JPH0447048B2 - - Google Patents

Info

Publication number
JPH0447048B2
JPH0447048B2 JP21807085A JP21807085A JPH0447048B2 JP H0447048 B2 JPH0447048 B2 JP H0447048B2 JP 21807085 A JP21807085 A JP 21807085A JP 21807085 A JP21807085 A JP 21807085A JP H0447048 B2 JPH0447048 B2 JP H0447048B2
Authority
JP
Japan
Prior art keywords
solution
stretched
cyclization
acid
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21807085A
Other languages
Japanese (ja)
Other versions
JPS6277921A (en
Inventor
Toshikazu Matsuda
Keiko Sakazaki
Takuma Kanda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP21807085A priority Critical patent/JPS6277921A/en
Publication of JPS6277921A publication Critical patent/JPS6277921A/en
Publication of JPH0447048B2 publication Critical patent/JPH0447048B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Artificial Filaments (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は高強度・高弾性率であり、しかも耐熱
性の極めて優れた新規な全芳香族コポリイミド一
軸配向品に関するものである。 [従来の技術] 全芳香族コポリイミドは有機ポリマの中で最高
級の耐熱性を有しており、その特徴と生かしてす
でにフイルムなどの成型品で実用化されている
が、それら既存製品の力学特性はごくありふれた
ものであり、強度や弾性率は決して高くない。高
弾性率のポリイミド成型品を得た例として繊維で
は特公昭57−37687号公報に剛直性芳香族ジアミ
ンと特定の芳香族テトラカルボン酸二無水物から
なるポリアミド酸の溶液を湿式紡糸、延伸後、加
熱してイミド基に環化させる方法が示されている
が、得られた繊維の力学特性はあまり優れたもの
ではない。また、特開昭60−65112号公報にはジ
アミン成分が3,3′−ジメチルベンジジンであ
り、また、酸無水物成分が無水ピロメリト酸(A)と
3,3′,4,4′−ビフエニルテトラカルボン酸二
無水物(B)の特定の割合の混合物からなる高強度・
高弾性率繊維が開示されている。同公報では当該
ポリイミドをフエノール系溶媒に溶かした溶液を
原液に用いエタノール凝固浴に湿式紡糸し、つい
で熱延伸してポリイミド繊維を得ているが、以下
の問題がある。すなわち、ジアミン成分に3,
3′−ジメチルベンジジンを用いているため、生成
ポリイミドは核メチル置換体であり、ポリイミド
本来の優れた耐熱性がかなり損われている。 [発明が解決しようとする問題点] したがつて、高強度・高弾性率であり、しかも
耐熱性の極めて優れた繊維や一軸延伸フイルムは
特に望ましいものである。本発明者らは上記諸特
性をもつ一軸配向品を目標に鋭意検討した結果、
特定の芳香族ジアミンあるいはその混合物と2種
類の特定の芳香族テトラカルボン酸二無水物の混
合物からなる全芳香族コポリイミドがこの目的に
適していることを見出し本発明に到達した。 [問題点を解決するための手段] 本発明の成型品は、ジアミン成分がp−フエニ
レンジアミン、2−クロル−p−フエニレンジア
ミン、ベンジジン、2−クロルベンジジンおよび
2,2′−ジクロルベンジジンの中から選ばれた少
なくとも1種からなり、酸無水物成分が無水ピロ
メリト酸(A)と3,3′,4,4′−ビフエニルテトラ
カルボン酸二無水物からなる全芳香族コポリイミ
ドであつて、酸無水物成分中の前記(A)の比率が約
90〜20モル%であることを特徴とする全芳香族コ
ポリイミド一軸配向品である。 以下、本発明を詳細に説明する。 本発明の全芳香族コポリイミド一軸配向品は極
めて優れた力学特性を有する。繊維を例にとる
と、強度15g/d以上、弾性率900g/d以上であ
る。また、一軸延伸フイルムは延伸方向の強度50
Kg/mm2以上、弾性率500Kg/mm2以上である。また、
耐熱性、耐薬品性も極めて高く、多くの用途に有
用である。 本発明のコポリイミドは既述の特開昭60−
65112号公報記載のそれとは違つて、一旦つくつ
てしまうとそれを溶かす溶剤がない。そこで、ま
ず、有機溶剤に可溶な前駆重合体であるポリアミ
ド酸をつくり、その段階で賦型加工した後、適当
な手段を用いてイミド基に環化させねばならな
い。したがつて、まず、ポリアミド酸の製造方法
について説明する。本発明で用いる芳香族ジアミ
ンはp−フエニレンジアミン、2−クロル−p−
フエニレンジアミン、ベンジジン、2−クロルベ
ンジジンおよび2,2′−ジクロルベンジジンの中
から選ばれた少なくとも1種である。それらは単
独で用いてもよいし、また、2種以上の混合物で
もかまわない。その場合の混合比率は任意であ
る。一方、酸無水物としては無水ピロメリト酸(A)
および3,3′,4,4′−ビフエニルテトラカルボ
ン酸二無水物(B)を用いる。酸無水物成分中の(A)の
比率は約90〜20モル%であり、この範囲外では一
般には高性能の成型品が得られない。たとえば、
酸無水物成分が(B)単独からなるポリイミドは強度
はともかく、弾性率の点で本発明のコポリイミド
には及ばない。 本発明で用いるモノマは既述のとおりである
が、約10モル%までの他のモノマを共重合させて
もかまわない。かかる共重合成分としてジアミン
ではm−フエニレンジアミン、4,4′−ジアミノ
−p−ターフエニル、2,1−ジアミノフルオレ
ン、2,6−ジアミノナフタリン、4,4′−ジア
ミノジフエニルエーテル、3,4′−ジアミノジフ
エニルエーテル、1,4−ビス(p−アミノフエ
ノキシ)ベンゼンなどがある。また、酸無水物成
分としては、3,3′,4,4′−ジフエニルエーテ
ルテトラカルボン酸二無水物、3,3′,4,4′−
ベンゾフエノンテトラカルボン酸二無水物などが
挙げられる。 上記のジアミンもしくはその混合物をアミド系
溶媒に溶解させ、ついでジアミン成分と実質的に
等モルの上述の酸無水物の混合物を加えて重縮合
させると前駆重合体であるポリアミド酸の溶液が
得られる。生成するポリアミド酸の固有粘度(測
定法は後述)は0.7以上、好ましくは1.2以上であ
る。重合に用いるアミド系溶媒としては、N−メ
チルピロリドン(NMP)、N,N−ジメチルア
セトアミド、N,N−ジメチルホルムアミドなど
がある。 かくして得たポリアミド酸の溶液を用いて次に
繊維、フイルム、テープなどに成型する。その方
法は大別して湿式法と乾式法があるが、まず、湿
式法から説明する。湿式法で用いる原液は上記の
ポリアミド酸溶液そのものでもよいが、本発明者
らが先に特願昭58−27068号で提案した、アミド
酸単位の一部を化学環化剤を使つて溶液中で環化
させた、部分環化ポリマ溶液を用いる方が透明
な、ボイドのない成型品を与えるのでより好まし
い。かかる環化剤としては酸無水物、無水プロピ
オン酸などの脂肪族酸無水物が適している。その
添加量はアミド酸単位に対して約0.1当量〜0.4当
量である。この化学環化には、ピリジン、3−メ
チルピリジン、3,5−ルチジン、キノリンなど
の有機塩基を触媒として用いてもよい。その添加
量は特に限定されない。 上記のポリアミド酸溶液あるいはアミド酸の一
部をイミド基に環化させたポリマ溶液をオリフイ
ス、スリツトダイなどを通じて水系凝固浴中に押
し出す。あるいは平面の板の上に流延して水系凝
固浴中に浸漬する。凝固浴としては水、重合溶媒
の水溶液あるいは無機塩の水溶液のいずれでもよ
いが、重合溶媒の回収の容易さからみて、同じ溶
媒の水溶液がもつとも好ましい。凝固浴温は0〜
50℃が適当である。凝固した成型品は引続いて延
伸してもよい。この延伸は水洗を兼ねて水中で行
なつてもよいし、また空気中で延伸してもかまわ
ない。延伸温度は10〜90℃が好適であり、また延
伸倍率は1.2〜3.0倍である。 未延伸あるいは延伸した凝固成型品はそのまま
乾燥し、ついで熱環化に供するか、あるいは膨潤
したまま化学環化剤で処理しアミド酸をイミド基
に閉環させる。後者の場合に用いる環化剤および
触媒は、上記の溶液中での部分環化に使用する薬
品と同じであり、特に無水酢酸−ピリジンの組み
合せが好適である。なお、凝固成型品を化学環化
させる前に、活性水素をもたない、水と混ざる有
機溶剤で洗つて成型品中の水を抽出除去してもよ
い。かかる溶剤としてアセトン、テトラヒドロフ
ラン、ジオキサンなどが適している。また、化学
環化時に他の有機溶剤を希釈剤として用いてもよ
い。かかる希釈剤としてはジオキサン、ベンゼ
ン、トルエン、クロロホルム、四塩化炭素、アセ
トニトリルなどがある。化学環化の処理条件は温
度15〜50℃、また、処理時間は10分から1日ある
