WO2022145834A1 - Power saving method and system by determining operation pattern of energy harvesting sensor - Google Patents

Power saving method and system by determining operation pattern of energy harvesting sensor Download PDF

Info

Publication number
WO2022145834A1
WO2022145834A1 PCT/KR2021/019291 KR2021019291W WO2022145834A1 WO 2022145834 A1 WO2022145834 A1 WO 2022145834A1 KR 2021019291 W KR2021019291 W KR 2021019291W WO 2022145834 A1 WO2022145834 A1 WO 2022145834A1
Authority
WO
WIPO (PCT)
Prior art keywords
operation pattern
sensing device
sensor
power
sensor module
Prior art date
Application number
PCT/KR2021/019291
Other languages
French (fr)
Korean (ko)
Inventor
김용호
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Publication of WO2022145834A1 publication Critical patent/WO2022145834A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/001Energy harvesting or scavenging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to a method and system for saving power by determining an operation pattern of an energy harvesting sensor, and more particularly, to a method and system for reducing an operation pattern through power measurement in a wireless sensor module composed of a plurality of sensing devices that consume a lot of energy.
  • a wireless sensor module determines an operation pattern in a server based on power consumption information consumed during a period in which a sensor device operates, and reduces power consumption without compromising the quality of data collected from the wireless sensor module It relates to a power management system and method capable of doing so.
  • the wireless sensor module transmits data generated from a sensing device to a server for storage and analysis.
  • the wireless sensor module uses a battery or an energy harvester, there is inevitably a problem with respect to the finiteness of power.
  • the smart sensor periodically transmits the data collected by the wireless sensor to the central data collection center.
  • Energy harvesting refers to a method in which power supplied from a harvesting source such as sunlight, vibration, or heat source is stored in a battery or supercapacitor, etc. do.
  • An object of the present invention to achieve for the above problems relates to a method for determining an operation pattern and power management through power measurement in a wireless sensor module composed of a plurality of sensing devices that consume a large amount of energy, wherein the wireless sensor module is a sensor device
  • the server determines the operation pattern and monitors the battery voltage/current for each operation cycle of the energy harvesting-based smart sensor to estimate SoH, which was impossible in the existing simple OCV method, and SoC estimation It aims to increase the accuracy of the sensor and reduce the battery maintenance/management cost of the sensor through SoH estimation in the server, enabling power consumption to be reduced without compromising the quality of data collected from the wireless sensor module.
  • a power saving method through determining an operation pattern of an energy harvesting sensor includes one or more sensing devices, power consumption measuring sensors, MCUs, and RF Blocks.
  • the sensor module collects the data by extracting an energy consumption pattern through current consumption measurement in the measurement process of the sensing device sending to a server;
  • the data collection server collects voltage and current data and energy consumption patterns measured by the sensing device through wireless communication and storing the data in the database;
  • the operation pattern control server based on the predicted result, determining the operation pattern for each power state of the sensing device managed by the sensor according to the importance
  • the sensor module samples and measures the current supplied during the initialization period and the operation period of the sensing device during one cycle of the measurement process of the sensing device.
  • the sensor module detects an error of the sensing device by measuring the amount of power consumed by the sensing device during the initialization period of the sensing device.
  • the operation pattern control server estimates the SoC of the battery by analyzing power consumption information according to the operation pattern of the sensing device, and predicts energy harvestable through energy harvesting.
  • step (C) the operation pattern control server estimates the SoH of the battery from the battery voltage drop according to the increase in power consumption in the process of estimating the SoC of the battery.
  • the operation pattern control server determines the operation pattern for each power state of the sensing device managed by the sensor according to the importance of the sensing device information based on the predicted result, and sets the operation pattern to a plurality of sensors. passed to the module.
  • the operation pattern control server In the step (D), the operation pattern control server generates, as an operation pattern table, an operation pattern for each power state of the sensing device managed by the sensor according to the importance of the sensing device information based on the predicted result, and the operation The pattern table is transmitted to the sensor module.
  • step (E) the sensor module controls the unit operation of each of the one or more sensing devices according to the operation pattern table of the sensing device.
  • step (E) the sensor module manages the power supply, such as turning on the power of the sensing device in the MCU to collect data or turning off the power to not collect data according to the received operation pattern of the sensing device. .
  • the power saving system by determining the operation pattern of the energy harvesting sensor, the sensor module for measuring the voltage and current that change for each operation period of the sensor step by step; a data collection server that collects voltage and current data measured by the sensor module through wireless communication; an operation pattern control server that analyzes the voltage and current data to predict battery life and energy harvesting, and determines an operation pattern of the sensor module according to the prediction to control the operation of the sensor module; and a database for storing voltage and current data collected by the data collection server and battery life and energy harvesting predicted values predicted by the operation pattern control server.
  • the sensor module may include one or more sensing devices for measuring data; a power consumption measuring sensor for measuring power consumption during operation of the sensing device; an MCU (Micro Control Unit) that collects data and controls the operation of the sensor according to the operation pattern of the sensing device received from the operation pattern control server; and an RF Block for receiving data transmitted from the operation pattern control server.
  • MCU Micro Control Unit
  • the sensor module measures current sampling and data supplied to the sensing device during an initialization period and an operation period for one cycle of the measurement process of the sensing device, and measures the amount of power consumed by the sensing device during the initialization period of the sensing device It detects the error of the sensing device through
  • the operation pattern control server may include: a server analysis unit that analyzes power consumption according to an operation pattern of the sensing device through the voltage and current data; a server prediction unit that predicts energy harvesters and batteries; An operation pattern determination unit that determines an operation pattern for each power state of the sensing device according to the importance of information of the sensing device based on the power consumption analyzed by the server analysis unit and the prediction results of the energy harvester and the battery predicted by the server prediction unit ; and a server transmitter configured to transmit the determined operation pattern for each power state of the sensing device to the sensor module.
  • the server analysis unit calculates power consumption and voltage fluctuation values based on the voltage and current data according to a unit operation of the sensing device.
  • the server prediction unit estimates the SoC of the battery by analyzing the power consumption information according to the operation pattern of the sensing device, and estimates the SoH of the battery from the battery voltage drop according to the increase in power consumption in the process of estimating the SoC of the battery, It predicts the power consumed by each sensing device and the power that can be charged by the energy harvester.
  • the operation pattern determination unit based on the power consumption analyzed by the server analysis unit and the prediction results of the energy harvester and the battery predicted by the server prediction unit, the power state of the sensing device managed by the sensor according to the importance of the information of the sensing device
  • Each operation pattern is generated as an operation pattern table, and the operation pattern table is transmitted to the sensor module.
  • the sensor module according to the operation pattern of the sensing device received from the operation pattern control server, the MCU manages the power supply, such as turning on the power of the sensing device to collect data or turning off the power to not collect data.
  • the wireless sensor module determines the operation pattern in the server based on the power consumption information consumed during the operation period of the sensor device, and controls the existing sensing cycle by operating the sensing device according to the operation pattern for each sensor module. Therefore, compared to the method of reducing the power of the sensor, it is possible to minimize the deterioration of the quality of data collection while reducing the power.
  • the wireless sensor module determines the operation pattern in the server based on the power consumption information consumed during the operation period of the sensor device, thereby monitoring the battery voltage/current for each operation cycle of the energy harvesting-based smart sensor. Accuracy of SoC and SoH is improved by acquiring voltage/current information for each operating state compared to estimation, and SoH estimation is possible through voltage drop measurement after operation is finished. It is possible to reduce the management cost.
  • FIG. 1 is a flowchart of a power saving method by determining an operation pattern of an energy harvesting sensor according to an embodiment of the present invention
  • FIG. 2 is a flowchart illustrating a power saving method by determining an operation pattern of an energy harvesting sensor according to an embodiment of the present invention
  • FIG. 3 is a block diagram illustrating a power saving method by determining an operation pattern of an energy harvesting sensor according to an embodiment of the present invention
  • FIG. 6 is a graph showing a change in power consumption according to a sensing device operation for each operation pattern
  • FIG. 7 is a configuration diagram of a power saving system through determination of an operation pattern of an energy harvesting sensor according to an embodiment of the present invention
  • FIG. 8 is a block diagram of a sensor module
  • FIG. 9 is a detailed configuration diagram of the power consumption prediction unit of FIG. 7 .
  • server prediction unit 321 SoC estimation unit
  • any element, component, device, or system includes a component consisting of a program or software, even if not explicitly stated, that element, component, device, or system means that the program or software is executed.
  • terms such as 'OO unit', 'OO unit', and 'module' described in this specification mean a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software.
  • articles such as 'a', 'a' and 'the' in the context of describing the present invention include both the singular and the plural unless otherwise indicated herein or clearly contradicted by the context in the context of describing the present invention. can be used
  • FIG. 1 is a flowchart of a power saving method by determining an operation pattern of an energy harvesting sensor according to an embodiment of the present invention.
  • the power saving method by determining the operation pattern of the energy harvesting sensor includes (A) measuring current consumption and extracting energy consumption pattern (S100), (B) collecting measured data to store in the database step (S200), (C) power consumption analysis by operation pattern and power consumption prediction step (S300) of the energy harvester and battery (S300), (D) operation pattern determination step (S400), (E) determined by power state It includes a sensor operation control step (S500) according to the operation pattern.
  • the sensor module 100 mainly refers to a wireless sensor module capable of wireless communication.
  • step (S100) the sensor module 100 extracts an energy consumption pattern through current consumption measurement in the measurement process of the sensing device and transmits it to the data collection server 200 .
  • the sensor module 100 samples the current supplied during the initialization period and the operation period of the sensing device 110 during one cycle of the measurement process of the sensing device 110 , and measures data.
  • step (S100) the sensor module 100, during the initialization period of the sensing device 110, the power consumption measuring sensor 120 is sensed by measuring the amount of power consumed by the sensing device 110 Detect device errors.
