN이 금지 목록에 있더라도 지정된 VPLMN에 등록을 시도해야 한다.이 메커니즘은 UE가 등록된 VPLMN이 3GPP 규격의 이전 릴리즈를 준수하더라도 HPLMN에서 사용할 수 있어야 한다.VPLMN 방향 수정(Redirection)HPLMN은 금지 목록에 없는 다른 VPLMN을 사용할 수 있는 경우 자동 모드에 있는 UE를 현재 사용 중이거나 등록하려고 하는 것과 다른 VPLMN을 찾아 등록할 수 있어야 한다. 그런 다음 원래 VPLMN은 가장 낮은 우선 순위 VPLMN으로 처리되어야 하며 UE가 유일하게 사용할 수 있거나 수동 모드로 선택되지 않는 한 UE에 의해 선택되지 않을 것이다. 이 과정은 사용자에게 불편함이 없이 투명하게 수행해야 한다.UE가 수동 모드인 경우 리디렉션 요청을 무시해야 한다. UE가 User Controlled PLMN List에 있는 VPLMN에 등록된 경우 리디렉션 요청은 무시되어야 한다.이 메커니즘은 UE가 등록된 VPLMN이 3GPP 규격의 이전 릴리즈를 준수하더라도 HPLMN에서 사용할 수 있어야 한다. |
본 명세서의 실시예
이통 통신 서비스가 일상 생활에서 필수 불가결한 서비스로 자리매김하고 있어서, 각 통신사업자들은 서비스의 단절을 막기 위해서 다양한 시도들을 하고 있다. 예를 들어, 통신 사업자들은 무선 네트워크에서 코어 네트워크 구간을 복수개의 유선망을 이용하거나, AMF/MME같은 코어 네트워크를 복수개 설치함으로써, 하나의 네트워크 노드에서 문제가 생기더라도, 다른 네트워크 노드가 백업을 수행하여 통신 서비스의 단절을 방지할 수 있다.
다만, 화재 또는 지진 같은 재해가 발생했을 경우, 상기와 같은 대책은 도움이 되지 않을 수 있다. 예를 들어, 화재가 발생한 상황에서는, 무선 네트워크의 한 노드에서 외부로 연결된 모든 통신 케이블이 소실될 수 있기 때문이다. 예를 들어, 가상화된 클라우드 환경에서는 복수개의 AMF/MME같은 코어 네트워크 노드들이 동일한 지역에 위치한 하나의 데이터 센터에서 구현될 가능성이 높다. 또한, 만약 해당 데이터 센터가 지진의 중앙 지점에 위치한 경우, 아무리 복수개의 AMF/MME를 구현하더라도, 모두 기능이 상실될 가능성이 높다.
따라서, 가장 효율적인 방법으로는 로밍을 생각할 수 있다. 즉, UE 자신이 가입한 통신 사업자의 망에서 문제가 발생하여 통신 서비스를 받을 수 없다면, 주변의 다른 통신사업자의 망으로 로밍하여 통신 서비스를 제공받는 것이다. 각 통신 사업자는 각자 허가 받은 지역에서는 무선 네트워크 및 코어 네트워크를 설치하며, 서로 다른 건물에 설치하고, 서로 다른 방식으로 망을 구축한다. 이에 따라, 이전의 설명에서 예시로 나열된 재해가 모든 통신 사업자에게 동일한 영향을 미치지 않을 수 있다.
각 사업자들은 자신이 실제 법적 기관으로부터 허가를 얻어서 사업권을 따낸 지역에서는 활발히 무선 네트워크 및 코어 네트워크를 설치한다. 다만, 그 외의 지역에서는 사업권이 없기 때문에 무선/코어 네트워크를 설치할 수 없다. 예를 들어, 어떤 단말기가 자신이 가입한 지역이나 국가를 벗어나게 되면, 다른 사업자의 통신망을 통해서 로밍 서비스를 받게 된다. 그러나, 상기 단말기가 자신이 가입한 지역이나 국가내에 위치할 경우, 그 지역내에서는 서로 경쟁관계에 놓인 통신사업자들의 관계에 의해서, 로밍 서비스를 받을 수 없게 된다.
특히, 해외 지역의 로밍 서비스의 경우, 단말기가 새로운 지역에서 전원을 켜게 되면, 자신이 가입한 통신사업자의 네트워크를 발견할 수 없으므로, 단말은 자동적으로 로밍서비스를 활성화하게 된다. 그러나, 상기 단말기가 자신의 사업자가 주로 사업을 수행하는 지역에 위치한 경우, 상기 단말은 로밍서비스를 활성화 시키지 않으므로, 상기와 같은 재해 상황에서 로밍서비스를 받을 수 없게 된다.
특히, 자신이 가입한 통신사업자가 어떤 이유로 통신서비스를 제공할 수 없는 가에 따라서, 상기 단말이 실제 서비스를 제공받지 못하는 서비스 단절 시간은 다양하게 차이날 수 있다. 예를 들어, 무선네트워크에 전원 공급이 중단된 경우, 상기 무선 네트워크는 아무런 전파를 발생하지 않으므로, 상기 단말은 전파 수신 불량을 감지하여 자신의 가입 통신망의 문제를 인지할 수 있다. 그런데, 만약 무선 네트워크와 코어 네트워크의 유선통신선이 단절된 경우, 무선 네트워크는 여전히 전파를 발생시키므로, 단말은 통신망이 여전히 살아 있다고 인지하고 아무런 동작을 취하지 않을 가능성이 높다. 이 때 만약 상기 단말기로 누군가 전화를 시도할 경우, 상기 단말은 이를 인지 못하게 되는 경우도 발생할 수 있다.
따라서, 본 명세서는 어떤 단말이 연결된 통신망에서 문제가 발생하여 상기 통신망으로부터 통신서비스를 제공받을 수 없는 경우, 상기 단말이 효율적으로 다른 통신망으로 이동하도록 하여 통신 서비스의 단절을 최소화 하는 방법을 제공하고자 한다.
이를 위해서, 우선 본 명세서는 단말이 통신 서비스의 문제를 빠르게 인식할 수 있도록 하기 위해서, 무선 네트워크는 자신이 관리하는 영역 내에서 단말들에게 통신 서비스를 원활하게 제공할 수 없는 경우, 이를 단말에게 알릴 수 있다.
이를 통해서, 단말은 현재 자신이 접속하거나 등록한 통신망에서 통신 서비스를 제공받을 없음을 통지 받은 후, 새로이 PLMN 선택 과정을 수행하여, 현재 등록된 망이 아닌 다른 통신망을 선택하고, 선택된 다른 통신망에 대한 등록 과정을 수행한다.
도 12는 본 명세서의 실시예에 따른 PLMN을 선택하는 하나의 예시를 나타낸 흐름도이다.
도 12에 도시된 바와 같이, 단말(1210, UE)는 제1 기지국(1211, RAN 1)을 통해 제1 PLMN(1213, CN 1)에 등록을 수행할 수 있다(S1201).
예를 들어, 단말은 단말이 가입된 HPLMN을 발견하고, 자신의 PLMN을 선택함으로써 등록 과정을 수행할 수 있다. 이후, 단말은 트래픽의 활성화 상태에 기반하여, 유휴 모드(Idle mode)에 놓일 수도 있고, 연결 모드(Connected mode)에 놓일 수도 있다.
이어서, 제1 기지국은 제1 PLMN으로 Heartbeat Protocol을 전송할 수 있다(S1203).
그 다음, 제1 기지국은 제1 PLMN에 이상을 감지할 수 있다(S1205).
예를 들어, 제1 기지국은 제1 기지국과 제1 PLMN이 포함된 제1 시스템에서 문제를 발견할 수 있다. 여기서, 제1 기지국은 단말(사용자)에게 제1 시스템이 단말에게 통신 서비스를 제공할 수 없음을 인지할 수 있다.
구체적으로, 제1 기지국은 제1 PLMN의 이상 여부를 단말에게 알릴 수 있다(S1207).
예를 들어, 제1 기지국은 제1 시스템으로부터 서비스를 제공받는 단말들에게 제1 시스템이 단말들(사용자들)에게 정상적으로 서비스를 제공할 수 없음을 알리는 메시지를 전송할 수 있다. 여기서, 단말은 제1 기지국으로부터 전달받은 메시지에 기반하여, 단말 자신이 등록된 제1 PLMN으로부터 정상적으로 통신 서비스를 제공받을 수 없음을 인지하고, PLMN 선택과정을 수행할 수 있다.
이어서, 단말은 새로운 PLMN을 선택하고, 선택된 제2 PLMN에 캠핑 및/또는 등록 과정을 수행할 수 있다(S1209).
도 13은 본 명세서가 적용될 수 있는 디스플레이부의 예시이다.
도 13(a)를 참조하면, 단말은 무선 네트워크를 통해, 정상적인 통신 서비스를 제공받지 못할 수 있음을 알 수 있을 경우, 이와 관련된 알림 메시지를 표시할 수 있다. 보다 자세하게, 단말이 상기 S1207 과정을 통해, 제1 기지국으로부터 제1 PLMN의 이상 알림을 수신하는 경우, 이를 알리기 위한 알림 정보를 디스플레이 할 수 있다.
도 13(b)를 참조하면, 단말이 다른 PLMN을 선택하는 과정을 수행하는 경우, 이와 관련된 알림 메시지를 표시할 수 있다. 보다 자세하게, 단말이 S1209를 통해, 새로운 PLMN을 선택하는 경우, 이를 알리기 위한 알림 정보를 디스플레이 할 수 있다.
방법 1
상기 도 12에 도시된 과정에서, 제1 기지국(제1 무선 네트워크)이 제1 PLMN(제1 코어 네트워크)의 이상 문제를 인식하는 방법에는 표준문서 TS 23.527에 나와 있는 PFCP HearBeat protocol등을 이용할 수 있다. 즉, 제1 기지국(예: gNB 또는 eNB)은 자신과 연결되어 있는 UPF/AMF/MME/S-GW등과 주기적으로 패킷을 주고 받는데, 일정 시간 동안 주고 받은 패킷이 없을 경우, 제1 PLMN(제1 코어 네트워크)에 문제가 발생했다고 판단한다.
방법 2
하나의 기지국이 포함된 셀에는 복수의 단말들이 존재/연결될 수 있으며, 각각의 단말들은 각각의 데이터 생성 상태 또는 음성호 진행 상태 등에 따라 RRC Connected, RRC Connected inactive, RRC Idle등 다양한 상태에 놓이게 된다. 여기서 단말의 상태에 기반하여, 단말은 즉각적으로 기지국과 정보를 주고 받을 수 있고, 특정한 시간에서 기지국과 정보를 주고 받을 수 있다. 만약, 기지국, 즉 무선 네트워크가 코어 무선 네트워크(PLMN)에서 발생한 문제를 인지한 경우, 해당 문제를 신속하게 단말에게 알리는 것이 중요하고, 동시에 이런 정보를 가장 효율적으로 전달하는 것도 중요하다.