いはそれ以上である。化学環化させた成型品はつ
ぎに乾燥するが、その前に環化剤を除去すべく有
機溶剤で洗つてもよい。かかる洗浄剤としては上
記の希釈剤が適している。化学環化させた成型品
は環化剤あるいは洗浄剤で湿つたまま、なお延伸
する余地があれば延伸してもよい。また、NMP
のような膨潤剤に浸漬後、延伸してもかまわな
い。この場合、脱溶媒を兼ねて水中で延伸するの
が好ましく、延伸温度は20〜100℃、また、延伸
倍率は1.03〜1.3倍である。 化学環化させた、あるいは化学環化させない凝
固成型品はついで乾燥する。乾燥は熱風乾燥、真
空乾燥あるいは加熱ドラムなどを用いる連続式乾
燥のいずれを採用してもよい。 乾燥した成型品は最後に熱延伸もしくは熱処理
に供する。化学環化させていない成型品は、この
工程でアミド酸がイミド基に熱環化する。ポリア
ミド酸の成型品の段階で延伸していない場合は、
この工程で必ず延伸しなければならない。加熱手
段としては熱板あるいは加熱筒のいずれを用いて
もよい。あるいはボビンまたはドラムに巻いたま
まバツチ式で熱処理してもかまわない。また、熱
延伸もしくは熱処理は段階的に温度を上げて実施
してもよく、処理温度は最終的に400℃以上が好
ましい。また、その雰囲気は空気あるいは窒素な
どの不活性ガスである。 つぎに乾式成型について説明する。この場合も
重合して得たポリアミド酸溶液をそのまま原液に
用いる方法と、実質的に環化が起こらないような
温度条件(10℃以下)で化学環化剤を加えたポリ
マ溶液を用いる方法がある。後者の場合、フイル
ムなどの形状に成型後、環化が起こる温度に上げ
てゲル化させ、形態保持性を与える。用いる化学
環化剤は湿式成型の部で述べたものと同じであ
り、その添加量はアミド酸当量に対し1.0〜3.0倍
が好ましい。 化学環化剤を加えた、あるいは加えないポリア
ミド酸溶液を平面の板の上に流延するか、あるい
はスリツトダイを通じてベルトまたはドラム上に
押し出してフイルム状に成型することができる。
ついで温度を上げて溶媒を蒸発させるとともに熱
環化を進める。化学環化剤を加えた溶液の場合に
は既述のように溶媒の蒸発よりも環化が先行す
る。また、ポリアミド酸溶液を口金を通じて高温
の空気流中に吐出し繊維をつくることもできる。
かくして得た繊維、フイルムなどの成型品はつい
で延伸しなければならない。延伸は溶媒の一部が
残つている状態で実施してもよいし、また、溶媒
を完全に蒸発させた後、行なつてもよい。一般に
は、前者の方がより低温で延伸可能なので操作上
やりやすい。この熱延伸および熱処理の処方は既
述の湿式成型品の場合とまつたく同じである。 [発明の効果] 本発明の全芳香族コポリイミド一軸配向品は優
れた力学特性を有する。繊維の場合、強度15g/
d以上、弾性率900g/d以上であり、また一軸延
伸フイルムでは延伸方向の強度50Kg/mm2以上、弾
性率5000Kg/mm2以上である。また、耐熱性、耐薬
品性も極めて高い。したがつて、多くの用途に有
用であり、たとえば繊維はゴム、樹脂などの補強
用に使うことができる。また、一軸延伸フイルム
はそれを積層して構造材に用いることもできる。 [実施例] 以下の実施例および比較例により、本発明をさ
らに詳細に説明する。 例中のポリアミド酸の固有粘度(ηioh)はポリ
マ0.5g/溶媒100mlの割合になるよう、ポリマ溶
液をNMPで希釈して25℃で測定したものであ
る。 また、引張特性は東洋ボールドウイン(株)製テン
シロンを用いて測定した。繊維の場合、試料は単
糸であり、試長100mm、引張速度10mm/minであ
る。また、フイルムでは試料幅5mm、試長100mm、
引張速度10mm/minの条件で測定した。なお、装
置系のコンプライアンスの影響は無視した。 実施例 1 本実施例はジアミン成分がp−フエニレンジア
ミンであり、酸無水物成分が無水ピロメリト酸
(PMDA)40モル%と3,3′4,4′−ビフエニルテ
トラカルボン酸二無水物(BPDA)60モル%か
らなるコポリイミドの製糸結果(化学環化法)を
示す。 脱水したNMP139mlにp−フエニレンジアミ
ン4.109g(38ミリモル)を溶解させ、乳鉢でよ
く粉砕して混合したPMDA3.332g(15.3ミリモ
ル)とBPDA6.742g(22.9ミリモル)を加えて
重合させ、ηioh3.82、ポリマ濃度10.0%のポリア
ミド酸溶液を得た。この溶液にNMP71mlを加え
て希釈し、氷水で冷却し、撹拌下に無水酢酸1.56
g(アミド酸単位の0.2当量)、ピリジン1.21gお
よびNMP2mlからなる混合物を約30分かけて滴
下し、ついで25℃で5時間反応を続け、ポリマ濃
度6.5%、溶液粘度500Poiseの部分環化ポリアミ
ド酸溶液を得た。 この溶液を0.1mmφ、6ホールの口金から
NMP/水(容積比25/75)からなる25℃の凝固
浴中に紡糸し(紡糸速度10m/min)、ついで25
℃の水中で2.0倍に延伸した。この凝固糸条をガ
ラスボビンに巻いたままただちに無水酢酸/ピリ
ジン(容積比70/30)に浸漬し、室温で一夜放置
して化学環化を進めた。この化学環化糸をトルエ
ンに90分浸漬し、100℃で真空乾燥後、窒素をゆ
るく通した長さ30cmのガラス製円筒管を用い、
575℃で4.0倍に延伸した(給糸速度3.0m/min)。
この熱延伸糸の糸質は単糸繊度1.1d、強度19.6
g/d、伸度2.4%、弾性率980g/dであり、極めて
高強度・高弾性率であつた。 比較例 1 本比較例はp−フエニレンジアミンとPMDA
からなるホモポリイミドの製糸結果(化学環化
法)を示す。 NMP中でp−フエニレンジアミンとPMDAを
重合させ、ポリマ濃度6.5%、ηioh3.58のポリアミ
ド酸溶液をつくり、ついでアミド酸単位の0.2当
量の無水酢酸およびピリジンを添加し、ポリマ濃
度6.3%、溶液粘度560Poiseの部分環化ポリマ溶
液を得た。 この溶液を実施例1と同じ装置で湿式紡糸し、
25℃の水中で1.6倍に延伸後、室温の無水酢酸/
ピリジン(70/30)に一夜浸漬して化学環化させ
た。さらにトルエン置換後、巻きなおして真空乾
燥した。これを757℃で1.1倍に延伸して得た繊維
の糸質は単糸繊度2.3d、強度7.3g/d、伸度0.8%、
弾性率980g/dであり、実施例1のコポリイミド
繊維に比べて極めて低強度であつた。 実施例 2 本実施例はジアミン成分が2,2−ジクロルベ
ンジジン(Di−Cl−Bz)であり、酸無水物成分
がPMDA80モル%、BPDA20モル%からなるコ
ポリイミドの製糸結果(化学環化法および熱環化
法)と乾式熱環化法による一軸延伸フイルムの製
膜結果を示す。 NMP中でDi−Cl−Bz、PMDAおよびBPDA
を上記比率で重合させ、ポリマ濃度14.0%、ηioh
2.85のポリアミド酸溶液を得た。ついで、アミド
酸単位の0.3当量の無水酢酸およびピリジン、さ
らに適当量のNMPを添加し、ポリマ濃度9.0%、
溶液粘度5000Poiseの部分環化ポリマ溶液を得た。
この溶液を実施例1と同じ処方で湿式紡糸し、25
℃の水中で1.4倍に延伸した。この凝固糸条(A)を
室温の無水酢酸/ピリジン(70/30)に一夜浸漬
して化学環化させ、トルエン置換後、真空乾燥し
た。この化学環化糸を窒素中、450℃で2.3倍に延
伸し(B)、さらに525℃で1.1倍に延伸した(C)。各延
伸糸の糸質は以下のとおりであつた。
[Industrial Application Field] The present invention relates to a novel wholly aromatic copolyimide uniaxially oriented product that has high strength, high modulus of elasticity, and extremely excellent heat resistance. [Conventional technology] Fully aromatic copolyimide has the highest heat resistance among organic polymers, and has already been put to practical use in molded products such as films by taking advantage of this characteristic. Its mechanical properties are very ordinary, and its strength and elastic modulus are never high. As an example of obtaining polyimide molded products with high elastic modulus, in the case of fibers, a solution of polyamic acid consisting of a rigid aromatic diamine and a specific aromatic tetracarboxylic dianhydride is wet-spun, stretched, and then , a method of heating to cyclize into imide groups has been proposed, but the mechanical properties of the resulting fibers are not very good. In addition, in JP-A-60-65112, the diamine component is 3,3'-dimethylbenzidine, and the acid anhydride component is pyromellitic anhydride (A) and 3,3',4,4'-bifurinated acid anhydride. A high-strength compound consisting of a mixture of enyltetracarboxylic dianhydride (B) in a specific proportion.
