WO2022148092A1 - 一种短距离太赫兹通信系统及信号发送、接收方法 - Google Patents

一种短距离太赫兹通信系统及信号发送、接收方法 Download PDF

Info

Publication number
WO2022148092A1
WO2022148092A1 PCT/CN2021/125085 CN2021125085W WO2022148092A1 WO 2022148092 A1 WO2022148092 A1 WO 2022148092A1 CN 2021125085 W CN2021125085 W CN 2021125085W WO 2022148092 A1 WO2022148092 A1 WO 2022148092A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz
data
generate
signal
intermediate frequency
Prior art date
Application number
PCT/CN2021/125085
Other languages
English (en)
French (fr)
Inventor
钟武宁
赖峥嵘
王志刚
刘畅远
Original Assignee
广东省新一代通信与网络创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省新一代通信与网络创新研究院 filed Critical 广东省新一代通信与网络创新研究院
Publication of WO2022148092A1 publication Critical patent/WO2022148092A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/90Non-optical transmission systems, e.g. transmission systems employing non-photonic corpuscular radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a short-distance terahertz communication system and a signal sending and receiving method.
  • the current mobile communication technologies including 5G, mostly use frequency bands below 6GHz.
  • Spectrum resources in the frequency band below 6 GHz are basically allocated, crowded and tight, and the electromagnetic environment they face is complex, which cannot provide continuous large-bandwidth spectrum resources.
  • the terahertz frequency band greater than 100 GHz
  • the spectrum resources are abundant, and the electromagnetic environment is relatively pure, which is suitable for realizing large-bandwidth and high-speed wireless communication.
  • Shannon's theorem when the signal-to-noise ratio is constant, the greater the channel bandwidth, the greater the capacity of the communication system.
  • the maximum bandwidth that can be achieved in a wireless communication system designed in the terahertz frequency band depends on the operating bandwidth, linearity and signal processing bandwidth of the intermediate frequency digital-analog/analog-to-digital converter (ADC/DAC) of the RF front-end circuit.
  • ADC/DAC intermediate frequency digital-analog/analog-to-digital converter
  • the current wireless communication system designed in the terahertz frequency band has a transmission rate lower than 500Gbps, and the transmission rate cannot reach the Tbps level.
  • the technical problem to be solved by the present invention is to provide a short-distance terahertz communication system and a signal sending and receiving method, which can fully utilize the characteristics of the continuous spectrum and large bandwidth of the terahertz frequency band to realize high-speed wireless communication, and can realize at least 1Tbps air interface Transmission rate.
  • the first aspect of the present invention is a short-distance terahertz communication system
  • the short-distance terahertz communication system includes a transmitter and a receiver
  • the transmitter includes: a transmission control module, used for GPS or The timing service of the Beidou satellite navigation system obtains a synchronous clock, and based on the synchronous clock, 16 channels of baseband data are simultaneously output to the baseband processing module;
  • the sending baseband processing module is used to obtain the 16 channels of baseband data and generate an intermediate frequency signal through high-speed data processing;
  • the Hertz mixer is used to perform secondary up-conversion processing on the intermediate frequency signal according to the preset local oscillator source and oscillator to generate two groups of 8-channel terahertz signals;
  • the sending horn antenna is used to convert the two groups of terahertz signals.
  • Hertzian signals propagate into space.
  • the baseband processing module includes: a serial-to-parallel conversion unit, configured to convert the 16 baseband data through time-division serial-to-parallel conversion to generate 16 channels of parallel data; a check unit, configured to perform cyclic redundancy on the 16 channels of parallel data Residual check; a conformance mapping unit, which is used for modulating the 16-channel parallel data that has been verified by using 16-channel quadrature amplitude modulation to generate a digital modulation signal.
  • a digital-to-analog conversion unit for digitally modulating the signal.
  • the terahertz mixer includes: a local oscillator with a frequency range of 10.8-12.5GHz, a 10-fold frequency multiplier and a 6-fold frequency converter; the intermediate frequency signal is subjected to up-conversion processing to generate 8 channels of 210GHz- 232GHz terahertz signal; and performing up-conversion processing on the intermediate frequency signal to generate 8 channels of 130GHz-152GHz terahertz signals.
  • the receiving end includes: a receiving horn antenna for receiving a terahertz signal; a receiving terahertz mixer for up-converting the terahertz signal according to a preset local oscillator source and a multiplier processing to generate an intermediate frequency signal; a low noise amplifier for amplifying the intermediate frequency signal to a frequency that can be sampled by the following receiving baseband processing module and transmitting to the receiving baseband processing module; the receiving baseband processing module for amplifying the amplified The intermediate frequency signal is demodulated to generate baseband data; the receiving control module is configured to perform statistics on the data error rate and transmission rate of the baseband data to generate data statistics and output and display the results.
  • both the receive horn and the transmit horn are single-polarized horns, and the receive horn and the transmit horn are based on the sidelobe suppression arrangement of the horn.
  • a signal transmission method for short-distance terahertz communication comprising: obtaining a synchronous clock according to the timing of GPS or Beidou satellite navigation system, and simultaneously outputting 16 channels of baseband based on the synchronous clock data; obtain the 16-channel baseband data to generate an intermediate frequency signal through high-speed data processing; according to the preset local oscillator source and oscillator, the intermediate frequency signal is subjected to secondary up-conversion processing by sending a terahertz mixer to generate 2 groups of 8 The terahertz signals of the two groups are transmitted to the space through the transmitting horn antenna.
  • acquiring the 16 channels of baseband data to generate an intermediate frequency signal through high-speed data processing includes: converting the 17 channels of baseband data through time-division serial-to-parallel conversion to generate 16 channels of parallel data; performing cyclic redundancy on the 16 channels of parallel data Residual verification; 16 channels of quadrature amplitude modulation are used to modulate the verified 16 channels of parallel data to generate digital modulation signals. Digital-to-analog conversion is performed on the digital modulated signal to generate an intermediate frequency signal.
  • the transmit horn antenna is a single polarized horn antenna based on the side lobe suppression arrangement of the horn antenna.
  • a signal receiving method for short-distance terahertz communication includes: receiving a terahertz signal through a receiving horn antenna; The terahertz signal is up-converted to generate an intermediate frequency signal; the intermediate frequency signal is amplified to a frequency that can be sampled by the receiving baseband processing module and transmitted to the receiving baseband processing module; the amplified intermediate frequency signal is amplified in the receiving baseband processing module. Perform demodulation to generate baseband data; perform statistics on the data bit error rate and transmission rate on the baseband data to generate data statistics and output and display the results.
  • the receive horn antenna is a single polarized horn antenna based on the side lobe suppression arrangement of the horn antenna.
  • the implementation of the invention can realize the data transmission rate of Tbps level in the terahertz frequency band through the terahertz frequency mixer, and make full use of the large bandwidth characteristics of the terahertz frequency band to realize the large-bandwidth signal transmission.
  • the single-polarized horn antenna and the side lobe suppression arrangement based on the horn antenna are used to make the interference between adjacent channels meet the requirements of simultaneous independent transmission and reception of multiple links.
  • FIG. 1 is a schematic diagram of a short-range terahertz communication system disclosed in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of another short-range terahertz communication system disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of yet another short-range terahertz communication system disclosed in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of yet another short-range terahertz communication system disclosed in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of yet another short-range terahertz communication system disclosed in an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of yet another short-range terahertz communication system disclosed in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the flow of a method for sending a short-range terahertz communication signal disclosed by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a process flow of a method for receiving a short-range terahertz communication signal disclosed in an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a short-distance terahertz communication signal interaction device disclosed in an embodiment of the present invention.
  • the embodiment of the invention discloses a short-distance terahertz communication system and a signal receiving and sending method, which can realize a Tbps-level data transmission rate in the terahertz frequency band through a terahertz frequency mixer, and make full use of the large bandwidth of the terahertz frequency band. , to achieve large bandwidth signal transmission.
  • the single-polarized horn antenna and the side lobe suppression arrangement based on the horn antenna are used to make the interference between adjacent channels meet the requirements of simultaneous independent transmission and reception of multiple links.
