WO2022147878A1 - 准直式消毒净水装置 - Google Patents

准直式消毒净水装置 Download PDF

Info

Publication number
WO2022147878A1
WO2022147878A1 PCT/CN2021/075418 CN2021075418W WO2022147878A1 WO 2022147878 A1 WO2022147878 A1 WO 2022147878A1 CN 2021075418 W CN2021075418 W CN 2021075418W WO 2022147878 A1 WO2022147878 A1 WO 2022147878A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor cavity
water purification
purification device
ultraviolet
disinfection
Prior art date
Application number
PCT/CN2021/075418
Other languages
English (en)
French (fr)
Inventor
范冰丰
洪泽楷
吴任凯
Original Assignee
佛山科学技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山科学技术学院 filed Critical 佛山科学技术学院
Priority to US17/638,310 priority Critical patent/US20230159355A1/en
Publication of WO2022147878A1 publication Critical patent/WO2022147878A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3222Units using UV-light emitting diodes [LED]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3227Units with two or more lamps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3228Units having reflectors, e.g. coatings, baffles, plates, mirrors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention relates to the technical field of water purification, in particular to a collimation type disinfection water purification device, which is suitable for ultraviolet disinfection mode water purification.
  • Water is an essential substance for people's production and life, and water purification has become more and more important, so it is particularly important to disinfect water bodies. After coagulation or filtration, the microorganisms in the water body are greatly reduced, but they have not been completely inactivated.
  • the following methods are generally adopted for the disinfection of domestic water: 1. Physical methods, such as ultrasonic disinfection, heating method, etc.; 2. Chemical methods: other oxidant methods such as chlorine method, ozone method, heavy metal ion method, etc.
  • heating methods and ultrasonic disinfection have a limited scope, and the chemicals in chemical methods have negative effects on the environment, including water toxicity, the danger of organochlorine, and the resistance of viruses and protists to chlorine.
  • ultraviolet disinfection methods for water purification especially deep ultraviolet disinfection, have good effects and do not produce disinfection by-products, which have attracted people's attention.
  • the "Dynamic Direct Drinking Water Deep Ultraviolet LED Sterilizer" with the announcement number CN104016443 B discloses a dynamic direct drinking water deep ultraviolet LED sterilizer, including a water inlet component, a water outlet component, a disinfection and sterilization component and a deep ultraviolet LED module.
  • a UV LED Fluid Disinfection System discloses a A high-efficiency fluid disinfection treatment system integrating deep-ultraviolet LED chips, aiming at the uneven distribution of ultraviolet spectral radiation and reducing the insufficiency of the effect of deep-ultraviolet LED chips, using deep-ultraviolet LED components to generate ultraviolet light with high-efficiency disinfection function, the ultraviolet light can Effectively pass through the transparent pipe and sterilize the fluid in the pipe, and the reflective material with anti-ultraviolet light function is coated on the inner and outer surfaces of the pipe, so as to reflect the ultraviolet light emitted and transmitted by the deep ultraviolet LED in the pipe.
  • the publication number is CN109395118 A "Flowing Fluid Disinfection Method and Sterilizer” discloses a flowing fluid disinfection method using deep ultraviolet rays and a sterilizer for realizing flowing fluid disinfection.
  • the present invention provides a collimation type disinfection and water purification device, which can better complete the inactivation treatment of microorganisms in the water body by collimating and optimizing the light emitted by the ultraviolet radiation source, and greatly improve the disinfection and sterilization. Effect.
  • the technical solution adopted by the present invention to solve the technical problem is to provide a collimating type disinfection and water purification device, including a reactor cavity, the reactor cavity is a straight line extending along the front and rear directions, and the reaction
  • the side walls of the front and rear sides of the reactor cavity are respectively provided with a water inlet and a water outlet; the end of the reactor cavity is provided with an ultraviolet module, and the ultraviolet module includes a radiation component and a TIR lens; the light emitted by the radiation component After passing through the TIR lens, it is projected into a uniform cylindrical collimated light source.
  • the collimating type disinfection water purification device provided by the present invention, by using the radiation component and the design of the TIR lens, the radiated ultraviolet light can be collimated and incident into the reactor cavity, and the decoupling of the light field and the flow field is realized. , improve the disinfection efficiency.
  • the radiation component includes a deep ultraviolet UVC-LED with a wavelength range of 200-320 nm.
  • the UV module includes a UV module sleeve and a base.
  • the base is provided with a mounting groove.
  • the radiation assembly includes a radiation source substrate and a heat sink; the installation groove is provided with a heat sink alignment groove, the installation groove corresponds to the radiation source substrate, and the heat dissipation
  • the chip alignment groove corresponds to the heat sink.
  • auxiliary cooling fins are provided on the substrate.
  • the ultraviolet modules are disposed at the front and rear ends of the reactor cavity.
  • the ultraviolet module is disposed at one end of the reactor cavity, and a reflection component is disposed at the other end of the reactor cavity.
  • the inner wall of the reactor cavity is provided with a polytetrafluoroethylene diffuse reflection coating.
  • a quartz tube is provided in the reactor cavity.
  • This technology is suitable for deep ultraviolet UVC-LED for sterilization and disinfection. Compared with the traditional direct insertion of mercury lamps for disinfection, deep ultraviolet UVC-LED has a higher safety factor and higher sterilization and disinfection efficiency;
  • This technology optimizes and collimates the ultraviolet radiation through the radiation component and the TIR lens. Compared with the traditional direct light source irradiation, this technology has better uniformity of antivirus radiation, so that more ultraviolet radiation can be directly and collimated to irradiate the disinfection reactor. Dynamic fluid flow in the cavity;
  • the present invention is In the disinfection of deep ultraviolet water, the decoupling of the flow field and the light field is realized for the first time, which simplifies the traditional structure, and makes the structure principle of the columnar deep ultraviolet LED disinfection water purification device with a TIR lens collimated in the present invention simpler and the cost is reduced;
  • detachable expansion modules and deep ultraviolet disinfection water purification modules compared with the traditional direct integrated connection reaction processing module, it has higher flexibility, and different module components can be used according to the dynamic fluid flow of different scales and types. At the same time, when the module components are damaged, the replacement of the components has a more flexible processing method than the traditional integrated processing;