방법 2-1
제1 기지국(무선 네트워크)에서 각각의 단말에게 효율적으로 현재의 통신망에서의 문제를 알리고, 각각의 단말에게 다른 망으로 이동하게 하는 방법으로, SIB(system information block)을 이용할 수 있다.
만약 제1 기지국과 제1 PLMN 사이의 연결이 해제된 경우, 제1 기지국이 MBMS의 컨텐츠를 생성할 수 없으므로, MBMS 방법은 사용할 수 없다. 이 경우, 제1 기지국(또는 네트워크)은 페이징 등의 동작을 수행하여, SIB 정보의 갱신이 있음을 단말에게 알리고, 이후 SIB 정보를 통해 제1 PLMN에 발생한 문제를 단말에게 알리거나, 단말에게 다른 PLMN으로의 이동을 지시할 수 있다.
도 14은 방법 2-1에 따른 PLMN 선택 과정을 예시한 흐름도이다.
도 14에 도시된 바와 같이, 제1 기지국이 제1 PLMN의 이상을 감지할 수 있다(S1401).
제1 기지국은 SIB 업데이트 알림 메시지를 단말에게 전송할 수 있다(S1403).
단말은 자신이 미리 정해진 수신 구간(제1 기지국으로부터 수신을 시도할 것으로 설정된 시간 구간) 동안 자신이 수신해야 할 페이징 정보(또는 메시지)가 있는지 여부를 확인(모니터링)할 수 있다(S1405). 만약 수신해야 할 페이징 정보가 모니터링 되지 않는 경우, 단말은 기존의 동작을 유지할 수 있다.
이어서, 제1 기지국은 제1 PLMN의 이상을 감지하고 통신 서비스를 단말에게 제공할 수 없어 단말이 다른 시스템으로 이동하여야 하는 경우, 단말에게 업데이트된 SIB 메시지를 통해 알릴 수 있다(S1407).
단말은 미리 정해진 SIB 전송 주기에 따라 SIB를 수신(모니터링)할 수 있다(S1409).
단말은 SIB 메시지에서 지시된 바에 기반하여 다른 PLMN(네트워크)로의 전환을 결정할 수 있다(S1411).
이어서, 단말은 새로운 PLMN(네트워크)를 선택하고, 선택된 새로운 PLMN(코어 네트워크 2)에 캠핑 및/또는 등록을 요청할 수 있다(S1413).
예를 들어, 상기에서 SIB에는 다음과 같은 내용이 포함될 수 있다.
SIB1은 UE가 셀에 접속할 수 있는지 평가할 때 관련된 정보를 포함하고 있으며, 다른 시스템 정보의 스케줄링을 정의한다. 또한 모든 UE에 공통되는 무선 자원 구성 정보와 통합 접속 제어에 적용되는 차단 정보를 포함한다.
SIB1 메시지의 내용은 하기와 같다.
무선 베어러 신호(Signalling radio bearer): N/A
RLC-SAP: TM
논리 채널: BCCH
방향: 네트워크에서 UE로
표 4는 SIB1 메시지의 예시이다.
-- ASN1START-- TAG-SIB1-STARTSIB1 ::= SEQUENCE { cellSelectionInfo SEQUENCE { q-RxLevMin Q-RxLevMin, q-RxLevMinOffset INTEGER (1..8) OPTIONAL, -- Need R q-RxLevMinSUL Q-RxLevMin OPTIONAL, -- Need R q-QualMin Q-QualMin OPTIONAL, -- Need R q-QualMinOffset INTEGER (1..8) OPTIONAL -- Need R } OPTIONAL, -- Need S cellAccessRelatedInfo CellAccessRelatedInfo, connEstFailureControl ConnEstFailureControl OPTIONAL, -- Need R si-SchedulingInfo SI-SchedulingInfo OPTIONAL, -- Need R servingCellConfigCommon ServingCellConfigCommonSIB OPTIONAL, -- Need R ims-EmergencySupport ENUMERATED {true} OPTIONAL, -- Need R eCallOverIMS-Support ENUMERATED {true} OPTIONAL, -- Cond Absent ue-TimersAndConstants UE-TimersAndConstants OPTIONAL, -- Need R uac-BarringInfo SEQUENCE { uac-BarringForCommon UAC-BarringPerCatList OPTIONAL, -- Need S uac-BarringPerPLMN-List UAC-BarringPerPLMN-List OPTIONAL, -- Need S uac-BarringInfoSetList UAC-BarringInfoSetList, uac-AccessCategory1-SelectionAssistanceInfo CHOICE { plmnCommon UAC-AccessCategory1-SelectionAssistanceInfo, individualPLMNList SEQUENCE (SIZE (2..maxPLMN)) OF UAC-AccessCategory1-SelectionAssistanceInfo } OPTIONAL } OPTIONAL, -- Need R useFullResumeID ENUMERATED {true} OPTIONAL, -- Need NSelectOtherPLMN Boolean lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE{} OPTIONAL}UAC-AccessCategory1-SelectionAssistanceInfo ::= ENUMERATED {a, b, c}-- TAG-SIB1-STOP-- ASN1STOP |
표 5은 SIB1 필드의 설명에 대한 예시이다.
SIB1 field descriptions |
q-QualMinTS 38.304[20]에서의 매개변수 " Qqualmin"은 서빙 셀에 적용된다. 이러한 필드가 없는 경우, UE는 Qqualmin에 음의 무한도 값(기본값)을 적용한다. |
q-QualMinOffsetTS 38.304[20]에서의 매개변수 " Qqualminoffset ". 실제 값 Qqualminoffset = 필드 값 [dB]. cellSelectionInfo가 없거나 필드가 존재하지 않는 경우, UE는 Qqualminoffset 에 대해 (기본) 값으로 0dB를 적용한다. 이는 셀에서 요구되는 최소 Rx 레벨에 영향을 미친다. |
q-RxLevMinTS 38.304[20]의 파라미터 " Qrxlevmin "은 서빙 셀에 적용된다. |
q-RxLevMinOffsetTS 38.304[20]에서의 매개변수 " Qrxlevminoffset ". 실제 값 Qrxlevminoffset = 필드 값 * 2 [dB]. 만일 상기 값이 없는 경우, UE는 Qrxlevminoffset 에 대해 (기본값) 0dB를 적용한다. 이는 셀에서 요구되는 최소 Rx 레벨에 영향을 미친다. |
q-RxLevMinSUL서빙 셀에 적용되는 TS 38.304에서의 매개변수 "QrxlevminSUL" |
uac-BarringForCommon각 액세스 범주에 대한 공통 액세스 제어 매개변수. 공통값은 uac-BarringPerPLMN-List에 제공된 PLMN 특정 설정에 의해 덮어쓰지 않는 한 모든 PLMN에서 사용된다. 이러한 매개변수는 설정들의 집합(uac-BarringInfoSetList)에 인덱스를 제공하여 지정된다. 이 필드가 없는 경우의 단말 동작은 섹션 5.3.14.2에 명시되어 있다. |
useFullResumeID사용할 재개 식별자 및 재개 요청 메시지를 표시한다. UE는 필드가 있는 경우 전체 I-RNTI 및 RRCResumeRequest1을 사용하고, 필드가 없는 경우 짧은 I-RNTI 및 RRCResumeRequest를 사용한다. |
uac-AccessCategory1-SelectionAssistanceInfo[25]에 정의된 대로 액세스 카테고리 1이 UE에 적용되는지 여부를 결정하는 데 사용되는 정보. 이 규격 버전을 준수하는 UE는 이 필드를 무시해야 한다. |
selectotherPLMNUE가 다른 PLMN을 선택해야 하는지 여부를 나타내며, PLMN 후보의 PLMN ID를 추가로 포함할 수 있다. |
표 6는 SIB1 필드에 관한 설명이다.
조건부 존재 | 설명 |
부재 | 이 규격의 이 버전에서는 필드를 사용하지 않는다. UE를 받은 경우, UE는 무시해야 한다. |
즉, 무선 네트워크는, SelectOtherPLMN와 같은 또는 유사한 목적이나 이름의 정보를 단말에게 전송하여, 단말들이 현재의 PLMN이 아닌 다른 PLMN을 선택하도록 할 수 있다. 단말은 상기 SelectOtherPLMN와 같은 정보가 yes나 true같은 의미를 포함하면, 현재 선택한 PLMN을 제외하고 다른 PLMN을 선택하여 registration을 시도할 수 있다.
상기한 SelectOtherPLMN 정보는 선택적으로 target PLMN ID를 포함할 수 있다. 즉, 상기 무선 네트워크에 미리 지정된 정보가 존재하는 경우, 상기 무선 네트워크는 주변에 어떤 가용한 PLMN이 있는지와 관련된 메시지를 단말에게 전송할 수 있다.
이를 이용하면, 상기 단말은 우선 여기에 포함된 PLMN으로의 선택 및 등록을 우선 수행할 수 있다.
또는, 상기의 메시지는 다양한 방식으로 표현될 수 있으며, 다른 메시지, 예를 들어, MIB나 또는 다른 정보 요소에 포함될 수도 있다. 예를 들어, 하기의 표 5와 같다.
-MIB
The MIB includes the system information transmitted on BCH.
무선 베어러 신호(Signalling radio bearer): N/A
RLC-SAP: TM
논리 채널: BCCH
방향: 네트워크에서 UE로
표 7은 MI 메시지의 예시이다.
MIB-- ASN1START-- TAG-MIB-STARTMIB ::= SEQUENCE { systemFrameNumber BIT STRING (SIZE (6)), subCarrierSpacingCommon ENUMERATED {scs15or60, scs30or120}, ssb-SubcarrierOffset INTEGER (0..15), dmrs-TypeA-Position ENUMERATED {pos2, pos3}, pdcch-ConfigSIB1 PDCCH-ConfigSIB1, cellBarred ENUMERATED {barred, notBarred}, intraFreqReselection ENUMERATED {allowed, notAllowed}, spare BIT STRING (SIZE (1)) SelectOtherPLMN}-- TAG-MIB-STOP-- ASN1STOP |
표 8은 MIB 필드의 설명에 대한 예시이다.
