WO2022148339A1 - 一种同步状态的处理方法、设备及存储介质 - Google Patents

一种同步状态的处理方法、设备及存储介质 Download PDF

Info

Publication number
WO2022148339A1
WO2022148339A1 PCT/CN2022/070092 CN2022070092W WO2022148339A1 WO 2022148339 A1 WO2022148339 A1 WO 2022148339A1 CN 2022070092 W CN2022070092 W CN 2022070092W WO 2022148339 A1 WO2022148339 A1 WO 2022148339A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
positioning
srs
rsrp
Prior art date
Application number
PCT/CN2022/070092
Other languages
English (en)
French (fr)
Inventor
张不方
傅婧
李健翔
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US18/260,782 priority Critical patent/US20240306101A1/en
Priority to EP22736501.2A priority patent/EP4277373A4/en
Publication of WO2022148339A1 publication Critical patent/WO2022148339A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • the present disclosure relates to communication technologies, and in particular, to a synchronization state processing method, device and storage medium.
  • Uplink synchronization refers to the process in which the uplink signals of each terminal in different locations using the same time slot in a cell reach the receiving antenna of the base station at the same time, that is, the signals of different terminals in the same time slot are kept synchronized when they reach the receiving antenna of the base station.
  • the purpose is to reduce the number of cells. Uplink multiple access interference and multipath interference between terminals increase cell capacity and cell radius.
  • the terminal When the terminal is not connected to the network, it can only establish a connection with the network by initiating a Random Access Channel (RACH) process, and realize uplink synchronization in the process.
  • RACH Random Access Channel
  • the base station After the terminal accesses the network, the base station can determine the TA value of each terminal based on measuring the uplink transmission of the terminal, and when a terminal needs to calibrate its uplink synchronization, the base station will send a Timing Advance Command (TAC, TAC). ) to the terminal, requiring it to adjust the uplink transmission time.
  • TAC Timing Advance Command
  • a key in the uplink positioning mechanism is to maintain uplink synchronization to ensure the transmission of the uplink positioning reference signal (Sounding Reference Signal, SRS), otherwise, the SRS sent by the terminal cannot be correctly transmitted by the serving base station and other transmission and reception points (Transmission Reception Point, TRP). Receive and make measurements, resulting in decreased positioning accuracy or even positioning failure.
  • RAT-related uplink positioning methods are introduced in R16, including Uplink Time Difference of Arrival (UL-TDOA) and Uplink Angle of Arrival (UL-AOA).
  • UL-TDOA Uplink Time Difference of Arrival
  • UL-AOA Uplink Angle of Arrival
  • a RAT-related uplink and downlink positioning method that is, multi-cell round-trip time positioning (Multi-RTT) is also introduced in R16.
  • the serving base station and multiple TRPs receive and measure the SRS transmitted by the terminal based on the assistance data information obtained from the positioning server (Location Management Function, LMF), including the angle of arrival (Angle of Arrival, A- AoA), maximum angle of arrival (Zenith Angle of Arrival, Z-AoA), uplink relative time of arrival (Uplink Relative Time of Arrival, RTOA) and reference signal received power (Reference Signal Receiving Power, RSRP) measurement.
  • LMF Location Management Function
  • the serving base station and multiple TRPs will transmit their measurement results to the LMF, and the LMF will perform the final location calculation based on the SRS measurement results and other configuration information.
  • the R17 standard introduces idle/inactive (IDLE or INACTIVE) positioning to reduce device power consumption, increase the maximum number of positioning services that can be accessed in the network, and improve network efficiency.
  • ILE idle/inactive
  • INACTIVE idle/inactive
  • the uplink positioning in the IDLE state or INACTIVE state there is no connection between the terminal and the network. In this case, it is impossible to determine whether the terminal and the network in the uplink positioning mechanism maintain uplink synchronization, and it is impossible to determine whether the uplink is out of synchronization. , how to continue to ensure the reliable transmission of SRS.
  • Embodiments of the present disclosure provide a synchronization state processing method, device, and storage medium, which can be used to determine whether uplink out-of-synchronization occurs between a terminal that is performing uplink positioning in IDLE state or INACTIVE state and a base station, and when uplink out-of-synchronization is detected Corresponding processing methods are taken to ensure the progress of the positioning process.
  • a method for processing a synchronization state includes:
  • the terminal in the idle IDLE state or the inactive INACTIVE state obtains the first channel state information of the transmission channel with the base station;
  • the terminal determines the synchronization state with the base station based on the first channel state information.
  • the terminal determines that the uplink is out of synchronization with the base station, it re-establishes synchronization with the base station and continues to transmit the SRS, or determines that the positioning fails and generates a first positioning failure indication, or abandons the transmission of the SRS and waits for the execution of the processing result of the base station.
  • the method before the terminal acquires the first channel state information of the transmission channel with the base station, the method further includes:
  • the terminal acquires a first channel state threshold corresponding to the transmission channel, where the first channel state threshold includes at least one of a first path loss threshold, a first reference signal received power RSRP threshold, or a first RSRP variation threshold.
  • the terminal obtains the first channel state threshold of the transmission channel, including:
  • the terminal Before the terminal transitions from the connected state to the IDLE state or the INACTIVE state, the terminal obtains the pre-configured first channel state threshold from the RRC information delivered by the base station; or,
  • the terminal preconfigures the first channel state threshold.
  • the terminal acquires the first channel state information of the transmission channel with the base station, and judges the synchronization state with the base station based on the first channel state information, including:
  • the terminal obtains the first path loss value of the transmission channel, when it is determined that the first path loss value is greater than the first path loss threshold, it is determined that an uplink loss occurs with the base station; or,
  • the terminal obtains the first RSRP of the downlink reference signal sent by the base station on the transmission channel, when it is determined that the first RSRP does not reach the first RSRP threshold, it is determined that uplink out-of-sync occurs with the base station; or,
  • the terminal obtains the first RSRP variation of the RSRP of the downlink reference signal sent by the base station on the transmission channel, when determining that the first RSRP variation is greater than the first RSRP variation threshold, it determines that uplink out-of-sync with the base station occurs.
  • the terminal obtains the first path loss value of the transmission channel, including:
  • the terminal determines the first transmission power of the downlink reference signal sent by the base station on the transmission channel
  • the terminal determines the first received power of the downlink reference signal received on the transmission channel
  • the terminal determines a first path loss value of the transmission channel based on the first transmit power and the first receive power.
  • the terminal obtains the first RSRP variation of the RSRP of the downlink reference signal sent by the base station on the transmission channel, including:
  • the terminal determines the second RSRP of the downlink reference signal sent by the base station on the transmission channel at the first moment, where the first moment is the moment when the SRS starts to be transmitted to the base station;
  • the terminal determines the third RSRP of the downlink reference signal sent by the base station on the transmission channel at the second moment, where the second moment is any moment after the first moment;
  • the terminal determines the corresponding first RSRP variation based on the second RSRP and the third RSRP.
  • the terminal re-establishes synchronization with the base station and continues to transmit SRS, including:
  • the terminal initiates a random access procedure to the base station and obtains an updated timing advance TA value to re-establish synchronization with the base station, and after establishing synchronization, continues to transmit SRS, wherein the terminal does not enter the connected state during the random access procedure; or,
  • the terminal After the terminal establishes the connection with the base station, it continues to transmit the SRS.
  • the method further includes:
  • the terminal does at least one of the following:
  • the terminal stops transmitting SRS
  • the terminal discards the SRS configuration information.
  • the method further includes:
  • the terminal sends the first positioning failure indication to the base station, so that the base station sends the first positioning failure indication to the positioning server; or,
  • the terminal directly sends the first positioning failure indication to the positioning server.
  • the terminal sends the first positioning failure indication to the base station, including:
  • the terminal initiates a random access process to the base station, and carries the first positioning failure indication in the four-step random access process message 3Msg3 or the two-step random access process message A MsgA in the random access process, and sends it to the base station, wherein, The terminal does not enter the connected state during the random access process; or,
  • the first positioning failure indication is sent to the base station through an RRC message or a medium access control layer control unit MAC CE.
  • a second aspect provides a method for processing a synchronization state, comprising:
  • the base station determines the synchronization state with the terminal in the process of receiving the uplink positioning reference signal SRS sent by the terminal, wherein the terminal is in an idle/inactive IDLE state or an INACTIVE state;
  • the base station If it is determined that an uplink out-of-sync occurs with the terminal, the base station re-establishes synchronization with the terminal in the INACTIVE state to continue to receive the SRS transmitted by the terminal, or determines that the positioning fails and generates a second positioning failure indication.
  • the base station re-establishes synchronization with the terminal in the INACTIVE state to continue to receive the SRS transmitted by the terminal, including:
  • the base station After the base station establishes the connection with the terminal, it continues to receive the SRS transmitted by the terminal; or,
  • the base station sends a first paging message to the terminal, and the first paging message carries the timing advance TA value updated by the base station, so that the terminal can re-establish synchronization with the base station based on the received TA value, and enable the terminal to re-establish synchronization with the base station after receiving the first paging message. Do not initiate a random access procedure after calling the message, and continue to transmit SRS in the INACTIVE state; or,
  • the base station sends a second paging message to the terminal, so that the terminal initiates a random access procedure, obtains the updated timing advance TA value and re-establishes synchronization with the base station, and the base station issues an RRC release instruction to keep the terminal in INACTIVE state transmission SRS; or,
  • the base station sends a third paging message to the terminal, and the third paging message carries an indication of IDLE or INACTIVE uplink positioning, so that the terminal initiates a random access procedure to obtain the updated timing advance TA value and re-establishes synchronization with the base station, and The terminal continues to transmit SRS in the INACTIVE state.
  • the base station determines that the current positioning fails and generates the second positioning failure indication, it includes:
  • the base station sends the generated second positioning failure indication to the positioning server, and/or to the terminal in the INACTIVE state.
  • the base station sends the second positioning failure indication to the terminal in the INACTIVE state, including:
  • the base station After establishing the connection with the terminal, the base station sends the second positioning failure indication to the terminal to notify the terminal that the positioning fails; or,
  • the base station sends a fourth paging message carrying the second positioning failure indication to the terminal to notify the terminal that the positioning fails this time, and to make the terminal not initiate a random access procedure after receiving the fourth paging message, and continue to maintain the INACTIVE state .
  • the base station After the base station establishes the connection with the terminal, it sends the second positioning failure indication to the terminal, wherein the manner in which the base station sends the second positioning failure indication includes any one of the following:
  • the base station carries the second positioning failure indication through the MAC CE
  • the base station carries the second positioning failure indication through the downlink control information DCI;
  • the base station carries the second positioning failure indication through the RRC message.
  • a third aspect comprising:
  • the processor for reading the computer program in the memory, performs the following processes:
  • the processor is also used to:
  • the uplink is out of sync with the base station, re-establish synchronization with the base station and continue to transmit the SRS, or determine that the positioning fails and generate a first positioning failure indication, or give up the transmission of the SRS and wait for the processing result of the base station.
  • the processor before acquiring the first channel state information of the transmission channel with the base station, the processor is further configured to:
  • the first channel state threshold includes at least one of a first path loss threshold, a first reference signal received power RSRP threshold, or a first RSRP variation threshold.
  • the processor is configured to:
  • the first channel state threshold is preconfigured.
  • the processor is used for:
  • the first path loss value of the transmission channel is obtained, when it is determined that the first path loss value is greater than the first path loss threshold, it is determined that an uplink loss occurs with the base station; or,
  • the first RSRP of the downlink reference signal sent by the base station on the transmission channel is obtained, when it is determined that the first RSRP does not reach the first RSRP threshold, it is determined that uplink out-of-sync occurs with the base station; or,
  • the first RSRP variation of the RSRP of the downlink reference signal sent by the base station on the transmission channel is obtained, when it is determined that the first RSRP variation is greater than the first RSRP variation threshold, it is determined that uplink out-of-sync occurs with the base station.
  • the processor is configured to:
  • a first path loss value of the transmission channel is determined based on the first transmit power and the first receive power.
  • the processor is used for:
  • the corresponding first RSRP variation is determined based on the second RSRP and the third RSRP.
  • re-establish synchronization with the base station and continue to transmit the SRS and the processor is used for:
  • the processor is further configured to:
  • the processor is further configured to:
  • the first positioning failure indication is directly sent to the positioning server.
  • the processor is configured to:
  • the first positioning failure indication is sent to the base station through an RRC message or a medium access control layer control unit MAC CE.
  • a base station includes:
  • the processor for reading the computer program in the memory, performs the following processes:
  • the terminal sends a third paging message to the terminal, and the third paging message carries an indication of IDLE or INACTIVE uplink positioning, so that the terminal initiates a random access procedure to obtain the updated timing advance TA value and re-establish synchronization with the base station, and enable the terminal to re-establish synchronization with the base station.
  • the terminal continues to transmit SRS in the INACTIVE state.
  • the processor is configured to:
  • the generated second positioning failure indication is sent to the positioning server, and/or sent to the terminal in the INACTIVE state.
  • the processor is configured to:
  • a fourth paging message carrying the second positioning failure indication is sent to the terminal to notify the terminal that the positioning fails this time, and that the terminal does not initiate a random access procedure after receiving the fourth paging message, and continues to maintain the INACTIVE state.
  • the processor is also used to:
  • the second positioning failure indication is carried through the RRC message.
  • a fifth aspect a terminal, comprising:
  • an acquisition unit configured to acquire the first channel state information of the transmission channel with the base station in the process of transmitting the uplink positioning reference signal SRS to the base station for uplink positioning when in the idle IDLE state or the inactive INACTIVE state;
  • the judgment unit is used for the terminal to judge the synchronization state with the base station based on the first channel state information.
  • a sixth aspect a base station, comprising:
  • a judgment unit used for judging the synchronization state with the terminal in the process of receiving the uplink positioning reference signal SRS sent by the terminal in the idle IDLE state or the inactive INACTIVE state;
  • the processing unit if it is determined that uplink out-of-sync with the terminal occurs, the base station re-establishes synchronization with the terminal in the INACTIVE state to continue to receive the SRS transmitted by the terminal, or determines that the positioning fails and generates a second positioning failure indication.
  • a computer-readable storage medium when the instructions in the storage medium are executed by a processor, enables the processor to perform the method described in any one of the above-mentioned first aspects.
  • a computer-readable storage medium when the instructions in the storage medium are executed by a processor, enable the processor to perform the method described in any one of the second aspect above.
  • the terminal or the base station in the process of transmitting the SRS to the base station for uplink positioning by the terminal in the IDLE state or the INACTIVE state, can obtain the channel state information of the transmission channel between the terminal and the base station, and based on the channel Status information to detect the synchronization status between the terminal and the base station that are in the IDLE state or INACTIVE state uplink positioning, and when the uplink is detected out of synchronization, the terminal or the base station can take corresponding processing methods to continue to ensure the subsequent IDLE. /INACTIVE positioning process.
  • FIG. 1 is a schematic structural diagram of an uplink positioning system in an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a terminal performing synchronization detection according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of synchronization detection performed by a base station in an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of an entity architecture of a terminal in an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of an entity architecture of a base station in an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of a logical architecture of a terminal in an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a logical architecture of a base station according to an embodiment of the present disclosure.
  • the terminal When the terminal does not access the network, it can only establish a connection with the network by initiating a random access procedure (a four-step random access procedure or a two-step random access procedure), and can realize uplink synchronization during this procedure.
  • a random access procedure a four-step random access procedure or a two-step random access procedure
  • the terminal sends the random access preamble to the base station in the four-step random access process message 1 (Msg1) of the four-step random access process, and the base station measures the received random access preamble.
  • Determine the timing advance (Timing Advance, TA) value and inform the terminal of the adjustment value of its TA value timing through the four-step random access process message 2 (Msg2) in the four-step random access process, so as to realize the connection between the terminal and the network.
  • TA Timing Advance
  • the four-step random access process message 3 (Msg3) will also carry a radio resource control (Radio Resource Control, RRC) establishment request or RRC recovery request message to the network side .
  • RRC Radio Resource Control
  • the terminal receives the RRC setup or RRC recovery message carried in the four-step random access procedure message 4 (Msg4) sent by the network side, it will return the RRC setup complete or RRC recovery complete message to the network side, and enter the connected state. That is, to establish a connection with the network.
  • the terminal sends a random access preamble to the base station in MsgA of the two-step random access process, and the base station determines the Timing Advance (TA) value by measuring the received random access preamble , and the two-step random access process message B (MsgB) in the two-step random access process informs the terminal of its TA value timing adjustment value, thereby realizing uplink synchronization between the terminal and the network.
  • the two-step random access procedure message A (MsgA) also carries an RRC establishment request or RRC recovery request message to the network side.
  • the terminal receives the RRC establishment or RRC recovery message carried in the MsgB sent by the network side, it will return an RRC establishment complete or RRC recovery complete message to the network side, and enter the connected state, that is, establish a connection with the network.
  • the base station can determine the TA value of each terminal based on measuring the uplink transmission of the terminal, and when a terminal needs to calibrate its uplink synchronization, the base station will send a TAC to the terminal, asking it to adjust the uplink transmission time.
  • R16 introduces RAT-related uplink and uplink and downlink positioning methods, including uplink time difference of arrival (UL-TDOA), uplink angle of arrival (UL-AOA) and multi-cell round-trip time positioning (Multi-RTT).
  • UL-TDOA uplink time difference of arrival
  • UL-AOA uplink angle of arrival
  • Multi-RTT multi-cell round-trip time positioning
  • the system architecture corresponding to the above two positioning methods includes at least a terminal, a base station and a positioning server.
  • the base station (for example, the serving base station and multiple TRPs) will receive and measure the SRS transmitted by the terminal based on the assistance data information obtained from the LMF, including for A-AoA, Z-AoA, RTOA and RSRP. Measurement. Afterwards, the base station transmits its measurement result to the LMF, and the LMF performs the final position calculation based on the SRS measurement result and other configuration information.
  • the base station for example, the serving base station and multiple TRPs
  • the base station will receive and measure the SRS transmitted by the terminal based on the assistance data information obtained from the LMF, including for A-AoA, Z-AoA, RTOA and RSRP. Measurement.
  • the base station transmits its measurement result to the LMF, and the LMF performs the final position calculation based on the SRS measurement result and other configuration information.
  • the implementation of the method for processing the synchronization state is mainly divided into two types: the terminal side and the base station side, which will be introduced separately below.
  • Terminal side When the terminal in the IDLE state or the INACTIVE state transmits the SRS to the base station, the terminal detects the synchronization state with the base station. transmission situation.
  • Base station side When the terminal in IDLE state or INACTIVE state transmits SRS to the base station, the base station detects the synchronization state with the terminal. The base station detects the second channel state information, that is, the transmission of SRS sent by the terminal in the channel. .
  • a specific process for a terminal to detect a synchronization state is as follows:
  • Step 200 The terminal in the IDLE state or the INACTIVE state acquires the first channel state information of the transmission channel with the base station in the process of transmitting the SRS to the base station for uplink positioning.
  • IDLE or INACTIVE positioning was introduced in R17.
  • the base station is not connected.
  • how to maintain the uplink synchronization between the terminal and the base station to ensure the transmission of the SRS is a key issue for positioning in the uplink IDLE state or the INACTIVE state.
  • the path ie, the transmission channel
  • the method further includes: the terminal acquires the first channel state threshold corresponding to the transmission channel, wherein the first channel state threshold includes the first path at least one of a loss threshold, a first reference signal received power RSRP threshold, or a first RSRP variation threshold.
  • the acquisition method of the above-mentioned first channel state threshold includes:
  • the first way before the terminal transitions from the connected state to the IDLE state or the INACTIVE state, the terminal obtains the pre-configured first channel state threshold from the RRC information delivered by the base station. In this manner, the first channel state threshold is included in the acquired RRC information, and is delivered by the base station. Correspondingly, after obtaining the RRC information, the terminal obtains the first channel state threshold from the RRC information.
  • the RRC information acquired by the terminal may be a piece of first channel threshold configuration information that only includes the first channel state threshold, or SRS configuration information that includes the first channel state threshold and the SRS configuration.
  • the base station When the base station preconfigures the threshold, it may be configured based on its own signal coverage and UE context information stored in the base station.
  • the second way the terminal pre-configures the first channel state threshold.
  • the terminal may pre-configure the first channel state threshold based on its own algorithm.
  • transmission channels are divided into two types: time division multiplexing and frequency division multiplexing.
  • the above-mentioned transmission channel may be understood as a time-division multiplexed transmission channel, that is, in a certain period of time, the terminal sends the SRS to the base station through the transmission channel; In another period, the base station sends the downlink reference signal to the terminal through the transmission channel, that is, the influence of the transmission channel on the transmission of the SRS can be obtained from the transmission situation of the downlink reference signal.
  • the influence of the transmission channel on the transmission of the SRS is uniformly represented by the first channel state information, and the terminal obtains the first channel state information of the transmission channel. On this basis, the terminal continues to judge the synchronization state with the base station.
  • Step 201 The terminal determines the synchronization state with the base station based on the first channel state information.
  • step 201 when step 201 is executed, any one of the following methods may be used:
  • Manner 11 The terminal acquires the first path loss value of the transmission channel, and if the first path loss value is greater than the set first path loss threshold, it is determined that an uplink out-of-sync occurs with the base station.
  • the terminal obtains the first path loss threshold, which is a critical value for the terminal to determine whether uplink out-of-sync with the base station occurs.
  • the acquisition of the first path loss threshold includes the following two cases:
  • Case 1 The terminal acquires the first path loss threshold preconfigured by the base station.
  • the base station first configures the first path loss threshold for the terminal based on the signal coverage of the base station and the context information of the terminal.
  • the base station After the base station configures the first path loss threshold, it delivers the first path loss threshold to the terminal.
  • the specific implementation is as follows:
  • the base station delivers the first channel state threshold configuration information to the terminal, which includes the first path loss threshold pre-configured by the base station for the terminal.
  • the base station delivers SRS configuration information to the terminal, which includes the first path loss threshold and the SRS configuration pre-configured by the base station for the terminal.
  • Case 2 The terminal preconfigures the first path loss threshold.
  • the terminal may preconfigure the first path loss threshold based on its own algorithm.
  • the terminal can obtain the set first path loss threshold through the first situation or the second situation, and use the first path loss threshold as a comparison standard to further determine whether uplink occurs with the base station out of step.
  • the terminal obtains the first path loss value of the transmission channel.
  • Step a The terminal determines the first transmission power of the downlink reference signal sent by the base station on the transmission channel.
  • the downlink reference signal may be any one of a synchronization signal block (Synchronization Signal and PBCH block, SSB), a downlink positioning reference signal (Positioning Reference Signal, PRS), and the like.
  • the base station sends a downlink reference signal to the terminal, and the downlink reference signal reaches the terminal through the transmission of the transmission channel, so that the terminal can obtain the channel state information of the transmission channel.