  • This technology adopts quartz tube and water inlet and outlet for closed dynamic fluid flow treatment in the areas where the dynamic fluid flow is in direct contact. Compared with the direct contact between the traditional dynamic fluid flow and the coating material, it has a higher safety factor. .
  • Fig. 1 is the structural representation of the present invention
  • Fig. 2 is the sectional view of the present invention
  • Fig. 3 is the structure exploded view of the present invention.
  • Fig. 5 is the structural representation of the ultraviolet module in the present invention.
  • FIG. 6 is a perspective view of a substrate in the present invention.
  • FIG. 8 is a cross-sectional view of a substrate in the present invention.
  • Fig. 9 is a test light source spectrogram
  • Figure 10 is a graph of the average irradiance of dual radiation sources with and without TIR lens
  • Figure 11 is the RSD diagram of dual radiation sources with and without TIR lens.
  • Reactor chamber 100 water inlet 101, water outlet 102, quartz tube 110, UV module 200, radiation component 210, radiation source substrate 211, heat sink 212, TIR lens 220, UV module sleeve 230, base 240, mounting groove 241 , the heat sink alignment groove 242 , the auxiliary heat sink 243 , and the reflection component 300 .
  • FIG. 1 is a schematic structural diagram of an embodiment of the present invention.
  • an embodiment of the present invention provides a collimating type disinfection and water purification device, including a reactor cavity 100, and the reactor cavity 100 is along the front and rear.
  • a water inlet 101 and a water outlet 102 are respectively provided on the side walls on the front and rear sides of the reactor cavity 100 .
  • the reactor cavity 100 is a relatively sealed structure, and water enters the reactor cavity 100 from the water inlet 101 , and then comes out from the water outlet 102 .
  • the end of the reactor cavity 100 is provided with an ultraviolet module 200 , and the ultraviolet module 200 includes a radiation component 210 and a TIR lens 220 .
  • the ultraviolet module 200 performs sterilization and purification work through the ultraviolet rays emitted by the radiation component 210 .
  • the sterilization principle of ultraviolet rays is based on the absorption of ultraviolet rays by microbial nucleic acids.
  • the molecular structures of the microorganisms' DNA (deoxyribonucleic acid) and RNA (ribonucleic acid) will be destroyed due to the energy absorbed by ultraviolet rays, resulting in growth.
  • Cells and regenerative cells die, microorganisms are inactivated, and the functions of reproduction and self-replication are lost to achieve the effect of sterilization and disinfection.
  • the light emitted by the radiation component 210 is projected as a uniform cylindrical collimated light source after passing through the TIR lens 220 .
  • the TIR lens 220 is made by using the principle of Fresnel lens, and the specific structure and working principle can refer to the existing TIR lens device, which will not be repeated here.
  • the TIR lens 220 uses its collimating and concentrating characteristics to collimate the ultraviolet light emitted by the radiation component 210 into the reactor cavity 100 , realizing the decoupling of the light field and the flow field, and matching the linear reactor cavity body 100, the formed disinfection and water purification device achieves better sterilization effect, is simpler and more efficient, and has higher uniformity than traditional direct light source radiation.
  • Example 1 the water inlet 101 is located on the lower side of the front side of the reactor cavity 100 , and the water outlet 102 is located on the upper side of the front side of the reactor cavity 100 .
  • the radiation component 210 includes a deep ultraviolet UVC-LED with a wavelength range of 200-320 nm.
  • deep ultraviolet UVC-LED has high luminous radiation efficiency, higher electrical-optical conversion efficiency and lower electrical-thermal conversion.
  • a single chip (0.125mm 2 ) can generate 10mw at 20mA. around the UVC radiation power.
  • the radiation source of the radiation component 210 adopts multi-chip integrated radiation disinfection, so that it can generate higher radiation power in a smaller volume. significant advantage.
  • the radiation component 210 includes a radiation source substrate 211 , and deep ultraviolet UVC-LEDs are distributed on the radiation source substrate 211 as a radiation source.
  • the wavelength range of the deep ultraviolet UVC-LED is 240 nm ⁇ 280 nm.
  • the radiation component 210 includes a heat sink 212 .
  • the heat sink 212 can be made of thermally conductive metal (such as aluminum AL or copper CU), which can increase the surface area of the heat sink 212 and improve the heat dissipation efficiency by changing the distribution mode of the heat sink 212 and the shape of the concave and convex surface of the heat sink 212 .
  • the UV module 200 includes the UV module sleeve 230 and the base 240 .
  • the base 240 is provided with a mounting groove 241 for fixing the radiation component 210 .
  • the radiation component 210 includes a radiation source substrate 211 and a heat sink 212 , and the radiation sources are distributed on the radiation source substrate 211 .
  • the heat sink 212 ensures the heat dissipation of the radiation source substrate 211 when the radiation source is working.
  • the mounting slot 241 is provided with a heat sink alignment slot 242 , the mounting slot 241 corresponds to the radiation source substrate 211 , and the heat sink alignment slot 242 corresponds to the heat sink 212 .
  • the mechanical strength and airtightness of the connection and fixation of the press-fit radiation source substrate 211 are enhanced.
  • the methods for generating the installation groove 241 and the heat sink alignment groove 242 include, but are not limited to, lathe milling, 3D printing, and injection molding.
  • the installation grooves 241 and the heat sink alignment grooves 242 are produced by a reverse mold method.
  • auxiliary heat sinks 243 are provided on the base 240 .
  • the heat generated during operation is transferred from the radiation source substrate 211 to the heat sink 212, then from the heat sink 212 to the auxiliary heat sink 243, and finally, the heat is transferred and diffused through air or other media.
  • the ultraviolet modules 200 are arranged at the front and rear ends of the reactor cavity 100 , that is, two ultraviolet modules 200 are included, one is located on the front side of the reactor cavity 100 , and the other is located in the reactor cavity 100 . rear side.
  • One of the UV modules 200 is used as an expansion module.
  • the radiation components 210 of the ultraviolet module 200 at both ends of the reactor cavity 100 project a uniform columnar collimated light source after passing through the TIR lens 220 .
  • a detachable structure is used between the ultraviolet module 200 and the reactor cavity 100, which is more flexible in use.
  • the connection method between the ultraviolet module 200 and the reactor cavity 100 includes, but is not limited to, mechanical bayonet fastening, screwing in, gluing, and hot-melt fastening.
  • the ultraviolet module 200 and the reactor cavity 100 are connected in a threaded manner.
  • the ultraviolet module 200 is provided at one end of the reactor cavity 100 , and the other end of the reactor cavity 100 is provided with a reflection component 300 .