  • FIG. 1 is a schematic diagram of a short-range terahertz communication system disclosed in an embodiment of the present invention.
  • the short-range terahertz communication system includes: a transmitter 1 and a receiver 2,
  • the sending end 1 includes: a sending control module 11 for obtaining a synchronous clock according to the timing of GPS or Beidou satellite navigation system, and simultaneously outputting 16 channels of baseband data to the sending baseband processing module based on the synchronous clock.
  • the data sources that output 16 baseband signals are 16 servers. As shown in Figure 2, it can be implemented as obtaining the timing of GPS or Beidou satellite navigation system through the network time server, and then providing precise synchronization clocks for each server and control computer through the network time server. That is, under the instruction of the control computer by the sending control module 11 , each server can simultaneously output each channel of data to the sending baseband processing module 12 under a synchronized clock beat.
  • the sending baseband processing module 12 is used for acquiring 16 channels of baseband data to generate an intermediate frequency signal through high-speed data processing.
  • the baseband processing module 12 includes:
  • the serial-to-parallel conversion unit 121 is configured to convert 16 baseband data into 16-channel parallel data through time-division serial-to-parallel conversion.
  • the checking unit 122 is used to perform cyclic redundancy check on the 16 channels of parallel data.
  • the coincidence mapping unit 123 is used for modulating the verified 16-channel parallel data with 16-channel quadrature amplitude modulation to generate a digital modulation signal.
  • the digital-to-analog conversion unit 124 is used to digitally modulate the signal.
  • FIG. 4 is a schematic diagram of an embodiment of the transmitting baseband processing module 12 in a specific application scenario.
  • the FPGA Field Programmable Gate Array
  • the transmitting baseband signal processing is available in PAL, GAL, etc.
  • ASIC application-specific integrated circuits
  • the data information is converted into 16 channels of parallel data after time division serial-parallel conversion, thereby improving the data processing throughput of the baseband platform.
  • CRC cyclic redundancy check
  • the method based on probability calculation can realize low-latency and high-rate encoding and decoding under the condition of limited FPGA logic resources.
  • the data is also passed through a scrambling module, the scrambling module is to reduce the probability of a large number of consecutive "0" and "1" sequences appearing in the sequence, and to increase the distribution of "0" and "1” data. randomness, adding interference to the sequence.
  • the modulation mode adopts 16QAM (modulation mode), after grouping, the odd-numbered bits are in-phase paths, and the even-numbered bits are quadrature paths. Multiply and then add to obtain a digitally modulated signal.
  • phase noise will cause the offset of the data phase at the same time. If the phase offset can be corrected, the phase noise can be compensated and suppressed at the same time. After the coherent demodulation of the received signal at the receiving end, the residual There is a carrier frequency offset, and it is also affected by phase noise.
  • the interpolated phase estimation modulation method is used to solve the phase noise problem. Ga64 is used as a guard interval and a cyclic prefix in a transmitted data block. The main important thing is to avoid inter-block interference, and convert the linear convolution into a cyclic prefix, while protecting the The interval Ga64 also plays a great role in carrier synchronization and phase noise compensation suppression.
  • adding a cyclic prefix means adding a guard interval
  • the data with the length of G at the end of the symbol is added to the head to form a cyclic prefix.
  • the use of cyclic prefixes facilitates time synchronization and frequency synchronization.
  • the data is framed, and the digital signal is processed by means of digital signal processing.
  • the sending terahertz mixer 13 is used to perform secondary up-conversion processing on the intermediate frequency signal according to the preset local oscillator source and the oscillator to generate two groups of 8-channel terahertz signals.
  • the transmit terahertz mixer 13 includes:
  • the 20GHz bandwidth signal generated by the high-speed analog-to-digital converter is up-converted to 210GHz-232GHz by a local oscillator source with a frequency range of 10.8-12.5GHz to 110GHz.
  • the local oscillator source of the intermediate frequency signal is multiplied by 6 to generate a 70GHz fundamental frequency carrier, and then the 20GHz bandwidth signal generated by the high-speed analog-to-digital converter is up-converted to 130GHz-152GHz through a terahertz subharmonic mixer. Perform up-conversion processing to generate 8 channels of 130GHz-152GHz terahertz signals.
  • the transmitting horn antenna 14 is used for propagating two sets of terahertz signals into space.
  • the receiving end 2 includes: a receiving horn antenna 21 for receiving terahertz signals.
  • the terahertz horn antenna receives the signal corresponding to the transmitting antenna.
  • the receiving terahertz mixer 22 is configured to perform up-conversion processing on the terahertz signal according to the preset local oscillator source and the oscillator to generate an intermediate frequency signal.
  • the low noise amplifier 23 is used to amplify the intermediate frequency signal to a frequency that can be sampled by the receiving baseband processing module 24 and transmit the signal to the receiving baseband processing module 23 .
  • a low-noise amplifier (LNA) is added to the receive chain to amplify the small signal to a level that can be sampled by a high-speed analog-to-digital converter (ADC) to improve the signal-to-noise ratio.
  • the receiving baseband processing module 24 is used for demodulating the amplified intermediate frequency signal to generate baseband data.
  • the 16-channel received signals are demodulated by the FPGA and then transmitted to the receiving control module through the QSFP28 optical/electrical interface.
  • the receiving control module 25 is configured to perform statistics on the data bit error rate and transmission rate of the baseband data to generate data statistics and output and display the results.
  • the receiving control module is implemented as a server, through which further data processing is performed to restore the original data of the sending end, and statistical analysis of the data error rate and transmission rate is performed, and the statistical results of the data are displayed on the receiving end control computer or server.
  • FIG. 5 is a schematic diagram of an embodiment of the receiving baseband processing module 24 in a specific application scenario.
  • the received signal is converted into a digital signal through an analog-to-digital converter, it passes through a FIFO memory, and the FIFO is a first-in-first-served basis.
  • the output dual-port buffer caches continuous data streams, which is beneficial to prevent data loss. It is then digitally down-converted, time-synchronized, and cyclic prefix removed.
  • the frequency offset is due to the gap between the actual output frequency of the local oscillator source and the ideal frequency, so that the frequency of the local oscillator signal cannot be exactly the same as the carrier frequency of the input signal, resulting in a frequency offset.
  • there are various algorithms for frequency offset estimation such as the phase processing carrier recovery method, etc., and an appropriate frequency offset estimation algorithm needs to be selected according to the specific implementation of the radio frequency link and the remaining baseband logic resources.
  • Channel equalization is to eliminate or weaken the intersymbol interference (ISI) problem caused by broadband communication.
  • the phase noise suppression module solves the phase noise problem by estimating the phase sequence.
  • the 16QAM demodulation can use the orthogonal coherent demodulation method. After the received signal passes through the coherent demodulator with the orthogonal carrier, it enters the judger for judgment and outputs the signal. Finally, through descrambling and LDPC channel decoding, data information is obtained.
  • the receiving horn antenna 21 and the transmitting horn antenna 14 are both single-polarized horn antennas, and the receiving horn antenna and the transmitting horn antenna are arranged based on the side lobe suppression of the horn antenna.
  • make the inter-channel interference reach the requirement of ⁇ -30dB.
  • the single-polarized horn antenna and the side lobe suppression arrangement based on the horn antenna make the interference between adjacent channels meet the requirements of 16 links.
  • the independent transceiver has achieved the purpose of increasing the channel capacity and improving the communication rate.
  • 16 channels of large-bandwidth signals can be received or sent independently, and large-bandwidth signal transmission can be realized in the terahertz frequency band, thereby realizing the data transmission rate of Tbps level, and the short-distance terahertz communication system can realize air interface transmission of more than 1Tbps. rate.
  • a Tbps-level data transmission rate can be achieved in the terahertz frequency band through the terahertz mixer, and the large bandwidth characteristic of the terahertz frequency band can be fully utilized to realize large-bandwidth signal transmission.
  • the single-polarized horn antenna and the side lobe suppression arrangement based on the horn antenna are used to make the interference between adjacent channels meet the requirements of simultaneous independent transmission and reception of multiple links.
  • FIG. 7 is a schematic flowchart of a method for sending a short-range terahertz communication signal disclosed in an embodiment of the present invention.
  • the short-range terahertz communication method for sending signals includes:
