WO2022148136A1 - 一种探测装置、激光雷达系统及终端 - Google Patents

一种探测装置、激光雷达系统及终端 Download PDF

Info

Publication number
WO2022148136A1
WO2022148136A1 PCT/CN2021/131172 CN2021131172W WO2022148136A1 WO 2022148136 A1 WO2022148136 A1 WO 2022148136A1 CN 2021131172 W CN2021131172 W CN 2021131172W WO 2022148136 A1 WO2022148136 A1 WO 2022148136A1
Authority
WO
WIPO (PCT)
Prior art keywords
beams
sub
component
wavelength
emission
Prior art date
Application number
PCT/CN2021/131172
Other languages
English (en)
French (fr)
Inventor
胡烜
阳光耀
石现领
黄志臻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21917177.4A priority Critical patent/EP4261571A1/en
Publication of WO2022148136A1 publication Critical patent/WO2022148136A1/zh
Priority to US18/345,739 priority patent/US20230341525A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres

Definitions

  • the present application relates to the technical field of lidar, and in particular, to a detection device, a lidar system and a terminal.
  • a laser detection device that is, a LiDAR (Light Detection And Ranging, LiDAR) is a device that emits a laser beam to detect the position, velocity and other characteristic quantities of a target. It is used to perceive the surrounding environment parameters, known as the "eye" of the machine, and has a wide range of applications in the fields of mapping, detection and automatic driving.
  • LiDAR Light Detection And Ranging
  • the existing lidar In order to improve the scanning speed, the existing lidar usually adopts a multi-line structure. Its working principle is as shown in Figure 1a. Multiple photodetectors are arranged in the vertical direction to form a detector array, and a focusing lens is used to separate different directions. The reflected light of the angle is collected on different photoelectric sensors to realize vertical scanning, and then three-dimensional space scanning can be realized by horizontally rotating the transceiver mechanism.
  • the optical signal received by a photodetector may contain an optical signal other than its design corresponding direction angle, which affects the detection. accuracy.
  • a strongly reflective target not only induces a response on its corresponding photodetector, but also induces a weaker response from the detectors around its corresponding photodetector, resulting in crosstalk.
  • the embodiment of the present application provides a detection device, which effectively solves the problem of crosstalk between detectors in the existing detection device by using the emission of multi-wavelength beams so that different detectors receive beams of different wavelengths.
  • the present application provides a laser detection device, comprising: a transceiver component for transmitting N emission sub-beams to a target scanning space at different emission angles, and converging the N reflected sub-beams into a reflected beam; wherein, the N reflected sub-beams are The wavelengths of each sub-beam in the emission sub-beams are different, the emission angle corresponds to the wavelength of the emission sub-beam, and the N reflected sub-beams are formed by reflection after the N emission sub-beams detect at least one detection object.
  • N is a positive integer greater than 1
  • a wavelength division component used for obtaining the N reflected sub-beams corresponding to different wavelengths according to the reflected light beam
  • a detector array used for obtaining the N reflected sub-beams corresponding to different wavelengths according to the reflected light beam
  • the N reflected sub-beams output corresponding electrical signals; wherein, the detector array includes N detectors, and the N detectors correspond to the N reflected sub-beams.
  • the detection device of the embodiment of the present application transmits light beams of different wavelengths to the target scanning space at different emission angles through the transceiver component, and converges to the wavelength division component, and the wavelength division component distributes the light beams of different wavelengths to different detectors to achieve different
  • the detectors receive beams of different wavelengths, which fundamentally solves the problem of crosstalk between detectors.
  • a laser generating component is also included, and the laser generating component generates a detection beam including the above N emission sub-beams, and transmits it to the transceiver component.
  • the wavelength division component includes at least a wavelength division multiplexer, and the wavelength division multiplexer includes N wavelength channels, and the N wavelength channels respectively correspond to the wavelengths of the N reflected sub-beams. wavelength, the N detectors respectively correspond to the output ends of the N wavelength channels.
  • the wavelength division multiplexer realizes the separation of optical channels by means of wavelength division and multiplexing, with stable performance and high isolation.
  • the problem of crosstalk between channels caused by the non-ideal characteristics of the focusing device is controllable, and the solution is highly feasible.
  • the wavelength division component further includes N filter elements, the passing wavelengths of the N filter elements correspond to the wavelengths of the N reflected sub-beams, and the N filter elements correspond to the wavelengths of the N reflected sub-beams.
  • the filter elements are respectively arranged between the output ends of the N wavelength channels and the N detectors, so that different detectors can receive light beams with different wavelengths.
  • an optical circulator is further included, the optical circulator includes at least a first port, a second port and a third port, wherein an optical channel is formed from the first port to the second port, The second port to the third port form an optical channel; the first port communicates with the laser generating assembly, the second port communicates with the transceiver assembly, and the third port communicates with the wavelength division assembly .
  • the transceiver components can transmit light beams to the target scanning space, and receive and focus the transmitted light beams to the wavelength division component to realize the separation of light beams with different wavelengths.
  • the laser generating component includes at least a single-frequency laser and an optical resonator
  • the single-frequency laser is used to emit a single-frequency laser
  • the optical resonator is arranged on the transmission path of the single-frequency laser, and is used to act on the single-frequency laser to generate M sub-beams, each of the M sub-beams.
  • the wavelengths of the sub-beams are different, and the M is a positive integer greater than or equal to N.
  • the laser generating component further includes a spectrum shaping component
  • the spectrum shaping component is used to obtain N sub-beams from the M sub-beams, wherein the wavelengths between any two sub-beams in the N sub-beams are different, and the power difference between any two sub-beams in the N sub-beams less than or equal to the preset threshold.
  • the laser generating assembly further includes an optical amplifier
  • the optical amplifier is used for increasing the power of each of the N sub-beams by a preset factor to form the N emission sub-beams.
  • adjacent wavelengths of the N emission sub-beams are equally spaced
  • the transceiver component at least includes a vertical emitting component for emitting the emission sub-beams of different wavelengths to the target scanning space at different elevation angles.
  • the laser generating assembly is further configured to adjust the number of N emission sub-beams in the probe beam and/or adjust the adjacent wavelength intervals of the N emission sub-beams.
  • the vertical emission component at least includes a collimator and a convex lens
  • the collimator is disposed on the focal plane of the convex lens away from the focal point of the convex lens, and is used for collimating the probe beam to be incident on the convex lens.
  • the vertical straight emission component includes at least a collimator and a diffraction grating
  • the collimator is used for collimating the probe beam onto the diffraction grating.
  • the vertical emission assembly of the embodiment of the present application realizes solid-state scanning in the vertical direction, and avoids the problems of poor reliability, low precision and high cost of the mechanical rotary scanning mechanism of the existing detection device.
  • the laser generating component is further configured to sequentially and integrally adjust the wavelengths of the N emission sub-beams within a preset wavelength range
  • the transceiver component at least further includes a horizontal emission component
  • the horizontal emitting component is disposed on the transmission path of the light beam emitted by the vertical emitting component, and is used for emitting the emitted sub-beams of different wavelengths to the target scanning space at different azimuth angles according to different wavelengths.
  • the horizontal emitting component includes at least one dispersive optical element, which is disposed on the transmission path of the light beam emitted by the vertical emitting component, and transmits the emitted sub-beams of different wavelengths to different wavelengths. Azimuth transmits to the target scan space.
  • the horizontal emission component further includes at least one convex reflection mirror, and the convex reflection mirror is disposed on the transmission path of the reflected light beam of the dispersive optical element.
  • the adjacent wavelength interval is greater than the preset wavelength range.
  • the horizontal emission component of the embodiment of the present application realizes solid-state scanning in the horizontal direction, and the three-dimensional scanning of the target detection space is realized in combination with the vertical emission component.
  • the transceiver component at least further includes a horizontal scanning component, the horizontal scanning component is disposed on the transmission path of the light beam emitted by the vertical emitting component, and the horizontal scanning component includes a reflective surface, The reflecting surface rotates around an axis in the vertical direction, so as to reflect the light beams emitted by the vertical emitting component into the target scanning space at different times and at different angles to achieve scanning in the horizontal direction.
  • the horizontal scanning component includes at least a MEMS scanning component.
  • the laser generating component includes at least a broadband laser for emitting broadband laser light.
  • the laser generating component further includes a spectrum shaping component, the spectrum shaping component is disposed on the transmission path of the laser light generated by the broadband laser, and is used to obtain N sub-beams of different wavelengths.
  • the laser generating assembly further includes an optical amplifier for increasing the power of each of the N sub-beams by a preset multiple.
  • the present application further provides a lidar system, including at least the detection device of the first aspect.
  • the present application further provides a terminal, including at least the detection device of the first aspect, or the lidar system of the second aspect.
  • Fig. 1a is the working principle diagram of the existing lidar
  • Fig. 1b is a schematic diagram of an existing lidar generating crosstalk
  • Figure 2a is a schematic structural diagram of a pixel array of a single-photon avalanche detector provided by the first solution;
  • 2b is a schematic structural diagram of a transceiver system provided by the second solution
  • Figure 2c is a schematic diagram of the working principle of the detection device provided by the third solution.
  • FIG. 3 is a schematic structural diagram of a detection device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of the laser generating assembly provided in Embodiment 1 of the present application.
  • FIG. 5 is a schematic structural diagram of a transceiver component provided in Embodiment 1 of the present application.
  • FIG. 6 is the wavelength distribution of the detection device provided in the first embodiment of the application when the detection scan is performed
  • FIG. 7 is a schematic diagram of the corresponding relationship between the reflection component and the detector array provided in Embodiment 1 of the present application;
  • FIG. 8 is a schematic structural diagram of a transceiver assembly according to Embodiment 2 of the present application.
  • FIG. 9 is the wavelength distribution when the detection device provided in the second embodiment of the present application performs detection scanning
  • FIG. 10 is a schematic structural diagram of the laser generating assembly provided in the second embodiment of the present application.
  • the working principle of the laser detection device is to emit a laser beam to the detection target, and then receive the reflected laser beam reflected by the detection target. Measure the parameters such as distance, movement speed, orientation, height, attitude and shape of the target.
  • Different detectors have different optical channels, and different optical channels correspond to the reflected laser beams reflected by different detection targets. If the reflected laser beam reflected by a detection target enters other optical channels and causes the response of other detectors, crosstalk occurs. It will seriously affect the accuracy of the laser detection device to detect the target.
  • algorithmic threshold filtering is generally used to eliminate the influence of crosstalk.
  • algorithmic threshold filtering will inevitably cause information loss of reflected laser beams and affect the performance of laser detection devices.