  • the sensing device 110 samples the current supplied during the initialization period and the operation period of the sensing device in the data measurement process for one cycle, and the power consumption measuring sensor 120 consumes the sensing device 110 during operation. The resulting power is measured for each operation period of the sensor.
  • step (S100) the sensor module 100 transmits the measured data to the data collection server 200 through a communication unit such as a transmission block.
  • the measured data may include measured voltage and current data and power consumption consumed in the measurement process of the sensing device 110 .
  • step (S200) the data collection server 200 collects the voltage and current data and the energy consumption pattern measured by the sensing device 110 through wireless communication and stores it in the database 400 .
  • the operation pattern control server 300 analyzes the power consumption according to the operation pattern of the sensing device 110 through the measured voltage and current data and the energy consumption pattern, and the energy harvester and predicting power consumption of the battery.
  • step S300 the operation pattern control server 300 estimates the SoC of the battery by analyzing power consumption information according to the operation pattern of the sensing device, and predicts energy harvestable through energy harvesting.
  • step (C) (S300) the operation pattern control server 300 estimates the SoH of the battery from the battery voltage drop according to the increase in power consumption in the process of estimating the SoC of the battery.
  • state of charge (SoC) and state of health (SoH) of the battery represent the state of the battery.
  • SoC and SoH values of the battery can be estimated from the power consumption and voltage drop of the battery.
  • the estimated SoC and SoH values of the battery are stored in the database 400 .
  • the importance of the information of the sensing device 110 means the importance of the information sensed by the sensing device 110 because it is possible to determine whether to operate for each operation period according to the importance of the data sensed by the sensing device 10 .
  • the sensed data may include any one or more of wind direction, wind speed, temperature, humidity, dust, atmospheric pressure, and gas concentration.
  • the operation pattern for each power state of the sensing device 110 may be an operation pattern table for each sensor module.
  • the operation pattern table may include operation patterns of each individual sensor or sensing device for each sensor module.
  • step S400 the operation pattern control server 300 determines the operation pattern for each power state of the sensing device 110 and transmits the operation pattern to the sensor module 100 .
  • step (S400) the operation pattern control server 300 determines a control value to control the operation of the sensing device (110).
  • step (S500) the sensor module 100 receives the operation pattern through the RF Block 140 corresponding to the communication unit of the sensor module 100, the received operation pattern of the sensing device (110) Accordingly, the MCU 130 controls the operation of the sensor.
  • step (E) the sensor module 100 turns on the power of the sensing device 110 in the MCU 130 according to the received operation pattern of the sensing device 110 to collect data or turn on the power. It manages the power supply, such as turning it off and not collecting data.
  • the sensor module 100 may control the sensing device 110 according to the received operation pattern table.
  • step (E) (S500) the MCU 130 of the sensor module 100 determines whether to operate the sensing device 110 according to the control value received from the operation pattern control server 300 .
  • step (S400) the operation pattern control server 300 may transmit the operation pattern of the sensing device 110 to the plurality of sensor modules 100, in this case (E) in step (S500), the sensing device Individual sensing devices 110 installed in a plurality of wireless sensor modules 100 that have received the operation pattern of 110 may be controlled.
  • FIG. 2 is a flowchart illustrating a power saving method by determining an operation pattern of an energy harvesting sensor according to an embodiment of the present invention.
  • the data flow and each operation method between the sensor module 100 , the data collection server 200 , the operation pattern control server 300 , and the database 400 may be illustrated.
  • step (S100) the sensor module 100 extracts the energy consumption pattern through (A1) consumption current measurement (S110), (A2) the energy consumption pattern data collection server 200 and transmitting to (S120).
  • step (S110) the sensor module 100 samples the current supplied during the initialization period and the operation period of the sensing device 110 in the process of measuring data for one period in the sensing device 110, Data is measured, and during the initialization period of the sensing device 110 , the power consumption measuring sensor 120 detects an error of the sensing device by measuring the amount of power consumed by the sensing device 110 .
  • step (A1) (S110) the MCU 130 extracts the energy consumption pattern of the sensing device 110 through the measured current consumption information.
  • Such an energy consumption pattern may include, for example, an energy consumption pattern during a data measurement period including a standby mode, a warm-up, an operating mode, and a standby mode again.
  • step (A2) (S120) the sensor module 100 transmits the energy consumption pattern extracted in step (A1) (S110) to the data collection server 200 through a communication unit such as a transmission block.
  • the data collection server 200 collects the voltage and current data and the energy consumption pattern measured from the sensor module 100 , and stores it in the database 400 (B) step (S200). proceed
  • the operation pattern control server 300 performs (D) step (S400) through (C) step (S300).
  • step S310 the operation pattern control server 300 analyzes the received voltage and current data to calculate power consumption and voltage fluctuation values, and analyzes power consumption and voltage fluctuation values to estimate SoC and SoH Through this, the power consumption for each operation stage of the sensing device can be predicted, and the chargeable power of the energy harvester, that is, the energy harvestable through energy harvesting can be predicted.
  • step (C2) in step (S320) the operation pattern control server 300 stores the generated SoC and SoH values of the battery in the database (400).
  • An operation pattern for each power state of the sensing device 110 managed by the sensor is determined according to the importance of information.
  • step (D2) (S420) the operation pattern control server 300 transmits the operation pattern for each power state of the sensing device 110 determined in step (D1) (S410) to the sensor module.
  • the sensor module 100 controls the sensor according to the operation pattern for each power state of the sensing device 110 received through the RF Block 140 corresponding to the communication unit of the sensor module 100 (E) step (S500) carry out
  • step S500 the MCU 130 of the sensor module 100 performs the operation of the sensing device 110 based on the operation pattern for each power state of the sensing device 110 received by the RF Block 140. control
  • FIG. 3 is a block diagram illustrating a power saving method by determining an operation pattern of an energy harvesting sensor according to an embodiment of the present invention.
  • step (A) step (S100), (B) step (S200), (C) step (S300) , (D) step (S400) is made sequentially.
  • the operation pattern of the sensing device determined in step (D) (S400) is ID1, . . . , IDm, and one or more sensor devices 110 included in each sensor module 100 are S1, S2, S3, ... , Sn, the sensor device 110 to be operated is displayed in a bright color, and the sensor device 110 not to be operated is displayed in a dark color, and the operation pattern of this sensing device is a plurality of sensor modules ( 100) in the form of an operation pattern table expressing the operation pattern.
  • FIG. 4 is a graph showing a change in power consumption according to an operation of a sensing device.
  • the sensor module 100 includes four sensing devices 110 including sensing device 1 , sensing device 2 , sensing device 3 , and sensing device 4 , Sleep, Warming -up), operation, and in the operation cycle of the sensor proceeding to sleep again, power consumption according to the passage of time may be represented as shown in FIG. 4 .
  • the MCU 130 is prepared, and thereafter, the individual sensing devices 1, 2, 3, and 4 are sequentially prepared (warming-up) and operated (data access), and then wireless communication.
  • the sensor data is transmitted to the data collection server 200 through the standby mode (Sleep).
  • the sensing device 3 has relatively low power consumption and the sensing device 4 has relatively high power consumption.
  • 5 is an exemplary diagram of an operation pattern table for each sensor module.
  • the operation pattern table in which the operation pattern determined in step (D) is expressed may be represented as follows.
  • ID1, ID2, ID3, and ID4 described in the first column on the left represent IDs of the respective sensor modules 100 .
  • 1, 2, 3, and 4 described in the right row indicate the number of each individual sensor, that is, the sensing device 110 .
  • sensing device 1 may measure a wind direction
  • sensing device 2 may measure wind speed
  • sensing device 3 may measure temperature
  • sensing device 4 may measure humidity
  • the operation of the sensing device 110 may be controlled such as an operation pattern according to the power consumption analysis according to the unit operation of the sensing device 110 and the prediction of battery and energy harvesting.
  • the operation pattern control server 300 generates and transmits an operation pattern for each wireless sensor module so that the occurrence of data quality deterioration is minimized by designating operation patterns for each wireless sensor module when the battery state is generally deteriorated.
  • the operation pattern control server 300 controls the operation pattern of the sensing device to collect the entire data when the remaining amount of the battery collected through energy harvesting is at a level that the sensor can allow.
  • FIG. 6 is a graph showing a change in power consumption according to an operation of a sensing device for each operation pattern.
  • FIG. 6-(a) shows the power consumption of the wireless sensor module 1 that may correspond to ID1 of FIG. 5, and all sensing devices 1, 2, 3, and 4 operate over time. appears to have been
  • 6-(b) shows the power consumption of the wireless sensor module 2 that can correspond to ID2 of FIG. 5, and it appears that only the sensing device 1 operates over time.
  • 6-(c) shows the power consumption of the wireless sensor module 3 that can correspond to ID3 of FIG. 5, and it appears that only the sensing device 2 operates over time.
  • 6-(d) shows the power consumption of the wireless sensor module 4 that can correspond to ID4 of FIG. 5, and it appears that only the sensing device 3 operates over time.
  • the operation pattern of the sensing device 110 determined in step (D) ( S400 ) may be variously determined according to the importance of information of the sensing device, and may be a method for minimizing the information gap.
  • FIG. 7 is a block diagram of a system for saving power by determining an operation pattern of an energy harvesting sensor according to an embodiment of the present invention.
  • a power saving system by determining an operation pattern of an energy harvesting sensor includes a sensor module 100 , a data collection server 200 , an operation pattern control server 300 and a database. (400).
  • the sensor module 100 measures data with one or more sensing devices, extracts an energy consumption pattern through current consumption measurement in the measurement process of the sensing device, and transmits it to the operation pattern control server, and in the operation pattern control server The sensor is operated according to the received operation pattern of the sensing device.
  • the sensor module 100 includes a sensing device 110 , a power consumption measuring sensor 120 , an MCU 130 , and an RF Block 140 .
  • the sensing device 110 is a sensor that measures data
  • the sensor module 100 includes at least one sensing device 110 .
  • the power consumption measuring sensor 120 measures power consumption when the sensing device 110 operates.
