WO2022145940A1 - Method for producing para-aramid fibers, and para-aramid produced therefrom - Google Patents

Method for producing para-aramid fibers, and para-aramid produced therefrom Download PDF

Info

Publication number
WO2022145940A1
WO2022145940A1 PCT/KR2021/019985 KR2021019985W WO2022145940A1 WO 2022145940 A1 WO2022145940 A1 WO 2022145940A1 KR 2021019985 W KR2021019985 W KR 2021019985W WO 2022145940 A1 WO2022145940 A1 WO 2022145940A1
Authority
WO
WIPO (PCT)
Prior art keywords
para
crosslinking agent
filament
aromatic
aramid
Prior art date
Application number
PCT/KR2021/019985
Other languages
French (fr)
Korean (ko)
Inventor
김창훈
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Publication of WO2022145940A1 publication Critical patent/WO2022145940A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/80Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides
    • D01F6/805Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides from aromatic copolyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/80Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J3/00Modifying the surface
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides

Definitions

  • the present invention relates to a method for producing para-aramid fibers and to para-aramid produced therefrom.
  • Aramid is an amide-based synthetic polymer in which 85% or more of amide bonds are directly linked to two aromatic groups, and is well known as an aromatic polyamide.
  • Aramid is classified into meta-aramid with flexible flexibility and para-aramid with rigid rod structure according to the structural characteristics of molecular chains.
  • a poly(para-phenylene terephthalamide) fiber which is one of the para-aramid fibers, has excellent mechanical properties, heat resistance, and flame retardancy while having a low density.
  • Para-aramid fibers are mainly applied as reinforcing materials for various base materials such as rubber and resin in industrial fields requiring high performance.
  • para-aramid fibers as reinforcing materials
  • appropriate pretreatment for para-aramid fibers is required in order to increase compatibility with the base material.
  • para-aramid fibers pretreated with a solution such as epoxy or isocyanate may be applied as a rubber reinforcing material.
  • the present invention provides a method for producing para-aramid fibers.
  • the present invention also provides a para-aramid fiber prepared from the above manufacturing method.
  • a method for manufacturing a spinning dope comprising: preparing a spinning dope comprising at least one particulate additive selected from the group consisting of water-soluble polymer particles and metal salt particles and an aromatic polyamide polymer; spinning the spinning dope in the form of a filament; coagulating and washing the spun dope to obtain a filament having surface irregularities due to detachment of the particulate additive from the surface of the spun dope; and treating the filaments having the surface unevenness with a crosslinking agent.
  • it comprises a monofilament formed of an aromatic polyamide polymer, wherein the monofilament has a surface roughness of greater than 0.1 ⁇ m, and the at least two or more monofilaments are linked through a cross-linked para- Aramid fibers are provided.
  • Para-aramid fiber has excellent mechanical properties, heat resistance and flame retardancy while having a low density, so it is useful as a reinforcing material for various base materials such as rubber and resin, but has a disadvantage in that compatibility with the base material is not good.
  • the present inventors have spun a spun dope including a particulate additive and an aromatic polyamide polymer in the form of a filament, and then coagulated and washed with water through a series of processes to remove the particulate additive from the spun dope.
  • the para-aramid fibers exhibiting improved rubber adhesion while maintaining or further improving the intrinsic properties such as mechanical properties of para-aramid fibers at an excellent level by removing them to form irregularities on the surface, and treating them with a cross-linking agent to introduce cross-linking. It was confirmed through an experiment that it can be provided, and the present invention was completed.
  • a spinning dope is prepared.
  • the spinning dope comprises an aromatic polyamide polymer and a particulate additive.
  • the aromatic polyamide polymer may be obtained by polymerizing an aromatic diamine and an aromatic diecide halide. Alternatively, an appropriate commercial product may be used as the aromatic polyamide polymer.
  • the aromatic diamine includes p-phenylenediamine, 4,4'-oxydianiline, 4,4'-diaminobiphenyl, 2,6-naphthalenediamine, 1,5-naphthalenediamine and 4 At least one selected from the group consisting of ,4'-diaminobenzanilide and the like may be used.
  • the aromatic diecide halide includes terephthaloyl dichloride, [1,1'-biphenyl]-4,4'-dicarbonyl dichloride, 4,4'-oxybis(benzoyl chloride) , at least one selected from the group consisting of naphthalene-2,6-dicarbonyl dichloride and naphthalene-1,5-dicarbonyl dichloride may be used.
  • a polymerization solvent in which an inorganic salt is added to an organic solvent may be used for polymerization of the aromatic diamine and the aromatic diecide halide.
  • organic solvent examples include N-methyl-2-pyrrolidone (NMP), N,N'-dimethylacetamide (DMAc), hexamethylphosphoamide (HMPA), N,N,N',N'-tetra At least one selected from the group consisting of methyl urea (TMU), N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) may be used.
  • NMP N-methyl-2-pyrrolidone
  • DMAc N,N'-dimethylacetamide
  • HMPA hexamethylphosphoamide
  • TMU methyl urea
  • DMF N,N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • the inorganic salt may be added for the purpose of increasing the degree of polymerization of the aromatic polyamide.
  • a halogenated alkali metal salt or a halogenated alkaline earth metal salt may be used as the inorganic salt.
  • the inorganic salt may include at least one selected from the group consisting of CaCl 2 , LiCl, NaCl, KCl, LiBr, and KBr.
  • the inorganic salt As the amount of the inorganic salt added increases, the degree of polymerization of the aromatic polyamide polymer increases. However, when the inorganic salt is added in excess, an inorganic salt not dissolved in the organic solvent may exist to inhibit polymerization. Therefore, the inorganic salt is preferably added within 0.01 to 10% by weight based on the total weight of the polymerization solvent.
  • a mixed solution may be prepared by dissolving the aromatic diamine in a polymerization solvent.
  • a predetermined amount of the aromatic diecide halide may be added to the mixed solution while stirring the mixed solution to perform preliminary polymerization.
  • the polymerization reaction of the aromatic diamine and the aromatic diecide halide proceeds rapidly with exotherm. If the polymerization rate is too fast, the degree of polymerization difference between the finally obtained polymers may become large. Accordingly, by pre-forming a polymer having a molecular chain of a predetermined length through the preliminary polymerization and then performing a polymerization process, a difference in polymerization degree between finally obtained polymers can be minimized.
  • the prepolymerization may be performed by stirring at a temperature of 0° C. to 45° C. for 1 minute to 30 minutes or 5 minutes to 15 minutes. Then, the residual amount of the aromatic diecide halide is added to the obtained prepolymer solution and further polymerization is performed to prepare an aromatic polyamide polymer. The additional polymerization may be performed by stirring at a temperature of 0° C. to 45° C. for 5 minutes to 1 hour or 10 minutes to 40 minutes.
  • the molar ratio of the aromatic diecide halide to the aromatic diamine may be about 0.9 to 1.1.
  • the aromatic polyamide polymer included in the spinning dope is poly(para-phenylene terephthalamide), poly(4,4'-benzanilide terephthalamide), poly(paraphenylene-4,4'-biphenylene-dica). carbonyl amide), poly(paraphenylene-2,6-naphthalenedicarbonyl amide), or a copolymer thereof.
  • the aromatic polyamide polymer included in the spinning dope may be poly(para-phenylene terephthalamide).
  • the particulate additive included in the spinning dope is at least one particle selected from the group consisting of water-soluble polymer particles and metal salt particles.
  • the water-soluble polymer particles may be polyvinyl alcohol resin particles.
  • the metal salt particles may be one or more particles selected from the group consisting of iron sulfate (Fe 2 (SO 4 ) 3 ) particles and aluminum sulfate (Al 2 (SO 4 ) 3 ).
  • the particulate additive preferably has an average particle diameter of 0.01 to 1 ⁇ m.
  • the particulate additive may have an average particle diameter of 0.01 to 1 ⁇ m or 0.1 to 1 ⁇ m.
  • the particle diameter of the particulate additive is too large, the surface unevenness due to the drop-off of the particulate additive in the coagulation and water washing process may deepen, thereby reducing mechanical properties of the filament.
  • the particle diameter of the particulate additive is too small, it is difficult to remove the particulate additive in the coagulation and water washing process, so that the target surface unevenness may not be formed.
  • the spinning dope may be prepared by dissolving the aromatic polyamide polymer in a solvent and then mixing the particulate additive.
  • a solvent for the spinning dope As a solvent for the spinning dope, 97 to 102 wt% of sulfuric acid may be used. Alternatively, chlorosulfuric acid or fluorosulfuric acid may be used instead of sulfuric acid as the solvent.
  • the spinning dope may include the aromatic polyamide polymer in an amount of 10 to 25 wt% based on the total weight of the spinning dope.
  • the particulate additive is preferably included in the spinning dope in an amount of 0.01 wt % or more based on the weight of the aromatic polyamide polymer so that the effect of forming surface irregularities by the particulate additive can be expressed.
  • the particulate additive is preferably included in the dope in an amount of 5.0 wt% or less based on the weight of the aromatic polyamide polymer.
  • the particulate additive is present in an amount of 0.01 to 5.0% by weight, or 0.1 to 3.0% by weight, or 0.1 to 2.0% by weight, or 0.1 to 1.5% by weight, or 0.5 to 1.0% by weight based on the weight of the aromatic polyamide polymer. It may be included in the spinning dope as a content.
  • the spinning step may be performed under conventional conditions using a spinning apparatus having a conventional configuration except for using the spinning dope.
  • the spinning dope may be spun in the form of a filament through grit wet spinning.
  • the air-gap wet spinning involves placing an air-gap between the spinneret and the coagulation bath surface.
  • the spinning dope may be spun into a coagulation tank containing a coagulating liquid through an air gap through a spinneret.
  • the air gap may be mainly an air layer or an inert gas layer.
  • the length of the air gap may be adjusted to 0.1 to 15 cm.
  • the spinneret may have a plurality of capillaries having a diameter of 0.1 mm or less.
  • the diameter of the capillary formed in the spinneret exceeds 0.1 mm, the molecular orientation of the produced filament is deteriorated, and as a result, the strength of the filament may be lowered.
  • an unsolidified filament in which the particulate additive and sulfuric acid are distributed on a matrix that is an aromatic polyamide polymer is obtained.
  • the dope spun in the spinning step may be coagulated by passing through the air gap and sequentially passing through the coagulation tank containing the coagulation solution and the coagulation tube under the coagulation tank.
  • the coagulation tank is located in the lower portion of the spinneret, the coagulation liquid is stored therein, and a coagulation tube is formed in the lower portion of the coagulation tank. Accordingly, the spinning dope passing through the capillary tube of the spinneret is solidified while passing through the air gap, the coagulation tank and the coagulation tube to form a filament, which is discharged while passing through the coagulation tube.
  • the coagulation solution is water; monohydric alcohols such as methanol, ethanol or propanol; dihydric alcohols such as ethylene glycol or propylene glycol; triols such as glycerol; Or it may be a sulfuric acid solution in which sulfuric acid is added to a mixture thereof.
  • the dope passing through the spinneret forms filaments while the sulfuric acid therein is removed while passing through the coagulating solution.
  • the coagulating solution preferably contains 5 to 15% by weight of sulfuric acid.
  • the temperature of the coagulating solution is preferably 1 to 10 °C. If the temperature of the coagulating solution is too low, it may be difficult for the sulfuric acid to escape from the filament. If the temperature of the coagulating solution is too high, sulfuric acid may be rapidly escaped from the filament, thereby reducing the uniformity of the filament.
  • the coagulation tube is connected to the coagulation tank, and a plurality of injection holes may be formed in the coagulation tube.
  • the injection hole is connected to a predetermined jet device (jet device), the coagulation liquid injected from the injection device is injected into the filament passing through the coagulation tube through the injection hole.
  • the plurality of injection holes are preferably arranged so that the coagulating liquid can be symmetrically injected with respect to the filament.
  • the injection angle of the coagulating liquid is preferably 0 to 85° with respect to the axial direction of the filament, and in particular, an injection angle of 20 to 40° is suitable in a commercial production process.
  • At least a portion of the particulate additive present in the filament may be removed from the surface of the filament.
  • the washing process is a process for removing at least a portion of the sulfuric acid remaining in the solidified filament and the particulate additive present on the surface of the filament.
  • the water washing process may be performed by spraying water or a mixed solution of water and an alkali solution onto the coagulated filament.
  • the water washing process may be performed in multiple steps.
  • the coagulated filament may be first washed with 0.1 to 1.5% by weight of an aqueous caustic solution, followed by secondary washing with a thinner aqueous caustic solution.
  • At least a portion of the particulate additive present in the filament is removed from the surface of the filament during the coagulation and washing process. Then, irregularities are formed on the surface of the filament by the drop-off.
  • the filament has a surface roughness exceeding 0.1 ⁇ m, thereby exhibiting excellent rubber adhesion while exhibiting various intrinsic physical properties of the para-aramid fiber. More specifically, the filaments have a surface roughness of more than 0.1 ⁇ m, 0.15 ⁇ m or more, 0.20 ⁇ m or more, and 1.0 ⁇ m or less, 0.8 ⁇ m or less, or 0.60 ⁇ m or less, thereby exhibiting excellent intrinsic physical properties and excellent rubber adhesion at the same time. .
  • the surface roughness was measured using Atomic Force Microscopy (AFM). Specifically, the para-aramid fiber was fixed well in the V-groove of the substrate having the V-groove, and then the surface roughness was measured using a Nanoscope III a Multimode manufactured by Digital Instruments, UK.
  • AFM Atomic Force Microscopy
  • the filaments that have undergone the coagulation and water washing process do not have sufficient crystal orientation, and since the crosslinking agent can smoothly penetrate into the filaments due to the particulate additive dropped in the water washing process, the treatment with the crosslinking agent is the spun dope. It is preferably carried out between the water washing process and the drying process. However, after treating the filament with the crosslinking agent, a water washing process may be additionally performed to remove the unnecessary crosslinking agent remaining on the surface of the filament. In addition, optionally, a crosslinking agent treatment process may be performed after the washing and drying processes.
  • the filaments that have undergone the drying process have sufficient crystal orientation so that the crosslinking agent treatment effect is insignificant compared to the case where the crosslinking agent treatment is performed before the drying process, but shows good results compared to the case where the crosslinker treatment is not performed.
  • a process of treating the filaments having surface irregularities formed by the dropping of the particulate additive with a crosslinking agent may be performed.
  • the crosslinking agent is one capable of forming a crosslink between the ends of the aromatic polyamide polymer constituting the filament, and may be an aromatic dianhydride, an aromatic diamine, an aromatic diecide halide, or a mixture thereof.
  • aromatic dianhydride pyromellitic dianhydride (PMDA), benzophenone tetracarboxylic dianhydride (CDPA), 3,3'4,4'-ratio Phenyltetracarboxylic dianhydride (3,3'4,4'-biphenyltetracarboxylic dianhydride (BPDA)), 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (4,4'-(hexafluoroisopropylidene) ) diphthalic anhydride (6FDA)), 4,4'-oxydiphthalic anhydride (ODPA)), 2,3,6,7-naphthalene tetracarboxylic dianhydride (2, 3,6,7-naphthalene tetracarboxylic dianhydride (NDA)) and 3,3',4,4'-diphenylsulfonetetracarboxylic acid dianhydride (3,3',
  • aromatic diamine examples include p-phenylenediamine, 4,4'-oxydianiline, 4,4'-diaminobiphenyl, 2,6-naphthalenediamine, 1,5-naphthalenediamine and 4,4'-dia At least one selected from the group consisting of minobenzanilide may be used.
  • aromatic diecide halide examples include terephthaloyl dichloride, [1,1'-biphenyl]-4,4'-dicarbonyl dichloride, 4,4'-oxybis(benzoyl chloride), naphthalene-2, At least one selected from the group consisting of 6-dicarbonyl dichloride and naphthalene-1,5-dicarbonyl dichloride may be used.
  • aromatic dianhydride may be used as the crosslinking agent, and more specifically, benzophenone tetracarboxylic acid dianhydride, 3,3'4,4'-biphenyltetracarboxylic acid dianhydride, and 4,4'- At least one selected from the group consisting of oxydiphthalic anhydride may be used.
  • the treatment with the crosslinking agent may be performed by a dipping method or a spraying method.
  • a solution in which the crosslinking agent is dissolved in an appropriate solvent may be prepared.
  • Water may be used as the solvent, and when the crosslinking agent is not soluble in water, a polar solvent may be used or a polar solvent may be mixed with water to dissolve the crosslinking agent.
  • the polar solvent includes N-methyl-2-pyrrolidone (NMP), N,N'-dimethylacetamide (DMAc), hexamethylphosphoamide (HMPA), N,N,N' At least one selected from the group consisting of ,N'-tetramethyl urea (TMU), N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) may be used.
  • NMP N-methyl-2-pyrrolidone
  • DMAc N,N'-dimethylacetamide
  • HMPA hexamethylphosphoamide
  • TMU ,N'-tetramethyl urea
  • DMF N,N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • the crosslinking agent may be dissolved in a solvent in an amount of 1 to 20% by weight based on the total weight of the crosslinking agent solution.
  • a sufficient strength improvement effect may be obtained by forming an appropriate cross-linkage between the aromatic polyamide polymers while minimizing the content of the remaining cross-linking agent within this range.
  • the crosslinking agent treatment process may be performed by a dipping method in which a filament having surface unevenness is immersed in the crosslinking agent solution and then taken out, or a spray method in which the crosslinking agent solution is sprayed onto the filament having surface unevenness.
  • the crosslinking agent solution may be maintained at a temperature higher than room temperature, for example, 30 to 70 °C, 40 to 60 °C or 45 to 55 °C so that the crosslinking agent can penetrate smoothly into the filament.
  • a drying process may be performed after the crosslinking agent treatment process.
  • cross-linking between aromatic polyamide polymers forming monofilaments may be formed by the cross-linking agent.
  • the cross-linking may be formed within one filament or between two or more monofilaments.
  • the crosslinking structure is the same as the polymer chain structure forming the aromatic polyamide polymer.
  • the para-aramid fiber it is difficult to ascertain whether the bonding structure in one filament was formed in the polymerization process of the aromatic polyamide polymer or in the crosslinking agent treatment process performed after the formation of surface irregularities of the monofilament.
  • the para-aramid fiber according to the other embodiment may be defined as having cross-linking between monofilaments, which is a characteristic structure introduced by treatment with a cross-linking agent after filament formation.
  • the drying process causing the crosslinking reaction may be performed by controlling the time the filament is in contact with the heated drying roll or by controlling the temperature of the drying roll.
  • the temperature of the drying roll may be adjusted to about 150 to 250 °C or 150 to 200 °C.
  • the contact time between the filament and the drying roll may be adjusted to about 0.5 to 15 seconds or 1 to 10 seconds. Within this range, a crosslinking reaction between the aromatic polyamide polymers may sufficiently occur, and the moisture content remaining in the filament may be adjusted to an appropriate level.
  • Para-aramid fiber manufacturing method may further include the step of heat-treating the dried filament after the drying step.
  • the heat treatment process may be performed at about 250 to 500 °C.
  • the dried filament may be hot drawn by applying a predetermined tension.
  • the filament may be hot-drawn by applying a tension of about 2000 to 4000 cN to the filament. Through such hot stretching, the mechanical properties of the para-aramid fibers can be further improved.
  • the monofilament constituting the para-aramid fiber finally obtained is formed of an aromatic polyamide polymer and may have a surface roughness of greater than 0.1 ⁇ m.
  • the para-aramid fiber has a structure in which at least two monofilaments among the monofilaments constituting the fiber are connected through cross-linking by being treated with a crosslinking agent after surface irregularities are formed by dropping the particulate additive. can have
  • the monofilament constituting the para-aramid fiber may have a fineness of 1.0 to 2.5 de (denier).
  • the para-aramid fiber according to another embodiment may include a plurality of the monofilaments, and may have a total fineness of 600 to 10,000 de.
  • the para-aramid fiber prepared by the above-described method may exhibit excellent adhesion performance to various pretreatment solutions or base materials through the surface unevenness while having excellent tensile strength.
  • the particulate additive is removed from the spun dope through a series of processes of coagulating and washing with water after spinning a spinning dope including a particulate additive in the form of a filament, thereby forming irregularities on the surface
  • a crosslinking agent to introduce crosslinking, it is possible to provide para-aramid fibers exhibiting improved rubber adhesion while maintaining or further improving intrinsic properties such as mechanical properties of para-aramid fibers at an excellent level.
  • a polymerization solvent was prepared by adding CaCl 2 to N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • a mixed solution was prepared by dissolving p-phenylenediamine (PPD) in the polymerization solvent.
  • TPC terephthaloyl chloride
  • PPTA poly(para-phenylene terephthalamide)
  • the acid was neutralized by adding water and NaOH to the solution containing PPTA. Then, after pulverizing the PPTA, the polymerization solvent contained in the PPTA was extracted using water, dehydrated and dried to finally obtain PPTA.
  • the PPTA obtained in Synthesis Example 1 was dissolved in 99 wt% sulfuric acid in an amount of 20 wt% based on the total weight of the spinning dope, and 1.0 wt% of iron sulfate particles (Fe 2 (SO 4 ) 3 , average particle diameter of 0.8 ⁇ m based on the weight of PPTA) ) was mixed with the solution to prepare a spinning dope.
  • iron sulfate particles Fe 2 (SO 4 ) 3 , average particle diameter of 0.8 ⁇ m based on the weight of PPTA
  • the spinning dope was spun using a spinneret, and then passed through an air gap through a coagulation tank containing 10 wt% sulfuric acid solution at 5 °C. Subsequently, while passing the coagulation tube under the coagulation bath, coagulated filaments were obtained.
  • the coagulated filaments were washed with water to remove sulfuric acid remaining on the filaments and iron sulfate particles present on the surface of the filaments.
  • the washed filaments were dipped in a solution containing the crosslinking agent at about 50° C. for about 0.5 seconds, and then dried at 180° C. for 5 seconds. Then, by winding the dried filament on a bobbin, the monofilament had a surface roughness of 0.4 ⁇ m, a fineness of 1.5 de, and a total fineness of 1,500 de to obtain para-aramid fibers.
  • a spinning dope was prepared by dissolving the PPTA obtained in Synthesis Example 1 in 99% by weight of sulfuric acid at 20% by weight based on the total weight.
  • the spinning dope was spun using a spinneret, and then passed through an air gap through a coagulation tank containing 10 wt% sulfuric acid solution at 5 °C. Subsequently, while passing the coagulation tube under the coagulation bath, coagulated filaments were obtained.
  • the coagulated filaments were washed with water to remove sulfuric acid remaining on the filaments, and dried at 180° C. for 5 seconds. Then, by winding the dried filament on a bobbin, the monofilament had a surface roughness of 0.09 ⁇ m, a fineness of 1.5 de, and a total fineness of 1,500 de to obtain para-aramid fibers.
  • the surface roughness of the monofilament was 0.6 ⁇ m in the same manner as in Comparative Example 1, except that 1.0% by weight of silica particles (average particle diameter 0.8 ⁇ m) based on the weight of PPTA was added to the spinning dope of Comparative Example 1, and fineness A para-aramid fiber of 1.5 de and a total fineness of 1,500 de was obtained.
  • Fineness was measured according to ASTM D 1577 as denier (de) expressed in grams (g) by weight of 9000 m yarn.
  • Para-aramid fibers prepared in Examples and Comparative Examples were cut to a length of 250 mm to prepare a sample, and the sample was stored at a relative humidity of 55% and a temperature of 23° C. for 14 hours.
  • the sample was mounted on INSTRON's testing machine (Instron Engineering Corp, Canton, Mass), one side of the fiber was fixed, and a superload was applied to 1/30 g of the fineness (fineness X 1/30) g), the other side was tensioned at a speed of 25 mm/min, and the tensile load (g) when the fiber was broken was measured.
  • the strength (g/d) was obtained by dividing the measured tensile load by the fineness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)