  • the first solution is to design the detector array as a single photon avalanche detector (SPAD, Single photon avalanche detector) pixel array with a staggered structure to receive optical signals to reduce crosstalk.
  • SPAD Single photon avalanche detector
  • FIG. 2a is a schematic structural diagram of a pixel array of a single photon avalanche detector.
  • the single-photon avalanche detector pixel array 210 includes an array of pixels 211 , and the pixels 211 are composed of a plurality of single-photon avalanche detectors (SPADs) 2110 .
  • Pixel 211 is equivalent to an independent photodetector. After the light pulses are converged and irradiated on a certain pixel 211 through the lens, different SPADs in the pixel independently respond to the light signal and report the detected photon data and the corresponding time delay. After that, taking the pixel as the minimum unit, the response of each SPAD is accumulated in the pixel, and the final detection structure of the pixel is obtained and output.
  • the first solution is to adjust the rectangular arrangement in the mainstream framework to a parallelogram arrangement by improving the pixel arrangement, thereby increasing the distance between pixels without reducing the pixel density. Therefore, in the case of long-distance large light spots, this solution can effectively alleviate the crosstalk problem caused by one light spot covering multiple pixels.
  • this scheme increases the pixel distance by staggered pixel arrangement, and its distance increase rate is not obvious. Assuming that the horizontal distance and the vertical distance of the pixels are equal, it is difficult to increase the horizontal distance by more than 11.8%, and the effect of suppressing crosstalk is not good. In addition, this solution is only suitable for scenarios requiring increased lateral distance, and cannot be applied to scenarios with a single-column detector array.
  • the second solution is to suppress the crosstalk between different detector channels by modifying the transceiver system to emit laser beams with high collimation performance.
  • FIG. 2b is a schematic structural diagram of the transceiver system of the second solution.
  • the transceiver system includes a lens 221, and a micro-optical layer sequentially composed of an aperture layer 222, a collimating lens layer, a filter layer 224 and a photodetection layer.
  • the aperture layer 222 is an aperture array composed of a plurality of apertures 2220
  • the collimating lens layer is a collimating lens array composed of a plurality of collimating lenses 223
  • the filter layer 224 is a filter composed of a plurality of filters Array
  • the photodetector layer is a photodetector array composed of a plurality of photodetectors 225 .
  • Each aperture in the aperture array, each collimating lens in the collimating lens array, each filter in the filter array, and each photodetector in the photodetector array are set in one-to-one correspondence, and each aperture and its corresponding collimator are set.
  • Straight lenses, filters, and photodetectors form optical channels for each photodetector.
  • the light paths with different angles reflected by the detection target are collected at different positions on the surface of the micro-optical layer through the lens 221 .
  • the aperture layer 222 in the micro-optics has corresponding openings for the light channels of different photodetectors to realize light reception, and physically filters out light from other positions to reduce crosstalk between channels.
  • the diverging light beam is re-converged into a collimated light beam by the corresponding collimating lens 223, and is received by the photodetector corresponding to the channel after passing through an optical filter to further eliminate the interference of external ambient light.
  • This scheme optimizes the performance of the receiving light system by using the micro-optical layer.
  • this solution needs to process and manufacture the micro-optical layer and realize the accurate alignment of the micro-optical layer and the lens system, which imposes high requirements on the manufacturing process, high cost and complicated process.
  • this solution still realizes the isolation between channels in the spatial dimension, and its anti-crosstalk capability is limited for certain situations (such as close-range high-intensity point-reflection targets).
  • the third solution is to use a liquid crystal panel to realize an optical phased array.
  • the liquid crystal phased array is formed by modulating the liquid crystal panel, and the emission angle of the beam reflected by the liquid crystal phased array is controlled to realize scanning.
  • FIG. 2c is a schematic diagram of the working principle of the detection device of the third solution.
  • the laser emitting module 231 generates a laser beam and emits the laser beam to the lens 233 , and the lens 233 collimates the laser beam onto the liquid crystal phased array 232 .
  • the phase difference between the emitted lights at different positions can be controlled.
  • a light beam with a controllable emission angle can be obtained through the interference between the light beams, so as to realize the scanning of the target. Avoid the impact of crosstalk from the system architecture.
  • an embodiment of the present application provides a detection device, which adopts the separation of different detector channels in the wavelength dimension, so as to suppress channel crosstalk.
  • a detection device which adopts the separation of different detector channels in the wavelength dimension, so as to suppress channel crosstalk.
  • light with different wavelengths at the same emission position can be emitted at different emission angles after entering the optical transceiver component, and the wavelength-emission angle is relatively linear. related relationship.
  • the optical signals with different emission angles and corresponding wavelengths are received uniformly, and the light beams with different wavelengths are separated by the optical fiber wavelength division multiplexer, and received by each channel separately. Thanks to the good wavelength selection characteristics of the optical fiber device, the channel isolation of the detection device is significantly increased, and the problem of crosstalk between channels is effectively suppressed.
  • FIG. 3 is a schematic structural diagram of a detection device provided by an embodiment of the present application.
  • the detection device provided in this embodiment of the present application includes, but is not limited to, at least one of a laser generating component 31 , a transceiver component 32 , a wavelength division component 33 , and a detector array 34 .
  • the laser generating component 31 generates a detection beam with multiple wavelength components
  • the transceiver component 32 is disposed on the transmission path of the detection beam generated by the laser generating component 31, and transmits the sub-beams with different wavelength components in the detection beam at different emission angles according to different wavelengths. Launch to the target detection space.
  • the sub-beams of different wavelengths meet the detection target (as shown in Figure 3, detection target 1, detection target 2, and detection target 3 """" detection target N), they are reflected by the detection target to form reflected sub-beams of different wavelengths.
  • the reflected sub-beams of different wavelengths are converged into a reflected beam to the wavelength division component 33, and the wavelength division component decomposes the reflected beam into reflected sub-beams of different wavelengths according to different wavelengths, and distributes the reflected sub-beams of different wavelengths to the detector array 34.
  • Different detectors in the detector output corresponding electrical signals according to different reflected sub-beams. It realizes the isolation of different detector channels in the wavelength dimension, and fundamentally solves the problem of crosstalk between different detector channels.
  • FIG. 4 is a schematic structural diagram of the laser generating assembly provided in the first embodiment of the present application.
  • the laser generating component includes a single-frequency laser 311 , an optical resonator 312 , a spectrum shaping component 313 and an optical amplifier 314 disposed on the transmission path of the laser beam emitted by the single-frequency laser.
  • the optical resonant cavity, the spectrum shaping component and the optical amplifier can be arranged in sequence.
  • the single-frequency laser 311 emits a single-frequency laser, and a multi-wavelength laser beam with M (M is a positive integer greater than or equal to N) wavelength components is generated in the optical resonator 312 due to a strong nonlinear effect, and the multi-wavelength laser beam enters the Spectrum shaping is performed in the spectrum shaping component 313, and the redundant wavelength components in the multi-wavelength laser beam are filtered out to obtain a laser beam with N (N is a positive integer greater than 1) wavelength components, and the power of each wavelength component is made flat, and finally passes through the optical amplifier.
  • M is a positive integer greater than or equal to N
  • the 314 amplifies it to improve the detection signal-to-noise ratio and the measurement distance, and sends it to the transceiver component to emit laser beams with N wavelength components (ie, N emission sub-beams) to the detection space at different emission angles according to different wavelengths for detection. scanning.
  • N wavelength components ie, N emission sub-beams
  • the optical resonator 312 is an optical micro-ring resonator, and the optical micro-ring resonator can act on a single-frequency laser to generate hundreds of wavelength components with adjacent wavelength intervals of 1-2 nm.
  • the state of the optical microring resonator By adjusting the state of the optical microring resonator, the number of wavelength components and the interval between adjacent wavelengths can also be adjusted accordingly. Considering the effect of subsequent scanning and detection, laser beams with multiple wavelength components with equal or close adjacent wavelength intervals can be adjusted by adjusting the optical microring resonator.
  • the spectrum shaping component 313 includes an optical spectrum shaper or a filter, etc., as long as an optical component that can select a specific wavelength component and flatten the power of the wavelength component can be implemented, which is not limited in this application.
  • the laser generating component may only include the single-frequency laser 311 and an optical resonator 312 disposed on the transmission path of the laser beam emitted by the single-frequency laser, and the optical resonator 312 directly acts on the single-frequency laser beam to generate M
  • the laser beam with M wavelength components is directly sent to the transceiver component to complete the detection and scanning.
  • the laser generating component may also only include the single-frequency laser 311 and the optical resonator 312 and the spectrum shaping component 313 disposed on the transmission path of the laser beam emitted by the single-frequency laser.
  • the spectrum shaping component 313 filters out the redundant wavelength components in the laser beam of M wavelength components generated by the optical resonator to obtain the laser beam of N wavelength components and makes the power of each wavelength component flat, and sends the laser beam of N wavelength components into The transceiver component completes the detection scan.
  • FIG. 5 is a schematic structural diagram of a transceiver component provided in Embodiment 1 of the present application. As shown in FIG. 5 , the transceiving component 32 includes a vertical transmitting component 322 and a horizontal transmitting component 323 .
  • the transceiver assembly 32 is coupled to the laser generation assembly 31 and the wavelength division assembly 33 through the optical circulator 35, and is respectively connected to the first port of the laser generation assembly 31 and the optical circulator 35 through the optical fiber, and the transceiver assembly 32 and the second port of the optical circulator 35,
  • the wavelength division component 33 and the third port of the optical circulator 35 are used to realize that the probe beam generated by the laser generating component 31 enters the optical circulator 35 through the first port, and is emitted from the second port to the transceiver component, and the reflected beam received by the transceiver component 32 is transmitted from the first port.
  • the second port enters the optical circulator 35 and is emitted to the wavelength division component 33 from the third port. Reciprocity between transceiver components is realized, which helps to simplify the system structure and improve the transceiver efficiency.
  • the present application does not limit the optical transmission medium between the laser generating component, the optical circulator, the transceiver component and the wavelength division component to be an optical fiber, and other optical transmission medium, such as air, may also be used.
  • the vertical emission component 322 includes a collimator 3221 and a convex lens 3222.
  • the collimator 3221 is deviated from the focal point of the convex lens 3222 and is disposed on the focal plane of the convex lens 3222, so as to achieve collimation of the laser beams of N wavelength components in the detection beam. Directly incident on different positions of the convex lens, so that there is an optical path difference between the laser beams of N wavelength components. This optical path difference will cause the incident light to interfere after reaching the convex lens.
  • a specific angle is related to the wavelength of light, which realizes the conversion of the wavelength of the incident light to the angle of the exit, that is, the laser beam with N wavelength components is emitted to the target scanning space at different elevation angles according to different wavelengths.
