KR20210112596A - 라이다용 레이저 송수신 모듈 - Google Patents

라이다용 레이저 송수신 모듈 Download PDF

Info

Publication number
KR20210112596A
KR20210112596A KR1020200027790A KR20200027790A KR20210112596A KR 20210112596 A KR20210112596 A KR 20210112596A KR 1020200027790 A KR1020200027790 A KR 1020200027790A KR 20200027790 A KR20200027790 A KR 20200027790A KR 20210112596 A KR20210112596 A KR 20210112596A
Authority
KR
South Korea
Prior art keywords
light
opa
lidar
laser
phase
Prior art date
Application number
KR1020200027790A
Other languages
English (en)
Inventor
강찬희
한경진
강금봉
박효훈
김성환
Original Assignee
현대자동차주식회사
한국과학기술원
기아 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 한국과학기술원, 기아 주식회사 filed Critical 현대자동차주식회사
Priority to KR1020200027790A priority Critical patent/KR20210112596A/ko
Priority to JP2020101510A priority patent/JP2021139869A/ja
Priority to US16/899,959 priority patent/US20210278537A1/en
Priority to CN202010608012.8A priority patent/CN113359107A/zh
Priority to DE102020208141.7A priority patent/DE102020208141A1/de
Publication of KR20210112596A publication Critical patent/KR20210112596A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/26Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein the transmitted pulses use a frequency-modulated or phase-modulated carrier wave, e.g. for pulse compression of received signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4915Time delay measurement, e.g. operational details for pixel components; Phase measurement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0087Phased arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12121Laser
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12154Power divider
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29301Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means based on a phased array of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

본 발명은 레이저 광원, 상기 레이저 광원으로부터의 레이저 광을 2차원(2D) 영역으로 조사하는 송신 OPA(Optic Phased Array) 소자, 상기 송신 OPA 소자에 의해 조사된 후 반사된 광을 수신하는 수신 OPA 소자 및 상기 레이저 광과 상기 수신 OPA 소자에 의해 수신된 반사광을 비교하는 광 검출기를 포함하는 라이다용 레이저 송수신 모듈로서, 본 발명에 의하면, FMCW 방식의 거리 측정을 위한 OPA 시스템 회로를 반도체 공정으로 통합(integration)하여 라이다 부품의 혁신적인 소형화, 성능향상(장거리 사물 감지)이 가능하게 한다.