  • the reflection component 300 is used as an expansion module.
  • the reflection component 300 reflects or scatters the collimated light emitted by the ultraviolet module 200 through the reflection principle, so as to improve the utilization rate of the radiated ultraviolet light in the reactor cavity 100 .
  • the reflection component 300 has a built-in reflection sheet with high reflection rate, and the material of the reflection sheet with high reflection rate is aluminum, polytetrafluoroethylene, or the like.
  • the reactor cavity 100 and the ultraviolet module 200 and the reflection component 300 are detachable structures. Compared with the traditional integration of the reaction chamber and the light source module, the detachable and convenient replacement of the reactor cavity 100, the ultraviolet module 200 and the reflection component 300 significantly improves the flexibility of the antivirus reaction device, and has more advantages. Solid usability.
  • the connection methods between the reactor cavity 100 and the UV module 200 and the reflection component 300 include but are not limited to mechanical bayonet fastening, screwing in, gluing, and hot-melt fastening.
  • the reactor cavity 100 is connected with the ultraviolet module 200 and the reflection component 300 in a threaded manner.
  • Example 9 the inner wall of the reactor cavity 100 is provided with a polytetrafluoroethylene diffuse reflection coating as a Lambertian diffuse reflection coating.
  • the reactor cavity 100 can be directly made of a material that reflects UVC, such as polytetrafluoroethylene (PTFE) or aluminum or polished stainless steel, or can be made into a supporting cylindrical cylinder form.
  • a material that reflects UVC such as polytetrafluoroethylene (PTFE) or aluminum or polished stainless steel, or can be made into a supporting cylindrical cylinder form.
  • the Lambertian diffuse reflection coating is coated on the inner surface of the reactor cavity 100 by spraying or sputtering or other methods.
  • Example 10 the reactor cavity 100 is made by 3D printing.
  • the material of the reactor cavity 100 is ceramic or zirconia.
  • Example 11 the reactor cavity 100 was made by mold pressing.
  • the material of the reactor cavity 100 is polytetrafluoroethylene (PTFE).
  • Example 12 the reactor cavity 100 is provided with a quartz tube 110 to improve safety.
  • the present invention can also make appropriate changes and modifications to the above-mentioned embodiments. Therefore, the present invention is not limited to the specific embodiments disclosed and described above, and some modifications and changes to the present invention should also fall within the protection scope of the claims of the present invention.
  • the following uses the lighttools8.7 optical software to quickly visualize the model and combine it with the lighting radiation analysis of the Monte Carlo technology to truly simulate the radiation light distribution effect and complete the evaluation of the light field distribution.
  • the outer diameter of the reactor cavity 201 is 16mm, the inner diameter is 15.5mm, and the length is 800mm.
  • the optical properties of the Cylindersurface, Rearsurface, and Frontsurface of the reactor cavity 201 are set to 80% reflectance, 20% absorption, and Lambertian scattering. , and the material is set to silica (SILICA).
  • the deep ultraviolet UVC-LED chip of the UV module 200 adopts Nichia series NCSU334B, the radiation power is 0.07W, the size is 6.8mm*6.8mm*2.12mm, the beam angle is 115 degrees, and the peak wavelength in the spectral region is 280nm.
  • the light source spectrogram is shown in Figure 9.
  • the TIR lens 220 of the UV module 200 is made of silicon dioxide (SILICA). It is known that the TIR lens combines the large-angle light condensing of the reflector and the small-angle condensing light of the inner lens to achieve a better collimation effect. Through Boolean shearing, software and self-optimization, the user obtains a TIR lens with a total length of 15mm and a radius of 12mm.
  • SILICA silicon dioxide
  • the inner lens is formed by Boolean shearing of a lens, the lens thickness is 5mm, the lens Lenrearsurface is a quadratic surface, the inner diameter is 6mm, and the surface coefficient and radius are set as optimization variables to obtain -0.35313, 4.5000, respectively, convex.
  • the reflector is cut from a lens
  • the thickness of the lens is 0.1mm (mainly for cutting the blank of the TIR lens, the thickness is as small as possible)
  • the diameter is 26mm
  • the position is located at the front and rear of the deep ultraviolet UVC-LED chip.
  • the shape of LenRearsurface is a quadratic surface, and the surface coefficient and radius are set as optimization variables to obtain -1.1530, 3.6550, respectively, convex.
  • the expansion module is set as the ultraviolet module 200 .
  • a plane receiving surface can be established to obtain the irradiance of the section.
  • the output form of the calculation result can be a two-dimensional line map, a contour map, a grayscale map, a pseudo-color map or a three-dimensional distribution map.
  • the coordinate position of the deep ultraviolet UVC-LED chip of the ultraviolet module 200 is (0, 0, 0)
  • the center coordinate of the light exit surface of the TIR lens is (0, 0, 15)
  • the total length of the reactor cavity 201 is 800 mm.
  • the coordinate range of the cavity 201 is from (0, 0, 15) to (0, 0, 815)
  • a total of 19 receiving surfaces are set
  • the radius of the receiving surfaces is 20 mm.
  • the expansion module of this simulation adopts the ultraviolet module 200, but the expansion module is the reflection component 300, which should also be within the protection scope of the present invention.
  • a material WATER element is set in the reactor chamber to make the light propagate in the water medium. Analysis, the calculated radius size is 15mm.
  • the relative standard deviation is generally used to calculate:
  • S corresponds to the standard deviation
  • S is the corresponding average value.
  • the fluctuation of each surface can be obtained by comparing the relative standard deviation. The smaller the RSD, the smaller the fluctuation and the more uniform the surface.
  • the average irradiance map in Figure 10 From the analysis of the average irradiance map in Figure 10, after adding the TIR lens for collimation, the light is well collimated and extended. In the reactor cavity, the average irradiance without TIR lens increases with the distance from the light source And the sharp drop, and after adding the TIR lens, the average irradiance will greatly reduce the energy lost with the increase of the distance from the light source, so that the radiant energy can be maximized for disinfection and water purification.
  • the light is well collimated and extended.
  • the RSD without TIR lens increases with the increase of the distance from the light source, and the RSD continuously increases.
  • the rise of reflects the continuous deterioration of the uniformity of each section of the overall reactor cavity.
  • the initial value of RSD with TIR lens is slightly larger, but with the increase of distance from the light source, the RSD decreases continuously.
  • the uniformity is getting better and tends to be a stable value. It can be seen from the figure that the uniformity is good and the RSD changes little at the 140mm-690mm of the reactor cavity. Furthermore, the overall better uniformity and higher irradiance can be obtained by simulating the dual radiation sources.