  • the vertical emitting component 322 is not limited to the structure of a collimator and a convex lens, as long as it can realize the function of emitting at different emission angles according to different wavelengths.
  • the convex lens can also be replaced by a diffraction grating, and the collimator can When the probe beam is incident on the surface of the diffraction grating, an interference phenomenon occurs, and the laser beam of N wavelength components is emitted to the target scanning space at different elevation angles according to different wavelengths.
  • the horizontal emitting component 323 is disposed on the transmission path of the light beam emitted by the vertical emitting component, and includes at least one optical dispersion element, and emits laser beams of different wavelengths to the target scanning space at different azimuth angles.
  • the wavelengths of the laser beams with N wavelength components are adjusted as a whole within the wavelength range.
  • the single-frequency laser emits single-frequency lasers with different center wavelengths in turn, so as to realize the small-scale overall adjustment of the laser beams with N wavelength components, and then realize the target 3D solid-state scanning of space.
  • the meaning of adjusting the wavelengths of the laser beams with N wavelength components in turn means: the laser generating component adjusts the wavelengths of the laser beams with N wavelength components as a whole at different times.
  • the laser generating component generates The wavelengths of the laser beams with N wavelength components are respectively: ⁇ 1, ⁇ 2, ⁇ n, and the wavelengths of the laser beams with N wavelength components generated by the laser generating assembly at the second moment are adjusted as a whole: ⁇ 1+ ⁇ , ⁇ 2+ ⁇ , ⁇ n+ ⁇ , the wavelengths of the laser beams of N wavelength components at the third time are adjusted to ⁇ 1+2 ⁇ , ⁇ 2+2 ⁇ , ⁇ n+2 ⁇ , and so on at the kth time N
  • the wavelength of the laser beam of the wavelength component is adjusted as a whole: ⁇ 1+(k-1) ⁇ , ⁇ 2+(k-1) ⁇ , and ⁇ n+(k-1) ⁇ .
  • the horizontal scanning component needs to be more sensitive to the wavelength of light than the vertical emitting component.
  • the optical dispersion element of the horizontal emitting component 323 includes a plurality of reflection gratings 3231, wherein one reflection grating receives the light beam emitted by the vertical emitting component, and the other emission light beams are sequentially arranged in On the reflection path of the previous reflection grating, the different reflection angles of light beams with different wavelengths are further increased, so as to improve the wavelength sensitivity of the horizontal emission component.
  • a convex mirror 3232 is also arranged in the horizontal emitting component 323, and the convex mirror 3232 is arranged on the reflection path of the last reflection grating to reflect the light beams reflected by it. Further, the beams of different wavelengths are directed to the target scanning space at different angles, so that even a slight change in the wavelength of the beam can be emitted at different exit angles.
  • the laser generating component emits k detection beams of different wavelengths
  • the transceiver component emits k different elevation angles to realize the vertical direction. scan.
  • the central wavelength of the single-frequency laser emitted by the single-frequency laser is adjusted in turn, so that the k different wavelengths are overall frequency shifted in a small range on the spectrum. In this way, the horizontal emission angles of the k wavelength components will change uniformly, thereby realizing the three-dimensional scanning of the target space.
  • ⁇ i,j - ⁇ i-1,j > ⁇ k,n - ⁇ k,1 that is, the wavelength changes during horizontal scanning
  • the range should be smaller than the adjacent wavelength separation. It can be understood that the adjacent wavelengths represent the two wavelengths with the smallest wavelength difference among the probe beams of different wavelengths. As shown in Fig.
  • ⁇ i,j - ⁇ i-1,j represents the wavelength interval between adjacent wavelengths of probe beams of different wavelengths emitted during vertical scanning
  • ⁇ k,n - ⁇ k,1 represents, During horizontal scanning, the wavelength adjustment range of the sub-beams of any wavelength in the emitted probe beams of different wavelengths.
  • each wavelength channel of the wavelength division assembly 33 are set in a one-to-one correspondence with each detector of the detector array 34, so that the wavelength division assembly can separate the reflected beam into reflected sub-beams of different wavelengths and then enter the detectors.
  • Each detector in the detector array 34 is isolated to achieve the purpose of channel isolation of each detector.
  • a filter element array 36 is provided between the output port of each wavelength channel of the wavelength division component 33 and the detector array.
  • each filter element in the filter element array 36 is connected to the detector array.
  • Each detector in the filter array 34 is arranged in a one-to-one correspondence, that is, each filter element in the filter element array 36 is arranged in a one-to-one correspondence with the output ports of each wavelength channel of the wavelength division component 33 . It can be understood that the transmission wavelength of each filter element in the filter element array 36 corresponds to the transmission wavelength of each wavelength channel of the wavelength division component 33 .
  • Wavelength division multiplexing technology refers to the separation of components with different central wavelengths in a beam of light based on wavelength to form different light beams that can be distinguished.
  • the wavelength division component is designed according to the wavelength division multiplexing technology so that it can receive the optical signal from the transceiver component, split the received optical signal according to the wavelength, and send the split beam of each wavelength to the photodetector
  • the array completes the function of detection.
  • the wavelength division component is a dense wavelength division multiplexer, which is widely used in optical fiber communication systems, and the dense wavelength division multiplexer is widely used in wavelength division multiplexing/demultiplexing in optical fiber communication, and can meet the above-mentioned requirements. Functional requirements for WDM components.
  • the filter element is a narrow-band filter
  • the DWDM can provide isolation up to 40dB
  • the filter can further provide more than 20dB isolation, further providing channel isolation.
  • the filter element is not limited to a narrow-band filter, as long as the filter element can achieve the filtering effect of the present application, such as fiber Bragg grating.
  • the first embodiment of the present application innovatively proposes to use the wavelength dimension to realize the isolation between channels.
  • a multi-wavelength light source is used to replace the traditional single-wavelength light source, which opens up a new wavelength dimension for subsequent systems.
  • each wavelength of the multi-wavelength light source is configured with corresponding wavelength windows, and through specially designed optical transceiver components, different wavelength windows can correspond to different vertical channels, and one-to-one mapping of wavelength windows to vertical channels is realized.
  • the wavelength division component is used to separate the reflected light signal in the wavelength dimension, the separation degree is high, the separation performance is stable, and it is not sensitive to the optical characteristics of the focusing device.
  • vertical channel isolation far higher than that of the current lidar can be obtained, which can eliminate the adverse effects of channel crosstalk.
  • the first embodiment of the present application innovatively proposes to use an improved optical transceiver component to establish the wavelength-scanning angle correlation characteristic, so as to use the change of the wavelength of the light source to achieve Emission angle scan.
  • a wavelength-tunable multi-wavelength light source is used as the detection light source to provide the corresponding functions of wavelength coarse-grained division and fine-grained scanning.
  • the present application proposes an optical transceiver assembly with wavelength-emission angle dependence, wherein the wavelength-vertical emission angle sensitivity is weaker, and the wavelength-horizontal emission angle sensitivity is stronger.
  • the multiple wavelength components of the multi-wavelength light source can be divided as wavelength coarse-grained, and projected to different vertical emission angles through the optical transceiver component to realize parallel measurement of multiple vertical channels.
  • the multi-wavelength light source is tuned to make the frequency shift in a small range of the spectrum, which can be used as a fine-grained scanning of the wavelength, and the optical transceiver components are projected to different horizontal emission angles to achieve horizontal scanning.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the horizontal scanning component in the transceiver component in Embodiment 1 is replaced by MEMS, and the wavelength scanning mechanism is combined with MEMS (Micro-ElectroMechanical System, micro-electromechanical system). Scanning and one-dimensional MEMS scanning realize solid-state scanning of the detection space.
  • MEMS Micro-ElectroMechanical System, micro-electromechanical system
  • the transceiver component of the second embodiment includes a vertical emitting component 322 and a micro-motor system 324 disposed on the transmission path of the light beam emitted by the vertical emitting component 322, and the micro-motor system 324 galvanometer realizes the horizontal fast speed scanning.
  • FIG. 9 is the wavelength distribution of the detection device provided in the second embodiment of the present application when the detection scan is performed.
  • the laser generator only needs to generate N beams of different wavelengths. Since the MEMS is used to achieve horizontal scanning, there is no need to adjust the laser generator to make the overall frequency shift of different wavelengths in a small range in the spectrum.
  • the defects of the high design difficulty of the horizontal emission component in the first embodiment and the difficulty of the two-dimensional MEMS scanning control in the traditional lidar are overcome, the system is simplified, and the system cost and complexity are reduced.
  • the laser generating component does not need to achieve a small overall frequency shift of different wavelengths in the spectrum, the laser generating component can be simplified, the structure is further simplified, and the structural complexity and cost of the detection device are reduced.
  • the laser generating component includes a broad-spectrum light source generator 315 , a spectrum shaping component 313 and an optical amplifier 314 sequentially arranged on the transmission path of the laser beam emitted by the broad-spectrum light source generator 315 .
  • the broadband light source generator 315 generates broadband laser light and directly enters the spectrum shaping component 313 for spectrum shaping, filtering out redundant wavelength components and making the power of each wavelength component flat. Then, it is amplified by the optical amplifier 314 to improve the detection signal-to-noise ratio and the measurement distance, and then sent to the transceiver component to complete scanning and distance measurement.
  • the laser generating component no longer requires the overall frequency shift of different wavelengths in a small range in the spectrum, the interval between adjacent wavelengths, and the wavelength tunability. It only needs to have multi-wavelength characteristics.
  • a broad-spectrum light source generator with a continuous spectrum can be used as a light source, such as a supercontinuum light source generator or an ASE light source generator and other optical devices that can realize wide-spectrum output. There is no need for the optical resonant cavity in the first embodiment, which further simplifies the device.
  • the present application also provides a lidar system including the above one or more detection devices, and obtains motion parameters of detection targets in multiple detection areas according to electrical signals detected by the detection devices.
  • the present application also provides a terminal including the above detection device or lidar system.
  • the motor vehicle terminal is a terminal for applying a lidar system such as a motor vehicle, a surveying and mapping terminal, and the like.
  • a lidar system is installed on a motor vehicle.
  • the lidar system is connected to the automatic driving system on the motor vehicle.
  • the device (it is better for the detection point to cover the panoramic view around the motor vehicle, of course, the detection point can also be deployed according to actual needs), the detection device of each detection point completes the spatial scanning, and obtains the spatial point cloud data of each detection point.
  • the automatic driving system combines the spatial point cloud data of each detection point to form the spatial point cloud information of the surrounding environment of the car, and then perceives the surrounding environment information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种探测装置,包括:收发组件(32),用于将N个发射子光束以不同发射角发射向目标扫描空间,以及汇聚N个反射子光束为反射光束;其中,N个发射子光束中各个子光束的波长不同,发射角对应于发射子光束的波长,N个反射子光束为N个发射子光束探测到至少一个探测物后反射形成的光束,其中N为大于1的正整数;波分组件(33),用于根据反射光束获取对应不同波长的N个反射子光束;探测器阵列(34),用于根据来自波分组件(33)的N个反射子光束,输出相应的电信号;其中,探测器阵列(34)包括N个探测器,N个探测器对应N个反射子光束。可有效解决探测器间的串扰问题。