Description

라이다용 레이저 송수신 모듈{LASER TRANSMITTING AND RECEIVING MODULE FOR LIDAR}
본 발명은 자율주행을 위한 라이다 시스템을 위한 레이저 송수신 모듈에 관한 것이다.
라이다는 Light Detection and Ranging(LiDAR)의 약자로 레이저 펄스를 발사하고, 그 빛이 주위의 대상 물체에서 반사되어 돌아오는 것을 수신하여 물체까지의 거리 등을 측정하여 자동차 주변의 모습을 정밀하게 그려내는(Light Detection and Ranging) 장치로서, 일반적인 라이다는 제어기, 송신모듈, 수신모듈 및 빔 조향을 위한 광학모듈로 구성된다.
빔 조향을 위한 광학모듈은 모터 회전 미러 광학계를 사용하며, 장기 내구성 요구 품질이 기계적 광학계는 장기 자동차 내구성에 강건(robust)하지 못한 면이 있다.
이러한 모터 회전 미러 스캐닝 방식을 개선하기 위해 OPA(Optical Phased Arrays, 광학위상배열) 기술이 최근에 개발되었다.
OPA는 빛이 도파되는 실리콘 재료의 굴절률(빛의 위상)을 전기 제어하여 빛의 방향을 조절하는 반도체 타입 광학 소자 기술이다. 즉, 실리콘 반도체 공정을 이용하여 빛이 지나갈 수 있는 닥은 통로(도파관)을 다수 만들고 이를 지나가는 빛의 위상을 전기적, 개별적으로 변조(modulation)하여 빛을 출력부에서 제어된 위상에 따라 빔이 방향성을 가지게 하여 빔 조향을 위한 광학 모듈로서 기능하는 것이다.
OPA 구동에는 입력되는 빛의 성질에 따라 ToF(Time of Flight) 방식, FMCW(Frequency Modulated Continuous Wave) 방식 등의 여러 동작 방식이 있으며, 동작 방식에 따라 다른 송신, 수신모듈 구조가 요구된다. 최근에 주목 받는 동작 방식은 FMCW 방식으로써, ToF 방식에 비해 감지거리가 길고 분해능이 뛰어나지만, 복잡한 송신, 수신모듈이 요구된다는 단점이 남아 있다.
이상의 배경기술에 기재된 사항은 발명의 배경에 대한 이해를 돕기 위한 것으로서, 이 기술이 속하는 분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술이 아닌 사항을 포함할 수 있다.
한국등록특허공보 제10-1720436호 미국등록특허공보 제9,740,078호 한국등록특허공보 제10-1872077호 미국공개특허공보 제2018-0246390호
본 발명은 상술한 문제점을 해결하고자 안출된 것으로서, 본 발명은 FMCW 방식의 거리 측정을 위한 OPA 시스템 회로를 반도체 공정으로 통합(integration)하여 라이다 부품의 혁신적인 소형화, 성능향상(장거리 사물 감지)의 차세대 자율주행차용 핵심 광학 소자를 제공하는 데 그 목적이 있다.
본 발명의 일 관점에 의한 라이다용 레이저 송수신 모듈은, 레이저 광원, 상기 레이저 광원으로부터의 레이저 광을 2차원(2D) 영역으로 조사하는 송신 OPA(Optic Phased Array) 소자, 상기 송신 OPA 소자에 의해 조사된 후 반사된 광을 수신하는 수신 OPA 소자, 상기 레이저 광과 상기 수신 OPA 소자에 의해 수신된 반사광을 믹싱(mixing)하는 혼합기; 및
상기 혼합기에 의해 혼합된 광 신호를 검출하는 광 검출기를 포함한다.
그리고, 상기 송신 OPA 소자 전단에 구비되며, 광 파워를 균등 조정하는 가변 광 감쇄기 및 상기 가변 광 감쇄기 전단에 구비되어 상기 레이저 광의 일부를 상기 혼합기로 분기시키는 방향성 커플러를 더 포함할 수 있다.
또한, 상기 방향성 커플러는 상기 가변 광 감쇄기로 이동하는 레이저 광의 일부를 레퍼런스(reference) 광으로 상기 혼합기로 분기시키고, 상기 혼합기는 상기 레버런스 광과 상기 반사광을 믹싱하여, 상기 광 검출기가 down-conversion과 conversion gain을 얻은 광신호를 검출하는 것을 특징으로 한다.
그리고, 상기 방향성 커플러, 상기 광 검출기 및 상기 혼합기는 FMCW(Frequency Modulated Continuous Wave) 동작 방식에서 요구되는 수신모듈로서 기능하는 것을 특징으로 한다.
한편, 상기 광 검출기 전단에 구비되어, 상기 레퍼런스 광과 상기 반사광을 입력받아 위상을 변환하여 믹싱(mixing)하는 혼합기를 더 포함할 수 있다.
여기서, 상기 광 검출기는 silicon p-n 접합 구조를 갖는 traveling-waveguide형 광 검출기(PD, Photodetector)인 것을 특징으로 한다.
보다 구체적으로, 상기 송신 OPA 소자는, 상기 레이저 광을 N개(N은 2 이상의 자연수)의 채널로 분기시키는 광 파워 분배기, 상기 N개의 채널로 입사되는 광의 위상을 각각 제어하는 위상 제어기 및 상기 위상 제어기로부터 위상 제어된 광이 자유 공간으로 방사되며 특정한 방향성을 가지도록 방사하는 광 발산기를 포함한다.
그리고, 상기 광 파워 분배기는 MMI power splitter인 것을 특징으로 한다.