  • the MCU 130 means a processor that collects data with a Micro Control Unit and controls the overall operation of the sensor module 100 according to the operation pattern of the sensing device received from the operation pattern control server, and the controller ), a central processing unit (CPU), a micro processing unit (MPU), an application processor (AP), a communication processor (CP), an ARM processor, or the like.
  • CPU central processing unit
  • MPU micro processing unit
  • AP application processor
  • CP communication processor
  • ARM processor or the like.
  • the MCU 130 does not manage the power of the sensor by controlling the sensing cycle as in the conventional sensing power management technology, but a sensor with low importance among the plurality of sensing devices 110 in a sensor application in which the continuity of sensed data is important. Controls the operation of the sensor module 100 according to the operation pattern of the sensing device 110 by adjusting the data collection of
  • the RF block 140 generally corresponds to a reception block, and means a portion in which wireless communication is performed, such as being able to receive data transmitted from the operation pattern control server 300 .
  • RF Radio Frequency
  • RF means a frequency generally used for wireless communication, and may mean a frequency within an electromagnetic wave spectrum region of 10 kHz to 300 GHz.
  • the sensor module 100 measures the current sampling and data supplied to the sensing device during an initialization period and an operation period for one cycle of the measurement process of the sensing device, and measures the amount of power consumed by the sensing device during the initialization period of the sensing device Detects the error of the sensing device through
  • FIG. 8 is a block diagram of a sensor module.
  • the part measuring the sensor battery in the sensor module 100 includes an energy source, a power management IC (PMIC, power management IC), a microcontroller and a load (MCU & Load), and analog-digital. It may include a conversion circuit (ADC), a shunt resistor, and a battery.
  • PMIC power management IC
  • MCU & Load microcontroller and a load
  • ADC conversion circuit
  • shunt resistor a battery.
  • the energy source includes sunlight, vibration, heat source, and the like.
  • the shunt resistor is a shunt resistor, and the difference between the battery voltage and the load voltage is generated by the current passing through the shunt resistor. According to the change in the operating state of the wireless sensor, the current is measured by measuring the difference between the two voltages and using the fixed resistance value. included to do
  • the battery is a battery that is a target of state estimation, and its state may be expressed through a state of charge (SoC) and a state of health (SoH).
  • SoC state of charge
  • SoH state of health
  • the data measured by the sensor module 100 is transmitted to the data collection server 200 , and the data collection server 200 collects the measured data and stores it in the database 400 .
  • the difference between the battery voltage and the load voltage occurs due to the current passing through the shunt resistor. It measures the current and transmits the measured voltage and current information through wireless communication.
  • the operation pattern control server 300 analyzes the voltage and current data to analyze the energy consumption pattern, and determines the operation pattern of the sensing device 110 according to the prediction, and transmits it to the sensor module 100 .
  • the operation pattern control server 300 includes a server analysis unit 310 , a server prediction unit 320 , an operation pattern determination unit 330 , and a server transmission unit 340 .
  • the server analysis unit 310 analyzes power consumption according to the operation pattern of the sensing device 110 .
  • the server analysis unit 310 analyzes power consumption according to the operation pattern of the sensing device 110 through the voltage and current data and/or power consumption measured by the sensor module 100, for example, standby, preparation, operation , and a power consumption pattern according to an operation pattern of a sensing device is analyzed by analyzing an energy consumption pattern during a data measurement period of one period including a standby mode.
  • the server prediction unit 320 predicts power consumption of the energy harvester and the battery.
  • FIG. 9 is a detailed configuration diagram of the server prediction unit of FIG. 7 .
  • the server predictor 320 may include an SoC estimator 321 , a harvest energy predictor 322 , and an SoH estimator 323 .
  • the SoC estimator 321 estimates the SoC of the battery based on power consumption information according to the operation pattern of the sensing device analyzed by the server analysis unit 310 .
  • the harvested energy prediction unit 322 predicts the power consumed by each sensing device and the power that can be charged by the energy harvester based on the power consumption information analyzed by the server analysis unit 310 .
  • the SoH estimator 323 estimates the SoH of the battery based on the battery voltage drop value according to the increase in power consumption obtained in the process of estimating the SoC of the battery by the SoC estimator 221 .
  • the operation pattern determining unit 330 senses according to the importance of the information of the sensing device based on the power consumption analyzed by the server analysis unit 310 and the prediction results of the energy harvester and the battery predicted by the server prediction unit 320 . An operation pattern for each power state of the device 110 is determined.
  • the importance of the information of the sensing device 110 means the importance of the information sensed by the sensing device 110 because it is possible to determine whether to operate for each operation period according to the importance of the data sensed by the sensing device 10 .
  • the sensed data may include any one or more of wind direction, wind speed, temperature, humidity, dust, atmospheric pressure, and gas concentration.
  • the operation pattern determiner 330 determines the importance of data measured by the plurality of sensing devices 110 included in the sensor module 100, and determines whether to collect data from the sensor for each power state.
  • the operation pattern determination unit 330 is a sensor according to the importance of the information of the sensing device based on the power consumption analyzed by the server analysis unit 310 and the prediction results of the energy harvester and the battery predicted by the server prediction unit 320 . may generate an operation pattern for each power state of the sensing device 110 managed by the operation pattern table, and transmit the operation pattern table to the sensor module 100 .
  • the operation pattern for each power state of the sensing device 110 may be generated as an operation pattern table.
  • the operation pattern table may include whether the individual sensing device 110 operates for each sensor module 100 as shown in FIG. 5 .
  • the server transmitter 340 transmits the operation pattern for each power state of the sensing device 110 determined by the operation pattern determiner 330 to the sensor module 100 .
  • the transmission mainly uses wireless communication, which may include a wireless transceiver such as an RF receiver.
  • the operation pattern for each power state of the sensing device 110 determined by the operation pattern determiner 330 is transmitted to the sensor module 100 so that the sensor module 100 is the sensing device 110 received from the RF Block 140 .
  • the power supply of the sensing device 110 is managed based on the operation pattern for each power state.
  • the sensor module 100 turns on the power of the sensing device in the MCU 130 to collect data or turns off the power to collect data according to the operation pattern of the sensing device 110 received from the operation pattern control server 300 . Control the power supply, such as not to do so.
  • the method of managing the power of the sensor by controlling the sensing period has been mainstream, but the method and system for power saving by determining the operation pattern of the energy harvesting sensor according to the embodiment of the present invention, the sensing
  • the power consumption of the entire sensor module can be reduced by adjusting the operation pattern of the sensor to reduce the number of times of data collection of a low-importance sensor compared to a high-importance sensing device among a number of sensing devices. There is a difference in making it possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Provided are a method and a system for saving power by determining an operation pattern of an energy harvesting sensor. The present invention operates a plurality of sensing devices by controlling operation patterns thereof according to importance of the sensing devices, in the field of sensor applications in which the continuity of sensed data is important, not by means of a method of managing the power of a sensor by controlling an existing sensing cycle, thereby reducing power consumption of the sensor, improving the lifespan of the sensor through power consumption management, and making it possible to minimize the drop in measured data.

Description

에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법 및 시스템Power saving method and system by determining operation pattern of energy harvesting sensor
본 발명은 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법 및 시스템에 관한 것으로서, 더욱 상세하게는 에너지를 다소비하는 다수의 센싱디바이스로 구성된 무선센서모듈에서 전력측정을 통한 동작 패턴 결정과 전력관리방법에 관한 것으로, 무선센서모듈이 센서 디바이스가 동작하는 기간동안 소비하는 전력소비 정보에 기초하여 서버에서 동작 패턴을 결정하고, 무선센서모듈에서 수집된 데이터의 품질을 해치지 않으면서 소비전력을 절감할 수 있는 전력 관리 시스템 및 방법에 관한 것이다.The present invention relates to a method and system for saving power by determining an operation pattern of an energy harvesting sensor, and more particularly, to a method and system for reducing an operation pattern through power measurement in a wireless sensor module composed of a plurality of sensing devices that consume a lot of energy. To a management method, a wireless sensor module determines an operation pattern in a server based on power consumption information consumed during a period in which a sensor device operates, and reduces power consumption without compromising the quality of data collected from the wireless sensor module It relates to a power management system and method capable of doing so.
일반적으로, 무선센서모듈은 센싱 디바이스로부터 생성된 데이터를 저장 및 분석을 위한 서버로 전송한다. 이때, 무선센서모듈은 배터리 또는 에너지 하베스터를 사용한다는 점에서 전력의 유한성에 대한 문제가 존재할 수 밖에 없다.In general, the wireless sensor module transmits data generated from a sensing device to a server for storage and analysis. At this time, in that the wireless sensor module uses a battery or an energy harvester, there is inevitably a problem with respect to the finiteness of power.
따라서, 무선센서모듈에서의 소비전력을 최소화하기 위한 전력관리방법이 요구되고 있다. Accordingly, there is a demand for a power management method for minimizing power consumption in the wireless sensor module.
일 예로, 발전소 등에서 분진 발생 관리를 위한 풍향, 풍속, 온도, 습도, 분진, 기압, 가스 등의 모니터링과정에서 다수의 장소에 설치된 무선센서모듈로부터 수집된 정보를 필요로 하며, 태양전지와 같은 외부환경으로부터 에너지 하베스팅을 통해 에너지를 추출할 수 있으나, 기상 및 환경에 따라 달라지는 제한적인 에너지 공급으로는 무선센서 모듈의 에너지 공급에 한계가 있으며, 무선센서모듈의 확산 설치를 어렵게 한다. For example, in the process of monitoring wind direction, wind speed, temperature, humidity, dust, atmospheric pressure, gas, etc. for dust generation management in a power plant, information collected from wireless sensor modules installed in multiple places is required, and external such as solar cells Energy can be extracted from the environment through energy harvesting, but there is a limit to the energy supply of the wireless sensor module due to the limited energy supply that varies depending on the weather and the environment, making it difficult to spread the wireless sensor module.