Abstract

The present invention relates to a method for producing para-aramid fibers, and a para-aramid produced therefrom. The method for producing para-aramid fibers involves: spinning, into filament form, a spinning dope including a particulate additive, and then performing a series of coagulation and washing steps to remove the particulate additive from the spinning dope and thereby form recesses and protrusions on the surface thereof; and inducing crosslinking by treating with a crosslinking agent. Thus, the present invention can provide para-aramid fibers that exhibit improved rubber adhesion while maintaining, at an excellent level, or further improving the intrinsic properties, such as the mechanical properties, of para-aramid fibers.

Description

파라-아라미드 섬유의 제조 방법 및 이로부터 제조되는 파라-아라미드Method for producing para-aramid fiber and para-aramid prepared therefrom
관련 출원(들)과의 상호 인용Cross-Citation with Related Application(s)
본 출원은 2020년 12월 29일자 한국특허출원 제 10-2020-0186067 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2020-0186067 on December 29, 2020, and all contents disclosed in the literature of the Korean patent application are incorporated as a part of this specification.
본 발명은 파라-아라미드 섬유의 제조 방법 및 이로부터 제조되는 파라-아라미드에 관한 것이다.The present invention relates to a method for producing para-aramid fibers and to para-aramid produced therefrom.
아라미드는 일반적으로 85 % 이상의 아미드 결합이 두 개의 방향족 그룹과 직접 연결된 아미드계 합성 고분자로서, 방향족 폴리아미드를 뜻하는 용어로 잘 알려져 있다.Aramid is an amide-based synthetic polymer in which 85% or more of amide bonds are directly linked to two aromatic groups, and is well known as an aromatic polyamide.
아라미드는 분자 사슬의 구조적 특성에 따라서 유연한 굴곡성을 갖는 메타-아라미드와 강직한 막대구조를 갖는 파라-아라미드로 구분된다. 특히 상기 파라-아라미드 섬유 중 하나인 폴리(파라-페닐렌 테레프탈아미드) 섬유는 밀도가 낮으면서도 우수한 기계적 물성, 내열성, 및 난연성을 갖는다. 파라-아라미드 섬유는 고성능이 요구되는 산업분야에서 고무 및 수지와 같은 다양한 모재에 대한 보강재로 주로 적용되고 있다.Aramid is classified into meta-aramid with flexible flexibility and para-aramid with rigid rod structure according to the structural characteristics of molecular chains. In particular, a poly(para-phenylene terephthalamide) fiber, which is one of the para-aramid fibers, has excellent mechanical properties, heat resistance, and flame retardancy while having a low density. Para-aramid fibers are mainly applied as reinforcing materials for various base materials such as rubber and resin in industrial fields requiring high performance.
파라-아라미드 섬유를 보강재로 적용하기 위해서는, 모재와의 상용성을 높이기 위하여 파라-아라미드 섬유에 대한 적절한 전처리가 요구된다. 일 예로, 에폭시, 이소시아네이트 등의 용액으로 전처리된 파라-아라미드 섬유는 고무 보강재로 적용될 수 있다.In order to apply para-aramid fibers as reinforcing materials, appropriate pretreatment for para-aramid fibers is required in order to increase compatibility with the base material. For example, para-aramid fibers pretreated with a solution such as epoxy or isocyanate may be applied as a rubber reinforcing material.
그런데, 파라-아라미드 섬유의 구조적 특성으로 인해 전처리 용액과의 계면 접착력이 떨어지는 문제가 있다. 상기 문제를 해결하기 위하여, 플라즈마 처리를 통해 파라-아라미드 섬유의 표면에 작용기를 도입하거나, 샌드 블라스트 처리를 통해 파라-아라미드 섬유의 표면에 요철을 발생시키는 방법이 시도되었다.However, there is a problem in that the interfacial adhesion with the pretreatment solution decreases due to the structural characteristics of the para-aramid fibers. In order to solve the above problem, a method of introducing a functional group to the surface of the para-aramid fiber through plasma treatment or generating irregularities on the surface of the para-aramid fiber through sand blasting has been attempted.
하지만, 이전에 시도된 방법들은 파라-아라미드 섬유의 강점인 기계적 강도를 저하시키는 문제를 초래하였다. However, previously tried methods have resulted in a problem of lowering the mechanical strength, which is the strength of para-aramid fibers.
본 발명은 파라-아라미드 섬유의 제조 방법을 제공한다. The present invention provides a method for producing para-aramid fibers.
본 발명은 또한 상기 제조 방법으로부터 제조된 파라-아라미드 섬유를 제공한다. The present invention also provides a para-aramid fiber prepared from the above manufacturing method.
이하 발명의 구체적인 구현예에 따른 파라-아라미드 섬유의 제조 방법과 상기 제조 방법을 통해 제조된 파라-아라미드 섬유 등에 대해 설명하기로 한다. Hereinafter, a method for producing a para-aramid fiber according to a specific embodiment of the present invention and a para-aramid fiber prepared through the manufacturing method will be described.
발명의 일 구현예에 따르면, 수용성 고분자 입자 및 금속 염 입자로 이루어진 군에서 선택된 1 종 이상의 입자상 첨가제와 방향족 폴리아미드 중합체를 포함하는 방사 도프를 제조하는 단계; 상기 방사 도프를 필라멘트 형태로 방사하는 단계; 상기 방사된 도프를 응고 및 수세하여 상기 방사된 도프의 표면으로부터 상기 입자상 첨가제의 탈락에 의한 표면 요철을 갖는 필라멘트를 얻는 단계; 및 상기 표면 요철을 갖는 필라멘트를 가교제로 처리하는 단계를 포함하는 파라-아라미드 섬유의 제조 방법이 제공된다. According to one embodiment of the present invention, there is provided a method for manufacturing a spinning dope comprising: preparing a spinning dope comprising at least one particulate additive selected from the group consisting of water-soluble polymer particles and metal salt particles and an aromatic polyamide polymer; spinning the spinning dope in the form of a filament; coagulating and washing the spun dope to obtain a filament having surface irregularities due to detachment of the particulate additive from the surface of the spun dope; and treating the filaments having the surface unevenness with a crosslinking agent.
한편, 발명의 다른 일 구현예에 따르면, 방향족 폴리아미드 중합체로 형성된 모노필라멘트를 포함하며, 상기 모노필라멘트는 0.1 ㎛ 초과의 표면 조도를 가지고, 상기 적어도 2 이상의 모노필라멘트가 가교 결합을 통해 연결된 파라-아라미드 섬유가 제공된다. On the other hand, according to another embodiment of the present invention, it comprises a monofilament formed of an aromatic polyamide polymer, wherein the monofilament has a surface roughness of greater than 0.1 μm, and the at least two or more monofilaments are linked through a cross-linked para- Aramid fibers are provided.
파라-아라미드 섬유는 낮은 밀도를 가지면서도 우수한 기계적 물성, 내열성 및 난연성을 가져 고무 및 수지와 같은 다양한 모재의 보강재로 유용하나, 모재와의 상용성이 좋지 않은 단점이 있다. Para-aramid fiber has excellent mechanical properties, heat resistance and flame retardancy while having a low density, so it is useful as a reinforcing material for various base materials such as rubber and resin, but has a disadvantage in that compatibility with the base material is not good.
본 발명자들은 이러한 문제를 해결하기 위해 지속적으로 연구한 결과, 입자상 첨가제와 방향족 폴리아미드 중합체를 포함한 방사 도프를 필라멘트 형태로 방사한 후 응고 및 수세하는 일련의 공정을 통해 상기 방사된 도프에서 입자상 첨가제를 탈락시켜 표면에 요철을 형성시키고, 가교제로 처리하여 가교 결합을 도입함으로써 파라-아라미드 섬유의 기계적 물성 등의 고유 물성을 우수한 수준으로 유지하거나 혹은 더욱 개선하면서도 향상된 고무 접착성을 나타내는 파라-아라미드 섬유를 제공할 수 있음을 실험을 통해 확인하고 본 발명을 완성하였다. As a result of continuous research to solve this problem, the present inventors have spun a spun dope including a particulate additive and an aromatic polyamide polymer in the form of a filament, and then coagulated and washed with water through a series of processes to remove the particulate additive from the spun dope. The para-aramid fibers exhibiting improved rubber adhesion while maintaining or further improving the intrinsic properties such as mechanical properties of para-aramid fibers at an excellent level by removing them to form irregularities on the surface, and treating them with a cross-linking agent to introduce cross-linking. It was confirmed through an experiment that it can be provided, and the present invention was completed.
이하, 상기 파라-아라미드 섬유의 제조 방법 및 이로부터 제조된 파라-아라미드 섬유에 대하여 상세히 설명한다. Hereinafter, the method for producing the para-aramid fiber and the para-aramid fiber prepared therefrom will be described in detail.
상기 일 구현예에 따른 파라-아라미드 섬유의 제조 방법에서는 우선 방사 도프를 제조한다. In the method for producing para-aramid fibers according to the embodiment, first, a spinning dope is prepared.
상기 방사 도프는 방향족 폴리아미드 중합체 및 입자상 첨가제를 포함한다. The spinning dope comprises an aromatic polyamide polymer and a particulate additive.
상기 방향족 폴리아미드 중합체는 방향족 디아민과 방향족 디에시드 할라이드를 중합시켜 얻어질 수 있다. 또는, 상기 방향족 폴리아미드 중합체로는 적절한 상용품이 사용될 수 있다.The aromatic polyamide polymer may be obtained by polymerizing an aromatic diamine and an aromatic diecide halide. Alternatively, an appropriate commercial product may be used as the aromatic polyamide polymer.
비제한적인 예로, 상기 방향족 디아민으로는 p-페닐렌디아민, 4,4'-옥시디아닐린, 4,4'-디아미노비페닐, 2,6-나프탈렌디아민, 1,5-나프탈렌디아민 및 4,4'-디아미노벤즈아닐리드 등으로 이루어진 군에서 선택된 1 종 이상이 사용될 수 있다.As a non-limiting example, the aromatic diamine includes p-phenylenediamine, 4,4'-oxydianiline, 4,4'-diaminobiphenyl, 2,6-naphthalenediamine, 1,5-naphthalenediamine and 4 At least one selected from the group consisting of ,4'-diaminobenzanilide and the like may be used.
비제한적인 예로, 상기 방향족 디에시드 할라이드로는 테레프탈로일 디클로라이드, [1,1'-비페닐]-4,4'-디카르보닐 디클로라이드, 4,4'-옥시비스(벤조일 클로라이드), 나프탈렌-2,6-디카르보닐 디클로라이드 및 나프탈렌-1,5-디카르보닐 디클로라이드 등으로 이루어진 군에서 선택된 1 종 이상이 사용될 수 있다. As a non-limiting example, the aromatic diecide halide includes terephthaloyl dichloride, [1,1'-biphenyl]-4,4'-dicarbonyl dichloride, 4,4'-oxybis(benzoyl chloride) , at least one selected from the group consisting of naphthalene-2,6-dicarbonyl dichloride and naphthalene-1,5-dicarbonyl dichloride may be used.
상기 방향족 디아민과 방향족 디에시드 할라이드의 중합에는 유기 용매에 무기염을 첨가한 중합 용매가 사용될 수 있다.A polymerization solvent in which an inorganic salt is added to an organic solvent may be used for polymerization of the aromatic diamine and the aromatic diecide halide.
상기 유기 용매로는 N-메틸-2-피롤리돈(NMP), N,N'-디메틸아세트아미드(DMAc), 헥사메틸포스포아미드(HMPA), N,N,N',N'-테트라메틸 우레아(TMU), N,N-디메틸포름아미드(DMF) 및 디메틸설폭사이드(DMSO) 등으로 이루어진 군에서 선택된 1 종 이상이 사용될 수 있다.Examples of the organic solvent include N-methyl-2-pyrrolidone (NMP), N,N'-dimethylacetamide (DMAc), hexamethylphosphoamide (HMPA), N,N,N',N'-tetra At least one selected from the group consisting of methyl urea (TMU), N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) may be used.