MIB field descriptions |
cellBarredTS 38.304 [20]에 정의된 바와 같이, Barred는 셀이 차단됨을 의미한다. |
dmrs-TypeA-Position(첫번째) 하향링크 (TS 38.211, 섹션 7.4.1.1.1) 및 상향링크 (TS 38.211, 섹션 6.4.1.1.3)를 위한 DM-RS의 위치 |
intraFreqReselectionTS 38.304 [20]에 정의된 바와 같이, 가장 높은 순위의 셀이 차단되거나 UE에 의해 차단되는 경우 주파수 내 셀 선택/재선택을 제어한다. |
pdcch-ConfigSIB1TS 38.213 [13]에 정의됨. 공통 ControlResourceSet(CORESET) 공통 검색 공간 및 필요한 PDCCH 매개변수를 결정한다. ssb-SubcarrierOffset 필드에 SIB1이 없는 경우, 필드 pdcch-ConfigSIB1은 UE가 SIB1이 있는 SS/PBCH 블록을 찾을 수 있는 주파수 위치 또는 네트워크가 SIB1이 있는 SS/PBCH 블록을 제공하지 않는 주파수 범위를 나타낸다. |
ssb-SubcarrierOffsetKssb에 대응됨(see TS 38.213 [13]). Kssb는 서브캐리어 수에서 SSB와 전체 자원 블록 그리드 사이의 주파수 영역 오프셋이다.(TS 38.211).TS 38.213 [13]에 정의된 바와 같이, 이 필드의 값 범위는 PBCH 내에서 인코딩된 가장 중요한 추가 비트로 확장될 수 있다. 이 필드는 이 빔이 SIB1을 제공하지 않으며 따라서 공통 CORESET이 없음을 나타낼 수 있다. 이 경우, pdcch-ConfigSIB1 필드는 UE가 제어 리소스 세트와 SIB1에 대한 검색 공간이 있는 SS/PBCH를 찾을 수 있는 주파수 위치를 나타낼 수 있다. (TS 38.213 [13], 섹션 13). |
subCarrierSpacingCommonSubcarrier spacing for SIB1, Msg.2/4 for initial access and broadcast SI-messages. 초기 접속 및 SI-messages 브로드캐스트를 위한 SIB1, Msg.2/4를 위한 서브캐리어 공간. UE가 반송파 주파수 <6GHz>로 이 MIB를 획득할 경우, 값 scs15or60은 15Khz, 값 scs30or120은 30kHz에 해당한다. UE가 6GHz 미만의 반송파 주파수로 이 MIB를 획득할 경우, scs15or60 값은 60Khz에 해당하며, scs30or120 값은 120kHz에 해당한다. |
systemFrameNumber10비트 시스템 프레임 번호 중 가장 중요한 6비트(MSB) SFN의 4 LSB는 채널 코딩(즉, MIB 인코딩 외부)의 일부로 PBCH 전송 블록에 전달된다. |
방법 2-1
상기와 같이 SIB나 MIB등을 통해서 현재 망의 문제를 알려주는 방식은 idle 모드나 RRC inactive 모드에 있는 단말에게 적용될 수 있다. 그런데 RRC Connected 모드에 있는 단말에 대해서, 기지국은 RRC Release같은 정보를 이용하여 보다 빠르게 다른 PLMN으로 이동할 것을 지시할 수도 있다.
- RRCRelease
RRCRelease 메시지는 RRC 연결 해제 또는 RRC 연결 중지를 명령하는 데 사용된다.
무선 베어러 신호: SRB1
RLC-SAP: AM
논리 채널: DCCH
방향: 네트워크에서 UE
RRCRelease 메시지는 하기의 표 9과 같다.
-- ASN1START-- TAG-RRCRELEASE-STARTRRCRelease ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { rrcRelease RRCRelease-IEs, criticalExtensionsFuture SEQUENCE {} }}RRCRelease-IEs ::= SEQUENCE { redirectedCarrierInfo RedirectedCarrierInfo OPTIONAL, -- Need N SelectOtherPLMN SelectOtherPLMN cellReselectionPriorities CellReselectionPriorities OPTIONAL, -- Need R suspendConfig SuspendConfig OPTIONAL, -- Need R deprioritisationReq SEQUENCE { deprioritisationType ENUMERATED {frequency, nr}, deprioritisationTimer ENUMERATED {min5, min10, min15, min30} } OPTIONAL, -- Need N lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE{} OPTIONAL}RedirectedCarrierInfo ::= CHOICE { nr CarrierInfoNR, eutra RedirectedCarrierInfo-EUTRA, ...}RedirectedCarrierInfo-EUTRA ::= SEQUENCE { eutraFrequency ARFCN-ValueEUTRA, cnType-r15 ENUMERATED {epc,fiveGC} OPTIONAL}CarrierInfoNR ::= SEQUENCE { carrierFreq ARFCN-ValueNR, ssbSubcarrierSpacing SubcarrierSpacing, smtc SSB-MTC OPTIONAL, -- Need S ...}SuspendConfig ::= SEQUENCE { fullI-RNTI I-RNTI-Value, shortI-RNTI ShortI-RNTI-Value, ran-PagingCycle PagingCycle, ran-NotificationAreaInfo RAN-NotificationAreaInfo OPTIONAL, -- Need M t380 PeriodicRNAU-TimerValue OPTIONAL, -- Need R nextHopChainingCount NextHopChainingCount, ...}PeriodicRNAU-TimerValue ::= ENUMERATED { min5, min10, min20, min30, min60, min120, min360, min720}CellReselectionPriorities ::= SEQUENCE { freqPriorityListEUTRA FreqPriorityListEUTRA OPTIONAL, -- Need M freqPriorityListNR FreqPriorityListNR OPTIONAL, -- Need M t320 ENUMERATED {min5, min10, min20, min30, min60, min120, min180, spare1} OPTIONAL, -- Need R ...}PagingCycle ::= ENUMERATED {rf32, rf64, rf128, rf256}FreqPriorityListEUTRA ::= SEQUENCE (SIZE (1..maxFreq)) OF FreqPriorityEUTRAFreqPriorityListNR ::= SEQUENCE (SIZE (1..maxFreq)) OF FreqPriorityNRFreqPriorityEUTRA ::= SEQUENCE { carrierFreq ARFCN-ValueEUTRA, cellReselectionPriority CellReselectionPriority, cellReselectionSubPriority CellReselectionSubPriority OPTIONAL -- Need R}FreqPriorityNR ::= SEQUENCE { carrierFreq ARFCN-ValueNR, cellReselectionPriority CellReselectionPriority, cellReselectionSubPriority CellReselectionSubPriority OPTIONAL -- Need R}RAN-NotificationAreaInfo ::= CHOICE { cellList PLMN-RAN-AreaCellList, ran-AreaConfigList PLMN-RAN-AreaConfigList, ...}PLMN-RAN-AreaCellList ::= SEQUENCE (SIZE (1.. maxPLMNIdentities)) OF PLMN-RAN-AreaCellPLMN-RAN-AreaCell ::= SEQUENCE { plmn-Identity PLMN-Identity OPTIONAL, -- Need S ran-AreaCells SEQUENCE (SIZE (1..32)) OF CellIdentity}PLMN-RAN-AreaConfigList ::= SEQUENCE (SIZE (1..maxPLMNIdentities)) OF PLMN-RAN-AreaConfigPLMN-RAN-AreaConfig ::= SEQUENCE { plmn-Identity PLMN-Identity OPTIONAL, -- Need S ran-Area SEQUENCE (SIZE (1..16)) OF RAN-AreaConfig}RAN-AreaConfig ::= SEQUENCE { trackingAreaCode TrackingAreaCode, ran-AreaCodeList SEQUENCE (SIZE (1..32)) OF RAN-AreaCode OPTIONAL -- Need R}-- TAG-RRCRELEASE-STOP-- ASN1STOP |
여기서, RRCRelease 메시지에 FFS Whether RejectWaitTimer가 포함된다.
표 10은 RRCRelease 필드의 설명에 대한 예시이다.
RRCRelease field descriptions |
cnTypeUE가 EPC or 5GC에 의해 지시됨을 나타냄. |
deprioritisationReq현재 주파수 또는 RAT의 우선순위를 해제할지 여부를 표시한다. UE는 최대 X개의 주파수에 대한 박탈 요청을 저장할 수 있어야 한다 (T325 만료 전에 다른 주파수 특정 박탈 요청을 수신할 때 적용된다). |
deprioritisationTimer현재 반송파 주파수 또는 NR이 박탈되는 기간을 나타낸다. 값 minN은 N분에 해당한다. |
suspendConfigRRC_INACTIVE 상태에 대한 설정을 나타낸다. |
t380UE에서 주기적인 RNAU 절차를 트리거하는 타이머를 말한다. 값 min5는 5분에 해당하고, 값 min10은 10분이다. |
ran-PagingCycleRAN 개시 페이징의 UE별 사이클을 말한다. 값 rf32는 32개의 라디오 프레임에 해당하고, rf64는 64개의 라디오 프레임 등에 해당된다. |
redirectedCarrierInfo반송파 주파수(FDD용 다운링크)를 나타내며, RRC_CONNECTED를 떠날 때 셀을 선택하여 UE를 NR 또는 RAT 간 반송파 주파수로 리디렉션하는 데 사용된다. (TS 38.304 [20]) |
selectotherPLMNUE가 다른 PLMN을 선택해야 하는지 여부를 나타냄. 이 정보는 PLMN 후보의 PLMN ID를 추가로 포함할 수 있음 |
즉, 상기와 같은 메시지를 받은 단말은 새로이 PLMN 선택 과정을 수행하고, 그 과정에서 현재의 PLMN을 제외하고 다른 PLMN을 선택하여 등록을 수행하는 것이다.
방법 3
상기 과정에서, 현재 자신이 캠핑하고 있거나, 혹은 연결된 셀(기지국)로부터 현재 망(PLMN)이 아닌 다른 망을 선택하도록 지시받은 단말은 PLMN 선택 과정을 수행하게 되는데, 이 과정에서 현재 자신이 접속한 망(제1 PLMN)은 후보에서 제외한다. 예를 들어, 단말은 현재 자신이 접속한 망 혹은 다른 망을 선택하라는 정보를 전송한 망을 금지된 PLMN 리스트에 포함시킨다.
방법 4
일반적으로, 어떤 단말이 서비스를 가입한 사업자가 위치하는 지역에서는, 다른 사업자의 망은 경쟁관계에 놓이게 된다. 즉, 어떤 지역에 MNO A, MNO B가 있다고 할 때, 만약 어떤 단말이 MNO A에 가입했다고 하면, MNO B의 입장에서는 상기 단말은 경쟁자인 MNO A의 망에 속해 있기 때문에, 접속을 허가하지 않을 것이다. 이는 국제 로밍(international roaming)과는 상황이 다른데, 해외에서는 MNO A가 망을 소유하고 있지 않기 때문에, 해외의 MNO입장에서는 상기 MNO A가 협력 파트너이기 때문이다.