또한 스마트센서는 무선 센서가 주기적으로 수집한 데이터를 중앙의 데이터 수집 센터로 전송하는 데, 넓은 지역을 대상으로 센서를 설치할 때 상전원을 통해 에너지를 공급하는 것은 현실적으로 불가능하며, 또한 일차전지는 수명이 다했을 때 교체 및 관리비용이 크다는 단점이 있다.In addition, the smart sensor periodically transmits the data collected by the wireless sensor to the central data collection center. When this is done, there is a disadvantage that replacement and maintenance costs are high.
따라서 이러한 단점을 Solar Panel, PZT, TEG 등 에너지 하베스팅을 통해 해결하고 있다.Therefore, these shortcomings are being addressed through energy harvesting such as Solar Panel, PZT, and TEG.
에너지 하베스팅은 태양광, 진동, 열원 등 하베스팅 소스에서 제공되는 10 uW 내지 100 mW 수준의 에너지원에서 공급받은 전력을 배터리 또는 슈퍼 커패시터 등에 저장하고, 전력이 필요한 순간 공급받아 사용하는 방식을 의미한다.Energy harvesting refers to a method in which power supplied from a harvesting source such as sunlight, vibration, or heat source is stored in a battery or supercapacitor, etc. do.
이처럼 에너지 하베스팅 센서 등 에너지를 다소비하는 다수의 센싱 디바이스로 구성된 무선 센서모듈에서 전력 소모를 최소화하면서 센서의 동작 수명을 최대화하기 위한 방법에 대한 필요성이 대두된다.As such, a need arises for a method for maximizing the operating life of a sensor while minimizing power consumption in a wireless sensor module composed of a plurality of sensing devices that consume a lot of energy, such as an energy harvesting sensor.
전술한 문제점을 위해 본 발명이 이루고자 하는 과제는, 에너지를 다량 소비하는 다수의 센싱 디바이스로 구성된 무선 센서모듈에서 전력 측정을 통한 동작 패턴 결정과 전력 관리 방법에 관한 것으로, 무선 센서모듈이 센서 디바이스가 동작하는 기간 동안 소비하는 전력 소비 정보에 기초하여 서버에서 동작 패턴을 결정함으로써 에너지 하베스팅 기반 스마트센서의 동작 주기별 배터리 전압/전류를 모니터링함으로써 기존 단순한 OCV 방식에서 불가능했던 SoH를 추정하고, SoC 추정의 정확도를 높이고, 서버에서 SoH 추정을 통해 센서의 배터리 유지/관리 비용의 절감 무선 센서모듈에서 수집된 데이터의 품질을 해치지 않으면서 소비전력의 절감이 가능하도록 하는 데 있다.An object of the present invention to achieve for the above problems relates to a method for determining an operation pattern and power management through power measurement in a wireless sensor module composed of a plurality of sensing devices that consume a large amount of energy, wherein the wireless sensor module is a sensor device Based on the power consumption information consumed during the operation period, the server determines the operation pattern and monitors the battery voltage/current for each operation cycle of the energy harvesting-based smart sensor to estimate SoH, which was impossible in the existing simple OCV method, and SoC estimation It aims to increase the accuracy of the sensor and reduce the battery maintenance/management cost of the sensor through SoH estimation in the server, enabling power consumption to be reduced without compromising the quality of data collected from the wireless sensor module.
본 발명의 해결과제는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 과제들은 아래의 기재로부터 당업자가 명확하게 이해될 수 있을 것이다.The problems to be solved of the present invention are not limited to those mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
전술한 기술적 과제를 해결하기 위한 수단으로서, 본 발명의 실시예에 따르면, 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법은 하나 이상의 센싱 디바이스, 소비전력 측정 센서, MCU, RF Block을 포함하는 센서모듈, 데이터 수집 서버, 동작패턴 제어 서버 및 데이터베이스를 이용한 전력 절감 방법에 있어서, (A) 상기 센서모듈은, 상기 센싱 디바이스의 측정 과정에서 소비전류 측정을 통해 에너지 소비 패턴을 추출하여 상기 데이터 수집 서버로 전송하는 단계; (B) 상기 데이터 수집 서버는, 상기 센싱 디바이스에서 측정된 전압 및 전류 데이터와 에너지 소비 패턴을 무선통신을 통해 수집하여 상기 데이터베이스에 저장하는 단계; (C) 상기 동작패턴 제어 서버는, 상기 전압 및 전류 데이터를 분석하여 에너지 소비 패턴을 통해 상기 센싱 디바이스의 동작 패턴에 따른 소비전력을 분석하고, 에너지 하베스터 및 배터리의 소비전력 예측을 수행하는 단계; (D) 상기 동작패턴 제어 서버는, 예측된 결과를 기반으로 상기 센싱 디바이스 정보의 중요도에 따라 센서에서 관리하는 센싱 디바이스의 전력 상태별 동작 패턴을 결정하고 상기 동작 패턴을 상기 센서모듈로 전달하는 단계; 및 (E) 상기 센서모듈은, 수신된 센싱 디바이스의 동작 패턴에 따라 상기 MCU에서 센서의 동작을 제어하는 단계;를 포함한다.As a means for solving the above-described technical problem, according to an embodiment of the present invention, a power saving method through determining an operation pattern of an energy harvesting sensor includes one or more sensing devices, power consumption measuring sensors, MCUs, and RF Blocks. In the power saving method using a sensor module, a data collection server, an operation pattern control server and a database, (A) the sensor module collects the data by extracting an energy consumption pattern through current consumption measurement in the measurement process of the sensing device sending to a server; (B) the data collection server, collecting voltage and current data and energy consumption patterns measured by the sensing device through wireless communication and storing the data in the database; (C) performing, by the operation pattern control server, analyzing the voltage and current data, analyzing the power consumption according to the operation pattern of the sensing device through the energy consumption pattern, and predicting the power consumption of the energy harvester and the battery; (D) the operation pattern control server, based on the predicted result, determining the operation pattern for each power state of the sensing device managed by the sensor according to the importance of the sensing device information, and transmitting the operation pattern to the sensor module ; and (E), by the sensor module, controlling the operation of the sensor in the MCU according to the received operation pattern of the sensing device.
상기 (A)단계는, 상기 센서모듈은, 상기 센싱 디바이스의 측정 과정의 1주기 동안 상기 센싱 디바이스의 초기화 기간 및 동작 기간 동안 공급되는 전류 샘플링 및 데이터 측정한다.In the step (A), the sensor module samples and measures the current supplied during the initialization period and the operation period of the sensing device during one cycle of the measurement process of the sensing device.
상기 (A)단계는, 상기 센서모듈은, 상기 센싱 디바이스의 초기화 기간 동안 상기 센싱 디바이스에서 소비되는 전력량 측정을 통하여 센싱 디바이스의 오류를 검출한다.In the step (A), the sensor module detects an error of the sensing device by measuring the amount of power consumed by the sensing device during the initialization period of the sensing device.
상기 (C)단계는, 상기 동작패턴 제어 서버는, 센싱 디바이스의 동작 패턴에 따른 소비전력 정보를 분석하여 배터리의 SoC를 추정하고, 에너지 하베스팅으로 수확 가능한 에너지를 예측한다.In the step (C), the operation pattern control server estimates the SoC of the battery by analyzing power consumption information according to the operation pattern of the sensing device, and predicts energy harvestable through energy harvesting.
상기 (C)단계는, 상기 동작패턴 제어 서버는, 상기 배터리의 SoC를 추정하는 과정에서 소비전력 증가에 따른 배터리 전압 강하로부터 배터리의 SoH를 추정한다.In step (C), the operation pattern control server estimates the SoH of the battery from the battery voltage drop according to the increase in power consumption in the process of estimating the SoC of the battery.
상기 (D)단계는, 상기 동작패턴 제어 서버는, 예측된 결과를 기반으로 상기 센싱 디바이스 정보의 중요도에 따라 센서에서 관리하는 센싱 디바이스의 전력 상태별 동작 패턴을 결정하고 상기 동작 패턴을 복수 개의 센서모듈로 전달한다.In the step (D), the operation pattern control server determines the operation pattern for each power state of the sensing device managed by the sensor according to the importance of the sensing device information based on the predicted result, and sets the operation pattern to a plurality of sensors. passed to the module.
상기 (D)단계는, 상기 동작패턴 제어 서버는, 예측된 결과를 기반으로 상기 센싱 디바이스 정보의 중요도에 따라 센서에서 관리하는 센싱 디바이스의 전력 상태별 동작 패턴을 동작 패턴 테이블로 생성하고, 상기 동작 패턴 테이블을 상기 센서모듈로 전달한다.In the step (D), the operation pattern control server generates, as an operation pattern table, an operation pattern for each power state of the sensing device managed by the sensor according to the importance of the sensing device information based on the predicted result, and the operation The pattern table is transmitted to the sensor module.
상기 (E)단계는, 상기 센서모듈은 상기 센싱 디바이스의 동작 패턴 테이블에 따라 상기 하나 이상의 센싱 디바이스 각각의 단위 동작을 제어한다.In step (E), the sensor module controls the unit operation of each of the one or more sensing devices according to the operation pattern table of the sensing device.
상기 (E)단계는, 상기 센서모듈은, 수신된 센싱 디바이스의 동작 패턴에 따라 상기 MCU에서 센싱 디바이스의 전원을 켜 데이터를 수집하도록 하거나 전원을 꺼 데이터를 수집하지 않도록 하는 등 전력 공급을 관리한다. In step (E), the sensor module manages the power supply, such as turning on the power of the sensing device in the MCU to collect data or turning off the power to not collect data according to the received operation pattern of the sensing device. .