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physical Water Treatments (AREA)

Abstract

一种准直式消毒净水装置,包括反应器腔体(100),所述反应器腔体(100)为沿着前后侧方向延伸的直线状,所述反应器腔体(100)前后侧的侧壁上分别设置有进水口(101)、出水口(102);所述反应器腔体(100)端部设置有紫外模块(200),所述紫外模块(200)包括有辐射组件(210)、TIR透镜(220);通过采用辐射组件(210)配合TIR透镜(220)的设计,使辐射的紫外光线能够准直的入射到反应器腔体(100)中,提高消毒效率。

Description

准直式消毒净水装置 技术领域
本发明涉及净水技术领域,特别是一种准直式消毒净水装置,适用于紫外线消毒方式净水。
背景技术
水为人们生产生活的必须物质,用水的净化也变得越来越重要,因此对水体进行消毒处理尤为重要。水体经过混凝或过滤后,其中的微生物虽然大大减少,但仍未被完全灭活。现有技术中,对于生活用水的消毒普遍采用以下手段:1.物理方法,例如超声波消毒、加热法等;2.化学方法:加氯法、臭氧法、重金属离子法等其他氧化剂方法。但是加热法、超声波消毒作用范围有限,而化学方法中的化学物质对环境产生了负面影响,包括水的毒性、有机氯的危险性、以及病毒以及原生生物对氯产生抗药性等。相比之下,紫外线消毒方式净水,尤其是深紫外线消毒的效果好、不产生消毒副产物等优点受到了人们的重视。
公告号为CN104016443 B的《动态直饮水深紫外LED杀菌器》公开了一种动态直饮水深紫外LED杀菌器,包括进水组件、出水组件、消毒杀菌组件和深紫外LED模块,采用了深紫外LED作为发光源,深紫外LED模块照射的点位面积光强度高且无毒物产生,实现了对动态水的高效消毒杀菌;公布号为CN103570098 A的《一种紫外LED流体消毒系统》公开了一种集成深紫外LED芯片的高效流体消毒处理系统,针对紫外光谱辐射分布不均匀、降低了深紫外LED芯片效果的不足,采用深紫外LED组件,产生具有高效消毒功能的紫外光,该紫外光可以有效穿过透明管道并对管道内的流体进行消毒,具有反紫外光功能的反光材料被涂于管道的内外表面,以此反射回在管道内由深紫外LED发射并透出的紫外光线。公布号为CN109395118 A的《流动流体消毒方法和消毒器》公开了一种采用深紫外光射线的流动流体消毒方法以及一种实现流动流体消毒的消毒器,针对当前流体消毒技术会因为待消毒流体和含有该流体的器件之间的固 液面而遭受UV能量损失的缺点,产生侧壁被流体介质包裹并与其接触的流动流体住,并沿着轴向方向将紫外光发射到该流动流体柱中,减少了UV能量损失,并且提高了例如水、饮料或医用流体等流动流体的消毒效果。
然而在实践中发现,如果采用紫外净水技术处理大流量流体时,仍存在紫外辐射源光能利用率低、消毒过程中光场流场存在耦合的问题,导致对水体的消毒不全面不彻底。而且上述现有技术设备工艺复杂、装置生产成本高。为了解决上述问题,亟需提出一种新的技术手段。
发明内容
为了克服现有技术的不足,本发明提供一种准直式消毒净水装置,通过对紫外辐射源发出光线进行准直优化,更好地完成对水体微生物的灭活处理,大大提高杀毒灭菌效果。
本发明解决其技术问题所采用的技术方案是:提供一种准直式消毒净水装置,包括反应器腔体,所述反应器腔体为沿着前后侧方向延伸的直线状,所述反应器腔体前后侧的侧壁上分别设置有进水口、出水口;所述反应器腔体端部设置有紫外模块,所述紫外模块包括有辐射组件、TIR透镜;所述辐射组件发出的光线经过所述TIR透镜后投射为均匀柱状准直光源。
根据本发明所提供的准直式消毒净水装置,通过采用辐射组件配合TIR透镜的设计,使辐射的紫外光线能够准直的入射到反应器腔体中,实现了光场与流场地解耦,提高消毒效率。
作为本发明的一些优选实施例,所述辐射组件包括有波段为200-320nm的深紫外UVC-LED。
作为本发明的一些优选实施例,所述紫外模块包括有紫外模块套筒和基底。
作为本发明的一些优选实施例,所述基底上设置有安装槽。
作为本发明的一些优选实施例,所述辐射组件包括有辐射源基板和散热片;所述安装槽上设置有散热片对位槽,所述安装槽与所述辐射源基板对应,所述散热片对位槽与所述散热片对应。
作为本发明的一些优选实施例,所述基底上设置有辅助散热片。
作为本发明的一些优选实施例,所述紫外模块设置在所述反应器腔体前后两端。
作为本发明的一些优选实施例,所述紫外模块设置在所述反应器腔体一端,所述反应器腔体另一端设置有反射组件。
作为本发明的一些优选实施例,所述反应器腔体内壁设置有聚四氟乙烯漫反射涂层。
作为本发明的一些优选实施例,所述反应器腔体内设置有石英管。
本发明的有益效果是:
1.本技术适用于深紫外UVC-LED进行杀菌消毒,与传统直接插入汞灯进行杀毒相比,深紫外UVC-LED具备更高的安全系数以及更高的杀菌消毒效率;
2.本技术通过辐射组件配合TIR透镜对辐射紫外光线进行优化准直处理,与传统直接光源照射,有着更好的杀毒辐射均匀性,使更多的紫外辐射光线直接准直的照射消毒反应器腔体中动态流体流;
3.本技术通过辐射组件配合TIR透镜,在反应器腔体内形成的一个均匀准直的光场,与传统需要通过耦合流场以及光场来形成较好的消毒净水空间比较,本发明在深紫外水消毒上,首次实现了流场与光场解耦,简化了传统结构,使本发明的一种TIR透镜准直的柱状深紫外LED消毒净水装置结构原理更为简单,减少成本;
4.采用可拆卸的拓展模块以及深紫外消毒净水模块,与传统直接一体化连接反应处理模块相比,有着更高的灵活性,可根据对不同规模类型的动态流体流采用不同的模块组件,同时在模块组件损坏时,更换组件方式对比传统一体化处理有着更加灵活的处理方式;
5.本技术在动态流体流直接接触的区域,均采用了石英管、进出水口进行密闭动态流体流处理,与传统的动态流体流直接与涂层材料直接接触相比,有着更高的安全系数。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的结构示意图;
图2是本发明的剖视图;
图3是本发明的结构分解图;