  • the data sources that output 16 baseband signals are 16 servers. As shown in Figure 2, it can be implemented as obtaining the timing of GPS or Beidou satellite navigation system through the network time server, and then providing precise synchronization clocks for each server and control computer through the network time server.
  • the specific implementation is as follows: 17 channels of baseband data are converted into 16 channels of parallel data through time division serial-to-parallel transformation; and cyclic redundancy check is performed on the 16 channels of parallel data. 16 channels of quadrature amplitude modulation are used to modulate the verified 16 channels of parallel data to generate digital modulation signals. Digital-to-analog conversion is performed on a digitally modulated signal to generate an intermediate frequency signal.
  • the FPGA Field Programmable Gate Array
  • the FPGA in transmitting baseband signal processing is a product of further development on the basis of programmable devices such as PAL and GAL. It appears as a semi-custom circuit in the field of application-specific integrated circuits (ASIC), which not only solves the shortcomings of custom circuits, but also overcomes the shortcomings of the limited number of original programmable device gate circuits), and the receiving is sent by the server.
  • the data information is converted into 16 channels of parallel data after time division serial-parallel conversion, thereby improving the data processing throughput of the baseband platform.
  • CRC cyclic redundancy check
  • the method based on probability calculation can realize low-latency and high-rate encoding and decoding under the condition of limited FPGA logic resources.
  • the data is also passed through a scrambling module, the scrambling module is to reduce the probability of a large number of consecutive "0" and "1" sequences appearing in the sequence, and to increase the distribution of "0" and "1” data. randomness, adding interference to the sequence.
  • the modulation mode adopts 16QAM (modulation mode), after grouping, the odd-numbered bits are in-phase paths, and the even-numbered bits are quadrature paths. Multiply and then add to obtain a digitally modulated signal.
  • phase noise will cause the offset of the data phase at the same time. If the phase offset can be corrected, the phase noise can be compensated and suppressed at the same time. After the coherent demodulation of the received signal at the receiving end, the residual There is a carrier frequency offset, and it is also affected by phase noise.
  • the interpolated phase estimation modulation method is used to solve the phase noise problem. Ga64 is used as a guard interval and a cyclic prefix in a transmitted data block. The main important thing is to avoid inter-block interference, and convert the linear convolution into a cyclic prefix, while protecting the The interval Ga64 also plays a great role in carrier synchronization and phase noise compensation suppression.
  • adding a cyclic prefix means adding a guard interval
  • the data with the length of G at the end of the symbol is added to the head to form a cyclic prefix.
  • the use of cyclic prefixes facilitates time synchronization and frequency synchronization.
  • the data is framed, and the digital signal is processed by means of digital signal processing.
  • the transmit terahertz mixer 13 includes:
  • the 20GHz bandwidth signal generated by the high-speed analog-to-digital converter is up-converted to 210GHz-232GHz by a local oscillator source with a frequency range of 10.8-12.5GHz to 110GHz.
  • the local oscillator source of the intermediate frequency signal is multiplied by 6 to generate a 70GHz fundamental frequency carrier, and then the 20GHz bandwidth signal generated by the high-speed analog-to-digital converter is up-converted to 130GHz-152GHz through a terahertz subharmonic mixer. Perform up-conversion processing to generate 8 channels of 130GHz-152GHz terahertz signals.
  • the transmit horn antenna is a single polarized horn antenna, and the transmit horn antenna is based on the side lobe suppression arrangement of the horn antenna.
  • make the inter-channel interference reach the requirement of ⁇ -30dB.
  • the interference between adjacent channels is less than -30dB, it can meet the independent sending and receiving function of each co-frequency channel, which has achieved the purpose of increasing the channel capacity and improving the communication rate.
  • a Tbps-level data transmission rate can be achieved in the terahertz frequency band through the terahertz mixer, and the large bandwidth characteristic of the terahertz frequency band can be fully utilized to realize large-bandwidth signal transmission.
  • the single-polarized horn antenna and the side lobe suppression arrangement based on the horn antenna are used to make the interference between adjacent channels meet the requirements of simultaneous independent transmission and reception of multiple links.
  • FIG. 8 is a schematic flowchart of a method for receiving a short-range terahertz communication signal disclosed in an embodiment of the present invention.
  • the short-distance terahertz communication signal receiving method includes:
  • the terahertz horn antenna receives the signal corresponding to the transmitting antenna.
  • the receiving baseband processing module demodulate the amplified intermediate frequency signal to generate baseband data.
  • the received signal is converted into a digital signal through an analog-to-digital converter, it passes through a FIFO memory.
  • the FIFO is a first-in, first-out dual-port buffer that buffers continuous data streams, thereby helping to prevent data loss. It is then digitally down-converted, time-synchronized, and cyclic prefix removed.
  • the frequency offset is due to the gap between the actual output frequency of the local oscillator source and the ideal frequency, so that the frequency of the local oscillator signal cannot be exactly the same as the carrier frequency of the input signal, resulting in a frequency offset.
  • there are various algorithms for frequency offset estimation such as the phase processing carrier recovery method, etc., and an appropriate frequency offset estimation algorithm needs to be selected according to the specific implementation of the radio frequency link and the remaining baseband logic resources.
  • Channel equalization is to eliminate or weaken the inter-symbol interference (ISI) problem caused by broadband communication.
  • the phase noise suppression module solves the phase noise problem by estimating the phase sequence.
  • the 16QAM demodulation can use the orthogonal coherent demodulation method. After the received signal passes through the coherent demodulator with the orthogonal carrier, it enters the judger for judgment and outputs the signal. Finally, through descrambling and LDPC channel decoding, data information is obtained.
  • each radio frequency link can realize frequency conversion and signal sampling of the 21.6GHz bandwidth signal.
  • the receiving horn antenna is a single polarized horn antenna, and the receiving horn antenna is based on the side lobe suppression arrangement of the horn antenna.
  • make the inter-channel interference reach the requirement of ⁇ -30dB.
  • the interference between adjacent channels is less than -30dB, it can meet the independent sending and receiving function of each co-frequency channel, which has achieved the purpose of increasing the channel capacity and improving the communication rate.
  • a Tbps-level data transmission rate can be achieved in the terahertz frequency band through the terahertz mixer, and the large bandwidth characteristic of the terahertz frequency band can be fully utilized to realize large-bandwidth signal transmission.
  • the single-polarized horn antenna and the side lobe suppression arrangement based on the horn antenna are used to make the interference between adjacent channels meet the requirements of simultaneous independent transmission and reception of multiple links.
  • FIG. 9 is a schematic structural diagram of a short-range terahertz communication device disclosed in an embodiment of the present invention.
  • the apparatus may include:
  • a memory 301 storing executable program code
  • processor 302 coupled to the memory 301;
  • the processor 302 invokes the executable program code stored in the memory 301 to execute the short-range terahertz communication method described in the second embodiment or the third embodiment.
  • An embodiment of the present invention discloses a computer-readable storage medium, which stores a computer program for electronic data exchange, wherein the computer program enables a computer to execute the short-range terahertz communication method described in the second embodiment or the third embodiment .
  • An embodiment of the present invention discloses a computer program product.
  • the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute the second or third embodiment.
  • a short-range terahertz communication method is described.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, they may be located in One place, or it can be distributed over multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
  • Read-Only Memory ROM
  • Random Access Memory Random Access Memory
  • PROM Programmable Read-only Memory
  • EPROM Erasable Programmable Read Only Memory
  • OTPROM One-time Programmable Read-Only Memory
  • EEPROM Electronically Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read -Only Memory
  • the short-distance terahertz communication system and the signal sending and receiving method disclosed in the embodiments of the present invention are only preferred embodiments of the present invention, and are only used to illustrate the technical solutions of the present invention. It is not intended to limit it; although the present invention has been described in detail with reference to the foregoing embodiments, those skilled in the art should understand that it is still possible to modify the technical solutions described in the foregoing embodiments, or to modify some of the technical solutions. The features are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种短距离太赫兹通信系统,短距离太赫兹通信系统包括发送端和接收端,发送端包括:发送控制模块,用于根据GPS或北斗卫星导航系统的授时获取同步时钟,基于同步时钟同时输出16路基带数据至基带处理模块;发送基带处理模块,用于获取16路基带数据通过高速数据处理生成中频信号;发送太赫兹混频器,用于根据预置的本振源和倍振器将中频信号进行二次上变频处理生成2组8路太赫兹信号;发送喇叭天线,用于将2组太赫兹信号向空间传播。本发明还公开了一种短距离太赫兹通信的信号发送、接收方法,从而能够充分利用太赫兹频段连续频谱大带宽的特点实现高速的无线通信。