또한, 상기 위상 제어기는 상기 광파 발산기에 도달하는 빛의 위상을 제어하여 상기 광파 발산기를 통해 발산된 빛이 특정 방향을 향하도록 제어하는 것을 특징으로 한다.
여기서, 상기 위상 제어기는 electro-optic 방식(p-i-n 또는 p-n 구조) 또는 thermo-optic 방식(p-i-n 또는 외부 metal heater 구조)으로 위상을 제어하는 것을 특징으로 한다.
그리고, 상기 광파 발산기는 1×N 발산기 어레이로 배치 형성되는 것을 특징으로 한다.
또한, 상기 광파 발산기의 각 발산기는 격자 구조, 거울 구조 및 나노 금속박막 구조 중 어느 하나의 구조가 형성되는 것을 특징으로 한다.
나아가, 상기 광파 발산기는 상기 1×N 발산기 어레이가 종방향으로 복수 배열되는 것을 특징으로 한다.
그리고, 상기 송신 OPA 소자는 복수 개로 병렬 배치되고, 상기 가변 광 감쇄기 후단에는 상기 복수의 송신 OPA 소자를 순차적으로 동작시키기 위한 스위치가 구비되는 것을 특징으로 한다.
다음으로, 상기 수신 OPA 소자는, 상기 반사광을 N개의 채널로 수신하는 광파 수신기, 상기 N개의 채널에서 분기된 상기 반사광의 위상을 제어하는 위상 제어기 및 위상 제어된 상기 N개의 채널로 수신된 반사광을 통합하는 광 파워 통합기를 포함한다.
그리고, 상기 수신 OPA 소자의 위상 제어기는 상기 N개의 채널로 수신하는 반사광의 위상을 상기 송신 OPA 소자에 의한 위상 제어와 동일하게 제어하는 것을 특징으로 한다.
여기서, 상기 수신 OPA 소자는 복수 개로 병렬 배치되고, 상기 광 파워 통합기 후단에는 상기 복수의 수신 OPA 소자를 순차적으로 동작시키기 위한 스위치가 구비되는 것을 특징으로 한다.
다음으로, 본 발명의 다른 일 관점에 의한 라이다용 레이저 송수신 모듈은, 레이저 광원으로부터의 레이저 광을 2차원(2D) 영역으로 조사하는 송신 OPA(Optic Phased Array) 소자 및 상기 송신 OPA 소자에 의해 조사된 후 반사된 광을 수신하는 수신 OPA 소자가 하나의 실리콘 기반의 반도체 소자로써 모듈화된 것을 특징으로 한다.
그리고, 상기 송신 OPA 소자는, 상기 레이저 광을 N개(N은 2 이상의 자연수)의 채널로 분기시키는 광 파워 분배기, 상기 N개의 채널로 입사되는 광의 위상을 각각 제어하는 위상 제어기 및 상기 위상 제어기로부터 위상 제어된 광이 특정한 방향성을 가지도록 방사하는 광 발산기를 포함한다.
또한, 상기 수신 OPA 소자는, 상기 반사광을 N개의 채널로 수신하는 광파 수신기, 상기 N개의 채널로 수신하는 반사광의 위상을 제어하는 위상 제어기 및 위상 제어된 상기 N개의 채널로 수신된 반사광을 통합하는 광 파워 통합기를 포함한다.
나아가, 상기 레이저 광과 상기 수신 OPA 소자에 의해 수신된 반사광을 비교하는 광 검출기 및 상기 광 검출기 전단에 구비되어, 상기 레퍼런스 광과 상기 반사광을 입력받아 위상을 변환하여 믹싱(mixing)하는 혼합기를 더 포함할 수 있다.
종래 발송된 빔이 반사되어 돌아오는 빔은 별개의 소자인 포토다이오드 (PD) 등으로 수신하는데, 본 발명에서는 이 수신부를 전체 OPA 회로에 포함하는 것이다. 즉, 수신부를 Tx OPA와 동일한 구조로 Rx OPA로써 수신하는 것이다.
따라서, 모든 방향에서의 빛을 수신하는 포토다이오드 (PD)에 비해 Rx OPA와를 이용함으로서 지향성 있는 반사광의 수신이 가능하며 이를 통해 태양 빛에서 방출되는 적외선 또는 인접한 라이다 시스템에서 방출되는 적외선에 의한 간섭을 제거할 수 있다.
또한, 반도체 LD의 current injection을 이용한 frequency modulation 방식을 사용함으로써 bulky한 외부 광원을 배제하고 이를 송/수신부 OPA에 hybrid integration함으로서 자율주행차용 라이다를 매우 작게 만들 수있다.
도 1은 본 발명의 라이다용 레이저 송수신 모듈을 도시한 것이다.
도 2는 본 발명의 라이다용 레이저 송수신 모듈에 의한 빔의 처리를 개념적으로 도시한 것이다.
도 3은 수신 OPA 소자(120)에 수신되는 빛을 모식화한 것이다.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시 예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다.
본 발명의 바람직한 실시 예를 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지의 기술이나 반복적인 설명은 그 설명을 줄이거나 생략하기로 한다.
도 1은 본 발명의 라이다용 레이저 송수신 모듈을 도시한 것이고, 도 2는 본 발명의 라이다용 레이저 송수신 모듈에 의한 빔의 처리를 개념적으로 도시한 것이다. 이하, 도 1 및 도 2를 참조하여 본 발명의 일 실시예에 의한 라이다용 레이저 송수신 모듈을 설명하기로 한다.