  • the first channel state information is obtained by measuring the power attenuation of the downlink reference signal in the transmission channel. Therefore, in this step, the terminal must first obtain the first transmit power of the downlink reference signal when the base station sends it, that is, the initial power of the downlink reference signal. It should be noted that the above-mentioned first transmit power is obtained by the terminal from the base station. No measurement required.
  • Step b The terminal determines the first received power of the downlink reference signal received on the transmission channel.
  • the terminal After the downlink reference signal reaches the terminal through the transmission of the transmission channel, the terminal receives the downlink reference signal and measures the first received power of the received downlink reference signal.
  • Step c The terminal determines the first path loss value of the transmission channel based on the first transmit power and the first receive power.
  • the above-mentioned first received power will be different from the first transmitted power.
  • the terminal will determine the first path loss value of the transmission channel according to the first transmitted power and the first received power For example, the first received power is subtracted or divided by the first transmit power.
  • the terminal compares the size between the first path loss value and the set first path loss threshold, that is, when the first path loss value is greater than the set first path loss threshold, It is determined that uplink out-of-sync occurs with the base station; when the first path loss value is less than or equal to the set first path loss threshold, it is determined that uplink synchronization occurs with the base station.
  • Manner 12 The terminal obtains the RSRP of the downlink reference signal sent by the base station on the transmission channel, and if the first RSRP does not exceed the set first RSRP threshold, it is determined that an uplink out-of-sync occurs with the base station.
  • the terminal acquires a first RSRP threshold, where the first RSRP threshold is a critical value for the terminal to determine whether uplink out-of-synchronization occurs with the base station.
  • the acquisition of the first RSRP threshold includes the following two situations:
  • Case 1 The terminal acquires the first RSRP threshold preconfigured by the base station.
  • the base station first configures the first RSRP threshold for the terminal based on the signal coverage of the base station and the context information of the terminal.
  • the base station After the base station configures the first RSRP threshold, it delivers the first RSRP threshold to the terminal, and the specific implementation is as follows:
  • the base station delivers the first channel state threshold configuration information to the terminal, which includes the first RSRP threshold pre-configured by the base station for the terminal.
  • the base station delivers SRS configuration information to the terminal, which includes the first RSRP threshold and SRS configuration pre-configured by the base station for the terminal.
  • Case 2 The terminal configures the first RSRP threshold in advance.
  • the terminal may preconfigure the first RSRP threshold based on its own algorithm.
  • the terminal can obtain the set first RSRP threshold through the first situation or the second situation, and use the first RSRP threshold as a comparison standard to further determine whether uplink out-of-sync occurs with the base station .
  • the terminal obtains the RSRP of the downlink reference signal sent by the base station on the transmission channel.
  • the terminal measures the received power of reference signals of signals such as SSB or PRS sent by the base station.
  • the terminal compares the size between the first RSRP and the set first RSRP threshold, that is, when the first RSRP does not exceed the set first RSRP threshold, it is determined that an uplink occurs between the terminal and the base station Out of synchronization; when the first RSRP is less than the set first RSRP threshold, it is determined that uplink synchronization occurs with the base station.
  • Mode 13 The terminal obtains the first RSRP variation of the downlink reference signal sent by the base station on the transmission channel. If the first RSRP variation is greater than the set first RSRP variation threshold, it is determined that an uplink out-of-sync occurs with the base station .
  • the terminal acquires a first RSRP variation threshold, which is a critical value for the terminal to determine whether uplink out-of-synchronization occurs with the base station, and the acquisition of the first RSRP variation threshold includes the following two situations:
  • Case 1 The terminal acquires the first RSRP variation threshold preconfigured by the base station.
  • the base station first configures the first RSRP variation threshold for the terminal based on the signal coverage of the base station and the context information of the terminal.
  • the base station After the base station configures the first RSRP variation threshold, it delivers the first RSRP variation threshold to the terminal, and the specific implementation is as follows:
  • the base station delivers the first channel state threshold configuration information to the terminal, which includes the first RSRP variation threshold pre-configured by the base station for the terminal.
  • the base station delivers SRS configuration information to the terminal, which includes the first RSRP variation threshold and SRS configuration pre-configured by the base station for the terminal.
  • Case 2 The terminal preconfigures the first RSRP variation threshold.
  • the terminal may preconfigure the first RSRP variation threshold based on its own algorithm.
  • the terminal can obtain the set first RSRP change threshold value according to the first situation or the second situation, and use the first RSRP change amount threshold as a comparison standard to further judge whether it has a relationship with the base station. An uplink out-of-sync has occurred.
  • the terminal obtains the first RSRP variation of the RSRP of the downlink reference signal sent by the base station on the transmission channel.
  • Step a The terminal determines the second RSRP of the downlink reference signal sent by the base station on the transmission channel at the first moment, where the first moment is the moment when the SRS starts to be transmitted to the base station.
  • the downlink reference signal may be any one of SSB, PRS, and the like.
  • the base station sends a downlink reference signal to the terminal, and the downlink reference signal reaches the terminal through transmission of the transmission channel, thereby enabling the terminal to acquire the first channel state information of the transmission channel.
  • the first channel state information is obtained by measuring the variation of the received power of the reference signal of the downlink reference signal in the transmission channel. Therefore, in this step, the terminal first needs to obtain the second RSRP of the downlink reference signal sent by the base station on the transmission channel at the first moment, that is, the reference signal received power of the downlink reference signal. It is emphasized here that the first moment is the moment when the SRS starts to be transmitted to the base station. Generally, when the SRS is transmitted to the base station for the first time, the terminal simultaneously obtains the second RSRP of the downlink reference signal.
  • Step b The terminal determines the third RSRP of the downlink reference signal sent by the base station on the transmission channel at the second moment, where the second moment is any moment after the first moment.
  • the terminal acquires the third RSRP of the downlink reference signal sent by the base station on the transmission channel at the second moment.
  • the second moment is any moment after the first moment, that is, the downlink reference signal is transmitted on the transmission channel for a period of time (that is, the difference between the second moment and the first moment is After the time corresponding to the value), the third RSRP of the downlink reference signal is obtained again.
  • Step c The terminal determines the corresponding first RSRP variation based on the second RSRP and the third RSRP.
  • the above-mentioned third RSRP will be different from the second RSRP.
  • the terminal will determine the first RSRP variation of the transmission channel according to the second RSRP and the third RSRP. For example, set The third RSRP is subtracted from the second RSRP.
  • the terminal compares the size between the first RSRP variation and the set first RSRP variation threshold, that is, when the first RSRP variation is greater than the set first RSRP variation threshold.
  • the value of the first RSRP variation is less than or equal to the set first RSRP variation threshold, it is determined that the uplink synchronization occurs with the base station.
  • the terminal determines that the uplink is out of synchronization with the base station, it re-establishes synchronization with the base station and continues to transmit the SRS, or determines that the positioning fails and generates a first positioning failure indication, or abandons the transmission of the SRS and waits for the execution of the processing result of the base station.
  • the above-mentioned processing process may be implemented through, but not limited to, the first approach, the second approach, or the third approach.
  • Approach 1 The terminal re-establishes synchronization with the base station and continues to transmit the SRS.
  • Mode a The terminal initiates a random access process to the base station and obtains the updated timing advance TA value to re-establish synchronization with the base station, and after the synchronization is established, continue to transmit SRS, wherein the terminal does not enter the connected state during the random access process .
  • the terminal when the terminal determines that it is out of synchronization with the base station, the terminal stops sending SRS, and actively initiates a random access process (four-step random access process or two-step random access process) to the base station to synchronize with the base station. It should be noted that the random access process here does not cause the terminal to enter the connected state.
  • the terminal can obtain the updated TA value through Msg2 or MsgB in the random access process, and re-establish synchronization with the base station based on the TA value.
  • the SRS continues to be transmitted, and the subsequent positioning process is performed in the IDLE state or the INACTIVE state.
  • Case 2 The terminal does not carry the RRC setup request or RRC recovery request message in the subsequent Msg3.
  • the terminal does not carry an RRC setup request or an RRC recovery request message in the MsgA.
  • Mode b After the terminal establishes a connection with the base station, it continues to transmit the SRS.
  • the terminal determines that the uplink is out of synchronization with the base station, the terminal stops sending SRS, and actively initiates an RRC establishment procedure or an RRC recovery procedure to the base station to re-synchronize with the base station. After the terminal receives the RRC establishment instruction or the RRC recovery instruction from the base station, the terminal enters the connected state and continues to transmit the SRS to complete the subsequent positioning process.
  • the terminal After the terminal re-establishes synchronization with the base station using any one of the mode a or the mode b, the terminal continues to transmit the SRS, and completes the subsequent positioning process.
  • Approach 2 The terminal determines that the positioning fails and generates a first positioning failure indication.
  • the terminal further performs at least one of the following operations: the terminal stops transmitting the SRS; and the terminal discards the SRS configuration information.
  • the above-mentioned terminal stops transmitting the SRS, that is, the terminal does not continue to transmit the current SRS after determining that it is out of uplink with the base station, so that the base station cannot receive the SRS.
  • the above-mentioned terminal discards the SRS configuration information, that is, the terminal discards the SRS configuration information after determining that the terminal loses uplink synchronization with the base station.
  • the terminal generates a first positioning failure indication. Specifically, after determining that the terminal is out of synchronization with the base station, it generates a first positioning failure indication, and abandons the current positioning process in the IDLE state or the INACTIVE state.
  • the terminal may send the first positioning failure indication to the positioning server in any of the following ways to end the positioning process:
  • Manner 1 The terminal sends the first positioning failure indication to the base station, and then the base station sends the first positioning failure indication to the positioning server to notify the positioning server that the positioning fails, and the positioning process ends.
  • the terminal sends the first positioning failure indication to the base station to notify the base station that the positioning fails this time.
  • the following (1) or (2) can be used to achieve:
  • the terminal initiates a random access procedure to the base station, and carries the first positioning failure indication in Msg3 or MsgA in the random access procedure, and sends it to the base station, wherein the terminal does not enter the connected state during the random access procedure.
  • the terminal initiates a random access process to the base station, and Msg3 or MsgA in the random access process carries the first positioning failure indication, notifying the base station that the positioning fails this time.
  • the terminal does not enter the connected state during the random access process.
  • the terminal does not carry the RRC setup request or the RRC recovery request message in the subsequent Msg3.
  • the terminal does not carry an RRC setup request or an RRC recovery request message in the MsgA.
  • the first positioning failure indication is sent to the base station through an RRC message or a Media Access Control control plane (MAC CE).
  • MAC CE Media Access Control control plane
  • the terminal initiates an RRC establishment process or an RRC recovery process to the base station, and after establishing a connection with the base station, sends the first positioning failure indication to the base station through an RRC message or a MAC CE.
  • the terminal actively initiates the RRC establishment procedure or the RRC recovery procedure to the base station.
  • the terminal After the terminal receives the RRC establishment instruction or RRC restoration instruction from the base station, the terminal enters the connected state, that is, after establishing the connection with the base station, the terminal passes the RRC message or MAC address.
  • the CE sends the first positioning failure indication to the base station, that is, the above-mentioned RRC message may be an RRC message carrying the first positioning failure indication, and the above-mentioned MAC CE message may be a MAC CE message carrying the first positioning failure indication.
  • Manner 2 The terminal directly sends the first positioning failure indication to the positioning server.
  • the terminal directly informs the positioning server that the positioning fails this time through an LPP message, and the LPP message carries the first positioning failure indication.
  • Approach 3 The terminal abandons the transmission of the SRS and waits for the processing result of the execution base station.
  • the terminal When the terminal finds out of uplink synchronization with the base station, the terminal directly abandons the transmission of the SRS. Then the terminal does not perform any operation, and waits until the base station detects the uplink out-of-sync and performs corresponding processing.
  • the base station side that is, the base station detects the synchronization state with the terminal.
  • the specific process of the base station detecting the synchronization state is as follows:
  • Step 300 The base station judges the synchronization state with the terminal in the process of receiving the SRS sent by the terminal, wherein the terminal is in the IDLE state or the INACTIVE state.
  • the base station In the process of uplink positioning, when the terminal sends the SRS to the base station, the base station is in the state of receiving the SRS sent by the terminal, and the path (ie, the transmission channel) between the terminal and the base station is determined.
  • the second channel state threshold corresponding to the transmission channel needs to be obtained first, that is, the comparison standard is obtained.
  • the method before the base station acquires the second channel state information of the transmission channel with the terminal, the method further includes: the base station acquires a second channel state threshold corresponding to the transmission channel, wherein the second channel state threshold includes the second path at least one of a loss threshold, a second reference signal received power RSRP threshold, or a second RSRP variation threshold.
  • the above-mentioned second channel state thresholds are all pre-configured by the base station.
  • the base station may pre-configure the second channel state threshold based on its own algorithm.
  • the influence of the transmission channel on the transmission of the SRS is uniformly represented by the second channel state information.
  • the base station obtains the second channel state information according to the received SRS.
  • the base station determines the synchronization state with the terminal based on the second channel state information, and the specific steps can be implemented in one of the following ways:
  • Manner 21 The base station determines that uplink out-of-synchronization occurs with the terminal according to the fact that the base station has not received the SRS within the preconfigured maximum receiving time window.
  • the base station counts whether the SRS is received within the maximum receiving time window, where the maximum receiving time window is pre-configured by the base station, and is described in the following two cases:
  • the base station considers that uplink out-of-synchronization has occurred.
  • Manner 22 The base station obtains the second path loss value of the transmission channel, and if the second path loss value is greater than the set second path loss threshold, it is determined that an uplink out-of-sync occurs with the terminal, where the second path loss threshold is the base station preconfigured.
  • the above-mentioned second path loss threshold is a critical value for the base station to determine whether uplink out-of-synchronization occurs with the terminal.
  • the base station obtains the second path loss value of the transmission channel, which specifically includes:
  • the base station After the SRS reaches the base station through the transmission of the transmission channel, the base station receives the SRS and measures the second received power of the received SRS.
  • the second channel state information is obtained by measuring the power attenuation of the SRS in the transmission channel. Therefore, in this step, the terminal must first obtain the second transmission power of the SRS when the terminal sends it. It should be noted that the initial power of the SRS is pre-configured by the base station, that is, the second transmission power is already pre-configured for the base station. Known.
  • the above-mentioned second receive power will be different from the second transmit power.
  • the base station will determine the second path loss value of the transmission channel according to the second transmit power and the second receive power For example, the second received power may be subtracted or divided by the second transmit power.
  • the base station compares the size between the second path loss value and the set second path loss threshold, that is, when the second path loss value is greater than the set second path loss threshold, It is determined that uplink out-of-sync occurs with the terminal; when the second path loss value is less than or equal to the set second path loss threshold, it is determined that uplink synchronization occurs with the terminal.
  • Mode 23 The base station obtains the fourth RSRP of the SRS sent by the terminal on the transmission channel, and if the fourth RSRP does not reach the set second RSRP threshold, it is determined that an uplink out-of-sync occurs with the terminal, where the second RSRP threshold Pre-configured for the base station.
  • the above-mentioned second RSRP threshold is a critical value for the base station to determine whether uplink out-of-synchronization occurs with the terminal.
  • the base station obtains the fourth RSRP of the SRS sent by the terminal on the transmission channel.
  • the terminal uses the second RSRP threshold as a comparison standard to further determine whether uplink out-of-synchronization occurs with the base station. That is, if the fourth RSRP is less than or equal to the set second RSRP threshold, it is determined that uplink out-of-sync occurs with the terminal; if the fourth RSRP is greater than the set second RSRP threshold, it is determined that uplink synchronization occurs with the terminal.
  • Manner 24 The base station obtains the second RSRP variation of the RSRP of the SRS sent by the terminal on the transmission channel, and if the second RSRP variation is greater than the set second RSRP variation threshold, it is determined that uplink out-of-sync occurs with the terminal , where the second RSRP variation threshold is preconfigured by the base station.
  • the above-mentioned second RSRP variation threshold is a critical value for the base station to determine whether uplink out-of-synchronization occurs with the terminal.
  • the terminal uses the second RSRP variation threshold as a comparison standard to further determine whether uplink out-of-synchronization occurs with the base station. That is, if the second RSRP variation is greater than the set second RSRP variation threshold, it is determined that uplink out-of-sync occurs with the terminal; if the second RSRP variation is less than or equal to the set second RSRP variation threshold, then it is determined that Uplink synchronization occurs with the terminal.
  • the base station obtains the second RSRP variation of the RSRP of the SRS sent by the terminal on the transmission channel, which specifically includes:
  • the second channel state information is obtained by measuring the variation of the received power of the reference signal of the SRS in the transmission channel. Therefore, in this step, the terminal first needs to obtain the fifth RSRP of the SRS sent by the terminal on the transmission channel, that is, the received power of the reference signal of the SRS, at the third moment. It is emphasized here that the third moment is the moment when the base station receives the SRS for the first time, that is, the fifth RSRP of the SRS is obtained at the start moment of the uplink positioning process.
  • Step 2) The base station determines the sixth RSRP of the SRS sent by the terminal on the transmission channel at the fourth moment, where the fourth moment is any moment after the third moment.
  • the base station acquires the sixth RSRP of the SRS sent by the terminal on the transmission channel at the fourth moment.
  • the fourth moment is any moment after the third moment, that is, the SRS has been transmitted on the transmission channel for a period of time (that is, the difference between the fourth moment and the third moment After the corresponding time), the sixth RSRP of the SRS is obtained again.
  • Step 3) The base station determines the corresponding second RSRP variation based on the fifth RSRP and the sixth RSRP.
  • the above-mentioned sixth RSRP will be different from the fifth RSRP.
  • the terminal will determine the second RSRP variation of the transmission channel according to the fifth RSRP and the sixth RSRP.
  • the sixth RSRP is subtracted from the fifth RSRP.
  • the terminal compares the size between the second RSRP variation and the set second RSRP variation threshold, that is, when the second RSRP variation is greater than the set second RSRP variation threshold When it is determined that the uplink out-of-synchronization occurs with the base station; when the second RSRP variation is less than or equal to the set second RSRP variation threshold, it is determined that uplink synchronization occurs with the base station.
  • Step 301 If it is determined that uplink out-of-synchronization occurs with the terminal, the base station re-establishes synchronization with the terminal in the INACTIVE state to continue to receive the SRS transmitted by the terminal, or determines that the positioning fails and generates a second positioning failure indication.
  • step 301 When performing step 301, any one of the following methods may be adopted:
  • the above-mentioned base station re-establishes synchronization with the terminal in the INACTIVE state to continue to receive the SRS transmitted by the terminal. 4) to achieve.
  • the base station may send a paging message to the terminal in the INACTIVE state, and after receiving the paging message, the terminal initiates an RRC establishment procedure or an RRC recovery procedure, and resynchronizes with the base station.
  • the terminal After the terminal receives the RRC establishment or RRC recovery instruction from the base station, after the base station establishes the connection with the terminal, the terminal enters the connected state, and the base station continues to receive the SRS transmitted by the terminal.
  • Approach (2) The base station sends a first paging message to the terminal, and the first paging message carries the timing advance TA value updated by the base station, so that the terminal can re-establish synchronization with the base station based on the received TA value, and enable the terminal to re-establish synchronization with the base station based on the received TA value.
  • the random access procedure is not initiated, and the SRS is continued to be transmitted in the INACTIVE state.
  • the base station may send a first paging message to the terminal in the INACTIVE state, and the first paging message carries the TA value updated by the base station for the terminal, and the terminal receives the updated TA value carried in the first paging message.
  • the uplink synchronization is re-completed with the base station.
  • the terminal does not initiate a random access procedure after receiving the first paging message, and continues to transmit the SRS in the INACTIVE state, and continues the subsequent positioning procedure, that is, the base station continues to receive the SRS transmitted by the terminal.
  • Approach (3) The base station sends a second paging message to the terminal, so that the terminal initiates a random access procedure, obtains the updated timing advance TA value and re-establishes synchronization with the base station, and the base station sends RRC in Msg4 or MsgB Release indication, so that the terminal continues to transmit SRS in the INACTIVE state.
  • the base station can send a second paging message to the terminal in the INACTIVE state. After receiving the second paging message, the terminal initiates random access to re-synchronize (but does not establish a connection). Msg2 or MsgB carry the updated TA value to the terminal. After receiving the updated TA value, the terminal re-synchronizes with the base station. In addition, the base station sends an RRC release indication in Msg4 or MsgB, so that the terminal continues to remain in the INACTIVE state to continue this positioning.
  • the base station sends a third paging message to the terminal, and the third paging message carries an indication for IDLE or INACTIVE uplink positioning, so that the terminal initiates a random access procedure to obtain the updated timing advance TA value Re-establish synchronization with the base station, and keep the terminal in the INACTIVE state to transmit SRS.
  • the base station may send a third paging message to the terminal in the INACTIVE state, and the third paging message carries an indication for performing IDLE or INACTIVE uplink positioning.
  • the terminal can initiate a four-step random access procedure or a two-step random access procedure, and obtain the updated timing advance TA value in Msg2 or the two-step random access procedure B (MsgB) to re-establish synchronization with the base station, thereby re-establishing synchronization with the base station.
  • the terminal continues to transmit SRS in the INACTIVE state.
  • Case 2 The terminal does not carry the RRC setup request or RRC recovery request message in the subsequent Msg3.
  • the terminal does not carry an RRC setup request or an RRC recovery request message in the MsgA.
  • the base station will also execute that the base station sends the generated second positioning failure indication to the positioning server, and/or sends it to the terminal in the INACTIVE state. .
  • Manner 1 The base station sends the generated second positioning failure indication to the positioning server.
  • the base station after determining that the base station is out of synchronization with the terminal, it determines that the current positioning fails, generates a second positioning failure indication, and sends the second positioning failure indication to the positioning server through an NRPPa message.
  • the base station sends the generated second positioning failure indication to the positioning server, that is, the base station determines that this positioning fails, and notifies the positioning server of this positioning failure through an NRPPa message, wherein the NRPPa message notification carries the second positioning failure indication.
  • Manner 2 The base station sends the generated second positioning failure indication to the positioning server, and sends the second positioning failure indication to the terminal in the INACTIVE state, so that the terminal stops transmitting SRS.
  • the base station after determining that the base station is out of synchronization with the terminal, it determines that the current positioning fails, generates a second positioning failure indication, and sends the second positioning failure indication to the positioning server through an NRPPa message.
  • the base station sends the generated second positioning failure indication to the positioning server, that is, the base station determines that this positioning fails, and notifies the positioning server of this positioning failure through an NRPPa message, wherein the NRPPa message notification carries the second positioning failure indication.
  • the base station also sends the second positioning failure indication to the terminal in the INACTIVE state, which specifically includes the following two implementations:
  • Manner 2-1 After establishing a connection with the terminal, the base station sends a second positioning failure indication to the terminal to notify the terminal that the positioning fails.
  • the base station sends a paging message to the terminal, and after receiving the paging message, the terminal initiates an RRC establishment procedure or an RRC recovery procedure.