한편, 본 발명의 다른 실시예에 따르면, 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 시스템은, 센서의 동작 주기 별로 변화하는 전압 및 전류를 단계 별로 측정하는 센서모듈; 상기 센서모듈에서 측정된 전압 및 전류 데이터를 무선통신을 통해 수집하는 데이터 수집 서버; 상기 전압 및 전류 데이터를 분석하여 배터리 수명 및 에너지 하베스팅 예측을 수행하고, 예측에 따라 센서모듈의 동작 패턴을 결정하여 상기 센서모듈의 동작을 제어하는 동작패턴 제어 서버; 및 상기 데이터 수집 서버에서 수집된 전압 및 전류 데이터 및 상기 동작패턴 제어 서버에서 예측된 배터리 수명 및 에너지 하베스팅 예측값을 저장하는 데이터베이스;를 포함한다.On the other hand, according to another embodiment of the present invention, the power saving system by determining the operation pattern of the energy harvesting sensor, the sensor module for measuring the voltage and current that change for each operation period of the sensor step by step; a data collection server that collects voltage and current data measured by the sensor module through wireless communication; an operation pattern control server that analyzes the voltage and current data to predict battery life and energy harvesting, and determines an operation pattern of the sensor module according to the prediction to control the operation of the sensor module; and a database for storing voltage and current data collected by the data collection server and battery life and energy harvesting predicted values predicted by the operation pattern control server.
상기 센서모듈은, 데이터를 측정하는 하나 이상의 센싱 디바이스; 상기 센싱 디바이스의 동작시 소비전력을 측정하는 소비전력 측정 센서; 데이터를 수집하고, 상기 동작패턴 제어 서버에서 수신된 센싱 디바이스의 동작 패턴에 따라 센서의 동작을 제어하는 MCU(Micro Control Unit); 및 상기 동작패턴 제어 서버에서 전송하는 데이터를 수신하기 위한 RF Block;을 포함한다.The sensor module may include one or more sensing devices for measuring data; a power consumption measuring sensor for measuring power consumption during operation of the sensing device; an MCU (Micro Control Unit) that collects data and controls the operation of the sensor according to the operation pattern of the sensing device received from the operation pattern control server; and an RF Block for receiving data transmitted from the operation pattern control server.
상기 센서모듈은, 상기 센싱 디바이스의 측정 과정의 1주기 동안 상기 센싱 디바이스를 초기화 기간 및 동작 기간 동안 공급되는 전류 샘플링 및 데이터 측정하고, 상기 센싱 디바이스의 초기화 기간 동안 상기 센싱 디바이스에서 소비되는 전력량 측정을 통하여 센싱 디바이스의 오류를 검출한다.The sensor module measures current sampling and data supplied to the sensing device during an initialization period and an operation period for one cycle of the measurement process of the sensing device, and measures the amount of power consumed by the sensing device during the initialization period of the sensing device It detects the error of the sensing device through
상기 동작패턴 제어 서버는, 상기 전압 및 전류 데이터를 통해 상기 센싱 디바이스의 동작 패턴에 따른 소비 전력을 분석하는 서버분석부; 에너지 하베스터 및 배터리 예측을 수행하는 서버예측부; 상기 서버분석부에서 분석된 소비전력 및 상기 서버예측부에서 예측된 에너지 하베스터 및 배터리의 예측 결과를 기반으로 센싱 디바이스의 정보의 중요도에 따라 센싱 디바이스의 전력 상태별 동작 패턴을 결정하는 동작패턴 결정부; 및 상기 결정된 센싱 디바이스의 전력 상태별 동작 패턴을 상기 센서모듈에 전송하는 서버전송부;를 포함한다.The operation pattern control server may include: a server analysis unit that analyzes power consumption according to an operation pattern of the sensing device through the voltage and current data; a server prediction unit that predicts energy harvesters and batteries; An operation pattern determination unit that determines an operation pattern for each power state of the sensing device according to the importance of information of the sensing device based on the power consumption analyzed by the server analysis unit and the prediction results of the energy harvester and the battery predicted by the server prediction unit ; and a server transmitter configured to transmit the determined operation pattern for each power state of the sensing device to the sensor module.
상기 서버분석부는, 상기 센싱 디바이스의 단위 동작에 따라 상기 전압 및 전류 데이터를 통해 소비전력 및 전압 변동값을 연산한다.The server analysis unit calculates power consumption and voltage fluctuation values based on the voltage and current data according to a unit operation of the sensing device.
상기 서버예측부는, 센싱 디바이스의 동작 패턴에 따른 소비전력 정보를 분석하여 배터리의 SoC를 추정하고, 상기 배터리의 SoC를 추정하는 과정에서 소비전력 증가에 따른 배터리 전압 강하로부터 배터리의 SoH를 추정하며, 센싱 디바이스 별로 소비되는 전력 및 에너지 하베스터로 충전 가능한 전력을 예측한다.The server prediction unit estimates the SoC of the battery by analyzing the power consumption information according to the operation pattern of the sensing device, and estimates the SoH of the battery from the battery voltage drop according to the increase in power consumption in the process of estimating the SoC of the battery, It predicts the power consumed by each sensing device and the power that can be charged by the energy harvester.
상기 동작패턴 결정부는, 상기 서버분석부에서 분석된 소비전력 및 상기 서버예측부에서 예측된 에너지 하베스터 및 배터리의 예측 결과를 기반으로 센싱 디바이스의 정보의 중요도에 따라 센서에서 관리하는 센싱 디바이스의 전력 상태별 동작 패턴을 동작 패턴 테이블로 생성하고, 상기 동작 패턴 테이블을 상기 센서모듈로 전달한다.The operation pattern determination unit, based on the power consumption analyzed by the server analysis unit and the prediction results of the energy harvester and the battery predicted by the server prediction unit, the power state of the sensing device managed by the sensor according to the importance of the information of the sensing device Each operation pattern is generated as an operation pattern table, and the operation pattern table is transmitted to the sensor module.
상기 센서모듈은, 상기 동작패턴 제어 서버에서 수신된 센싱 디바이스의 동작 패턴에 따라 상기 MCU에서 센싱 디바이스의 전원을 켜 데이터를 수집하도록 하거나 전원을 꺼 데이터를 수집하지 않도록 하는 등 전력 공급을 관리한다.The sensor module, according to the operation pattern of the sensing device received from the operation pattern control server, the MCU manages the power supply, such as turning on the power of the sensing device to collect data or turning off the power to not collect data.
본 발명에 따르면, 무선 센서모듈이 센서 디바이스가 동작하는 기간 동안 소비하는 전력 소비 정보에 기초하여 서버에서 동작 패턴을 결정하고, 센서 모듈 별 동작 패턴에 의해 센싱 디바이스를 동작시킴으로서 기존의 센싱 주기를 제어하여 센서의 전력을 절감시키는 방식에 비하여 전력은 절감시키면서 데이터의 수집의 품질을 저하를 최소화시킬 수 있다. According to the present invention, the wireless sensor module determines the operation pattern in the server based on the power consumption information consumed during the operation period of the sensor device, and controls the existing sensing cycle by operating the sensing device according to the operation pattern for each sensor module. Therefore, compared to the method of reducing the power of the sensor, it is possible to minimize the deterioration of the quality of data collection while reducing the power.
또한 무선 센서모듈이 센서 디바이스가 동작하는 기간 동안 소비하는 전력 소비 정보에 기초하여 서버에서 동작 패턴을 결정함으로써 에너지 하베스팅 기반 스마트센서의 동작 주기별 배터리 전압/전류를 모니터링함으로써 기존 단순한 OCV 방식의 SoC 추정 대비 동작 상태별 전압/전류 정보 취득을 통하여 SoC, SoH의 정확도를 높이고, Operation 종료 후 전압 Drop 측정을 통한 SoH 추정이 가능하며, 서버에서 센서 배터리의 SoC, SoH 추정을 통해 센서의 배터리 유지, 관리 비용의 절감이 가능하다.In addition, the wireless sensor module determines the operation pattern in the server based on the power consumption information consumed during the operation period of the sensor device, thereby monitoring the battery voltage/current for each operation cycle of the energy harvesting-based smart sensor. Accuracy of SoC and SoH is improved by acquiring voltage/current information for each operating state compared to estimation, and SoH estimation is possible through voltage drop measurement after operation is finished. It is possible to reduce the management cost.
본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.Effects of the present invention are not limited to those mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 본 발명의 실시예에 의한 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법의 순서도,1 is a flowchart of a power saving method by determining an operation pattern of an energy harvesting sensor according to an embodiment of the present invention;
도 2는 본 발명의 실시예에 의한 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법을 도시한 흐름도,2 is a flowchart illustrating a power saving method by determining an operation pattern of an energy harvesting sensor according to an embodiment of the present invention;
도 3은 본 발명의 실시예에 의한 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법을 도시한 블록도,3 is a block diagram illustrating a power saving method by determining an operation pattern of an energy harvesting sensor according to an embodiment of the present invention;
도 4는 센싱 디바이스 동작에 따른 소비전력 변화 그래프,4 is a graph of power consumption change according to the sensing device operation;
도 5는 센서모듈 별 동작패턴 테이블 예시도,5 is an exemplary diagram of an operation pattern table for each sensor module;
도 6은 동작 패턴 별 센싱 디바이스 동작에 따른 소비전력 변화 그래프,6 is a graph showing a change in power consumption according to a sensing device operation for each operation pattern;
도 7은 본 발명의 실시예에 의한 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 시스템의 구성도,7 is a configuration diagram of a power saving system through determination of an operation pattern of an energy harvesting sensor according to an embodiment of the present invention;
도 8은 센서 모듈의 블록도,8 is a block diagram of a sensor module;
도 9는 도 7의 소비전력 예측부의 세부구성도이다.9 is a detailed configuration diagram of the power consumption prediction unit of FIG. 7 .