상기 무기염은 방향족 폴리아미드의 중합도를 증가시키기 위한 목적으로 첨가될 수 있다. 상기 무기염으로는 할로겐화 알칼리 금속염 또는 할로겐화 알칼리 토금속염이 사용될 수 있다. 일 예로, 상기 무기염은 CaCl2, LiCl, NaCl, KCl, LiBr 및 KBr로 이루어진 군에서 선택된 1 종 이상을 포함할 수 있다. The inorganic salt may be added for the purpose of increasing the degree of polymerization of the aromatic polyamide. As the inorganic salt, a halogenated alkali metal salt or a halogenated alkaline earth metal salt may be used. For example, the inorganic salt may include at least one selected from the group consisting of CaCl 2 , LiCl, NaCl, KCl, LiBr, and KBr.
상기 무기염의 첨가량이 증가할수록 방향족 폴리아미드 중합체의 중합도는 증가한다. 다만, 상기 무기염이 과량으로 첨가될 경우 상기 유기 용매에 용해되지 않은 무기염이 존재하여 중합을 저해할 수 있다. 그러므로 상기 무기염은 상기 중합 용매의 전체 중량에 대해 0.01 내지 10 중량% 내로 첨가되는 것이 바람직하다. As the amount of the inorganic salt added increases, the degree of polymerization of the aromatic polyamide polymer increases. However, when the inorganic salt is added in excess, an inorganic salt not dissolved in the organic solvent may exist to inhibit polymerization. Therefore, the inorganic salt is preferably added within 0.01 to 10% by weight based on the total weight of the polymerization solvent.
상기 방향족 디아민과 방향족 디에시드 할라이드의 중합을 위해, 중합 용매에 상기 방향족 디아민을 용해시켜 혼합 용액을 제조할 수 있다. 그리고, 상기 혼합 용액을 교반하면서 상기 혼합 용액에 소정량의 상기 방향족 디에시드 할라이드를 첨가하여 예비 중합을 진행할 수 있다. For polymerization of the aromatic diamine and the aromatic diecide halide, a mixed solution may be prepared by dissolving the aromatic diamine in a polymerization solvent. In addition, a predetermined amount of the aromatic diecide halide may be added to the mixed solution while stirring the mixed solution to perform preliminary polymerization.
상기 방향족 디아민과 상기 방향족 디에시드 할라이드의 중합 반응은 발열과 함께 빠른 속도로 진행된다. 중합 속도가 너무 빠르면 최종적으로 얻어지는 중합체들 사이에 중합도 차이가 커질 수 있다. 따라서, 상기 예비 중합을 통해 소정 길이의 분자 사슬을 갖는 중합체를 미리 형성하고, 그 후 중합 공정을 수행함으로써, 최종적으로 얻어지는 중합체들 사이의 중합도 차이를 최소화할 수 있다.The polymerization reaction of the aromatic diamine and the aromatic diecide halide proceeds rapidly with exotherm. If the polymerization rate is too fast, the degree of polymerization difference between the finally obtained polymers may become large. Accordingly, by pre-forming a polymer having a molecular chain of a predetermined length through the preliminary polymerization and then performing a polymerization process, a difference in polymerization degree between finally obtained polymers can be minimized.
상기 예비 중합은 0 ℃ 내지 45 ℃의 온도에서 1 분 내지 30 분 또는 5 분 내지 15 분 정도 교반하여 수행될 수 있다. 그리고, 얻어진 예비 중합체 용액에 상기 방향족 디에시드 할라이드의 잔량을 첨가하고 추가 중합하여 방향족 폴리아미드 중합체를 제조할 수 있다. 상기 추가 중합은 0 ℃ 내지 45 ℃의 온도에서 5 분 내지 1 시간 또는 10 분 내지 40 분 정도 교반하여 수행될 수 있다. The prepolymerization may be performed by stirring at a temperature of 0° C. to 45° C. for 1 minute to 30 minutes or 5 minutes to 15 minutes. Then, the residual amount of the aromatic diecide halide is added to the obtained prepolymer solution and further polymerization is performed to prepare an aromatic polyamide polymer. The additional polymerization may be performed by stirring at a temperature of 0° C. to 45° C. for 5 minutes to 1 hour or 10 minutes to 40 minutes.
상기 방향족 디에시드 할라이드는 상기 방향족 디아민과 1:1의 몰 비로 반응하므로, 상기 방향족 디아민에 대한 상기 방향족 디에시드 할라이드의 몰 비는 약 0.9 내지 1.1 일 수 있다. Since the aromatic diecide halide reacts with the aromatic diamine in a molar ratio of 1:1, the molar ratio of the aromatic diecide halide to the aromatic diamine may be about 0.9 to 1.1.
상기 방사 도프에 포함되는 방향족 폴리아미드 중합체는 폴리(파라-페닐렌 테레프탈아미드), 폴리(4,4'-벤즈아닐리드 테레프탈아미드), 폴리(파라페닐렌-4,4'-비페닐렌-디카르보닐 아미드), 폴리(파라페닐렌-2,6-나프탈렌디카르보닐 아미드) 또는 이들의 공중합체일 수 있다. 일 예로, 상기 방사 도프에 포함되는 방향족 폴리아미드 중합체는 폴리(파라-페닐렌 테레프탈아미드)일 수 있다. The aromatic polyamide polymer included in the spinning dope is poly(para-phenylene terephthalamide), poly(4,4'-benzanilide terephthalamide), poly(paraphenylene-4,4'-biphenylene-dica). carbonyl amide), poly(paraphenylene-2,6-naphthalenedicarbonyl amide), or a copolymer thereof. For example, the aromatic polyamide polymer included in the spinning dope may be poly(para-phenylene terephthalamide).
상기 방사 도프에 포함되는 상기 입자상 첨가제는 수용성 고분자 입자 및 금속 염 입자로 이루어진 군에서 선택된 1 종 이상의 입자이다.The particulate additive included in the spinning dope is at least one particle selected from the group consisting of water-soluble polymer particles and metal salt particles.
구체적으로, 상기 수용성 고분자 입자는 폴리비닐알코올 수지 입자일 수 있다.Specifically, the water-soluble polymer particles may be polyvinyl alcohol resin particles.
그리고, 상기 금속 염 입자는 황산 철(Fe2(SO4)3) 입자 및 황산 알루미늄(Al2(SO4)3)으로 이루어진 군에서 선택된 1 종 이상의 입자일 수 있다.In addition, the metal salt particles may be one or more particles selected from the group consisting of iron sulfate (Fe 2 (SO 4 ) 3 ) particles and aluminum sulfate (Al 2 (SO 4 ) 3 ).
상기 입자상 첨가제는 0.01 내지 1 ㎛의 평균 입경을 가지는 것이 바람직하다. 구체적으로, 상기 입자상 첨가제는 0.01 내지 1 ㎛ 혹은 0.1 내지 1 ㎛의 평균 입경을 가질 수 있다.The particulate additive preferably has an average particle diameter of 0.01 to 1 μm. Specifically, the particulate additive may have an average particle diameter of 0.01 to 1 μm or 0.1 to 1 μm.
상기 입자상 첨가제의 입경이 너무 크면 응고 및 수세 공정에서 상기 입자상 첨가제의 탈락에 의한 표면 요철이 깊이가 깊어져 필라멘트의 기계적 물성이 저하할 수 있다. 다만, 상기 입자상 첨가제의 입경이 너무 작으면 응고 및 수세 공정에서 상기 입자상 첨가제의 탈락이 어려워 목표로 하는 표면 요철이 형성되지 않을 수 있다.If the particle diameter of the particulate additive is too large, the surface unevenness due to the drop-off of the particulate additive in the coagulation and water washing process may deepen, thereby reducing mechanical properties of the filament. However, if the particle diameter of the particulate additive is too small, it is difficult to remove the particulate additive in the coagulation and water washing process, so that the target surface unevenness may not be formed.
*36상기 방사 도프는 용매에 상기 방향족 폴리아미드 중합체를 용해시킨 후 상기 입자상 첨가제를 혼합하여 제조될 수 있다.*36The spinning dope may be prepared by dissolving the aromatic polyamide polymer in a solvent and then mixing the particulate additive.
상기 방사 도프의 용매로는 97 내지 102 중량%의 황산이 사용될 수 있다. 또는, 상기 용매로 황산 대신 클로로 황산 또는 플루오로 황산 등이 사용될 수 있다.As a solvent for the spinning dope, 97 to 102 wt% of sulfuric acid may be used. Alternatively, chlorosulfuric acid or fluorosulfuric acid may be used instead of sulfuric acid as the solvent.
방사 도프 내의 방향족 폴리아미드 중합체의 농도가 증가할수록 방사 도프의 점도 역시 증가하지만 임계 농도를 넘어서면 방사 도프의 점도가 급격히 감소하게 된다. 이때 방사 도프는 고체상을 형성하지 않으면서 광학적 등방성에서 광학적 이방성으로 변화한다. 이방성 방사 도프는 구조적, 기능적 특성으로 인해 별도의 연신 공정 없이도 고강도의 파라-아라미드 섬유를 제조할 수 있다. 따라서, 상기 방사 도프 내의 방향족 폴리아미드 중합체의 농도는 임계 농도를 초과하는 것이 바람직하지만, 그 농도가 지나치게 높을 경우 방사 도프의 점도가 지나치게 낮아질 수 있다. 이에 상기 방사 도프는 방사 도프 전체 중량에 대하여 10 내지 25 중량%의 함량으로 방향족 폴리아미드 중합체를 포함할 수 있다. As the concentration of the aromatic polyamide polymer in the spinning dope increases, the viscosity of the spinning dope also increases, but beyond the critical concentration, the viscosity of the spinning dope rapidly decreases. At this time, the radiation dope changes from optically isotropic to optically anisotropic without forming a solid phase. Due to the structural and functional properties of the anisotropic spun dope, high-strength para-aramid fibers can be prepared without a separate stretching process. Therefore, it is preferable that the concentration of the aromatic polyamide polymer in the spinning dope exceeds the critical concentration, but if the concentration is too high, the viscosity of the spinning dope may become too low. Accordingly, the spinning dope may include the aromatic polyamide polymer in an amount of 10 to 25 wt% based on the total weight of the spinning dope.
상기 입자상 첨가제는 입자상 첨가제에 의한 표면 요철의 형성 효과가 발현될 수 있도록 상기 방향족 폴리아미드 중합체의 중량에 대하여 0.01 중량% 이상의 함량으로 상기 방사 도프에 포함되는 것이 바람직하다.The particulate additive is preferably included in the spinning dope in an amount of 0.01 wt % or more based on the weight of the aromatic polyamide polymer so that the effect of forming surface irregularities by the particulate additive can be expressed.
다만, 상기 입자상 첨가제가 과량으로 포함될 경우 상기 도프의 방사성을 저해하고 필라멘트의 기계적 물성이 저하할 수 있다. 그러므로, 상기 입자상 첨가제는 상기 방향족 폴리아미드 중합체의 중량에 대하여 5.0 중량% 이하의 함량으로 상기 도프에 포함되는 것이 바람직하다.However, when the particulate additive is included in an excessive amount, the spinnability of the dope may be inhibited and mechanical properties of the filament may be deteriorated. Therefore, the particulate additive is preferably included in the dope in an amount of 5.0 wt% or less based on the weight of the aromatic polyamide polymer.
구체적으로, 상기 입자상 첨가제는 상기 방향족 폴리아미드 중합체의 중량에 대하여 0.01 내지 5.0 중량%, 혹은 0.1 내지 3.0 중량%, 혹은 0.1 내지 2.0 중량%, 혹은 0.1 내지 1.5 중량%, 혹은 0.5 내지 1.0 중량%의 함량으로 상기 방사 도프에 포함될 수 있다.Specifically, the particulate additive is present in an amount of 0.01 to 5.0% by weight, or 0.1 to 3.0% by weight, or 0.1 to 2.0% by weight, or 0.1 to 1.5% by weight, or 0.5 to 1.0% by weight based on the weight of the aromatic polyamide polymer. It may be included in the spinning dope as a content.
이어서, 상기 방사 도프를 필라멘트 형태로 방사하는 단계; 및 상기 방사된 도프를 응고 및 수세하여 상기 방사된 도프의 표면으로부터 상기 입자상 첨가제의 탈락에 의한 표면 요철을 갖는 필라멘트를 얻는 단계가 수행된다.Subsequently, spinning the spinning dope in the form of a filament; and coagulating and washing the spun dope to obtain a filament having surface irregularities due to detachment of the particulate additive from the surface of the spun dope.
상기 방사하는 단계는 상기 방사 도프를 사용하는 것을 제외하고 통상적인 구성의 방사 장치를 이용하여 통상적인 조건 하에서 수행될 수 있다. The spinning step may be performed under conventional conditions using a spinning apparatus having a conventional configuration except for using the spinning dope.
일 예로, 상기 방사하는 단계는 기격 습식 방사를 통해 상기 방사 도프를 필라멘트 형태로 방사할 수 있다. For example, in the spinning, the spinning dope may be spun in the form of a filament through grit wet spinning.