Description

一种短距离太赫兹通信系统及信号发送、接收方法 技术领域
本发明涉及通信技术领域,尤其涉及一种短距离太赫兹通信系统及信号发送、接收方法。
背景技术
随着无线通信技术的迅猛发展及用户对大容量高速率无线通信业务需求的日益增多,因此,提升无线通信系统的信道容量和速率是重要研究内容。而当前的移动通信技术包括5G,所使用的频段大都集中在6GHz以下。在6GHz以下频段频谱资源基本被分配完,拥挤并且紧张,所面临的电磁环境复杂,不能提供连续的大带宽频谱资源。而在太赫兹频段(大于100GHz),频谱资源丰富,电磁环境相对纯净,适合实现大带宽、高速率的无线通信。根据香农定理,在信噪比一定的情况下,信道带宽越大通信系统的容量越大。
在太赫兹频段设计的无线通信系统,能达到的最大带宽取决于射频前端电路的工作带宽、线性度和中频数模/模数转换器(ADC/DAC)的可处理信号的带宽等。但是,目前在太赫兹频段设计的无线通信系统在传输速率上低于500Gbps,传输速率无法达到Tbps级别。
发明内容
本发明所要解决的技术问题在于,提供一种短距离太赫兹通信系统及信号发送、接收方法,能够充分利用太赫兹频段连续频谱大带宽的特点实现高速的无线通信,并且能够实现至少1Tbps的空口传输速率。
为了解决上述技术问题,本发明第一方面一种短距离太赫兹通信系统,所述短距离太赫兹通信系统包括发送端和接收端,所述发送端包括:发送控制模块,用于根据GPS或北斗卫星导航系统的授时获取同步时钟,基于所述同步时钟同时输出16路基带数据至基带处理模块;发送基带处理模块,用于获取所述16路基带数据通过高速数据处理生成中频信号;发送太赫兹混频器,用于根据预置的本振源和倍振器将所述中频信号进行二次上变频处理生成2组8路太赫兹信号;发送喇叭天线,用于将所述2组太赫兹信号向空间传播。
在一些实施方式中,基带处理模块包括:串并转换单元,用于将所述16基带数据经过时间分割串并变换生成16路并行数据;校验单元,用于对16路并行数据进行循环冗余校验;符合映射单元,用于采用16路正交振幅 调制对经过校验的所述16路并行数据进行调制生成数字调制信号。数模转换单元,用于对所述数字调制信。
在一些实施方式中,太赫兹混频器包括:频率范围为10.8-12.5GHz的本振源、10倍倍频器和6倍变频器;将所述中频信号进行上变频处理生成8路210GHz-232GHz太赫兹信号;和将所述中频信号进行上变频处理生成8路130GHz-152GHz太赫兹信号。
在一些实施方式中,接收端包括:接收喇叭天线,用于接收太赫兹信号;接收太赫兹混频器,用于根据预置的本振源和倍振器将所述太赫兹信号进行上变频处理生成中频信号;低噪声放大器,用于将所述中频信号放大至下述接收基带处理模块可采样的频率并传输至所述接收基带处理模块;接收基带处理模块,用于将放大后的所述中频信号进行解调生成基带数据;接收控制模块,用于将所述基带数据进行数据误码率和传输速率的统计生成数据统计结果输出显示。
在一些实施方式中,接收喇叭天线和所述发送喇叭天线均为单极化喇叭天线,所述接收喇叭天线和所述发送喇叭天线基于喇叭天线的旁瓣抑制布置。
根据本发明的第二个方面,公开了一种短距离太赫兹通信的信号发送方法,该方法包括:根据GPS或北斗卫星导航系统的授时获取同步时钟,基于所述同步时钟同时输出16路基带数据;获取所述16路基带数据通过高速数据处理生成中频信号;根据预置的本振源和倍振器将所述中频信号通过发送太赫兹混频器进行二次上变频处理生成2组8路太赫兹信号;将所述2组太赫兹信号通过发送喇叭天线向空间传播。
在一些实施方式中,获取所述16路基带数据通过高速数据处理生成中频信号,包括:将所述17路基带数据经过时间分割串并变换生成16路并行数据;对16路并行数据进行循环冗余校验;采用16路正交振幅调制对经过校验的所述16路并行数据进行调制生成数字调制信号。对所述数字调制信号进行数模转换生成中频信号。
在一些实施方式中,发送喇叭天线为单极化喇叭天线,所述发送喇叭天线基于喇叭天线的旁瓣抑制布置。
根据本发明的第三个方面,公开了一种短距离太赫兹通信的信号接收方法,该方法包括:通过接收喇叭天线接收太赫兹信号;根据预置的本振源和倍振器将所述太赫兹信号进行上变频处理生成中频信号;将所述中频信号放大至接受基带处理模块可采样的频率并传输至所述接收基带处理模块;在接收基带处理模块中将放大后的所述中频信号进行解调生成基带数据;将所述基带数据进行数据误码率和传输速率的统计生成数据统计结果 输出显示。
在一些实施方式中,接收喇叭天线为单极化喇叭天线,所述接收喇叭天线基于喇叭天线的旁瓣抑制布置。
与现有技术相比,本发明的有益效果在于:
实施本发明能够通过太赫兹混频器在太赫兹频段实现Tbps级别的数据传输速率,并且,充分利用太赫兹频段大带宽特点,实现大带宽信号传输。并且,采用单极化的喇叭天线以及基于喇叭天线的旁瓣抑制布置使相邻信道间干扰满足多条链路同时独立收发要求。
附图说明
图1为本发明实施例公开的一种短距离太赫兹通信系统示意图;
图2为本发明实施例公开的又一种短距离太赫兹通信系统的示意图;
图3为本发明实施例公开的又一种短距离太赫兹通信系统的示意图;
图4为本发明实施例公开的又一种短距离太赫兹通信系统的示意图;
图5为本发明实施例公开的又一种短距离太赫兹通信系统的示意图;
图6为本发明实施例公开的又一种短距离太赫兹通信系统的示意图;
图7为本发明实施例公开的一种短距离太赫兹通信信号发送方法流程的示意图;
图8为本发明实施例公开的一种短距离太赫兹通信信号接收方法流程的示意图;
图9为本发明实施例公开的一种短距离太赫兹通信信号交互装置示意图。
具体实施方式
为了更好地理解和实施,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。
本发明实施例公开了一种短距离太赫兹通信系统及信号接收、发送方 法,能够通过太赫兹混频器在太赫兹频段实现Tbps级别的数据传输速率,并且,充分利用太赫兹频段大带宽特点,实现大带宽信号传输。并且,采用单极化的喇叭天线以及基于喇叭天线的旁瓣抑制布置使相邻信道间干扰满足多条链路同时独立收发要求。
实施例一
请参阅图1,图1为本发明实施例公开的一种短距离太赫兹通信系统示意图。如图1所示,该短距离太赫兹通信系统包括:发送端1和接收端2,
发送端1包括:发送控制模块11,用于根据GPS或北斗卫星导航系统的授时获取同步时钟,基于同步时钟同时输出16路基带数据至发送基带处理模块。其中,输出16路基带信号的数据源为16台服务器。如图2所示,可以具体实现为通过网络时间服务器获取GPS或北斗卫星导航系统的授时,再通过网络时间服务器为各台服务器及控制计算机提供精准的同步时钟。即可以通过发送控制模块11在控制计算机的指令下,各台服务器在同步的时钟节拍下同时输出各路数据至发送基带处理模块12。
发送基带处理模块12,用于获取16路基带数据通过高速数据处理生成中频信号。
其中,基带处理模块12包括:
串并转换单元121,用于将16基带数据经过时间分割串并变换生成16路并行数据。
校验单元122,用于对16路并行数据进行循环冗余校验。
符合映射单元123,用于采用16路正交振幅调制对经过校验的16路并行数据进行调制生成数字调制信号。
数模转换单元124,用于对数字调制信。