<부호의 설명><Explanation of code>
100 : 센서모듈 110 : 센싱 디바이스100: sensor module 110: sensing device
120 : 소비전력 측정 센서 130 : MCU120: power consumption measuring sensor 130: MCU
140 : RF Block 200 : 데이터 수집 서버140: RF Block 200: data collection server
300 : 동작패턴 제어 서버 310 : 서버분석부300: operation pattern control server 310: server analysis unit
320 : 서버예측부 321 : SoC 추정부320: server prediction unit 321: SoC estimation unit
322 : 수확 에너지 예측부 323 : SoH 추정부322: harvest energy prediction unit 323: SoH estimation unit
330 : 동작패턴 결정부 340 : 서버전송부330: operation pattern determining unit 340: server transmission unit
400 : 데이터베이스400 : database
이상의 본 발명의 목적들, 다른 목적들, 특징들 및 이점들은 첨부된 도면과 관련된 이하의 바람직한 실시 예들을 통해서 쉽게 이해될 것이다. 그러나 본 발명은 여기서 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려 여기서 소개되는 실시 예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.The above objects, other objects, features and advantages of the present invention will be easily understood through the following preferred embodiments in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosed content may be thorough and complete, and the spirit of the present invention may be sufficiently conveyed to those skilled in the art.
본 명세서에서 제1, 제2 등의 용어가 구성요소들을 기술하기 위해서 사용된 경우, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 여기에 설명되고 예시되는 실시 예들은 그것의 상보적인 실시 예들도 포함한다.In this specification, when terms such as first, second, etc. are used to describe components, these components should not be limited by these terms. These terms are only used to distinguish one component from another. The embodiments described and illustrated herein also include complementary embodiments thereof.
또한, 어떤 엘리먼트, 구성요소, 장치, 또는 시스템이 프로그램 또는 소프트웨어로 이루어진 구성요소를 포함한다고 언급되는 경우, 명시적인 언급이 없더라도, 그 엘리먼트, 구성요소, 장치, 또는 시스템은 그 프로그램 또는 소프트웨어가 실행 또는 동작하는데 필요한 하드웨어(예를 들면, 메모리, CPU 등)나 다른 프로그램 또는 소프트웨어(예를 들면 운영체제나 하드웨어를 구동하는데 필요한 드라이버 등)를 포함하는 것으로 이해되어야 할 것이다. Further, when it is stated that any element, component, device, or system includes a component consisting of a program or software, even if not explicitly stated, that element, component, device, or system means that the program or software is executed. Alternatively, it should be understood to include hardware (eg, memory, CPU, etc.) necessary for operation or other programs or software (eg, drivers necessary for operating an operating system or hardware, etc.).
또한 본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprises)' 및/또는 '포함하는(comprising)'은 언급된 구성요소는 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. In addition, the terms used herein are for the purpose of describing the embodiments and are not intended to limit the present invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, the terms 'comprises' and/or 'comprising' do not exclude the presence or addition of one or more other components.
또한, 본 명세서에 기재된 'OO부', 'OO기', '모듈' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, '일', '하나' 및 '그' 등의 관사는 본 발명을 기술하는 문맥에 있어서 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.In addition, terms such as 'OO unit', 'OO unit', and 'module' described in this specification mean a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software. can In addition, articles such as 'a', 'a' and 'the' in the context of describing the present invention include both the singular and the plural unless otherwise indicated herein or clearly contradicted by the context in the context of describing the present invention. can be used
아래의 특정 실시 예들을 기술하는 데 있어서, 여러 가지의 특정적인 내용들은 발명을 더 구체적으로 설명하고 이해를 돕기 위해 작성되었다. 하지만 본 발명을 이해할 수 있을 정도로 이 분야의 지식을 갖고 있는 독자는 이러한 여러 가지의 특정적인 내용이 없어도 사용될 수 있다는 것을 인지할 수 있다. In describing the specific embodiments below, various specific contents have been prepared to more specifically describe the invention and help understanding. However, a reader having enough knowledge in this field to understand the present invention may recognize that the present invention may be used without these various specific details.
어떤 경우에는, 발명을 기술하는 데 있어서 흔히 알려졌으면서 발명과 크게 관련 없는 부분들은 본 발명을 설명하는 데 있어 별 이유 없이 혼돈이 오는 것을 막기 위해 기술하지 않음을 미리 언급해 둔다. In some cases, it is mentioned in advance that parts that are commonly known and not largely related to the invention are not described in order to avoid confusion without any reason in describing the present invention in describing the invention.
이하, 본 발명에서 실시하고자 하는 구체적인 기술 내용에 대해 첨부도면을 참조하여 상세하게 설명하기로 한다.Hereinafter, specific technical contents to be practiced in the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 의한 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법의 순서도이다.1 is a flowchart of a power saving method by determining an operation pattern of an energy harvesting sensor according to an embodiment of the present invention.
본 발명의 실시예에 의한 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법은, 하나 이상의 센싱 디바이스(110), 소비전력 측정 센서(120), MCU(Micro Control Unit)(130), RF Block(140)을 포함하는 센서모듈(100), 데이터 수집 서버(200), 동작패턴 제어 서버(300) 및 데이터베이스(400)를 이용한 전력 절감 방법에 관한 것이다.The power saving method by determining the operation pattern of the energy harvesting sensor according to an embodiment of the present invention includes one or more sensing devices 110 , power consumption measuring sensors 120 , MCU (Micro Control Unit) 130 , RF Block It relates to a power saving method using the sensor module 100 including the 140 , the data collection server 200 , the operation pattern control server 300 , and the database 400 .
도 1을 참조하면, 본 발명의 실시예에 의한 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법은 (A) 소비전류 측정하여 에너지 소비 패턴 추출 단계(S100), (B) 측정된 데이터 수집하여 데이터베이스에 저장 단계(S200), (C) 동작 패턴 별 소비전력 분석 및 에너지 하베스터 및 배터리의 소비전력 예측 단계(S300), (D) 전력 상태 별 동작 패턴 결정 단계(S400), (E) 결정된 동작 패턴에 따라 센서 동작 제어 단계(S500)를 포함한다.Referring to FIG. 1 , the power saving method by determining the operation pattern of the energy harvesting sensor according to an embodiment of the present invention includes (A) measuring current consumption and extracting energy consumption pattern (S100), (B) collecting measured data to store in the database step (S200), (C) power consumption analysis by operation pattern and power consumption prediction step (S300) of the energy harvester and battery (S300), (D) operation pattern determination step (S400), (E) determined by power state It includes a sensor operation control step (S500) according to the operation pattern.
여기서 센서모듈(100)은 주로 무선 통신이 가능한 무선센서모듈을 의미한다.Here, the sensor module 100 mainly refers to a wireless sensor module capable of wireless communication.
여기서 (A)단계(S100)에서, 센서모듈(100)은, 상기 센싱 디바이스의 측정 과정에서 소비전류 측정을 통해 에너지 소비 패턴을 추출하고 데이터 수집 서버(200)로 전송한다.Here, in (A) step (S100), the sensor module 100 extracts an energy consumption pattern through current consumption measurement in the measurement process of the sensing device and transmits it to the data collection server 200 .
여기서, 상기 센서모듈(100)은, 상기 센싱 디바이스(110)의 측정 과정의 1주기 동안 상기 센싱 디바이스(110)의 초기화 기간 및 동작 기간 동안 공급되는 전류를 샘플링하고, 데이터를 측정한다.Here, the sensor module 100 samples the current supplied during the initialization period and the operation period of the sensing device 110 during one cycle of the measurement process of the sensing device 110 , and measures data.
또한 (A)단계(S100)에서, 센서모듈(100)은, 상기 센싱 디바이스(110)의 초기화 기간 동안, 소비전력 측정 센서(120)는 상기 센싱 디바이스(110)에서 소비되는 전력량 측정을 통하여 센싱 디바이스의 오류를 검출한다.In addition, (A) in step (S100), the sensor module 100, during the initialization period of the sensing device 110, the power consumption measuring sensor 120 is sensed by measuring the amount of power consumed by the sensing device 110 Detect device errors.
다시 말하면, 센싱 디바이스(110)는 1주기동안 데이터 측정 과정에서 센싱 디바이스의 초기화 기간 및 동작 기간 동안 공급되는 전류를 샘플링하고, 소비전력 측정 센서(120)는, 센싱 디바이스(110)가 동작시 소비되는 전력을 센서의 동작주기 별로 측정한다.In other words, the sensing device 110 samples the current supplied during the initialization period and the operation period of the sensing device in the data measurement process for one cycle, and the power consumption measuring sensor 120 consumes the sensing device 110 during operation. The resulting power is measured for each operation period of the sensor.
센서의 동작주기는 대기(Sleep), 준비(Warming-up), 동작(Operation), 다시 대기(Sleep) 등으로 진행될 수 있다.The operation cycle of the sensor may proceed to sleep, warm-up, operation, and sleep again.
이처럼 (A)단계(S100)에서, 센서모듈(100)은 송신블록 등의 통신부를 통해 측정된 데이터를 데이터 수집 서버(200)에 전송한다.As such, in (A) step (S100), the sensor module 100 transmits the measured data to the data collection server 200 through a communication unit such as a transmission block.
여기서 측정된 데이터에는 측정된 전압 및 전류 데이터, 센싱 디바이스(110)의 측정 과정에서 소비되는 소비전력이 포함될 수 있다.Here, the measured data may include measured voltage and current data and power consumption consumed in the measurement process of the sensing device 110 .
또한 (B)단계(S200)에서, 데이터 수집 서버(200)는, 센싱 디바이스(110)에서 측정된 전압 및 전류 데이터와 에너지 소비 패턴을 무선통신을 통해 수집하여 데이터베이스(400)에 저장한다.Also (B) in step (S200), the data collection server 200 collects the voltage and current data and the energy consumption pattern measured by the sensing device 110 through wireless communication and stores it in the database 400 .
이후 (C)단계(S300)에서, 동작패턴 제어 서버(300)는, 상기 측정된 전압 및 전류 데이터와 에너지 소비 패턴을 통해 센싱 디바이스(110)의 동작 패턴에 따른 소비 전력을 분석하고, 에너지 하베스터 및 배터리의 소비전력 예측을 수행한다.After (C) in step (S300), the operation pattern control server 300 analyzes the power consumption according to the operation pattern of the sensing device 110 through the measured voltage and current data and the energy consumption pattern, and the energy harvester and predicting power consumption of the battery.
