WO2022148021A1 - 一种激光表面熔覆的金属热管材料及其制备方法 - Google Patents

一种激光表面熔覆的金属热管材料及其制备方法 Download PDF

Info

Publication number
WO2022148021A1
WO2022148021A1 PCT/CN2021/113986 CN2021113986W WO2022148021A1 WO 2022148021 A1 WO2022148021 A1 WO 2022148021A1 CN 2021113986 W CN2021113986 W CN 2021113986W WO 2022148021 A1 WO2022148021 A1 WO 2022148021A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pipe
metal heat
pipe material
surface cladding
laser surface
Prior art date
Application number
PCT/CN2021/113986
Other languages
English (en)
French (fr)
Inventor
梁加淼
王俊
孙宝德
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2022148021A1 publication Critical patent/WO2022148021A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/093Compacting only using vibrations or friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Definitions

  • the application relates to the field of heat pipe materials, in particular to a metal heat pipe material with laser surface cladding and a preparation method thereof.
  • Heat pipes are by far one of the most efficient systems for heat transfer. Compared with traditional heat transfer methods, heat pipes have the advantage of allowing a large amount of heat flow through pipes with smaller interfaces and longer dimensions without additional input energy; Control the heat flow rate and other advantages. Therefore, heat pipes have broad application prospects in aerospace, heat exchange, electronic industry and other fields.
  • the heat pipe is mainly composed of three parts: the tube shell, the liquid absorbing core and the working medium.
  • Its working principle is as follows: the external heat source vaporizes the working medium in the evaporation area through the heat conduction of the tube shell and the liquid absorbing core, and the gas reaches the condensation area along the pressure gradient; due to the low temperature in the condensation area, the gas liquefies and condenses here and releases the latent heat of vaporization;
  • the wick returns the condensed liquid to the evaporation area through capillary action, so as to ensure that the medium circulates in the heat pipe. Therefore, the quality of the wick directly affects the working efficiency of the heat pipe.
  • the commonly used liquid absorbent cores mainly include groove type, wire mesh type and sintered metal type.
  • the preparation method of groove type and wire mesh type absorbent core is simple, the pore structure is single, the pore size is large, and the capillary performance still needs to be improved; while the sintered metal absorbent core has complex pore structure and small pore size, comprehensive performance Better, it is widely used in heat pipes.
  • the sintered metal wick for heat pipe mainly sinters loose powder onto the inner wall of the heat pipe by means of high temperature sintering. Since there is no auxiliary pressure between the powder and the tube wall during the sintering process, the combination of the wick and the tube wall is weak, and a gap is easily formed between the two, which will cause the wick to fall off, reduce the working efficiency of the heat pipe, and even cause Heat pipe failed.
  • the existing methods for preparing heat pipe materials usually first prepare and process a tube shell, and then prepare a liquid absorbent core on the inner wall of the tube shell. Due to the relatively narrow space in the tube, this method brings great difficulty and inconvenience to the preparation of the liquid absorbent core, and increases the process flow and production cost of the heat pipe material preparation. Therefore, developing a method for preparing heat pipe materials with simple process and low cost, and improving the heat transfer efficiency and working life of heat pipe materials, is particularly critical for the large-scale promotion and application of heat pipes.
  • Laser cladding is a process method that uses laser irradiation to form a molten pool on the surface of the material by synchronizing or presetting the material, and rapidly solidifies to form a coating layer. , suitable for many cladding materials and other characteristics, it shows important application value in material surface modification and product surface repair. But so far, the research and application of metal heat pipe materials prepared by laser surface cladding technology has not been reported.
  • the technical problem to be solved by this application is how to improve the heat transfer efficiency and working life of the heat pipe material, and find a preparation method of the laser surface cladding metal heat pipe material with simple development process and low production cost .
  • the present application provides a metal heat pipe material with laser surface cladding
  • the metal heat pipe material is composed of an inner layer material and an outer layer material
  • the inner layer material is a sintered porous structure liquid absorbing core
  • the outer layer material is a dense shell prepared by laser surface cladding technology.
  • the thickness of the inner layer material is 0.2-2mm
  • the thickness of the outer layer material is 0.5-5mm
  • the porous structure liquid-absorbing core is a three-dimensional network distribution of connected pore structure
  • the pore diameter is 10-200 microns
  • the pores are 10-200 microns.
  • the rate is 20-80%.
  • the metal heat pipe material is straight, and the length is 10-200 cm.
  • the metal heat pipe has a circular cross section and a diameter of 5-100 mm.
  • cross section of the metal heat pipe is square.
  • the application also provides a method for preparing a metal heat pipe material with laser surface cladding, comprising the following steps:
  • Step 1 Load the metal powder with a specific shape and size into a pre-prepared mold, and place it on a mechanical vibrating device to vibrate for 5 minutes, so that the powder completely fills the cavity of the mold to obtain the first sample. ;