图4是本发明另一个实施方式的结构示意图;
图5是本发明中紫外模块的结构示意图;
图6是本发明中基底的立体图;
图7是本发明中基底的结构分解图;
图8是本发明中基底的剖视图;
图9是测试光源光谱图;
图10是双辐射源有无TIR透镜平均辐射照度图;
图11是双辐射源有无TIR透镜RSD图。
附图标记:
反应器腔体100、进水口101、出水口102、石英管110、紫外模块200、辐射组件210、辐射源基板211、散热片212、TIR透镜220、紫外模块套筒230、基底240、安装槽241、散热片对位槽242、辅助散热片243、反射组件300。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施方式,对本发明进行进一步详细说明。为透彻的理解本发明创造,在接下来的描述中会涉及一些特定细节。而在没有这些特定细节时,本发明创造仍可实现,即所属领域内的技术人员使用此处的这些描述和陈述向所属领域内的其他技术人员可更有效的介绍他们的工作本质。此外需要说明的是,下面描述中使用的词语“前侧”、“后侧”、“上侧”、“下侧”等指的是附图中的方向,词语“内”和“外”分别指的是朝向或远离特定部件几何中心的方向,相关技术人员在对上述方向作简单、不需要创造性的调整不应理解为本申请保护范围以外的技术。应 当理解,此处所描述的具体实施方式仅仅用以解释本申请,并不用于限定实际保护范围。而为避免混淆本发明创造的目的,由于熟知的制造方法、控制程序、部件尺寸、材料成分、管路布局等的技术已经很容易理解,因此它们并未被详细描述。
图1是本发明一个实施方式的结构示意图,参照图1,本发明的一个实施方式提供了一种准直式消毒净水装置,包括反应器腔体100,反应器腔体100为沿着前后侧方向延伸的直线状,反应器腔体100前后侧的侧壁上分别设置有进水口101、出水口102。反应器腔体100为一个相对密封结构,水从进水口101进入反应器腔体100,再从出水口102出来。
进一步地,参照图2,反应器腔体100端部设置有紫外模块200,紫外模块200包括有辐射组件210、TIR透镜220。其中紫外模块200通过辐射组件210发出的紫外线进行灭菌净化工作。紫外线的灭菌原理是基于微生物核酸对紫外线的吸收,当微生物受到紫外线照射时,微生物的DNA(脱氧核糖核酸)和RNA(核糖核酸)分子结构将会因为吸收紫外线的能量被破坏,造成生长性细胞和再生性细胞的死亡,微生物被灭活,失去繁殖和自我复制的功能,达到杀菌消毒的效果。
进一步地,辐射组件210发出的光线经过TIR透镜220后投射为均匀柱状准直光源。其中TIR透镜220采用菲涅尔透镜原理制成,具体结构和工作原理可参照现有的TIR透镜装置,在此不再赘述。
在工作时,TIR透镜220利用其准直聚光特性,将辐射组件210发出的紫外光准直射入反应器腔体100中,实现了光场与流场地解耦,配合直线状的反应器腔体100,形成的消毒净水装置达到较好杀毒效果、且更为简单且高效,比传统的直接光源辐射光线具备更高的均匀性。
以上公开的一种准直式消毒净水装置所揭露的仅为本发明较佳的实施方式,仅用于说明本发明的技术方案,而非对其限制。本领域的普通技术人员应当理解,其依然可以对前述的技术方案所记载的技术方案结合现有技术进行修改或者补 充,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应的技术方案的本质脱离本发明的实施方式技术方案的精神和范围。
以下结合一些实施例进行说明,其中此处所称的“实施例”是指可包含于本申请至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。此外,表示一个或多个实施例的细节并非固定的指代任何特定顺序,也不构成对本发明的限制。
实施例1,进水口101位于反应器腔体100前侧的下侧,出水口102位于反应器腔体100前侧的上侧。
实施例2,辐射组件210包括有波段为200-320nm的深紫外UVC-LED。深紫外UVC-LED作为冷光源,其发光辐射效率高,具有更高的电-光转换效率以及更低的电-热转换,例如单个芯片(0.125mm 2)在20mA下,便可以产生有10mw左右的UVC辐射功率。
本实施例中,可选的,辐射组件210的辐射源采取多芯片集成辐射消毒,使其在较小的体积下产生更高的辐射功率,比大体积、固定形状的传统汞灯消毒有着极其显著的优势。
本实施例中,参照图5,可选的,辐射组件210包括辐射源基板211,深紫外UVC-LED作为辐射源分布在辐射源基板211上。
本实施例中,优选的,深紫外UVC-LED的波段范围为240nm~280nm。
本实施例中,可选的,辐射组件210包括散热片212。散热片212材质可选择导热金属(如铝AL或铜CU),其可通过改变散热片212的分布方式以及散热片212的凹凸面形状,增大散热片212表面积,提高散热效率。
实施例3,紫外模块200包括有紫外模块套筒230和基底240。
实施例4,参照图6、图7、图8,基底240上设置有安装槽241,用于固定辐射组件210。
实施例5,辐射组件210包括有辐射源基板211和散热片212,辐射源分布在辐射源基板211上。而散热片212保证辐射源工作时,辐射源基板211的散热。
安装槽241上设置有散热片对位槽242,安装槽241与辐射源基板211对应,散热片对位槽242与散热片212对应。增强压配合辐射源基板211的连接固定的机械强度与密闭性。
本实施例中,可选的,生成安装槽241、散热片对位槽242方式包括但不限于车床铣形、3D打印成型、倒模。
本实施例中,优选的,安装槽241、散热片对位槽242采用倒模方式生产。
实施例6,基底240上设置有辅助散热片243。工作时产生的热量由辐射源基板211到散热片212,再由散热片212到辅助散热片243,最终再通过空气或其他介质将热量传递扩散出去的过程。
实施例7,参照图2、图3,紫外模块200设置在反应器腔体100前后两端,即包括两个紫外模块200,一个位于反应器腔体100前侧,一个位于反应器腔体100后侧。其中一个紫外模块200作为拓展模块。反应器腔体100两端的紫外模块200的辐射组件210经TIR透镜220后投射的为一束均匀柱状准直光源。