  • the terminal receives the RRC establishment or recovery instruction from the base station, it enters the connected state, that is, the base station establishes a connection with the terminal. After that, the base station sends the second positioning failure indication to the terminal. After receiving the second positioning failure indication, the terminal considers that the positioning fails, stops transmitting the SRS, and/or discards the SRS configuration information of the last positioning configuration.
  • the base station after the base station establishes a connection with the terminal, it sends the second positioning failure indication to the terminal, wherein the manner in which the base station sends the second positioning failure indication includes any one of the following, that is, the base station sends the second positioning failure indication through the MAC address Any one of CE, downlink control information (Digital Copyright Identifier, DCI) and RRC message, carries the second positioning failure indication.
  • the base station carries the second positioning failure indication through the MAC CE or carries the second positioning failure indication through the DCI or carries the second positioning failure indication through the RRC message.
  • Mode 2-2 the base station sends a fourth paging message carrying the second positioning failure indication to the terminal to notify the terminal that the positioning fails this time, and to prevent the terminal from initiating a random access procedure after receiving the fourth paging message, And continue to maintain the INACTIVE state.
  • the base station carries an indication indicating the second positioning failure in the fourth paging message to notify the terminal that the positioning fails this time, and the terminal does not initiate random access after receiving the fourth paging message carrying the second positioning failure indication. process, and continue to maintain the INACTIVE state.
  • the terminal After receiving the second positioning failure indication, the terminal considers that the positioning fails, stops transmitting the SRS, and/or discards the SRS configuration information of the last positioning configuration.
  • Manner 3 The base station sends the generated second positioning failure indication to the positioning server, and then the positioning server sends the second positioning failure indication to the terminal.
  • the base station after determining that the base station is out of synchronization with the terminal, it determines that the current positioning fails, generates a second positioning failure indication, and sends the second positioning failure indication to the positioning server through an NRPPa message.
  • the base station sends the generated second positioning failure indication to the positioning server, that is, the base station determines that this positioning fails, and notifies the positioning server of this positioning failure through an NRPPa message, wherein the NRPPa message notification carries the second positioning failure indication.
  • the location server After the location server receives the location failure indication, it sends it to the terminal, including the following two ways:
  • the positioning server sends the received second positioning failure indication to the core network, and instructs the core network to send the fifth paging message to the UE, and carries the second positioning failure indication in the third paging message .
  • the positioning server carries the received second positioning failure indication in its positioning broadcast information.
  • the location server after the location server obtains the location failure information, the location server notifies the Access and Mobility Management Function (AMF) to initiate core network side paging,
  • AMF Access and Mobility Management Function
  • the fifth paging message carries the second positioning failure indication to the terminal to notify the terminal that the positioning fails this time.
  • the terminal After receiving the second positioning failure indication, the terminal considers that the positioning fails, stops transmitting the SRS, and/or discards the SRS configuration information of the last positioning configuration.
  • the positioning server may broadcast the positioning system information (posSIB), and carry the second positioning failure indication in the posSIB to the The terminal notifies the terminal that the positioning failed this time. After receiving the second positioning failure indication, the terminal considers that the positioning fails, stops transmitting the SRS, and/or discards the SRS configuration information of the last positioning configuration.
  • posSIB positioning system information
  • Application scenario 1 The terminal determines whether uplink out-of-synchronization occurs with the base station based on the first path loss threshold.
  • Step 1 The terminal obtains the first path loss threshold LP_Threshold.
  • This threshold is a critical value for judging whether uplink out-of-sync occurs with the base station.
  • the manner of obtaining the first path loss threshold includes:
  • the base station preconfigures the first path loss threshold LP_Threshold, and delivers it to the terminal.
  • Step a The base station preconfigures the first path loss threshold LP_Threshold for the terminal according to its own signal coverage and the context information of the terminal.
  • Step b The base station delivers the preconfigured first path loss threshold to the terminal.
  • the base station includes the first path loss threshold LP_Threshold in the SRS configuration information configured for the terminal, that is, as a part of the SRS configuration information, and delivers it to the terminal.
  • the base station directly delivers the first path loss threshold LP_Threshold to the terminal.
  • the terminal obtains the first path loss threshold LP_Threshold based on its own algorithm.
  • Step 2 At time T1, the power of the SSB signal sent by the base station received by the terminal is denoted as P1. Then, at time T1, the first path loss value LP_1 between the terminal and the base station may be expressed as P0-P1, where P0 is the transmit power of the SSB signal sent by the base station side.
  • Step 3 The terminal compares its first path loss value LP_1 at time T1 with the size of the first path loss threshold LP_Threshold.
  • the uplink loses synchronization between the terminal and the base station.
  • the terminal and the base station are uplink synchronized.
  • Application scenario 2 The terminal determines whether uplink out-of-synchronization occurs with the base station based on the first RSRP threshold.
  • Step 1 The terminal acquires the first RSRP threshold value RSRP_Threshold, which is a threshold value for judging whether the terminal loses uplink synchronization.
  • RSRP_Threshold a threshold value for judging whether the terminal loses uplink synchronization.
  • the acquisition method of the first RSRP threshold includes:
  • the base station preconfigures the first RSRP threshold RSRP_Threshold and delivers it to the terminal.
  • Step a The base station preconfigures the first RSRP threshold RSRP_Threshold for the terminal according to its own signal coverage and the context of the terminal.
  • Step b The base station delivers the preconfigured first RSRP threshold to the terminal.
  • the base station includes the first RSRP threshold RSRP_Threshold in the SRS configuration information configured for the terminal, that is, as a part of the SRS configuration information, and sends it to the terminal.
  • the base station directly delivers the first RSRP threshold RSRP_Threshold to the terminal.
  • the terminal obtains the first RSRP threshold RSRP_Threshold based on its own algorithm.
  • Step 2 At time T1, the terminal measures the first RSRP of the SSB signal sent by the base station, which is denoted as RSRP_1.
  • Step 3 The terminal compares the size of the RSRP_1 measured by the terminal at time T1 with the first RSRP threshold RSRP_Threshold.
  • the uplink is out of synchronization between the terminal and the base station.
  • the terminal and the base station are uplink synchronized.
  • Application scenario 3 The terminal determines whether uplink out-of-sync with the base station occurs based on the first RSRP variation threshold.
  • Step 1 The terminal acquires the first RSRP variation threshold RSRP_Variable.
  • the acquisition method of the first RSRP variation threshold includes:
  • the base station configures a first RSRP variation threshold RSRP_Variable, and delivers it to the terminal.
  • Step a The base station preconfigures the first RSRP variation threshold RSRP_Variable for the terminal according to its own signal coverage and the context information of the terminal.
  • Step b The base station delivers the preconfigured first RSRP variation threshold to the terminal. Specifically include:
  • the base station includes the first RSRP variation threshold RSRP_Variable in the SRS configuration information configured for the terminal, that is, as a part of the SRS configuration information, and delivers it to the terminal.
  • the base station directly delivers the first RSRP variation threshold RSRP_Variable to the terminal.
  • the terminal obtains the first RSRP variation threshold RSRP_Variable based on its own algorithm.
  • Step 2 Taking the moment when the terminal just started sending the uplink SRS signal as the reference time point T0, at this time, the terminal measures the second RSRP of the SSB signal sent by the serving base station, which is denoted as RSRP_2.
  • Step 3 At time T1, the terminal measures the third RSRP of the SSB signal sent by the base station, which is denoted as RSRP_3. Then, within the time T1-T0, the first RSRP variation of the RSRP measured by the terminal is RSRP_3-RSRP_2.
  • Step 4 The terminal compares the measured values of the first RSRP variation RSRP_1-RSRP_0 with the size of the first RSRP variation threshold RSRP_Variable.
  • the uplink is out of synchronization between the terminal and the base station.
  • the terminal and the base station are uplink synchronized.
  • Application Scenario 4 The terminal actively determines that the uplink is out of synchronization, initiates the random access process (but does not establish a connection) to resynchronize, and then continues the IDLE/INACTIVE positioning process.
  • Step 1 The terminal is in the IDLE or INACTIVE uplink positioning process. At this time, the terminal is in the IDLE/INACTIVE state, and the terminal has acquired the SRS configuration information configured by the base station and the first path loss threshold LP_Threshold, and is transmitting SRS.
  • Step 2 When the terminal finds that the uplink is out of synchronization, the terminal stops sending SRS, and actively initiates a random access procedure to the base station (but does not enter a connected state) to synchronize with the base station.
  • Step 3 The terminal completes the uplink synchronization, but remains in the IDLE state or the INACTIVE state. The terminal continues to transmit the SRS according to its SRS configuration information, and completes the subsequent IDLE or INACTIVE positioning process.
  • Application Scenario 5 The terminal actively determines that the uplink is out of sync, and enters the connected state to continue positioning. Specific steps are as follows:
  • Step 1 The terminal is in the IDLE or INACTIVE uplink positioning process. At this time, the terminal is in the IDLE/INACTIVE state, and the terminal has acquired the SRS configuration information configured by the base station and the first path loss threshold LP_Threshold, and is transmitting SRS.
  • Step 2 When the terminal finds that the uplink is out of synchronization, the terminal stops sending SRS, and actively initiates an RRC establishment procedure or an RRC recovery procedure.
  • Step 3 When the terminal receives the RRC establishment instruction or the RRC recovery message sent by the base station, the terminal enters a connected state and re-completes uplink synchronization with the base station. After that, the terminal remains in the connected state and continues to perform SRS uplink transmission to complete the subsequent positioning process.
  • Application Scenario 6 The terminal actively determines that uplink out-of-sync occurs, and abandons this positioning.
  • Step 1 The terminal is in the IDLE or INACTIVE uplink positioning process. At this time, the terminal is in the IDLE/INACTIVE state, and the terminal obtains the SRS configuration information configured by the base station and the first path loss threshold LP_Threshold, and is performing uplink SRS transmission.
  • Step 2 When the terminal finds that the uplink is out of synchronization, the terminal directly abandons the current IDLE/INACTIVE positioning and stops sending SRS.
  • Step 3 The terminal notifies the positioning server that the positioning fails this time.
  • the terminal may first notify the base station that the positioning fails this time, and then the base station notifies the positioning server of the positioning failure this time through the NRPPa protocol.
  • the terminal actively initiates random access, and carries the first positioning failure indication in Msg3 or MsgA during the random access process to notify the base station that the positioning fails this time.
  • the terminal actively initiates an RRC establishment procedure or an RRC recovery procedure.
  • the terminal receives the RRC establishment instruction or the RRC recovery instruction from the base station, the terminal enters the connected state, and then sends a positioning failure notification message to inform the base station that the positioning fails this time.
  • the above positioning failure notification message specifically includes:
  • the terminal informs the base station that the current positioning fails through the MAC CE carrying the first positioning failure indication.
  • the terminal informs the base station that the current positioning fails through an RRC message carrying the first positioning failure indication.
  • the terminal directly informs the location server of the location failure through the LPP protocol.
  • Application Scenario 7 The terminal actively judges that uplink out-of-sync occurs, but does not operate and waits for the base station to process.
  • Step 1 The terminal is in the IDLE or INACTIVE uplink positioning process. At this time, the terminal is in the IDLE/INACTIVE state, and the terminal obtains the SRS configuration information configured by the base station and the first path loss threshold LP_Threshold, and is performing uplink SRS transmission.
  • Step 2 When the terminal finds that the uplink is out of synchronization, the terminal stops sending SRS. Subsequently, the terminal side does not perform any operation, waits until the base station detects whether the uplink is out of synchronization with the terminal, and waits for the processing result of the execution base station.
  • Application Scenario 8 The base station determines whether uplink out-of-sync occurs according to whether the SRS is received.
  • the base station preconfigures a maximum reception time T_SRS. If the base station has not received the SRS since the last time the SRS was received until the configured maximum reception time T_SRS exceeds the configured maximum reception time T_SRS, the base station considers that an uplink out-of-synchronization has occurred.
  • the base station If no SRS is received within N consecutive SRS reception times, the base station considers that uplink out-of-synchronization has occurred.
  • Application scenario 9 The base station determines whether uplink out-of-sync occurs based on the path loss threshold.
  • Step 1 The base station preconfigures the second path loss value threshold, which is recorded as LP1_Threshold.
  • Step 2 At time T1, the base station calculates the second received power according to the received SRS, denoted as P_1. Then, at time T1, the second path loss value LP1_1 between the base station and the terminal may be expressed as P_0-P_1, where P_0 is the second transmit power of the SRS.
  • Step 3 The base station compares its second path loss value LP1_1 at time T1 with the size of the second path loss value threshold LP1_Threshold.
  • the uplink is out of synchronization between the terminal and the base station.
  • the terminal and the base station are uplink synchronized.
  • Application scenario 10 The base station determines whether uplink out-of-sync occurs based on the second RSRP threshold.
  • Step 1 The base station preconfigures a second RSRP threshold, denoted as RSRP1_Threshold.
  • Step 2 At time T1, the base station measures the fourth RSRP of the received SRS, which is denoted as RSRP1_1.
  • Step 3 The base station compares its RSRP1_1 at time T1 with the size of the second RSRP threshold RSRP1_Threshold.
  • the uplink is out of synchronization between the terminal and the base station.
  • the terminal and the base station are uplink synchronized.
  • Application scenario 11 The base station determines whether uplink out-of-sync occurs based on the second RSRP variation threshold of the RSRP.
  • Step 1 The base station preconfigures a second RSRP variation threshold of one RSRP, which is denoted as RSRP1_Variable.
  • Step 2 Taking the time when the base station first receives the uplink SRS as the reference time point T0, the fifth RSRP of the uplink SRS measured by the base station at this time is denoted as RSRP1_0.
  • Step 3 At time T1, the base station measures the sixth RSRP of the received SRS, which is denoted as RSRP1_1. Then, within T1-T0, the second RSRP variation of RSRP measured by the base station is RSRP1_1-RSRP1_0.
  • Step 4 The base station compares the values of the second RSRP variation RSRP1_1-RSRP1_0 measured by the base station with the size of the RSRP second RSRP variation threshold RSRP1_Variable.
  • the uplink is out of synchronization between the terminal and the base station.
  • the terminal and the base station are uplink synchronized.
  • Application Scenario 12 The base station actively judges that uplink synchronization has occurred, considers that the positioning fails, and abandons the positioning.
  • Step 1 The terminal is in the process of uplink positioning, and there is no connection between the terminal and the base station at this time.
  • Step 2 When the base station detects that the uplink is out of sync, the base station considers that this positioning fails, and informs the positioning server that this positioning fails through the NRPPa protocol.
  • Step 3 the base station will also notify the terminal in the INACTIVE state that the positioning fails this time. Possible ways include:
  • the base station sends a first paging message to the terminal, and after receiving the paging, the terminal initiates an RRC establishment procedure or an RRC recovery procedure.
  • the terminal enters the connected state after receiving the RRC establishment instruction or recovery instruction from the base station side. After that, the base station sends a message to inform the terminal that the positioning fails. After receiving the positioning failure notification, the terminal stops transmitting the SRS and discards the SRS configuration of the last positioning configuration.
  • the above message specifically includes:
  • the base station informs the terminal that the current positioning fails through the MAC CE carrying the second positioning failure indication.
  • the base station informs the terminal that the current positioning fails through the DCI carrying the second positioning failure indication.
  • the base station informs the terminal that the current positioning fails through an RRC message carrying the second positioning failure indication.
  • the base station carries the second positioning failure indication in the paging message, and after receiving the paging message, the terminal stops transmitting the SRS, and discards the SRS configuration of the last positioning configuration.
  • Step 5 The positioning server may also notify the terminal that the positioning fails this time.
  • the location server after the location server acquires the location failure information, the location server notifies the AMF to initiate core network side paging, and carries the second location failure indication to the terminal in the first paging message, notifying the terminal of the current location failure.
  • the terminal After receiving the corresponding instruction, the terminal stops transmitting the SRS, and discards the SRS configuration of the last positioning configuration.
  • the positioning server may broadcast the pos-SIB and carry the second positioning failure indication to the terminal in the broadcast pos-SIB to notify the terminal of the current positioning failure.
  • the terminal stops transmitting the SRS, and discards the SRS configuration of the last positioning configuration.
  • Application Scenario 13 The base station actively judges that uplink out-of-synchronization occurs, and continues positioning after paging the terminal in the INACTIVE state to enter the connected state.
  • Step 1 The terminal is in the process of uplink positioning, and there is no connection between the terminal and the base station at this time.
  • Step 2 When the base station detects that the uplink is out of synchronization, the base station pages the terminal in the INACTIVE state to enter the connected state.
  • Step 3 After receiving the first paging message, the terminal actively initiates an RRC recovery process.
  • Step 4 When the terminal receives the RRC recovery message sent by the base station, the terminal enters a connected state and re-completes uplink synchronization with the base station. After that, the terminal remains in the connected state and continues to transmit the SRS to complete the subsequent positioning process.
  • an embodiment of the present disclosure provides a terminal, including:
  • memory 401 for storing executable computer programs
  • the processor 402 is used for reading the computer program in the memory 401, and performs the following processes:
  • the terminal When the terminal is in the IDLE state or the INACTIVE state, in the process of transmitting the uplink positioning reference signal SRS to the base station for uplink positioning, acquires the first channel state information of the transmission channel with the base station;
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 402 and various circuits of the memory represented by the memory 401 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • a transceiver may be a number of elements, including a transmitter and a transceiver, that provide a means for communicating with various other devices over a transmission medium.
  • the processor 402 is responsible for managing the bus architecture and general processing, and the memory 401 may store data used by the processor 402 in performing operations.
  • the processor 402 is responsible for managing the bus architecture and general processing, and the memory 401 may store data used by the processor 402 in performing operations.
  • processor 402 is further configured to:
  • the uplink is out of sync with the base station, re-establish synchronization with the base station and continue to transmit the SRS, or determine that the positioning fails and generate a first positioning failure indication, or give up the transmission of the SRS and wait for the processing result of the base station.
  • the processor 402 before acquiring the first channel state information of the transmission channel with the base station, the processor 402 is further configured to:
  • a first channel state threshold corresponding to the transmission channel is acquired, where the first channel state threshold includes at least one of a first path loss threshold, a first RSRP threshold, or a first RSRP variation threshold.
  • the processor 402 is configured to:
  • the first channel state threshold is preconfigured.
  • the processor 402 is configured to:
  • the first path loss value of the transmission channel is obtained, when it is determined that the first path loss value is greater than the first path loss threshold, it is determined that an uplink loss occurs with the base station; or,
  • the first RSRP of the downlink reference signal sent by the base station on the transmission channel is obtained, when it is determined that the first RSRP does not reach the first RSRP threshold, it is determined that uplink out-of-sync occurs with the base station; or,
  • the first RSRP variation of the RSRP of the downlink reference signal sent by the base station on the transmission channel is obtained, when it is determined that the first RSRP variation is greater than the first RSRP variation threshold, it is determined that uplink out-of-sync occurs with the base station.
  • the processor 402 is configured to:
  • a first path loss value of the transmission channel is determined based on the first transmit power and the first receive power.
  • the processor 402 is configured to:
  • the corresponding first RSRP variation is determined based on the second RSRP and the third RSRP.
  • the processor 402 is configured to:
  • the processor 402 is further configured to:
  • the processor 402 is further configured to:
  • the first positioning failure indication is directly sent to the positioning server.
  • the processor 402 is configured to:
  • the first positioning failure indication is sent to the base station through an RRC message or MAC CE.
  • the above-mentioned memory 401 and the processor 402 cooperate with each other to implement any one of the methods performed by the terminal in steps 200 to 201 in the above-mentioned embodiment, and details are not described herein again.
  • an embodiment of the present disclosure provides a base station, including:
  • memory 501 for storing executable computer programs
  • the processor 502 is used for reading the computer program in the memory 501, and performs the following processes:
  • the bus architecture may include any number of interconnected buses and bridges, specifically, one or more processors 502 represented by processor 502 and various circuits of memory 501 represented by memory 501 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • a transceiver may be a number of elements, including a transmitter and a transceiver, that provide a means for communicating with various other devices over a transmission medium.
  • the processor 502 is responsible for managing the bus architecture and general processing, and the memory 501 may store data used by the processor 502 in performing operations.
  • the processor 502 is responsible for managing the bus architecture and general processing, and the memory 501 may store data used by the processor 502 in performing operations.
  • the processor 502 is configured to:
  • the terminal sends a third paging message to the terminal, and the third paging message carries an indication of IDLE or INACTIVE uplink positioning, so that the terminal initiates a random access procedure to obtain the updated timing advance TA value and re-establish synchronization with the base station, and enable the terminal to re-establish synchronization with the base station.
  • the terminal continues to transmit SRS in the INACTIVE state.
  • the processor 502 is configured to:
  • the generated second positioning failure indication is sent to the positioning server, and/or sent to the terminal in the INACTIVE state.
  • the processor 502 is configured to:
  • a fourth paging message carrying the second positioning failure indication is sent to the terminal to notify the terminal that the positioning fails this time, and the terminal does not initiate a random access procedure after receiving the fourth paging message, and continues to maintain the INACTIVE state.
  • processor 502 is further configured to:
  • the second positioning failure instruction is sent to the terminal, wherein the mode of sending the second positioning failure instruction includes any of the following:
  • the second positioning failure indication is carried through the RRC message.
  • the above-mentioned memory 501 and the processor 502 cooperate with each other to implement any one of the methods performed by the base station in steps 300 to 301 in the above-mentioned embodiment, which will not be repeated here.
  • an embodiment of the present disclosure provides a terminal, as shown in FIG. 6 , the terminal includes:
  • the obtaining unit 601 is used for obtaining the first channel state information of the transmission channel with the base station in the process of transmitting the uplink positioning reference signal SRS to the base station for uplink positioning when in the IDLE state or the INACTIVE state;
  • the judgment unit 602 is configured to judge the synchronization state with the base station based on the first channel state information.
  • the foregoing obtaining unit 601 and the judging unit 602 cooperate with each other to implement any one of the methods performed by the terminal in steps 200 to 201 in the foregoing embodiment, which will not be repeated here.
  • an embodiment of the present disclosure provides a base station, as shown in FIG. 7 , the base station includes:
  • Judging unit 701 for judging the synchronization state with the terminal in the process of receiving the SRS sent by the terminal in the IDLE state or the INACTIVE state;
  • the processing unit 702 is configured to re-establish synchronization with the terminal in the INACTIVE state to continue to receive the SRS transmitted by the terminal if it is determined that an uplink out-of-sync occurs with the terminal, or determine that the positioning fails and generate a second positioning failure indication.
  • the above judging unit 701 and the processing unit 702 cooperate with each other to implement any one of the methods performed by the base station in steps 300 to 301 in the above embodiment, which will not be repeated here.
  • an embodiment of the present disclosure provides a computer-readable storage medium, which enables the processor to execute a method executed by a terminal when an instruction in the storage medium is executed by a processor.
  • an embodiment of the present disclosure provides a computer-readable storage medium, which enables the processor to execute the method executed by the base station when the instructions in the storage medium are executed by the processor.
  • the terminal or the base station in the process of transmitting the SRS to the base station for uplink positioning by the terminal in the IDLE state or the INACTIVE state, can obtain the channel state information of the transmission channel between the terminal and the base station, and based on the channel Status information to detect the synchronization status between the terminal and the base station that are in the IDLE state or INACTIVE state uplink positioning, and when the uplink is detected out of synchronization, the terminal or the base station can take corresponding processing methods to continue to ensure the subsequent IDLE. /INACTIVE positioning process.
  • embodiments of the present disclosure may be provided as a method, a system, or a computer program product system. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product system implemented on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, CD-ROM, optical storage, and the like.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及通信领域,公开了一种同步状态的处理方法、设备及存储介质,该方法为:处于IDLE态或INACTIVE态的终端向基站传输SRS进行上行定位的过程中,终端或者基站能够获取终端与基站间的传输信道的信道状态信息,并基于信道状态信息来对正在进行IDLE态或INACTIVE态上行定位的终端与基站之间的同步状态进行检测,以及当检测到上行失步时,终端或基站均可采取相应的处理途径来继续保障后续的IDLE/INACTIVE定位流程。