  • Step 2 Put the mold containing the first sample into a sintering furnace for sintering to obtain an inner layer material, and the inner layer material is a pore structure liquid absorbing core;
  • Step 3 Take out the inner layer material from the mold, put it into an oven to dry after ultrasonic cleaning for 10 minutes to obtain a second sample; perform laser surface cladding on the surface of the second sample to obtain an outer layer material, the outer layer material The same metal powder as the inner layer material is used, and the outer layer material is a dense shell.
  • the metal powder in the step 1 is a superalloy.
  • the metal powder in the step 1 is a stainless steel alloy.
  • the metal powder is a copper alloy.
  • the metal powder in the step 1 is a nickel alloy.
  • the metal powder is a titanium alloy.
  • the shape of the metal powder in the step 1 is spherical, and the size is 15-200 microns.
  • the sintering furnace in the step 2 is a vacuum sintering furnace.
  • the sintering furnace in the step 2 is an atmosphere sintering furnace.
  • the sintering in the step 2 is powder loose sintering.
  • the sintering temperature in the step 2 is 700-1400° C., and the holding time is 0.5-5 hours.
  • the heating power of the laser surface cladding in the step 3 is 0.1-10 kilowatts
  • the size of the laser beam spot is 1-10 mm
  • the moving speed of the laser light source is 1-50 mm/s.
  • the thickness of the inner layer material is 0.2-2 mm
  • the porous structure liquid-absorbing core is a three-dimensional network distribution of interconnected pore structures
  • the pore size is 10-200 microns
  • the porosity is 20-80%
  • the thickness of the outer layer material is 0.5-5mm
  • the metal heat pipe is straight, and the length is 10-200 cm.
  • the cross section of the metal heat pipe is circular, and the diameter of the circular is 5-100 mm.
  • cross section of the metal heat pipe is square.
  • the metal heat pipe material prepared by laser surface cladding technology in this application has a dense shell with a thickness of 0.5-5mm on the outer layer; and a liquid-absorbing core with a porous structure with a thickness of 0.2-2mm on the inner layer.
  • the pore structure of the absorbent core is a three-dimensional network distributed connected structure, the pore size is 10-200 microns, and the porosity is 20-80%; the shell and the absorbent core are closely combined, and there are no obvious cracks, inclusions and other defects between the two. .
  • the method of the present application creatively combines the powder metallurgy and the laser cladding process, and proposes a new preparation method of the heat pipe material.
  • the preparation process of the heat pipe material is simplified, the production cost is reduced, and the prepared liquid absorbent
  • the quality of the core is excellent, and at the same time, a good interface bonding between the liquid-absorbing core and the tube shell is realized, and the heat transfer efficiency and working life of the heat pipe material are improved.
  • FIG. 1 is a schematic diagram of a preparation process of a metal heat pipe material according to a preferred embodiment of the present application
  • Fig. 2 is the low magnification metallographic photograph of the cross section of the metal heat pipe material prepared by a preferred embodiment of the present application;
  • FIG. 3 is a high magnification metallographic photograph of the cross section of the metal heat pipe material prepared in a preferred embodiment of the present application;
  • Fig. 4 is the metal heat pipe material prepared by a preferred embodiment of the present application.
  • FIG. 5 is a cross section of FIG. 4 .
  • a preparation method of a metal heat pipe material with laser surface cladding includes the following steps:
  • Step 1 Weigh 200g of polygonal stainless steel powder and put it into a pre-prepared mold, the powder size is 15-200 microns; put the powder-filled mold on a mechanical vibrating device and vibrate for 5 minutes, so that the powder completely fills the mold cavity inner space;
  • Step 2 Put the powder-filled mold obtained in step 1 into a vacuum furnace for sintering to obtain an inner layer porous structure liquid-absorbing core material, the sintering temperature is 1250 ° C, the holding time is 1 hour, and the vacuum degree is 1 Pa;
  • Step 3 Take the sintered sample out of the mold, ultrasonically clean it for 10 minutes, and put it into an oven to dry; on the surface of the cleaned and dried sample, laser surface cladding is performed on the outer dense shell, and the cladding layer material and the wick
  • the same material is polygonal stainless steel powder; the laser heating power is 0.1 kW, the size of the laser beam spot is 10 mm, and the moving speed of the laser light source is 50 mm/s.
  • the thickness of the inner porous structure liquid-absorbing core material of the metal heat pipe material prepared in this example is 0.2 mm, and the thickness of the outer dense shell is 0.5 mm, wherein the pore structure of the porous structure liquid-absorbing core is a three-dimensional network distributed connected structure , the aperture is 10-200 microns, and the porosity is 40-80%; the metal heat pipe has a circular cross-section and a diameter of 5-100 mm.
  • a preparation method of a metal heat pipe material with laser surface cladding includes the following steps:
  • Step 1 Weigh 200g of polygonal titanium alloy powder into a pre-prepared mold, the powder size is 15-200 microns; put the powder-filled mold on a mechanical vibration device and vibrate for 5 minutes, so that the powder completely fills the mold. cavity space;