본 발명은 라이다(LiDAR, Light Detection and Ranging) 시스템을 위한 레이저 송수신 모듈로서, 레이저 광원(110)으로부터의 빔을 송신 OPA(Optic Phase Arrays, 120) 소자와 수신 OPA 소자(130)를 통해 FMCW(Frequency Modulated Continuous Wave) 방식으로 거리를 측정하기 위한 것이다.
레이저 광원(110, Hybrid LD integration)은 예를 들어 1,550nm 파장의 레이저를 발진하는 역할을 하고, 발진된 레이저의 빛이 가변 광 감쇄기(152, Variable optical attenuator)로 이동한다. 가변 광 감쇄기(152)는 송신 OPA 소자(120)에 입사되는 광 파워를 equalization(균등하게) 한다.
Laser chirping을 이용하여 빛의 주파수를 변화시키는 과정에서 의도치 않은 laser diode의 광파워 출력의 변화가 발생할 수 있고, 이는 OPA의 stable한 동작에 영향을 줄 수 있으므로, 가변 광 감쇄기(152)를 이용하여 실시간으로 송신 OPA 소자(120)로 들어가는 광 파워를 equalization 시키는 소자를 필요로 한다.
본 특허에서는 이러한 소자로 가변 광 감쇄기(152)를 이용하여 광 파워를 equalization하고, silicon p-n 접합, p-i-n 접합 또는 metal heater 구조를 각 phase shifter의 arm으로 갖는 Mach-Zehnder interferometer 기반의 광 가변 광 감쇄기가 적용될 수 있다. 해당 기술을 적용하여 송신 OPA 소자(120)에 입사되는 광 파워를 equalization 시켜 stable 한 동작이 가능하게 한다.
그리고, 그 경로 상에는 방향성 커플러(151, Directional coupler)가 구비되어 가변 광 감쇄기(152)로 이동하는 레이저와 별도로 광 검출기(142, Balanced PAT-PD)로 레퍼런스(reference) 빛이 이동하도록 한다.
반도체 기반의 LD(Laser diode)의 hybrid integration은 다양한 재료의 inverse taper 구조체를 이용하는 방법, fiber block array를 이용하는 방법, parabolic concave shape의 micro-mirror를 이용하는 방법 등의 다양한 방법으로 이루어질 수 있다.
LD를 통해 발진된 빛의 일부는 가변 광 감쇄기(152)를 거쳐 송신 OPA 소자(120)로 향하며, 나머지는 가변 광 감쇄기(152) 앞 단에 위치하는 방향성 커플러(151)를 통해 분리되어 혼합기(141, mixer)를 거쳐 광 검출기(142)로 향하게 되며, 나누어지는 빛의 양의 비율은 방향성 커플러(151)의 설계 변수에 따라서 결정된다.
또한 반도체 레이저의 구동을 위해서는 전류를 공급해야 하는데, 이 전류의 공급량의 변화에 따라서 레이저 중심 파장의 변화가 일어나고, 이러한 전류 공급 변화에 따른 중심 파장 및 주파수의 변화를 chirp이라 하며, 이러한 chirp 현상을 이용하여 OPA에 주기적으로 변화하는 빛을 공급하여, FMCW 동작을 위한 입력 광을 송신 OPA 소자에 공급할 수 있다.
송신 OPA 소자(120)는 빔을 2차원(2D) 공간으로 송신하기 위한 비기계식(전자식) 빔 스캐닝 소자이다.
레이저에서 발진된 레이저가 가변 광 감쇄기(152)를 통해 송신 OPA 소자(120)로 이동되면, 송신 OPA 소자(120)에서 레이저 빛은 도파관을 통해 여러 갈래로 나뉘어지고 위상을 배열한 후 다시 합쳐져서, 송신 OPA 소자(120) 출력부에서 제어된 위상에 따른 빔은 방향성을 가지고 대기 중으로 발송되고, 대상체(object)에 도달 후 반사된 빛이 다시 수신 OPA 소자(130)로 수신된다.
송신 OPA 소자(120)는 복수의 송신 OPA 소자(120)가 병렬적으로 구성되어 송신 OPA 소자군(Tx OPAs)을 형성할 수 있다. 즉, 예시에서는 하나의 송신 OPA 소자(120)의 도파관이 8개인 것을 나타내었으나, 넓은 수직 방향 beam-steering을 위해서는 서로 다른 수직방사각을 갖는 OPA를 다단 배치((Tx OPAs) 할 수 있으며, 이를 순차적으로 동작시키기 위해 1×n 스위치(153, n은 2 이상의 자연수)가 배치될 수 있다.
송신 OPA 소자(120)는 광 파워 분배기(121, power splitters), 위상 제어기(122, phase shifter 1×N-array), 광파 발산기(123, Radiator 1×N-array)를 포함한다.
단일 광원으로 입사된 빛은 광 파워 분배기(121)를 통해 N개(N은 2 이상의 자연수)의 채널로 분기되는데, 이때 광 파워 분배기(121)는 MMI power splitter에 국한되지 않으며, Y-branch coupler, directional coupler, 그리고 star coupler 등의 다양한 구조의 power splitter로 구성될 수 있다.