상기 기격 습식 방사(air-gap wet spinning)는 방사 구금과 응고욕 표면 사이에 기격(air-gap)을 두는 방식이다. 이러한 기격 습식 방사 방식에 따라, 상기 방사 도프는 방사 구금을 통해 에어 갭을 거쳐 응고액이 담긴 응고조로 방사될 수 있다. 상기 에어 갭은 주로 공기층이나 불활성 기체층일 수 있다. 상기 에어 갭의 길이는 0.1 내지 15 cm로 조절될 수 있다. The air-gap wet spinning involves placing an air-gap between the spinneret and the coagulation bath surface. According to such a wet spinning method, the spinning dope may be spun into a coagulation tank containing a coagulating liquid through an air gap through a spinneret. The air gap may be mainly an air layer or an inert gas layer. The length of the air gap may be adjusted to 0.1 to 15 cm.
상기 방사 구금은 0.1 mm 이하의 직경을 갖는 다수의 모세관을 구비할 수 있다. 방사 구금에 형성된 모세관의 직경이 0.1 mm를 초과할 경우에는 생성되는 필라멘트의 분자 배향성이 나빠짐으로써 결과적으로 필라멘트의 강도가 낮아질 수 있다. The spinneret may have a plurality of capillaries having a diameter of 0.1 mm or less. When the diameter of the capillary formed in the spinneret exceeds 0.1 mm, the molecular orientation of the produced filament is deteriorated, and as a result, the strength of the filament may be lowered.
상기 방사하는 단계를 통해 방향족 폴리아미드 중합체인 매트릭스 상에 상기 입자상 첨가제 및 황산이 분포한 미응고 필라멘트가 얻어진다.Through the spinning step, an unsolidified filament in which the particulate additive and sulfuric acid are distributed on a matrix that is an aromatic polyamide polymer is obtained.
상기 방사하는 단계에서 방사된 도프는 에어 갭을 거쳐 응고액이 담긴 응고조 및 상기 응고조 하부의 응고 튜브를 차례로 통과하며 응고될 수 있다. The dope spun in the spinning step may be coagulated by passing through the air gap and sequentially passing through the coagulation tank containing the coagulation solution and the coagulation tube under the coagulation tank.
상기 응고조는 상기 방사 구금의 하부에 위치하며 그 내부에 응고액이 저장되어 있고, 상기 응고조의 하부에는 응고 튜브가 형성되어 있다. 따라서, 상기 방사 구금의 모세관을 통과한 방사 도프는 하강하면서 에어 갭, 응고조 및 응고 튜브를 거치면서 응고되어 필라멘트를 형성하며, 이 필라멘트는 상기 응고 튜브를 통과하면서 배출된다. The coagulation tank is located in the lower portion of the spinneret, the coagulation liquid is stored therein, and a coagulation tube is formed in the lower portion of the coagulation tank. Accordingly, the spinning dope passing through the capillary tube of the spinneret is solidified while passing through the air gap, the coagulation tank and the coagulation tube to form a filament, which is discharged while passing through the coagulation tube.
상기 응고액은 물; 메탄올, 에탄올 또는 프로판올 등의 1가 알코올(monol); 에틸렌 글리콜 또는 프로필렌 글리콜 등의 2가 알코올(diol); 글리세롤 등의 3가 알코올(triol); 또는 이들의 혼합물에 황산이 첨가된 황산 용액일 수 있다. 방사 구금을 통과한 도프는 상기 응고액을 통과하는 과정에서 그 내부의 황산이 제거되면서 필라멘트를 형성한다. 이때 황산이 필라멘트 표면으로부터 급격히 제거되면 그 내부에 함유된 황산이 미쳐 빠져나가기 전에 필라멘트 표면이 응고되어 필라멘트의 균일도가 떨어질 수 있다. 따라서, 상기 응고액에는 5 내지 15 중량%의 황산이 포함되는 것이 바람직하다. 그리고, 상기 응고액의 온도는 1 내지 10 ℃인 것이 바람직하다. 상기 응고액의 온도가 너무 낮을 경우 필라멘트로부터 황산이 빠져나가는 것이 어려울 수 있다. 상기 응고액의 온도가 너무 높을 경우 필라멘트에서 황산이 급격히 빠져나가 필라멘트의 균일도가 저하할 수 있다. The coagulation solution is water; monohydric alcohols such as methanol, ethanol or propanol; dihydric alcohols such as ethylene glycol or propylene glycol; triols such as glycerol; Or it may be a sulfuric acid solution in which sulfuric acid is added to a mixture thereof. The dope passing through the spinneret forms filaments while the sulfuric acid therein is removed while passing through the coagulating solution. At this time, if the sulfuric acid is rapidly removed from the filament surface, the filament surface may be solidified before the sulfuric acid contained therein goes crazy, and the uniformity of the filament may be deteriorated. Accordingly, the coagulating solution preferably contains 5 to 15% by weight of sulfuric acid. And, the temperature of the coagulating solution is preferably 1 to 10 ℃. If the temperature of the coagulating solution is too low, it may be difficult for the sulfuric acid to escape from the filament. If the temperature of the coagulating solution is too high, sulfuric acid may be rapidly escaped from the filament, thereby reducing the uniformity of the filament.
상기 응고 튜브는 상기 응고조와 연결되어 있으며, 상기 응고 튜브에는 다수의 분사구가 형성될 수 있다. 이 경우, 상기 분사구는 소정의 분사 장치(jet device)와 연결되어 있어, 상기 분사 장치에서 분사된 응고액은 상기 분사구를 통해 상기 응고 튜브를 통과하는 필라멘트에 분사되게 된다. 상기 다수의 분사구는 응고액이 필라멘트에 대하여 대칭으로 분사될 수 있도록 정렬되는 것이 바람직하다. 응고액의 분사 각도는 필라멘트의 축방향에 대하여 0 내지 85°가 바람직하며, 특히 상업적 생산 공정에 있어서는 20 내지 40°의 분사 각도가 적당하다. The coagulation tube is connected to the coagulation tank, and a plurality of injection holes may be formed in the coagulation tube. In this case, the injection hole is connected to a predetermined jet device (jet device), the coagulation liquid injected from the injection device is injected into the filament passing through the coagulation tube through the injection hole. The plurality of injection holes are preferably arranged so that the coagulating liquid can be symmetrically injected with respect to the filament. The injection angle of the coagulating liquid is preferably 0 to 85° with respect to the axial direction of the filament, and in particular, an injection angle of 20 to 40° is suitable in a commercial production process.
상기 응고 공정에서 상기 필라멘트에 존재하는 상기 입자상 첨가제 중 적어도 일부가 상기 필라멘트의 표면으로부터 탈락될 수 있다.In the coagulation process, at least a portion of the particulate additive present in the filament may be removed from the surface of the filament.
상기 응고 공정 후에는 수세 공정이 진행된다. 상기 수세 공정은 응고된 필라멘트에 잔존하는 황산과 상기 필라멘트의 표면에 존재하는 상기 입자상 첨가제의 적어도 일부를 탈락시키기 위한 공정이다. 상기 수세 공정은 물, 또는 물과 알칼리 용액의 혼합 용액을 상기 응고된 필라멘트에 분사하는 방법으로 수행될 수 있다.After the coagulation process, a water washing process is performed. The washing process is a process for removing at least a portion of the sulfuric acid remaining in the solidified filament and the particulate additive present on the surface of the filament. The water washing process may be performed by spraying water or a mixed solution of water and an alkali solution onto the coagulated filament.
상기 수세 공정은 다단계로 수행될 수 있다. 예를 들어, 상기 응고된 필라멘트를 0.1 내지 1.5 중량%의 가성 수용액(aqueous caustic solution)으로 1 차 수세하고, 이어서 더 묽은 가성 수용액으로 2 차 수세할 수 있다.The water washing process may be performed in multiple steps. For example, the coagulated filament may be first washed with 0.1 to 1.5% by weight of an aqueous caustic solution, followed by secondary washing with a thinner aqueous caustic solution.
상기 응고 및 수세 공정을 거치면서 상기 필라멘트에 존재하는 상기 입자상 첨가제 중 적어도 일부가 상기 필라멘트의 표면으로부터 탈락한다. 그리고, 상기 탈락에 의해 상기 필라멘트의 표면에 요철이 형성된다.At least a portion of the particulate additive present in the filament is removed from the surface of the filament during the coagulation and washing process. Then, irregularities are formed on the surface of the filament by the drop-off.
일 예로, 상기 필라멘트는 0.1 ㎛를 초과하는 표면 조도를 가짐으로써, 파라-아라미드 섬유의 고유 제반 물성을 나타내면서도 우수한 고무 접착성을 나타낼 수 있다. 보다 구체적으로, 상기 필라멘트는 0.1 ㎛ 초과, 0.15 ㎛ 이상, 0.20 ㎛ 이상이면서 1.0 ㎛ 이하, 0.8 ㎛ 이하 또는 0.60 ㎛ 이하의 표면 조도를 가짐으로써 우수한 고유 제반 물성 및 우수한 고무 접착성을 동시에 나타낼 수 있다. As an example, the filament has a surface roughness exceeding 0.1 μm, thereby exhibiting excellent rubber adhesion while exhibiting various intrinsic physical properties of the para-aramid fiber. More specifically, the filaments have a surface roughness of more than 0.1 μm, 0.15 μm or more, 0.20 μm or more, and 1.0 μm or less, 0.8 μm or less, or 0.60 μm or less, thereby exhibiting excellent intrinsic physical properties and excellent rubber adhesion at the same time. .
상기 표면 조도는 AFM (Atomic Force Microscopy)를 이용하여 측정되었다. 구체적으로, V자 홈을 구비한 기판의 V자 홈 내에 파라-아라미드 섬유를 움직이지 않게 잘 고정한 다음, 영국 Digital Instruments 社의 Nanoscope III a Multimode를 사용하여 표면 조도를 측정하였다. The surface roughness was measured using Atomic Force Microscopy (AFM). Specifically, the para-aramid fiber was fixed well in the V-groove of the substrate having the V-groove, and then the surface roughness was measured using a Nanoscope III a Multimode manufactured by Digital Instruments, UK.
상기 응고 및 수세 공정을 마친 필라멘트는 충분한 결정 배향을 이루고 있지 못하며, 수세 공정에서 탈락된 입자상 첨가제로 인해 가교제가 필라멘트의 내부로 원활하게 침투할 수 있기 때문에 상기 가교제로 처리하는 단계는 방사된 도프의 수세 공정과 건조 공정 사이에 수행되는 것이 바람직하다. 다만, 필라멘트를 가교제로 처리한 후에 필라멘트 표면에 잔류하는 불필요한 가교제를 제거하기 위해 수세 공정을 추가로 수행할 수 있다. 또한, 선택적으로 수세 및 건조 공정 후에 가교제 처리 공정을 수행할 수도 있다. 건조 공정을 거친 필라멘트는 결정 배향이 충분히 이루어져 가교제 처리 효과가 건조 공정 전에 수행된 경우 대비 미미하나 가교체 처리를 하지 않은 경우에 비해서는 좋은 결과를 보인다. The filaments that have undergone the coagulation and water washing process do not have sufficient crystal orientation, and since the crosslinking agent can smoothly penetrate into the filaments due to the particulate additive dropped in the water washing process, the treatment with the crosslinking agent is the spun dope. It is preferably carried out between the water washing process and the drying process. However, after treating the filament with the crosslinking agent, a water washing process may be additionally performed to remove the unnecessary crosslinking agent remaining on the surface of the filament. In addition, optionally, a crosslinking agent treatment process may be performed after the washing and drying processes. The filaments that have undergone the drying process have sufficient crystal orientation so that the crosslinking agent treatment effect is insignificant compared to the case where the crosslinking agent treatment is performed before the drying process, but shows good results compared to the case where the crosslinker treatment is not performed.
일 예로, 상기 응고 및 수세 공정에 이어, 입자상 첨가제의 탈락에 의해 표면 요철이 형성된 필라멘트를 가교제로 처리하는 공정을 수행할 수 있다.As an example, following the coagulation and washing process, a process of treating the filaments having surface irregularities formed by the dropping of the particulate additive with a crosslinking agent may be performed.
