WO2022148171A1 - 成像模组和增强现实设备 - Google Patents

成像模组和增强现实设备 Download PDF

Info

Publication number
WO2022148171A1
WO2022148171A1 PCT/CN2021/133056 CN2021133056W WO2022148171A1 WO 2022148171 A1 WO2022148171 A1 WO 2022148171A1 CN 2021133056 W CN2021133056 W CN 2021133056W WO 2022148171 A1 WO2022148171 A1 WO 2022148171A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
grating
imaging module
imaging
optical waveguide
Prior art date
Application number
PCT/CN2021/133056
Other languages
English (en)
French (fr)
Inventor
李琨
饶轶
刘德安
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2022148171A1 publication Critical patent/WO2022148171A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view

Definitions

  • the invention relates to the technical field of optical devices, in particular to an imaging module and an augmented reality device.
  • Augmented Reality (AR) technology is a technology that calculates the position and angle of camera images in real time and adds corresponding images, videos, and 3D models.
  • the goal of this technology is to superimpose the virtual world on the screen. world and interact.
  • a common optical waveguide 10' includes a light-transmitting substrate 11', an incident grating 12' and an exit grating 13' disposed on the light-transmitting substrate 11';
  • a common optical machine 20' includes a micro-display 21', And the imaging prism 22' or the prism group arranged on the front side of the micro-display 21', each pixel on the micro-display 21' is converged on the optical-mechanical exit pupil 23' or the wave entrance pupil via the imaging prism 22' or the prism group Then, it is coupled into the light-transmitting substrate 11' through the incident grating 12', and finally exits from the exit grating 13' to be input to the human eye.
  • the angle formed by the light beams formed by the most edge pixel points is the field of view (FOV).
  • the incident angle range ⁇ i is the FOV.
  • the diffraction grating is sensitive to the incident angle, that is, light incident at different angles is diffracted by the incident grating 12 ′ and then has different exit angles, thereby forming a diffraction angle range ⁇ d .
  • the material of the light-transmitting substrate 11 ′ needs to have a sufficiently large refractive index to support light with a large diffraction angle range to satisfy the condition of total reflection, that is, the light can propagate in the optical waveguide 10 ′. Therefore, the development of the material of the light-transmitting substrate 11' is one of the limiting conditions for the FOV of the optical waveguide 10'.
  • the incident grating 12' is usually optimized to select design parameters with better angular uniformity, but in this way, the overall coupling efficiency will be sacrificed and the light efficiency of the product will be affected.
  • the main purpose of the present invention is to propose an imaging module, which aims to reduce the physical limitation caused by the high refractive index of the light-transmitting base material, increase its field of view, improve its light efficiency, and enhance its uniform brightness sex.
  • the imaging module proposed by the present invention includes:
  • an optical waveguide comprising a light-transmitting base, an incident grating and an exit grating disposed on the light-transmitting base, the incident grating being disposed corresponding to the optical machine;
  • the diffractive imaging element is located on the light outgoing path of the optical waveguide and is arranged opposite to the outgoing grating.
  • the diffractive imaging element is configured as an imaging grating.
  • the imaging grating is configured as a surface relief grating or a holographic volume grating.
  • the material of the diffractive imaging element is an organic resin material or a dielectric material or a polymer material or a liquid crystal material.
  • the material of the light-transmitting substrate is glass.
  • the exit grating is disposed on a side of the light-transmitting substrate away from the diffractive imaging element.
  • the optical machine includes a micro-display screen and a collimating element located on the front side of the micro-display screen, and the light emitted by the micro-display screen passes through the collimating element and is transmitted in parallel to the optical waveguide. .
  • the optical machine adopts a parallel light source, so that the light emitted by the optical machine is transmitted to the optical waveguide in parallel.
  • the light transmitted to the optical waveguide is perpendicular to the optical waveguide.
  • the present invention also provides an augmented reality device, including the aforementioned imaging module.