本实施例中,可选的,紫外模块200与反应器腔体100之间为可拆装结构,使用更灵活。紫外模块200与反应器腔体100之间连接方式包括但不限于机械卡口紧固、螺纹旋入、胶固、热熔紧固。
本实施例中,优选的,紫外模块200与反应器腔体100之间为螺纹方式连接。
实施例8,参照图4,紫外模块200设置在反应器腔体100一端,反应器腔体100另一端设置有反射组件300。其中反射组件300作为拓展模块。反射组件300通过反射原理,对紫外模块200发射出来的准直的光线进行反射或散射,提高反应器腔体100中的辐射紫外光线的利用率。
本实施例中,可选的,反射组件300内置有高反射率的反射片,高反射率的反射片的材料为铝、聚四氟乙烯等。
本实施例中,可选的,反应器腔体100与紫外模块200、反射组件300之间为可拆装结构。反应器腔体100与紫外模块200、反射组件300三大模块的可拆卸更换的简单便利性,与传统的反应腔与光源模块一体化相比,显著提高了杀毒反应装置的灵活性,具有更加可靠的实用性。反应器腔体100与紫外模块200、反射组件300之间连接方式包括但不限于机械卡口紧固、螺纹旋入、胶固、热熔紧固。
本实施例中,优选的,反应器腔体100与紫外模块200、反射组件300之间为螺纹方式连接。
实施例9,反应器腔体100内壁设置有聚四氟乙烯漫反射涂层作为朗伯漫反射涂层。
本实施例中,可选的,反应器腔体100直接通过由对UVC反射的材料制成,如聚四氟乙烯(PTFE)或铝或抛光后的不锈钢,或可以制成支撑柱形筒体的形式。
本实施例中,可选的,朗伯漫反射涂层通过喷涂或喷镀或其他方法进行覆盖到反应器腔体100的内表面上。
实施例10,反应器腔体100采用3D打印方式制成。
本实施例中,可选的,反应器腔体100材料为陶瓷或氧化锆。
实施例11,反应器腔体100采用模具压制方式制成。
本实施例中,可选的,反应器腔体100材料为聚四氟乙烯(PTFE)。
实施例12,反应器腔体100内设置有石英管110,提高安全性。
根据上述原理,本发明还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。
为了更好展示本技术的效果,以下通过使用lighttools8.7光学软件快速模型视觉化,与蒙特卡罗技术的照明辐射分析相结合,能够真实模拟出辐射光线分布效果,完成光场分布的评估。
具体设置lighttools8.7光学模拟参数:
反应器腔体201外径为16mm,内径为15.5mm,长度为800mm,反应器腔体201的Cylindersurface、Rearsurface、Frontsurface光学属性内表面均设为80%反射率、20%吸收率、朗伯散射,材质设为二氧化硅(SILICA)。
紫外模块200的深紫外UVC-LED芯片采用日亚系列NCSU334B,辐射功率为0.07W,大小为6.8mm*6.8mm*2.12mm,出光角为115度,光谱区峰值波长为280nm。光源光谱图参照图9所示。
紫外模块200的TIR透镜220,材质设为二氧化硅(SILICA),已知TIR透镜结合了反光杯的大角度聚光,以及内透镜的小角度的聚光达到较佳的准直效果。用户通过布尔剪切,软件以及自主优化,得到TIR透镜总长15mm,半径12mm。
具体的,内透镜为一透镜进行布尔剪切而成,透镜厚度为5mm,透镜Lenrearsurface为二次曲面,内直径6mm,曲面系数以及半径设置为优化变量分别得-0.35313、4.5000,凸面。
具体的,反光杯为一透镜进行剪切而成,透镜厚度为0.1mm(主要为了剪切TIR透镜的毛坯,厚度尽可能的小),直径26mm,位置位于深紫外UVC-LED芯片正后端2mm处,LenRearsurface形状为二次曲面,曲面系数以及半径设置为优化变量分别得-1.1530、3.6550,凸面。
具体的,拓展模块设置为紫外模块200。
lighttools8.7中可采取建立平面接收面用以得到该截面的辐射照度,计算结果输出形式可以是二维线图、等高线图、灰度图、伪彩色图或三维分布图。具体的,紫外模块200的深紫外UVC-LED芯片坐标位置为(0,0,0),TIR透镜光线出射面中心坐标为(0,0,15),反应器腔体201总长为800mm,反应器腔体201坐标范围在(0,0,15)~(0,0,815),一共设置19个接收面,接收面半径大小20mm。
通过lighttools8.7三维建模设置,本次模拟的拓展模块采取紫外模块200,但拓展模块为反射组件300也应在本发明要求保护范围内。
模拟实验结果及分析:
通过蒙特卡罗技术的照明辐射分析,反应器腔体内设置一个材料WATER的元件,使光线在水介质中进行传播,接收面网格尺寸为150分区数×150分区数,孔径模式,圆形统计分析,计算半径大小为15mm。
由上述各个相关角度光强分布得知,在单辐射源经过TIR透镜后,光线将收拢分布于0度附近,光线得到了很好的准直出射。
对接收面接收到的辐射照度均匀度的分析,一般采用相对标准偏差进行计算:
Figure PCTCN2021075418-appb-000001
式中,S对应着标准偏差,
Figure PCTCN2021075418-appb-000002
为相应的平均值。通过对相对标准偏差的对比即可得出各个面的波动情况。RSD越小,表示该面波动越小,越均匀。
由图10的平均辐射照度图分析得,在加上TIR透镜准直之后,光线得到了很好的准直延伸,在反应器腔体内,无TIR透镜的平均辐射照度随着离光源距离的增加而急剧下降,而加上TIR透镜后,平均辐射照度将大大减小随离光源距离增加而损耗的能量,使辐射能量最大利用化于消毒净水。
由图11的RSD图分析得,在加上TIR透镜准直之后,光线得到了很好的准直延伸,在反应器腔体内,无TIR透镜的RSD在随着离光源距离的增加,RSD不断的上升,反映了整体反应器腔体的各个截面均匀性在不断的变差。而加有TIR透镜的RSD初始值稍大,但随着离光源距离的增加,RSD在不断降低。均匀性在不断变好,并趋向于一个稳定的值,由图得出在反应器腔体140mm~690mm 处,均匀性好且RSD变化不大。进一步的,通过对双辐射源的模拟能得出整体较好均匀性以及更高的辐射照度。

