WO2022147920A1 - 用于光通信的光波长测量系统 - Google Patents

用于光通信的光波长测量系统 Download PDF

Info

Publication number
WO2022147920A1
WO2022147920A1 PCT/CN2021/085493 CN2021085493W WO2022147920A1 WO 2022147920 A1 WO2022147920 A1 WO 2022147920A1 CN 2021085493 W CN2021085493 W CN 2021085493W WO 2022147920 A1 WO2022147920 A1 WO 2022147920A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat glass
optical
input port
light
thickness
Prior art date
Application number
PCT/CN2021/085493
Other languages
English (en)
French (fr)
Inventor
陈利平
金镖
黄建军
胡海洋
廉哲
Original Assignee
苏州联讯仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州联讯仪器有限公司 filed Critical 苏州联讯仪器有限公司
Publication of WO2022147920A1 publication Critical patent/WO2022147920A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods

Definitions

  • the invention relates to an optical wavelength measurement system for optical communication, belonging to the technical field of optical wavelength detection.
  • spectrometers and interferometers. Limited by the measurement principle, the measurement accuracy of the spectrometer can reach about 0.02nm, and the measurement accuracy of the interferometer can reach the pm level or even smaller.
  • the existing interferometer used for wavelength measurement adopts a reflective optical path, and the interference etalon is formed by bonding two pieces of flat glass and a spacer with a wedge angle with optical glue.
  • the reflectivity of the two flat glass-air interfaces is only about 4%, and the interference pattern obtained by the double-beam interference generated by the reflected beams at the two interfaces is equal-period sinusoidal fringes.
  • the prior art uses an interferometer with a transmitted light path, in which the interference etalon is also made of two pieces of flat glass and a spacer with a wedge angle bonded with optical glue.
  • a reflective coating layer with a large reflectivity (reflectivity>50%) to the light wave is applied, and the light beam is reflected back and forth between the reflective coating layers to produce multi-beam interference, and the final result is higher and sharper than sinusoidal fringes. 's peak.
  • the existing interference etalon is limited by the lateral size, the number of pixels of the linear photodetector, the signal noise and the calculation accuracy, etc., it is difficult to use an interference etalon in a wide spectral range (hundreds of hundreds of nanometer) to achieve pm-level and higher measurement accuracy.
  • a wide spectral range hundreds of nanometer
  • the development of optical wavelength measurement devices with a wide detection spectral range and high measurement accuracy is crucial to the development of the optical field.
  • the object of the present invention is to provide an optical wavelength measurement system for optical communication.
  • the optical wavelength measurement system for optical communication does not increase the size of the optical path. Accurate measurement of light wavelengths achieves pm-level measurement accuracy and reduces costs.
  • an optical wavelength measurement system for optical communication comprising: an optical input port located in a housing, a light shield, an off-axis parabolic mirror, a first flat glass, a second Two flat glasses, at least two cylindrical lenses and at least two linear photodetectors, an isolation frame with a hollow area in the center and a wedge angle is arranged between the first flat glass and the second flat glass, thereby forming a seal a cavity, the front surface of the first flat glass and the rear surface of the second flat glass are arranged opposite to each other;
  • One side of the front surface of the first flat glass is provided with at least one small flat glass with a thickness and located in the sealed cavity, the other side of the front surface has a first reflective layer, and the thickness of the small flat glass is smaller than the thickness of the isolation frame , the rear surface of the second flat glass has a second reflective layer, the surface of the small flat glass facing the second flat glass has a third reflective layer, the light input port and the first flat glass are located at off-axis parabolic reflection the same side of the mirror, so that the light from the light input port is reflected to the surface of the first flat glass through the off-axis parabolic mirror;
  • the light shield is arranged between the off-axis parabolic reflector and the first flat glass or between the second flat glass and at least two linear photodetectors; one end of an optical path switch is connected to the optical input port and is located at the optical path switch The first input end at the other end of the device is connected with a single wavelength light source, and the second input end at the other end of the optical path switcher is used for interface connection with the light source to be detected.
  • the number of the small flat glass is 2, and the thickness of one small flat glass is greater than the thickness of the other small flat glass.
  • the reflectivity of the first reflective layer, the second reflective layer and the third reflective layer is greater than 30%, and the transmittance is greater than 50%.
  • the optical input port is an optical fiber input port.
  • the surface of the casing is covered with a heat insulating layer.
  • the present invention has the following advantages compared with the prior art:
  • one side of the front surface of the first flat glass is provided with at least one small flat glass with a thickness and located in the sealed cavity, and the other side of the front surface is provided with a first reflective layer, so
  • the thickness of the small flat glass is smaller than the thickness of the isolation frame
  • the rear surface of the second flat glass has a second reflective layer
  • the surface of the small flat glass facing the second flat glass has a third reflective layer
  • the port and the first flat glass are located on the same side of the off-axis parabolic mirror, so that the light from the light input port is reflected to the surface of the first flat glass through the off-axis parabolic mirror. It can accurately measure light of multiple wavelength types at the same time, achieve pm-level measurement accuracy, and reduce costs.