  • Step 2 Put the powder-filled mold obtained in step 1 into a vacuum furnace for sintering to obtain an inner layer porous structure liquid-absorbing core material, the sintering temperature is 1250 ° C, the holding time is 1 hour, and the vacuum degree is 1 Pa;
  • Step 3 Take the sintered sample out of the mold, ultrasonically clean it for 10 minutes, and put it into an oven to dry; on the surface of the cleaned and dried sample, laser surface cladding is performed on the outer dense shell, and the cladding layer material and the wick
  • the material is the same, which is polygonal titanium alloy powder; the laser heating power is 10 kilowatts, the size of the laser beam spot is 1 mm, and the moving speed of the laser light source is 1 mm/s.
  • the thickness of the inner porous structure liquid absorbent core material of the metal heat pipe material prepared in this example is 2 mm, and the thickness of the outer dense shell is 5 mm, wherein the pore structure of the porous structure liquid absorbent core is a three-dimensional network distributed connected structure, and the pore size It is 100-200 microns, and the porosity is 20-50%; the cross section of the metal heat pipe is square.
  • a preparation method of a metal heat pipe material with laser surface cladding includes the following steps:
  • Step 1 Weigh 200g of K418 superalloy spherical powder and put it into the prepared mold, the powder size is 15-200 microns; put the powder-filled mold on the mechanical vibration device and vibrate for 5 minutes, so that the powder is completely filled cavity in the cavity;
  • Step 2 Put the powder-equipped mould obtained in step 1 into a vacuum furnace and sinter to obtain the inner layer porous structure liquid-absorbing core material, the sintering temperature is 1250°C, the holding time is 1 hour, and the vacuum degree is 1Pa;
  • Step 3 Take the sintered sample out of the mold, ultrasonically clean it for 10 minutes, and put it into an oven to dry; on the surface of the cleaned and dried sample, laser surface cladding is performed on the outer dense shell, and the cladding layer material and the wick
  • the same material is K418 superalloy spherical powder; the laser heating power is 1 kW, the size of the laser beam spot is 5 mm, and the moving speed of the laser light source is 5 mm/s.
  • a preparation method of a metal heat pipe material with laser surface cladding includes the following steps:
  • Step 1 Weigh 200g of spherical copper metal powder into a pre-prepared mold, the powder size is 15-200 microns; put the powder-filled mold on a mechanical vibrating device and vibrate for 5 minutes to make the powder completely fill the mold. cavity space;
  • Step 2 Put the powder-filled mold obtained in step 1 into an atmosphere furnace for sintering to obtain an inner-layer porous structure liquid-absorbing core material, the sintering temperature is 700° C., and the holding time is 5 hours;
  • Step 3 Take the sintered sample out of the mold, ultrasonically clean it for 10 minutes, and put it into an oven to dry; on the surface of the cleaned and dried sample, laser surface cladding is performed on the outer dense shell, and the cladding layer material and the wick
  • the same material is spherical copper metal powder; the laser heating power is 7 kW, the size of the laser beam spot is 6 mm, and the moving speed of the laser light source is 10 mm/s.
  • a preparation method of a metal heat pipe material with laser surface cladding includes the following steps:
  • Step 1 Weigh 200g of spherical nickel metal powder and put it into a pre-prepared mold with a powder size of 15-200 microns; place the powder-filled mold on a mechanical vibrating device and vibrate for 5 minutes to completely fill the mold with powder. cavity space;
  • Step 2 Put the powder-filled mold obtained in step 1 into an atmosphere furnace for loose powder sintering to obtain an inner-layer porous structure liquid-absorbing core material, the sintering temperature is 1400 ° C, and the holding time is 0.5 hours;
  • Step 3 Take the sintered sample out of the mold, ultrasonically clean it for 10 minutes, and put it into an oven to dry; perform laser surface cladding on the surface of the cleaned and dried sample to obtain an outer dense shell, cladding layer material and liquid absorbent core
  • the same material is spherical nickel metal powder; the laser heating power is 3 kW, the size of the laser beam spot is 3 mm, and the moving speed of the laser light source is 25 mm/s.
  • the metal heat pipe material 1 prepared in this embodiment may be straight, and the length L is preferably 10-200 cm.
  • the pipe material 1 may have a circular cross-section as shown in FIG. 1 , or a square cross-section as shown in FIG. 5 .
  • Figure 2 is a low magnification metallographic photograph of the cross section of the metal heat pipe material prepared in Example 5. It can be seen from the figure that the sample is composed of an inner layer material and an outer layer material, and the inner layer material forms a liquid absorbent core with a porous structure , the outer layer material forms a dense cladding layer as the shell, the thickness of the cladding layer is 1.4mm, and the pore size of the porous structure is 40-150 microns.
  • Figure 3 is a high magnification metallographic photograph of the cross section of the metal heat pipe material prepared in Example 5. It can be seen from the figure that the interface between the cladding layer and the porous structure layer is well combined, and there are no obvious cracks, inclusions and other defects between them.
  • the porosity of the pore structure of the liquid-absorbing core of the inner layer material of the metal heat pipe material prepared in Example 5 is 20-80%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种激光表面熔覆的金属热管材料,包括内层材料和外层材料的双层结构,内层材料为多孔结构吸液芯;外层材料为利用激光表面熔覆技术制备的致密壳体。其制备方法是先制备多孔结构吸液芯,然后再利用激光表面熔覆技术在多孔材料表面制备出致密的熔覆层管壳。