Description

一种探测装置、激光雷达系统及终端
本申请要求于2021年01月05日提交中国国家知识产权局、申请号为202110008506.7、申请名称为“一种探测装置、激光雷达系统及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及激光雷达技术领域,尤其涉及一种探测装置、激光雷达系统及终端。
背景技术
激光探测装置,即激光雷达(LightDetectionAndRanging,LiDAR)是以发射激光束探测目标的位置、速度等特征量的装置。用于感知周围环境参数,被誉为机器的“眼睛”,在测绘、探测和自动驾驶等领域有着广泛的应用。
为提升扫描速度,现有的激光雷达通常采用多线式结构,其工作原理,如图1a所示,在竖直方向上排列设置多个光电探测器形成探测器阵列,利用聚焦透镜将不同方向角的反射光汇集于不同的光电传感器上,实现垂直向的扫描,再通过水平旋转收发机构即可实现三维空间扫描。但是,在此种结构的激光雷达系统中,受聚焦透镜性能、光束性能等多种因素影响,某一个光电探测器接收到的光信号中可能包含其设计对应方向角以外的光信号,影响探测准确性。如图1b所示,一个强反射目标不仅在其对应光电探测器上引起响应,还将引发其对应光电探测器周围的探测器产生较弱响应,从而导致串扰。
因此,亟需开发出一种可以有效避免串扰的激光探测装置。
发明内容
本申请的实施例提供一种探测装置,通过采用发射多波长光束,使不同的探测器接收不同波长的光束,有效解决了现有的探测装置的探测器间的串扰问题。
为了达到上述目的,本申请的实施例采用如下技术方案:
本申请提供一种激光探测装置,包括:收发组件,用于将N个发射子光束以不同发射角发射向目标扫描空间,以及,汇聚N个反射子光束为反射光束;其中,所述N个发射子光束中各个子光束的波长不同,所述发射角对应于所述发射子光束的波长,所述N个反射子光束为所述N个发射子光束探测到至少一个探测物后反射形成的光束,其中N为大于1的正整数;波分组件,用于根据所述反射光束获取对应不同波长的所述N个反射子光束;探测器阵列,用于根据来自所述波分组件的所述N个反射子光束,输出相应的电信号;其中,所述探测器阵列包括N个探测器,所述N个探测器对应所述N个反射子光束。
本申请实施例的探测装置通过收发组件将不同波长的光束以不同的发射角发射向目标扫描空间,并汇聚至波分组件,波分组件将不同波长的光束分发至不同的探测器,实现不同的探测器接收不同波长的光束,从根本上解决探测器间的串扰问题。
在另一个可能的实现中,还包括激光产生组件,激光产生组件产生包括上述N个 发射子光束的探测光束,并将其发射向收发组件。
在另一个可能的实现中,所述波分组件至少包括波分复用器,所述波分复用器包括N个波长通道,所述N个波长通道分别对应所述N个反射子光束的波长,所述N个探测器分别对应所述N个波长通道的输出端。
波分复用器通过波分解复用的方式实现了光通道分离,性能稳定,隔离度极高,不受收发组件结构设计的影响,克服了传统基于空间维度实现光通道分离的方案中难以克服的由于聚焦器件非理想特性引起的通道间串扰的问题,且成本可控,方案可行性高。
在另一个可能的实现中,为了进一步实现光通道分离,波分组件还包括N个滤波元件,所述N个滤波元件的通过波长与所述N个反射子光束的波长相对应,所述N个滤波元件分别设置在所述N个波长通道的输出端与所述N个探测器之间,实现不同探测器接收不同波长的光束。
在另一个可能的实现中,还包括光环行器,所述光环行器至少包括第一端口、第二端口和第三端口,其中,所述第一端口至所述第二端口形成光通道,所述第二端口至第三端口形成光通道;所述第一端口与所述激光产生组件连通,所述第二端口与所述收发组件连通,所述第三端口与所述波分组件连通。
通过光环形器的设置,实现了收发组件的向目标扫描空间发射光束,和接收发射光束并将其汇聚至波分组件以实现将不同波长的光束分离。
在另一个可能的实现中,所述激光产生组件至少包括单频激光器、光学谐振腔;
所述单频激光器用于发射单频激光,所述光学谐振腔设置于所述单频激光的传输路径上,用于作用于所述单频激光产生M个子光束,所述M个子光束中各个子光束之间的波长不同,所述M为大于或等于N的正整数。
在另一个可能的实现中,所述激光产生组件还包括频谱整形组件;
所述频谱整形组件用于从所述M个子光束中获取N个子光束,其中,所述N个子光束中任两个子光束之间的波长不同,所述N个子光束中任两个子光束的功率差小于或等于预设阈值。
在另一个可能的实现中,所述激光产生组件还包括光放大器;
所述光放大器用于将所述N个子光束中各个光束的功率增大预设倍数形成所述N个发射子光束。
在另一个可能的实现中,所述N个发射子光束的相邻波长间隔相等;
所述收发组件至少包括竖直发射组件,用于将不同波长的所述发射子光束以不同俯仰角发射至所述目标扫描空间。
在另一个可能的实现中,所述激光产生组件还用于调整所述探测光束中N个发射子光束的数量和/或调整所述N个发射子光束的相邻波长间隔。
在另一个可能的实现中,所述竖直发射组件至少包括准直器和凸透镜;
所述准直器偏离所述凸透镜的焦点设置于所述凸透镜的焦平面上,用于将所述探测光束准直入射至所述凸透镜上。
在另一个可能的实现中,所述竖直直发射组件至少包括准直器和衍射光栅;
所述准直器用于将所述探测光束准直入射至所述衍射光栅上。
本申请实施例的竖直发射组件实现了竖直方向上的固态扫描,避免了现有的探测装置的机械式旋转扫描机构存在的可靠性差,精度低,成本高等问题。
在另一个可能的实现中,所述激光产生组件还用于在预设波长范围内依次整体调整所述N个发射子光束的波长;
所述收发组件至少还包括水平发射组件;
所述水平发射组件设置于所述竖直发射组件发射出的光束的传输路径上,用于根据不同波长将不同波长的所述发射子光束以不同方位角发射至所述目标扫描空间。
在另一个可能的实现中,所述水平发射组件包括至少一个色散光学元件,设置于所述竖直发射组件发射出的光束的传输路径上,将所述不同波长的所述发射子光束以不同方位角发射至所述目标扫描空间。
在另一个可能的实现中,所述水平发射组件还包括至少一个凸面反射镜,所述凸面反射镜设置于所述色散光学元件的反射光束的传输路径上。
在另一个可能的实现中,所述相邻波长间隔大于所述预设波长范围。
本申请实施例的水平发射组件实现了水平方向上的固态扫描,结合竖直发射组件实现了目标探测空间的三维扫描。
在另一个可能的实现中,所述收发组件至少还包括水平扫描组件,所述水平扫描组件设置于所述竖直发射组件发射出的光束的传输路径上,所述水平扫描组件包括反射面,所述反射面绕竖直方向的轴转动,以将所述竖直发射组件发射出的光束在不同时间以不同角度反射至目标扫描空间内实现水平方向上的扫描。
可选的,所述水平扫描组件至少包括MEMS扫描组件。
在另一个可能的实现中,所述激光产生组件至少包括宽频激光器,用于发射宽频激光。
在另一个可能的实现中,所述激光产生组件还包括,频谱整形组件,所述频谱整形组件设置于宽频激光器产生的激光的传输路径上,用于获取不同波长的N个子光束。
在另一个可能的实现中,所述激光产生组件还包括,光放大器,用于将所述N个子光束中各个光束的功率增大预设倍数。
第二方面,本申请还提供了一种激光雷达系统,至少包括上述第一方面的探测装置。
第三方面,本申请还提供了一种终端,至少包括上述第一方面的探测装置,或上述第二方面的激光雷达系统。
附图说明
下面对实施例或现有技术描述中所需使用的附图作简单地介绍。
图1a为现有的激光雷达的工作原理图;
图1b为现有的激光雷达产生串扰时的示意图;
图2a为第一种方案提供的单光子雪崩探测器像素阵列的结构示意图;
图2b为第二种方案提供的收发系统的结构示意图;
图2c为第三种方案提供的探测装置的工作原理示意图;
图3为本申请实施例提供的探测装置的结构示意图;
图4为本申请实施例一提供的激光产生组件的结构示意图;
图5为本申请实施例一提供的收发组件的结构示意图;
图6为本申请实施例一提供的探测装置进行探测扫描时的波长分布;
图7为本申请实施例一提供的反射组件和探测器阵列对应关系示意图;
图8为本本申请实施例二提供的收发组件的结构示意图;
图9为本申请实施例二提供的探测装置进行探测扫描时的波长分布;
图10为本申请实施例二提供的激光产生组件的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
在本申请的描述中,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如可以是固定连接,也可以是可拆卸连接,还可以是抵触连接或一体的连接;对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
激光探测装置(即LiDAR,激光雷达)的工作原理是向探测目标发射激光束,然后接收被探测目标反射回的反射激光束,不同的探测器根据不同的探测目标反射回来的反射激光束确定被测目标的距离、运动速度、方位、高度、姿态以及形状等参数。
不同的探测器拥有不同的光通道,不同的光通道对应不同的探测目标反射的反射激光束,如果某个探测目标反射的反射激光束进入其他光通道引起其他探测器的响应,则发生串扰,将严重影响激光探测装置对探测目标的准确性。