Description

一种同步状态的处理方法、设备及存储介质
相关申请的交叉引用
本公开要求在2021年01月08日提交中国专利局、申请号为202110024676.4、申请名称为“一种同步状态的处理方法、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信技术,特别涉及一种同步状态的处理方法、设备及存储介质。
背景技术
上行同步是指一个小区中使用同一时隙的不同位置的各个终端的上行信号同时到达基站接收天线的过程,即同一时隙不同终端的信号到达基站接收天线时保持同步,其目的是为了减少小区终端间的上行多址干扰和多径干扰,增加小区容量和小区半径。
终端在未接入网络时只能通过发起随机接入(Random Access Channel,RACH)过程来与网络建立连接,并在该过程中实现上行同步。当终端接入网络后,基站可以基于测量终端的上行传输来确定每个终端的TA值,并且,当某个终端需要校准其上行同步时,基站会发送一个定时提前命令(Timing Advance Command,TAC)给该终端,要求其调整上行传输时刻。
上行定位机制中的一个关键是要维持上行同步以保障上行定位参考信号(Sounding Reference Signal,SRS)传输,否则,终端发送的SRS不能被服务基站和其它发送接收点(Transmission Reception Point,TRP)正确接收和进行测量,从而导致定位精度下降甚至定位失败。R16中引入了RAT相关的上行定位方法,包括上行到达时差(Uplink Time Difference of Arrival,UL-TDOA)和上行到达角度(Uplink Angle of Arrival,UL-AOA)。此外,R16中还引入了RAT相关的上下行定位方法,即多小区往返时间定位(Multi-RTT)。在这些定位方法中,服务基站和多个TRP会基于从定位服务器(Location Management Function,LMF)获取的辅助数据信息对终端传输的SRS进行接收和测量,包括针对到达角度(Angle of Arrival,A-AoA),最大到达角度(Zenith Angle of Arrival,Z-AoA),上行相对到达时间(Uplink Relative Time of Arrival,RTOA)以及参考信号接收功率(Reference Signal Receiving Power,RSRP)的测量。服务基站和多个TRP会将其测量结果传递给LMF,由LMF基于SRS测量结果和其它配置信息来进行最终的位置计算。
然而,随着5G时代的到来,R17标准也得以应用。R17标准中引入了空闲态/非激活 态(IDLE态或INACTIVE态)定位,从而降低设备功耗,增加网络中最大可接入的定位业务数量,进而提高网络效率。但是,在IDLE态或INACTIVE态上行定位中,终端与网络之间没有连接,在这种情况下,无法确定上行定位机制中的终端与网络之间是否保持上行同步,以及无法确定上行失步后,如何继续保障SRS的可靠传输。
发明内容
本公开实施例提供一种同步状态的处理方法、设备及存储介质,可以用以判断正在进行IDLE态或INACTIVE态上行定位的终端与基站之间是否发生上行失步,并在检测到上行失步时采取相应的处理途径以保障定位过程的进行。
本公开提供的具体技术方案如下:
第一方面,一种同步状态的处理方法,包括:
处于空闲IDLE态或非激活INACTIVE态的终端向基站传输上行定位参考信号SRS进行上行定位的过程中,获取与基站间的传输信道的第一信道状态信息;
终端基于第一信道状态信息判断与基站之间的同步状态。
可选地,还包括:
若终端确定与基站发生上行失步,则重新与基站建立同步并继续传输SRS,或者,判定定位失败并生成第一定位失败指示,或者,放弃传输SRS并等待执行基站的处理结果。
可选地,终端获取与基站间的传输信道的第一信道状态信息之前,还包括:
终端获取传输信道对应的第一信道状态阈值,其中,第一信道状态阈值包括第一路径损耗阈值、第一参考信号接收功率RSRP阈值或第一RSRP变化量阈值中的至少一种。
可选地,终端获取传输信道的第一信道状态阈值,包括:
终端在从连接态转换到IDLE态或INACTIVE态之前,从基站下发的RRC信息中获取预先配置的第一信道状态阈值;或者,
终端预先配置第一信道状态阈值。
可选地,终端获取与基站间的传输信道的第一信道状态信息,并基于第一信道状态信息判断与基站之间的同步状态,包括:
若终端获得传输信道的第一路径损耗值,则在判定第一路径损耗值大于第一路径损耗阈值时,确定与基站之间发生上行失步;或者,
若终端获得基站在传输信道上,发送的下行参考信号的第一RSRP,则在判定第一RSRP未达到第一RSRP阈值时,确定与基站之间发生上行失步;或者,
若终端获得基站在传输信道上,发送的下行参考信号的RSRP的第一RSRP变化量, 则在判定第一RSRP变化量大于第一RSRP变化量阈值时,确定与基站之间发生上行失步。
可选地,终端获得传输信道的第一路径损耗值,包括:
终端确定基站在传输信道上发出的下行参考信号的第一发送功率;
终端确定在传输信道上接收到的下行参考信号的第一接收功率;
终端基于第一发送功率与第一接收功率确定传输信道的第一路径损耗值。
可选地,终端获得基站在传输信道上,发送的下行参考信号的RSRP的第一RSRP变化量,包括:
终端在第一时刻确定基站在传输信道上发出的下行参考信号的第二RSRP,其中,第一时刻为开始向基站传输SRS的时刻;
终端在第二时刻确定基站在传输信道上发出的下行参考信号的第三RSRP,其中,第二时刻为第一时刻之后的任一时刻;
终端基于第二RSRP与第三RSRP确定相应的第一RSRP变化量。
可选地,终端重新与基站建立同步并继续传输SRS,包括:
终端向基站发起随机接入过程并获取更新的定时提前TA值,以重新与基站建立同步,并在建立同步之后,继续传输SRS,其中,终端在随机接入过程中不进入连接态;或者,
终端与基站建立连接后,继续传输SRS。
可选地,终端判定定位失败之后,还包括:
终端执行以下操作中的至少一个:
终端停止传输SRS;
终端丢弃SRS配置信息。
可选地,终端判定定位失败并生成第一定位失败指示之后,还包括:
终端将第一定位失败指示发送给基站,以使基站将第一定位失败指示发往定位服务器;或者,
终端直接将第一定位失败指示发送给定位服务器。
可选地,终端将第一定位失败指示发送给基站,包括:
终端向基站发起随机接入过程,并将第一定位失败指示携带在随机接入过程中的四步随机接入过程消息3Msg3或两步随机接入过程消息A MsgA中,发送至基站,其中,终端在随机接入过程中不进入连接态;或者,
终端与基站建立连接后通过RRC消息或媒体接入控制层控制单元MAC CE将第一定位失败指示发送至基站。
第二方面,一种同步状态的处理方法,包括:
基站在接收终端发送的上行定位参考信号SRS的过程中判断与终端之间的同步状态,其中,终端处于空闲/非激活IDLE态或INACTIVE态;
若确定与终端发生上行失步,则基站重新与处于INACTIVE态的终端建立同步以继续接收终端传输的SRS,或者,判定定位失败并生成第二定位失败指示。
可选地,基站重新与处于INACTIVE态的终端建立同步以继续接收终端传输的SRS,包括:
基站与终端建立连接后,继续接收终端传输的SRS;或者,
基站向终端发送第一寻呼消息,在第一寻呼消息中携带基站更新的定时提前TA值,以使终端基于接收到的TA值与基站重新建立同步,以及使终端在接收到第一寻呼消息后不发起随机接入过程,并继续维持在INACTIVE态传输SRS;或者,
基站向终端发送第二寻呼消息,以使终端发起随机接入过程,并获取更新后的定时提前TA值与基站重新建立同步,并且,基站下发RRC释放指示,以使终端继续维持在INACTIVE态传输SRS;或者,
基站向终端发送第三寻呼消息,在第三寻呼消息中携带进行IDLE或INACTIVE上行定位的指示,以使终端发起随机接入过程获取更新后的定时提前TA值与基站重新建立同步,且使终端继续维持在INACTIVE态传输SRS。
可选地,基站判定本次定位失败并生成第二定位失败指示之后,包括:
基站将生成的第二定位失败指示发送给定位服务器,和/或,发送给处于INACTIVE态的终端。
可选地,基站将第二定位失败指示发送给处于INACTIVE态的终端,包括:
基站与终端建立连接后,将第二定位失败指示发送给终端,以通知终端定位失败;或者,
基站向终端发送携带第二定位失败指示的第四寻呼消息,以通知终端本次定位失败,以及使终端在接收到第四寻呼消息后不发起随机接入过程,并继续维持在INACTIVE态。
可选地,还包括:
基站与终端建立连接后,将第二定位失败指示发送给终端,其中,基站发送第二定位失败指示的方式包括以下任意一种:
基站通过MAC CE携带第二定位失败指示;
基站通过下行控制信息DCI携带第二定位失败指示;
基站通过RRC消息携带第二定位失败指示。
第三方面,一种终端,包括:
存储器,用于存储可执行计算机程序;
处理器,用于读取存储器中的计算机程序,执行下列过程:
在终端处于空闲IDLE态或非激活INACTIVE态时向基站传输上行定位参考信号SRS进行上行定位的过程中,获取与基站间的传输信道的第一信道状态信息;
基于第一信道状态信息判断与基站之间的同步状态。
可选地,处理器还用于:
若确定与基站发生上行失步,则重新与基站建立同步并继续传输SRS,或者,判定定位失败并生成第一定位失败指示,或者,放弃传输SRS并等待执行基站的处理结果。
可选地,获取与基站间的传输信道的第一信道状态信息之前,处理器还用于:
获取传输信道对应的第一信道状态阈值,其中,第一信道状态阈值包括第一路径损耗阈值、第一参考信号接收功率RSRP阈值或第一RSRP变化量阈值中的至少一种。
可选地,获取传输信道的第一信道状态阈值,处理器用于:
在从连接态转换到空闲IDLE态或非激活INACTIVE态之前,从基站下发的RRC中获取预先配置的第一信道状态阈值;或者,
预先配置第一信道状态阈值。
可选地,获取与基站间的传输信道的第一信道状态信息,并基于第一信道状态信息判断与基站之间的同步状态,处理器用于:
若获得传输信道的第一路径损耗值,则在判定第一路径损耗值大于第一路径损耗阈值时,确定与基站之间发生上行失步;或者,
若获得基站在传输信道上,发送的下行参考信号的第一RSRP,则在判定第一RSRP未达到第一RSRP阈值时,确定与基站之间发生上行失步;或者,
若获得基站在传输信道上,发送的下行参考信号的RSRP的第一RSRP变化量,则在判定第一RSRP变化量大于第一RSRP变化量阈值时,确定与基站之间发生上行失步。
可选地,获得传输信道的第一路径损耗值,处理器用于:
确定基站在传输信道上发出的下行参考信号的第一发送功率;
确定在传输信道上接收到的下行参考信号的第一接收功率;
基于第一发送功率与第一接收功率确定传输信道的第一路径损耗值。
可选地,获得基站在传输信道上,发送的下行参考信号的RSRP的第一RSRP变化量,处理器用于:
在第一时刻确定基站在传输信道上发出的下行参考信号的第二RSRP,其中,第一时刻为开始向基站传输SRS的时刻;
在第二时刻确定基站在传输信道上发出的下行参考信号的第三RSRP,其中,第二时刻为第一时刻之后的任一时刻;
基于第二RSRP与第三RSRP确定相应的第一RSRP变化量。
可选地,重新与基站建立同步并继续传输SRS,处理器用于:
向基站发起随机接入过程并获取更新的定时提前TA值,以重新与基站建立同步,并在建立同步之后,继续传输SRS,其中,终端在随机接入过程中不进入连接态;或者,
与基站建立连接后,继续传输SRS。
可选地,判定定位失败之后,处理器还用于:
执行以下操作中的至少一个:
停止传输SRS;
丢弃SRS配置信息。
可选地,判定定位失败并生成第一定位失败指示之后,处理器还用于:
将第一定位失败指示发送给基站,以使基站将第一定位失败指示发往定位服务器;或者,
直接将第一定位失败指示发送给定位服务器。
可选地,将第一定位失败指示发送给基站,处理器用于:
向基站发起随机接入过程,并将第一定位失败指示携带在随机接入过程中的随机接入过程消息3Msg3或随机接入过程消息A MsgA中,发送至基站,其中,终端在随机接入过程中不进入连接态;或者,
与基站建立连接后通过RRC消息或媒体接入控制层控制单元MAC CE将第一定位失败指示发送至基站。
第四方面,一种基站,包括:
存储器,用于存储可执行计算机程序;
处理器,用于读取存储器中的计算机程序,执行下列过程:
在接收处于空闲IDLE态或非激活INACTIVE态的终端发送的上行定位参考信号SRS的过程中判断与终端之间的同步状态;
若确定与终端发生上行失步,则重新与处于INACTIVE态的终端建立同步以继续接收终端传输的SRS,或者,判定定位失败并生成第二定位失败指示。
可选地,重新与处于INACTIVE态的终端建立同步以继续接收终端传输的SRS,处理器用于:
与终端建立连接后,继续接收终端传输的SRS;或者,
向终端发送第一寻呼消息,在第一寻呼消息中携带基站更新的定时提前TA值,以使终端基于接收到的TA值与基站重新建立同步,以及使终端在接收到第一寻呼消息后不发起随机接入过程,并继续维持在INACTIVE态传输SRS;或者,
向终端发送第二寻呼消息,以使终端发起随机接入过程,并获取更新后的定时提前TA值与基站重新建立同步,并且,下发RRC释放指示,以使终端继续维持在INACTIVE态传输SRS;或者,
向终端发送第三寻呼消息,在第三寻呼消息中携带进行IDLE或INACTIVE上行定位的指示,以使终端发起随机接入过程获取更新后的定时提前TA值与基站重新建立同步,且使终端继续维持在INACTIVE态传输SRS。
可选地,判定本次定位失败并生成第二定位失败指示之后,处理器用于:
将生成的第二定位失败指示发送给定位服务器,和/或,发送给处于INACTIVE态的终端。
可选地,将第二定位失败指示发送给处于INACTIVE态的终端,处理器用于:
与终端建立连接后,将第二定位失败指示发送给终端,以通知终端定位失败;或者,
向终端发送携带第二定位失败指示的第四寻呼消息,以通知终端本次定位失败,以及使终端在接收到第四寻呼消息后不发起随机接入过程,并继续维持在INACTIVE态。
可选地,处理器还用于:
与终端建立连接后,将第二定位失败指示发送给终端,其中,基站发送第二定位失败指示的方式包括以下任意一种:
通过MAC CE携带第二定位失败指示;
通过下行控制信息DCI携带第二定位失败指示;
通过RRC消息携带第二定位失败指示。
第五方面,一种终端,包括:
获取单元,用于在处于空闲IDLE态或非激活INACTIVE态时向基站传输上行定位参考信号SRS进行上行定位的过程中,获取与基站间的传输信道的第一信道状态信息;
判断单元,用于终端基于第一信道状态信息判断与基站之间的同步状态。
第六方面,一种基站,包括:
判断单元,用于在接收处于空闲IDLE态或非激活INACTIVE态的终端发送的上行定位参考信号SRS的过程中判断与终端之间的同步状态;
处理单元,若确定与终端发生上行失步,则基站重新与处于INACTIVE态的终端建立同步以继续接收终端传输的SRS,或者,判定定位失败并生成第二定位失败指示。
第七方面,一种计算机可读存储介质,当存储介质中的指令由处理器执行时,使得处理器能够执行上述第一方面中任一项所述的方法。
第八方面,一种计算机可读存储介质,当存储介质中的指令由处理器执行时,使得处理器能够执行上述第二方面中任一项所述的方法。
综上所述,本公开实施例中,处于IDLE态或INACTIVE态的终端向基站传输SRS进行上行定位的过程中,终端或者基站能够获取终端与基站间的传输信道的信道状态信息,并基于信道状态信息来对正在进行IDLE态或INACTIVE态上行定位的终端与基站之间的同步状态进行检测,以及当检测到上行失步时,终端或基站均可采取相应的处理途径来继续保障后续的IDLE/INACTIVE定位流程。
附图说明
图1为本公开实施例中的上行定位系统的架构示意图;
图2为本公开实施例中一种终端进行同步检测的流程示意图;
图3为本公开实施例中一种基站进行同步检测的流程示意图;
图4为本公开实施例中一种终端的实体架构示意图;
图5为本公开实施例中一种基站的实体架构示意图;
图6为本公开实施例中一种终端的逻辑架构示意图;
图7为本公开实施例中一种基站的逻辑架构示意图。
具体实施方式
为了使本领域普通人员更好地理解本公开的技术方案,下面将结合附图,对本公开实施例中的技术方案进行清楚、完整地描述。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致装置和方法的例子。
终端在未接入网络时只能通过发起随机接入过程(四步随机接入过程或两步随机接入过程)来与网络建立连接,并可以在该过程中实现上行同步。
针对四步随机接入过程,终端在四步随机接入过程的四步随机接入过程消息1(Msg1) 中发送随机接入前导码给基站,基站通过测量接收到的随机接入前导码来确定定时提前(Timing Advance,TA)值,并通过四步随机接入过程中的四步随机接入过程消息2(Msg2)来告知终端其TA值定时的调整值,从而实现终端与网络之间的上行同步。处于IDLE态或INACTIVE态的终端要接入网络时,还会在四步随机接入过程消息3(Msg3)中携带无线资源控制(Radio Resource Control,RRC)建立请求或RRC恢复请求消息给网络侧。当终端收到网络侧下发的四步随机接入过程消息4(Msg4)中携带的RRC建立或RRC恢复消息后,会返回RRC建立完成或RRC恢复完成消息给网络侧,并进入连接态,也即与网络之间建立连接。
针对两步随机接入过程,终端在两步随机接入过程的MsgA中发送随机接入前导码给基站,基站通过测量接收到的随机接入前导码来确定定时提前(Timing Advance,TA)值,并通过两步随机接入过程中的两步随机接入过程消息B(MsgB)来告知终端其TA值定时的调整值,从而实现终端与网络之间的上行同步。此外,处于IDLE态或INACTIVE态的终端要接入网络时,还会在两步随机接入过程消息A(MsgA)中携带RRC建立请求或RRC恢复请求消息给网络侧。当终端收到网络侧下发的MsgB中携带的RRC建立或RRC恢复消息后,会返回RRC建立完成或RRC恢复完成消息给网络侧,并进入连接态,也即与网络之间建立连接。
当终端接入网络后,基站可以基于测量终端的上行传输来确定每个终端的TA值,并且,当某个终端需要校准其上行同步时,基站会发送一个TAC给该终端,要求其调整上行传输时刻。
上行定位机制中的一个关键是要维持上行同步以保障SRS传输,否则,终端发送的SRS不能被服务基站和其它TRP正确接收和进行测量,从而导致定位精度下降甚至定位失败。R16中引入了RAT相关的上行,以及上下行定位方法,包括上行到达时差(Uplink Time Difference of Arrival,UL-TDOA),上行到达角度(Uplink Angle of Arrival,UL-AOA)和多小区往返时间定位(Multi-RTT)。参见图1所示,上述这两种定位方法对应的系统架构中至少包括终端、基站和定位服务器。定位过程中,首先,基站(例如,服务基站和多个TRP)会基于从LMF获取的辅助数据信息对终端传输的SRS进行接收和测量,包括针对A-AoA,Z-AoA,RTOA以及RSRP的测量。之后,基站会将其测量结果传递给LMF,由LMF基于SRS测量结果和其它配置信息来进行最终的位置计算。
下面结合附图对本公开优选的实施方式作出进一步详细说明。
本公开实施例中,同步状态的处理方法的实现,主要分为终端侧和基站侧两种,下面分别进行介绍。
终端侧:处于IDLE态或INACTIVE态的终端向基站传输SRS的过程中,由终端检测与基站的同步状态,终端检测的依据是第一信道状态信息,即基站发出的下行参考信号在信道中的传输情况。
基站侧:处于IDLE态或INACTIVE态的终端向基站传输SRS的过程中,由基站检测与终端的同步状态,基站检测的依据是第二信道状态信息,即终端发出的SRS在信道中的传输情况。
下面先介绍终端侧即由终端检测与基站的同步状态的情况。参阅图2所示,本公开实施例中,终端进行同步状态的检测的具体流程如下:
步骤200:处于IDLE态或INACTIVE态的终端向基站传输SRS进行上行定位的过程中,获取与基站间的传输信道的第一信道状态信息。
在上行定位的过程中,为了降低设备功耗,增加网络中最大可接入的定位业务数量,进一步提高网络效率,R17中引入了IDLE态或INACTIVE态定位,终端处于IDLE态或INACTIVE态时与基站没有连接。在这种情况下,终端如何维持与基站之间的上行同步以保障SRS的传输是上行IDLE态或INACTIVE态定位的一个关键问题。
在此,需要补充说明的是,终端与基站之间的路径(即传输信道)是确定的。
另外,在考虑传输信道对传输SRS的影响时,需要先获取传输信道对应的第一信道状态阈值,即获得比对标准。具体的,在实施过程中,终端获取与基站间的传输信道的第一信道状态信息之前,还包括:终端获取传输信道对应的第一信道状态阈值,其中,第一信道状态阈值包括第一路径损耗阈值、第一参考信号接收功率RSRP阈值或第一RSRP变化量阈值中的至少一种。
在此需要进一步说明的是,上述第一信道状态阈值的获取方式包括:
第一种方式:终端在从连接态转换到IDLE态或INACTIVE态之前,从基站下发的RRC信息中获取预先配置的第一信道状态阈值。在这种方式中,第一信道状态阈值包括在该获取到的RRC信息中,并由基站下发。相应的,终端在获取到该RRC信息后,从该RRC信息中获得第一信道状态阈值。
终端获取到的该RRC信息可以是一条只包含第一信道状态阈值的第一信道阈值配置信息,或者是包含了第一信道状态阈值以及SRS配置的SRS配置信息。
基站预先配置该阈值时可以是基于自身的信号覆盖情况和基站中存储的UE上下文信息来配置。
第二种方式:终端预先配置第一信道状态阈值。
在这种方式中,终端可以基于自身的算法预先配置第一信道状态阈值。
实际应用中,传输信道分为时分复用和频分复用两种。
本公开实施例中,为了减小对传输的SRS的影响,可选的,可以将上述传输信道理解为时分复用的传输信道,即在某一时段,终端通过该传输信道向基站发送SRS;在另一时段,基站通过该传输信道向终端发送下行参考信号,即传输信道对传输SRS的影响可通过下行参考信号的传输情况获得。
在实施过程中,传输信道对传输SRS的影响统一以第一信道状态信息来表示,终端获得传输信道的第一信道状态信息,在此基础上,终端继续判断与基站之间的同步状态。
步骤201:终端基于第一信道状态信息判断与基站之间的同步状态。
具体的,执行步骤201时,可以采用以下任意一种方式:
方式11:终端获取传输信道的第一路径损耗值,若第一路径损耗值大于设定的第一路径损耗阈值,则确定与基站之间发生上行失步。
首先,这里需要说明的是,终端获取传输信道的第一路径损耗值之前,终端获取第一路径损耗阈值,该第一路径损耗阈值是终端判断与基站是否发生上行失步的一个临界值。
第一路径损耗阈值的获取包括以下两种情况:
第一种情况:终端获取基站预先配置的第一路径损耗阈值。
在这种情况中,基站先基于基站自身的信号覆盖情况和终端的上下文信息为终端配置第一路径损耗阈值。
当基站配置第一路径损耗阈值后,将第一路径损耗阈值下发给终端,具体实现方式如下:
可选地,基站下发第一信道状态阈值配置信息给终端,其中包含基站预先为终端配置的第一路径损耗阈值。
可选地,基站下发SRS配置信息给终端,其中包含基站预先为终端配置的第一路径损耗阈值以及SRS配置。
第二种情况:终端预先配置第一路径损耗阈值。
在这种情况中,终端可基于自身的算法来预先配置第一路径损耗阈值。
在实施过程中,终端可以通过第一种情况或者第二种情况来获取设定的第一路径损耗阈值,并将该第一路径损耗阈值作为比较标准,来进一步判断与基站之间是否发生上行失步。
其次,终端获得传输信道的第一路径损耗值。
具体包括:
步骤a:终端确定基站在传输信道上发出的下行参考信号的第一发送功率。