Description

一种激光表面熔覆的金属热管材料及其制备方法 技术领域
本申请涉及热管材料领域,尤其涉及一种激光表面熔覆的金属热管材料及其制备方法。
背景技术
热管是迄今为止传热效率最高的系统之一。与传统的传热方式相比,热管的优势在于使大量的热流通过具有较小界面和较长尺寸的管道,而不需要额外输入能量;此外,热管还具有制备简便、两端温差小和易于控制热流速率等优点。因此,热管在航空航天、热交换、电子工业等领域有着广泛的应用前景。
热管主要由管壳、吸液芯和工作介质三部分构成。其工作原理如下:外部热源通过管壳和吸液芯的热传导使蒸发区的工作介质汽化,气体顺着压力梯度到达冷凝区;由于冷凝区温度较低,气体在此液化凝结并释放汽化潜热;吸液芯通过毛细作用将冷凝后的液体回流到蒸发区,从而保证介质在热管内循环工作。因此,吸液芯质量的优劣直接影响热管的工作效率。目前,常用的吸液芯主要有沟槽型、丝网型和烧结金属型三种。沟槽型和丝网型吸液芯虽然制备方法简单,但孔道结构单一,孔径尺寸较大,毛细性能仍有待提高;而烧结金属吸液芯由于具有复杂的孔道结构和细小的孔径,综合性能较好,在热管中应用较为广泛。
目前,热管用烧结金属吸液芯主要是通过高温烧结的方式将松散的粉末烧结到热管内壁上。由于在烧结过程中粉末和管壁之间没有辅助压力的作用,导致吸液芯与管壁结合较弱,两者之间容易产生间隙,从而造成吸液芯脱落,降低热管工作效率,甚至导致热管失效。此外,现有热管材料制备方法通常都是先制备加工出管壳,然后在管壳内壁上制备出吸液芯。此方法由于管内空间较为狭窄,为吸液芯的制备带来极大困难和不便,增加了热管材料制备工艺流程和生产成本。因此,开发工艺简单、成本低廉的热管材料制备方法,并提高热管材料传热效率和工作寿命,对于热管的大规模推广和应用尤为关键。
激光熔覆是通过同步或预置材料的方式,利用激光辐照在材料表面形成熔池,并快速凝固形成包覆层的工艺方法,其具有稀释度小、组织致密、涂层与基体结合好、适合熔覆材料多等特点,其在材料表面改性及产品表面修复等方面展现出重要的应用价值。但目前为止,利用激光表面熔覆技术制备金属热管材料的研究和应用尚未见报道。
因此,本领域的技术人员致力于开发一种激光表面熔覆的金属热管材料及其制备方法。
发明内容
有鉴于现有技术的上述缺陷,本申请所要解决的技术问题是如何提高热管材料传热效率和工作寿命,找到一种开发工艺简单、生产成本低廉的激光表面熔覆的金属热管材料的制备方法。
为实现上述目的,本申请提供了一种激光表面熔覆的金属热管材料,所述金属热管材料由内层材料和外层材料组成,所述内层材料为烧结成型的多孔结构吸液芯,所述外层材料为利用激光表面熔覆技术制备的致密壳体。
进一步地,所述内层材料厚度为0.2-2mm,所述外层材料厚度为0.5-5mm,所述多孔结构吸液芯为三维网状分布的连通孔隙结构,孔径为10-200微米,孔隙率为20-80%。
进一步地,所述金属热管管材为直线型,长度为10-200厘米。
进一步地,所述金属热管管材横截面为圆形,直径为5-100毫米。
进一步地,所述金属热管管材横截面为方形。
本申请还提供了一种激光表面熔覆的金属热管材料的制备方法,包括以下步骤:
步骤1.将具有特定形貌和尺寸的金属粉末装入预先准备好的模具中,放在机械振料装置上振动5分钟,使粉末完全填充所述模具的模腔内空隙得到第一样品;
步骤2.将盛放所述第一样品的所述模具放入烧结炉中进行烧结得到内层材料,所述内层材料为孔结构吸液芯;
步骤3.将所述内层材料从模具中取出,超声清洗10分钟后放入烘箱干燥得到第二样品;在所述第二样品表面进行激光表面熔覆得到外层材料,所述外层材料采用与所述内层材料相同的所述金属粉末,所述外层材料为致密壳体。
进一步地,所述步骤1中所述金属粉末为高温合金。
进一步地,所述步骤1中所述金属粉末为不锈钢合金。
进一步地,所述步骤1中所述金属粉末为铜合金。
进一步地,所述步骤1中所述金属粉末为镍合金。
进一步地,所述步骤1中所述金属粉末为钛合金。
进一步地,所述步骤1中的所述金属粉末形貌为球形,尺寸为15-200微米。