또한, 도시와 같이 1x2 power splitter를 다단으로 배치하거나, 하나의 소자를 사용하여 N개의 채널로 분기 되는 구조 모두 사용될 수 있다.
이와 같이 N 채널로 분기된 후에 각 채널에 연결되어 있는 위상 제어기(122) 역시 electro-optic 방식 (p-i-n 또는 p-n 구조) 또는 thermo-optic 방식 모두 사용될 수 있으며, 광파 발산기(123)로부터 대기(공기) 중으로 방사되는 빔의 방향성을 조절하기 위해 각 채널로 입사되는 빛의 위상을 각각 제어한다.
즉, 광파 발산기(123)에 각 발산기 소자마다 위상이 등간격으로 차이들 둔 광파를 공급하기 위하여, 광파의 위상을 제어하는 기능을 한다.
그 후, 위상이 제어된 채널은 광파 발산기(123)로 모이게 되며, 입력되는 빛의 파장, 위상 제어기(122)로 부터 제어된 위상의 형태, 그리고 광파 발산기(123)의 형태 및 배치 구조에 따라서 특정한 방향성(각도)을 지닌 채로 자유 공간, 대기(공기) 중으로 방사되게 된다.
이를 위한 광파 발산기(123)는 격자 구조, 거울 구조, 나노 금속박막 구조 등으로 구현될 수 있다. 예를 들어 광 도파로 끝에 형성되는 격자 구조에서 격자에 부딪치는 광파의 산란(scattering)에 의해 격자 위의 공간으로 광파를 방사할 수 있다.
따라서, 광파 발산기(123)는 1×N 발산기 어레이로 배치 형성됨으로써, 1×N 발산기 어레이에 입력되는 광파의 위상을 각각의 발산기마다 특정 위상으로 설정함에 따라 방사되는 광파들의 간섭에 의해 공간 상에서 특정한 방향으로 좁은 발산각(divergence angle)을 갖는 위상정합 빔이 형성될 수 있다.
이러한 어레이에서는 위상변화만으로 종방향인 위도(latitude) 방향의 스캐닝은 이루어지지 않으며, 이를 위해 도시와 같이 복수 개의 1×N 어레이가 종방향으로 복수 배열됨으로써 2차원적으로 빔이 방사되게 할 수 있다. 또는 파장 조절이나 광파 발산기(123)의 굴절률 조절에 의해서 구현될 수도 있다.
이와 같이 방사된 후 반사된 빛을 수신하는 장치가 수신 OPA 소자(130)이다.
종래 빛을 수신하기 위한 장치는 별도의 포토다이오드 등이 사용되나, 본 발명에서는 수신 OPA 소자(130)를 송신 OPA 소자(120)와 한 번의 반도체 공정에 의해 제조한다.
즉, 송신 OPA 소자(120)를 통해 특정한 방향성을 가진 채로 대기(공기) 중으로 방사된 빛은 물체를 맞고 반사되어 수신 OPA 소자(130)를 통해 수신된다.
수신 OPA 소자(130)는 기본적으로 송신 OPA 소자(120)와 동일한 구조로 이루어져 있으며, 광파 수신기(133, Receiver 1×N array)에 의해 수신되어 위상 제어기(132)를 통해 송신 OPA 소자(120) 및 수신 OPA 소자(130)의 위상 제어를 모두 동일하게 수행하면, 송신 OPA 소자(120)를 통해 특정 방향으로 방사된 빛이 물체를 맞고 산란되는 빛 중에 동일한 방향으로 반사되는 빛의 성분만 수신 OPA 소자(130)를 통해 수광할 수 있기에 noise를 최소화할 수가 있다.
즉, 송신 OPA 소자(120)와 수신 OPA 소자(130)를 동일하게 위상 제어를 수행함으로써, 기존 라이다(LiDAR)의 위상배열 안테나의 경우에서처럼, 신호대비잡음 (SNR)을 크게 향상시킬 수 있고, 따라서, 수신 OPA 소자(130)를 사용함으로써 렌즈 없이 높은 SNR을 가지면서 반사되는 빛의 성분을 추출해낼 수 있다.
이렇게 위상 조정 후 광 파워 통합기(131, Power combiner)에 의해 증폭 과정을 거친 빛은 광 검출기(142)로 이동하여 방향성 커플러(151)로부터 분기된 레퍼런스(reference) 광과 수신 OPA 소자(130)로부터 수신된 수신광을 비교하여 반사 물체의 거리를 측정하게 된다.
도 3은 수신 OPA 소자(120)에 수신되는 빛을 모식화한 것으로, 이를 통해 물체에 의해 반사되는 빛의 수신에 대해 보다 자세히 살펴보도록 한다.
도시와 같이 수신 OPA 소자(120)의 안테나(antenna) 배치 구조에서 n번째 안테나에 수신되는 E-field의 크기는 다음과 같다.
Figure pat00001
각 안테나에 입력되는 E-fileld는 Δl(n)의 경로차를 가지며, 이는 위상차를 발생시킨다. 그리고, ΔΦ(n)은 일정 각도 (θ0, Φ0)를 목표(target)로 한 수신 OPA 소자의 n번째 안테나에서 발생시키는 위상차가 된다.
따라서, 일정 각도 (θ0, Φ0)를 목표(target)로 한 수신 OPA 소자에서 수신하는 총 E-field는 다음 수학식 2와 같고, 각 안테나의 위상차로 인해 발생하는 간섭 보정은 수학식 3과 같다.
Figure pat00002
Figure pat00003
물체로부터 빛은 반구 형태로 반사가 되지만, 수신 OPA 소자의 윈도우(window) 크기에 비해 물체와의 거리가 매우 길기 때문에 입사되는 빛은 방향 성분이 일정한 평행광이 된다.