  • the technical solution of the present invention is to dispose a diffractive imaging element opposite to the outgoing grating on the light outgoing path of the optical waveguide, and the front side of the microdisplay screen of the optical machine does not need to be provided with imaging elements such as an imaging prism or a prism group, and also That is, the imaging element in the imaging module is moved from the incident end of the optical waveguide to the outgoing end, so that when parallel light is output to the optical waveguide through the optical machine, the angle of the light incident on the incident grating If the diffraction angle is the same, the diffraction angle is also the same, and there is no angle difference caused by different incident angles.
  • the diffraction angle satisfies the total reflection condition of the light-transmitting substrate, it can reduce the high refractive index of the imaging module to the light-transmitting substrate material. Due to the physical limitations brought about by other conditions, increasing its field of view, the design difficulty of the incident grating can also be reduced, thereby reducing the design pressure of the optical waveguide; in addition, due to the same incident angle, the coupling efficiency of each pixel is also the same, The decoupling efficiency is also the same after passing through the exit grating, so that the efficiency of the entire field of view is uniform, and the solution with the highest efficiency at this angle can be selected, which is beneficial to improve the light efficiency of the imaging module and improve the imaging module. uniformity of brightness.
  • FIG. 1 is a schematic structural diagram of an imaging module in the background art
  • FIG. 2 is a schematic structural diagram of an embodiment of an imaging module of the present invention.
  • label name label name 10 optical waveguide 11 transparent substrate 12
  • Incident grating 13 Exit grating 20
  • optomechanical twenty one
  • Micro display twenty two collimation element 30
  • the directional indications are only used to explain the relationship between various components in a specific posture If the specific posture changes, the directional indication also changes accordingly.
  • the present invention provides an imaging module.
  • the imaging module includes:
  • the optical waveguide 10 includes a light-transmitting substrate 11, an incident grating 12 and an exit grating 13 disposed on the light-transmitting substrate 11, and the incident grating 12 is disposed corresponding to the optical machine 20; and,
  • the diffractive imaging element 30 is located on the light exit path of the optical waveguide 10 and is disposed opposite to the exit grating 13 .
  • the optical waveguide 10 is specifically set as a diffractive optical waveguide 10
  • the incident grating 12 and the exit grating 13 are both set as diffraction gratings.
  • the incident grating 12 is disposed corresponding to the optical machine 20 , which means that the optical machine 20 is disposed toward the incident grating 12 .
  • the incident grating 12 is disposed on the side of the light-transmitting substrate 11 away from the optomechanical 20 ; however, the design is not limited to this, and in other embodiments, the The incident grating 12 may also be disposed on the side of the light-transmitting substrate 11 facing the optomechanical 20 .
  • the diffractive imaging element 30 completes the light gathering and imaging tasks, so that the human eye can see a complete image.
  • the diffractive imaging element 30 is optimized according to design requirements, so that the light is still evenly distributed throughout the entire eye frame after imaging, and no bright spots or dark stripes are generated.
  • the technical solution of the present invention is to dispose a diffractive imaging element 30 opposite to the outgoing grating 13 on the light outgoing path of the optical waveguide 10, and the front side of the microdisplay screen 21 of the optical machine 20 does not need to be provided with an imaging prism or a prism group and other imaging elements, that is, the imaging element in the imaging module is moved from the incident end of the optical waveguide 10 to the outgoing end.
  • the parallel light is output to the optical waveguide 10 through the optical machine 20
  • the incident light enters the optical waveguide 10.
  • the angle of the light rays on the incident grating 12 is the same, the diffraction angle is also the same, and there is no angle difference caused by different incident angles.
  • the imaging can be reduced.
  • the physical limitation brought by the module to the high refractive index of the light-transmitting substrate 11 material increases its field of view, and the design difficulty of the incident grating 12 can also be reduced, thereby reducing the design pressure of the optical waveguide 10;
  • the coupling efficiency of each pixel is also the same, and the coupling efficiency is the same after passing through the exit grating 13, so that the efficiency of the entire field of view is uniform, and the solution with the highest efficiency at this angle can be selected, which is conducive to improving