进一步地,所述步骤2中所述烧结炉为真空烧结炉。
进一步地,所述步骤2中所述烧结炉为气氛烧结炉。
进一步地,所述步骤2中所述烧结为粉末松装烧结。
进一步地,所述步骤2中所述烧结的温度为700-1400℃,保温时间为0.5-5小时。
进一步地,所述步骤3中所述激光表面熔覆的加热功率为0.1-10千瓦,激光束斑尺寸为1-10毫米,激光光源移动速率为1-50毫米/秒。
进一步地,所述步骤2中所述内层材料厚度为0.2-2mm,所述多孔结构吸液芯为 三维网状分布的连通孔隙结构,孔径为10-200微米,孔隙率为20-80%,所述步骤3中所述外层材料厚度为0.5-5mm,所述金属热管管材为直线型,长度为10-200厘米。
进一步地,所述金属热管管材横截面为圆形,所述圆形的直径为5-100毫米。
进一步地,所述金属热管管材横截面为方形。
本申请的技术效果如下:
(1)本申请中利用激光表面熔覆技术制备的金属热管材料,外层为致密壳体,厚度为0.5-5mm;内层为多孔结构吸液芯,厚度为0.2-2mm。吸液芯孔隙结构为三维网状分布的连通结构,孔径为10-200微米,孔隙率为20-80%;壳体和吸液芯结合紧密,且两者之间无明显裂纹、夹杂等缺陷。
(2)区别于传统热管材料先制备管壳再制备吸液芯的工艺步骤,本申请方法创造性地将粉末冶金和激光熔覆工艺相结合,提出了新的热管材料制备方法。通过先制备多孔结构吸液芯,然后再利用激光表面熔覆技术在多孔材料表面制备出致密的熔覆层管壳,简化了热管材料的制备流程,降低了生产成本,且制备得到的吸液芯质量优异,同时实现了吸液芯和管壳之间良好的界面结合,提高了热管材料传热效率和工作寿命。
以下将结合附图对本申请的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本申请的目的、特征和效果。
附图说明
图1是本申请的一个较佳实施例的金属热管材料的制备工艺示意图;
图2是本申请的一个较佳实施例制备的金属热管材料横截面的低倍金相照片;
图3是本申请的一个较佳实施例制备的金属热管材料横截面的高倍金相照片;
图4是本申请的一个较佳实施例制备的金属热管管材;
图5是图4的横截面。
具体实施方式
以下参考说明书附图介绍本申请的多个优选实施例,使其技术内容更加清楚和便于理解。本申请可以通过许多不同形式的实施例来得以体现,本申请的保护范围并非仅限于文中提到的实施例。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。附图所示的每一组件的尺寸和厚度是任意示出的,本申请并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
实施例1
一种激光表面熔覆的金属热管材料的制备方法,如图1所示,包括以下步骤:
步骤1.称取200g的多边形不锈钢粉末装入预先准备好的模具中,粉末尺寸为15-200微米;将装有粉末的模具放在机械振料装置上振动5分钟,使粉末完全填充模腔内空隙;
步骤2.将步骤1中得到的装有粉末的模具放入真空炉中进行烧结得到内层多孔结构吸液芯材料,烧结温度为1250℃,保温时间为1小时,真空度为1Pa;
步骤3.将烧结后的样品从模具中取出,超声清洗10分钟后放入烘箱干燥;在清洗干燥后的样品表面进行激光表面熔覆到外层致密壳体,熔覆层材料与吸液芯材料相同,为多边形不锈钢粉末;激光加热功率为0.1千瓦,激光束斑尺寸为10毫米,激光光源移动速率为50毫米/秒。
本实施例制备的金属热管材料的内层多孔结构吸液芯材料厚度为0.2mm,外层致密壳体的厚度为0.5mm,其中多孔结构吸液芯的孔隙结构为三维网状分布的连通结构,孔径为10-200微米,孔隙率为40-80%;金属热管管材横截面为圆形,直径为5-100毫米。
实施例2
一种激光表面熔覆的金属热管材料的制备方法,如图1所示,包括以下步骤:
步骤1.称取200g的多边形钛合金粉末装入预先准备好的模具中,粉末尺寸为15-200微米;将装有粉末的模具放在机械振料装置上振动5分钟,使粉末完全填充模腔内空隙;