따라서, 상기와 같이 단말이 자신이 가입한 사업자의 망에서의 문제로 인하여, 다른 경쟁사의 망으로 이동해야 하는 경우, 기지국은 단말에게 다른 경쟁사의 네트워크에서 상기 단말의 등록을 거부하지 않도록 알려야 한다. 즉, 일반적인 위기 상황이 아닌 경우에 접속은 거부하고, 응급 상황에 의한 접속일 때는 등록을 허용하는 방법이 필요하다.
따라서, 본 명세서에서 상기와 같은 목적을 달성하기 위해서, 단말이 무선 네트워크에 접속하거나 혹은 코어네트워크에 접속할 때, 단말은 자신이 재난 상황으로 인한 등록임을 알릴 것을 제안한다.
도 15는 방법 4에 따라 PLMN을 선택하는 과정을 예시한 흐름도이다.
도 15에 도시된 바와 같이, 단말은 도 12 및 도 14의 제1 기지국의 지시에 기반하여 코어 네트워크 2(제2 PLMN)를 선택할 수 있다(S1501).
이어서, 단말은 선택된 코어 네트워크 2(제2 PLMN)으로 RRC 연결 요청을 전송할 수 있다(S1503). 이 과정에서, 단말이 단말 자신의 홈 네트워크 등의 문제 또는 이전의 네트워크에서의 지시에 기반하여 제2 PLMN으로 접속을 시도함을 알릴 수 있다. 즉, 단말은 제2 PLMN으로 접속 요청 메시지를 보내면서, 접속 요청 메시지에 접속 요청의 원인이 재난 로밍임을 포함시킬 수 있다.
이어서, 단말은 S1503 단계에서 수립된 RRC 연결을 기반으로 하여 코어 네트워크 2와 등록을 수행할 수 있다(S1505).
예를 들어, RRC 메시지 및 NAS 메시지는 다음과 같이 예시될 수 있다.
RRCSetupRequest
RRCSetupRequest 메시지는 RRC 연결을 요청하는 데 사용된다.
무선 베어러 신호: SRB0
RLC-SAP: TM
논리 채널: CCCH
방향: UE에서 네트워크로
표 11은 RRCSetupRequest 메시지의 예시이다.
RRCSetupRequest message-- ASN1START-- TAG-RRCSETUPREQUEST-STARTRRCSetupRequest ::= SEQUENCE { rrcSetupRequest RRCSetupRequest-IEs}RRCSetupRequest-IEs ::= SEQUENCE { ue-Identity InitialUE-Identity, establishmentCause EstablishmentCause, spare BIT STRING (SIZE (1))}InitialUE-Identity ::= CHOICE { ng-5G-S-TMSI-Part1 BIT STRING (SIZE (39)), randomValue BIT STRING (SIZE (39))}EstablishmentCause ::= ENUMERATED { emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, mo-VoiceCall, mo-VideoCall, mo-SMS, mps-PriorityAccess, mcs-PriorityAccess, emergency roaming, spare5, spare4, spare3, spare2, spare1}-- TAG-RRCSETUPREQUEST-STOP-- ASN1STOP |
표 12은 RRCSetupRequest-IE 필드에 대한 설명이다.
RRCSetupRequest-IEs field descriptions |
establishmentCause상층으로부터 수신된 정보에 따라 RRC 요청에 대한 설정 원인을 제공한다. gNB는 UE가 사용하고 있는 알 수 없는 원인 값으로 인해 RRCSetupRequest를 거부할 것으로 예상되지 않는다. UE가 비상 로밍으로 인해 RRC 연결을 설정하려는 경우, 이 원인을 사용하여 표시할 수 있다. |
ue-Identity하위 계층에 의한 경합 해결을 촉진하기 위해 UE ID 포함. |
표 13은 InitialUE-Identity 필드에 대한 설명이다.
InitialUE-Identity field descriptions |
ng-5G-S-TMSI-Part15G-S-TMSI의 가장 오른쪽 39비트. |
randomValue0에서 239 - 1 사이의 정수값 |
즉, 상기에서, 만약 어떤 단말이 HPLMN의 문제로 인해서, 다른 망에 접속하는 경우, 단말은 재난 로밍으로 원인값을 설정하여 연결을 시도할 수 있다.
재난 로밍 원인은 하나의 예시이고, 이와 비슷한 이름 혹은 비슷한 목적의 다른 값으로 설정될 수도 있다. 예를 들어, 국제 로밍의 경우, 단말은 자신의 IMSI등을 이용하여 자신이 가입한 PLMN(망)의 MCC와 같은 MCC의 PLMN에 접속을 시도할 경우, 하기의 원인 필드를 사용할 수 있다.
등록 요청 절차
메시지 정의
REGISTRATION REQUEST 메시지는 UE로부터 AMF로 전송될 수 있다. 표준 문서의 Table 8.2.6.1.1에 예시된다.
메시지 타입: REGISTRATION REQUEST
의미: dual
방향: UE에서 네트워크로
표 14는 표준 문서의 Table 8.2.6.1.1이이며, REGISTRATION REQUEST 메시지의 구성요소를 예시한다.
IEI | 정보 요소 | 유형/참조 | 존재여부 | 포맷 | 길이 |
확장 프로토콜 식별자 | 확장 프로토콜 식별자 9.2 | M | V | 1 | |
보안 헤더 타입 | 보안 헤더 타입 9.3 | M | V | 1/2 | |
스페어 하프 옥텟 | 스페어 하프 옥텟 9.5 | M | V | 1/2 | |
등록 요청 메시지 식별자 | 메시지 유형 9.7 | M | V | 1 | |
5GS 등록 유형 | 5GS 등록 유형 9.11.3.7 | M | LV | 2 | |
ngKSI | NAS 키 설정 식별자 9.11.3.32 | M | V | 1/2 | |
스페어 하프 옥텟 | 스페어 하프 옥텟 9.5 | M | V | 1/2 | |
5GS 모바일 식별자 | 5GS 모바일 식별자 9.11.3.4 | M | LV | 5-TBD | |
C- | 과거 네이티브 NAS 키 설정 식별자 | NAS 키 설정 식별자 9.11.3.32 | O | TV | 1 |
10 | 5GMM 수용력 | 5GMM 수용력 9.11.3.1 | O | TLV | 3-15 |
2E | UE 보안 수용력 | UE 보안 수용력 9.11.3.54 | O | TLV | 4-10 |
2F | 요청된 NSSAI | NSSAI 9.11.3.37 | O | TLV | 4-74 |
52 | 최근 방문한 등록 TAI | 5GS 추적 영역 식별자 9.11.3.8 | O | TV | 7 |
65 | S1 UE 네트워크 수용력 | S1 UE 네트워크 수용력 9.11.3.48 | O | TLV | 4-15 |
40 | 상향링크 데이터 상태 | 상향링크 데이터 상태 9.11.3.57 | O | TLV | 4-34 |
50 | PDU 세션 상태 | PDU 세션 상태 9.11.3.44 | O | TLV | 4-34 |
B- | MICO 인디케이션 | MICO 인디케이션 9.11.3.31 | O | TV | 1 |
2B | UE 상태 | UE 상태 9.11.3.56 | O | TLV | 3 |
2C | 추가 GUTI | 5GS 모바일 식별자9.11.3.4 | O | TLV | TBD |
25 | 허용된 PDU 세션 상태 | 허용된 PDU 세션 상태 9.11.3.13 | O | TLV | 4-34 |
60 | UE의 사용성 설정 | UE의 사용성 설정 9.11.3.55 | O | TLV | 3 |
TBD | 요청된 DRX 파라미터들 | DRX 파라미터들 9.11.3.22 | O | TBD | TBD |
7C | EPS NAS 메시지 컨테이너 | EPS NAS 메시지 컨테이너 9.11.3.24 | O | TLV-E | TBD |
7E | LADN 인디케이션 | LADN 인디케이션9.11.3.29 | O | TLV-E | 3-811 |
7B | 페이로드 컨테이너 | 페이로드 컨테이너 9.11.3.39 | O | TLV-E | 4-65538 |
NAS 보안 컨텍스트가 없는 경우 초기 메시지에 보안을 설정하는 데 필요한 IE 집합을 포함한 제한된 IE 집합이 FFS일 때 등록 요청 메시지의 내용은 FFS이다.
5GS 등록 유형
5GS 등록 유형 정보 요소의 목적은 요청된 등록의 유형을 나타내는 것이다. 5GS 등록 유형 정보 요소는 표 15 및 표 16와 같이 코드화된다. 5GS 등록 유형은 길이 3옥텟의 4형 정보요소다.
8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |||||||
5GS registration type IEI | octet 1 | |||||||||||||
Length of 5GS registration type contents | octet 2 | |||||||||||||
0Spare | 0Spare | NG-RAN-RCU | FOR | SMS requested | 5GS registration type value | octet 3 |
5GS 등록 유형 값 (옥텟 3, 1 to 3 사이의 비트) | ||||
비트들 | ||||
3 | 2 | 1 | ||
0 | 0 | 1 | 초기 등록 | |
0 | 1 | 0 | 모바일 등록 갱신 | |
0 | 1 | 1 | 주기적 등록 갱신 | |
1 | 0 | 0 | 재난 등록 | |
1 | 0 | 1 | 재난 로밍 | |
1 | 1 | 1 | 예약됨 | |
다른 모든 값은 사용되지 않으며, 네트워크에 의해 수신될 경우 "초기 등록"으로 해석해야 한다. | ||||
NAS를 통한 SMS 전송 요청(SMS 요청) (옥텟 3, 비트 4) | ||||
비트 | ||||
4 | ||||
0 | NAS를 통한 SMS가 지원되지 않음 | |||
1 | NAS를 통한 SMS가 지원됨 | |||
후속 요청 비트(FOR) (옥텟 3, 비트 5) | ||||
비트 | ||||
5 | ||||
0 | 후속 요청 펜딩 없음 | |||
1 | 후속 요청 펜딩 | |||
NG-RAN 무선 수용력 업데이트(NG-RAN-RCU)(옥텟 3, 비트 6) | ||||
Bit | ||||
6 | ||||
0 | NG-RAN 무선 수용력 업데이트 불필요 | |||
1 | NG-RAN 무선 수용력 업데이트 필요 | |||
8진수 3의 비트 7~8은 스페어이며 0으로 부호화해야 한다. | ||||
8진수 3의 비트 7~8은 스페어이며 0으로 부호화해야 한다. |
상술한 바와 같이, 단말이 현재 망(HPLMN)의 문제로 다른 망(예를 들어, CN 2)에 접속하는 경우, 단말은 제한된 서비스, 예를 들어, 통화 및 메시지 서비스만 이용가능할 수 있다.