为了解决现有的激光探测装置的串扰问题,一般采用利用算法阈值滤波的方式消除串扰影响,然而算法阈值滤波将不可避免的造成反射激光束的信息丢失,影响激光探测装置的性能。
第一种方案是将探测器阵列设计为具有交错排布结构的单光子雪崩探测器(SPAD,Single photon avalanche detector)像素阵列进行接收光信号以降低串扰。
图2a为单光子雪崩探测器像素阵列的结构示意图。如图2所示,单光子雪崩探测器像素阵列210包括像素211阵列,像素211由多个单光子雪崩探测器(SPAD)2110构成。像素211等价于一个独立的光电探测器。光脉冲经由透镜汇聚照射在某一个像素211上后,像素中的不同SPAD独立对光信号作出响应,报告探测光子数据和对应的时延。此后,以像素为最小单位,在像素内对各个SPAD的响应进行累计,获得该像素最终的探测结构并进行输出。
第一种方案是通过改进像素排布方式,将主流框架中的矩形排布调整为平行四边形排布,从而在不降低像素密度的前提下,增加了像素间的距离。因此,在远距离大光斑的情况下,该方案可以有效缓解一个光斑覆盖多个像素而导致的串扰问题。
但是该方案通过交错像素排列增加像素距离,其距离增加率并不明显。假定像素水平距离和垂直距离均等,则横向距离增加量难以超过11.8%,对串扰的抑制效果不佳。另外,该方案仅适用于需求横向距离增加的场景,无法应用于单列探测器阵列的场景。
第二种方案是通过改造收发系统,发射具有高准直性能的激光束来抑制不同探测器通道间的串扰。
图2b为第二种方案的收发系统的结构示意图。如图2b所示,该收发系统包括透镜221,和依次由光圈层222、准直透镜层、滤光器层224和光电探测层组成的微光学层。光圈层222为由多个光圈2220组成的光圈阵列,准直透镜层为由多个准直透镜223组成的准直透镜阵列,滤光器层224为由多个滤光器组成的滤光器阵列,光电探测器层为由多个光电探测器225组成的光电探测器阵列。光圈阵列中的各个光圈、准直透镜阵列中的各个准直透镜、滤光器阵列中的各个滤光器、光电探测器阵列中的各个光电探测器一一对应设置,各个光圈与其对应的准直透镜、滤光器、光电探测器形成各个光电探测器的光通道。
探测目标反射回来的具有不同角度的光路经由透镜221汇聚于微光学层表面的不同位置。微光学中的光圈层222对不同光电探测器的光通道有对应的开口以实现光接收,并通过物理方式滤去其他位置的光线,以降低通道间串扰。经过光圈层后,发散的光束被对应的准直透镜223重新汇聚成准直光束,通过滤光器以进一步消除外界环境光干扰后由通道对应的光电探测器所接收。本方案利用微光学层对接收光系统性能进行了优化。
但是该方案需要加工制造微光学层且实现微光学层和透镜系统的准确对准,这对制造工艺提出很高要求,成本过高,工艺复杂。另外,该方案仍是在空间维度实现通道间隔离,对于特定情况(例如近距离高强度点反射目标),其抗串扰能力受限。
第三种方案是利用液晶面板实现光学相控阵,通过对液晶面板进行调制形成液晶相控阵,对液晶相控阵反射的光束进行发射角控制,实现扫描。
图2c为第三种方案的探测装置的工作原理示意图。如图2c所示,激光发射模块231产生激光束并将激光束发射向透镜233,由透镜233将激光束准直照射到液晶相控阵232上。对液晶相控阵232的各个位置加上不同电压,即可控制不同位置发射光之间的相位差。通过合理液晶调控相控阵232各位置的相位,即可通过光束之间的干涉获得具有可控发射角的光束,以实现对目标的扫描。从系统架构方面回避串扰的影响。
但是该技术方案,一方面存在着液晶电控频率较低,相位切换速度慢,相位控制精度差,造成扫描速度较慢,发射角控制精度低,旁瓣影响严重的问题,另一方面由于现阶段相控阵技术相关元器件尚在研究之中,并没有成熟可量产的方案,技术可行性较低的问题。
综合考虑上述因素,本申请实施例提供一种探测装置,采用在波长维度上对不同探测器通道进行分离,以此抑制通道串扰。通过利用焦点偏置结构或合理部署衍射光学器件构建激光收发组件,使得发射位置相同波长不同的光在进入光收发组件后,能以不同的发射角发射,且波长-发射角之间具有较线性的相关关系。在接收端对具有不同发射角和相应波长的光信号进行统一接收,并通过光纤波分复用器对不同的波长的 光束进行分离,由各个通道单独接收。得益于光纤器件良好的波长选择特性,使探测装置的通道隔离度显著增加,有效抑制通道间的串扰问题。
下面结合附图对本申请实施例提供的探测装置进行详细介绍。
图3为本申请实施例提供的探测装置的结构示意图。如图3所示,本申请实施例提供的探测装置包括但不限于激光产生组件31、收发组件32、波分组件33和探测器阵列34中的至少一个。激光产生组件31产生具有多个波长分量的探测光束,收发组件32部署于激光产生组件31产生的探测光束的传输路径上,将探测光束中的不同波长成分的子光束根据不同波长以不同发射角发射向目标探测空间。不同波长的子光束遇到探测目标(如图3中,探测目标1、探测目标2、探测目标3〃〃〃探测目标N)后,被探测目标反射形成不同波长的反射子光束,收发组件将不同波长的反射子光束汇聚为一束反射光束至波分组件33,波分组件根据不同波长将反射光束分解为不同波长的反射子光束,并将不同波长的反射子光束分配至探测器阵列34中的不同探测器,探测器根据不同的反射子光束输出相应的电信号。实现在波长维度上对不同探测器通道进行隔离,从根本上解决不同探测器通道间的串扰问题。
实施例一
图4为本申请实施例一提供的激光产生组件的结构示意图。如图4所示,激光产生组件包括单频激光器311和设置在单频激光器发射的激光束的传输路径上的光学谐振腔312、频谱整形组件313以及光放大器314。其中,所述光学谐振腔、频谱整形组件以及光放大器可以依次设置。
单频激光器311发射单频激光,经过光学谐振腔312中由于强烈的非线性效应而产生具有M个(M为大于或等于N的正整数)波长分量的多波长激光束,多波长激光束进入频谱整形组件313中进行频谱整形,滤去多波长激光束中的多余波长成分得到N(N为大于1的正整数)个波长成分的激光束并使得各波长成分的功率平坦,最后经由光放大器314对其进行放大以提升探测信噪比和测量距离,送入收发组件以将N个波长成分的激光束(即N个发射子光束)根据不同的波长以不同发射角发射向探测空间进行探测扫描。
可选的,光学谐振腔312为光学微环谐振腔,光学微环谐振腔可作用于单频激光产生相邻波长间隔为1-2nm的上百个波长成分。通过调节光学微环谐振腔状态还可对波长成分数量和相邻波长间隔进行相应调节。考虑到后续的扫描探测效果,可通过调节光学微环谐振腔调节出相邻波长间隔相等或相近的多波长成分的激光束。
可选的,频谱整形组件313包括光频谱整形器或滤波器等,只要可以实现选择特定波长成分和使波长成分的功率平坦的光学组件即可,本申请不做限定。
在一些实现方式中,激光产生组件也可只包括单频激光器311和设置在单频激光器发射的激光束的传输路径上的光学谐振腔312,光学谐振腔312直接作用于单频激光束产生M个波长成分的激光束,直接将M个波长成分的激光束送入收发组件完成探测扫描。
在另一些实现方式中,激光产生组件也可只包括单频激光器311和设置在单频激光器发射的激光束的传输路径上的光学谐振腔312和频谱整形组件313。频谱整形组 件313滤去光学谐振腔产生的M个波长成分的激光束中的多余波长成分得到N个波长成分的激光束并使得各波长成分的功率平坦,将N个波长成分的激光束送入收发组件完成探测扫描。
图5为本申请实施例一提供的收发组件的结构示意图。如图5所示,收发组件32包括竖直发射组件322和水平发射组件323。收发组件32通过光环形器35与激光产生组件31和波分组件33互相耦合,通过光纤分别连接激光产生组件31和光环形器35的第一端口,收发组件32和光环形器35的第二端口,波分组件33和光环形器35的第三端口以实现激光产生组件31产生的探测光束通过第一端口进入光环形器35,从第二端口射出至收发组件,收发组件32接收的反射光束从第二端口进入光环形器35,从第三端口射出至波分组件33。实现收发组件的收发互易,有助于简化系统结构,提升收发效率。
当然本申请并不限定激光产生组件、光环形器、收发组件和波分组件之间的光传输介质为光纤,也可采用其他光传输介质,例如空气。
一种设计中,竖直发射组件322包括准直器3221和凸透镜3222,准直器3221偏离凸透镜3222的焦点部署在凸透镜3222的焦平面上,实现将探测光束中N个波长成分的激光束准直入射至凸透镜的不同位置上,这样N个波长成分的激光束之间存在光程差,这一光程差将导致入射光到达凸透镜表明后发生干涉,只有特定角度的光才能出射,而这一特定角度则与光波长有关,实现入射光波长-出射角度的转变,即实现将N个波长成分的激光束根据不同波长以不同俯仰角发射向目标扫描空间。
同时也实现了竖直方向上的固态扫描,避免了传统激光雷达中机械式旋转结构存在的可靠性差、精度低和成本高等多方面问题。
当然竖直发射组件322并不限于准直器和凸透镜这一种结构,只要可以实现根据不同波长以不同发射角发射这一功能即可,例如,凸透镜也可替换为衍射光栅,准直器将探测光束入射至衍射光栅表面,发生干涉现象,实现将N个波长成分的激光束根据不同波长以不同俯仰角发射向目标扫描空间。