그리고, 이상의 수학식에서 참조되는 바와 같이 튜닝되어 방사된 빔에 대해 같은 위상(방향)의 빔만 수신하게 되고, 그래서 광 검출기(142)에서는 동일한 위상의 빔을 비교하여 반사 물체의 거리를 측정하는 것이다.
개념적으로, 수신 OPA 소자는 일정 각도에서 입사되는 빛을 제외한 모든 빛을 필터링(filtering)하여 잡음(noise level)을 줄이는 방향으로 수신 성능을 증가시키는 것이다.
다음, 혼합기(141)는 Integration이 된 hybrid LD(110)에서 directional coupler(120)를 통하여 local oscillator로서 mixer에 입력된 레퍼런스 광과 송신 OPA 소자(120)서 전송한 빛을 수신 OPA 소자(130)에서 수신하여 입력된 빛을 90° hybrid coupler를 통하여 mixing 및 beating 한다.
두 종류의 광이 혼합기(141)의 두 input port로 입사되면, 각 output port에는 180° phase 차이의 빛이 출력되어 광 검출기(142)를 통해 수신 OPA 소자(130)에서 수신한 빛과 Local oscillator의 빛의 주파수 차이를 추출할 수 있다(Down-conversion 기능). Laser chirp을 이용하여 시간에 따른 일정한 비율로 laser frequency modulation이 이루어지기 때문에, 이렇게 추출된 빛의 주파수 차이를 이용하여 측정하고자 하는 물체까지의 거리 정보가 획득 가능하다. 또한 이렇게 down-conversion이 가능한 동시에 reference light와 received right 사이의 비율만큼의 conversion gain 또한 얻을 수 있어 수광 측면에서 큰 장점을 가질 수 있다.
이와 같이 down-conversion과 conversion gain을 얻은 광신호는 광 검출기(142)에 의해 검출된다.
광 검출기(142, Balanced PAT-PD, photon assisted tunneling photodetector)의 기본적인 기능은 광신호를 전기신호로 변환하여 검출하는 소자로서, PAT-PD는 Ge이나 III-V 같은 이종접합 재료를 사용하지 않고 all silicon 소재로 traveling-waveguide형 PD의 역할을 수행하고, 해당 PAT-PD를 이용하여 balanced PAT-PD를 구성한다.
통상적으로 라이다(LiDAR)에는 반사되는 빛을 렌즈를 통해 수광하므로, 일반적으로 표면수광형의 APD(Avalanche Photodiode)나 single photon detector를 사용하고 있는 반면, 본 발명에서는 수신 OPA 소자(130)에서 수광되는 빛이 하나의 도파관(waveguide)으로 모아지므로, 표면 수광 PD(Photodetector)와 결합하기가 어렵기에, 해당 구조의 PD보다는 traveling-waveguide형 PD로 연결하는 것이 유리하다.
예를 들어, silicon p-n 접합 구조를 갖는 traveling waveguide PD의 경우, silicon은 본래 1.3μm 파장의 빛에 투명하기 때문에 photon의 흡수가 거의 일어나지 않는다. 그럼에도 불구하고, p-n 접합에 강한 reverse bias를 인가하여 photon assisted tunneling과 impact ionization으로 photocurrent를 얻어낼 수 있다. 따라서, 이러한 구조를 사용하면 Ge이나 III-V 같은 이종접합의 PD를 어렵게 만들 필요 없이 all silicon 소재로 PD를 만들 수 있는 장점이 있으므로, 본 발명은 수신 OPA 소자(130)와 광 검출기(142)를 연결하여 반사광을 검출하는 방식을 적용한다.
본 발명은 이상과 같이 송신 OPA 소자와 수신 OPA 소자 및 믹서, 광검출기를 하나의 실리콘 기반의 반도체 모듈로서 통합(embedded)하여 회로적으로 구성함으로써 자율주행차용 라이다를 매우 작고 견고하게 만들 수 있게 한다.
이상과 같은 본 발명은 예시된 도면을 참조하여 설명되었지만, 기재된 실시 예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형될 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 수정 예 또는 변형 예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이며, 본 발명의 권리범위는 첨부된 특허청구범위에 기초하여 해석되어야 할 것이다.
110 : 레이저 광원
120 : 송신 OPA 소자
121 : 광 파워 분배기
122 : 위상 제어기
123 : 광파 발산기
130 : 수신 OPA 소자
131 : 광 파워 통합기
132 : 위상 제어기
133 : 광파 수신기
141 : 혼합기 142 : 광 검출기
151 : 방향성 커플러 152 : 가변 광 감쇄기
153 : 1×n 스위치
154 : n×1 스위치