这里,下行参考信号可以为同步信号块(Synchronization Signal and PBCH block,SSB)、下行定位参考信号(Positioning Reference Signal,PRS)等中的任意一种信号。基站向终端发送下行参考信号,该下行参考信号经过传输信道的传输到达终端,进而使终端获取到传输信道的信道状态信息。
这里第一信道状态信息是通过测量下行参考信号在传输信道的功率衰减获取的。因此,在该步骤中,终端先要获取下行参考信号在基站发出时的第一发送功率,即下行参考信号的初始功率,需要说明的是,上述第一发送功率是终端从基站获取到的,无需测量。
步骤b:终端确定在传输信道上接收到的下行参考信号的第一接收功率。
当下行参考信号经过传输信道的传输到达终端后,终端接收该下行参考信号并测量接收到的下行参考信号的第一接收功率。
步骤c:终端基于第一发送功率与第一接收功率确定传输信道的第一路径损耗值。
考虑到传输信道对信号的衰减影响,上述第一接收功率会与第一发送功率有差异,在此基础上,终端会根据第一发送功率与第一接收功率确定传输信道的第一路径损耗值,例如,将第一接收功率会与第一发送功率进行减法或者除法运算。
最后,终端在获得第一路径损耗值后,比较第一路径损耗值与设定的第一路径损耗阈值之间的大小,即在第一路径损耗值大于设定的第一路径损耗阈值时,确定与基站之间发生上行失步;在第一路径损耗值小于或者等于设定的第一路径损耗阈值时,确定与基站之间发生上行同步。
方式12:终端获得基站在传输信道上,发送的下行参考信号的RSRP,若第一RSRP未超过设定的第一RSRP阈值,则确定与基站之间发生上行失步。
首先,终端获取第一RSRP阈值,该第一RSRP阈值是终端判断与基站是否发生上行失步的一个临界值。
第一RSRP阈值的获取包括以下两种情况:
第一种情况:终端获取基站预先配置的第一RSRP阈值。
在这种情况中,基站先基于基站自身的信号覆盖情况和终端的上下文信息为终端配置第一RSRP阈值。
当基站配置第一RSRP阈值后,将第一RSRP阈值下发给终端,具体实现方式如下:
可选地,基站下发第一信道状态阈值配置信息给终端,其中包含基站预先为终端配置的第一RSRP阈值。
可选地,基站下发SRS配置信息给终端,其中包含基站预先为终端配置的第一RSRP阈值以及SRS配置。
第二种情况:终端预先配置第一RSRP阈值。
在这种情况中,终端可基于自身的算法来预先配置第一RSRP阈值。
在实施过程中,终端可以通过第一种情况或者第二种情况来获取设定的第一RSRP阈值,并将该第一RSRP阈值作为比较标准,来进一步判断与基站之间是否发生上行失步。
其次,终端获得基站在传输信道上,发送的下行参考信号的RSRP。
具体包括:终端测量基站发送的SSB或者PRS等信号的参考信号接收功率。
最后,终端在获得第一RSRP后,比较第一RSRP与设定的第一RSRP阈值之间的大小,即在第一RSRP未超过设定的第一RSRP阈值时,确定与基站之间发生上行失步;在第一RSRP小于设定的第一RSRP阈值时,确定与基站之间发生上行同步。
方式13:终端获得基站在传输信道上,发送的下行参考信号的第一RSRP变化量,若第一RSRP变化量大于设定的第一RSRP变化量阈值,则确定与基站之间发生上行失步。
首先,终端获取第一RSRP变化量阈值,该第一RSRP变化量阈值是终端判断与基站是否发生上行失步的一个临界值,第一RSRP变化量阈值的获取包括以下两种情况:
第一种情况:终端获取基站预先配置的第一RSRP变化量阈值。
在这种情况中,基站先基于基站自身的信号覆盖情况和终端的上下文信息为终端配置第一RSRP变化量阈值。
当基站配置第一RSRP变化量阈值后,将第一RSRP变化量阈值下发给终端,具体实现方式如下:
可选地,基站下发第一信道状态阈值配置信息给终端,其中包含基站预先为终端配置的第一RSRP变化量阈值。
可选地,基站下发SRS配置信息给终端,其中包含基站预先为终端配置的第一RSRP变化量阈值以及SRS配置。
第二种情况:终端预先配置第一RSRP变化量阈值。
在这种情况中,终端可基于自身的算法来预先配置第一RSRP变化量阈值。
在实施过程中,终端可以通过第一种情况或者第二种情况来获取设定的第一RSRP变化量阈值,并将该第一RSRP变化量阈值作为比较标准,来进一步判断与基站之间是否发生上行失步。
其次,终端获得基站在传输信道上,发送的下行参考信号的RSRP的第一RSRP变化量。
具体包括:
步骤a:终端在第一时刻确定基站在传输信道上发出的下行参考信号的第二RSRP,其 中,第一时刻为开始向基站传输SRS的时刻。
这里,下行参考信号可以为SSB、PRS等中的任意一种信号。基站向终端发送下行参考信号,该下行参考信号经过传输信道的传输到达终端,进而使终端获取到传输信道的第一信道状态信息。
这里第一信道状态信息是通过测量下行参考信号在传输信道的参考信号接收功率变化量获取的。因此,在该步骤中,终端先要在第一时刻获取基站在传输信道上发出的下行参考信号的第二RSRP,即下行参考信号的参考信号接收功率。这里强调,第一时刻为开始向基站传输SRS的时刻,通常,在首次向基站传输SRS时终端同时获取下行参考信号的第二RSRP。
步骤b:终端在第二时刻确定基站在传输信道上发出的下行参考信号的第三RSRP,其中,第二时刻为第一时刻之后的任一时刻。
当下行参考信号在传输信道中传输时,终端在第二时刻获取基站在传输信道上发出的下行参考信号的第三RSRP。为了与步骤a中的参考信号接收功率进行区分,这里强调,第二时刻为第一时刻之后的任一时刻,即下行参考信号在传输信道传输了一段时间(即第二时刻与第一时刻差值对应的时间)后,再次获取下行参考信号的第三RSRP。
步骤c:终端基于第二RSRP与第三RSRP确定相应的第一RSRP变化量。
考虑到传输信道对信号的衰减影响,上述第三RSRP会与第二RSRP有差异,在此基础上,终端会根据第二RSRP与第三RSRP确定传输信道的第一RSRP变化量,例如,将第三RSRP会与第二RSRP进行减法运算。
最后,终端在获得第一RSRP变化量后,比较第一RSRP变化量与设定的第一RSRP变化量阈值之间的大小,即在第一RSRP变化量大于设定的第一RSRP变化量阈值时,确定与基站之间发生上行失步;在第一RSRP变化量小于或者等于设定的第一RSRP变化量阈值时,确定与基站之间发生上行同步。
当终端采用上述方式11、方式12或者方式13确定与基站发生上行失步后,继续对上行失步进行处理。
若终端确定与基站发生上行失步,则重新与基站建立同步并继续传输SRS,或者,判定定位失败并生成第一定位失败指示,或者,放弃传输SRS并等待执行基站的处理结果。
具体实施中,上述处理过程可以通过但不限于途径一、途径二或者途径三来实现。
途径一:终端重新与基站建立同步并继续传输SRS。
方式a:终端向基站发起随机接入过程并获取更新的定时提前TA值,以重新与基站建立同步,并在建立同步之后,继续传输SRS,其中,终端在随机接入过程中不进入连接态。
实施过程中,当终端确定与基站上行失步后,终端停止发送SRS,并主动向基站发起随机接入过程(四步随机接入过程或两步随机接入过程),以与基站进行同步,需要说明的是,这里的随机接入过程不使终端进入连接态。终端可以通过随机接入过程中的Msg2或MsgB获取更新的TA值,并基于TA值,重新与基站建立同步。当终端与基站之间重新完成同步后,继续传输SRS,并在IDLE态或INACTIVE态进行后续的定位流程。
需要进一步说明的是,针对四步随机接入过程,为了保障终端不与基站之间建立连接,包括以下两种操作中的任一种:
情况1:终端在Msg2中获取到更新的TA值后,会放弃进行后续的四步随机接入过程,也即放弃传输Msg3;
情况2:终端在后续的Msg3中不携带RRC建立请求或RRC恢复请求消息。
需要进一步说明的是,针对两步随机接入过程,为了保障终端不与基站之间建立连接:
终端在MsgA中不携带RRC建立请求或RRC恢复请求消息。
方式b:终端与基站建立连接后,继续传输SRS。
当终端确定与基站上行失步后,终端停止发送SRS,并主动向基站发起RRC建立流程或RRC恢复流程,以重新与基站进行同步。当终端收到基站的RRC建立指示或RRC恢复指示后,终端进入连接态继续传输SRS,以完成后续定位流程。
终端采用方式a或者方式b中的任一种与基站重新建立同步后继续传输SRS,完成后续定位流程。
途径二:终端判定定位失败并生成第一定位失败指示。
需要说明的是,上述终端判定定位失败之后,终端还会执行以下操作中的至少一个:终端停止传输SRS;以及,终端丢弃SRS配置信息。
上述终端停止传输SRS,即终端确定与基站上行失步后不再继续传输当前的SRS,这样基站也无法接收到该SRS。
上述终端丢弃SRS配置信息,即终端确定与基站上行失步后丢弃SRS配置信息。
并且,终端生成第一定位失败指示,具体的,终端确定与基站上行失步后,生成第一定位失败指示,并放弃本次在IDLE态或INACTIVE态定位流程。
具体的,终端判定定位失败并生成第一定位失败指示之后,可以按照以下任意一种方式发送第一定位失败指示给定位服务器以结束该定位流程:
方式1:终端将第一定位失败指示发送给基站,之后基站将第一定位失败指示发往定位服务器以通知定位服务器定位失败,结束该定位流程。
实施过程中,终端将第一定位失败指示发送给基站,通知基站本次定位失败,具体可 采用下述(1)或者(2)来实现:
(1)终端向基站发起随机接入过程,并将第一定位失败指示携带在随机接入过程中的Msg3或MsgA中,发送至基站,其中,终端在随机接入过程中不进入连接态。
实施过程中,终端向基站发起随机接入过程,并在随机接入过程中的Msg3或MsgA携带第一定位失败指示,通知基站本次定位失败。其中,终端在随机接入过程中不进入连接态。
需要进一步说明的是,针对四步随机接入过程,为了保障终端不与基站之间建立连接:
终端在后续的Msg3中不携带RRC建立请求或RRC恢复请求消息。
需要进一步说明的是,针对两步随机接入过程,为了保障终端不与基站之间建立连接:
终端在MsgA中不携带RRC建立请求或RRC恢复请求消息。
(2)终端与基站建立连接后通过RRC消息或媒体接入控制层控制单元(Media Access Control control plane,MAC CE)将第一定位失败指示发送至基站。
具体的,终端向基站发起RRC建立流程或RRC恢复流程,与基站建立连接之后,通过RRC消息或MAC CE将第一定位失败指示发送至基站。
实施过程中,终端向基站主动发起RRC建立流程或RRC恢复流程,当终端收到基站的RRC建立指示或RRC恢复指示后,终端进入连接态,即与基站建立连接之后,再通过RRC消息或MAC CE将第一定位失败指示发送至基站,即上述RRC消息可以是携带第一定位失败指示的RRC消息,上述MAC CE消息可以是携带第一定位失败指示的MAC CE消息。
方式2:终端直接将第一定位失败指示发送给定位服务器。
例如,终端直接通过LPP消息通知定位服务器本次定位失败,上述LPP消息中携带第一定位失败指示。
途径三:终端放弃传输SRS并等待执行基站的处理结果。
当终端发现与基站上行失步后,终端直接放弃传输SRS。随后终端不进行任何操作,等待直至基站检测到上行失步并进行相应处理。
以下介绍基站侧即由基站检测与终端的同步状态的情况。参阅图3所示,本公开实施例中,基站进行同步状态的检测的具体流程如下:
步骤300:基站在接收终端发送的SRS的过程中判断与终端之间的同步状态,其中,终端处于IDLE态或INACTIVE态。
在上行定位的过程中,在终端向基站发送SRS的情况下,基站处于接收终端发送的SRS的状态,终端与基站之间的路径(即传输信道)是确定的。
另外,在考虑传输信道对传输SRS的影响时,需要先获取传输信道对应的第二信道状态阈值,即获得比对标准。具体的,在实施过程中,基站获取与终端间的传输信道的第二信道状态信息之前,还包括:基站获取传输信道对应的第二信道状态阈值,其中,第二信道状态阈值包括第二路径损耗阈值、第二参考信号接收功率RSRP阈值或第二RSRP变化量阈值中的至少一种。
在此需要进一步说明的是,上述第二信道状态阈值都是基站预先配置的。在这种方式中,基站可以基于自身的算法预先配置第二信道状态阈值。
实际应用中,传输信道对传输SRS的影响统一以第二信道状态信息来表示,具体的,基站根据接收到的SRS来获取第二信道状态信息。
具体的,基站基于第二信道状态信息判断与终端之间的同步状态,具体步骤可以采用以下方式之一来实现:
方式21:基站依据在预配置的最大接收时间窗口内都没有接收到SRS,则确定与终端之间发生上行失步。
在具体实施过程中,基站在最大接收时间窗口内统计是否接收到SRS,其中,最大接收时间窗口为基站预先配置的,分以下两种情况进行说明:
例如:当上述最大接收时间窗口为接收一个SRS所需要的最大时长时,若基站从上次接收到SRS到超出最大接收时间窗口后,基站仍未收到SRS,即在最大接收时间窗口的结束时刻接收到SRS的数目为零,则基站认为发生了上行失步。
又例如:当上述最大接收时间窗口为接收多个SRS所需要的最大时长时,若在最大接收时间窗口内即应当接收到连续N个SRS的接收时间内均未接收到N个SRS,则基站认为发生了上行失步。
方式22:基站获得传输信道的第二路径损耗值,若第二路径损耗值大于设定的第二路径损耗阈值,则确定与终端之间发生上行失步,其中,第二路径损耗阈值为基站预先配置的。
首先,需要说明的是,上述第二路径损耗阈值是基站判断与终端是否发生上行失步的一个临界值。
其次,基站获得传输信道的第二路径损耗值,具体包括:
步骤a):基站确定接收到的SRS的第二接收功率。
当SRS经过传输信道的传输到达基站后,基站接收该SRS并测量接收到的SRS的第二接收功率。
步骤b):基站确定终端发出的SRS的第二发送功率。
第二信道状态信息是通过测量SRS在传输信道的功率衰减获取的。因此,在该步骤中,终端先要获取SRS在终端发出时的第二发送功率,需要说明的是,上述SRS的初始功率是基站预先配置下来的,即上述第二发送功率对于基站来说已知的。
步骤c):基站基于接收功率与发送功率确定第二路径损耗值。
考虑到传输信道对信号的衰减影响,上述第二接收功率会与第二发送功率有差异,在此基础上,基站会根据第二发送功率与第二接收功率确定传输信道的第二路径损耗值,例如,将第二接收功率会与第二发送功率进行减法或者除法运算。
最后,基站在获得第二路径损耗值后,比较第二路径损耗值与设定的第二路径损耗阈值之间的大小,即在第二路径损耗值大于设定的第二路径损耗阈值时,确定与终端之间发生上行失步;在第二路径损耗值小于或者等于设定的第二路径损耗阈值时,确定与终端之间发生上行同步。
方式23:基站获得终端在传输信道上,发送的SRS的第四RSRP,若第四RSRP未达到设定的第二RSRP阈值,则确定与终端之间发生上行失步,其中,第二RSRP阈值为基站预先配置的。
需要说明的是,上述第二RSRP阈值是基站判断与终端是否发生上行失步的一个临界值。
在实施过程中,基站获得终端在传输信道上发送的SRS的第四RSRP。
最后,终端将该第二RSRP阈值作为比较标准,来进一步判断与基站之间是否发生上行失步。即若第四RSRP小于或者等于设定的第二RSRP阈值,则确定与终端之间发生上行失步;若第四RSRP大于设定的第二RSRP阈值,则确定与终端之间发生上行同步。
方式24:基站获得终端在传输信道上,发送的SRS的RSRP的第二RSRP变化量,若第二RSRP变化量大于设定的第二RSRP变化量阈值,则确定与终端之间发生上行失步,其中,第二RSRP变化量阈值为基站预先配置的。
需要说明的是,上述第二RSRP变化量阈值是基站判断与终端是否发生上行失步的一个临界值。
在实施过程中,终端将该第二RSRP变化量阈值作为比较标准,来进一步判断与基站之间是否发生上行失步。即若第二RSRP变化量大于设定的第二RSRP变化量阈值,则确定与终端之间发生上行失步;若第二RSRP变化量小于或者等于设定的第二RSRP变化量阈值,则确定与终端之间发生上行同步。
这里基站获得终端在传输信道上,发送的SRS的RSRP的第二RSRP变化量,具体包括:
步骤1):基站在第三时刻确定终端在传输信道上发送的SRS的第五RSRP,其中,第三时刻为基站初次接收到SRS的时刻。
第二信道状态信息是通过测量SRS在传输信道的参考信号接收功率变化量获取的。因此,在该步骤中,终端先要在第三时刻获取终端在传输信道上发出的SRS的第五RSRP,即SRS的参考信号接收功率。这里强调,第三时刻为基站初次接收到SRS的时刻,即在上行定位过程的开始时刻即获得SRS的第五RSRP。
步骤2):基站在第四时刻确定终端在传输信道上发送的SRS的第六RSRP,其中,第四时刻为第三时刻之后的任一时刻。
当SRS在传输信道中传输时,基站在第四时刻获取终端在传输信道上发送的SRS的第六RSRP。为了与步骤1)中的参考信号接收功率进行区分,这里强调,第四时刻为第三时刻之后的任一时刻,即SRS在传输信道传输了一段时间(即第四时刻与第三时刻差值对应的时间)后,再次获取SRS的第六RSRP。
步骤3):基站基于第五RSRP与第六RSRP确定相应的第二RSRP变化量。
考虑到传输信道对信号的衰减影响,上述第六RSRP会与第五RSRP有差异,在此基础上,终端会根据第五RSRP与第六RSRP确定传输信道的第二RSRP变化量,例如,将第六RSRP会与第五RSRP进行减法运算。
最后,终端在获得第二RSRP变化量后,比较第二RSRP变化量与设定的第二RSRP变化量阈值之间的大小,即在第二RSRP变化量大于设定的第二RSRP变化量阈值时,确定与基站之间发生上行失步;在第二RSRP变化量小于或者等于设定的第二RSRP变化量阈值时,确定与基站之间发生上行同步。
当终端采用上述方式21、方式22、方式23或者方式24确定与基站发生上行失步后,继续对上行失步进行处理。
步骤301:若确定与终端发生上行失步,则基站重新与处于INACTIVE态的终端建立同步以继续接收终端传输的SRS,或者,判定定位失败并生成第二定位失败指示。
在执行步骤301时可以采用以下任意一种方式:
第一种方式,具体实施中,上述基站重新与处于INACTIVE态的终端建立同步以继续接收终端传输的SRS,可以通过但不限于途径(1)、途径(2)、途径(3)或者途径(4)来实现。
途径(1):基站与终端建立连接后,继续接收终端传输的SRS。
实施过程中,基站可以给INACTIVE态终端发送寻呼消息,终端收到寻呼消息后发起RRC建立流程或RRC恢复流程,并与基站之间重新同步。当终端收到基站的RRC建立或 RRC恢复指示后,基站与终端建立连接后即终端进入连接态,基站继续接收终端传输的SRS。
途径(2):基站向终端发送第一寻呼消息,在第一寻呼消息中携带基站更新的定时提前TA值,以使终端基于接收到的TA值与基站重新建立同步,以及使终端在接收到第一寻呼消息后不发起随机接入过程,并继续维持在INACTIVE态传输SRS。
实施过程中,基站可以给INACTIVE态终端发送第一寻呼消息,在第一寻呼消息中携带基站为终端更新之后的TA值,终端收到第一寻呼消息中携带的更新后的TA值后,与基站之间重新完成上行同步。之后终端在接收到第一寻呼消息后不发起随机接入过程,并继续维持在INACTIVE态传输SRS,并继续后续定位流程,即基站继续接收终端传输的SRS。
途径(3):基站向终端发送第二寻呼消息,以使终端发起随机接入过程,并获取更新后的定时提前TA值与基站重新建立同步,并且,基站在Msg4或MsgB中下发RRC释放指示,以使终端继续维持在INACTIVE态传输SRS。
实施过程中,基站可以给INACTIVE态终端发送第二寻呼消息,终端收到第二寻呼消息后发起随机接入重新进行同步(但不建立连接),基站侧可在随机接入过程中的Msg2或MsgB中携带更新的TA值给终端。终端收到更新的TA值后重新与基站之间同步。并且,基站在Msg4或MsgB中下发RRC释放指示,以使终端继续保持在INACTIVE态继续本次定位。
途径(4):基站向终端发送第三寻呼消息,在第三寻呼消息中携带用于进行IDLE或INACTIVE上行定位的指示,以使终端发起随机接入过程获取更新后的定时提前TA值与基站重新建立同步,且使终端继续维持在INACTIVE态传输SRS。
实施过程中,基站可以给INACTIVE态终端发送第三寻呼消息,并且,在第三寻呼消息中携带用于进行IDLE或INACTIVE上行定位的指示。这样,终端能够发起四步随机接入过程或两步随机接入过程,并在Msg2,或两步随机接入过程B(MsgB)中获取更新后的定时提前TA值与基站重新建立同步,从而使终端继续维持在INACTIVE态传输SRS。
需要进一步说明的是,针对四步随机接入过程,为了保障终端继续维持在INACTIVE态,包括以下两种操作中的任一种:
情况1:终端在Msg2中获取到更新的TA值后,会放弃进行后续的四步随机接入过程,也即放弃传输Msg3;
情况2:终端在后续的Msg3中不携带RRC建立请求或RRC恢复请求消息。
需要进一步说明的是,针对两步随机接入过程,为了保障终端继续维持在INACTIVE 态:
终端在MsgA中不携带RRC建立请求或RRC恢复请求消息。
第二种方式,具体实施时上述判定定位失败并生成第二定位失败指示之后,基站还会执行基站将生成的第二定位失败指示发送给定位服务器,和/或,发送给处于INACTIVE态的终端。
具体包括以下三种处理方式:
方式1):基站将生成的第二定位失败指示发送给定位服务器。
具体的,基站确定与终端上行失步后,判定本次定位失败,生成第二定位失败指示,并通过NRPPa消息将第二定位失败指示发送给定位服务器。
这里,基站将生成的第二定位失败指示发送给定位服务器,即基站判定本次定位失败,并通过NRPPa消息通知定位服务器本次定位失败,其中,上述NRPPa消息通知中携带第二定位失败指示。
方式2):基站将生成的第二定位失败指示发送给定位服务器,以及将第二定位失败指示发送给处于INACTIVE态的终端,以使终端停止传输SRS。
具体的,基站确定与终端上行失步后,判定本次定位失败,生成第二定位失败指示,并通过NRPPa消息将第二定位失败指示发送给定位服务器。
这里,基站将生成的第二定位失败指示发送给定位服务器,即基站判定本次定位失败,并通过NRPPa消息通知定位服务器本次定位失败,其中,上述NRPPa消息通知中携带第二定位失败指示。
与此同时,上述基站还将第二定位失败指示发送给处于INACTIVE态的终端,具体包括以下两种实现方式:
方式2-1):基站与终端建立连接后,将第二定位失败指示发送给终端,以通知终端定位失败。
实施过程中,基站给终端发送寻呼消息,终端收到寻呼消息后发起RRC建立流程或RRC恢复流程。当终端收到基站侧的RRC建立或恢复指示后进入连接态,即基站与终端建立连接。之后,基站将第二定位失败指示发送给终端。终端在接收到第二定位失败指示后,认为定位失败,停止传输SRS,和/或,丢弃上次定位配置的SRS配置信息。
这里要说明的是,在情况1)中,基站与终端建立连接后,将第二定位失败指示发送给终端,其中,基站发送第二定位失败指示的方式包括以下任意一种,即基站通过MAC CE、下行控制信息(Digital Copyright Identifier,DCI)和RRC消息中的任意一种,携带第二定位失败指示。具体的,基站通过MAC CE携带第二定位失败指示或者通过DCI携带第二 定位失败指示或者通过RRC消息携带第二定位失败指示。
方式2-2):基站向终端发送携带第二定位失败指示的第四寻呼消息,以通知终端本次定位失败,以及使终端在接收到第四寻呼消息后不发起随机接入过程,并继续维持在INACTIVE态。
实施过程中,基站在第四寻呼消息中携带指示第二定位失败指示,以通知终端本次定位失败,终端收到该携带第二定位失败指示的第四寻呼消息后不发起随机接入过程,并继续维持在INACTIVE态。终端在接收到第二定位失败指示后,认为定位失败,停止传输SRS,和/或,丢弃上次定位配置的SRS配置信息。
方式3):基站将生成的第二定位失败指示发送给定位服务器,并且之后定位服务器将第二定位失败指示发送给终端。