  • FIG. 1 is a schematic structural diagram of an optical wavelength measurement system for optical communication according to the present invention.
  • FIG. 3 is a schematic diagram of a partial optical path of the optical wavelength measurement system for optical communication according to the present invention.
  • Embodiment 1 of the present invention is a schematic diagram of the exploded structure of Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of an exploded structure of Embodiment 2 of the present invention.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection or a Electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal connection of two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection or a Electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal connection of two components.
  • Embodiment 1 An optical wavelength measurement system for optical communication, comprising: an optical input port 1 located in a housing 11, a light shield 2, an off-axis parabolic mirror 3, a first flat glass 4, and a second flat glass 5. 2 cylindrical lenses 6 and 2 linear photodetectors 7, between the first flat glass 4 and the second flat glass 5, there is an isolation frame 8 with a hollow area in the center and a wedge angle, thereby forming a a sealed cavity, the front surface of the first flat glass 4 and the rear surface of the second flat glass 5 are arranged opposite to each other;
  • One side of the front surface of the first flat glass 4 is provided with a small flat glass 9 with a thickness and located in the sealed cavity, and the other side of the front surface has a first reflective layer 101, and the thickness of the small flat glass 9 is smaller than that of the isolation
  • the thickness of the frame 8 the rear surface of the second flat glass 5 has a second reflective layer 102, the surface of the small flat glass 9 facing the second flat glass 5 has a third reflective layer 103, the light input port 1 and the first flat glass 4 is located on the same side of the off-axis parabolic mirror 3, so that the light from the light input port 1 is reflected to the surface of the first flat glass 4 through the off-axis parabolic mirror 3;
  • the light shield 2 is arranged between the off-axis parabolic mirror 3 and the first flat glass 4 or between the second flat glass 5 and at least two linear photodetectors 7; one end of an optical path switch 14 is connected to the optical input port 1
  • the first input terminal at the other end of the optical path switch 14 is connected to the single-wavelength light source 15
  • the second input terminal at the other end of the optical path switch 14 is used to connect with the light source interface 12 to be detected.
  • the reflectivity of the first reflective layer 101, the second reflective layer 102 and the third reflective layer 103 is greater than 30%, and the transmittance is greater than 50%.
  • the optical input port 1 is an optical fiber input port.
  • the surface of the casing 11 is covered with a heat insulating layer 13 .
  • Embodiment 2 An optical wavelength measurement system for optical communication, comprising: an optical input port 1 located in a housing 11, a light shield 2, an off-axis parabolic mirror 3, a first flat glass 4, and a second flat glass 5. 2 cylindrical lenses 6 and 2 linear photodetectors 7, between the first flat glass 4 and the second flat glass 5, there is an isolation frame 8 with a hollow area in the center and a wedge angle, thereby forming a a sealed cavity, the front surface of the first flat glass 4 and the rear surface of the second flat glass 5 are arranged opposite to each other;
  • One side of the front surface of the first flat glass 4 is provided with two small flat glasses 9 of thickness and located in the sealed cavity, and the other side of the front surface has a first reflective layer 101, and the thickness of the small flat glass 9 is less than The thickness of the isolation frame 8, wherein the thickness of one small flat glass 9 is greater than the thickness of the other small flat glass 9, the rear surface of the second flat glass 5 has a second reflective layer 102, the small flat glass 9 and the second The opposite surface of the flat glass 5 has a third reflective layer 103, the light input port 1 and the first flat glass 4 are located on the same side of the off-axis parabolic mirror 3, so that the light from the light input port 1 passes through the off-axis parabolic mirror 3 Reflected on the surface of the first flat glass 4;
  • the light shield 2 is arranged between the off-axis parabolic mirror 3 and the first flat glass 4 or between the second flat glass 5 and at least two linear photodetectors 7; one end of an optical path switch 14 is connected to the optical input port 1
  • the first input terminal at the other end of the optical path switch 14 is connected to the single-wavelength light source 15
  • the second input terminal at the other end of the optical path switch 14 is used to connect with the light source interface 12 to be detected.
  • one side of the front surface of the first flat glass is provided with at least one small flat glass with a thickness and located in the sealed cavity, and the other side of the front surface is provided with a first reflective layer
  • the thickness of the small flat glass is smaller than the thickness of the isolation frame
  • the rear surface of the second flat glass has a second reflective layer
  • the surface of the small flat glass facing the second flat glass has a third reflective layer
  • the input port and the first flat glass are located on the same side of the off-axis parabolic mirror, so that the light from the optical input port is reflected to the surface of the first flat glass through the off-axis parabolic mirror, and the detected spectral range is wide without increasing the optical path size.
  • it can accurately measure light of various wavelength types at the same time, achieves pm-level measurement accuracy, and reduces costs.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