Claims (20)

  1. 레이저 광원;
    상기 레이저 광원으로부터의 레이저 광을 2차원(2D) 영역으로 조사하는 송신 OPA(Optic Phased Array) 소자;
    상기 송신 OPA 소자에 의해 조사된 후 반사된 광을 수신하는 수신 OPA 소자;
    상기 레이저 광과 상기 수신 OPA 소자에 의해 수신된 반사광을 믹싱(mixing)하는 혼합기; 및
    상기 혼합기에 의해 혼합된 광 신호를 검출하는 광 검출기를 포함하는,
    라이다용 레이저 송수신 모듈.
  2. 청구항 1에 있어서,
    상기 송신 OPA 소자 전단에 구비되며, 광 파워를 균등 조정하는 가변 광 감쇄기; 및
    상기 가변 광 감쇄기 전단에 구비되어 상기 레이저 광의 일부를 상기 혼합기로 분기시키는 방향성 커플러를 더 포함하는,
    라이다용 레이저 송수신 모듈.
  3. 청구항 2에 있어서,
    상기 방향성 커플러는 상기 가변 광 감쇄기로 이동하는 레이저 광의 일부를 레퍼런스(reference) 광으로 상기 혼합기로 분기시키고,
    상기 혼합기는 상기 레버런스 광과 상기 반사광을 믹싱하여,
    상기 광 검출기가 down-conversion과 conversion gain을 얻은 광신호를 검출하는 것을 특징으로 하는,
    라이다용 레이저 송수신 모듈.
  4. 청구항 3에 있어서,
    상기 방향성 커플러, 상기 광 검출기 및 상기 혼합기는 FMCW(Frequency Modulated Continuous Wave) 동작 방식에서 요구되는 수신모듈로서 기능하는 것을 특징으로 하는,
    라이다용 레이저 송수신 모듈.
  5. 청구항 4에 있어서,
    상기 광 검출기는 silicon p-n 접합 구조를 갖는 traveling-waveguide형 광 검출기(PD, Photodetector)인 것을 특징으로 하는,
    라이다용 레이저 송수신 모듈.
  6. 청구항 1에 있어서,
    상기 송신 OPA 소자는,
    상기 레이저 광을 N개(N은 2 이상의 자연수)의 채널로 분기시키는 광 파워 분배기;
    상기 N개의 채널로 입사되는 광의 위상을 각각 제어하는 위상 제어기; 및
    상기 위상 제어기로부터 위상 제어된 광이 자유 공간으로 방사되며 특정한 방향성을 가지도록 방사하는 광파 발산기를 포함하는,
    라이다용 레이저 송수신 모듈.
  7. 청구항 6에 있어서,
    상기 광 파워 분배기는 MMI power splitter인 것을 특징으로 하는,
    라이다용 레이저 송수신 모듈.
  8. 청구항 6에 있어서,
    상기 위상 제어기는 상기 광파 발산기에 도달하는 빛의 위상을 제어하여 상기 광파 발산기를 통해 발산된 빛이 특정 방향을 향하도록 제어하는 것을 특징으로 하는,
    라이다용 레이저 송수신 모듈.
  9. 청구항 8에 있어서,
    상기 위상 제어기는 electro-optic 방식(p-i-n 또는 p-n 구조) 또는 thermo-optic 방식(p-i-n 또는 외부 metal heater 구조)으로 위상을 제어하는 것을 특징으로 하는,
    라이다용 레이저 송수신 모듈.
  10. 청구항 6에 있어서,
    상기 광파 발산기는 1×N 발산기 어레이로 배치 형성되는 것을 특징으로 하는,
    라이다용 레이저 송수신 모듈.
  11. 청구항 10에 있어서,
    상기 광파 발산기의 각 발산기는 격자 구조, 거울 구조 및 나노 금속박막 구조 중 어느 하나의 구조가 형성되는 것을 특징으로 하는,
    라이다용 레이저 송수신 모듈.
  12. 청구항 10에 있어서,
    상기 광파 발산기는 상기 1×N 발산기 어레이가 종방향으로 복수 배열되는 것을 특징으로 하는,
    라이다용 레이저 송수신 모듈.
  13. 청구항 6에 있어서,
    상기 송신 OPA 소자는 복수 개로 병렬 배치되고,
    상기 가변 광 감쇄기 후단에는 상기 복수의 송신 OPA 소자를 순차적으로 동작시키기 위한 스위치가 구비되는 것을 특징으로 하는,
    라이다용 레이저 송수신 모듈.
  14. 청구항 6에 있어서,
    상기 수신 OPA 소자는,
    상기 반사광을 N개의 채널로 수신하는 광파 수신기;
    상기 N개의 채널에서 분기된 상기 반사광의 위상을 제어하는 위상 제어기; 및
    위상 제어된 상기 N개의 채널로 수신된 반사광을 통합하는 광 파워 통합기를 포함하는,
    라이다용 레이저 송수신 모듈.
  15. 청구항 14에 있어서,
    상기 수신 OPA 소자의 위상 제어기는 상기 N개의 채널로 수신하는 반사광의 위상을 상기 송신 OPA 소자에 의한 위상 제어와 동일하게 제어하는 것을 특징으로 하는,
    라이다용 레이저 송수신 모듈.
  16. 청구항 14에 있어서,
    상기 수신 OPA 소자는 복수 개로 병렬 배치되고,
    상기 광 파워 통합기 후단에는 상기 복수의 수신 OPA 소자를 순차적으로 동작시키기 위한 스위치가 구비되는 것을 특징으로 하는,
    라이다용 레이저 송수신 모듈.
  17. 레이저 광원으로부터의 레이저 광을 2차원(2D) 영역으로 조사하는 송신 OPA(Optic Phased Array) 소자 및 상기 송신 OPA 소자에 의해 조사된 후 반사된 광을 수신하는 수신 OPA 소자가 하나의 실리콘 기반의 반도체 소자로써 모듈화된 것을 특징으로 하는,
    라이다용 레이저 송수신 모듈.
  18. 청구항 17에 있어서,
    기 송신 OPA 소자는,
    상기 레이저 광을 N개(N은 2 이상의 자연수)의 채널로 분기시키는 광 파워 분배기;
    상기 N개의 채널로 입사되는 광의 위상을 각각 제어하는 위상 제어기; 및
    상기 위상 제어기로부터 위상 제어된 광이 특정한 방향성을 가지도록 방사하는 광파 발산기를 포함하는,
    라이다용 레이저 송수신 모듈.
  19. 청구항 18에 있어서,
    상기 수신 OPA 소자는,
    상기 반사광을 N개의 채널로 수신하는 광파 수신기;
    상기 N개의 채널로 수신하는 반사광의 위상을 제어하는 위상 제어기; 및
    위상 제어된 상기 N개의 채널로 수신된 반사광을 통합하는 광 파워 통합기를 포함하는,
    라이다용 레이저 송수신 모듈.
  20. 청구항 19에 있어서,
    상기 레이저 광과 상기 수신 OPA 소자에 의해 수신된 반사광을 비교하는 광 검출기; 및
    상기 광 검출기 전단에 구비되어, 상기 레퍼런스 광과 상기 반사광을 입력받아 위상을 변환하여 믹싱(mixing)하는 혼합기를 더 포함하는,
    라이다용 레이저 송수신 모듈.
KR1020200027790A 2020-03-05 2020-03-05 라이다용 레이저 송수신 모듈 KR20210112596A (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020200027790A KR20210112596A (ko) 2020-03-05 2020-03-05 라이다용 레이저 송수신 모듈
JP2020101510A JP2021139869A (ja) 2020-03-05 2020-06-11 ライダー用のレーザ送受信モジュール
US16/899,959 US20210278537A1 (en) 2020-03-05 2020-06-12 Laser transmitting and receiving module for lidar
CN202010608012.8A CN113359107A (zh) 2020-03-05 2020-06-29 激光雷达的激光发射与接收模块
DE102020208141.7A DE102020208141A1 (de) 2020-03-05 2020-06-30 Lasersende- und Empfangsmodul für Lidar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200027790A KR20210112596A (ko) 2020-03-05 2020-03-05 라이다용 레이저 송수신 모듈