도 16은 본 명세서가 적용될 수 있는 디스플레이부의 예시이다.
도 16을 참조하면, 단말은 제한된 서비스만 이용가능하다는 메시지를 디스플레이 할 수 있다. 예를 들어, 도 16(a)를 참조하면, 단말은 제한된 서비스만 이용가능하다는 메시지(1620)를 디스플레이에 표시할 수 있다. 예를 들어, 이러한 메시지는 SMS를 통해 표시될 수 있으며, 제한된 서비스의 정보를 추가적으로 제공하기 위한 hyperlink(1621)를 포함할 수 있다. 사용자는 제한된 서비스의 정보를 추가적으로 알고 싶은 경우, hyperlink를 통해, 제공받을 수 있으며, 이러한 정보는 단말이 선택한 망을 통해, 단말로 제공될 수 있다.
또한, 단말은 디스플레이부의 상태 바(bar)에 해당 상황을 인지 또는 해당 모드로 전환되었음을 나타내기 위한 아이콘(1611)을 표시할 수 있다. 보다 자세하게, 이러한 아이콘(1611)은 제한된 서비스(limited service)을 나타내는 "LS"의 문자열을 포함할 수 있다. 또한, 이러한 아이콘(1611)은 널리 쓰이는 아이콘과 상이한 독특한 모양일 수 있다. 또는, 아이콘(1611)은 단순한 아이콘과 동일한 모양이지만 표시 형태가 상이할 수도 있다. 또는, 아이콘(1611)은 서로 다른 정보를 나타내는 여러 아이콘이 함께 표시되거나, 변경되면서 표시 될 수도 있다. 또한, 디스플레이부의 상태 바(bar)에는 다른 망의 기지국으로부터 수신되는 신호 세기를 나타내는 정보(1612)가 표시 될 수 있다. 또한, 디스플레이부의 상태 바(bar)에는 현재 망(HPLMN)의 서비스는 불가능함을 나타내는 정보(예를 들어, No Service)(1613) 가 표시될 수 있다.
도 16(b)를 참조하면, 단말은 제한된 서비스(예를 들어, 응급 전화만 이용가능한 경우) 전화 어플리케이션의 화면에 응급 전화만 이용가능하다는 안내 문구를 표시 할 수 있다. 또한, 아이콘(1611)은 제한된 서비스(limited service)을 나타내는 "LS"의 문자열을 포함할 수 있다. 또한, 이러한 아이콘(1611)은 널리 쓰이는 아이콘과 상이한 독특한 모양일 수 있다. 또는, 아이콘(1611)은 단순한 아이콘과 동일한 모양이지만 표시 형태가 상이할 수도 있다. 또는, 아이콘(1611)은 서로 다른 정보를 나타내는 여러 아이콘이 함께 표시되거나, 변경되면서 표시 될 수도 있다. 예를 들어, 아이콘(1611)은 응급 전화만 이용가능하다는 정보를 나타낼 수도 있다. 또한, 디스플레이부의 상태 바(bar)에는 system 2의 기지국으로부터 수신되는 신호 세기를 나타내는 정보(1612)가 표시 될 수 있다. 또한, 또한, 디스플레이부의 상태 바(bar)에는 system 1의 서비스는 불가능함을 나타내는 정보(예를 들어, No Service)(1613) 가 표시될 수 있다.
도 17은 본 명세서가 적용될 수 있는 디스플레이의 예시이다.
도 17(a)를 참조하면, 단말은 제한된 서비스만(예를 들어, 응급 전화 또는 메시지 서비스) 이용가능한 경우, 전화와 메시지 이외의 다른 애플리케이션의 아이콘은 비활성화 상태로 표시 할 수 있다. 또한, 단말은 전화와 메시지 이외의 다른 애플리케이션의 아이콘을 음영으로 표시하거나, 흑백(mono)으로 표시될 수 있다. 또한, 단말은 전화와 메시지 이외의 다른 애플리케이션의 아이콘은 투명하게 표시 할 수 있다. 또한, 단말은 디스플레이부 상에 다른 애플리케이션은 이용이 불가능함을 알리는 정보(예컨대, 제한된 서비스)를 표시할 수 있다. 또한, 전화와 메시지 이외에 다른 애플리케이션이 사용자에 의해서 실행될 경우, 단말은 이용이 불가능함을 알리는 알림 메시지, 팝업 메시지 또는 안내 메시지를 표시할 수 있다.
도 17(b)를 참조하면, 단말은 현재 망(HPLMN)으로부터의 서비스가 불가능할 경우, 다른 망으로부터 제한된 서비스를 이용할지 여부에 대한 설정을 받기 위한 입력필드를 포함하는 안내 메시지를 표시할 수 있다. 이를 통해, 단말은 사용자로부터 제한된 서비스를 이용하기 위한 설정을 입력받을 수 있다.
유사하게, 단말은 NAS메시지를 이용해서, 네트워크에 등록을 수행하는 경우에도, 자신의 등록 유형 정보를 통해 긴급한 로밍이라고 알릴 수 있다.
바람직하게 상기 과정에서, 단말이 상기와 같은 정보를 포함하는 것은 PLMN 코드를 기반으로 할 수 있다. 즉 단말이 자신의 PLMN 코드중에서 MCC가 같은 PLMN에 접속할 때에는 상기와 같이 자신이 긴급한 이유로 등록함을 알리고, 그 외의 경우에는 알리지 않는 것이다.
상기의 발명에서, HPLMN을 기준으로 설명하였으나, HPLMN이 아닌 경우에서도, 상기의 발명을 적용할 수 있다.
방법 3
상기 과정에서 어느 국가에서 어떤 통신망에 문제가 발생하면, 각 국가의 관련 기관에서는 통신망에 문제가 발생하여, 단말에게 통신을 제공할 수 없는 경우를 재난으로 규정하고, 이를 일반 대중들에게 신속하게 알리려고 할 것이다. 따라서, 재난 문자(PWS)의 내용을 관리하는 서버에서는 재난문자를 구성하여, 각 통신망으로 전달하고, 이를 수신한 통신망은 자신들의 네트워크에서 상기 PWS를 단말들에게 전송할 것이다.
그런데, 상기의 동작에서, 만약 문제가 발생한 망(A망)의 단말이 전원이 꺼진 상태, 혹은 상기 단말이 어느 네트워크의 수신범위에도 들어가 있지 않은 경우, 상기 각 네트워크가 전송한 재난문자를 수신하지 못할 수도 있다.
특히 이를 방지하기 위해서, 각 네트워크가 무한정 PWS의 전송을 반복한다면, 이는 비효율적이고, 불필요하게 무선자원을 낭비하는 요소가 된다.
방법 3-1
따라서 본 명세서에서, 모든 단말이 효율적으로 재난문자를 수신하도록 하는 방법을 제시하고자 한다.
이를 위해서, 본 명세서는, 어떤 단말이 새로이 다른 네트워크에 등록을 수행하거나, 혹은 같은 네트워크의 다른 지역에서 네트워크에 접속을 수행할 때, 각 단말은 자신이 수신한 가장 마지막 PWS에 관한 정보 혹은 PWS를 수신하였는지 등에 대한 정보를 전송할 수 있다. 이를 바탕으로, 네트워크는 단말이 수신해야할 PWS를 못받지 못했다고 판단할 경우, 이를 상기 단말에게 전송한다.
방법3-1-1
예를 들어, 단말은 새로운 네트워크 (B망) 혹은 새로운 TA에서 네트워크로 등록과정을 수행할 때, 가장 마지막으로 수신한 PWS에 대한 정보, 또는 식별자 정보를 전송할 수 있으며, 이 정보는 메시지 ID가 될 수 있다. 이와 달리, 해당 정보가 없을 경우, 단말은 네트워크로 해당 정보가 없음을 알릴 수 있다. 이를 바탕으로, 네트워크는 자신이 가장 최근에 전송한 메시지 ID와 비교하고, 상기 단말이 제대로 가장 최신의 PWS를 수신하였는지 여부를 판단할 수 있다.
예를 들어, 단말이 새로운 네트워크 (B망) 혹은 새로운 TA에서 네트워크로 등록 과정을 수행할 때, 단말은 가장 마지막으로 PWS를 수신한 시간 혹은 지역 정보에 관한 정보를 전송할 수 있다. 이를 바탕으로, 네트워크는 자신이 가장 최근에 전송한 PWS의 시각과 검사하여, 상기 단말이 제대로 가장 최신의 PWS를 수신하였는지 판별할 수 있다.
방법 3-1-2
상기 방법 3-1-1에서 설명한 바에 기반하여 상기 단말이 최신의 정보를 받지 못했다고 판단하면, 네트워크는 자신이 저장하고 있던 PWS메시지를 전달하거나, 혹은 PWS 전송기관에 아직 PWS를 받지 못한 단말이 있음을 알려, PWS전송기관이 재전송을 수행할 수 있도록 할 수 있다.
방법 3-1-2-1
상기 방법 3-1-2에서, PWS를 직접 단말에게 전송하기 위해 네트워크는 이전의 PWS를 자신이 저장할 수도 있다. 또는 PWS 전송기관이 이를 네트워크에 위임하는 경우, PWS기관은 PWS 메시지와 함께 관련된 메시지의 식별자, 예를 들어 메시지 ID와 같은 정보를 알려준다.
방법 3-1-2-2
상기 방법 3-1-2에서, 만약 네트워크가 PWS전송기관에 아직 PWS를 받지못한 단말이 있음을 알리는 경우, PWS 전송기관은 모든 지역에 PWS를 재전송하지 않고, 상기 단말에게만 특정 메시지를 보낼 것을 결정할 수도 있다. 이 경우, PWS는 상기 네트워크에 PWS메시지의 내용을 전달하고, 상기 단말에게만 전송할 것을 지시할 수 있다.
이를 수신한 네트워크는 문자를 이용하여 단말에게 상기 메시지를 전송하거나 혹은 NAS 메시지를 이용하여 상기 메시지를 단말에게 전달한다.
방법 3-1-3
상기 방법 3-1의 내용을 지원하기 위해서, 각 단말은 자신이 PWS 메시지를 수신할 경우, 각 PWS메시지의 메시지 ID 및 상기 메시지의 수신 시간을 메모리에 저장하거나, 혹은 NAS 메시지에서 관리할 수 있다.
방법 3-1-4
상기 방법 3-1의 동작은 네트워크가 SIB등을 통해서 혹은 NAS메시지를 통해서, 단말이 상기 정보를 전송할 것을 지시할 경우에만 단말이 PWS수신에 관련된 정보를 전송한다.