水平发射组件323部署在竖直发射组件发射出的光束的传输路径上,包括至少一个光学色散元件,将不同波长的激光束以不同方位角发射至所述目标扫描空间,激光产生组件在预设波长范围内依次整体调整N个波长成分的激光束的波长,例如,通过单频激光器依次发射不同中心波长的单频激光,实现N个波长成分的激光束的小范围整体调节,进而实现对目标空间的三维固态扫描。这里需要解释的是,依次整体调整N个波长成分的激光束的波长的含义为:激光产生组件在不同时间整体调整N个波长成分的激光束的波长,例如在第一时刻激光产生组件产生的N个波长成分的激光束的波长分别为:λ1、λ2、〃〃〃λn,第二时刻激光产生组件产生的N个波长成分的激光束的波长整体调整为:λ1+△λ、λ2+△λ、〃〃〃λn+△λ,第三时刻N个波长成分的激光束的波长整体调整为λ1+2△λ、λ2+2△λ、〃〃〃λn+2△λ,依次类推第k时刻N个波长成分的激光束的波长整体调整为:λ1+(k-1)△λ、λ2+(k-1)△λ、〃〃〃λn+(k-1)△λ。可以理解的是,在实际应用中,只具有单一波长的电磁波是无法产生的。即使是纯度最高的激光,也有一定的波长分布范围。例如,如果需要产生波长为1550nm的激光,那实际产生的可能是波长为1549-1551nm的激光,其 中,1550nm的波长的光能量最大,即为中心波长。也就是说,中心波长为波长范围内能量最大的那个分量的波长。
而为了N个波长成分的激光束的小范围整体调节仅对水平扫描组件产生影响而对竖直发射组件尽量不产生影响,需要水平扫描组件相较于竖直发射组件对光的波长更加敏感。
在一个示例中,为了提高水平发射组件对波长的敏感性,水平发射组件323的光学色散元件包括多个反射光栅3231,其中一个反射光栅接收竖直发射组件发射的光束,其他发射光束依次部署在前一个反射光栅的反射路径上进一步增大不同波长的光束的不同反射角度,实现水平发射组件对波长敏感性的提升。
在另一个示例中,为了进一步提升水平发射组件对波长的敏感性,水平发射组件323中还设置凸面反射镜3232,凸面反射镜3232设置于最后一个反射光栅的反射路径上,将其反射的光束进一步使不同波长的光束以更不同的角度射向目标扫描空间,实现即使光束波长的微小改变也可以不同的出射角出射。
如图6所示,如果探测装置的扫描发射角矩阵尺寸为n*k,则激光产生组件发出k个不同波长的探测光束,被收发组件以k个不同的俯仰角发射,实现竖直方向上的扫描。同时,依次调节单频激光器发射的单频激光的中心波长,使k个不同波长在频谱上小范围整体频移。这样,k个波长分量的水平发射角将发生一致的变化,从而实现对目标空间的三维扫描。
为了实现波长的整体改变尽量不影响竖直方向的扫描,对于任意的波长应满足:λ i,ji-1,jk,nk,1,即水平扫描时波长改变范围应小于相邻波长间隔。可以理解的是,相邻波长表示,不同波长的探测光束中波长差最小的两个波长。如图6所示,λ i,ji-1,j表示,竖直方向扫描时发射的不同波长的探测光束的相邻波长的波长间隔,λ k,nk,1表示,水平扫描时,发射的不同波长的探测光束的中任一波长的子光束的波长调整范围。
如图7所示,波分组件33的各个波长通道的输出端口和探测器阵列34的各个探测器一一对应设置,实现波分组件将反射光束分离为不同波长的反射子光束后入射至探测器阵列34中各个探测器以达到各个探测器通道隔离的目的。
为了进一步增加各个探测器通道的隔离度,在波分组件33的各个波长通道的输出端口和探测器阵列之间设置滤波元件阵列36,继续参见图7,滤波元件阵列36中各个滤波元件与探测器阵列34中的各个探测器一一对应设置,也即滤波元件阵列36中各个滤波元件与波分组件33的各个波长通道的输出端口一一对应设置。可以理解的是,滤波元件阵列36中各个滤波元件的透过波长和波分组件33的各个波长通道的透过波长对应。
波分复用技术(Wavelength division demultiplex),指以波长为区分依据,将一束光中具有不同中心波长的成分分离,形成可区分的不同的光束。
根据波分复用技术设计波分组件使其满足接收收发组件传来的光信号,根据接收到的光信号的波长将其分束,并将分束后的各个波长的光束送至光电探测器阵列完成检测的功能。
可选的,波分组件选用在光纤通信系统中得到广泛应用的密集波分复用器,密集 波分复用器在光纤通信中被广泛应用于波分复用/解复用,且可满足上述波分组件的功能要求。
可选的,滤波元件为窄带滤光片,密集波分复用器可提供达40dB的隔离度,而滤光片则可进一步提供超过20dB的隔离度,进一步提供通道隔离度。
当然,滤波元件并不限于窄带滤光片,只要可以实现本申请的滤波效果的光滤波元件均可,例如光纤布拉格光栅。
考虑到传统激光雷达利用空间实现通道间隔离时无法避免聚焦器件光学特性所带来的影响这一问题,本申请实施例一创新地提出利用波长维度实现通道间隔离。首先采用多波长光源代替传统的单波长光源,为后续系统打开新的波长维度。此后,将多波长光源的各个波长分别配置相应的波长窗口,通过特别设计的光收发组件,使得不同的波长窗口能够对应不同的竖直通道,实现波长窗口到垂直通道的一一映射。随后,在接收到多波长的反射光信号后,利用波分组件在波长维度对反射光信号实现分离,分离度高,分离性能稳定,对聚焦器件光学特性不敏感。最后,在接收端通过窄带滤光片进一步滤波,可获得远高于当前激光雷达的垂直通道隔离度,可以消除通道串扰带来的不利影响。
由于传统激光雷达中机械式旋转扫描机构存在可靠性差、精度低、成本高等多方面问题,本申请实施例一创新地提出利用改进光收发组件建立波长-扫描角相关特性,从而利用改变光源波长实现发射角扫描。首先利用波长可调谐的多波长光源作为探测光源,以提供波长粗粒度分划和细粒度扫描的相应功能。其次,本申请提出了具有波长-发射角相关性的光收发组件,其中波长-竖直发射角敏感性较弱,而波长-水平发射角敏感性较强。因此,多波长光源的多个波长成分可作为波长粗粒度分划,通过光收发组件投射至不同的竖直发射角,实现多个竖直通道的并行测量。同时,调谐多波长光源使其频谱小范围频移可作为波长细粒度扫描,通过光收发组件投射至不同的水平发射角,实现水平扫描。
实施例二
本实施例与实施例一的区别在于,采用MEMS替换实施例一中的收发组件中的水平扫描组件,通过波长扫描机制和MEMS(Micro-ElectroMechanical System,微电机系统)相结合,通过一维波长扫描和一维MEMS扫描实现对探测空间的固体扫描。
如图8所示,实施例二的收发组件包括竖直发射组件322和部署在竖直发射组件322发射出的光束的传输路径上微电机系统324,微电机系统324振镜实现水平向的快速扫描。
图9为本申请实施例二提供的探测装置进行探测扫描时的波长分布。如图8所示,激光产生组件只需产生N个不同波长的光束即可,由于采用MEMS实现水平扫描,不用调整激光产生组件使不同波长在频谱上小范围整体频移。克服了实施例一中的水平发射组件设计难度高和传统的激光雷达中的二维MEMS扫描控制难度大的缺陷,简化系统,降低系统成本和复杂度。
由于激光产生组件无需实现使不同波长在频谱上小范围整体频移,可简化激光产生组件,进一步简化结构,降低探测装置结构复杂度和成本。
如图9所示,激光产生组件包括宽谱光源产生器315、依次设置在宽谱光源产生器315发射的激光束的传输路径上的频谱整形组件313和光放大器314。
宽谱光源产生器315产生宽频激光直接进入频谱整形组件313中进行频谱整形,滤去多余波长分量并使得各波长成分功率平坦。之后经由光放大器314对其进行放大以提升探测信噪比和测量距离,送入收发组件完成扫描测距等工作。
在实施例二中,激光产生组件不再对不同波长在频谱上小范围整体频移、相邻波长间隔、波长可调这些特性做要求,只需具有多波长特性即可,因此,选用可产生具有连续光谱的宽谱光源产生器作为光源,例如超连续光源产生器或ASE光源产生器等可实现宽谱输出的光学器件即可。无需实施例一中的光学谐振腔,进一步简化了装置。
本申请还提供了包括上述一个或多个探测装置的激光雷达系统,根据探测装置探测到的电信号得到多个探测区域内的探测目标的运动参数。
本申请还提供了包括上述探测装置或激光雷达系统的终端。该机动车辆终端为机动车辆、测绘终端等应用激光雷达系统的终端。
以机动车辆为例,说明探测装置或激光雷达系统在机动车辆上的应用,机动车辆上安装激光雷达系统,激光雷达系统与机动车辆上的自动驾驶系统通信连接,机动车辆上多个位置安装探测装置(以探测点覆盖机动车辆周围全景为佳,当然也可根据实际需要来部署探测点),每个探测点的探测装置完成空间扫描,得到每个探测点的空间点云数据,机动车辆的自动驾驶系统将各个探测点的空间点云数据合并在一起,构成汽车周围环境的空间点云信息,进而感知周围环境信息。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以适合的方式结合。
最后说明的是:以上实施例仅用以说明本申请的技术方案,而对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (18)