具体的,基站确定与终端上行失步后,判定本次定位失败,生成第二定位失败指示,并通过NRPPa消息将第二定位失败指示发送给定位服务器。
这里,基站将生成的第二定位失败指示发送给定位服务器,即基站判定本次定位失败,并通过NRPPa消息通知定位服务器本次定位失败,其中,上述NRPPa消息通知中携带第二定位失败指示。
定位服务器收到定位失败指示后将其发送给终端,包括以下两种方式:
方式3-1):定位服务器将接收到的第二定位失败指示发送给核心网,并指示核心网发送第五寻呼消息给UE,并在第三寻呼消息中携带该第二定位失败指示。
方式3-2):定位服务器在其定位广播信息中携带其收到的第二定位失败指示。
在一种实施方式中(对应方式3-1),当定位服务器获取到定位失败信息后,定位服务器通知接入及移动性管理功能(Access and Mobility Management Function,AMF)发起核心网侧寻呼,并在第五寻呼消息中携带第二定位失败指示给终端,通知终端本次定位失败。终端在接收到第二定位失败指示后,认为定位失败,停止传输SRS,和/或,丢弃上次定位配置的SRS配置信息。
在另一种实施方式中(对应方式3-2),当定位服务器获取到定位失败信息后,定位服务器可以通过广播定位系统信息(posSIB)的方式,并在posSIB中携带第二定位失败指示给终端,通知终端本次定位失败。终端在接收到第二定位失败指示后,认为定位失败,停止传输SRS,和/或,丢弃上次定位配置的SRS配置信息。
下面采用几个具体的应用场景对上述内容作出进一步详细说明。
应用场景1:终端基于第一路径损耗阈值判断与基站是否发生上行失步。
步骤1:终端获取第一路径损耗阈值LP_Threshold。该阈值是判断与基站是否发生上 行失步的一个临界值。当终端与基站之间的第一路径损耗值超出该阈值时,认为终端与基站之间发生了上行失步;否则认为终端与基站之间仍然维持着上行同步。该第一路径损耗阈值的获取方式包括:
(1)可选的,基站预先配置第一路径损耗阈值LP_Threshold,并下发给终端。
具体步骤如下:
步骤a:基站依据自身的信号覆盖情况和终端的上下文信息为终端预先配置第一路径损耗阈值LP_Threshold。
步骤b:基站将上述预先配置的第一路径损耗阈值下发给终端。
可选的,基站将第一路径损耗阈值LP_Threshold包含在给终端配置的SRS配置信息中,即作为SRS配置信息的一部分,下发给终端。
可选的,基站将第一路径损耗阈值LP_Threshold直接下发给终端。
(2)可选的,终端基于自身的算法来获取第一路径损耗阈值LP_Threshold。
步骤2:在T1时刻,终端接收到的基站发送的SSB信号功率,记为P1。则T1时刻时,终端与基站之间的第一路径损耗值LP_1可以表示为P0-P1,其中P0为基站侧发送SSB信号的发送功率。
步骤3:终端比较其在T1时刻的第一路径损耗值LP_1与第一路径损耗阈值LP_Threshold的大小。
具体的,
若LP_1>LP_Threshold,则终端与基站之间上行失步。
若LP_1≤LP_Threshold,则终端与基站之间上行同步。
应用场景2:终端基于第一RSRP阈值判断与基站是否发生上行失步。
步骤1:终端获取第一RSRP阈值RSRP_Threshold,该阈值是判断终端是否发生上行失步的一个门限值。当接收SSB信号的第一RSRP超出该门限值时,认为终端与基站之间发生了上行失步;否则认为终端与基站之间仍然维持着上行同步。该第一RSRP阈值的获取方式包括:
(1)可选的,基站预先配置第一RSRP阈值RSRP_Threshold,并下发给终端。
具体执行步骤如下:
步骤a:基站依据自身的信号覆盖情况和终端的上下文为终端预先配置第一RSRP阈值RSRP_Threshold。
步骤b:基站将上述预先配置的第一RSRP阈值下发给终端。
可选的,基站将第一RSRP阈值RSRP_Threshold包含在给终端配置的SRS配置信息 中,即作为SRS配置信息的一部分,下发给终端。
可选的,基站将第一RSRP阈值RSRP_Threshold直接下发给终端。
(2)可选的,终端基于自身的算法来获取第一RSRP阈值RSRP_Threshold。
步骤2:在T1时刻,终端测量基站发送的SSB信号的第一RSRP,记为RSRP_1。
步骤3:终端比较其在T1时刻测量得到的RSRP_1与第一RSRP阈值RSRP_Threshold的大小。
具体的,
若RSRP_1≤RSRP_Threshold,则终端与基站之间上行失步。
若RSRP_1>RSRP_Threshold,则终端与基站之间上行同步。
应用场景3:终端基于第一RSRP变化量阈值判断与基站是否发生上行失步。
步骤1:终端获取第一RSRP变化量阈值RSRP_Variable。当接收SSB信号的RSRP在不同时刻的第一RSRP变化量超出该阈值时,认为终端与基站之间发生了上行失步;否则认为终端与基站之间仍然维持着上行同步。该第一RSRP变化量阈值的获取方式包括:
(1)可选的,基站配置第一RSRP变化量阈值RSRP_Variable,并下发给终端。
具体步骤如下:
步骤a:基站依据自身的信号覆盖情况和终端的上下文信息为终端预先配置第一RSRP变化量阈值RSRP_Variable。
步骤b:基站将预先配置的第一RSRP变化量阈值下发给终端。具体包括:
可选的,基站将第一RSRP变化量阈值RSRP_Variable包含在给终端配置的SRS配置信息中,即作为SRS配置信息的一部分,下发给终端。
可选的,基站将第一RSRP变化量阈值RSRP_Variable直接下发给终端。
(2)可选的,终端基于自身的算法来获取第一RSRP变化量阈值RSRP_Variable。
步骤2:以终端刚开始发送上行SRS信号的时刻为参考时间点T0,此时终端测量服务基站发送的SSB信号的第二RSRP,记为RSRP_2。
步骤3:在T1时刻,终端测量基站发送的SSB信号的第三RSRP,记为RSRP_3。则T1-T0时间内,终端测量到的RSRP的第一RSRP变化量为RSRP_3-RSRP_2。
步骤4:终端比较其测量到的第一RSRP变化量RSRP_1-RSRP_0的值,与第一RSRP变化量阈值RSRP_Variable的大小。
具体的,
若RSRP_1-RSRP_0>RSRP_Variable,则终端与基站之间上行失步。
若RSRP_1-RSRP_0≤RSRP_Variable,则终端与基站之间上行同步。
应用场景4:终端主动判断发生上行失步,发起随机接入过程(但不建立连接)重新同步,之后继续IDLE/INACTIVE定位流程。
具体步骤如下:
步骤1:终端正在进行IDLE或INACTIVE上行定位流程,此时,终端处于IDLE/INACTIVE态,并且,终端获取了基站配置的SRS配置信息以及第一路径损耗阈值LP_Threshold,并且正在传输SRS。
步骤2:当终端发现上行失步后,终端停止发送SRS,并向基站主动发起随机接入过程(但不进入连接态),与基站进行同步。
步骤3:终端完成上行同步,但仍保持在IDLE态或INACTIVE态。终端继续依据其SRS配置信息来传输SRS,完成后续的IDLE或INACTIVE定位流程。
应用场景5:终端主动判断发生上行失步,并进入连接态继续进行定位。具体步骤如下:
步骤1:终端正在进行IDLE或INACTIVE上行定位流程,此时,终端处于IDLE/INACTIVE态,并且,终端获取了基站配置的SRS配置信息以及第一路径损耗阈值LP_Threshold,并且正在传输SRS。
步骤2:当终端发现上行失步后,终端停止发送SRS,并主动发起RRC建立流程或RRC恢复流程。
步骤3:当终端收到基站发送的RRC建立指示或RRC恢复消息时,终端进入连接态,并与基站之间重新完成上行同步。之后终端保持在连接态,并继续进行SRS上行传输,完成后续定位流程。
应用场景6:终端主动判断发生上行失步,并放弃本次定位。
具体步骤如下:
步骤1:终端正在进行IDLE或INACTIVE上行定位流程,此时,终端处于IDLE/INACTIVE态,并且,终端获取了基站配置的SRS配置信息以及第一路径损耗阈值LP_Threshold,并且正在进行上行SRS传输。
步骤2:当终端发现上行失步后,终端直接放弃本次IDLE/INACTIVE定位,并停止发送SRS。
步骤3:终端通知定位服务器本次定位失败。
具体包括:
可选的,终端可以先通知基站本次定位失败,之后由基站通过NRPPa协议再通知定位服务器本次定位失败。
可选的,终端主动发起随机接入,并在随机接入过程中的Msg3或MsgA中携带第一定位失败指示,来通知基站本次定位失败。
可选的,终端主动发起RRC建立流程或RRC恢复流程。当终端收到基站的RRC建立指示或RRC恢复指示后,终端进入连接态,然后再发送定位失败通知消息告知基站本次定位失败。上述定位失败通知消息具体包括:
可选的,终端通过携带第一定位失败指示的MAC CE告知基站本次定位失败。
可选的,终端通过携带第一定位失败指示的RRC消息告知基站本次定位失败。
可选的,终端直接通过LPP协议来通知定位服务器定位失败。
应用场景7:终端主动判断发生上行失步,但不进行操作,等待基站处理。
具体步骤如下:
步骤1:终端正在进行IDLE或INACTIVE上行定位流程,此时,终端处于IDLE/INACTIVE态,并且,终端获取了基站配置的SRS配置信息以及第一路径损耗阈值LP_Threshold,并且正在进行上行SRS传输。
步骤2:当终端发现上行失步后,终端停止发送SRS。随后终端侧不进行任何操作,等待直至基站检测是否与终端上行失步,并等待执行基站的处理结果。
应用场景8:基站依据是否接收到SRS判断是否发生上行失步。
具体包括:
基站预配置一个最大接收时间T_SRS。若从上次接收到SRS到超出配置的最大接收时间T_SRS时,基站仍未收到SRS,则基站认为发生了上行失步。
或者,具体包括:
若在连续N次SRS接收时间内均未接收到SRS,则基站认为发生了上行失步。
应用场景9:基站基于路径损耗阈值判断是否发生上行失步。
具体步骤如下:
步骤1:基站预配置第二路径损耗值阈值,记为LP1_Threshold。
步骤2:在T1时刻时,基站根据接收到的SRS计算第二接收功率,记为P_1。则T1时刻时,基站与终端之间的第二路径损耗值LP1_1可以表示为P_0-P_1,其中P_0为SRS的第二发送功率。
步骤3:基站比较其在T1时刻的第二路径损耗值LP1_1与第二路径损耗值阈值LP1_Threshold的大小。
具体的,
若LP1_1>LP1_Threshold,则终端与基站之间上行失步。
若LP1_1≤LP1_Threshold,则终端与基站之间上行同步。
应用场景10:基站基于第二RSRP阈值判断是否发生上行失步。
具体步骤如下:
步骤1:基站预配置一个第二RSRP阈值,记为RSRP1_Threshold。
步骤2:T1时刻时,基站测量接收到的SRS的第四RSRP,记为RSRP1_1。
步骤3:基站比较其在T1时刻的RSRP1_1与第二RSRP阈值RSRP1_Threshold的大小。
具体的,
若RSRP1_1≤RSRP1_Threshold,则终端与基站之间上行失步。
若RSRP1_1>RSRP1_Threshold,则终端与基站之间上行同步。
应用场景11:基站基于RSRP的第二RSRP变化量阈值判断是否发生上行失步。
具体步骤如下:
步骤1:基站预配置一个RSRP的第二RSRP变化量阈值,记为RSRP1_Variable。
步骤2:以基站初次接收到上行SRS的时刻为参考时间点T0,此时基站测量到的上行SRS的第五RSRP,记为RSRP1_0。
步骤3:T1时刻时,基站测量接收到的SRS的第六RSRP,记为RSRP1_1。则T1-T0时间内,基站测量到的RSRP的第二RSRP变化量为RSRP1_1-RSRP1_0。
步骤4:基站比较其测量得到的第二RSRP变化量RSRP1_1-RSRP1_0的值,与RSRP的第二RSRP变化量阈值RSRP1_Variable的大小。
具体的,
若RSRP1_1-RSRP1_0>RSRP1_Variable,则终端与基站之间上行失步。
若RSRP1_1-RSRP1_0≤RSRP1_Variable,则终端与基站之间上行同步。
应用场景12:基站主动判断发生上行同步,认为此次定位失败,放弃此次定位。
具体步骤如下:
步骤1:终端正在进行上行定位流程,此时终端与基站之间没有连接。
步骤2:当基站检测到上行失步后,基站认为本次定位失败,并通过NRPPa协议通知定位服务器本次定位失败。
步骤3:可选的,基站还会通知INACTIVE态的终端本次定位失败。可以采取的方式包括:
可选的,基站给终端发送第一寻呼消息,终端收到寻呼后发起RRC建立流程或RRC恢复流程。当终端收到基站侧的RRC建立指示或恢复指示后进入连接态后。之后基站发 送消息告知终端此次定位失败。终端收到定位失败通知后,停止传输SRS,并丢弃上次定位配置的SRS配置。
上述消息具体包括:
可选的,基站通过携带第二定位失败指示的MAC CE告知终端本次定位失败。
可选的,基站通过携带第二定位失败指示的DCI告知终端本次定位失败。
可选的,基站通过携带第二定位失败指示的RRC消息告知终端本次定位失败。
可选的,基站在寻呼消息中携带指示第二定位失败指示,终端收到该寻呼消息后,停止传输SRS,并丢弃上次定位配置的SRS配置。
步骤5:定位服务器还可以通知终端本次定位失败。
具体包括:
可选的,当定位服务器获取到定位失败信息后,定位服务器通知AMF发起核心网侧寻呼,并在第一寻呼消息中携带第二定位失败指示给终端,通知终端本次定位失败。终端收到相应指示后,停止传输SRS,并丢弃上次定位配置的SRS配置。
可选的,当定位服务器获取到定位失败信息后,定位服务器可以通过广播pos-SIB的方式,并在广播的pos-SIB中携带第二定位失败指示给终端,通知终端本次定位失败。终端收到相应指示后,停止传输SRS,并丢弃上次定位配置的SRS配置。
应用场景13:基站主动判断发生上行失步,寻呼INACTIVE态的终端进入连接态后继续进行定位。
具体步骤如下:
步骤1:终端正在进行上行定位流程,此时终端与基站之间没有连接。
步骤2:当基站检测到上行失步后,基站寻呼INACTIVE态的终端进入连接态。
步骤3:终端收到第一寻呼消息后,主动发起RRC恢复流程。
步骤4:当终端收到基站侧发送的RRC恢复消息时,终端进入连接态,并与基站之间重新完成上行同步。之后终端保持在连接态,并继续传输SRS,完成后续定位流程。
基于同一发明构思,参阅图4所示,本公开实施例提供一种终端,包括:
存储器401,用于存储可执行计算机程序;
处理器402,用于读取存储器401中的计算机程序,执行下列过程:
所述终端处于IDLE态或INACTIVE态时,向基站传输上行定位参考信号SRS进行上行定位的过程中,获取与基站间的传输信道的第一信道状态信息;
基于第一信道状态信息判断与基站之间的同步状态。
其中,在图4中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器402 代表的一个或多个处理器和存储器401代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器402负责管理总线架构和通常的处理,存储器401可以存储处理器402在执行操作时所使用的数据。
处理器402负责管理总线架构和通常的处理,存储器401可以存储处理器402在执行操作时所使用的数据。
可选地,处理器402还用于:
若确定与基站发生上行失步,则重新与基站建立同步并继续传输SRS,或者,判定定位失败并生成第一定位失败指示,或者,放弃传输SRS并等待执行基站的处理结果。
可选地,获取与基站间的传输信道的第一信道状态信息之前,处理器402还用于:
获取传输信道对应的第一信道状态阈值,其中,第一信道状态阈值包括第一路径损耗阈值、第一RSRP阈值或第一RSRP变化量阈值中的至少一种。
可选地,获取传输信道的第一信道状态阈值,处理器402用于:
在从连接态转换到IDLE态或INACTIVE态之前,从基站下发的RRC中获取预先配置的第一信道状态阈值;或者,
预先配置第一信道状态阈值。
可选地,获取与基站间的传输信道的第一信道状态信息,并基于第一信道状态信息判断与基站之间的同步状态,处理器402用于:
若获得传输信道的第一路径损耗值,则在判定第一路径损耗值大于第一路径损耗阈值时,确定与基站之间发生上行失步;或者,
若获得基站在传输信道上,发送的下行参考信号的第一RSRP,则在判定第一RSRP未达到第一RSRP阈值时,确定与基站之间发生上行失步;或者,
若获得基站在传输信道上,发送的下行参考信号的RSRP的第一RSRP变化量,则在判定第一RSRP变化量大于第一RSRP变化量阈值时,确定与基站之间发生上行失步。
可选地,获得传输信道的第一路径损耗值,处理器402用于:
确定基站在传输信道上发出的下行参考信号的第一发送功率;
确定在传输信道上接收到的下行参考信号的第一接收功率;
基于第一发送功率与第一接收功率确定传输信道的第一路径损耗值。
可选地,获得基站在传输信道上,发送的下行参考信号的RSRP的第一RSRP变化量, 处理器402用于:
在第一时刻确定基站在传输信道上发出的下行参考信号的第二RSRP,其中,第一时刻为开始向基站传输SRS的时刻;
在第二时刻确定基站在传输信道上发出的下行参考信号的第三RSRP,其中,第二时刻为第一时刻之后的任一时刻;
基于第二RSRP与第三RSRP确定相应的第一RSRP变化量。
可选地,重新与基站建立同步并继续传输SRS,处理器402用于:
向基站发起随机接入过程并获取更新的定时提前TA值,以重新与基站建立同步,并在建立同步之后,继续传输SRS,其中,终端在随机接入过程中不进入连接态;或者,
与基站建立连接后,继续传输SRS。
可选地,判定定位失败之后,处理器402还用于:
执行以下操作中的至少一个:
停止传输SRS;
丢弃SRS配置信息。
可选地,判定定位失败并生成第一定位失败指示之后,处理器402还用于:
将第一定位失败指示发送给基站,以使基站将第一定位失败指示发往定位服务器;或者,
直接将第一定位失败指示发送给定位服务器。
可选地,将第一定位失败指示发送给基站,处理器402用于:
向基站发起随机接入过程,并将第一定位失败指示携带在随机接入过程中的随机接入过程消息3Msg3或随机接入过程消息A MsgA中,发送至基站,其中,终端在随机接入过程中不进入连接态;或者,
与基站建立连接后通过RRC消息或MAC CE将第一定位失败指示发送至基站。
上述存储器401和处理器402相互配合,以实现上述实施例中步骤200-步骤201中终端所执行的任意一种方法,此处不再赘述。
基于同一发明构思,参阅图5所示,本公开实施例提供一种基站,包括:
存储器501,用于存储可执行计算机程序;
处理器502,用于读取存储器501中的计算机程序,执行下列过程:
在接收处于IDLE态或INACTIVE态的终端发送的SRS的过程中判断与终端之间的同步状态;
若确定与终端发生上行失步,则重新与处于INACTIVE态的终端建立同步以继续接收 终端传输的SRS,或者,判定定位失败并生成第二定位失败指示。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器502代表的一个或多个处理器502和存储器501代表的存储器501的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器502负责管理总线架构和通常的处理,存储器501可以存储处理器502在执行操作时所使用的数据。
处理器502负责管理总线架构和通常的处理,存储器501可以存储处理器502在执行操作时所使用的数据。
可选地,重新与处于INACTIVE态的终端建立同步以继续接收终端传输的SRS,处理器502用于:
与终端建立连接后,继续接收终端传输的SRS;或者,
向终端发送第一寻呼消息,在第一寻呼消息中携带基站更新的定时提前TA值,以使终端基于接收到的TA值与基站重新建立同步,以及使终端在接收到第一寻呼消息后不发起随机接入过程,并继续维持在INACTIVE态传输SRS;或者,
向终端发送第二寻呼消息,以使终端发起随机接入过程,并获取更新后的定时提前TA值与基站重新建立同步,并且,基站下发RRC释放指示,以使终端继续维持在INACTIVE态传输SRS;或者,
向终端发送第三寻呼消息,在第三寻呼消息中携带进行IDLE或INACTIVE上行定位的指示,以使终端发起随机接入过程获取更新后的定时提前TA值与基站重新建立同步,且使终端继续维持在INACTIVE态传输SRS。
可选地,判定本次定位失败并生成第二定位失败指示之后,处理器502用于:
将生成的第二定位失败指示发送给定位服务器,和/或,发送给处于INACTIVE态的终端。
可选地,将第二定位失败指示发送给处于INACTIVE态的终端,处理器502用于:
与终端建立连接后,将第二定位失败指示发送给终端,以通知终端定位失败;或者,
向终端发送携带第二定位失败指示的第四寻呼消息,以通知终端本次定位失败,以及使终端在接收到第四寻呼消息后不发起随机接入过程,并继续维持在INACTIVE态。
可选地,处理器502还用于:
与终端建立连接后,将第二定位失败指示发送给终端,其中,发送第二定位失败指示 的方式包括以下任意一种:
通过MAC CE携带第二定位失败指示;
通过下行控制信息DCI携带第二定位失败指示;
通过RRC消息携带第二定位失败指示。
上述存储器501和处理器502相互配合,以实现上述实施例中步骤300-步骤301中基站所执行的任意一种方法,此处不再赘述。
基于同一发明构思,本公开实施例中,提供一种终端,参阅图6所示,该终端包括:
获取单元601,用于在处于IDLE态或INACTIVE态时向基站传输上行定位参考信号SRS进行上行定位的过程中,获取与基站间的传输信道的第一信道状态信息;
判断单元602,用于基于第一信道状态信息判断与基站之间的同步状态。
上述获取单元601和判断单元602相互配合,以实现上述实施例中步骤200-步骤201中终端所执行的任意一种方法,此处不再赘述。
基于同一发明构思,本公开实施例中,提供一种基站,参阅图7所示,该基站包括:
判断单元701,用于在接收处于IDLE态或INACTIVE态的终端发送的SRS的过程中判断与终端之间的同步状态;
处理单元702,用于若确定与终端发生上行失步,则重新与处于INACTIVE态的终端建立同步以继续接收终端传输的SRS,或者,判定定位失败并生成第二定位失败指示。
上述判断单元701和处理单元702相互配合,以实现上述实施例中步骤300-步骤301中基站所执行的任意一种方法,此处不再赘述。
基于同一发明构思,本公开实施例提供一种计算机可读存储介质,当存储介质中的指令由处理器执行时,使得处理器能够执行终端所执行的方法。
基于同一发明构思,本公开实施例提供一种计算机可读存储介质,当存储介质中的指令由处理器执行时,使得处理器能够执行基站所执行的方法。
综上所述,本公开实施例中,处于IDLE态或INACTIVE态的终端向基站传输SRS进行上行定位的过程中,终端或者基站能够获取终端与基站间的传输信道的信道状态信息,并基于信道状态信息来对正在进行IDLE态或INACTIVE态上行定位的终端与基站之间的同步状态进行检测,以及当检测到上行失步时,终端或基站均可采取相应的处理途径来继续保障后续的IDLE/INACTIVE定位流程。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品系统。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计 算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品系统的形式。
本公开是参照根据本公开的方法、设备(系统)、和计算机程序产品系统的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (36)