방법 3-1-5
상기 방법 3-1의 동작은 단말이 마지막으로 등록한 네트워크와, 현재 등록하려는 네트워크가 다를 때 자동적으로 시도할 수도 있다. 혹은 재난 로밍 상황에서, 단말이 새로운 망으로 접속할 때 전달할 수 있다.
방법 3-1-6
상기 방법 3-1의 동작은 단말이 어떤 네트워크에도 접속하지 못한 시간 혹은 발견하지 못한 시간이 일정 시간이상일 때 수행될 수도 있다.
본 명세서의 주요 실시예
도 18은 본 명세서의 실시예에 따라 단말이 네트워크에 등록을 수행하는 방법을 나타낸 흐름도이다.
도 18에 도시된 바와 같이, 먼저, 단말은 제1 기지국을 통해 제1 PLMN에 등록을 수행할 수 있다(S1801).
이어서, 제1 PLMN으로부터 단말이 더 이상 서비스를 제공 받을 수 없는 경우(예: 재난 발생), 단말은 제1 기지국으로부터 제1 PLMN에 적용된 또는 단말이 위치한 지역에 적용된 재난과 관련된 메시지를 수신할 수 있다(S1803).
그 다음, 단말은 재난 관련 메시지에 기반하여 재난 로밍 서비스를 제공하는 제2 PLMN에 등록을 수행할 수 있다(S1805).
도 19는 본 명세서의 실시예에 따라 기지국이 단말을 네트워크에 등록하는 방법을 나타낸 흐름도이다.
도 19에 도시된 바와 같이, 먼저, 기지국은 제1 PLMN에 단말의 등록을 수행할 수 있다(S1901).
이어서, 제1 PLMN으로부터 단말이 더 이상 서비스를 제공받을 수 없는 경우, 기지국은 단말로 제1 PLMN에 적용된 또는 단말이 위치한 지역에 적용된 재난과 관련된 메시지를를 전송할 수 있다(S1903).
도 20은 본 명세서가 적용될 수 있는 일 실시예이다.
도 20을 참조하면, 단말은 제1 PLMN에 가입되고, 제2 PLMN은 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난에 기반하여 단말에게 재난 로밍 서비스를 제공하도록 설정될 수 있다.
단말은 제1 기지국을 통해 제1 PLMN에 등록을 수행한다(S2010).
제1 PLMN으로부터 단말이 더 이상 서비스를 제공 받을 수 없는 경우(예: 재난 발생), 단말은 제1 기지국으로부터 제1 PLMN에 적용된 또는 단말이 위치한 지역에 적용된 재난과 관련된 메시지를 수신한다(S2020).
단말은 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난과 관련된 메시지를 디스플레이한다(S2030).
단말은 상기 제1 PLMN에 적용된 또는 상기 재난과 관련된 메시지에 근거하여 재난 로밍 서비스를 제공하는 제2 PLMN를 선택하고, 상기 제2 PLMN이 선택되었음을 알리기 위한 메시지를 디스플레이한다(S2040). 예를 들어, 단말은 상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난과 관련된 메시지에 근거하여, 상기 제2 PLMN을 허용하기 위한 입력버튼이 포함된 윈도우를 표시하며, 상기 제2 PLMN은 상기 입력버튼을 통해, 상기 제2 PLMN을 허용하기 위한 신호가 입력된 경우, 선택될 수 있다.
단말은 제2 PLMN에 등록을 수행할 수 있다(S2050,S2060).
또한, 단말은 제2 PLMN과 관련하여, 제한된 서비스만 이용가능함을 나타내는 알림 메시지 또는 상태 아이콘을 디스플레이하며, 단말은 상기 제2 PLMN을 통해, 상기 제한된 서비스만 허용되는 상태를 갖을 수 있다. 보다 자세하게, 상기 상태 아이콘은 상기 단말의 상태 바(bar)에 포함되며, 상기 상태 바는 상기 제2 PLMN로부터 수신되는 신호의 세기를 나타내는 정보를 더 포함할 수 있다. 또한, 상기 알림 메시지는 상기 제한된 서비스의 종류를 나타내는 정보를 포함할 수 있다. 또한, 단말은 상기 제한된 서비스의 종류와 관련된 어플리케이션 이외의 어플리케이션의 아이콘을 비활성(disable)하고, 상기 비활성된 어플리케이션의 아이콘이 음영, 흑백 또는 투명한 상태를 갖도록 디스플레이 할 수 있다. 만일, 상기 비활성된 어플리케이션의 아이콘을 통해, 비활성된 어플리케이션을 실행하기 위한 동작이 감지되는 경우, 단말은 상기 비활성된 어플리케이션의 이용이 불가능함을 알리기 위한 알림 메시지를 디스플레이 할 수 있다.
본 명세서가 적용될 수 있는 장치 일반
도 21은 본 명세서의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 21을 참조하면, 무선 통신 시스템은 네트워크 노드(2110)와 다수의 단말(UE)(2120)을 포함한다.
네트워크 노드(2110)는 프로세서(processor, 2111), 메모리(memory, 2112) 및 통신 모듈(communication module, 2113)(트랜시버(transceiver))을 포함한다. 프로세서(2111)는 앞서 도 1 내지 도 14에서 제안된 기능, 과정 및/또는 방법을 구현한다. 유/무선 인터페이스 프로토콜의 계층들은 프로세서(2111)에 의해 구현될 수 있다.
메모리(2112)는 프로세서(2111)와 연결되어, 프로세서(2111)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(2113)은 프로세서(2111)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다. 네트워크 노드(2110)의 일례로, 기지국, AMF, SMF, UDF 등이 이에 해당될 수 있다. 특히, 네트워크 노드(2110)가 기지국인 경우, 통신 모듈(2113)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(2120)은 프로세서(2121), 메모리(2122) 및 통신 모듈(또는 RF부)(2123)(트랜시버(transceiver))을 포함한다. 프로세서(2121)는 앞서 도 1 내지 도 14에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(2121)에 의해 구현될 수 있다. 특히, 프로세서는 NAS 계층 및 AS 계층을 포함할 수 있다. 메모리(2122)는 프로세서(2121)와 연결되어, 프로세서(2121)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(2123)는 프로세서(2121)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(2112, 2122)는 프로세서(2111, 2121) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(2111, 2121)와 연결될 수 있다. 또한, 네트워크 노드(2110)(기지국인 경우) 및/또는 단말2120)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 22은 본 명세서의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 22에서는 앞서 도 21의 단말을 보다 상세히 예시하는 도면이다. 도 21에 도시된 통신 모듈은 도 22의 RF 모듈(RF module)(또는 RF 유닛)을 포함한다. 도 21에 도시된 프로세서는 도 22에서 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(2210)에 해당한다. 도 21에 도시된 메모리는 도 22의 메모리(memory)(2230)에 해당한다.
도 22를 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(2210), RF 모듈(RF module)(또는 RF 유닛)(2235), 파워 관리 모듈(power management module)(2205), 안테나(antenna)(2240), 배터리(battery)(2255), 디스플레이(display)(2215), 키패드(keypad)(2220), 메모리(memory)(2230), 심카드(SIM(Subscriber Identification Module) card)(2225)(이 구성은 선택적임), 스피커(speaker)(2245) 및 마이크로폰(microphone)(2250)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(2210)는 앞서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서(2210)에 의해 구현될 수 있다.
메모리(2230)는 프로세서(2210)와 연결되고, 프로세서(2210)의 동작과 관련된 정보를 저장한다. 메모리(2230)는 프로세서(2210) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(2210)와 연결될 수 있다.
사용자는 예를 들어, 키패드(2220)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(2250)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서(2210)는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(2225) 또는 메모리(2230)로부터 추출할 수 있다. 또한, 프로세서(2210)는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(2215) 상에 디스플레이할 수 있다.
RF 모듈(2235)는 프로세서(2210)에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서(2210)는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈(2235)에 전달한다. RF 모듈(2235)은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(2240)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈(2235)은 프로세서(2210)에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(2245)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
도 23은 UE과 eNodeB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이다.
상기 무선 인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical 계층), 데이터링크계층(Data Link 계층) 및 네트워크계층(Network 계층)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling)전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1(제1계층), L2(제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 23에 도시된 제어 평면의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신 측과 수신 측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간 축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼(Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 송신 측과 수신 측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫 번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임 내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 무선기기는 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 UL HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 무선기기에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫 번째 서브프레임의 두 번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 무선기기가 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
PDCCH는 DL-SCH(downlink-shared channel)의 자원 할당 및 전송 포맷, UL-SCH(uplink shared channel)의 자원 할당 정보, PCH 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 UE 그룹 내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및 VoIP(voice over internet protocol)의 활성화 등을 나를 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집합(aggregation) 상으로 전송된다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 허용한 PDCCH의 비트수가 결정된다.
PDCCH를 통해 전송되는 제어정보를 다운링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹 내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
제2계층에는 여러 가지 계층이 존재한다. 먼저 매체접속제어(Medium Access Control; MAC) 계층은 다양한 논리채널(Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화(Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널(Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽 채널(Traffic Channel)로 나뉜다.
제2계층의 무선링크제어(Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할(Segmentation) 및 연결(Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다. 또한, 각각의 무선 베어러(Radio Bearer; RB)가 요구하는 다양한 QoS를 보장할 수 있도록 하기 위해 TM(Transparent 모드, 투명모드), UM(Un-acknowledged 모드, 무응답모드), 및 AM(Acknowledged 모드, 응답모드)의 세가지 동작 모드를 제공하고 있다. 특히, AM RLC는 신뢰성 있는 데이터 전송을 위해 자동 반복 및 요청(Automatic Repeat and Request; ARQ) 기능을 통한 재전송 기능을 수행하고 있다.
제2계층의 패킷 데이터 수렴(Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송 시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축(Header Compression) 기능을 수행한다. 이는 데이터의 헤더(Header) 부분에서 반드시 필요한 정보만을 전송하도록 하여, 무선 구간의 전송효율을 증가시키는 역할을 한다. 또한, LTE 시스템에서는 PDCP 계층이 보안(Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화(Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호(Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 베어러(Radio Bearer; RB라 약칭함)들의 설정(설정), 재설정(Re-설정) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected 모드)에 있게 되고, 그렇지 못할 경우 RRC휴지상태(Idle 모드)에 있게 된다.
이하 단말의 RRC 상태(RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을(재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on) 한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 신호를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 23에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층은 MM(Mobility Management)을 위한 NAS 엔티티와 SM(Session Management)을 위한 NAS 엔티티로 구분된다.
1) MM을 위한 NAS 엔티티는 일반적인 다음과 같은 기능을 제공한다.
AMF와 관련된 NAS 절차로서, 다음을 포함한다.