一种用于光通信的光波长测量系统,包括:位于壳体(11)内的光输入端口(1)、遮光罩(2)、离轴抛物面反射镜(3)、第一平板玻璃(4)、第二平板玻璃(5)、至少2个柱透镜(6)和至少2个线性光电探测器(7),第一平板玻璃(4)与第二平板玻璃(5)之间设置有一中央具有镂空区且带有楔角的隔离框(8),从而形成一密封腔;第一平板玻璃(4)的前表面一侧设置有至少一个具有厚度且位于密封腔内的小平板玻璃(9);一光路切换器(14)一端与光输入端口(1)连接。用于光通信的光波长测量系统在不增加光路尺寸的同时,检测的光谱范围宽且能同时对多种波长类型的光波长光精确测量,达到了pm级测量精度。

Description

用于光通信的光波长测量系统 技术领域
本发明涉及一种用于光通信的光波长测量系统,属于光波长检测技术领域。
背景技术
光学领域实现光波长测量的技术包括光谱仪和干涉仪。受测量原理限制,光谱仪测量精度可以达到0.02nm左右,干涉仪测量精度可以达到pm级甚至更小。
现有用于波长测量的干涉仪采用反射式光路,干涉标准具是由两块平板玻璃和一个带楔角的隔圈用光胶粘接而成。两个平板玻璃-空气界面的反射率在仅4%左右,两界面的反射光束所产生的双光束干涉得到的干涉图样为等周期正弦条纹。一方面,现有技术采用透射光路的干涉仪,其中的干涉标准具也由两块平板玻璃和一个带楔角的隔圈用光胶粘接而成,同早期研究不同的是平板玻璃上镀上了对光波具有较大反射率(反射率>50%)的反射膜层,光束在反射膜层之间来回多次反射从而出射光产生多光束干涉,最终得到比正弦条纹亮度更高更尖锐的峰。
另一方面,现有的干涉标准具由于受限于横向尺寸、线阵光电探测器的像元数量、信号噪音和计算精度等因素影响,采用一个干涉标准具较难在宽光谱范围(几百纳米)实现pm级和更高的测量精度。为了解决宽测量范围和高测量精度之间的矛盾,研发检测光谱范围宽且测量精度高的光波长测量装置对光领域的发展是至关重要的。
发明内容
本发明的目的是提供一种用于光通信的光波长测量系统,此用于光通信的光波长测量系统在不增加光路尺寸的同时,检测的光谱范围宽且能同时对多种波长类型的光波长光精确测量,达到了pm级测量精度,也降低了成本。
为达到上述目的,本发明采用的技术方案是:一种用于光通信的光波长测量系统,包括:位于壳体内的光输入端口、遮光罩、离轴抛物面反射镜、第一平板玻璃、第二平板玻璃、至少2个柱透镜和至少2个线性光电探测器,所述第一平板玻璃与第二平板玻璃之间设置有一中央具有镂空区且带有楔角的隔离框,从而形成一密封腔,所述第一平板玻璃的前表面与第二平板玻璃的后表面相向设置;
所述第一平板玻璃的前表面一侧设置有至少一个厚度且位于密封腔内的小 平板玻璃,前表面另一侧具有一第一反射层,所述小平板玻璃的厚度小于隔离框的厚度,所述第二平板玻璃的后表面具有第二反射层,所述小平板玻璃与第二平板玻璃相向的表面具有第三反射层,所述光输入端口和第一平板玻璃位于离轴抛物面反射镜同一侧,使来自光输入端口的光经离轴抛物面反射镜反射到第一平板玻璃表面;
所述遮光罩设置于离轴抛物面反射镜与第一平板玻璃之间或者第二平板玻璃与至少2个线性光电探测器之间;一光路切换器一端与光输入端口连接,位于所述光路切换器另一端的第一输入端与单一波长光源连接,位于所述光路切换器另一端的第二输入端用于与待检测光源接口连接。
上述技术方案中进一步改进的方案如下:
1、上述方案中,所述小平板玻璃的数目为2个,其中一个小平板玻璃的厚度大于另一个小平板玻璃的厚度。
2、上述方案中,所述第一反射层、第二反射层和第三反射层的反射率大于30%,透射率大于50%。
3、上述方案中,所述光输入端口为光纤输入端口。
4、上述方案中,所述壳体表面包覆有一隔热层。
由于上述技术方案的运用,本发明与现有技术相比具有下列优点:
本发明用于光通信的光波长测量系统,其第一平板玻璃的前表面一侧设置有至少一个厚度且位于密封腔内的小平板玻璃,前表面另一侧具有一第一反射层,所述小平板玻璃的厚度小于隔离框的厚度,所述第二平板玻璃的后表面具有第二反射层,所述小平板玻璃与第二平板玻璃相向的表面具有第三反射层,所述光输入端口和第一平板玻璃位于离轴抛物面反射镜同一侧,使来自光输入端口的光经离轴抛物面反射镜反射到第一平板玻璃表面,在不增加光路尺寸的同时,检测的光谱范围宽且能同时对多种波长类型的光波长光精确测量,达到了pm级测量精度,也降低了成本。
附图说明
附图1为本发明用于光通信的光波长测量系统的结构示意图;