  1. 一种同步状态的处理方法,其特征在于,包括:
    处于空闲IDLE态或非激活INACTIVE态的终端向基站传输上行定位参考信号SRS进行上行定位的过程中,获取与基站间的传输信道的第一信道状态信息;
    所述终端基于所述第一信道状态信息判断与所述基站之间的同步状态。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    若所述终端确定与所述基站发生上行失步,则重新与所述基站建立同步并继续传输所述SRS,或者,判定定位失败并生成第一定位失败指示,或者,放弃传输所述SRS并等待执行所述基站的处理结果。
  3. 如权利要求1所述的方法,其特征在于,所述终端获取与基站间的传输信道的第一信道状态信息之前,还包括:
    所述终端获取所述传输信道对应的第一信道状态阈值,其中,所述第一信道状态阈值包括第一路径损耗阈值、第一参考信号接收功率RSRP阈值或第一RSRP变化量阈值中的至少一种。
  4. 如权利要求3所述的方法,其特征在于,所述终端获取所述传输信道的第一信道状态阈值,包括:
    所述终端在从连接态转换到IDLE态或INACTIVE态之前,从所述基站下发的无线资源控制RRC信息中获取预先配置的所述第一信道状态阈值;或者,
    所述终端预先配置所述第一信道状态阈值。
  5. 如权利要求1所述的方法,其特征在于,所述终端获取与基站间的传输信道的第一信道状态信息,并基于所述第一信道状态信息判断与所述基站之间的同步状态,包括:
    若所述终端获得所述传输信道的第一路径损耗值,则在判定所述第一路径损耗值大于所述第一路径损耗阈值时,确定与所述基站之间发生上行失步;或者,
    若所述终端获得所述基站在所述传输信道上,发送的下行参考信号的第一RSRP,则在判定所述第一RSRP未达到所述第一RSRP阈值时,确定与所述基站之间发生上行失步;或者,
    若所述终端获得所述基站在所述传输信道上,发送的下行参考信号的RSRP的第一RSRP变化量,则在判定所述第一RSRP变化量大于所述第一RSRP变化量阈值时,确定与所述基站之间发生上行失步。
  6. 如权利要求5所述的方法,其特征在于,所述终端获得所述传输信道的第一路径 损耗值,包括:
    所述终端确定所述基站在所述传输信道上发出的下行参考信号的第一发送功率;
    所述终端确定在所述传输信道上接收到的所述下行参考信号的第一接收功率;
    所述终端基于所述第一发送功率与所述第一接收功率确定所述传输信道的第一路径损耗值。
  7. 如权利要求5所述的方法,其特征在于,所述终端获得所述基站在传输信道上,发送的下行参考信号的RSRP的第一RSRP变化量,包括:
    所述终端在第一时刻确定所述基站在所述传输信道上发出的下行参考信号的第二RSRP,其中,所述第一时刻为开始向基站传输所述SRS的时刻;
    所述终端在第二时刻确定所述基站在所述传输信道上发出的下行参考信号的第三RSRP,其中,所述第二时刻为所述第一时刻之后的任一时刻;
    所述终端基于所述第二RSRP与所述第三RSRP确定相应的第一RSRP变化量。
  8. 如权利要求2所述的方法,其特征在于,所述终端重新与所述基站建立同步并继续传输所述SRS,包括:
    所述终端向所述基站发起随机接入过程并获取更新的定时提前TA值,以重新与所述基站建立同步,并在建立同步之后,继续传输所述SRS,其中,所述终端在所述随机接入过程中不进入连接态;或者,
    所述终端与所述基站建立连接后,继续传输所述SRS。
  9. 如权利要求2所述的方法,其特征在于,所述终端判定定位失败之后,还包括:
    所述终端执行以下操作中的至少一个:
    所述终端停止传输所述SRS;
    所述终端丢弃SRS配置信息。
  10. 如权利要求2所述的方法,其特征在于,所述终端判定定位失败并生成第一定位失败指示之后,还包括:
    所述终端将所述第一定位失败指示发送给基站,以使基站将所述第一定位失败指示发往定位服务器;或者,
    所述终端直接将所述第一定位失败指示发送给定位服务器。
  11. 如权利要求10所述的方法,其特征在于,所述终端将所述第一定位失败指示发送给所述基站,包括:
    所述终端向所述基站发起随机接入过程,并将所述第一定位失败指示携带在所述随机接入过程中的四步随机接入过程消息3 Msg3或两步随机接入过程消息A MsgA中,发送至 所述基站,其中,所述终端在随机接入过程中不进入连接态;或者,
    所述终端与所述基站建立连接后通过RRC消息或媒体接入控制层控制单元MAC CE将所述第一定位失败指示发送至所述基站。
  12. 一种同步状态的处理方法,其特征在于,包括:
    基站在接收终端发送的上行定位参考信号SRS的过程中判断与所述终端之间的同步状态,其中,所述终端处于空闲IDLE态或非激活INACTIVE态;
    若确定与所述终端发生上行失步,则所述基站重新与处于INACTIVE态的所述终端建立同步以继续接收所述终端传输的所述SRS,或者,判定定位失败并生成第二定位失败指示。
  13. 如权利要求12所述的方法,其特征在于,所述基站重新与处于INACTIVE态的所述终端建立同步以继续接收所述终端传输的所述SRS,包括:
    所述基站与所述终端建立连接后,继续接收所述终端传输的所述SRS;或者,
    所述基站向所述终端发送第一寻呼消息,在所述第一寻呼消息中携带所述基站更新的定时提前TA值,以使所述终端基于接收到的所述TA值与所述基站重新建立同步,以及使所述终端在接收到所述第一寻呼消息后不发起随机接入过程,并继续维持在INACTIVE态传输所述SRS;或者,
    所述基站向所述终端发送第二寻呼消息,以使所述终端发起随机接入过程,并获取更新后的定时提前TA值与所述基站重新建立同步,并且,所述基站下发RRC释放指示,以使所述终端继续维持在INACTIVE态传输所述SRS;或者,
    所述基站向所述终端发送第三寻呼消息,在所述第三寻呼消息中携带进行IDLE或INACTIVE上行定位的指示,以使所述终端发起随机接入过程获取更新后的定时提前TA值与基站重新建立同步,且使所述终端继续维持在INACTIVE态传输所述SRS。
  14. 如权利要求12所述的方法,其特征在于,所述基站判定本次定位失败并生成第二定位失败指示之后,包括:
    所述基站将生成的第二定位失败指示发送给所述定位服务器,和/或,发送给处于INACTIVE态的所述终端。
  15. 如权利要求14所述的方法,其特征在于,所述基站将所述第二定位失败指示发送给处于INACTIVE态的所述终端,包括:
    所述基站与所述终端建立连接后,将所述第二定位失败指示发送给所述终端,以通知所述终端定位失败;或者,
    所述基站向所述终端发送携带所述第二定位失败指示的第四寻呼消息,以通知所述终 端本次定位失败,以及使所述终端在接收到所述第四寻呼消息后不发起随机接入过程,并继续维持在INACTIVE态。
  16. 如权利要求15所述的方法,其特征在于,还包括:
    所述基站与所述终端建立连接后,将所述第二定位失败指示发送给所述终端,其中,所述基站发送所述第二定位失败指示的方式包括以下任意一种:
    所述基站通过MAC CE携带所述第二定位失败指示;
    所述基站通过下行控制信息DCI携带所述第二定位失败指示;
    所述基站通过RRC消息携带所述第二定位失败指示。
  17. 一种终端,其特征在于,包括:
    存储器,用于存储可执行计算机程序;
    处理器,用于读取存储器中的计算机程序,执行下列过程:
    在所述终端处于空闲IDLE态或非激活INACTIVE态时向基站传输上行定位参考信号SRS进行上行定位的过程中,获取与基站间的传输信道的第一信道状态信息;
    基于所述第一信道状态信息判断与所述基站之间的同步状态。
  18. 如权利要求17所述的终端,其特征在于,所述处理器还用于:
    若确定与所述基站发生上行失步,则重新与所述基站建立同步并继续传输所述SRS,或者,判定定位失败并生成第一定位失败指示,或者,放弃传输所述SRS并等待执行所述基站的处理结果。
  19. 如权利要求17所述的终端,其特征在于,获取与基站间的传输信道的第一信道状态信息之前,所述处理器还用于:
    获取所述传输信道对应的第一信道状态阈值,其中,所述第一信道状态阈值包括第一路径损耗阈值、第一参考信号接收功率RSRP阈值或第一RSRP变化量阈值中的至少一种。
  20. 如权利要求19所述的终端,其特征在于,获取所述传输信道的第一信道状态阈值,所述处理器用于:
    在从连接态转换到IDLE态或INACTIVE态之前,从所述基站下发的RRC中获取预先配置的所述第一信道状态阈值;或者,
    预先配置所述第一信道状态阈值。
  21. 如权利要求17所述的终端,其特征在于,获取与基站间的传输信道的第一信道状态信息,并基于所述第一信道状态信息判断与所述基站之间的同步状态,所述处理器用于:
    若获得所述传输信道的第一路径损耗值,则在判定所述第一路径损耗值大于所述第一 路径损耗阈值时,确定与所述基站之间发生上行失步;或者,
    若获得所述基站在所述传输信道上,发送的下行参考信号的第一RSRP,则在判定所述第一RSRP未达到所述第一RSRP阈值时,确定与所述基站之间发生上行失步;或者,
    若获得所述基站在所述传输信道上,发送的下行参考信号的RSRP的第一RSRP变化量,则在判定所述第一RSRP变化量大于所述第一RSRP变化量阈值时,确定与所述基站之间发生上行失步。
  22. 如权利要求21所述的终端,其特征在于,获得所述传输信道的第一路径损耗值,所述处理器用于:
    确定所述基站在所述传输信道上发出的下行参考信号的第一发送功率;
    确定在所述传输信道上接收到的所述下行参考信号的第一接收功率;
    基于所述第一发送功率与所述第一接收功率确定所述传输信道的第一路径损耗值。
  23. 如权利要求21所述的终端,其特征在于,获得所述基站在传输信道上,发送的下行参考信号的RSRP的第一RSRP变化量,所述处理器用于:
    在第一时刻确定所述基站在所述传输信道上发出的下行参考信号的第二RSRP,其中,所述第一时刻为开始向基站传输所述SRS的时刻;
    在第二时刻确定所述基站在所述传输信道上发出的下行参考信号的第三RSRP,其中,所述第二时刻为所述第一时刻之后的任一时刻;
    基于所述第二RSRP与所述第三RSRP确定相应的第一RSRP变化量。
  24. 如权利要求18所述的终端,其特征在于,重新与所述基站建立同步并继续传输所述SRS,所述处理器用于:
    向所述基站发起随机接入过程并获取更新的定时提前TA值,以重新与所述基站建立同步,并在建立同步之后,继续传输所述SRS,其中,所述终端在所述随机接入过程中不进入连接态;或者,
    与所述基站建立连接后,继续传输所述SRS。
  25. 如权利要求18所述的终端,其特征在于,判定定位失败之后,所述处理器还用于:
    执行以下操作中的至少一个:
    停止传输所述SRS;
    丢弃SRS配置信息。
  26. 如权利要求18所述的终端,其特征在于,判定定位失败并生成第一定位失败指示之后,所述处理器还用于:
    将所述第一定位失败指示发送给基站,以使基站将所述第一定位失败指示发往定位服务器;或者,
    直接将所述第一定位失败指示发送给定位服务器。
  27. 如权利要求26所述的终端,其特征在于,将所述第一定位失败指示发送给所述基站,所述处理器用于:
    向所述基站发起随机接入过程,并将所述第一定位失败指示携带在所述随机接入过程中的随机接入过程消息3 Msg3或随机接入过程消息A MsgA中,发送至所述基站,其中,所述终端在随机接入过程中不进入连接态;或者,
    与所述基站建立连接后通过RRC消息或媒体接入控制层控制单元MAC CE将所述第一定位失败指示发送至所述基站。
  28. 一种基站,其特征在于,包括:
    存储器,用于存储可执行计算机程序;
    处理器,用于读取存储器中的计算机程序,执行下列过程:
    在接收处于空闲IDLE态或非激活INACTIVE态的终端发送的上行定位参考信号SRS的过程中判断与所述终端之间的同步状态;
    若确定与所述终端发生上行失步,则重新与处于INACTIVE态的所述终端建立同步以继续接收所述终端传输的所述SRS,或者,判定定位失败并生成第二定位失败指示。
  29. 如权利要求28所述的基站,其特征在于,重新与处于INACTIVE态的所述终端建立同步以继续接收所述终端传输的所述SRS,所述处理器用于:
    与所述终端建立连接后,继续接收所述终端传输的所述SRS;或者,
    向所述终端发送第一寻呼消息,在所述第一寻呼消息中携带所述基站更新的定时提前TA值,以使所述终端基于接收到的所述TA值与所述基站重新建立同步,以及使所述终端在接收到所述第一寻呼消息后不发起随机接入过程,并继续维持在INACTIVE态传输所述SRS;或者,
    向所述终端发送第二寻呼消息,以使所述终端发起随机接入过程,并获取更新后的定时提前TA值与所述基站重新建立同步,并且,下发RRC释放指示,以使所述终端继续维持在INACTIVE态传输所述SRS;或者,
    向所述终端发送第三寻呼消息,在所述第三寻呼消息中携带进行IDLE或INACTIVE上行定位的指示,以使所述终端发起随机接入过程获取更新后的定时提前TA值与基站重新建立同步,且使所述终端继续维持在INACTIVE态传输所述SRS。
  30. 如权利要求28所述的基站,其特征在于,判定本次定位失败并生成第二定位失 败指示之后,所述处理器用于:
    将生成的第二定位失败指示发送给所述定位服务器,和/或,发送给处于INACTIVE态的所述终端。
  31. 如权利要求30所述的基站,其特征在于,将所述第二定位失败指示发送给处于INACTIVE态的所述终端,所述处理器用于:
    与所述终端建立连接后,将所述第二定位失败指示发送给所述终端,以通知所述终端定位失败;或者,
    向所述终端发送携带所述第二定位失败指示的第四寻呼消息,以通知所述终端本次定位失败,以及使所述终端在接收到所述第四寻呼消息后不发起随机接入过程,并继续维持在INACTIVE态。
  32. 如权利要求31所述的基站,其特征在于,所述处理器还用于:
    与所述终端建立连接后,将所述第二定位失败指示发送给所述终端,其中,所述基站发送所述第二定位失败指示的方式包括以下任意一种:
    通过MAC CE携带所述第二定位失败指示;
    通过下行控制信息DCI携带所述第二定位失败指示;
    通过RRC消息携带所述第二定位失败指示。
  33. 一种终端,其特征在于,包括:
    获取单元,用于在处于空闲IDLE态或非激活INACTIVE态时,向基站传输上行定位参考信号SRS进行上行定位的过程中,获取与基站间的传输信道的第一信道状态信息;
    判断单元,用于基于所述第一信道状态信息判断与所述基站之间的同步状态。
  34. 一种基站,其特征在于,包括:
    判断单元,用于在接收处于空闲IDLE态或非激活INACTIVE态的终端发送的上行定位参考信号SRS的过程中判断与所述终端之间的同步状态;
    处理单元,用于若确定与所述终端发生上行失步,则重新与处于INACTIVE态的所述终端建立同步以继续接收所述终端传输的所述SRS,或者,判定定位失败并生成第二定位失败指示。
  35. 一种计算机可读存储介质,其特征在于,当所述存储介质中的指令由处理器执行时,使得所述处理器能够执行如权利要求1-11任一项所述的方法。
  36. 一种计算机可读存储介质,其特征在于,当所述存储介质中的指令由处理器执行时,使得所述处理器能够执行如权利要求12-16任一项所述的方法。
PCT/CN2022/070092 2021-01-08 2022-01-04 一种同步状态的处理方法、设备及存储介质 WO2022148339A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/260,782 US20240306101A1 (en) 2021-01-08 2022-01-04 Synchronization state processing method, and device and storage medium
EP22736501.2A EP4277373A4 (en) 2021-01-08 2022-01-04 SYNCHRONIZATION STATUS PROCESSING METHOD AND DEVICE AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110024676.4A CN114760681B (zh) 2021-01-08 2021-01-08 一种同步状态的处理方法、设备及存储介质
CN202110024676.4 2021-01-08