- 등록 관리 및 접속 관리 절차. AMF는 다음과 같은 기능을 지원한다.
- UE와 AMF간에 안전한 NAS 신호 연결(무결성 보호, 암호화)
2) SM을 위한 NAS 엔티티는 UE와 SMF간에 세션 관리를 수행한다.
SM 시그널링 메시지는 UE 및 SMF의 NAS-SM 계층에서 처리, 즉 생성 및 처리된다. SM 시그널링 메시지의 내용은 AMF에 의해 해석되지 않는다.
- SM 시그널링 전송의 경우,
- MM을 위한 NAS 엔티티는 SM 시그널링의 NAS 전송을 나타내는 보안 헤더, 수신하는 NAS-MM에 대한 추가 정보를 통해 SM 시그널링 메시지를 전달하는 방법과 위치를 유도하는 NAS-MM 메시지를 생성합니다.
- SM 시그널링 수신시, SM을 위한 NAS 엔티티는 NAS-MM 메시지의 무결성 검사를 수행하고, 추가 정보를 해석하여 SM 시그널링 메시지를 도출할 방법 및 장소를 유도한다.
한편, 도 23에서 NAS 계층 아래에 위치하는 RRC 계층, RLC 계층, MAC 계층, PHY 계층을 묶어서 액세스 계층(Access Stratum: AS)이라고 부르기도 한다.
본 명세서의 적용 범위
본 명세서에서 무선 장치는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 드론(Unmanned Aerial Vehicle, UAV), AI(Artificial Intelligence) 모듈, 로봇, AR(Augmented Reality) 장치, VR(Virtual Reality) 장치, MTC 장치, IoT 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치 또는 그 이외 4차 산업 혁명 분야 또는 5G 서비스와 관련된 장치 등일 수 있다. 예를 들어, 드론은 사람이 타지 않고 무선 컨트롤 신호에 의해 비행하는 비행체일 수 있다. 예를 들어, MTC 장치 및 IoT 장치는 사람의 직접적인 개입이나 또는 조작이 필요하지 않는 장치로서, 스마트 미터, 벤딩 머신, 온도계, 스마트 전구, 도어락, 각종 센서 등일 수 있다. 예를 들어, 의료 장치는 질병을 진단, 치료, 경감, 처치 또는 예방할 목적으로 사용되는 장치, 구조 또는 기능을 검사, 대체 또는 변형할 목적으로 사용되는 장치로서, 진료용 장비, 수술용 장치, (체외) 진단용 장치, 보청기, 시술용 장치 등일 수 있다. 예를 들어, 보안 장치는 발생할 우려가 있는 위험을 방지하고, 안전을 유지하기 위하여 설치한 장치로서, 카메라, CCTV, 블랙박스 등일 수 있다. 예를 들어, 핀테크 장치는 모바일 결제 등 금융 서비스를 제공할 수 있는 장치로서, 결제 장치, POS(Point of Sales) 등일 수 있다. 예를 들어, 기후/환경 장치는 기후/환경을 모니터링, 예측하는 장치를 의미할 수 있다.
본 명세서에서 설명되는 이동 단말기에는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)) 등이 포함될 수 있다. 나아가, IoT (Internet of Things) 환경이나 스마트 온실(Smart Greenhouse)에서 적어도 하나의 디바이스를 제어하기 위한 용도로 사용될 수도 있다.
그러나, 본 명세서에 기재된 실시 예에 따른 구성은 이동 단말기에만 적용 허용한 경우를 제외하면, 디지털 TV, 데스크탑 컴퓨터, 디지털 사이니지 등과 같은 고정 단말기에도 적용될 수도 있음을 본 기술분야의 통상의 기술자라면 쉽게 알 수 있을 것이다.
상기에서는 이와 같이 구성된 이동 단말기에서 구현될 수 있는 제어 방법과 관련된 실시 예들에 대해 첨부된 도면을 참조하여 설명되었다. 본 명세서는 본 명세서의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다.
상술한 본 명세서의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 명세서의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 명세서의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 명세서의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
전술한 본 명세서는, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 허용하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한, 상기 컴퓨터는 단말기의 프로세서(Y120)를 포함할 수도 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 명세서의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 명세서의 등가적 범위 내에서의 모든 변경은 본 명세서의 범위에 포함된다.
상술한 바와 같은 통신 방법은 3GPP 시스템뿐 아니라, 그 외에도 IEEE 802.16x, 802.11x 시스템을 포함하는 다양한 무선 통신 시스템에 적용하는 것이 허용하다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다.
Claims (22)
- 무선 통신 시스템에서 단말이 네트워크에 등록을 수행하는 방법에 있어서,제1 기지국을 통해 제1 PLMN(Public Land Mobile Network)으로 등록을 수행하는 단계;상기 제1 PLMN으로부터 더 이상 서비스를 제공받을 수 없는 경우, 상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난과 관련된 메시지를 수신하는 단계;상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난과 관련된 메시지를 디스플레이 하는 단계;상기 제1 PLMN에 적용된 또는 상기 재난과 관련된 메시지에 근거하여 재난 로밍 서비스를 제공하는 제2 PLMN를 선택하고, 상기 제2 PLMN이 선택되었음을 알리기 위한 메시지를 디스플레이하는 단계;상기 제2 PLMN으로 등록 요청 메시지를 전송하는 단계; 및상기 제2 PLMN으로부터 상기 등록 요청 메시지에 대한 응답 메시지를 수신하는 단계;를 포함하되,상기 단말은 상기 제1 PLMN에 가입되고,상기 제2 PLMN은 상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난에 기반하여 상기 단말에게 상기 재난 로밍 서비스를 제공하도록 설정되는 것을 특징으로 하는,방법.
- 제1항에 있어서,상기 제2 PLMN과 관련하여, 제한된 서비스만 이용가능함을 나타내는 알림 메시지 또는 상태 아이콘을 디스플레이하는 단계;를 더 포함하며,상기 단말은 상기 제2 PLMN을 통해, 상기 제한된 서비스만 허용되는 상태를 갖는, 방법.
- 제2항에 있어서,상기 상태 아이콘은 상기 단말의 상태 바(bar)에 포함되며,상기 상태 바는 상기 제2 PLMN로부터 수신되는 신호의 세기를 나타내는 정보를 더 포함하는, 방법.
- 제2항 또는 제3항에 있어서,상기 알림 메시지는상기 제한된 서비스의 종류를 나타내는 정보를 포함하는, 방법.
- 제4항에 있어서,상기 제한된 서비스의 종류와 관련된 어플리케이션 이외의 어플리케이션의 아이콘을 비활성(disable)하는 단계; 및상기 비활성된 어플리케이션의 아이콘이 음영, 흑백 또는 투명한 상태를 갖도록 디스플레이하는 단계; 를 더 포함하는, 방법.
- 제5항에 있어서,상기 비활성된 어플리케이션의 아이콘을 통해, 비활성된 어플리케이션을 실행하기 위한 동작이 감지되는 경우, 상기 비활성된 어플리케이션의 이용이 불가능함을 알리기 위한 알림 메시지를 디스플레이하는 단계;를 더 포함하는, 방법.
- 제1항 내지 제6항 중 어느 한 항에 있어서,상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난과 관련된 메시지에 근거하여, 상기 제2 PLMN을 허용하기 위한 입력버튼이 포함된 윈도우를 표시하는 단계; 를 더 포함하며,상기 제2 PLMN은 상기 입력버튼을 통해, 상기 제2 PLMN을 허용하기 위한 신호가 입력된 경우, 선택되는, 방법.
- 제1항에 있어서,상기 재난과 관련된 메시지는, 상기 재난 로밍 서비스가 상기 제1 PLMN과 관련된 단말들에게 제공됨을 지시하는 인디케이터를 포함하는 것을 특징으로 하는,방법.
- 제1항 또는 제8항에 있어서,상기 재난과 관련된 메시지는 제1 PLMN과 관련된 상기 단말에게, 상기 재난 로밍 서비스가 제공될 수 있도록 설정되었음을 나타내는 정보를 포함하는 것을 특징으로 하는,방법.
- 제1항 내지 제9항 중 어느 한 항에 있어서,상기 재난과 관련된 메시지는 미리 설정된 주기에 따라 상기 단말로 수신되는 SIB(System Information Block) 메시지인 것을 특징으로 하는,방법.
- 제1항 내지 제10항 중 어느 한 항에 있어서,상기 제2 PLMN과 연결된 제2 기지국으로 RRC 연결 요청 메시지를 전송하는 단계; 및상기 RRC 연결 요청 메시지에 대한 응답 메시지를 수신하여 상기 제2 기지국을 통해 상기 제2 PLMN과 RRC 연결을 수립하는 단계; 를 포함하며,상기 RRC 연결 요청 메시지는 재난 로밍을 원인으로 전송되는 것을 특징으로 하는,방법.
- 무선 통신 시스템에서 네트워크에 등록을 수행하는 단말에 있어서,송수신기(transceiver);메모리;디스플레이부; 및상기 송수신기, 상기 메모리 및 상기 디스플레이부를 제어하는 프로세서를 포함하고,상기 프로세서는제1 기지국을 통해 제1 PLMN(Public Land Mobile Network)으로 등록을 수행하며,상기 송수신기를 통해, 상기 제1 PLMN으로부터 더 이상 서비스를 제공받을 수 없는 경우, 상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난과 관련된 메시지를 수신하고,상기 디스플레이부를 통해, 상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난과 관련된 메시지를 디스플레이 하며, 상기 제1 PLMN에 적용된 또는 상기 재난과 관련된 메시지에 근거하여 재난 로밍 서비스를 제공하는 제2 PLMN를 선택하고, 상기 제2 PLMN이 선택되었음을 알리기 위한 메시지를 디스플레이하고,상기 송수신기를 통해, 상기 제2 PLMN으로 등록 요청 메시지를 전송하며, 상기 제2 PLMN으로부터 상기 등록 요청 메시지에 대한 응답 메시지를 수신하고,상기 단말은 상기 제1 PLMN에 가입되며,상기 제2 PLMN은 상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난에 기반하여 상기 단말에게 상기 재난 로밍 서비스를 제공하도록 설정되는, 단말..
- 제12항에 있어서,상기 프로세서는상기 디스플레이부를 통해, 상기 제2 PLMN과 관련하여, 제한된 서비스만 이용가능함을 나타내는 알림 메시지 또는 상태 아이콘을 디스플레이하고,상기 단말은 상기 제2 PLMN을 통해, 상기 제한된 서비스만 허용되는 상태를 갖는, 단말.
- 제13항에 있어서,상기 상태 아이콘은 상기 단말의 상태 바(bar)에 포함되며,상기 상태 바는 상기 제2 PLMN로부터 수신되는 신호의 세기를 나타내는 정보를 더 포함하는, 단말.