Claims (10)

  1. 一种准直式消毒净水装置,其特征在于:包括反应器腔体(100),所述反应器腔体(100)为沿着前后侧方向延伸的直线状,所述反应器腔体(100)前后侧的侧壁上分别设置有进水口(101)、出水口(102);
    所述反应器腔体(100)端部设置有紫外模块(200),所述紫外模块(200)包括有辐射组件(210)、TIR透镜(220);
    所述辐射组件(210)发出的光线经过所述TIR透镜(220)后投射为均匀柱状准直光源。
  2. 根据权利要求1所述的一种准直式消毒净水装置,其特征在于:所述辐射组件(210)包括有波段为200-320nm的深紫外UVC-LED。
  3. 根据权利要求1所述的一种准直式消毒净水装置,其特征在于:所述紫外模块(200)包括有紫外模块套筒(230)和基底(240)。
  4. 根据权利要求3所述的一种准直式消毒净水装置,其特征在于:所述基底(240)上设置有安装槽(241)。
  5. 根据权利要求3所述的一种准直式消毒净水装置,其特征在于:所述辐射组件(210)包括有辐射源基板(211)和散热片(212);
    所述安装槽(241)上设置有散热片对位槽(242),所述安装槽(241)与所述辐射源基板(211)对应,所述散热片对位槽(242)与所述散热片(212)对应。
  6. 根据权利要求4所述的一种准直式消毒净水装置,其特征在于:所述基底(240)上设置有辅助散热片(243)。
  7. 根据权利要求1所述的一种准直式消毒净水装置,其特征在于:所述紫外模块(200)设置在所述反应器腔体(100)前后两端。
  8. 根据权利要求1所述的一种准直式消毒净水装置,其特征在于:所述紫外模块(200)设置在所述反应器腔体(100)一端,所述反应器腔体(100)另一端设置有反射组件(300)。
  9. 根据权利要求1所述的一种准直式消毒净水装置,其特征在于:所述反应器腔体(100)内壁设置有聚四氟乙烯漫反射涂层。
  10. 根据权利要求1所述的一种准直式消毒净水装置,其特征在于:所述反应器腔体(100)内设置有石英管(110)。
PCT/CN2021/075418 2021-01-11 2021-02-05 准直式消毒净水装置 WO2022147878A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/638,310 US20230159355A1 (en) 2021-01-11 2021-02-05 Collimation type disinfection and water purification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110028504.4A CN112875793A (zh) 2021-01-11 2021-01-11 准直式消毒净水装置
CN202110028504.4 2021-01-11