  • the light efficiency of the imaging module is improved, and the uniformity of the brightness of the imaging module is improved.
  • the diffractive imaging element 30 is configured as an imaging grating, so that after the outgoing light is diffracted by the imaging grating, the light is converged and imaged, so that the human eye can see a complete image.
  • the imaging grating may be configured as a surface relief grating or a holographic volume grating, but not limited to.
  • the material of the diffractive imaging element 30 may be, but not limited to, an organic resin material, a dielectric material, a polymer material, or a liquid crystal material, or the like.
  • the material of the light-transmitting substrate 11 is glass material, and the refractive index of the glass material is relatively high, which is conducive to realizing the total reflection of the internal light, thereby facilitating the transport of the incident light to the exit grating 13 .
  • the present design is not limited to this, and in other embodiments, the material of the light-transmitting substrate 11 can also be other light-transmitting materials with high refractive index and transparent in the visible light band.
  • the exit grating 13 is disposed on a side of the light-transmitting substrate 11 away from the diffractive imaging element 30 . That is, in this embodiment, the exit grating 13 and the diffractive imaging element 30 are respectively disposed on opposite sides of the light-transmitting substrate 11, so that the diffractive imaging element 30 can be conveniently placed close to the light-transmitting substrate 11 is set to make the structure of the imaging module more compact.
  • the present design is not limited to this, and in other embodiments, the exit grating 13 may also be disposed on the side of the transparent substrate 11 facing the diffractive imaging element 30 , that is, the exit grating 13 and the diffractive imaging element 30 .
  • the diffractive imaging element 30 may be located on the same side of the light-transmitting substrate 11 .
  • the diffractive imaging element 30 is separately disposed on the light-transmitting substrate 11 (see FIG. 2 ).
  • the present design is not limited to this, and in other embodiments, the diffractive imaging element 30 may also be attached to the light-transmitting substrate 11 , or directly formed on the side of the light-transmitting substrate 11 away from the exit grating 13 . In this way, the modularity of the product can be improved, the components required to be assembled can be reduced, and the assembly efficiency of the product can be improved.
  • the optical machine 20 includes a micro-display screen 21 and a collimating element 22 located on the front side of the micro-display screen 21. After the light emitted by the micro-display screen 21 passes through the collimating element 22, it is transmitted in parallel.
  • the collimating element 22 is used to collimate each pixel of the micro-display 21 into multiple beams of parallel rays, so that each pixel incident on the optical waveguide 10 is The corresponding rays are parallel rays, that is, the angles of the rays incident on the incident grating 12 can be made the same, so that the diffraction angles of the rays are the same, and there is no angle difference caused by different incident angles.
  • the optical machine 20 can also use a parallel light source, so that the light emitted by the optical machine 20 can be transmitted to the optical waveguide 10 in parallel.
  • the light rays corresponding to the pixels on the optical waveguide 10 are parallel lights, so that the diffraction angles of the light rays are the same after being diffracted by the incident grating 12 , and there is no angle difference caused by different incident angles.
  • the light transmitted to the optical waveguide 10 is vertically incident on the optical waveguide 10, that is, the incident angles of all lights are zero. At the same time, all light can enter the optical waveguide 10 , reducing the light loss when the light enters the optical waveguide 10 , thereby helping to improve the light efficiency of the imaging module.
  • the present invention also provides an augmented reality device, the imaging module includes an imaging module, and the specific structure of the imaging module refers to the above-mentioned embodiments. Since the augmented reality device adopts all the technical solutions of all the above-mentioned embodiments, it has at least All the beneficial effects brought by the technical solutions of the above embodiments will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种成像模组和增强现实设备,其中,成像模组包括:光机(20);光波导(10),包括透光基底(11)、及设于透光基底(11)的入射光栅(12)和出射光栅(13),入射光栅(12)对应光机(20)设置;以及,衍射成像元件(30),位于光波导(10)的出光路径上,并与出射光栅(13)相对设置。本方案能降低产品对透光基底材料高折射率等条件所带来的物理限制,增大产品视场角,提升产品光效,增强产品亮度均匀性。