附图2为本发明用于光通信的光波长测量系统的光路示意图;
附图3为本发明用于光通信的光波长测量系统的局部光路示意图;
附图4为本发明实施例1的分解结构示意图;
附图5为本发明实施例2的分解结构示意图。
以上附图中:1、光输入端口;2、遮光罩;3、离轴抛物面反射镜;4、第一平板玻璃;5、第二平板玻璃;6、柱透镜;7、线性光电探测器;8、隔离框;9、小平板玻璃;101、第一反射层;102、第二反射层;103、第三反射层;11、壳体;12、待检测光源接口;13、隔热层;14、光路切换器;15、单一波长光源。
具体实施方式
在本专利的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制;术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性;此外,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本专利的具体含义。
实施例1:一种用于光通信的光波长测量系统,包括:位于壳体11内的光输入端口1、遮光罩2、离轴抛物面反射镜3、第一平板玻璃4、第二平板玻璃5、2个柱透镜6和2个线性光电探测器7,所述第一平板玻璃4与第二平板玻璃5之间设置有一中央具有镂空区且带有楔角的隔离框8,从而形成一密封腔,所述第一平板玻璃4的前表面与第二平板玻璃5的后表面相向设置;
所述第一平板玻璃4的前表面一侧设置有一个厚度且位于密封腔内的小平板玻璃9,前表面另一侧具有一第一反射层101,所述小平板玻璃9的厚度小于隔离框8的厚度,所述第二平板玻璃5的后表面具有第二反射层102,所述小平板玻璃9与第二平板玻璃5相向的表面具有第三反射层103,所述光输入端口1和第一平板玻璃4位于离轴抛物面反射镜3同一侧,使来自光输入端口1的光经离轴抛物面反射镜3反射到第一平板玻璃4表面;
所述遮光罩2设置于离轴抛物面反射镜3与第一平板玻璃4之间或者第二平板玻璃5与至少2个线性光电探测器7之间;一光路切换器14一端与光输入端口1连接,位于所述光路切换器14另一端的第一输入端与单一波长光源15 连接,位于所述光路切换器14另一端的第二输入端用于与待检测光源接口12连接。
所述第一反射层101、第二反射层102和第三反射层103的反射率大于30%,透射率大于50%。
所述光输入端口1为光纤输入端口。
所述壳体11表面包覆有一隔热层13。
实施例2:一种用于光通信的光波长测量系统,包括:位于壳体11内的光输入端口1、遮光罩2、离轴抛物面反射镜3、第一平板玻璃4、第二平板玻璃5、2个柱透镜6和2个线性光电探测器7,所述第一平板玻璃4与第二平板玻璃5之间设置有一中央具有镂空区且带有楔角的隔离框8,从而形成一密封腔,所述第一平板玻璃4的前表面与第二平板玻璃5的后表面相向设置;
所述第一平板玻璃4的前表面一侧设置有两个厚度且位于密封腔内的小平板玻璃9,前表面另一侧具有一第一反射层101,所述小平板玻璃9的厚度小于隔离框8的厚度,其中一个小平板玻璃9的厚度大于另一个小平板玻璃9的厚度,所述第二平板玻璃5的后表面具有第二反射层102,所述小平板玻璃9与第二平板玻璃5相向的表面具有第三反射层103,所述光输入端口1和第一平板玻璃4位于离轴抛物面反射镜3同一侧,使来自光输入端口1的光经离轴抛物面反射镜3反射到第一平板玻璃4表面;
所述遮光罩2设置于离轴抛物面反射镜3与第一平板玻璃4之间或者第二平板玻璃5与至少2个线性光电探测器7之间;一光路切换器14一端与光输入端口1连接,位于所述光路切换器14另一端的第一输入端与单一波长光源15连接,位于所述光路切换器14另一端的第二输入端用于与待检测光源接口12连接。
采用上述用于光通信的光波长测量系统时,其第一平板玻璃的前表面一侧设置有至少一个厚度且位于密封腔内的小平板玻璃,前表面另一侧具有一第一反射层,所述小平板玻璃的厚度小于隔离框的厚度,所述第二平板玻璃的后表面具有第二反射层,所述小平板玻璃与第二平板玻璃相向的表面具有第三反射层,所述光输入端口和第一平板玻璃位于离轴抛物面反射镜同一侧,使来自光输入端口的光经离轴抛物面反射镜反射到第一平板玻璃表面,在不增加光路尺寸的同时,检测的光谱范围宽且能同时对多种波长类型的光波长光精确测量,达到了pm级测量精度,也降低了成本。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (5)