High modulus fibers are disclosed. In this publication, a solution of the polyimide dissolved in a phenolic solvent is used as a stock solution, wet-spun in an ethanol coagulation bath, and then hot stretched to obtain polyimide fibers, but there are the following problems. In other words, the diamine component contains 3,
Since 3'-dimethylbenzidine is used, the polyimide produced is a nuclear methyl substituted product, and the excellent heat resistance inherent to polyimide is considerably impaired. [Problems to be Solved by the Invention] Therefore, fibers and uniaxially stretched films that have high strength, high elastic modulus, and extremely excellent heat resistance are particularly desirable. As a result of intensive research aimed at creating a uniaxially oriented product with the above characteristics, the present inventors found that
The inventors have discovered that a wholly aromatic copolyimide consisting of a specific aromatic diamine or a mixture thereof and a mixture of two specific aromatic tetracarboxylic dianhydrides is suitable for this purpose, and has thus arrived at the present invention. [Means for Solving the Problems] In the molded product of the present invention, the diamine component is p-phenylenediamine, 2-chloro-p-phenylenediamine, benzidine, 2-chlorobenzidine, and 2,2'-dichloro A wholly aromatic copolyimide consisting of at least one selected from benzidine, the acid anhydride component being pyromellitic anhydride (A) and 3,3',4,4'-biphenyltetracarboxylic dianhydride and the ratio of the above (A) in the acid anhydride component is about
This is a fully aromatic copolyimide uniaxially oriented product characterized by a content of 90 to 20 mol%. The present invention will be explained in detail below. The wholly aromatic copolyimide uniaxially oriented product of the present invention has extremely excellent mechanical properties. Taking fiber as an example, it has a strength of 15 g/d or more and an elastic modulus of 900 g/d or more. In addition, the uniaxially stretched film has a strength of 50 in the stretching direction.
Kg/mm 2 or more, elastic modulus 500 Kg/mm 2 or more. Also,
It also has extremely high heat resistance and chemical resistance, making it useful for many uses. The copolyimide of the present invention is disclosed in Japanese Patent Application Laid-Open No.
Unlike the one described in Publication No. 65112, there is no solvent to dissolve it once it has been formed. Therefore, first, polyamic acid, which is a precursor polymer soluble in an organic solvent, must be prepared, and after being subjected to shaping processing at that stage, it must be cyclized into an imide group using an appropriate means. Therefore, first, the method for producing polyamic acid will be explained. The aromatic diamine used in the present invention is p-phenylenediamine, 2-chloro-p-
At least one selected from phenylenediamine, benzidine, 2-chlorobenzidine and 2,2'-dichlorobenzidine. They may be used alone or in a mixture of two or more. In that case, the mixing ratio is arbitrary. On the other hand, as an acid anhydride, pyromellitic anhydride (A)
and 3,3',4,4'-biphenyltetracarboxylic dianhydride (B). The ratio of (A) in the acid anhydride component is about 90 to 20 mol%, and molded products with high performance cannot generally be obtained outside this range. for example,
A polyimide consisting of (B) alone as an acid anhydride component is inferior to the copolyimide of the present invention in terms of elastic modulus, regardless of its strength. The monomers used in the present invention are as described above, but up to about 10 mol% of other monomers may be copolymerized. Such copolymerization components include m-phenylenediamine, 4,4'-diamino-p-terphenyl, 2,1-diaminofluorene, 2,6-diaminonaphthalene, 4,4'-diaminodiphenyl ether, 3, Examples include 4'-diaminodiphenyl ether and 1,4-bis(p-aminophenoxy)benzene. In addition, as the acid anhydride component, 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-