示例性地,图4为该发送基带处理模块12的在具体应用场景的实施例示意图,如图4所示,在发射基带信号处理中的FPGA(Field Programmable Gate Array)是在PAL、GAL等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点),接收由服务器端发送的数据信息,经过时间分割串并变换,变为16路并行数据,从而提高基带平台数据处理吞吐量。
进一步地,为了提高数据的准确性,对16路并行数据加上循环冗余校验(CRC)用来校验数据是否出错,其中,信道编码使用LDPC编译码,LDPC码是一种分组码,其校验矩阵只含有很少量非零元素,从而保证了译码复杂度和最小码距都只随码长线性增。
进一步地,为了提高传输效率,使用基于概率计算的方式可以在有限的FPGA逻辑资源条件下实现低时延、高速率的编译码。
进一步地,在其他优选实施方式中,还将数据通过加扰模块,该加扰模块是为了减少序列中出现大量连续“0”“1”序列的概率,增大“0”“1”数据分布的随机性,在序列中加干扰。调制方式采用16QAM(调制方式),经过分组后,奇数位为同相路,偶数位为正交路,经过电平变换后,同相路和正交路经过相乘器,分别与两个正交载波相乘后再相加,进而得到数字调制信号。
由于在数据的传输中是以信号带宽极宽为标准,不可避免的存在射频非理想性、信道高频衰减、频谱不平整等问题,将严重影响链路误码率与信噪比参数,因此使用宽带预失真算法,由发射端进行数字宽带补偿。采用数字基带自适应预失真技术。
进一步地,在载波同步和相位噪声同时会导致数据相位的偏移,如果能够将该相位偏移进行纠正,就能同时进行相位噪声的补偿抑制,而接收端的接收信号进行相干解调后,残留有载波频偏,同时还受到了相位噪声的影响。采用内插相位估计调制方法解决相位噪声问题,传输的一个数据块中用Ga64做为保护间隔,和循环前缀,其主要重要是避免块间干扰,并将线性卷积转化为循环前缀,同时保护间隔Ga64也在载波同步、相位噪声补偿抑制上起到了很大的作用。由于加循环前缀也就是加入保护间隔,将符号尾部G长度的数据加到头部,构成循环前缀。利用循环前缀,有助于实现时间同步和频率同步。加入导频符号后,把数据成帧,通过数字信号处理的方法,经过成型滤波器后,数字上变频,然后通过数模转换器后,把中频信号发送出去。
发送太赫兹混频器13,用于根据预置的本振源和倍振器将中频信号进行二次上变频处理生成2组8路太赫兹信号。示例性地,发送太赫兹混频器13包括:
频率范围为10.8-12.5GHz的本振源131、10倍倍频器132和6倍变频器133;该太赫兹混频器用于将中频信号进行上变频处理生成8路210GHz-232GHz太赫兹信号,通过频率范围为10.8-12.5GHz的本振源变换至110GHz,然后通过该发送太赫兹分谐波混频器将高速模数转换器产生的20GHz带宽的信号上变频至210GHz-232GHz。同样的,将中频信号的本振源经过6倍频后产生70GHz的基频载波,然后通过太赫兹分谐波混频器将高速模数转换器产生的20GHz带宽的信号上变频至130GHz-152GHz进行上变频处理生成8路130GHz-152GHz太赫兹信号。
发送喇叭天线14,用于将2组太赫兹信号向空间传播。
接收端2包括:接收喇叭天线21,用于接收太赫兹信号。太赫兹喇叭天线将与发射天线对应的信号接收进来。
接收太赫兹混频器22,用于根据预置的本振源和倍振器将太赫兹信号进行上变频处理生成中频信号。
低噪声放大器23,用于将中频信号放大至接收基带处理模块24可采样的频率并传输至接收基带处理模块23。接收链路增加低噪声放大器(LNA)将小信号放大至高速模数转换器(ADC)可采样的电平范围内以提高信噪比。
接收基带处理模块24,用于将放大后的中频信号进行解调生成基带数据。16路接收信号经FPGA做基带解调后通过QSFP28光/电接口传输至接收控制模块。
接收控制模块25,用于将基带数据进行数据误码率和传输速率的统计生成数据统计结果输出显示。该接收控制模块实现为服务器,通过该服务器做进一步的数据处理恢复出发送端的原始数据并进行数据误码率、传输速率的相关统计分析,数据统计结果在接收端控制计算机或服务器上显示。
示例性地,图5为该接收基带处理模块24的在具体应用场景的实施例示意图,如图5所示,接收信号经过模数转换器变为数字信号后,经过FIFO存储器,FIFO是先入先出的双口缓冲器,对连续的数据流进行缓存,从而有利于防止丢失数据。然后经过数字下变频,时间同步,去掉循环前缀。频偏是由于本振源的实际输出频率与理想频率之间有差距,从而本振信号的频率不可能和输入信号的载波频率完全一致,由此产生频偏。目前对于频偏估计有多种算法,例如相位处理载波恢复法等,需根据射频链路具体实现与基带逻辑资源剩余情况选择合适的频偏估计算法。
信道均衡是为了消除或者是减弱宽带通信时的带来的码间串扰(ISI)问题,相噪抑制模块通过相位序列估计,解决相位噪声问题。16QAM解调可以采用正交的相干解调方法,接收信号经过有正交载波的相干解调器后,进入判决器判决,输出信号。最后通过解扰,LDPC信道译码,得到数据信息。
其中,如图6所示,接收喇叭天线21和发送喇叭天线14均为单极化喇叭天线,接收喇叭天线和所述发送喇叭天线基于喇叭天线的旁瓣抑制布置。使信道间干扰达到<-30dB的要求。相邻信道间干扰<-30dB情况下满足各同频信道独立收发的功能,可见,所采用单极化的喇叭天线以及基于喇叭天线的旁瓣抑制布置使相邻信道间干扰满足16条链路同时独立收发,已达到增加信道容量,提高通信速率的目的。
需要说明的是,本短距离太赫兹系统可以达到1Tbps的通信速率,收 发链路各16路,且每路速率为64Gbps,共计16×64Gbps=1.024Tbps,通信距离约0.5m。每一条链路采用16QAM的调制方式,符号速率符号率Rs=16GSPS,使用α=0.35的成型滤波器,每路基带信号带宽:B=(1+α)*Rs/2=1.35×8=10.8GHz,射频信号带宽:BW=2*B=21.6GHz。由此,要求每路ADC/DAC的采样率大于44GSPS。由此,可以对16路的大带宽信号独立的接收或发送,在太赫兹频段实现大带宽信号传输,进而实Tbps级别的数据传输速率,而且本短距离太赫兹通信系统能实现1Tbps以上空口传输速率。
根据本实施例提供的系统,能够通过太赫兹混频器在太赫兹频段实现Tbps级别的数据传输速率,并且,充分利用太赫兹频段大带宽特点,实现大带宽信号传输。并且,采用单极化的喇叭天线以及基于喇叭天线的旁瓣抑制布置使相邻信道间干扰满足多条链路同时独立收发要求。
实施例二
请参阅图7,图7为本发明实施例公开的一种短距离太赫兹通信信号发送方法流程示意图。如图7所示,该短距离太赫兹通信发送信号方法包括:
101、根据GPS或北斗卫星导航系统的授时获取同步时钟,基于同步时钟同时输出16路基带数据。
其中,输出16路基带信号的数据源为16台服务器。如图2所示,可以具体实现为通过网络时间服务器获取GPS或北斗卫星导航系统的授时,再通过网络时间服务器为各台服务器及控制计算机提供精准的同步时钟。
102、获取16路基带数据通过高速数据处理生成中频信号。
具体实现为:将17路基带数据经过时间分割串并变换生成16路并行数据;对16路并行数据进行循环冗余校验。采用16路正交振幅调制对经过校验的所述16路并行数据进行调制生成数字调制信号。对数字调制信号进行数模转换生成中频信号。