步骤2.将步骤1中得到的装有粉末的模具放入真空炉中进行烧结得到内层多孔结构吸液芯材料,烧结温度为1250℃,保温时间为1小时,真空度为1Pa;
步骤3.将烧结后的样品从模具中取出,超声清洗10分钟后放入烘箱干燥;在清洗干燥后的样品表面进行激光表面熔覆到外层致密壳体,熔覆层材料与吸液芯材料相同,为多边形钛合金粉末;激光加热功率为10千瓦,激光束斑尺寸为1毫米,激光光源移动速率为1毫米/秒。
本实施例制备的金属热管材料的内层多孔结构吸液芯材料厚度为2mm,外层致密壳体的厚度为5mm,其中多孔结构吸液芯的孔隙结构为三维网状分布的连通结构,孔径为100-200微米,孔隙率为20-50%;金属热管管材横截面为方形。
实施例3
一种激光表面熔覆的金属热管材料的制备方法,如图1所示,包括以下步骤:
步骤1.称取200g的K418高温合金球形粉末装入预先准备好的模具中,粉末尺寸为15-200微米;将装有粉末的模具放在机械振料装置上振动5分钟,使粉末完全填充模腔内空隙;
步骤2.将步骤1中得到的装有粉末的模具放入真空炉中进行烧结得到内层多孔结 构吸液芯材料,烧结温度为1250℃,保温时间为1小时,真空度为1Pa;
步骤3.将烧结后的样品从模具中取出,超声清洗10分钟后放入烘箱干燥;在清洗干燥后的样品表面进行激光表面熔覆到外层致密壳体,熔覆层材料与吸液芯材料相同,为K418高温合金球形粉末;激光加热功率为1千瓦,激光束斑尺寸为5毫米,激光光源移动速率为5毫米/秒。
实施例4
一种激光表面熔覆的金属热管材料的制备方法,如图1所示,包括以下步骤:
步骤1.称取200g的球形铜金属粉末装入预先准备好的模具中,粉末尺寸为15-200微米;将装有粉末的模具放在机械振料装置上振动5分钟,使粉末完全填充模腔内空隙;
步骤2.将步骤1中得到的装有粉末的模具放入气氛炉中进行烧结得到内层多孔结构吸液芯材料,烧结温度为700℃,保温时间为5小时;
步骤3.将烧结后的样品从模具中取出,超声清洗10分钟后放入烘箱干燥;在清洗干燥后的样品表面进行激光表面熔覆到外层致密壳体,熔覆层材料与吸液芯材料相同,为球形铜金属粉末;激光加热功率为7千瓦,激光束斑尺寸为6毫米,激光光源移动速率为10毫米/秒。
实施例5
一种激光表面熔覆的金属热管材料的制备方法,如图1所示,包括以下步骤:
步骤1.称取200g的球形镍金属粉末装入预先准备好的模具中,粉末尺寸为15-200微米;将装有粉末的模具放在机械振料装置上振动5分钟,使粉末完全填充模腔内空隙;
步骤2.将步骤1中得到的装有粉末的模具放入气氛炉中进行粉末松装烧结得到内层多孔结构吸液芯材料,烧结温度为1400℃,保温时间为0.5小时;
步骤3.将烧结后的样品从模具中取出,超声清洗10分钟后放入烘箱干燥;在清洗干燥后的样品表面进行激光表面熔覆得到外层致密壳体,熔覆层材料与吸液芯材料相同,为球形镍金属粉末;激光加热功率为3千瓦,激光束斑尺寸为3毫米,激光光源移动速率为25毫米/秒。
如图4所示,本实施例制备的金属热管管材1可以是直线型,长度L较佳地为10-200厘米。管材1可以具有如图1所示的圆形横截面,也可以具有如图5所示的方形横截面。
图2是实施例5制备的金属热管材料横截面的低倍金相照片,从图中可以看出,样品由内层材料和外层材料组成,内层材料形成呈多孔结构状的吸液芯,外层材料形成致密的熔覆层作为壳体,熔覆层厚度为1.4mm,多孔结构的孔径为40-150微米。
图3是实施例5制备的金属热管材料横截面的高倍金相照片,从图中可以看出,熔覆层和多孔结构层界面结合良好,两者之间无明显裂纹、夹杂等缺陷。
经测试,实施例5制备的金属热管材料的内层材料吸液芯孔隙结构的孔隙率为20-80%。
以上详细描述了本申请的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本申请的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本申请的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (20)