Description

成像模组和增强现实设备 技术领域
本发明涉及光学设备技术领域,特别涉及一种成像模组和增强现实设备。
背景技术
增强现实(Augmented Reality,AR)技术,是一种实时地计算摄影机影像的位置及角度并加上相应图像、视频、3D模型的技术,这种技术的目标是在屏幕上把虚拟世界叠加在现实世界并进行互动。
有的增强现实设备采用包括光机20'和光波导10'的成像模组。参照图1,常见的光波导10'包括透光基底11'、及设于透光基底11'上的入射光栅12'和出射光栅13';常见的光机20'包括微显示屏21'、及设于微显示屏21'前侧的成像棱镜22'或棱镜组,微显示屏21'上的每个像素都经由成像棱镜22'或者棱镜组汇聚在光机出瞳23'或波导入瞳处,再通过入射光栅12'耦入透光基底11',最后从出射光栅13'出射,以输入人眼。由最边缘的像素点形成的光束所成的夹角即为视场角(FOV);可以理解,经过光机出瞳23'或波导入瞳入射到衍射光波导10'上的光线是多个角度的,入射角范围θ i即为所述FOV。
由于衍射光栅对于入射角度具有敏感性,即为不同角度入射的光经入射光栅12'衍射后出射角度也不同,从而形成衍射角度范围Δθ d。在光波导10'传播原理中,透光基底11'材料需要有足够大的折射率,才能够支持大衍射角度范围的光线满足全反射条件,即光线能够在光波导10'中传播。因此,透光基底11'材料的发展是光波导10'FOV的限制条件之一。
另外,由于衍射光栅对于入射角度的敏感性,不同入射角度光的衍射效率也不相同,这就造成了显示亮度在FOV内分布不均匀的现象。为了提高亮度均匀性,入射光栅12'通常经过优化选择角度均匀性比较好的设计参数,但如此,会牺牲总体耦入效率,影响产品光效。
以上内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。
发明内容
本发明的主要目的是提出一种成像模组,旨在降低其对透光基底材料高折射率等条件所带来的物理限制,增大其视场角,提升其光效,增强其亮度均匀性。
为实现上述目的,本发明提出的成像模组包括:
包括:
光机;
光波导,包括透光基底、及设于所述透光基底的入射光栅和出射光栅,所述入射光栅对应所述光机设置;以及,
衍射成像元件,位于所述光波导的出光路径上,并与所述出射光栅相对设置。
可选地,所述衍射成像元件配置为成像光栅。
可选地,所述成像光栅配置为表面浮雕光栅或者全息体光栅。
可选地,所述衍射成像元件的材料为有机树脂材料或介质材料或聚合物材料或液晶材料。
可选地,所述透光基底的材质为玻璃材质。
可选地,所述出射光栅设置在所述透光基底的背离所述衍射成像元件的一侧。
可选地,所述光机包括微显示屏及位于所述微显示屏前侧的准直元件,所述微显示屏所发出的光经过所述准直元件后,平行传输至所述光波导。
可选地,所述光机采用平行光源,以使所述光机所发出的光平行传输至所述光波导。
可选地,传输至所述光波导的光垂直入射所述光波导。
本发明还提出一种增强现实设备,包括前述的成像模组。
本发明的技术方案通过在所述光波导的出光路径上设置与所述出射光栅相对的衍射成像元件,而所述光机的微显示屏前侧无需设置成像棱镜或棱镜组等成像元件,也即,将所述成像模组中的成像元件从光波导的入射端移至 出射端,如此,通过所述光机向所述光波导输出平行光时,入射到所述入射光栅上的光线角度相同,则衍射角度也相同,不存在由于不同入射角度引起的角度差,因此,只要衍射角度满足透光基底的全反射条件即可,从而能降低该成像模组对透光基底材料高折射率等条件所带来的物理限制,增大其视场角,入射光栅的设计难度也可以得以降低,从而减轻光波导的设计压力;另外,由于入射角度相同,各个像素耦入的效率也相同,在通过出射光栅后耦出效率也相同,使得整个视场角的效率均匀,并可选择在该角度下最高效率的解,从而有利于提高该成像模组的光效,并提高该成像模组的亮度的均匀性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为背景技术中的成像模组的结构示意图;
图2为本发明成像模组一实施例的结构示意图。
背景技术中的附图标号说明:
标号 名称 标号 名称
10’ 光波导 11’ 透光基底
12’ 入射光栅 13’ 出射光栅
20’ 光机 21’ 微显示屏
22’ 成像棱镜 23’ 光机出瞳
具体实施方式中的附图标号说明:
标号 名称 标号 名称
10 光波导 11 透光基底
12 入射光栅 13 出射光栅
20 光机 21 微显示屏
22 准直元件 30 衍射成像元件
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,若全文中出现的“和/或”或者“及/或”,其含义包括三个并列的方案,以“A和/或B”为例,包括A方案、或B方案、或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提出一种成像模组。