Examples include benzophenonetetracarboxylic dianhydride. A solution of polyamic acid, which is a precursor polymer, is obtained by dissolving the above diamine or a mixture thereof in an amide solvent, and then adding a mixture of the above acid anhydride in substantially equimolar amounts to the diamine component and causing polycondensation. . The intrinsic viscosity of the polyamic acid produced (the measurement method will be described later) is 0.7 or more, preferably 1.2 or more. Examples of amide solvents used in polymerization include N-methylpyrrolidone (NMP), N,N-dimethylacetamide, and N,N-dimethylformamide. The polyamic acid solution thus obtained is then molded into fibers, films, tapes, etc. The methods can be broadly divided into wet methods and dry methods, but the wet method will be explained first. The stock solution used in the wet method may be the above-mentioned polyamic acid solution itself, but as previously proposed by the present inventors in Japanese Patent Application No. 58-27068, a part of the amic acid unit is added to the solution using a chemical cyclizing agent. It is more preferable to use a partially cyclized polymer solution which has been cyclized with . As such a cyclizing agent, acid anhydrides and aliphatic acid anhydrides such as propionic anhydride are suitable. The amount added is about 0.1 equivalent to 0.4 equivalent relative to the amic acid unit. For this chemical cyclization, an organic base such as pyridine, 3-methylpyridine, 3,5-lutidine, or quinoline may be used as a catalyst. The amount added is not particularly limited. The above polyamic acid solution or a polymer solution in which a portion of the amic acid is cyclized into imide groups is extruded into an aqueous coagulation bath through an orifice, a slit die, or the like. Alternatively, it is cast onto a flat plate and immersed in an aqueous coagulation bath. The coagulation bath may be water, an aqueous solution of a polymerization solvent, or an aqueous solution of an inorganic salt, but from the viewpoint of ease of recovery of the polymerization solvent, an aqueous solution of the same solvent is preferred. Coagulation bath temperature is 0~
50℃ is suitable. The solidified molded article may subsequently be stretched. This stretching may be carried out in water, which also serves as washing, or may be carried out in air. The stretching temperature is preferably 10 to 90°C, and the stretching ratio is 1.2 to 3.0 times. The unstretched or stretched solidified molded product is dried as it is and then subjected to thermal cyclization, or treated while swollen with a chemical cyclizing agent to close the amic acid to an imide group. The cyclizing agent and catalyst used in the latter case are the same as those used for the partial cyclization in solution, and the combination of acetic anhydride and pyridine is particularly suitable. Note that, before the solidified molded product is subjected to chemical cyclization, water in the molded product may be extracted and removed by washing with an organic solvent that does not contain active hydrogen and is miscible with water. Suitable solvents include acetone, tetrahydrofuran, dioxane, and the like. Further, other organic solvents may be used as diluents during chemical cyclization. Such diluents include dioxane, benzene, toluene, chloroform, carbon tetrachloride, acetonitrile, and the like. The treatment conditions for chemical cyclization are a temperature of 15 to 50°C, and a treatment time of 10 minutes to 1 day or more. The chemically cyclized molded article is then dried, but before drying, it may be washed with an organic solvent to remove the cyclizing agent. The above-mentioned diluents are suitable as such cleaning agents. The chemically cyclized molded product may be stretched while still wet with the cyclizing agent or cleaning agent, if there is still room for stretching. Also, NMP