상기 가교제로는 필라멘트를 구성하는 방향족 폴리아미드 중합체의 말단 간에 가교 결합을 형성할 수 있는 것으로서, 방향족 디무수물, 방향족 디아민, 방향족 디에시드 할라이드 또는 이들의 혼합물이 사용될 수 있다. The crosslinking agent is one capable of forming a crosslink between the ends of the aromatic polyamide polymer constituting the filament, and may be an aromatic dianhydride, an aromatic diamine, an aromatic diecide halide, or a mixture thereof.
구체적으로, 상기 방향족 디무수물로는 피로멜리틱 디언하이드라이드(pyromellitic dianhydride (PMDA)), 벤조페논 테트라카르복실산 디무수물(benzophenone tetracarboxylic dianhydride (CDPA)), 3,3'4,4'-비페닐테트라카르복실산 디무수물(3,3'4,4'-biphenyltetracarboxylic dianhydride (BPDA)), 4,4'-(헥사플루오로이소프로필리덴) 디프탈릭 언하이드라이드(4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA)), 4,4'-옥시디프탈릭 언하이드라이드(4,4'-oxydiphthalic anhydride (ODPA)), 2,3,6,7-나프탈렌 테트라카르복실산 디무수물(2,3,6,7-naphthalene tetracarboxylic dianhydride (NDA)) 및 3,3',4,4'-디페닐설폰테트라카르복실산 디무수물(3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride)로 이루어진 군에서 선택된 1 종 이상을 사용할 수 있다. 상기 방향족 디아민으로는 p-페닐렌디아민, 4,4'-옥시디아닐린, 4,4'-디아미노비페닐, 2,6-나프탈렌디아민, 1,5-나프탈렌디아민 및 4,4'-디아미노벤즈아닐리드로 이루어진 군에서 선택된 1 종 이상을 사용할 수 있다. 상기 방향족 디에시드 할라이드로는 테레프탈로일 디클로라이드, [1,1'-비페닐]-4,4'-디카르보닐 디클로라이드, 4,4'-옥시비스(벤조일 클로라이드), 나프탈렌-2,6-디카르보닐 디클로라이드 및 나프탈렌-1,5-디카르보닐 디클로라이드로 이루어진 군에서 선택된 1 종 이상을 사용할 수 있다. Specifically, as the aromatic dianhydride, pyromellitic dianhydride (PMDA), benzophenone tetracarboxylic dianhydride (CDPA), 3,3'4,4'-ratio Phenyltetracarboxylic dianhydride (3,3'4,4'-biphenyltetracarboxylic dianhydride (BPDA)), 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (4,4'-(hexafluoroisopropylidene) ) diphthalic anhydride (6FDA)), 4,4'-oxydiphthalic anhydride (ODPA)), 2,3,6,7-naphthalene tetracarboxylic dianhydride (2, 3,6,7-naphthalene tetracarboxylic dianhydride (NDA)) and 3,3',4,4'-diphenylsulfonetetracarboxylic acid dianhydride (3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride) One or more selected from may be used. Examples of the aromatic diamine include p-phenylenediamine, 4,4'-oxydianiline, 4,4'-diaminobiphenyl, 2,6-naphthalenediamine, 1,5-naphthalenediamine and 4,4'-dia At least one selected from the group consisting of minobenzanilide may be used. Examples of the aromatic diecide halide include terephthaloyl dichloride, [1,1'-biphenyl]-4,4'-dicarbonyl dichloride, 4,4'-oxybis(benzoyl chloride), naphthalene-2, At least one selected from the group consisting of 6-dicarbonyl dichloride and naphthalene-1,5-dicarbonyl dichloride may be used.
일 예로, 상기 가교제로는 방향족 디무수물을 사용할 수 있으며, 보다 구체적으로 벤조페논 테트라카르복실산 디무수물, 3,3'4,4'-비페닐테트라카르복실산 디무수물 및 4,4'-옥시디프탈릭 언하이드라이드로 이루어진 군에서 선택된 1 종 이상이 사용될 수 있다. For example, aromatic dianhydride may be used as the crosslinking agent, and more specifically, benzophenone tetracarboxylic acid dianhydride, 3,3'4,4'-biphenyltetracarboxylic acid dianhydride, and 4,4'- At least one selected from the group consisting of oxydiphthalic anhydride may be used.
상기 가교제로 처리하는 단계는 디핑 방식이나 스프레이 방식에 의해 수행될 수 있다. The treatment with the crosslinking agent may be performed by a dipping method or a spraying method.
구체적으로, 상기 가교제 처리 공정에서는 상기 가교제를 적절한 용매에 용해시킨 용액을 준비할 수 있다. 상기 용매로는 물이 사용될 수 있으며, 상기 가교제가 물에 잘 녹지 않을 경우 극성 용매를 사용하거나 혹은 물에 극성 용매를 혼합하여 가교제를 용해시킬 수 있다. 비제한적인 예로, 상기 극성 용매로는 N-메틸-2-피롤리돈(NMP), N,N'-디메틸아세트아미드(DMAc), 헥사메틸포스포아미드(HMPA), N,N,N',N'-테트라메틸 우레아(TMU), N,N-디메틸포름아미드(DMF) 및 디메틸설폭사이드(DMSO) 등으로 이루어진 군에서 선택된 1 종 이상이 사용될 수 있다.Specifically, in the crosslinking agent treatment process, a solution in which the crosslinking agent is dissolved in an appropriate solvent may be prepared. Water may be used as the solvent, and when the crosslinking agent is not soluble in water, a polar solvent may be used or a polar solvent may be mixed with water to dissolve the crosslinking agent. As a non-limiting example, the polar solvent includes N-methyl-2-pyrrolidone (NMP), N,N'-dimethylacetamide (DMAc), hexamethylphosphoamide (HMPA), N,N,N' At least one selected from the group consisting of ,N'-tetramethyl urea (TMU), N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) may be used.
상기 가교제는 가교제 용액 전체 중량에 대하여 1 내지 20 중량%로 용매에 용해될 수 있다. 이러한 범위 내에서 잔류하는 가교제의 함량을 최소화하면서 상기 방향족 폴리아미드 중합체들 간에 적절한 가교 결합을 형성하여 충분한 강도 향상 효과를 얻을 수 있다. The crosslinking agent may be dissolved in a solvent in an amount of 1 to 20% by weight based on the total weight of the crosslinking agent solution. A sufficient strength improvement effect may be obtained by forming an appropriate cross-linkage between the aromatic polyamide polymers while minimizing the content of the remaining cross-linking agent within this range.
상기 가교제 처리 공정은 표면 요철을 갖는 필라멘트를 상기 가교제 용액에 침지시켰다가 꺼내는 디핑 방식이나 혹은 표면 요철을 갖는 필라멘트에 상기 가교제 용액을 분사하는 스프레이 방식에 의해 수행될 수 있다. The crosslinking agent treatment process may be performed by a dipping method in which a filament having surface unevenness is immersed in the crosslinking agent solution and then taken out, or a spray method in which the crosslinking agent solution is sprayed onto the filament having surface unevenness.
이때, 상기 가교제 용액은 가교제가 필라멘트 내에 원활하게 침투할 수 있도록 상온보다 높은 온도, 예를 들면, 30 내지 70 ℃, 40 내지 60 ℃ 혹은 45 내지 55 ℃의 온도로 유지될 수 있다. At this time, the crosslinking agent solution may be maintained at a temperature higher than room temperature, for example, 30 to 70 ℃, 40 to 60 ℃ or 45 to 55 ℃ so that the crosslinking agent can penetrate smoothly into the filament.
상기 가교제 처리 공정 후에는 건조 공정이 수행될 수 있다. 이러한 건조 공정에서는 가교제에 의하여 모노필라멘트를 형성하는 방향족 폴리아미드 중합체 간의 가교 결합이 형성될 수 있다. 상기 가교 결합은 하나의 필라멘트 내에서 형성될 수도 있고, 2 이상의 모노필라멘트 간에 형성될 수도 있다. A drying process may be performed after the crosslinking agent treatment process. In this drying process, cross-linking between aromatic polyamide polymers forming monofilaments may be formed by the cross-linking agent. The cross-linking may be formed within one filament or between two or more monofilaments.
다만, 만일 상기 가교제로서 상기 방향족 폴리아미드 중합체의 제조에 사용된 단량체와 동일한 종류의 것을 채용했다면, 가교 결합 구조가 방향족 폴리아미드 중합체를 형성하는 고분자 사슬 구조와 동일하다. 이 때문에, 최종적으로 제조된 파라-아라미드 섬유에서 하나의 필라멘트 내의 결합 구조가 방향족 폴리아미드 중합체의 중합 공정에 형성된 것인지 아니면 모노필라멘트의 표면 요철 형성 후 수행된 가교제 처리 공정에서 되었는지 여부를 확인하기는 어렵다. 따라서, 상기 다른 일 구현예에 따른 파라-아라미드 섬유는 필라멘트 형성 후 가교제로 처리됨에 따라 도입된 특징적인 구조인 모노필라멘트 간의 가교 결합을 가지는 것으로 정의될 수 있다. However, if the same kind of monomer as the monomer used in the preparation of the aromatic polyamide polymer is employed as the crosslinking agent, the crosslinking structure is the same as the polymer chain structure forming the aromatic polyamide polymer. For this reason, in the finally prepared para-aramid fiber, it is difficult to ascertain whether the bonding structure in one filament was formed in the polymerization process of the aromatic polyamide polymer or in the crosslinking agent treatment process performed after the formation of surface irregularities of the monofilament. . Accordingly, the para-aramid fiber according to the other embodiment may be defined as having cross-linking between monofilaments, which is a characteristic structure introduced by treatment with a cross-linking agent after filament formation.
상기 가교 반응을 일으키는 건조 공정은 가열된 건조 롤에 상기 필라멘트가 닿는 시간을 조절하거나, 상기 건조 롤의 온도를 조절하는 방법으로 수행될 수 있다.The drying process causing the crosslinking reaction may be performed by controlling the time the filament is in contact with the heated drying roll or by controlling the temperature of the drying roll.
상기 건조 공정에서 건조 롤의 온도는 150 내지 250 ℃ 혹은 150 내지 200 ℃ 정도로 조절될 수 있다. 또한, 상기 건조 공정에서 상기 필라멘트와 건조 롤이 닿는 시간은 0.5 내지 15 초 혹은 1 초 내지 10 초 정도로 조절될 수 있다. 이러한 범위 내에서 상기 방향족 폴리아미드 중합체 간의 가교 반응이 충분히 일어날 수 있으며, 상기 필라멘트에 잔류하는 수분 함량을 적절한 수준으로 조절할 수 있다. In the drying process, the temperature of the drying roll may be adjusted to about 150 to 250 °C or 150 to 200 °C. In addition, in the drying process, the contact time between the filament and the drying roll may be adjusted to about 0.5 to 15 seconds or 1 to 10 seconds. Within this range, a crosslinking reaction between the aromatic polyamide polymers may sufficiently occur, and the moisture content remaining in the filament may be adjusted to an appropriate level.
상기 일 구현예에 따른 파라-아라미드 섬유의 제조 방법은 상기 건조하는 단계 이후에 건조된 필라멘트를 열처리하는 단계를 추가로 포함할 수 있다. Para-aramid fiber manufacturing method according to the embodiment may further include the step of heat-treating the dried filament after the drying step.
상기 열처리 공정은 약 250 내지 500 ℃에서 수행될 수 있다. 또한, 상기 열처리 공정에서는 소정의 장력을 가하여 건조된 필라멘트를 열연신할 수 있다. 일 예로, 상기 열처리 공정에서는 필라멘트에 약 2000 내지 4000 cN의 장력을 가하여 필라멘트를 열연신할 수 있다. 이러한 열연신을 통해 파라-아라미드 섬유의 기계적 물성을 더욱 향상시킬 수 있다. The heat treatment process may be performed at about 250 to 500 °C. In addition, in the heat treatment process, the dried filament may be hot drawn by applying a predetermined tension. For example, in the heat treatment process, the filament may be hot-drawn by applying a tension of about 2000 to 4000 cN to the filament. Through such hot stretching, the mechanical properties of the para-aramid fibers can be further improved.
최종적으로 얻어지는 상기 파라-아라미드 섬유를 구성하는 모노필라멘트는 방향족 폴리아미드 중합체로 형성되며, 0.1 ㎛ 초과의 표면 조도를 가질 수 있다. 특히, 상술한 바와 같이 상기 파라-아라미드 섬유는 입자상 첨가제 탈락에 의해 표면 요철이 형성된 후 가교제로 처리되어 제조됨으로써, 상기 섬유를 구성하는 모노필라멘트들 중 적어도 2 이상의 모노필라멘트가 가교 결합을 통해 연결된 구조를 가질 수 있다. The monofilament constituting the para-aramid fiber finally obtained is formed of an aromatic polyamide polymer and may have a surface roughness of greater than 0.1 μm. In particular, as described above, the para-aramid fiber has a structure in which at least two monofilaments among the monofilaments constituting the fiber are connected through cross-linking by being treated with a crosslinking agent after surface irregularities are formed by dropping the particulate additive. can have