  1. 一种用于光通信的光波长测量系统,其特征在于:包括:位于壳体(11)内的光输入端口(1)、遮光罩(2)、离轴抛物面反射镜(3)、第一平板玻璃(4)、第二平板玻璃(5)、至少2个柱透镜(6)和至少2个线性光电探测器(7),所述第一平板玻璃(4)与第二平板玻璃(5)之间设置有一中央具有镂空区且带有楔角的隔离框(8),从而形成一密封腔,所述第一平板玻璃(4)的前表面与第二平板玻璃(5)的后表面相向设置;
    所述第一平板玻璃(4)的前表面一侧设置有至少一个厚度且位于密封腔内的小平板玻璃(9),前表面另一侧具有一第一反射层(101),所述小平板玻璃(9)的厚度小于隔离框(8)的厚度,所述第二平板玻璃(5)的后表面具有第二反射层(102),所述小平板玻璃(9)与第二平板玻璃(5)相向的表面具有第三反射层(103),所述光输入端口(1)和第一平板玻璃(4)位于离轴抛物面反射镜(3)同一侧,使来自光输入端口(1)的光经离轴抛物面反射镜(3)反射到第一平板玻璃(4)表面;
    所述遮光罩(2)设置于离轴抛物面反射镜(3)与第一平板玻璃(4)之间或者第二平板玻璃(5)与至少2个线性光电探测器(7)之间;一光路切换器(14)一端与光输入端口(1)连接,位于所述光路切换器(14)另一端的第一输入端与单一波长光源(15)连接,位于所述光路切换器(14)另一端的第二输入端用于与待检测光源接口(12)连接。
  2. 根据权利要求1所述的用于光通信的光波长测量系统,其特征在于:所述小平板玻璃(9)的数目为2个,其中一个小平板玻璃(9)的厚度大于另一个小平板玻璃(9)的厚度。
  3. 根据权利要求1所述的用于光通信的光波长测量系统,其特征在于:所述第一反射层(101)、第二反射层(102)和第三反射层(103)的反射率大于30%,透射率大于50%。
  4. 根据权利要求1所述的用于光通信的光波长测量系统,其特征在于:所述光输入端口(1)为光纤输入端口。
  5. 根据权利要求1所述的用于光通信的光波长测量系统,其特征在于:所述壳体(11)表面包覆有一隔热层(13)。
PCT/CN2021/085493 2021-01-11 2021-04-03 用于光通信的光波长测量系统 WO2022147920A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110029519.2 2021-01-11
CN202110029519 2021-01-11

Publications (1)

Publication Number Publication Date
WO2022147920A1 true WO2022147920A1 (zh) 2022-07-14

Family

ID=82357064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085493 WO2022147920A1 (zh) 2021-01-11 2021-04-03 用于光通信的光波长测量系统

Country Status (1)