  1. 一种探测装置,其特征在于,包括:
    收发组件,用于将N个发射子光束以不同发射角发射向目标扫描空间,以及,汇聚N个反射子光束为反射光束;其中,所述N个发射子光束中各个子光束的波长不同,所述发射角对应于所述发射子光束的波长,所述N个反射子光束为所述N个发射子光束探测到至少一个探测物后反射形成的光束,其中N为大于1的正整数;
    波分组件,用于根据所述反射光束获取对应不同波长的所述N个反射子光束;
    探测器阵列,用于根据来自所述波分组件的所述N个反射子光束,输出相应的电信号;
    其中,所述探测器阵列包括N个探测器,所述N个探测器对应所述N个反射子光束。
  2. 根据权利要求1所述的探测装置,其特征在于,还包括:
    激光产生组件,用于产生探测光束,所述探测光束包括所述N个发射子光束。
  3. 根据权利要求1所述的探测装置,其特征在于,所述波分组件至少包括波分复用器,所述波分复用器包括N个波长通道,所述N个波长通道分别对应所述N个反射子光束的波长,所述N个探测器分别对应所述N个波长通道的输出端。
  4. 根据权利要求3所述的探测装置,其特征在于,所述波分组件还包括N个滤波元件,所述N个滤波元件的通过波长与所述N个反射子光束的波长相对应,所述N个滤波元件分别设置在所述N个波长通道的输出端与所述N个探测器之间。
  5. 根据权利要求2-4任一所述的探测装置,其特征在于,还包括光环行器,所述光环行器至少包括第一端口、第二端口和第三端口,其中,所述第一端口至所述第二端口形成光通道,所述第二端口至第三端口形成光通道;
    所述第一端口与所述激光产生组件连通,所述第二端口与所述收发组件连通,所述第三端口与所述波分组件连通。
  6. 根据权利要求2-5任一所述的探测装置,其特征在于,所述激光产生组件至少包括单频激光器、光学谐振腔;
    所述单频激光器用于发射单频激光,所述光学谐振腔设置于所述单频激光的传输路径上,用于作用于所述单频激光产生M个子光束,所述M个子光束中各个子光束之间的波长不同,所述M为大于或等于N的正整数。
  7. 根据权利要求6所述的探测装置,其特征在于,所述激光产生组件还包括频谱整形组件;
    所述频谱整形组件用于从所述M个子光束中获取N个子光束,其中,所述N个子光束中任两个子光束之间的波长不同,所述N个子光束中任两个子光束的功率差小于或等于预设阈值。
  8. 根据权利要求7所述的探测装置,其特征在于,所述激光产生组件还包括光放大器;
    所述光放大器用于将所述N个子光束中各个光束的功率增大预设倍数形成所述N个发射子光束。
  9. 根据权利要求2-8任一项所述的探测装置,其特征在于,所述N个发射子光束的相邻波长间隔相等;
    所述收发组件至少包括竖直发射组件,用于将不同波长的所述发射子光束以不同俯仰 角发射至所述目标扫描空间。
  10. 根据权利要求9所述的探测装置,其特征在于,所述激光产生组件还用于调整所述探测光束中N个发射子光束的数量和/或调整所述N个发射子光束的相邻波长间隔。
  11. 根据权利要求9或10所述的探测装置,其特征在于,所述竖直发射组件至少包括准直器和凸透镜;
    所述准直器偏离所述凸透镜的焦点设置于所述凸透镜的焦平面上,用于将所述探测光束准直入射至所述凸透镜上。
  12. 根据权利要求9或10所述的探测装置,其特征在于,所述竖直发射组件至少包括准直器和衍射光栅;
    所述准直器用于将所述探测光束准直入射至所述衍射光栅上。
  13. 根据权利要求9-12任一项所述的探测装置,其特征在于,所述激光产生组件还用于在预设波长范围内依次整体调整所述N个发射子光束的波长;
    所述收发组件至少还包括水平发射组件;
    所述水平发射组件设置于所述竖直发射组件发射出的光束的传输路径上,用于根据不同波长将不同波长的所述发射子光束以不同方位角发射至所述目标扫描空间。
  14. 根据权利要求13所述的探测装置,其特征在于,所述水平发射组件包括至少一个色散光学元件,设置于所述竖直发射组件发射出的光束的传输路径上,将所述不同波长的所述发射子光束以不同方位角发射至所述目标扫描空间。
  15. 根据权利要求14所述的探测装置,其特征在于,所述水平发射组件还包括至少一个凸面反射镜,所述凸面反射镜设置于所述色散光学元件的反射光束的传输路径上。
  16. 根据权利要求13-15任一所述的探测装置,其特征在于,所述相邻波长间隔大于所述预设波长范围。
  17. 一种激光雷达系统,其特征在于,至少包括如权利要求1-16任一所述的探测装置。
  18. 一种终端,其特征在于,至少包括如权利要求1-16任一所述的探测装置,或如权利要求17所述的激光雷达系统。
PCT/CN2021/131172 2021-01-05 2021-11-17 一种探测装置、激光雷达系统及终端 WO2022148136A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21917177.4A EP4261571A1 (en) 2021-01-05 2021-11-17 Detection apparatus, lidar system and terminal
US18/345,739 US20230341525A1 (en) 2021-01-05 2023-06-30 Detection apparatus, laser radar system, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110008506.7A CN114720958A (zh) 2021-01-05 2021-01-05 一种探测装置、激光雷达系统及终端
CN202110008506.7 2021-01-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/345,739 Continuation US20230341525A1 (en) 2021-01-05 2023-06-30 Detection apparatus, laser radar system, and terminal