  1. 一种激光表面熔覆的金属热管材料,其中,所述金属热管材料由内层材料和外层材料组成,所述内层材料为烧结成型的呈多孔结构的芯,所述外层材料为利用激光表面熔覆技术制备的壳体。
  2. 如权利要求1所述的激光表面熔覆的金属热管材料,其中,所述内层材料厚度为0.2-2mm,所述外层材料厚度为0.5-5mm,所述芯为三维网状分布的连通孔隙结构,孔径为10-200微米,孔隙率为20-80%。
  3. 如权利要求1所述的激光表面熔覆的金属热管材料,其中,所述金属热管管材为直线型,长度为10-200厘米。
  4. 如权利要求1所述的激光表面熔覆的金属热管材料,其中,所述金属热管管材横截面为圆形,直径为5-100毫米。
  5. 如权利要求1所述的激光表面熔覆的金属热管材料,其中,所述金属热管管材横截面为方形。
  6. 一种激光表面熔覆的金属热管材料的制备方法,其中,包括以下步骤:
    步骤1.将具有预设形貌和尺寸的金属粉末装入预先准备好的模具中,放在机械振料装置上振动5分钟,使粉末完全填充所述模具的模腔内空隙得到第一样品;
    步骤2.将盛放所述第一样品的所述模具放入烧结炉中进行烧结得到内层材料,所述内层材料形成呈多孔结构的芯;
    步骤3.将所述内层材料从模具中取出,超声清洗10分钟后放入烘箱干燥得到第二样品;在所述第二样品表面进行激光表面熔覆得到外层材料,所述外层材料采用与所述内层材料相同的所述金属粉末,所述外层材料形成壳体。
  7. 如权利要求6所述的激光表面熔覆的金属热管材料的制备方法,其中,所述步骤1中所述金属粉末为合金。
  8. 如权利要求6所述的激光表面熔覆的金属热管材料的制备方法,其中,所述步骤1中所述金属粉末为不锈钢合金。
  9. 如权利要求6所述的激光表面熔覆的金属热管材料的制备方法,其中,所述步骤1中所述金属粉末为铜合金。
  10. 如权利要求6所述的激光表面熔覆的金属热管材料的制备方法,其中,所述步骤1中所述金属粉末为镍合金。
  11. 如权利要求6所述的激光表面熔覆的金属热管材料的制备方法,其中,所述步骤1中所述金属粉末为钛合金。
  12. 如权利要求6所述的激光表面熔覆的金属热管材料的制备方法,其中,所述步骤1中的所述金属粉末形貌为球形,尺寸为15-200微米。
  13. 如权利要求6所述的激光表面熔覆的金属热管材料的制备方法,其中,所述步骤2中所述烧结炉为真空烧结炉。
  14. 如权利要求6所述的激光表面熔覆的金属热管材料的制备方法,其中,所述步骤2中所述烧结炉为气氛烧结炉。
  15. 如权利要求6所述的激光表面熔覆的金属热管材料的制备方法,其中,所述步骤2中所述烧结为粉末松装烧结。
  16. 如权利要求6所述的激光表面熔覆的金属热管材料的制备方法,其中,所述步骤2中所述烧结的温度为700-1400℃,保温时间为0.5-5小时。
  17. 如权利要求6所述的激光表面熔覆的金属热管材料的制备方法,其中,所述步骤3中所述激光表面熔覆的加热功率为0.1-10千瓦,激光束斑尺寸为1-10毫米,激光光源移动速率为1-50毫米/秒。
  18. 根据权利要求6所述的激光表面熔覆的金属热管材料的制备方法,其中,所述步骤2中所述内层材料厚度为0.2-2mm,所述芯为三维网状分布的连通孔隙结构,孔径为10-200微米,孔隙率为20-80%,所述步骤3中所述外层材料厚度为0.5-5mm,所述金属热管管材为直线型,长度为10-200厘米。
  19. 根据权利要求6所述的激光表面熔覆的金属热管材料的制备方法,其中,所述金属热管管材横截面为圆形,所述圆形的直径为5-100毫米。
  20. 根据权利要求6所述的激光表面熔覆的金属热管材料的制备方法,其中,所述金属热管管材横截面为方形。
PCT/CN2021/113986 2021-01-11 2021-08-23 一种激光表面熔覆的金属热管材料及其制备方法 WO2022148021A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110031741.6 2021-01-11
CN202110031741.6A CN112872359A (zh) 2021-01-11 2021-01-11 一种激光表面熔覆的金属热管材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2022148021A1 true WO2022148021A1 (zh) 2022-07-14