作为一种具体实施方式,发射基带信号处理中的FPGA(Field Programmable Gate Array)是在PAL、GAL等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点),接收由服务器端发送的数据信息,经过时间分割串并变换,变为16路并行数据,从而提高基带平台数据处理吞吐量。
进一步地,为了提高数据的准确性,对16路并行数据加上循环冗余校验(CRC)用来校验数据是否出错,其中,信道编码使用LDPC编译码,LDPC码是一种分组码,其校验矩阵只含有很少量非零元素,从而保证了译 码复杂度和最小码距都只随码长线性增。
进一步地,为了提高传输效率,使用基于概率计算的方式可以在有限的FPGA逻辑资源条件下实现低时延、高速率的编译码。
进一步地,在其他优选实施方式中,还将数据通过加扰模块,该加扰模块是为了减少序列中出现大量连续“0”“1”序列的概率,增大“0”“1”数据分布的随机性,在序列中加干扰。调制方式采用16QAM(调制方式),经过分组后,奇数位为同相路,偶数位为正交路,经过电平变换后,同相路和正交路经过相乘器,分别与两个正交载波相乘后再相加,进而得到数字调制信号。
由于在数据的传输中是以信号带宽极宽为标准,不可避免的存在射频非理想性、信道高频衰减、频谱不平整等问题,将严重影响链路误码率与信噪比参数,因此使用宽带预失真算法,由发射端进行数字宽带补偿。采用数字基带自适应预失真技术。
进一步地,在载波同步和相位噪声同时会导致数据相位的偏移,如果能够将该相位偏移进行纠正,就能同时进行相位噪声的补偿抑制,而接收端的接收信号进行相干解调后,残留有载波频偏,同时还受到了相位噪声的影响。采用内插相位估计调制方法解决相位噪声问题,传输的一个数据块中用Ga64做为保护间隔,和循环前缀,其主要重要是避免块间干扰,并将线性卷积转化为循环前缀,同时保护间隔Ga64也在载波同步、相位噪声补偿抑制上起到了很大的作用。由于加循环前缀也就是加入保护间隔,将符号尾部G长度的数据加到头部,构成循环前缀。利用循环前缀,有助于实现时间同步和频率同步。加入导频符号后,把数据成帧,通过数字信号处理的方法,经过成型滤波器后,数字上变频,然后通过数模转换器后,把中频信号发送出去。
103、根据预置的本振源和倍振器将中频信号通过发送太赫兹混频器进行二次上变频处理生成2组8路太赫兹信号。
示例性地,发送太赫兹混频器13包括:
频率范围为10.8-12.5GHz的本振源131、10倍倍频器132和6倍变频器133;该太赫兹混频器用于将中频信号进行上变频处理生成8路210GHz-232GHz太赫兹信号,通过频率范围为10.8-12.5GHz的本振源变换至110GHz,然后通过该发送太赫兹分谐波混频器将高速模数转换器产生的20GHz带宽的信号上变频至210GHz-232GHz。同样的,将中频信号的本振源经过6倍频后产生70GHz的基频载波,然后通过太赫兹分谐波混频器将高速模数转换器产生的20GHz带宽的信号上变频至130GHz-152GHz进行上变频处理生成8路130GHz-152GHz太赫兹信号。
104、将2组太赫兹信号通过发送喇叭天线向空间传播。
发送喇叭天线为单极化喇叭天线,所述发送喇叭天线基于喇叭天线的旁瓣抑制布置。使信道间干扰达到<-30dB的要求。相邻信道间干扰<-30dB情况下满足各同频信道独立收发的功能,已达到增加信道容量,提高通信速率的目的。
根据本实施例提供的方法,能够通过太赫兹混频器在太赫兹频段实现Tbps级别的数据传输速率,并且,充分利用太赫兹频段大带宽特点,实现大带宽信号传输。并且,采用单极化的喇叭天线以及基于喇叭天线的旁瓣抑制布置使相邻信道间干扰满足多条链路同时独立收发要求。
实施例三
请参阅图8,图8为本发明实施例公开的一种短距离太赫兹通信信号接收方法流程示意图。如图8所示,该短距离太赫兹通信信号接收方法包括:
201、通过接收喇叭天线接收太赫兹信号。
太赫兹喇叭天线将与发射天线对应的信号接收进来。
202、根据预置的本振源和倍振器将太赫兹信号进行上变频处理生成中频信号;
203、将中频信号放大至接受基带处理模块可采样的频率并传输至接收基带处理模块。
204、在接收基带处理模块中将放大后的中频信号进行解调生成基带数据。
具体地,接收信号经过模数转换器变为数字信号后,经过FIFO存储器,FIFO是先入先出的双口缓冲器,对连续的数据流进行缓存,从而有利于防止丢失数据。然后经过数字下变频,时间同步,去掉循环前缀。频偏是由于本振源的实际输出频率与理想频率之间有差距,从而本振信号的频率不可能和输入信号的载波频率完全一致,由此产生频偏。目前对于频偏估计有多种算法,例如相位处理载波恢复法等,需根据射频链路具体实现与基带逻辑资源剩余情况选择合适的频偏估计算法。
信道均衡是为了消除或者是减弱宽带通信时的带来的码间串扰(ISI)问题,相噪抑制模块通过相位序列估计,解决相位噪声问题。16QAM解调可以采用正交的相干解调方法,接收信号经过有正交载波的相干解调器后,进入判决器判决,输出信号。最后通过解扰,LDPC信道译码,得到数据信息。并且,可以使得每条射频链路能实现对21.6GHz带宽信号的变频及信号采样。
205、将基带数据进行数据误码率和传输速率的统计生成数据统计结果 输出显示。
接收喇叭天线为单极化喇叭天线,所述接收喇叭天线基于喇叭天线的旁瓣抑制布置。使信道间干扰达到<-30dB的要求。相邻信道间干扰<-30dB情况下满足各同频信道独立收发的功能,已达到增加信道容量,提高通信速率的目的。
根据本实施例提供的方法,能够通过太赫兹混频器在太赫兹频段实现Tbps级别的数据传输速率,并且,充分利用太赫兹频段大带宽特点,实现大带宽信号传输。并且,采用单极化的喇叭天线以及基于喇叭天线的旁瓣抑制布置使相邻信道间干扰满足多条链路同时独立收发要求。
实施例四
请参阅图9,图9是本发明实施例公开的一种短距离太赫兹通信装置的结构示意图。如图9所示,该装置可以包括:
存储有可执行程序代码的存储器301;
与存储器301耦合的处理器302;
处理器302调用存储器301中存储的可执行程序代码,用于执行实施例二或实施例三中所描述的短距离太赫兹通信方法。
实施例五
本发明实施例公开了一种计算机可读存储介质,其存储用于电子数据交换的计算机程序,其中,该计算机程序使得计算机执行实施例二或实施例三中所描述的短距离太赫兹通信方法。
实施例六
本发明实施例公开了一种计算机程序产品,该计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,且该计算机程序可操作来使计算机执行实施例二或实施例三中所描述的短距离太赫兹通信方法。
以上所描述的的实施例仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施例的具体描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以 通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
最后应说明的是:本发明实施例公开的一种短距离太赫兹通信系统及其信号发送、接收方法所揭露的仅为本发明较佳实施例而已,仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解;其依然可以对前述各项实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应的技术方案的本质脱离本发明各项实施例技术方案的精神和范围。