- 제13항 또는 제14항에 있어서,상기 알림 메시지는상기 제한된 서비스의 종류를 나타내는 정보를 포함하는, 단말.
- 제15항에 있어서,상기 프로세서는상기 제한된 서비스의 종류와 관련된 어플리케이션 이외의 어플리케이션의 아이콘을 비활성(disable)하고,상기 디스플레이부를 통해, 상기 비활성된 어플리케이션의 아이콘이 음영, 흑백 또는 투명한 상태를 갖도록 디스플레이하는, 단말.
- 제16항에 있어서,상기 프로세서는상기 디스플레이부를 통해, 상기 비활성된 어플리케이션의 아이콘을 통해, 비활성된 어플리케이션을 실행하기 위한 동작이 감지되는 경우, 상기 비활성된 어플리케이션의 이용이 불가능함을 알리기 위한 알림 메시지를 디스플레이하는, 단말.
- 제12항 내지 제17항 중 어느 한 항에 있어서,상기 프로세서는상기 디스플레이부를 통해, 상기 제1 PLMN에 적용된 또는 상기 단말이 위치한 지역에 적용된 재난과 관련된 메시지에 근거하여, 상기 제2 PLMN을 허용하기 위한 입력버튼이 포함된 윈도우를 표시하며,상기 제2 PLMN은 상기 입력버튼을 통해, 상기 제2 PLMN을 허용하기 위한 신호가 입력된 경우, 선택되는, 단말.
- 제12항에 있어서,상기 재난과 관련된 메시지는, 상기 재난 로밍 서비스가 상기 제1 PLMN과 관련된 단말들에게 제공됨을 지시하는 인디케이터를 포함하는 것을 특징으로 하는,단말.
- 제12항 또는 제19항에 있어서,상기 재난과 관련된 메시지는 제1 PLMN과 관련된 상기 단말에게, 상기 재난 로밍 서비스가 제공될 수 있도록 설정되었음을 나타내는 정보를 포함하는 것을 특징으로 하는,단말.
- 제12항 내지 제20항 중 어느 한 항에 있어서,상기 재난과 관련된 메시지는 미리 설정된 주기에 따라 상기 단말로 수신되는 SIB(System Information Block) 메시지인 것을 특징으로 하는,단말.
- 제12항 내지 제21항 중 어느 한 항에 있어서,상기 프로세서는상기 송수신기를 통해, 상기 제2 PLMN과 연결된 제2 기지국으로 RRC 연결 요청 메시지를 전송하고,상기 RRC 연결 요청 메시지에 대한 응답 메시지를 수신하여 상기 제2 기지국을 통해 상기 제2 PLMN과 RRC 연결을 수립하며,상기 RRC 연결 요청 메시지는 재난 로밍을 원인으로 전송되는, 단말.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0049213 | 2019-04-26 | ||
KR20190049213 | 2019-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020218764A1 true WO2020218764A1 (ko) | 2020-10-29 |
Family
ID=72940729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/004892 WO2020218764A1 (ko) | 2019-04-26 | 2020-04-10 | 무선 통신 시스템에서 네트워크에 등록을 수행하는 방법 및 이를 위한 장치 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020218764A1 (ko) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022147737A1 (en) * | 2021-01-08 | 2022-07-14 | Zte Corporation | A method for notification of disaster condition |
WO2022148405A1 (zh) * | 2021-01-08 | 2022-07-14 | 大唐移动通信设备有限公司 | 数据发送处理方法、装置及处理器可读存储介质 |
WO2022151413A1 (en) * | 2021-01-15 | 2022-07-21 | Huawei Technologies Co., Ltd. | Disaster condition indication of serving plmn |
WO2022240168A1 (en) * | 2021-05-13 | 2022-11-17 | Samsung Electronics Co., Ltd. | Method and apparatus for handling plmn selection during disaster condition |
US11510127B2 (en) | 2019-07-09 | 2022-11-22 | Ofinno, Llc | Network failure |
WO2022245130A1 (en) * | 2021-05-19 | 2022-11-24 | Samsung Electronics Co., Ltd. | Methods and systems for manual mode search following a disaster condition |
WO2023055143A1 (en) * | 2021-09-29 | 2023-04-06 | Samsung Electronics Co., Ltd. | Method and system for handling registered public land mobile network during disaster situation in wireless network |
WO2024032537A1 (zh) * | 2022-08-12 | 2024-02-15 | 维沃移动通信有限公司 | 通信方法、设备及可读存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100297979A1 (en) * | 2009-04-14 | 2010-11-25 | Interdigital Patent Holdings, Inc. | Method and apparatus for processing emergency calls |
KR20130012033A (ko) * | 2013-01-10 | 2013-01-30 | 삼성전자주식회사 | 서비스 사용 상태에 따른 아이콘 표시 방법 및 이를 지원하는 단말기 |
US20140269525A1 (en) * | 2013-03-14 | 2014-09-18 | Verizon Patent And Licensing Inc. | Providing limited network access to user devices |
KR20170004764A (ko) * | 2015-07-03 | 2017-01-11 | 삼성전자주식회사 | 단독 기지국 망을 지원하는 무선 통신 시스템에서 망 접속 방법 및 장치 |
-
2020
- 2020-04-10 WO PCT/KR2020/004892 patent/WO2020218764A1/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100297979A1 (en) * | 2009-04-14 | 2010-11-25 | Interdigital Patent Holdings, Inc. | Method and apparatus for processing emergency calls |
KR20130012033A (ko) * | 2013-01-10 | 2013-01-30 | 삼성전자주식회사 | 서비스 사용 상태에 따른 아이콘 표시 방법 및 이를 지원하는 단말기 |
US20140269525A1 (en) * | 2013-03-14 | 2014-09-18 | Verizon Patent And Licensing Inc. | Providing limited network access to user devices |
KR20170004764A (ko) * | 2015-07-03 | 2017-01-11 | 삼성전자주식회사 | 단독 기지국 망을 지원하는 무선 통신 시스템에서 망 접속 방법 및 장치 |
Non-Patent Citations (1)
Title |
---|
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access (Release 16)", 3GPP TS 23.401 V16.2.0, 25 March 2019 (2019-03-25), XP051697354 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11510127B2 (en) | 2019-07-09 | 2022-11-22 | Ofinno, Llc | Network failure |
US11856470B2 (en) | 2019-07-09 | 2023-12-26 | Ofinno, Llc | Registration request indicating failure of network |
WO2022147737A1 (en) * | 2021-01-08 | 2022-07-14 | Zte Corporation | A method for notification of disaster condition |
WO2022148405A1 (zh) * | 2021-01-08 | 2022-07-14 | 大唐移动通信设备有限公司 | 数据发送处理方法、装置及处理器可读存储介质 |
WO2022151413A1 (en) * | 2021-01-15 | 2022-07-21 | Huawei Technologies Co., Ltd. | Disaster condition indication of serving plmn |
WO2022240168A1 (en) * | 2021-05-13 | 2022-11-17 | Samsung Electronics Co., Ltd. | Method and apparatus for handling plmn selection during disaster condition |
WO2022245130A1 (en) * | 2021-05-19 | 2022-11-24 | Samsung Electronics Co., Ltd. | Methods and systems for manual mode search following a disaster condition |
WO2023055143A1 (en) * | 2021-09-29 | 2023-04-06 | Samsung Electronics Co., Ltd. | Method and system for handling registered public land mobile network during disaster situation in wireless network |
WO2024032537A1 (zh) * | 2022-08-12 | 2024-02-15 | 维沃移动通信有限公司 | 通信方法、设备及可读存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020141965A1 (ko) | 무선 통신 시스템에서 네트워크에 등록을 수행하는 방법 및 이를 위한 장치 | |
WO2020141964A1 (ko) | 무선 통신 시스템에서 네트워크에 등록을 수행하는 방법 및 이를 위한 장치 | |
WO2020204536A1 (ko) | 무선 통신 시스템에서 단말이 네트워크에 접속을 수행하는 방법 | |
WO2020080913A1 (ko) | 무선 통신 시스템에서 독립적인 네트워크 슬라이스별로 분리된 데이터 전송을 지원하는 방법 | |
WO2020218764A1 (ko) | 무선 통신 시스템에서 네트워크에 등록을 수행하는 방법 및 이를 위한 장치 | |
WO2020111912A1 (ko) | 무선 통신 시스템에서 페이징 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2020046094A1 (ko) | 무선 통신 시스템에서 plmn을 선택하기 위한 방법 및 장치 | |
WO2020141956A1 (ko) | 무선 통신 시스템에서 네트워크를 선택하는 방법 | |
WO2020138985A1 (ko) | 무선 통신 시스템에서 통신 서비스를 제공하는 방법 | |
WO2020171529A1 (en) | Method for performing communication related to packet switch data off | |
WO2020213816A1 (ko) | 네트워크 장애를 대처하기 위한 방안 | |
WO2020256425A1 (en) | Method and apparatus for supporting redundant pdu sessions | |
WO2020204309A1 (ko) | 네트워크 장애에 대처하기 위한 통신 방안 | |
WO2020204310A1 (ko) | 네트워크 장애에 대처하는 방안 | |
WO2020076144A1 (ko) | 무선 통신 시스템에서 복수개의 무선 접속 방식을 지원하는 단말의 능력을 네트워크에 설정하는 방법 및 이를 위한 장치 | |
WO2020022716A1 (ko) | 무선 통신 시스템에서 데이터 전송 상태를 제어하는 방법 및 이를 위한 장치 | |
WO2020166881A1 (ko) | Ma pdu 세션 방법 및 장치 | |
WO2020046093A1 (ko) | 무선 통신 시스템에서 plmn을 선택하기 위한 방법 및 장치 | |
WO2020213817A1 (ko) | 네트워크 장애를 대처하기 위해 다른 plmn에 접속한 후 화면을 표시하는 방안 | |
WO2020060007A1 (ko) | 5g 이동통신에서 pdu 세션을 핸들링하는 방법 및 무선 기기 | |
WO2021020933A1 (ko) | Plmn을 변경하기 위한 방안 | |
WO2021091153A1 (ko) | 무선 통신 시스템에서 사이드링크 통신에 관련된 설정을 제어하기 위한 방법 및 장치 | |
WO2020218910A1 (ko) | 무선 통신 시스템에서 네트워크를 선택하는 방법 | |
WO2021162498A1 (ko) | Npn에서의 pws서비스 방안 | |
WO2021162500A1 (ko) | 멀티 액세스 pdu 세션과 관련된 통신 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20795495 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20795495 Country of ref document: EP Kind code of ref document: A1 |