Family

ID=76044039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113986 WO2022148021A1 (zh) 2021-01-11 2021-08-23 一种激光表面熔覆的金属热管材料及其制备方法

Country Status (2)

Country Link
CN (1) CN112872359A (zh)
WO (1) WO2022148021A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117870426A (zh) * 2024-03-11 2024-04-12 深圳大学 一种带有激光烧结吸液芯结构的均热板及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112872359A (zh) * 2021-01-11 2021-06-01 上海交通大学 一种激光表面熔覆的金属热管材料及其制备方法
CN115351280B (zh) * 2022-08-22 2024-01-19 西北有色金属研究院 一种环路热管用蒸发器的一体化制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102465290A (zh) * 2010-11-04 2012-05-23 沈阳大陆激光技术有限公司 一种具有双层金属复合管的制造方法
CN110192076A (zh) * 2017-01-13 2019-08-30 西门子股份公司 具有热管和潜热存储器的冷却装置及其制造方法和电子电路
CN112872359A (zh) * 2021-01-11 2021-06-01 上海交通大学 一种激光表面熔覆的金属热管材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2574200A1 (en) * 2004-07-21 2006-01-26 Xiao Huang Hybrid wicking materials for use in high performance heat pipes
CN108317879B (zh) * 2017-01-16 2019-08-23 北京空间飞行器总体设计部 一种环路热管蒸发器的制备方法
CN106643248B (zh) * 2017-02-16 2019-01-29 华南理工大学 一种粉末烧结式不锈钢热管及其制备方法
CN110385436B (zh) * 2019-08-26 2020-11-17 厦门大学 一种具有多孔径结构特征的金属吸液芯及其制造方法
CN110797547B (zh) * 2019-11-14 2021-05-28 西安交通大学深圳研究院 一种基于泡沫金属的轻质自均温双极板及其制备方法
CN111299585B (zh) * 2020-03-20 2022-04-12 武汉市第一医院 一种人工骨的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102465290A (zh) * 2010-11-04 2012-05-23 沈阳大陆激光技术有限公司 一种具有双层金属复合管的制造方法
CN110192076A (zh) * 2017-01-13 2019-08-30 西门子股份公司 具有热管和潜热存储器的冷却装置及其制造方法和电子电路
CN112872359A (zh) * 2021-01-11 2021-06-01 上海交通大学 一种激光表面熔覆的金属热管材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117870426A (zh) * 2024-03-11 2024-04-12 深圳大学 一种带有激光烧结吸液芯结构的均热板及其制备方法
CN117870426B (zh) * 2024-03-11 2024-06-11 深圳大学 一种带有激光烧结吸液芯结构的均热板及其制备方法

Also Published As

Publication number Publication date
CN112872359A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2022148021A1 (zh) 一种激光表面熔覆的金属热管材料及其制备方法
CN106041101B (zh) 一种复合金属多孔管及其制备方法
US7401643B2 (en) Heat exchange foam
CN103900412B (zh) 具有渐变形貌特征的通孔金属泡沫热管换热装置
CN108662934B (zh) 一种应用于环路热管的泡沫金属-纤维复合毛细芯及其加工方法
CN107557825A (zh) 铜粉金属镀层、金属基板、节能防胀爆散热装置及其制备工艺
CN112872355B (zh) 一种具有多级孔结构的金属吸液芯材料及其制备方法
Tang et al. Design of hybrid superwetting surfaces with self‐driven droplet transport feature for enhanced condensation
JPH0441067A (ja) 表面部が多孔状である基材の製造方法
WO2018129633A1 (zh) 一种环路热管蒸发器的制备方法
CN103119378A (zh) 集热接收器及太阳能热发电装置
JP2003148887A (ja) ヒートパイプ及びその製造方法
Meng et al. Experimental study on the heat transfer performance of a vapour chamber with porous wick structures printed via metallic additive manufacturing
CN113432467A (zh) 一种金属陶瓷复合毛细芯的制备方法
CN105180700A (zh) 一种具有固定汽化核心的多孔壁面换热管及其制备方法
Ahmed et al. Loop heat pipe design: an evaluation of recent research on the selection of evaporator, wick, and working fluid
CN114423236A (zh) 电子设备相变储热器制备方法
Zhang et al. Manipulating thin film boiling to achieve record-breaking high heat flux
JP3215228U (ja) 膨脹・爆発を防止可能な省エネ型放熱装置
JPH10121110A (ja) 沸騰伝熱部材及びその製造方法
KR102351282B1 (ko) 증발기 및 그 제조 방법, 그리고 증발기를 갖는 루프형 히트 파이프
CN115979030A (zh) 一种异形金属热管及其制备方法
WO2023103438A1 (zh) 一种吸液芯制备方法及包含该吸液芯的热管
CN108801019B (zh) 一种具有多层吸液芯结构的相变传热元件及其制造方法
TWI281018B (en) Method for making a wick for a heat pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917064

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21917064

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 11.04.24.