Publications (1)

Publication Number Publication Date
WO2022148136A1 true WO2022148136A1 (zh) 2022-07-14

Family

ID=82234226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131172 WO2022148136A1 (zh) 2021-01-05 2021-11-17 一种探测装置、激光雷达系统及终端

Country Status (4)

Country Link
US (1) US20230341525A1 (zh)
EP (1) EP4261571A1 (zh)
CN (1) CN114720958A (zh)
WO (1) WO2022148136A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116027270A (zh) * 2023-03-30 2023-04-28 烟台恒研光电有限公司 一种基于平均化处理技术的定位方法、定位系统
WO2024061174A1 (zh) * 2022-09-20 2024-03-28 华为技术有限公司 光斑探测模块、光通信终端和光通信系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108303701A (zh) * 2018-01-19 2018-07-20 上海禾赛光电科技有限公司 激光雷达系统、激光脉冲的发射方法及介质
CN108562887A (zh) * 2018-04-27 2018-09-21 北京工业大学 一种基于波分复用的多波长激光雷达
US20180306925A1 (en) * 2017-04-25 2018-10-25 Analog Photonics LLC Wavelength division multiplexed lidar
US20190257927A1 (en) * 2018-02-16 2019-08-22 Xiaotian Steve Yao Optical sensing based on wavelength division multiplexed (wdm) light at different wavelengths in light detection and ranging lidar systems
CN110244307A (zh) * 2018-03-08 2019-09-17 姚晓天 一种基于光技术测量物体距离和空间位置的方法及装置
CN110720054A (zh) * 2019-07-19 2020-01-21 深圳市速腾聚创科技有限公司 相控阵发射装置、激光雷达和自动驾驶设备
CN111913164A (zh) * 2019-05-08 2020-11-10 宁波舜宇车载光学技术有限公司 激光探测系统及其探测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180306925A1 (en) * 2017-04-25 2018-10-25 Analog Photonics LLC Wavelength division multiplexed lidar
CN108303701A (zh) * 2018-01-19 2018-07-20 上海禾赛光电科技有限公司 激光雷达系统、激光脉冲的发射方法及介质
US20190257927A1 (en) * 2018-02-16 2019-08-22 Xiaotian Steve Yao Optical sensing based on wavelength division multiplexed (wdm) light at different wavelengths in light detection and ranging lidar systems
CN110244307A (zh) * 2018-03-08 2019-09-17 姚晓天 一种基于光技术测量物体距离和空间位置的方法及装置
CN108562887A (zh) * 2018-04-27 2018-09-21 北京工业大学 一种基于波分复用的多波长激光雷达
CN111913164A (zh) * 2019-05-08 2020-11-10 宁波舜宇车载光学技术有限公司 激光探测系统及其探测方法
CN110720054A (zh) * 2019-07-19 2020-01-21 深圳市速腾聚创科技有限公司 相控阵发射装置、激光雷达和自动驾驶设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061174A1 (zh) * 2022-09-20 2024-03-28 华为技术有限公司 光斑探测模块、光通信终端和光通信系统
CN116027270A (zh) * 2023-03-30 2023-04-28 烟台恒研光电有限公司 一种基于平均化处理技术的定位方法、定位系统
CN116027270B (zh) * 2023-03-30 2023-06-23 烟台恒研光电有限公司 一种基于平均化处理技术的定位方法、定位系统

Also Published As

Publication number Publication date
US20230341525A1 (en) 2023-10-26
EP4261571A1 (en) 2023-10-18
CN114720958A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
TWI780120B (zh) 模組式三維光學感測系統(二)
US11650296B2 (en) Optical sensing based on wavelength division multiplexed (WDM) light at different wavelengths in light detection and ranging LiDAR systems
US20220050187A1 (en) Scan-less 3d optical sensing devices and associated lidar based on stacking of integrated photonic chips, wavelength division demultiplexing and position-to-angle conversion of a lens
WO2018003852A1 (ja) 光偏向デバイスおよびライダー装置
WO2022148136A1 (zh) 一种探测装置、激光雷达系统及终端
US11658742B2 (en) System for multi-channel, diverged-beam optical wireless communication
WO2021258707A1 (zh) 一种面阵色散光谱感光组件、接收端以及激光雷达系统
WO2023019498A1 (zh) 一种基于dwdm光开关模块测量三维风量的光路切换通道和切换方法、及激光雷达
KR20210112596A (ko) 라이다용 레이저 송수신 모듈
EP4332617A1 (en) Optical detection device, driving vehicle, laser radar and detection method
US11977259B2 (en) Optical transceiver arrays
WO2021258708A1 (zh) 一种色散光谱感光组件、接收端及激光雷达系统
JP2024517315A (ja) 2次元シリコン・フォトニックmemsスイッチ・アレイを有する擬似モノスタティックlidar
KR20230150331A (ko) 고체 레이저 레이더 및 이를 사용한 탐지 방법
WO2021258709A1 (zh) 一种色散光谱激光雷达系统及测量方法
US11579258B1 (en) Solid state pulse steering in lidar systems
KR20230101632A (ko) 3차원 거리 정보 획득 장치 및 이를 포함하는 전자 장치
CN116679283A (zh) 长距固态激光雷达
KR20220004432A (ko) 향상된 신호대 잡음비를 갖는 라이다 장치
CN117836668A (zh) 光收发器阵列

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021917177

Country of ref document: EP

Effective date: 20230711

NENP Non-entry into the national phase

Ref country code: DE