Publications (1)

Publication Number Publication Date
WO2022147878A1 true WO2022147878A1 (zh) 2022-07-14

Family

ID=76047610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075418 WO2022147878A1 (zh) 2021-01-11 2021-02-05 准直式消毒净水装置

Country Status (3)

Country Link
US (1) US20230159355A1 (zh)
CN (1) CN112875793A (zh)
WO (1) WO2022147878A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024027898A1 (de) * 2022-08-01 2024-02-08 Gerg Lighthouse Gmbh Bestrahlungsanordnung zur bestrahlung von einem fluid
WO2024027899A1 (de) * 2022-08-01 2024-02-08 Gerg Lighthouse Gmbh Bestrahlungsanordnung zur bestrahlung von einem fluid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107428563A (zh) * 2015-03-20 2017-12-01 飞利浦照明控股有限公司 Uv‑c水净化设备
CN107619086A (zh) * 2016-07-13 2018-01-23 紫岳科技有限公司 紫外消毒系统
US20180305226A1 (en) * 2017-04-21 2018-10-25 Ryan Simpson Method and Apparatus for Water Purification
CN111320230A (zh) * 2018-12-13 2020-06-23 欧司朗有限公司 用于为流体消毒的装置
CN111544617A (zh) * 2020-05-19 2020-08-18 梁旭东 一种通过光纤耦合的紫外led杀菌方法及装置
CN111744048A (zh) * 2020-07-14 2020-10-09 松山湖材料实验室 Uvc-led瞬时消毒杀菌方法及其装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9938165B2 (en) * 2013-10-28 2018-04-10 The University Of British Columbia UV-LED collimated radiation photoreactor
JP7262985B2 (ja) * 2018-12-04 2023-04-24 スタンレー電気株式会社 光源モジュール装置、流体殺菌装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107428563A (zh) * 2015-03-20 2017-12-01 飞利浦照明控股有限公司 Uv‑c水净化设备
CN107619086A (zh) * 2016-07-13 2018-01-23 紫岳科技有限公司 紫外消毒系统
US20180305226A1 (en) * 2017-04-21 2018-10-25 Ryan Simpson Method and Apparatus for Water Purification
CN111320230A (zh) * 2018-12-13 2020-06-23 欧司朗有限公司 用于为流体消毒的装置
CN111544617A (zh) * 2020-05-19 2020-08-18 梁旭东 一种通过光纤耦合的紫外led杀菌方法及装置
CN111744048A (zh) * 2020-07-14 2020-10-09 松山湖材料实验室 Uvc-led瞬时消毒杀菌方法及其装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024027898A1 (de) * 2022-08-01 2024-02-08 Gerg Lighthouse Gmbh Bestrahlungsanordnung zur bestrahlung von einem fluid
WO2024027899A1 (de) * 2022-08-01 2024-02-08 Gerg Lighthouse Gmbh Bestrahlungsanordnung zur bestrahlung von einem fluid

Also Published As

Publication number Publication date
US20230159355A1 (en) 2023-05-25
CN112875793A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
US11547769B2 (en) Light source module device and fluid sterilizing device
US7511281B2 (en) Ultraviolet light treatment chamber
WO2022147878A1 (zh) 准直式消毒净水装置
TWI702190B (zh) 用於流體處理之方法、系統及裝置
CN104780945B (zh) 具有高度均匀辐射场的紧凑系统
CN106186174B (zh) 面光源水杀菌模块及水杀菌装置
KR101683351B1 (ko) 라이트 커튼형 led 광 조사기
CN211797808U (zh) 用于为穿流的流体消毒的装置
CN110740977A (zh) 流体杀菌装置
CN210595370U (zh) 一种过流式水杀菌装置及净水设备
CN114712545A (zh) 空气消毒装置
CN116761784A (zh) 光反应器组件
WO2021085143A1 (ja) 流体殺菌装置
JP2016175025A (ja) 殺菌モジュール用セル及び殺菌モジュール
CN112811506A (zh) 大口径过流式净水消毒装置
CN111588879A (zh) Uv杀菌装置及净化器
CN217660807U (zh) 紫外光产生系统
CN220412966U (zh) Led过流式紫外消毒器
CN215924463U (zh) 杀菌装置
CN112624255B (zh) 采用消毒光消毒流体
CN210795848U (zh) 一种中压紫外线消毒器
TWM631039U (zh) 紫外光產生系統
CN116036338A (zh) 一种空气杀菌装置
TW202340641A (zh) 紫外光產生系統
CN116920132A (zh) 紫外光产生系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21916929

Country of ref document: EP

Kind code of ref document: A1