상기 파라-아라미드 섬유를 구성하는 모노필라멘트는 1.0 내지 2.5 de (denier)의 섬도를 가질 수 있다.The monofilament constituting the para-aramid fiber may have a fineness of 1.0 to 2.5 de (denier).
그리고, 상기 다른 일 구현 예에 따른 상기 파라-아라미드 섬유는 복수의 상기 모노필라멘트를 포함하고, 600 내지 10,000 de의 총 섬도를 가질 수 있다.And, the para-aramid fiber according to another embodiment may include a plurality of the monofilaments, and may have a total fineness of 600 to 10,000 de.
상술한 방법으로 제조된 상기 파라-아라미드 섬유는 우수한 인장강도를 가지면서 상기 표면 요철을 통해 각종 전처리 용액 혹은 모재에 대한 우수한 접착 성능을 나타낼 수 있다.The para-aramid fiber prepared by the above-described method may exhibit excellent adhesion performance to various pretreatment solutions or base materials through the surface unevenness while having excellent tensile strength.
발명의 일 구현예에 따른 파라-아라미드 섬유의 제조 방법은 입자상 첨가제를 포함한 방사 도프를 필라멘트 형태로 방사한 후 응고 및 수세하는 일련의 공정을 통해 상기 방사된 도프에서 입자상 첨가제를 탈락시켜 표면에 요철을 형성시키고, 가교제로 처리하여 가교 결합을 도입함으로써 파라-아라미드 섬유의 기계적 물성 등의 고유 물성을 우수한 수준으로 유지하거나 혹은 더욱 개선하면서도 향상된 고무 접착성을 나타내는 파라-아라미드 섬유를 제공할 수 있다. Para-aramid fiber manufacturing method according to an embodiment of the present invention, the particulate additive is removed from the spun dope through a series of processes of coagulating and washing with water after spinning a spinning dope including a particulate additive in the form of a filament, thereby forming irregularities on the surface By forming and treating with a crosslinking agent to introduce crosslinking, it is possible to provide para-aramid fibers exhibiting improved rubber adhesion while maintaining or further improving intrinsic properties such as mechanical properties of para-aramid fibers at an excellent level.
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.Hereinafter, the action and effect of the invention will be described in more detail through specific examples of the invention. However, this is presented as an example of the invention and the scope of the invention is not limited in any way by this.
합성예 1: 방향족 폴리아미드 중합체의 제조Synthesis Example 1: Preparation of aromatic polyamide polymer
N-메틸-2-피롤리돈(NMP)에 CaCl2을 첨가하여 중합 용매를 제조하였다. 상기 중합 용매에 p-페닐렌디아민(PPD)을 용해시켜 혼합 용액을 준비하였다.A polymerization solvent was prepared by adding CaCl 2 to N-methyl-2-pyrrolidone (NMP). A mixed solution was prepared by dissolving p-phenylenediamine (PPD) in the polymerization solvent.
상기 혼합 용액을 교반하면서, 상기 혼합 용액에 PPD와 동일한 몰의 테레프탈로일 클로라이드(TPC)를 두 번에 나누어 첨가하여, 폴리(파라-페닐렌 테레프탈아미드)(PPTA)를 제조하였다.While stirring the mixed solution, terephthaloyl chloride (TPC) of the same mole as PPD was added to the mixed solution in two portions to prepare poly(para-phenylene terephthalamide) (PPTA).
상기 PPTA를 포함한 용액에 물과 NaOH를 첨가하여 산을 중화시켰다. 이어서 PPTA를 분쇄한 후 물을 사용하여 PPTA에 함유된 중합 용매를 추출하고, 탈수 및 건조하여 최종적으로 PPTA를 얻었다.The acid was neutralized by adding water and NaOH to the solution containing PPTA. Then, after pulverizing the PPTA, the polymerization solvent contained in the PPTA was extracted using water, dehydrated and dried to finally obtain PPTA.
실시예 1: 파라-아라미드 섬유의 제조Example 1: Preparation of para-aramid fibers
상기 합성예 1에서 얻은 PPTA를 99 중량%의 황산에 방사 도프 전체 중량 대비 20 중량%로 용해시키고, PPTA의 중량 대비 1.0 중량%의 황산 철 입자(Fe2(SO4)3, 평균 입경 0.8 ㎛)를 상기 용액에 혼합하여 방사 도프를 준비하였다.The PPTA obtained in Synthesis Example 1 was dissolved in 99 wt% sulfuric acid in an amount of 20 wt% based on the total weight of the spinning dope, and 1.0 wt% of iron sulfate particles (Fe 2 (SO 4 ) 3 , average particle diameter of 0.8 μm based on the weight of PPTA) ) was mixed with the solution to prepare a spinning dope.
상기 방사 도프를 방사 구금을 이용하여 방사한 후 에어 갭을 거쳐 5 ℃의 10 중량% 황산 용액이 담겨있는 응고조를 통과시켰다. 계속해서 상기 응고조 하부의 응고 튜브를 통과시키면서 응고된 필라멘트들을 얻었다.The spinning dope was spun using a spinneret, and then passed through an air gap through a coagulation tank containing 10 wt% sulfuric acid solution at 5 °C. Subsequently, while passing the coagulation tube under the coagulation bath, coagulated filaments were obtained.
상기 응고된 필라멘트들을 물로 수세하여 상기 필라멘트 상에 잔존하는 황산과 상기 필라멘트의 표면에 존재하는 황산 철 입자들을 제거하였다.The coagulated filaments were washed with water to remove sulfuric acid remaining on the filaments and iron sulfate particles present on the surface of the filaments.
한편, 물과 N-메틸-2-피롤리돈(NMP)을 8:2의 부피비로 혼합한 혼합 용매에 4,4'-옥시디프탈릭 언하이드라이드를 전체 중량 대비 5 중량%로 용해시켜 가교제를 포함하는 용액을 제조하였다. On the other hand, 4,4'-oxydiphthalic anhydride was dissolved in a mixed solvent of water and N-methyl-2-pyrrolidone (NMP) in a volume ratio of 8:2 in an amount of 5% by weight based on the total weight of the crosslinking agent. A solution containing
그리고, 상기 수세된 필라멘트를 약 50 ℃의 상기 가교제를 포함하는 용액에 약 0.5 초 동안 디핑한 후 180 ℃에서 5 초 동안 건조시켰다. 이후 건조된 필라멘트를 보빈에 권취함으로써 모노필라멘트의 표면조도는 0.4 ㎛이고, 섬도는 1.5 de이며, 총 섬도는 1,500 de인 파라-아라미드 섬유를 얻었다.Then, the washed filaments were dipped in a solution containing the crosslinking agent at about 50° C. for about 0.5 seconds, and then dried at 180° C. for 5 seconds. Then, by winding the dried filament on a bobbin, the monofilament had a surface roughness of 0.4 μm, a fineness of 1.5 de, and a total fineness of 1,500 de to obtain para-aramid fibers.
비교예 1: 파라-아라미드 섬유의 제조Comparative Example 1: Preparation of para-aramid fibers
상기 합성예 1에서 얻은 PPTA를 99 중량%의 황산에 전체 중량 대비 20 중량%로 용해시켜 방사 도프를 준비하였다.A spinning dope was prepared by dissolving the PPTA obtained in Synthesis Example 1 in 99% by weight of sulfuric acid at 20% by weight based on the total weight.
상기 방사 도프를 방사 구금을 이용하여 방사한 후 에어 갭을 거쳐 5 ℃의 10 중량% 황산 용액이 담겨있는 응고조를 통과시켰다. 계속해서 상기 응고조 하부의 응고 튜브를 통과시키면서 응고된 필라멘트들을 얻었다.The spinning dope was spun using a spinneret, and then passed through an air gap through a coagulation tank containing 10 wt% sulfuric acid solution at 5 °C. Subsequently, while passing the coagulation tube under the coagulation bath, coagulated filaments were obtained.
상기 응고된 필라멘트들을 물로 수세하여 상기 필라멘트 상에 잔존하는 황산을 제거하고, 180 ℃에서 5 초 동안 건조시켰다. 이후 건조된 필라멘트를 보빈에 권취함으로써 모노필라멘트의 표면조도는 0.09 ㎛이고, 섬도는 1.5 de이며, 총 섬도는 1,500 de인 파라-아라미드 섬유를 얻었다.The coagulated filaments were washed with water to remove sulfuric acid remaining on the filaments, and dried at 180° C. for 5 seconds. Then, by winding the dried filament on a bobbin, the monofilament had a surface roughness of 0.09 μm, a fineness of 1.5 de, and a total fineness of 1,500 de to obtain para-aramid fibers.
비교예 2: 파라-아라미드 섬유의 제조Comparative Example 2: Preparation of para-aramid fibers
상기 비교예 1의 방사 도프에 PPTA의 중량 대비 1.0 중량%의 실리카 입자(평균 입경 0.8 ㎛)를 첨가한 것을 제외하고, 상기 비교예 1과 동일한 방법으로 모노필라멘트의 표면조도는 0.6 ㎛이고, 섬도 1.5 de, 총 섬도 1,500 de의 파라-아라미드 섬유를 얻었다.The surface roughness of the monofilament was 0.6 μm in the same manner as in Comparative Example 1, except that 1.0% by weight of silica particles (average particle diameter 0.8 μm) based on the weight of PPTA was added to the spinning dope of Comparative Example 1, and fineness A para-aramid fiber of 1.5 de and a total fineness of 1,500 de was obtained.
시험예: 파라-아라미드 섬유의 물성 평가Test Example: Evaluation of physical properties of para-aramid fibers
상기 실시예 및 비교예에서 얻어진 파라-아라미드 섬유의 물성을 하기 기재된 방법에 따라 측정하고 그 결과를 표 1에 기재하였다. The physical properties of the para-aramid fibers obtained in Examples and Comparative Examples were measured according to the method described below, and the results are shown in Table 1.
(1) 섬도 (denier, de)(1) fineness (denier, de)
섬도는 9000 m 사의 중량 (g)으로 표시되는 denier (de)로서 ASTM D 1577에 따라 측정되었다. Fineness was measured according to ASTM D 1577 as denier (de) expressed in grams (g) by weight of 9000 m yarn.
(2) 인장 강도(g/d)(2) Tensile strength (g/d)
실시예 및 비교예를 통해 제조된 파라-아라미드 섬유를 250 mm의 길이로 잘라 샘플을 준비하고, 상기 샘플을 55 %의 상대 습도 및 23 ℃의 온도에서 14 시간 동안 보관하였다. Para-aramid fibers prepared in Examples and Comparative Examples were cut to a length of 250 mm to prepare a sample, and the sample was stored at a relative humidity of 55% and a temperature of 23° C. for 14 hours.
이어서, ASTM D885 표준 시험법에 따라 상기 샘플을 INSTRON사의 시험기(Instron Engineering Corp, Canton, Mass)에 장착한 후 섬유의 한 쪽은 고정하고 초하중을 섬도의 1/30 g (섬도 X 1/30 g)으로 설정한 후 다른 한 쪽을 25 mm/min의 속도로 인장시켜 섬유가 끊어질 때의 인장 하중(g)을 측정하였다. 상기 측정된 인장 하중을 섬도로 나누어 강도(g/d)를 구하였다. Then, according to the ASTM D885 standard test method, the sample was mounted on INSTRON's testing machine (Instron Engineering Corp, Canton, Mass), one side of the fiber was fixed, and a superload was applied to 1/30 g of the fineness (fineness X 1/30) g), the other side was tensioned at a speed of 25 mm/min, and the tensile load (g) when the fiber was broken was measured. The strength (g/d) was obtained by dividing the measured tensile load by the fineness.
(3) 고무 접착력(kgf)(3) Rubber adhesion (kgf)
상기 실시예 및 비교예에서 얻어진 파라-아라미드 섬유를 각각 동일한 방법으로 에폭시 용액에 딥핑한 후 건조하여 시료들을 준비하였다. 상기 시료들에 대해 ASTM D 4776-98의 표준 시험법에 의거한 H-Test를 수행하여 고무 접착력(kgf)을 측정하였다.The para-aramid fibers obtained in Examples and Comparative Examples were respectively dipped in an epoxy solution in the same manner and dried to prepare samples. H-Test based on the standard test method of ASTM D 4776-98 was performed on the samples to measure rubber adhesion (kgf).
실시예 1Example 1 비교예 1Comparative Example 1 비교예 2Comparative Example 2
인장 강도(g/d)Tensile strength (g/d) 2828 2626 2323
고무 접착력(kgf)Rubber adhesion (kgf) 1818 1414 1313
상기 표 1을 참고하면, 상기 실시예에 따른 파라-아라미드 섬유는 상기 비교예 1 및 2에 따른 섬유 대비 우수한 인장강도를 나타내면서도 향상된 고무 접착력을 갖는 것으로 확인되었다.Referring to Table 1, it was confirmed that the para-aramid fibers according to the examples exhibited superior tensile strength compared to the fibers according to Comparative Examples 1 and 2 and had improved rubber adhesion.