It may be stretched after being immersed in a swelling agent such as. In this case, it is preferable to stretch in water to also remove the solvent, and the stretching temperature is 20 to 100°C, and the stretching ratio is 1.03 to 1.3 times. The solidified molded product, with or without chemical cyclization, is then dried. For drying, any of hot air drying, vacuum drying, or continuous drying using a heated drum or the like may be employed. The dried molded product is finally subjected to hot stretching or heat treatment. In molded products that have not been chemically cyclized, the amic acid is thermally cyclized to imide groups in this step. If polyamic acid is not stretched at the molded product stage,
Stretching must be done in this process. As the heating means, either a hot plate or a heating tube may be used. Alternatively, it may be heat-treated in batches while wound on a bobbin or drum. Further, hot stretching or heat treatment may be carried out by raising the temperature stepwise, and the final treatment temperature is preferably 400° C. or higher. Further, the atmosphere is air or an inert gas such as nitrogen. Next, dry molding will be explained. In this case as well, there are two methods: one is to use the polyamic acid solution obtained by polymerization as a stock solution, and the other is to use a polymer solution to which a chemical cyclizing agent has been added under temperature conditions (below 10°C) where cyclization does not substantially occur. be. In the latter case, after being formed into a shape such as a film, the temperature is raised to a temperature at which cyclization occurs to cause gelation and form retention. The chemical cyclizing agent used is the same as that described in the wet molding section, and the amount added is preferably 1.0 to 3.0 times the amount of amic acid equivalent. Polyamic acid solutions with or without chemical cyclizing agents can be cast onto a flat plate or extruded through a slit die onto a belt or drum to form a film.
Then, the temperature is raised to evaporate the solvent and proceed with thermal cyclization. In the case of a solution containing a chemical cyclizing agent, cyclization precedes evaporation of the solvent, as described above. Fibers can also be produced by discharging a polyamic acid solution into a hot air stream through a die.
The thus obtained molded articles, such as fibers and films, must then be stretched. Stretching may be carried out with some of the solvent remaining, or may be carried out after the solvent has been completely evaporated. Generally, the former method is easier to operate because it can be stretched at a lower temperature. The recipe for hot stretching and heat treatment is exactly the same as for the wet molded product described above. [Effects of the Invention] The fully aromatic copolyimide uniaxially oriented product of the present invention has excellent mechanical properties. In the case of fiber, the strength is 15g/
In the case of a uniaxially stretched film, the strength in the stretching direction is 50 Kg/mm 2 or more and the elastic modulus is 5000 Kg/mm 2 or more. It also has extremely high heat resistance and chemical resistance. Therefore, they are useful in many applications, for example the fibers can be used to reinforce rubbers, resins, etc. In addition, uniaxially stretched films can also be used as structural materials by laminating them. [Example] The present invention will be explained in more detail with the following Examples and Comparative Examples. The intrinsic viscosity (η ioh ) of the polyamic acid in the example was measured at 25°C after diluting the polymer solution with NMP to a ratio of 0.5 g of polymer/100 ml of solvent. Further, the tensile properties were measured using Tensilon manufactured by Toyo Baldwin Co., Ltd. In the case of fibers, the sample is a single yarn with a sample length of 100 mm and a tensile speed of 10 mm/min. In addition, for film, the sample width is 5 mm, the sample length is 100 mm,