Country Link
WO (1) WO2022147920A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173442A (en) * 1977-05-27 1979-11-06 The United States Of America As Represented By The Secretary Of Commerce Apparatus and method for determination of wavelength
GB2209210A (en) * 1987-09-09 1989-05-04 Inst Fiz An Bssr Apparatus for measuring spectral characteristics of laser radiation
US5168324A (en) * 1986-09-25 1992-12-01 The United States Of America As Represented By The United States Department Of Energy Wavelength meter having elliptical wedge
US20030035121A1 (en) * 2001-08-17 2003-02-20 Agilent Technologies, Inc. Wavemeter having two interference elements
CN102706462A (zh) * 2012-06-12 2012-10-03 中国科学院上海光学精密机械研究所 光纤型多楔块费索波长计
CN203848938U (zh) * 2014-02-18 2014-09-24 中国科学院理化技术研究所 一种真空紫外激光线宽的测量装置
CN209400088U (zh) * 2019-01-07 2019-09-17 大连理工大学 一种激光干涉式波长测量教学实验装置
CN111142179A (zh) * 2018-11-02 2020-05-12 唯亚威通讯技术有限公司 阶梯结构光滤波器
CN111289124A (zh) * 2020-03-31 2020-06-16 北京科益虹源光电技术有限公司 激光器波长测量装置及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173442A (en) * 1977-05-27 1979-11-06 The United States Of America As Represented By The Secretary Of Commerce Apparatus and method for determination of wavelength
US5168324A (en) * 1986-09-25 1992-12-01 The United States Of America As Represented By The United States Department Of Energy Wavelength meter having elliptical wedge
GB2209210A (en) * 1987-09-09 1989-05-04 Inst Fiz An Bssr Apparatus for measuring spectral characteristics of laser radiation
US20030035121A1 (en) * 2001-08-17 2003-02-20 Agilent Technologies, Inc. Wavemeter having two interference elements
CN102706462A (zh) * 2012-06-12 2012-10-03 中国科学院上海光学精密机械研究所 光纤型多楔块费索波长计
CN203848938U (zh) * 2014-02-18 2014-09-24 中国科学院理化技术研究所 一种真空紫外激光线宽的测量装置
CN111142179A (zh) * 2018-11-02 2020-05-12 唯亚威通讯技术有限公司 阶梯结构光滤波器
CN209400088U (zh) * 2019-01-07 2019-09-17 大连理工大学 一种激光干涉式波长测量教学实验装置
CN111289124A (zh) * 2020-03-31 2020-06-16 北京科益虹源光电技术有限公司 激光器波长测量装置及方法

Similar Documents

Publication Publication Date Title
RU2010130092A (ru) Устройство с мембранным манометрическим элементом
CN108731841B (zh) 调频连续波激光干涉光纤温度传感器
JPH0715363B2 (ja) 差動平面鏡干渉計システム
CN103250101A (zh) 用于确定光学系统中的反射镜的发热状况的方法和布置
CN103075966B (zh) 位移测量系统
KR20170098518A (ko) 광센서
WO2022147920A1 (zh) 用于光通信的光波长测量系统
CN104634370A (zh) 一种基于激光器的传感器
CN113048969B (zh) 光纤陀螺用偏振纠缠光子对输出的小型纠缠源及调节方法
WO2022147918A1 (zh) 高精度干涉波长测量仪
CN114371128B (zh) 一种基于多层平板波导结构的傅里叶变换光谱仪
CN106643834A (zh) 一种高速大量程光纤法珀解调系统
WO2021185301A1 (zh) 波长测量装置和波长测量的方法
CN113503978A (zh) 光通信用光波长测量系统
WO2022147919A1 (zh) 宽波段光谱仪
CN114323311A (zh) 用于波长测量的干涉仪器
JP4081317B2 (ja) 波長較正用干渉測定装置
WO2014019398A1 (zh) 一种单模连续可调谐光学滤波器
KR100757017B1 (ko) 보상기판을 사용하지 않으면서 단면 코팅된 빔분리기를 사용한 퓨리에 변환 적외선 분광기
CN216012474U (zh) 宽波段光谱测量仪
CN216012505U (zh) 高可靠性光波长测量系统
CN204064237U (zh) 一种激光干涉探头
WO2014146477A1 (zh) 一种宽范围波长可调的标准具
CN214173256U (zh) 一种光谱共焦谱域干涉测量装置
JPH03257353A (ja) 空気の屈折率測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21916970

Country of ref document: EP

Kind code of ref document: A1