Claims (17)

  1. 수용성 고분자 입자 및 금속 염 입자로 이루어진 군에서 선택된 1 종 이상의 입자상 첨가제와 방향족 폴리아미드 중합체를 포함하는 방사 도프를 제조하는 단계; preparing a spinning dope comprising at least one particulate additive selected from the group consisting of water-soluble polymer particles and metal salt particles and an aromatic polyamide polymer;
    상기 방사 도프를 필라멘트 형태로 방사하는 단계; spinning the spinning dope in the form of a filament;
    상기 방사된 도프를 응고 및 수세하여 상기 방사된 도프의 표면으로부터 상기 입자상 첨가제의 탈락에 의한 표면 요철을 갖는 필라멘트를 얻는 단계; 및 coagulating and washing the spun dope to obtain a filament having surface irregularities due to detachment of the particulate additive from the surface of the spun dope; and
    상기 표면 요철을 갖는 필라멘트를 가교제로 처리하는 단계를 포함하는, 파라-아라미드 섬유의 제조 방법. A method for producing a para-aramid fiber, comprising the step of treating the filament having the surface asperity with a crosslinking agent.
  2. 제 1 항에 있어서, 상기 방사 도프에 포함된 방향족 폴리아미드 중합체는 폴리(파라-페닐렌 테레프탈아미드)인, 파라-아라미드 섬유의 제조 방법.The method for producing para-aramid fibers according to claim 1, wherein the aromatic polyamide polymer contained in the spinning dope is poly(para-phenylene terephthalamide).
  3. 제 1 항에 있어서, 상기 수용성 고분자 입자는 폴리비닐알코올 수지 입자인, 파라-아라미드 섬유의 제조 방법.The method of claim 1, wherein the water-soluble polymer particles are polyvinyl alcohol resin particles.
  4. 제 1 항에 있어서, 상기 금속 염 입자는 황산 철(Fe2(SO4)3) 입자 및 황산 알루미늄(Al2(SO4)3)으로 이루어진 군에서 선택된 1 종 이상의 입자인, 파라-아라미드 섬유의 제조 방법.The para-aramid fiber according to claim 1, wherein the metal salt particles are at least one particle selected from the group consisting of iron sulfate (Fe 2 (SO 4 ) 3 ) particles and aluminum sulfate (Al 2 (SO 4 ) 3 ). manufacturing method.
  5. 제 1 항에 있어서, 상기 입자상 첨가제는 0.01 내지 1 ㎛의 평균 입경을 가지는, 파라-아라미드 섬유의 제조 방법.The method of claim 1 , wherein the particulate additive has an average particle diameter of 0.01 to 1 μm.
  6. 제 1 항에 있어서, 상기 입자상 첨가제는 상기 방사 도프에 포함된 방향족 폴리아미드 중합체의 중량에 대하여 0.01 내지 5.0 중량%의 함량으로 상기 방사 도프에 포함되는, 파라-아라미드 섬유의 제조 방법.The method according to claim 1, wherein the particulate additive is included in the spinning dope in an amount of 0.01 to 5.0% by weight based on the weight of the aromatic polyamide polymer included in the spinning dope.
  7. 제 1 항에 있어서, 상기 가교제는 방향족 디무수물, 방향족 디아민, 방향족 디에시드 할라이드 또는 이들의 혼합물인, 파라-아라미드 섬유의 제조 방법.The method according to claim 1, wherein the crosslinking agent is an aromatic dianhydride, an aromatic diamine, an aromatic diecide halide, or a mixture thereof.
  8. 제 7 항에 있어서, 상기 방향족 디무수물로는 피로멜리틱 디언하이드라이드, 벤조페논 테트라카르복실산 디무수물, 3,3'4,4'-비페닐테트라카르복실산 디무수물, 4,4'-(헥사플루오로이소프로필리덴) 디프탈릭 언하이드라이드, 4,4'-옥시디프탈릭 언하이드라이드, 2,3,6,7-나프탈렌 테트라카르복실산 디무수물 및 3,3',4,4'-디페닐설폰테트라카르복실산 디무수물로 이루어진 군에서 선택된 1 종 이상을 사용하는, 파라-아라미드 섬유의 제조 방법. 8. The method according to claim 7, wherein the aromatic dianhydride includes pyromellitic dianhydride, benzophenone tetracarboxylic acid dianhydride, 3,3'4,4'-biphenyltetracarboxylic acid dianhydride, 4,4' - (hexafluoroisopropylidene) diphthalic anhydride, 4,4'-oxydiphthalic anhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride and 3,3',4; A method for producing para-aramid fibers using at least one selected from the group consisting of 4'-diphenylsulfonetetracarboxylic acid dianhydride.
  9. 제 7 항에 있어서, 상기 방향족 디아민으로는 p-페닐렌디아민, 4,4'-옥시디아닐린, 4,4'-디아미노비페닐, 2,6-나프탈렌디아민, 1,5-나프탈렌디아민 및 4,4'-디아미노벤즈아닐리드로 이루어진 군에서 선택된 1 종 이상을 사용하는, 파라-아라미드 섬유의 제조 방법. The method of claim 7, wherein the aromatic diamine is p-phenylenediamine, 4,4'-oxydianiline, 4,4'-diaminobiphenyl, 2,6-naphthalenediamine, 1,5-naphthalenediamine and A method of producing para-aramid fibers using at least one selected from the group consisting of 4,4'-diaminobenzanilide.
  10. 제 7 항에 있어서, 상기 방향족 디에시드 할라이드로는 테레프탈로일 디클로라이드, [1,1'-비페닐]-4,4'-디카르보닐 디클로라이드, 4,4'-옥시비스(벤조일 클로라이드), 나프탈렌-2,6-디카르보닐 디클로라이드 및 나프탈렌-1,5-디카르보닐 디클로라이드로 이루어진 군에서 선택된 1 종 이상을 사용하는, 파라-아라미드 섬유의 제조 방법.8. The method according to claim 7, wherein the aromatic diecide halide is terephthaloyl dichloride, [1,1'-biphenyl]-4,4'-dicarbonyl dichloride, 4,4'-oxybis(benzoyl chloride) ), using at least one selected from the group consisting of naphthalene-2,6-dicarbonyl dichloride and naphthalene-1,5-dicarbonyl dichloride, para-aramid fiber manufacturing method.
  11. 제 1 항에 있어서, 상기 가교제로 처리하는 단계는 표면 요철을 갖는 필라멘트를 가교제를 포함하는 용액에 침지시켰다가 꺼내는 디핑 방식, 또는 표면 요철을 갖는 필라멘트에 가교제를 포함하는 용액을 분사하는 스프레이 방식에 의해 수행되는, 파라-아라미드 섬유의 제조 방법.According to claim 1, wherein the treating with the crosslinking agent is a dipping method in which a filament having surface irregularities is immersed in a solution containing a crosslinking agent and then taken out, or a spray method in which a solution containing a crosslinking agent is sprayed on the filament having surface unevenness. A method for producing para-aramid fibers, which is carried out by
  12. 제 11 항에 있어서, 상기 가교제를 포함하는 용액은 가교제 용액 전체 중량에 대하여 1 내지 20 중량%의 가교제를 포함하는, 파라-아라미드 섬유의 제조 방법.The method of claim 11 , wherein the solution containing the crosslinking agent contains 1 to 20% by weight of the crosslinking agent based on the total weight of the crosslinking agent solution.
  13. 제 11 항에 있어서, 상기 가교제로 처리하는 단계에서 상기 가교제를 포함하는 용액은 30 내지 70 ℃의 온도로 유지되는, 파라-아라미드 섬유의 제조 방법.12. The method of claim 11, wherein in the step of treating with the crosslinking agent, the solution containing the crosslinking agent is maintained at a temperature of 30 to 70 °C.
  14. 방향족 폴리아미드 중합체로 형성된 모노필라멘트를 포함하며, a monofilament formed of an aromatic polyamide polymer;
    상기 모노필라멘트는 0.1 ㎛ 초과의 표면 조도를 가지고, wherein the monofilament has a surface roughness of greater than 0.1 μm;
    상기 적어도 2 이상의 모노필라멘트가 가교 결합을 통해 연결된, 파라-아라미드 섬유. Para-aramid fiber, wherein said at least two or more monofilaments are connected via cross-linking.
  15. 제 14 항에 있어서, 상기 모노필라멘트의 표면 조도는 0.1 ㎛ 초과 1.0 ㎛ 이하인, 파라-아라미드 섬유. 15. The para-aramid fiber according to claim 14, wherein the monofilament has a surface roughness of greater than 0.1 μm and less than or equal to 1.0 μm.
  16. 제 14 항에 있어서, 상기 모노필라멘트는 1.0 내지 2.5 de의 섬도를 가지는, 파라-아라미드 섬유.15. The para-aramid fiber of claim 14, wherein the monofilament has a fineness of 1.0 to 2.5 de.
  17. 제 14 항에 있어서, 상기 파라-아라미드 섬유는 복수의 모노필라멘트들을 포함하고 600 내지 10,000 de의 총 섬도를 가지는, 파라-아라미드 섬유.15. The para-aramid fiber of claim 14, wherein the para-aramid fiber comprises a plurality of monofilaments and has a total fineness of 600 to 10,000 de.
PCT/KR2021/019985 2020-12-29 2021-12-28 Method for producing para-aramid fibers, and para-aramid produced therefrom WO2022145940A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200186067A KR102432899B1 (en) 2020-12-29 2020-12-29 Method for producing para-aramid fibers and para-aramid fibers producted thereform
KR10-2020-0186067 2020-12-29