Measurement was performed at a tensile speed of 10 mm/min. Note that the influence of equipment compliance was ignored. Example 1 In this example, the diamine component was p-phenylene diamine, and the acid anhydride components were 40 mol% of pyromellitic anhydride (PMDA) and 3,3'4,4'-biphenyltetracarboxylic dianhydride. The results of spinning a copolyimide (chemical cyclization method) consisting of 60 mol% (BPDA) are shown. 4.109 g (38 mmol) of p-phenylenediamine was dissolved in 139 ml of dehydrated NMP, and 3.332 g (15.3 mmol) of PMDA and 6.742 g (22.9 mmol) of BPDA, which had been thoroughly ground and mixed in a mortar, were added and polymerized, resulting in η ioh 3.82, a polyamic acid solution with a polymer concentration of 10.0% was obtained. This solution was diluted by adding 71 ml of NMP, cooled with ice water, and mixed with 1.56 ml of acetic anhydride while stirring.
(0.2 equivalents of amic acid units), 1.21 g of pyridine, and 2 ml of NMP were added dropwise over about 30 minutes, and the reaction was then continued at 25°C for 5 hours to form a partially cyclized polyamide with a polymer concentration of 6.5% and a solution viscosity of 500 Poise. An acid solution was obtained. Pour this solution through a 0.1mmφ, 6-hole cap.
Spun in a 25°C coagulation bath consisting of NMP/water (volume ratio 25/75) (spinning speed 10 m/min), then 25°C
It was stretched 2.0 times in water at ℃. This coagulated thread, wound around a glass bobbin, was immediately immersed in acetic anhydride/pyridine (volume ratio 70/30) and left overnight at room temperature to proceed with chemical cyclization. This chemically cyclized thread was immersed in toluene for 90 minutes, dried under vacuum at 100°C, and then placed in a 30cm long glass cylindrical tube through which nitrogen was loosely passed.
It was stretched 4.0 times at 575°C (yarn feeding speed 3.0 m/min).
The yarn quality of this hot-drawn yarn is a single yarn fineness of 1.1d and a strength of 19.6.
g/d, elongation 2.4%, and elastic modulus 980 g/d, indicating extremely high strength and high elastic modulus. Comparative Example 1 This comparative example uses p-phenylenediamine and PMDA.
The results of spinning homopolyimide (chemical cyclization method) are shown below. p-phenylenediamine and PMDA were polymerized in NMP to create a polyamic acid solution with a polymer concentration of 6.5% and η ioh 3.58, and then acetic anhydride and pyridine in an amount of 0.2 equivalents of the amic acid unit were added, resulting in a polymer concentration of 6.3% and A partially cyclized polymer solution with a solution viscosity of 560 Poise was obtained. This solution was wet-spun using the same equipment as in Example 1,
After stretching 1.6 times in water at 25℃, acetic anhydride at room temperature/
Chemical cyclization was performed by soaking in pyridine (70/30) overnight. After further replacing with toluene, it was re-rolled and vacuum-dried. The quality of the fiber obtained by drawing this 1.1 times at 757℃ has a single yarn fineness of 2.3d, a strength of 7.3g/d, and an elongation of 0.8%.
The elastic modulus was 980 g/d, and the strength was extremely low compared to the copolyimide fiber of Example 1. Example 2 In this example, the diamine component is 2,2-dichlorobenzidine (Di-Cl-Bz), and the acid anhydride components are PMDA 80 mol% and BPDA 20 mol%. The results of forming uniaxially stretched films using the dry thermal cyclization method and the dry thermal cyclization method are shown below. Di−Cl−Bz, PMDA and BPDA in NMP
was polymerized at the above ratio, polymer concentration 14.0%, η ioh
A polyamic acid solution of 2.85% was obtained. Next, 0.3 equivalents of amic acid units of acetic anhydride and pyridine, and an appropriate amount of NMP were added to give a polymer concentration of 9.0%.
A partially cyclized polymer solution with a solution viscosity of 5000 Poise was obtained.
This solution was wet-spun using the same recipe as in Example 1, and
It was stretched 1.4 times in water at ℃. This coagulated thread (A) was immersed overnight in acetic anhydride/pyridine (70/30) at room temperature for chemical cyclization, replaced with toluene, and then dried in vacuum. This chemically cyclized yarn was stretched 2.3 times at 450°C in nitrogen (B), and further stretched 1.1 times at 525°C (C). The yarn quality of each drawn yarn was as follows.