参照图2,在本发明一实施例中,该成像模组包括:
光机20;
光波导10,包括透光基底11、及设于所述透光基底11的入射光栅12和出射光栅13,所述入射光栅12对应所述光机20设置;以及,
衍射成像元件30,位于所述光波导10的出光路径上,并与所述出射光栅13相对设置。
本实施例中,所述光波导10具体设置为衍射光波导10,所述入射光栅12和所述出射光栅13均设置为衍射光栅。所述入射光栅12对应所述光机20设置,是指所述光机20朝向所述入射光栅12设置。需要说明的是,如图2所示,所述入射光栅12设于所述透光基底11的背离所述光机20的一侧;然本设计不限于此,于其他实施例中,所述入射光栅12还可设于所述透光基底11的面向所述光机20的一侧。
本实施例中,当光线在所述出射光栅13的衍射作用下出射后,由所述衍射成像元件30完成光线的汇聚和成像任务,从而使得人眼能够看到完整的像。通常地,会对所述衍射成像元件30根据设计需要进行优化,从而使得成像后光线在整个动眼框仍然分布均匀,不会产生亮斑或者暗条纹。
本发明的技术方案通过在所述光波导10的出光路径上设置与所述出射光栅13相对的衍射成像元件30,而所述光机20的微显示屏21前侧无需设置成像棱镜或棱镜组等成像元件,也即,将所述成像模组中的成像元件从光波导10的入射端移至出射端,如此,通过所述光机20向所述光波导10输出平行光时,入射到所述入射光栅12上的光线角度相同,则衍射角度也相同,不存在由于不同入射角度引起的角度差,因此,只要衍射角度满足透光基底11的全反射条件即可,从而能降低该成像模组对透光基底11材料高折射率等条件所带来的物理限制,增大其视场角,入射光栅12的设计难度也可以得以降低,从而减轻光波导10的设计压力;另外,由于入射角度相同,各个像素耦入的效率也相同,在通过出射光栅13后耦出效率也相同,使得整个视场角的效率均匀,并可选择在该角度下最高效率的解,而有利于提高该成像模组的光效,并提高该成像模组的亮度的均匀性。
进一步地,所述衍射成像元件30配置为成像光栅,以通过成像光栅对出射光线进行衍射后,再完成光线的汇聚和成像,从而使得人眼能够看到完整的像。本实施例中,可选地,所述成像光栅可但不限于配置为表面浮雕光栅或者全息体光栅等。另外,可选地,所述衍射成像元件30的材料可但不限于采用有机树脂材料或介质材料或聚合物材料或液晶材料等。
进一步地,所述透光基底11的材质为玻璃材质,玻璃材质的折射率较高,有利于实现内部光线的全反射,从而有利于将入射的光搬运至出射光栅13。然本设计不限于此,于其他实施例中,透光基底11的材质还可采用其他折射 率较高且在可见光波段透明的透光材质。
进一步地,所述出射光栅13设置在所述透光基底11的背离所述衍射成像元件30的一侧。也即,本实施例中,所述出射光栅13和所述衍射成像元件30分设于所述透光基底11的相对两侧,如此,可便于将所述衍射成像元件30靠近所述透光基底11设置,以使得所述成像模组的结构更为紧凑。然本设计不限于此,于其他实施例中,所述出射光栅13也可设置在所述透光基底11的面向所述衍射成像元件30的一侧,也即,所述出射光栅13和所述衍射成像元件30可以位于所述透光基底11的同一侧。
本实施例中,可选地,所述衍射成像元件30分体设置于所述透光基底11(见图2)。然本设计不限于此,于其他实施例中,所述衍射成像元件30也可以依附设置在所述透光基底11,或者直接成型在所述透光基底11的背离所述出射光栅13的侧面上,如此,可以提高产品的模块化程度,减少所需装配的部件,提高产品装配效率。
进一步地,所述光机20包括微显示屏21及位于所述微显示屏21前侧的准直元件22,所述微显示屏21所发出的光经过所述准直元件22后,平行传输至所述光波导10;可以理解,所述准直元件22用以使所述微显示屏21的每一像素准直成多束平行光线,以使得入射到所述光波导10上的各像素所对应的光线为平行光,也即,能使得入射到所述入射光栅12上的光线角度相同,进而使各光线衍射角度相同,而不存在由于不同入射角度引起的角度差。然本设计不限于此,于其他实施例中,所述光机20还可采用平行光源,以使所述光机20所发出的光平行传输至所述光波导10,如此,亦可使得入射到所述光波导10上的各像素所对应的光线为平行光,进而使各光线在经过入射光栅12的衍射后,衍射角度相同,而不存在由于不同入射角度引起的角度差。另外,在本发明中,可选地,传输至所述光波导10的光垂直入射所述光波导10,也即,所有光的入射角均为零,如此,可在使得在入射角度相同的同时,使所有光线都能进入所述光波导10,减少光线在进入所述光波导10时的光损失,从而有利于提高所述成像模组的光效。
本发明还提出一种增强现实设备,该成像模组包括成像模组,该成像模组的具体结构参照上述实施例,由于本增强现实设备采用了上述所有实施例 的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