Claims (7)

  1. 一种短距离太赫兹通信系统,所述短距离太赫兹通信系统包括发送端和接收端,其特征在于,所述发送端包括:
    发送控制模块,用于根据GPS或北斗卫星导航系统的授时获取同步时钟,基于所述同步时钟同时输出16路带宽为10.8GHZ的基带数据至下述发送基带处理模块;
    发送基带处理模块,用于获取所述16路基带数据通过高速数据处理生成中频信号;
    发送太赫兹混频器,用于根据预置的本振源和倍振器将所述中频信号进行二次上变频处理生成2组8路太赫兹信号;
    发送喇叭天线,用于通过单极化的喇叭天线的旁瓣抑制布置将所述2组太赫兹信号同时向空间传播。
  2. 根据权利要求1所述的短距离太赫兹通信系统,其特征在于,所述基带处理模块包括:
    串并转换单元,用于将所述16基带数据经过时间分割串并变换生成16路独立的并行数据;
    校验单元,用于对16路并行数据进行循环冗余校验;
    符合映射单元,用于采用16路正交振幅调制对经过校验的所述16路并行数据进行调制生成数字调制信号;
    数模转换单元,用于对所述数字调制信号进行数模转换生成中频信号。
  3. 根据权利要求2所述的短距离太赫兹通信系统,其特征在于,所述发送太赫兹混频器包括:
    频率范围为10.8GHz-12.5GHz的本振源、10倍倍频器和6倍变频器;
    所述发送太赫兹混频器用于将所述中频信号进行上变频处理生成8路210GHz-232GHz太赫兹信号;和
    将所述中频信号进行上变频处理生成8路130GHz-152GHz太赫兹信号。
  4. 根据权利要求1-3任一项所述的短距离太赫兹通信系统,其特征在于,所述接收端包括:
    接收喇叭天线,用于通过单极化的喇叭天线的旁瓣抑制布置接收太赫兹信号;
    接收太赫兹混频器,用于根据预置的本振源和倍振器将所述太赫兹信 号进行上变频处理生成中频信号;
    低噪声放大器,用于将所述中频信号放大至下述接收基带处理模块可采样的频率并传输至所述接收基带处理模块;
    接收基带处理模块,用于将放大后的所述中频信号进行解调生成基带数据;
    接收控制模块,用于将所述基带数据进行数据误码率和传输速率的统计生成数据统计结果输出显示。
  5. 一种短距离太赫兹通信的信号发送方法,其特征在于,所述方法包括:
    根据GPS或北斗卫星导航系统的授时获取同步时钟,基于所述同步时钟同时输出16路基带数据;
    获取所述16路基带数据通过高速数据处理生成中频信号;
    根据预置的本振源和倍振器将所述中频信号通过发送太赫兹混频器进行二次上变频处理生成2组8路太赫兹信号;
    将所述2组太赫兹信号通过单极化的喇叭天线的旁瓣抑制布置向空间传播。
  6. 根据权利要求5所述的短距离太赫兹通信的信号发送方法,其特征在于,所述获取所述16路基带数据通过高速数据处理生成中频信号,包括:
    将所述16路基带数据经过时间分割串并变换生成16路独立的并行数据;
    对16路并行数据进行循环冗余校验;
    采用16路正交振幅调制对经过校验的所述16路并行数据进行调制生成数字调制信号;
    对所述数字调制信号进行数模转换生成中频信号。
  7. 一种短距离太赫兹通信的信号接收方法,其特征在于,所述方法包括:
    通过单极化的喇叭天线的旁瓣抑制布置接收喇叭天线接收太赫兹信号;
    根据预置的本振源和倍振器将所述太赫兹信号进行上变频处理生成中频信号;
    将所述中频信号放大至接受基带处理模块可采样的频率并传输至所述接收基带处理模块;
    在接收基带处理模块中将放大后的所述中频信号进行解调生成基带数 据;
    将所述基带数据进行数据误码率和传输速率的统计生成数据统计结果输出显示。
PCT/CN2021/125085 2021-01-06 2021-10-20 一种短距离太赫兹通信系统及信号发送、接收方法 WO2022148092A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110013854.3 2021-01-06
CN202110013854.3A CN112583493B (zh) 2021-01-06 2021-01-06 一种短距离太赫兹通信系统及信号发送、接收方法