Publications (1)

Publication Number Publication Date
KR20210112596A true KR20210112596A (ko) 2021-09-15

Family

ID=77389174

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200027790A KR20210112596A (ko) 2020-03-05 2020-03-05 라이다용 레이저 송수신 모듈

Country Status (5)

Country Link
US (1) US20210278537A1 (ko)
JP (1) JP2021139869A (ko)
KR (1) KR20210112596A (ko)
CN (1) CN113359107A (ko)
DE (1) DE102020208141A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102562042B1 (ko) * 2022-11-16 2023-08-01 주식회사 인포웍스 다채널용 일체형 수신 광학계를 구비한 fmcw 라이다 시스템

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122907B (zh) * 2021-11-05 2023-11-17 南京大学 基于重构等效啁啾激光器阵列芯片并行重组的高速大功率光发射模块
CN115166771A (zh) * 2022-06-24 2022-10-11 吉林大学 一种收发一体的光学相控阵多线激光雷达及芯片
CN115308755B (zh) * 2022-10-12 2022-12-23 成都量芯集成科技有限公司 一种旁轴式激光测距装置及测距方法
CN116106862B (zh) * 2023-04-10 2023-08-04 深圳市速腾聚创科技有限公司 光芯片、激光雷达、自动驾驶系统及可移动设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101720436B1 (ko) 2014-12-05 2017-03-27 비케이엠 주식회사 내화학성이 우수한 수지 장착 이중 파이프
US9740078B2 (en) 2015-11-10 2017-08-22 Korea Advanced Institute Of Science And Technology Photonic phased array antenna
KR101872077B1 (ko) 2015-11-17 2018-06-28 한국과학기술원 광 위상 배열 안테나에 적용을 위한 격자 구조를 이용한 나노포토닉 발산기
US20180246390A1 (en) 2015-11-17 2018-08-30 Korea Advanced Institute Of Science And Technology Nanophotonic radiators with tunable grating structures for photonic phased array antenna

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9683928B2 (en) * 2013-06-23 2017-06-20 Eric Swanson Integrated optical system and components utilizing tunable optical sources and coherent detection and phased array for imaging, ranging, sensing, communications and other applications
US10598785B2 (en) * 2016-02-11 2020-03-24 California Institute Of Technology Hybrid transmitter receiver optical imaging system
US11448729B2 (en) * 2016-06-30 2022-09-20 National University Corporation Yokohama National University Optical deflection device and LIDAR apparatus
US10534110B2 (en) * 2018-01-09 2020-01-14 Precision Optical Transceivers Inc. Integrated photonics device for continuous phase-controlled active beam steering and forming
US11809060B2 (en) * 2018-01-31 2023-11-07 Robert Bosch Gmbh Segmented digital to optical phase-shift converter
US20220283308A1 (en) * 2019-02-06 2022-09-08 Rockley Photonics Limited Optical components for imaging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101720436B1 (ko) 2014-12-05 2017-03-27 비케이엠 주식회사 내화학성이 우수한 수지 장착 이중 파이프
US9740078B2 (en) 2015-11-10 2017-08-22 Korea Advanced Institute Of Science And Technology Photonic phased array antenna
KR101872077B1 (ko) 2015-11-17 2018-06-28 한국과학기술원 광 위상 배열 안테나에 적용을 위한 격자 구조를 이용한 나노포토닉 발산기
US20180246390A1 (en) 2015-11-17 2018-08-30 Korea Advanced Institute Of Science And Technology Nanophotonic radiators with tunable grating structures for photonic phased array antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102562042B1 (ko) * 2022-11-16 2023-08-01 주식회사 인포웍스 다채널용 일체형 수신 광학계를 구비한 fmcw 라이다 시스템

Also Published As

Publication number Publication date
DE102020208141A1 (de) 2021-09-09
CN113359107A (zh) 2021-09-07
JP2021139869A (ja) 2021-09-16
US20210278537A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
US20230140940A1 (en) Modular three-dimensional optical sensing system
US11960006B2 (en) Wavelength division multiplexed LiDAR
KR20210112596A (ko) 라이다용 레이저 송수신 모듈
CN111722237B (zh) 基于透镜和集成光束收发器的激光雷达探测装置
JP2022120032A (ja) 多波長ライダー設計
US11619710B2 (en) Ranging using a shared path optical coupler
KR20190093961A (ko) 빔 스티어링 장치를 포함한 시스템
CN109799510A (zh) 距离测量传感器
CN212515027U (zh) 一种阵列式相干测距芯片及其系统
CN112051582A (zh) 一种阵列式相干测距芯片及其系统
Wu et al. Multi-beam optical phase array for long-range LiDAR and free-space data communication
CN111077508A (zh) 多光子芯片激光雷达系统架构
KR20240031228A (ko) 2차원 실리콘 포토닉 MEMS 스위치 어레이를 갖는 유사 모노스태틱 LiDAR
US11520212B2 (en) System and method for emitting light using a photonics waveguide with grating switches
EP3933436A1 (en) Lidar apparatus having improved signal-to-noise ratio
KR20230076646A (ko) 라인 빔 스캐닝 기반의 광위상배열 라이다
WO2023049423A9 (en) SWITCHED PIXEL ARRAY LiDAR SENSOR AND PHOTONIC INTEGRATED CIRCUIT