【表】 一方、上記凝固糸条(A)を60℃で30分間、真空乾
燥後、200℃の熱板を用いて1.13倍に延伸し、ガ
ラスボビンに巻いたまま、オーブン中、210℃で
10分、ついで280℃で30分間処理して熱環化を進
めた。この熱環化糸を窒素中、400℃で定長処理
し(D)、さらに500℃で処理し(E)、最後に525℃で定
長処理した(F)。処理時間はいずれも6秒である。
各段階の熱処理系の糸質は以下にまとめ記した。
[Table] On the other hand, the above coagulated yarn (A) was dried in vacuum at 60℃ for 30 minutes, stretched to 1.13 times using a hot plate at 200℃, and heated in an oven at 210℃ while being wound around a glass bobbin.
Thermal cyclization was proceeded by treatment at 280°C for 10 minutes and then 30 minutes at 280°C. This thermocyclized yarn was subjected to constant length treatment at 400°C in nitrogen (D), further treated at 500°C (E), and finally constant length treatment at 525°C (F). The processing time was 6 seconds in both cases.
The fiber quality of the heat treatment system at each stage is summarized below.

【表】 次に、一軸延伸フイルムの製膜結果を記す。 上述の部分環化ポリマ溶液をポリマ濃度5.5%
に希釈後、ガラス板上に流延し、オーブン中、90
℃で20分加熱してポリマ濃度66%のフイルムを得
た。このフイルムをガラス板上からはがし135mm
幅に切断後、手動延伸機を用いて200℃の空気中
で1.27倍に延伸した。この一軸延伸フイルムを長
さ140mm、幅75mmのアルミ枠に固定し、オーブン
中、210℃で10分、280℃で30分さらに420℃で3
分間熱処理した。この熱処理フイルム(9μ厚)
の延伸方向の引張特性は強度94Kg/mm2、伸度1.0
%、弾性率10600Kg/mm2と極めて高性能であつた。 実施例 3 本実施例はジアミン成分がペンジジン(Bz)
30モル%、Di−Cl−BZ70モル%であり、酸無水
物成分がPMDA90モル%、BPDA10モル%から
なるコポリイミドの化学環化法による製糸結果を
示す。 NMP中でBZ、Di−Cl−BZ、PMDAおよび
BPDAを上記割合で重合させηioh2.51のポリアミ
ド酸をつくり、ついでアミド酸単位の0.25当量の
無水酢酸およびピリジン、さらに適当量のNMP
を添加してポリマ濃度8.5%、溶液粘度1380Poise
の部分環化ポリマ溶液を得た。この溶液を実施例
1と同じ装置で湿式紡糸し、25℃の水中で1.5倍
に延伸後、室温の無水酢酸/ピリジン(70/30)
に浸漬し、トルエン置換後、真空乾燥した。この
化学環化糸を窒素下、550℃で3.1倍に延伸して得
た繊維の糸質は単糸繊度1.3d、強度23.3g/d、伸
度1.9%、弾性率1410g/dであつた。
[Table] Next, the results of forming the uniaxially stretched film are described. Add the above partially cyclized polymer solution to a polymer concentration of 5.5%.
After dilution, cast onto a glass plate and heat in an oven for 90
A film with a polymer concentration of 66% was obtained by heating at ℃ for 20 minutes. Peel off this film from the glass plate 135mm
After cutting to width, it was stretched 1.27 times in air at 200°C using a manual stretching machine. This uniaxially stretched film was fixed to an aluminum frame with a length of 140 mm and a width of 75 mm, and was placed in an oven at 210°C for 10 minutes, 280°C for 30 minutes, and 420°C for 3 minutes.
Heat treated for minutes. This heat treated film (9μ thickness)
The tensile properties in the stretching direction are strength 94Kg/mm 2 and elongation 1.0.
%, and the elastic modulus was 10,600 Kg/mm 2 , showing extremely high performance. Example 3 In this example, the diamine component was penzidine (Bz).
30 mol%, Di-Cl-BZ 70 mol%, acid anhydride components include PMDA 90 mol% and BPDA 10 mol%. BZ, Di−Cl−BZ, PMDA and
Polyamic acid with η ioh 2.51 is produced by polymerizing BPDA at the above ratio, and then acetic anhydride and pyridine in an amount of 0.25 equivalents of the amic acid unit, and an appropriate amount of NMP are added.
was added to make the polymer concentration 8.5% and the solution viscosity 1380Poise.
A partially cyclized polymer solution was obtained. This solution was wet-spun using the same equipment as in Example 1, stretched 1.5 times in water at 25°C, and then acetic anhydride/pyridine (70/30) at room temperature.
After replacing with toluene, it was vacuum dried. This chemically cyclized yarn was drawn 3.1 times at 550°C under nitrogen, and the fiber quality was 1.3 d, strength 23.3 g/d, elongation 1.9%, and elastic modulus 1410 g/d. .