  1. 一种成像模组,其特征在于,包括:
    光机;
    光波导,包括透光基底、及设于所述透光基底的入射光栅和出射光栅,所述入射光栅对应所述光机设置;以及,
    衍射成像元件,位于所述光波导的出光路径上,并与所述出射光栅相对设置。
  2. 如权利要求1所述的成像模组,其特征在于,所述衍射成像元件配置为成像光栅。
  3. 如权利要求2所述的成像模组,其特征在于,所述成像光栅配置为表面浮雕光栅或者全息体光栅。
  4. 如权利要求1所述的成像模组,其特征在于,所述衍射成像元件的材料为有机树脂材料或介质材料或聚合物材料或液晶材料。
  5. 如权利要求1所述的成像模组,其特征在于,所述透光基底的材质为玻璃材质。
  6. 如权利要求1所述的成像模组,其特征在于,所述出射光栅设置在所述透光基底的背离所述衍射成像元件的一侧。
  7. 如权利要求1所述的成像模组,其特征在于,所述光机包括微显示屏及位于所述微显示屏前侧的准直元件,所述微显示屏所发出的光经过所述准直元件后,平行传输至所述光波导。
  8. 如权利要求1所述的成像模组,其特征在于,所述光机采用平行光源,以使所述光机所发出的光平行传输至所述光波导。
  9. 如权利要求7或8所述的成像模组,其特征在于,传输至所述光波导的光垂直入射所述光波导。
  10. 一种增强现实设备,其特征在于,包括如权利要求1至9任一项所述的成像模组。
PCT/CN2021/133056 2021-01-06 2021-11-25 成像模组和增强现实设备 WO2022148171A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110016371.9 2021-01-06
CN202110016371.9A CN112649963A (zh) 2021-01-06 2021-01-06 成像模组和增强现实设备