Publications (1)

Publication Number Publication Date
WO2022148339A1 true WO2022148339A1 (zh) 2022-07-14

Family

ID=82326304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070092 WO2022148339A1 (zh) 2021-01-08 2022-01-04 一种同步状态的处理方法、设备及存储介质

Country Status (4)

Country Link
US (1) US20240306101A1 (zh)
EP (1) EP4277373A4 (zh)
CN (1) CN114760681B (zh)
WO (1) WO2022148339A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024173521A1 (en) * 2023-02-14 2024-08-22 Apple Inc. Techniques including configuration updates for supporting positioning for mobile user equipment in reduced-power states

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992347A (zh) * 2015-01-29 2016-10-05 北京三星通信技术研究有限公司 一种上行信号的发送方法、用户设备和基站
CN108882260A (zh) * 2017-05-08 2018-11-23 索尼公司 无线通信系统中的电子设备和方法
US20190132809A1 (en) * 2016-04-26 2019-05-02 Sharp Kabushiki Kaisha Terminal apparatus, communication method, and integrated circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10959284B2 (en) * 2018-08-08 2021-03-23 Qualcomm Incorporated Beam failure detection and indication in DRX mode
CN110896560B (zh) * 2018-09-13 2022-06-07 维沃移动通信有限公司 上行信号发送方法和终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992347A (zh) * 2015-01-29 2016-10-05 北京三星通信技术研究有限公司 一种上行信号的发送方法、用户设备和基站
US20190132809A1 (en) * 2016-04-26 2019-05-02 Sharp Kabushiki Kaisha Terminal apparatus, communication method, and integrated circuit
CN108882260A (zh) * 2017-05-08 2018-11-23 索尼公司 无线通信系统中的电子设备和方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OPPO: "Discussion on positioning in RRC INACTIVE/IDLE mode", 3GPP DRAFT; R2-2008776, vol. RAN WG2, 23 October 2020 (2020-10-23), pages 1 - 3, XP051941882 *
See also references of EP4277373A4
VIVO: "Discussion on UE based positioning in idle/inactive states", 3GPP DRAFT; R1-1906181_DISCUSSION ON UE BASED POSITIONING IN IDLE_INACTIVE STATES_FINAL, vol. RAN WG1, 1 May 2019 (2019-05-01), Reno, USA, pages 1 - 2, XP051708220 *

Also Published As

Publication number Publication date
EP4277373A1 (en) 2023-11-15
CN114760681A (zh) 2022-07-15
EP4277373A4 (en) 2024-07-17
CN114760681B (zh) 2024-08-02
US20240306101A1 (en) 2024-09-12

Similar Documents

Publication Publication Date Title
CN113519204B (zh) 从用户设备到网络的针对无线电链路监视、波束失败检测和波束失败恢复的报告
RU2390938C2 (ru) Способ и устройство для выполнения процедуры временной синхронизации восходящей линии связи при передаче обслуживания в системе мобильной связи
US10178703B2 (en) Stopping a random access procedure
US10349450B2 (en) Methods and devices for random access
TWI475910B (zh) Triggering a method from cell time alignment process
CN107872856B (zh) 一种降低切换时延的方法及装置
US20190021134A1 (en) User plane optimization for narrowband internet of things
US8571006B2 (en) Mobile communication method and radio base station
EP3047687B1 (en) Methods and apparatus for wireless device synchronization
JP2001257641A (ja) マルチアクセス無線通信システム用のアップリンクタイミング同期およびアクセス制御
JP2009535954A (ja) 専用アップリンク・リソース割り当てを用いることによってアップリンク同期をもたらす装置、方法およびコンピュータ・プログラム
JP5357209B2 (ja) 移動通信方法
WO2017080247A1 (zh) 同步方法及装置
US11570736B2 (en) Method for delay spread based TA validation
WO2020258032A1 (zh) 时延补偿方法、设备及存储介质
JP2017521975A (ja) 同期方法、同期装置、および基地局
KR20150128426A (ko) 단말간 통신을 지원하는 무선 통신 시스템에서 동기신호 선택 방법 및 장치
WO2022148339A1 (zh) 一种同步状态的处理方法、设备及存储介质
US20240056912A1 (en) Switching Delay Control in a Dual-Active Protocol Stack Handover
US20240098797A1 (en) Systems and methods for managing small data transmissions
WO2014032281A1 (zh) 增加辅小区的方法及基站、终端
WO2022237143A1 (zh) 数据处理方法、装置和用户设备
JP2003061152A (ja) 送受信装置、通信システム及び伝搬遅延制御方法
US20230232355A1 (en) Communications devices, infrastructure equipment and methods
WO2015109524A1 (zh) 一种发射同步信号的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736501

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18260782

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022736501

Country of ref document: EP

Effective date: 20230808