Publications (1)

Publication Number Publication Date
WO2022145940A1 true WO2022145940A1 (en) 2022-07-07

Family

ID=82259752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019985 WO2022145940A1 (en) 2020-12-29 2021-12-28 Method for producing para-aramid fibers, and para-aramid produced therefrom

Country Status (2)

Country Link
KR (1) KR102432899B1 (en)
WO (1) WO2022145940A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115951A (en) * 2002-09-26 2004-04-15 Japan Vilene Co Ltd Method for producing surface porous fiber and fiber sheet and surface porous fiber and fiber sheet
KR20100105157A (en) * 2009-03-20 2010-09-29 주식회사 휴비스 Process of producing nano size meta-aramid fibrils
KR20110035206A (en) * 2009-09-30 2011-04-06 코오롱인더스트리 주식회사 Aramid fiber and method for manufacturing the same
JP2011252238A (en) * 2010-05-31 2011-12-15 Teijin Techno Products Ltd Porous para-type wholly aromatic polyamide fiber
JP2013112919A (en) * 2011-11-30 2013-06-10 Teijin Ltd Para-type wholly aromatic polyamide fiber
JP2020147861A (en) * 2019-03-12 2020-09-17 帝人株式会社 Para-type fully aromatic polyamide fiber, and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080062507A (en) * 2006-12-29 2008-07-03 주식회사 효성 Process for preparation of p-aramid fiber with an excellent anti-fatigueness

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115951A (en) * 2002-09-26 2004-04-15 Japan Vilene Co Ltd Method for producing surface porous fiber and fiber sheet and surface porous fiber and fiber sheet
KR20100105157A (en) * 2009-03-20 2010-09-29 주식회사 휴비스 Process of producing nano size meta-aramid fibrils
KR20110035206A (en) * 2009-09-30 2011-04-06 코오롱인더스트리 주식회사 Aramid fiber and method for manufacturing the same
JP2011252238A (en) * 2010-05-31 2011-12-15 Teijin Techno Products Ltd Porous para-type wholly aromatic polyamide fiber
JP2013112919A (en) * 2011-11-30 2013-06-10 Teijin Ltd Para-type wholly aromatic polyamide fiber
JP2020147861A (en) * 2019-03-12 2020-09-17 帝人株式会社 Para-type fully aromatic polyamide fiber, and method for producing the same

Also Published As

Publication number Publication date
KR102432899B1 (en) 2022-08-12
KR20220094642A (en) 2022-07-06
KR102432899B9 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
US6569366B1 (en) Process for producing meta-type wholly aromatic polyamide filaments
WO2014069853A1 (en) Aramid fiber product with excellent conductivity and method of manufacturing the same
WO2020226243A1 (en) Method for producing polyimide film and polyimide film produced thereby
WO2016028078A1 (en) High-strength copolymerized aramid fiber and preparing method therefor
WO2009145446A1 (en) Para-aramid fiber and method of preparing the same
WO2022145940A1 (en) Method for producing para-aramid fibers, and para-aramid produced therefrom
JP6917027B2 (en) Polyimide fiber and its manufacturing method
KR101587048B1 (en) Method of manufacturing copolymerized aramid fiber and copolymerized aramid fiber thereby
KR101432874B1 (en) Aramid Fiber and Method for Manufacturing The Same
KR20220094641A (en) Method for producing para-aramid fibers and para-aramid fibers producted thereform
KR20220043691A (en) Method for producing para-aramid fibers and para-aramid fibers producted thereform
KR20200076027A (en) Copolymerized aramid fiber with excellent strength and elongation and method of manufacturing for the same
JPH0447048B2 (en)
CN113462155B (en) Fiber master batch and melt-spun fiber
KR20210085015A (en) Method for producing para-aramid fibers
JPH08504007A (en) Low denier polybenzazole fiber and method for producing the same
KR20120066182A (en) Method for manufacturing aramid fiber
EP0770714A1 (en) Polyamide-imide fibers for a bug filter
KR101140468B1 (en) Preparing method of aramid and aramid filament and film manufactured using thereof
JPH0455613B2 (en)
KR20220094640A (en) Method for producing para-aramid fibers and para-aramid fibers producted thereform
EP4299804A1 (en) Heat-resistant high-toughness fiber, production method therefor, and heat-resistant high-toughness film
KR20230104023A (en) Manufacturing method for aramid copolymer and copolymerized aramid fiber
WO2019013504A2 (en) Highly functional copolymerized aramid fiber and method for preparing same
JPH10279680A (en) Heat-resistant resin, molded item therof, fiber for bag filter, and production of fiber for bag filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915738

Country of ref document: EP

Kind code of ref document: A1