(C)단계(S300)에서, 동작패턴 제어 서버(300)는, 센싱 디바이스의 동작 패턴에 따른 소비전력 정보를 분석하여 배터리의 SoC를 추정하고, 에너지 하베스팅으로 수확 가능한 에너지를 예측한다.(C) In step S300, the operation pattern control server 300 estimates the SoC of the battery by analyzing power consumption information according to the operation pattern of the sensing device, and predicts energy harvestable through energy harvesting.
또한 (C)단계(S300)에서, 동작패턴 제어 서버(300)는, 상기 배터리의 SoC를 추정하는 과정에서 소비전력 증가에 따른 배터리 전압 강하로부터 배터리의 SoH를 추정한다.Also, in step (C) (S300), the operation pattern control server 300 estimates the SoH of the battery from the battery voltage drop according to the increase in power consumption in the process of estimating the SoC of the battery.
여기서 배터리의 SoC(State of charge, 충전 상태), SoH(State Of Health, 성능 상태)는 배터리 상태를 나타낸다.Here, the state of charge (SoC) and state of health (SoH) of the battery represent the state of the battery.
배터리의 소비전력 및 전압 강하값으로부터 배터리의 SoC, SoH값을 추정할 수 있다.SoC and SoH values of the battery can be estimated from the power consumption and voltage drop of the battery.
여기서 추정된 배터리의 SoC 및 SoH 값은 데이터베이스(400)에 저장된다.Here, the estimated SoC and SoH values of the battery are stored in the database 400 .
또한 (D)단계(S400)에서, 동작패턴 제어 서버(300)는, 예측된 결과를 기반으로 상기 센싱 디바이스(110) 정보의 중요도에 따라 센서에서 관리하는 센싱 디바이스(110)의 전력 상태별 동작 패턴을 결정하고 센서모듈(100)로 전달한다.In addition, (D) in step (S400), the operation pattern control server 300, based on the predicted result, the sensing device 110 according to the importance of the information according to the power state of the sensing device 110 managed by the sensor operation A pattern is determined and transmitted to the sensor module 100 .
여기서 센싱 디바이스(110) 정보의 중요도는, 센싱 디바이스(10)에서 센싱되는 데이터의 중요도에 따라 동작 주기 별 가동여부를 결정할 수 있기 때문에 센싱 디바이스(110)에서 센싱되는 정보의 중요도를 의미한다.Here, the importance of the information of the sensing device 110 means the importance of the information sensed by the sensing device 110 because it is possible to determine whether to operate for each operation period according to the importance of the data sensed by the sensing device 10 .
여기서 센싱되는 데이터는 풍향, 풍속, 온도, 습도, 분진, 기압, 가스 농도 중 어느 하나 이상을 포함할 수 있다.Here, the sensed data may include any one or more of wind direction, wind speed, temperature, humidity, dust, atmospheric pressure, and gas concentration.
여기서 센싱 디바이스(110)의 전력 상태별 동작 패턴은, 센서모듈 별 동작 패턴 테이블이 될 수 있다.Here, the operation pattern for each power state of the sensing device 110 may be an operation pattern table for each sensor module.
이러한 동작 패턴 테이블에는, 센서모듈 별 각각의 개별 센서 또는 센싱 디바이스의 동작 패턴이 포함될 수 있다.The operation pattern table may include operation patterns of each individual sensor or sensing device for each sensor module.
(D)단계(S400)에서, 동작패턴 제어 서버(300)에서 센싱 디바이스(110)의 전력 상태 별 동작 패턴을 결정하여 센서모듈(100)에 상기 동작 패턴을 전송한다. (D) In step S400 , the operation pattern control server 300 determines the operation pattern for each power state of the sensing device 110 and transmits the operation pattern to the sensor module 100 .
다시 말하면, (D)단계(S400)에서, 동작패턴 제어 서버(300)는 센싱 디바이스(110)의 동작을 제어할 제어값을 결정한다.In other words, in (D) step (S400), the operation pattern control server 300 determines a control value to control the operation of the sensing device (110).
또한 (E)단계(S500)에서, 센서모듈(100)은, 센서모듈(100)의 통신부에 해당하는 RF Block(140)을 통해 동작 패턴을 수신하여, 수신된 센싱 디바이스(110)의 동작 패턴에 따라 상기 MCU(130)에서 센서의 동작을 제어한다.Also (E) in step (S500), the sensor module 100 receives the operation pattern through the RF Block 140 corresponding to the communication unit of the sensor module 100, the received operation pattern of the sensing device (110) Accordingly, the MCU 130 controls the operation of the sensor.
(E)단계(S500)에서, 센서모듈(100)은, 수신된 센싱 디바이스(110)의 동작 패턴에 따라 상기 MCU(130)에서 센싱 디바이스(110)의 전원을 켜 데이터를 수집하도록 하거나 전원을 꺼 데이터를 수집하지 않도록 하는 등 전력 공급을 관리한다.In step (E) (S500), the sensor module 100 turns on the power of the sensing device 110 in the MCU 130 according to the received operation pattern of the sensing device 110 to collect data or turn on the power. It manages the power supply, such as turning it off and not collecting data.
여기서 센서모듈(100)은, 수신된 동작 패턴 테이블에 따라 센싱 디바이스(110)를 제어할 수 있다.Here, the sensor module 100 may control the sensing device 110 according to the received operation pattern table.
다시 말하면, (E)단계(S500)에서, 센서모듈(100)의 MCU(130)은, 동작패턴 제어 서버(300)에서 수신한 제어값에 따라 센싱 디바이스(110)의 동작 여부를 결정한다.In other words, in step (E) (S500), the MCU 130 of the sensor module 100 determines whether to operate the sensing device 110 according to the control value received from the operation pattern control server 300 .
또한 (D)단계(S400)에서 동작패턴 제어 서버(300)는 복수 개의 센서모듈(100)에 센싱 디바이스(110)의 동작 패턴을 전송할 수 있고, 이러한 경우 (E)단계(S500)에서는 센싱 디바이스(110)의 동작 패턴을 수신한 다수의 무선 센서모듈(100)에 설치된 개별적인 센싱 디바이스(110)들을 제어할 수 있다. In addition, in (D) step (S400), the operation pattern control server 300 may transmit the operation pattern of the sensing device 110 to the plurality of sensor modules 100, in this case (E) in step (S500), the sensing device Individual sensing devices 110 installed in a plurality of wireless sensor modules 100 that have received the operation pattern of 110 may be controlled.
여기서 다수의 무선 센서모듈(100)에 설치된 개별 센싱 디바이스(110)를 제어하도록 센서모듈(100)의 동작 패턴을 제어하여 데이터의 품질을 저하시키기 않고 센싱할 수 있도록 한다.Here, by controlling the operation pattern of the sensor module 100 to control the individual sensing devices 110 installed in the plurality of wireless sensor modules 100, it is possible to sense without degrading the quality of data.
또한 (D)단계(S400) 및 (E)단계(S500)에서는, (C)단계(S300)에서 예측된 결과 중 에너지 하베스팅을 통하여 수집된 배터리의 잔량이 센서가 허용할 수 있는 수준일 경우에는 센싱 디바이스(110)의 동작 패턴을 전체 데이터를 수집하는 것으로 제어할 수 있다.In addition, in steps (D) (S400) and (E) (S500), among the results predicted in step (C) (S300), when the remaining amount of the battery collected through energy harvesting is at a level that the sensor can allow In this case, the operation pattern of the sensing device 110 may be controlled by collecting all data.
도 2는 본 발명의 실시예에 의한 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법을 도시한 흐름도이다.2 is a flowchart illustrating a power saving method by determining an operation pattern of an energy harvesting sensor according to an embodiment of the present invention.
도 2를 참조하면, 센서모듈(100), 데이터 수집 서버(200), 동작패턴 제어 서버(300) 및 데이터베이스(400)간의 데이터 흐름 및 각 동작 방법을 나타낼 수 있다.Referring to FIG. 2 , the data flow and each operation method between the sensor module 100 , the data collection server 200 , the operation pattern control server 300 , and the database 400 may be illustrated.
도 2를 참조하면, (A)단계(S100)는, 센서모듈(100)이 (A1) 소비전류 측정 통해 에너지 소비 패턴 추출 단계(S110), (A2) 에너지소비 패턴을 데이터 수집 서버(200)에 전송하는 단계(S120)를 포함한다.2, (A) step (S100), the sensor module 100 extracts the energy consumption pattern through (A1) consumption current measurement (S110), (A2) the energy consumption pattern data collection server 200 and transmitting to (S120).
여기서 (A1)단계(S110)는 센서모듈(100)은, 센싱 디바이스(110)에서 1주기동안 데이터를 측정하는 과정에서 센싱 디바이스(110)의 초기화 기간 및 동작 기간 동안 공급되는 전류를 샘플링하고, 데이터를 측정하며, 센싱 디바이스(110)의 초기화 기간 동안, 소비전력 측정 센서(120)는 상기 센싱 디바이스(110)에서 소비되는 전력량 측정을 통하여 센싱 디바이스의 오류를 검출한다.Here, in (A1) step (S110), the sensor module 100 samples the current supplied during the initialization period and the operation period of the sensing device 110 in the process of measuring data for one period in the sensing device 110, Data is measured, and during the initialization period of the sensing device 110 , the power consumption measuring sensor 120 detects an error of the sensing device by measuring the amount of power consumed by the sensing device 110 .
또한 (A1)단계(S110)에서, MCU(130)는 측정된 소비전류 정보를 통하여 센싱 디바이스(110)의 에너지 소비 패턴을 추출한다.Also, in step (A1) (S110), the MCU 130 extracts the energy consumption pattern of the sensing device 110 through the measured current consumption information.
이러한 에너지 소비 패턴은 예를 들어 대기 모드, 워밍업, 동작 모드, 다시 대기 모드를 포함하는 데이터 측정 주기 동안의 에너지 소비 패턴을 포함할 수 있다.Such an energy consumption pattern may include, for example, an energy consumption pattern during a data measurement period including a standby mode, a warm-up, an operating mode, and a standby mode again.