Publications (1)

Publication Number Publication Date
WO2022148171A1 true WO2022148171A1 (zh) 2022-07-14

Family

ID=75367454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133056 WO2022148171A1 (zh) 2021-01-06 2021-11-25 成像模组和增强现实设备

Country Status (2)

Country Link
CN (1) CN112649963A (zh)
WO (1) WO2022148171A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112649963A (zh) * 2021-01-06 2021-04-13 歌尔股份有限公司 成像模组和增强现实设备
CN114326123B (zh) * 2021-12-27 2023-03-21 北京灵犀微光科技有限公司 一种近眼显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614857A (zh) * 2015-01-21 2015-05-13 佛山市智海星空科技有限公司 一种大出瞳全息波导眼镜系统
CN107966820A (zh) * 2017-12-27 2018-04-27 北京灵犀微光科技有限公司 波导显示装置
CN110161701A (zh) * 2019-06-17 2019-08-23 杭州光粒科技有限公司 一种偏振光敏感ar眼镜波导的多深度成像方法
CN112649963A (zh) * 2021-01-06 2021-04-13 歌尔股份有限公司 成像模组和增强现实设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614857A (zh) * 2015-01-21 2015-05-13 佛山市智海星空科技有限公司 一种大出瞳全息波导眼镜系统
CN107966820A (zh) * 2017-12-27 2018-04-27 北京灵犀微光科技有限公司 波导显示装置
CN110161701A (zh) * 2019-06-17 2019-08-23 杭州光粒科技有限公司 一种偏振光敏感ar眼镜波导的多深度成像方法
CN112649963A (zh) * 2021-01-06 2021-04-13 歌尔股份有限公司 成像模组和增强现实设备

Also Published As

Publication number Publication date
CN112649963A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
US6331916B1 (en) Virtual image optical system
US8094377B2 (en) Head-mounted optical apparatus using an OLED display
US10684408B2 (en) Display device and image display method
US9013793B2 (en) Lightweight eyepiece for head mounted display
WO2022148171A1 (zh) 成像模组和增强现实设备
WO2019157987A1 (zh) 单眼大视场近眼显示设备及双目大视场近眼显示设备
US20190369399A1 (en) Head-mounted display device
CN109073882A (zh) 具有出射光瞳扩展器的基于波导的显示器
US20180164583A1 (en) Display device system with tilted lens group to prevent ghost images
CN205643970U (zh) 一种背光单元、液晶模组以及虚拟现实设备
US20210278668A1 (en) Near eye display device
JP2012083458A (ja) 虚像表示装置
WO2022193880A1 (zh) 近眼显示光学系统、滤光件及近眼显示设备
CN115144952B (zh) 光波导器件及近眼显示装置
US11640059B2 (en) Head-mounted display optical module
CN113075793A (zh) 显示装置及其操作方法
US11644673B2 (en) Near-eye optical system
JP3524569B2 (ja) 視覚表示装置
JP4581180B2 (ja) 虚像表示装置
JPH09120060A (ja) コリメート光を供給する逆光照明システムを有する表示装置
TWI824355B (zh) 一種光學系統及混合實境設備
CN213780549U (zh) 成像模组和增强现实设备
CN109471259B (zh) 近眼显示装置
CN219978635U (zh) 光学装置、近眼显示系统及增强显示系统
US11988845B2 (en) Near-eye display devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917212

Country of ref document: EP

Kind code of ref document: A1