Claims (1)

【特許請求の範囲】[Claims] 1 ジアミン成分がp−フエニレンジアミン、2
−クロル−p−フエニレンジアミン、ベンジジ
ン、2−クロルベンジジンおよび2,2′−ジクロ
ルベンジジンの中から選ばれた少なくとも1種か
らなり、酸無水物成分が無水ピロメリト酸(A)と
3,3′,4,4′−ビフエニルテトラカルボン酸二
無水物からなる全芳香族コポリイミドであつて、
酸無水物成分中の前記(A)の比率が90〜20モル%で
あることを特徴とする全芳香族コポリイミド一軸
配向品。
1 The diamine component is p-phenylenediamine, 2
-Chloro-p-phenylenediamine, benzidine, 2-chlorobenzidine, and 2,2'-dichlorobenzidine, and the acid anhydride component is pyromellitic anhydride (A) and 3, A wholly aromatic copolyimide consisting of 3',4,4'-biphenyltetracarboxylic dianhydride,
A uniaxially oriented wholly aromatic copolyimide product, characterized in that the ratio of the above (A) in the acid anhydride component is 90 to 20 mol%.
JP21807085A 1985-10-02 1985-10-02 Fully aromatic copolyimide monoaxially oriented article Granted JPS6277921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21807085A JPS6277921A (en) 1985-10-02 1985-10-02 Fully aromatic copolyimide monoaxially oriented article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21807085A JPS6277921A (en) 1985-10-02 1985-10-02 Fully aromatic copolyimide monoaxially oriented article

Publications (2)

Publication Number Publication Date
JPS6277921A JPS6277921A (en) 1987-04-10
JPH0447048B2 true JPH0447048B2 (en) 1992-07-31

Family

ID=16714174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21807085A Granted JPS6277921A (en) 1985-10-02 1985-10-02 Fully aromatic copolyimide monoaxially oriented article

Country Status (1)

Country Link
JP (1) JPS6277921A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655432B2 (en) * 1986-03-14 1994-07-27 宇部興産株式会社 High physical property polyimide stretch-molded article and method for producing the same
JP2511987B2 (en) * 1987-07-15 1996-07-03 鐘淵化学工業株式会社 Aromatic polyimide polymer molded article manufacturing method
JPH0742611B2 (en) * 1988-04-11 1995-05-10 帝人株式会社 Polyimide fiber
ATE356166T1 (en) 2000-04-20 2007-03-15 Teijin Ltd POLYIMIDE FILM AND METHOD FOR PRODUCING THE SAME
AU2003303671A1 (en) * 2003-01-08 2004-08-10 Teijin Limited Process for producing polyimide film
KR101646283B1 (en) * 2011-12-27 2016-08-08 코오롱인더스트리 주식회사 Polyamic acid solution

Also Published As

Publication number Publication date
JPS6277921A (en) 1987-04-10

Similar Documents

Publication Publication Date Title
US5231162A (en) Polyamic acid having three-dimensional network molecular structure, polyimide obtained therefrom and process for the preparation thereof
US3242136A (en) Ammonium salts of aromatic polyamideacids and process for preparing polyimides therefrom
JPH0447048B2 (en)
US4530993A (en) Poly 2,2'-dichloro-4,4'-biphenylene pyromellitimide film
JPH0140125B2 (en)
EP0418889B1 (en) Polyamic acid having three-dimensional network molecular structure, polyimide obtained therefrom and process for the preparation thereof
JPH0418115A (en) Production of polyimide fiber
JPH0134534B2 (en)
JPH036174B2 (en)
JPH0450404B2 (en)
JPS63230739A (en) Uniaxially oriented wholly aromatic copolyester-imide molding
JPS63230738A (en) Uniaxially oriented polyester-imide molding
JPH01260015A (en) Production of high-elastic modulus fiber
JPH0455613B2 (en)
JPH03146524A (en) Preparation of polyimide film
JPS636028A (en) Preparation of polyimide molding
JPH03287815A (en) Production of polyimide fiber
JPH01292120A (en) Production of chemically cyclized polyimide fiber
JP2728495B2 (en) Manufacturing method of copolyimide fiber
JPH01113434A (en) Preparation of molded item of polyimide precursor
JP2695233B2 (en) Manufacturing method of copolyimide fiber
JPH0742611B2 (en) Polyimide fiber
JPS63211319A (en) Polyimide yarn
JPS63315211A (en) Manufacture of polyimide film
RU2062276C1 (en) Method for production of polyamide acid solution for molding of fibers

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term