Publications (1)

Publication Number Publication Date
WO2022148092A1 true WO2022148092A1 (zh) 2022-07-14

Family

ID=75144730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125085 WO2022148092A1 (zh) 2021-01-06 2021-10-20 一种短距离太赫兹通信系统及信号发送、接收方法

Country Status (2)

Country Link
CN (1) CN112583493B (zh)
WO (1) WO2022148092A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115941416A (zh) * 2022-11-07 2023-04-07 四川工商学院 一种基于时间同步的跟踪收信控制装置与方法
CN115982571A (zh) * 2023-01-12 2023-04-18 中国人民解放军军事科学院系统工程研究院 一种空间太赫兹通信信号的几何表示方法及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583493B (zh) * 2021-01-06 2022-03-15 广东省新一代通信与网络创新研究院 一种短距离太赫兹通信系统及信号发送、接收方法
CN113346960B (zh) * 2021-08-05 2021-11-09 北京理工大学 一种用于太赫兹空间正交调制信号合成校准的方法及系统
CN113890629B (zh) * 2021-10-20 2023-03-24 网络通信与安全紫金山实验室 太赫兹信号接收装置、方法及信号传输系统
CN114123979B (zh) * 2022-01-25 2022-05-03 电子科技大学 一种太赫兹全双工共本振固态前端发射电路
CN114465857B (zh) * 2022-03-11 2024-03-08 大连大学 一种适用于恶劣海况下的THz通信方法
CN114826863B (zh) * 2022-04-22 2023-07-04 四川轻化工大学 太赫兹通信方法、发送端、接收端及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108667531A (zh) * 2018-04-18 2018-10-16 姚远 太赫兹无线信号发送装置、接收装置、通信系统及方法
CN109981135A (zh) * 2019-04-23 2019-07-05 四川众为创通科技有限公司 太赫兹同收发全双工多载波通信系统
US10523182B1 (en) * 2018-08-22 2019-12-31 Rockwell Collins, Inc. Adaptive harmonic cancellation
CN112583493A (zh) * 2021-01-06 2021-03-30 广东省新一代通信与网络创新研究院 一种短距离太赫兹通信系统及信号发送、接收方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103901404B (zh) * 2014-03-14 2016-05-11 中国工程物理研究院电子工程研究所 适用于太赫兹雷达和通信系统的mmaop架构
CN108055226B (zh) * 2017-12-27 2020-06-16 北京理工大学 一种基于伪码辅助的用于太赫兹通信的同步方法
CN108092929B (zh) * 2017-12-27 2020-07-28 北京理工大学 一种用于太赫兹通信的同步方法
CN110611529A (zh) * 2019-09-20 2019-12-24 上海无线电设备研究所 一种实现太赫兹跟踪与数据中继通信一体化的系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108667531A (zh) * 2018-04-18 2018-10-16 姚远 太赫兹无线信号发送装置、接收装置、通信系统及方法
US10523182B1 (en) * 2018-08-22 2019-12-31 Rockwell Collins, Inc. Adaptive harmonic cancellation
CN109981135A (zh) * 2019-04-23 2019-07-05 四川众为创通科技有限公司 太赫兹同收发全双工多载波通信系统
CN112583493A (zh) * 2021-01-06 2021-03-30 广东省新一代通信与网络创新研究院 一种短距离太赫兹通信系统及信号发送、接收方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115941416A (zh) * 2022-11-07 2023-04-07 四川工商学院 一种基于时间同步的跟踪收信控制装置与方法
CN115941416B (zh) * 2022-11-07 2024-05-07 四川工商学院 一种基于时间同步的跟踪收信控制装置
CN115982571A (zh) * 2023-01-12 2023-04-18 中国人民解放军军事科学院系统工程研究院 一种空间太赫兹通信信号的几何表示方法及装置
CN115982571B (zh) * 2023-01-12 2023-07-25 中国人民解放军军事科学院系统工程研究院 一种空间太赫兹通信信号的几何表示方法及装置

Also Published As

Publication number Publication date
CN112583493A (zh) 2021-03-30
CN112583493B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
WO2022148092A1 (zh) 一种短距离太赫兹通信系统及信号发送、接收方法
De Sanctis et al. Waveform design solutions for EHF broadband satellite communications
US8989088B2 (en) OFDM signal processing in a base transceiver system
US10340987B2 (en) Excursion compensation in multipath communication systems with a cyclic prefix
US9059778B2 (en) Frequency domain compression in a base transceiver system
US20180331710A1 (en) Radio modulation technique using DMPSK for immproved BER
US20150092877A1 (en) High throughput interference cancelling radio transceiver and antenna therefor
US20190273536A1 (en) Excursion compensation in multipath communication systems with a cyclic prefix
US11258651B2 (en) Transmission method, transmission device, reception method, and reception device
Ghannam et al. Experimental demonstration of spectrally efficient frequency division multiplexing transmissions at E-Band
Mazzali et al. Enhancing mobile services with DVB‐S2X superframing
KR102397927B1 (ko) 무선통신시스템에서 스펙트럼 마스크 필링을 이용한 피크 대 평균 전력 감소를 위한 방법 및 장치
US10659276B2 (en) Transmission method, transmission device, reception method, and reception device
Kiasaraei et al. Towards Ultra-Power-Efficient, Tbps Wireless Systems via Analogue Processing: Existing Approaches, Challenges and Way Forward
Yue et al. Demonstration of 60 GHz millimeter-wave short-range wireless communication system at 3.5 Gbps over 5 m range
SG194134A1 (en) Systems and methods for transceiver communication
Shaha et al. Real time video transceiver using SDR testbed with directional antennas
Etrillard et al. LOLA SDR: Low power low latency software defined radio for broadcast audio applications
Henarejos et al. Advanced signal processing techniques for fixed and mobile satellite communications
US12074683B1 (en) Configurable orthogonal frequency division multiplexing (OFDM) signal and transmitter and receiver for satellite to user terminal downlink communications
US9166855B2 (en) MIMO communication method, MIMO transmitting device, and MIMO receiving device
Zhang et al. A 20 Gbps digital modem for high speed wireless backhaul applications
RU2796968C1 (ru) Устройство передачи информации в многолучевом канале тропосферной СВЧ-радиосвязи
Shoji et al. Transparent transportation of digitized microwave environments over 10 Gbps optical networks: Transportation of multi-channel digital broadcast signals
Dalakas et al. Filter Bank-based Multicarrier Modulation for Multiple Access in Next Generation Satellite Uplinks: A DVB-RCS2-based Experimental Study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917134

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21917134

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2023)