또한 (A2)단계(S120)에서 센서모듈(100)은 (A1)단계(S110)에서 추출된 에너지 소비 패턴을 송신블록 등의 통신부를 통해 데이터 수집 서버(200)로 전송한다.In addition, in step (A2) (S120), the sensor module 100 transmits the energy consumption pattern extracted in step (A1) (S110) to the data collection server 200 through a communication unit such as a transmission block.
도 2를 참조하면, 이후 데이터 수집 서버(200)는 센서모듈(100)로부터 측정된 전압 및 전류 데이터, 에너지 소비 패턴을 수집하고, 이를 데이터베이스(400)에 저장하는 (B)단계(S200)를 진행한다.Referring to FIG. 2 , thereafter, the data collection server 200 collects the voltage and current data and the energy consumption pattern measured from the sensor module 100 , and stores it in the database 400 (B) step (S200). proceed
이후 동작패턴 제어 서버(300)는 (C)단계(S300)를 거쳐 (D)단계(S400)를 수행한다.Thereafter, the operation pattern control server 300 performs (D) step (S400) through (C) step (S300).
여기서 (C)단계(S300)는, (C1) 동작패턴 별 소비전력 분석 및 에너지 하베스터 및 배터리의 소비전력 예측 단계(S310), (C2) 배터리의 SoC, SoH를 데이터베이스(400)에 저장 단계(S320)를 포함한다.Here, (C) step (S300) includes (C1) power consumption analysis by operation pattern and power consumption prediction step (S310) of the energy harvester and battery, (C2) storing SoC and SoH of the battery in the database 400 ( S320).
(C1)단계(S310)에서, 동작패턴 제어 서버(300)는 수신한 전압 및 전류 데이터를 분석하여 소비전력 및 전압 변동 값을 연산하고, 소비전력 및 전압 변동값을 분석하여 SoC, SoH를 추정하며, 이를 통해 센싱 디바이스의 동작 단계 별 소비전력을 예측하고, 에너지 하베스터의 충전 가능한 전력, 즉 에너지 하베스팅으로 수확 가능한 에너지를 예측할 수 있다.(C1) In step S310, the operation pattern control server 300 analyzes the received voltage and current data to calculate power consumption and voltage fluctuation values, and analyzes power consumption and voltage fluctuation values to estimate SoC and SoH Through this, the power consumption for each operation stage of the sensing device can be predicted, and the chargeable power of the energy harvester, that is, the energy harvestable through energy harvesting can be predicted.
또한 (C2)단계(S320)에서, 동작패턴 제어 서버(300)는 생성된 배터리의 SoC, SoH 값을 데이터베이스(400)에 저장한다.Also (C2) in step (S320), the operation pattern control server 300 stores the generated SoC and SoH values of the battery in the database (400).
도 2를 참조하면 (D)단계(S400)는, 동작패턴 제어 서버(300)가 (D1) 센싱 디바이스의 전력 상태 별 동작 패턴을 결정하는 단계(S410), (D2) 전력 상태 별 동작패턴을 센서모듈(100)에 전송하는 단계(S420)를 포함한다.2, (D) step (S400), the operation pattern control server 300 (D1) determining the operation pattern for each power state of the sensing device (S410), (D2) the operation pattern for each power state and transmitting to the sensor module 100 (S420).
여기서 (D1)단계(S410)는, 동작패턴 제어 서버(300)가 (C)단계(S300)에서 예측된 결과인 배터리의 SoC, SoH 추정값 및 에너지 하베스팅으로 수확 가능한 에너지를 기반으로 센싱 디바이스(110) 정보의 중요도에 따라 센서에서 관리하는 센싱 디바이스(110)의 전력 상태 별 동작 패턴을 결정한다.Here, (D1) step (S410), the operation pattern control server 300 based on the SoC, SoH estimate of the battery, which is the result predicted in step (C) (S300), and energy harvestable by energy harvesting sensing device ( 110) An operation pattern for each power state of the sensing device 110 managed by the sensor is determined according to the importance of information.
이처럼 동작패턴 제어 서버(300)는 센서모듈(100)에 포함되는 다수의 센싱 디바이스(110)에서 측정되는 데이터의 중요도를 판단하여, 센서의 데이터 수집 여부를 전력 상태 별로 결정한다.As such, the operation pattern control server 300 determines the importance of data measured by the plurality of sensing devices 110 included in the sensor module 100, and determines whether to collect data from the sensor for each power state.
또한 (D2)단계(S420)는, 동작패턴 제어 서버(300)가 (D1)단계(S410)에서 결정된 센싱 디바이스(110)의 전력 상태 별 동작 패턴을 센서모듈에 전송한다. In addition, in step (D2) (S420), the operation pattern control server 300 transmits the operation pattern for each power state of the sensing device 110 determined in step (D1) (S410) to the sensor module.
이후 센서모듈(100)은 센서모듈(100)의 통신부에 해당하는 RF Block(140)을 통해 수신한 센싱 디바이스(110)의 전력 상태 별 동작 패턴에 따라 센서를 제어하는 (E)단계(S500)를 수행한다.Thereafter, the sensor module 100 controls the sensor according to the operation pattern for each power state of the sensing device 110 received through the RF Block 140 corresponding to the communication unit of the sensor module 100 (E) step (S500) carry out
(E)단계(S500)에서, 센서모듈(100)의 MCU(130)은 RF Block(140)으로 수신한 센싱 디바이스(110)의 전력 상태 별 동작 패턴을 기준으로 센싱 디바이스(110)의 동작을 제어한다.(E) In step S500, the MCU 130 of the sensor module 100 performs the operation of the sensing device 110 based on the operation pattern for each power state of the sensing device 110 received by the RF Block 140. control
따라서 MCU(130)는 센싱 디바이스(110)의 전력 상태 별 동작 패턴에 따라 센싱 디바이스(110)의 전원을 켜 데이터를 수집하도록 하거나 전원을 꺼 데이터를 수집하지 않도록 하는 등 전력 공급을 관리한다.Accordingly, the MCU 130 manages the power supply, such as turning on the power of the sensing device 110 to collect data or turning off the power to not collect data according to an operation pattern for each power state of the sensing device 110 .
도 3은 본 발명의 실시예에 의한 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법을 도시한 블록도이다.3 is a block diagram illustrating a power saving method by determining an operation pattern of an energy harvesting sensor according to an embodiment of the present invention.
도 3을 참조하면, 본 발명의 실시예에 의한 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법에서는 (A)단계(S100), (B)단계(S200), (C)단계(S300), (D)단계(S400)가 순차적으로 이루어진다.Referring to FIG. 3 , in the power saving method by determining the operation pattern of the energy harvesting sensor according to the embodiment of the present invention, (A) step (S100), (B) step (S200), (C) step (S300) , (D) step (S400) is made sequentially.
여기서 (D)단계(S400)에서 결정되는 센싱 디바이스의 동작 패턴은 다수의 센서모듈(100)에 있어 각각의 센서모듈(100)을 ID1, …, IDm 으로 나타낼 수 있으며, 각 센서모듈(100)에 포함되는 하나 이상의 센서 디바이스(110)는 S1, S2, S3, … , Sn으로 표현될 수 있으며, 동작이 되어야 할 센서 디바이스(110)는 밝은 색으로, 동작이 되지 않아야 할 센서 디바이스(110)는 어두운 색으로 나타나며, 이러한 센싱 디바이스의 동작 패턴은 다수 개의 센서모듈(100)의 동작 패턴을 표현한 동작 패턴 테이블의 형태로 나타날 수 있다.Here, the operation pattern of the sensing device determined in step (D) (S400) is ID1, . . . , IDm, and one or more sensor devices 110 included in each sensor module 100 are S1, S2, S3, ... , Sn, the sensor device 110 to be operated is displayed in a bright color, and the sensor device 110 not to be operated is displayed in a dark color, and the operation pattern of this sensing device is a plurality of sensor modules ( 100) in the form of an operation pattern table expressing the operation pattern.
도 4는 센싱 디바이스 동작에 따른 소비전력 변화 그래프이다.4 is a graph showing a change in power consumption according to an operation of a sensing device.
도 4를 참조하면, 센서모듈(100)이 센싱 디바이스 1, 센싱 디바이스 2, 센싱 디바이스 3, 센싱 디바이스 4를 포함하는 4개의 센싱 디바이스(110)를 포함하는 경우, 대기(Sleep), 준비(Warming-up), 동작(Operation), 다시 대기(Sleep) 등으로 진행되는 센서의 동작주기에 있어서, 시간의 흐름에 따른 소비전력은 도 4와 같이 나타낼 수 있다.Referring to FIG. 4 , when the sensor module 100 includes four sensing devices 110 including sensing device 1 , sensing device 2 , sensing device 3 , and sensing device 4 , Sleep, Warming -up), operation, and in the operation cycle of the sensor proceeding to sleep again, power consumption according to the passage of time may be represented as shown in FIG. 4 .
여기서 준비(Warming-up)모드에서는 MCU(130)가 준비되며, 이후 개별 센싱 디바이스 1, 2, 3, 4는 순차적으로 준비(Warming-up) 및 동작(Data access)이 이루어지고, 이후 무선통신을 통해 센서 데이터가 데이터 수집 서버(200)에 전송되면 대기모드(Sleep)에 들어간다.Here, in the warm-up mode, the MCU 130 is prepared, and thereafter, the individual sensing devices 1, 2, 3, and 4 are sequentially prepared (warming-up) and operated (data access), and then wireless communication. When the sensor data is transmitted to the data collection server 200 through the standby mode (Sleep).
도 4를 참조하면, 센싱 디바이스 별로 측정하는 데이터가 풍향, 풍속, 온도, 습도, 분진, 기압, 가스 농도 등으로 상이하므로, 각 센싱 디바이스의 동작 별로 소비되는 전력이 상이하다.Referring to FIG. 4 , since data measured for each sensing device are different in wind direction, wind speed, temperature, humidity, dust, atmospheric pressure, gas concentration, and the like, power consumed for each operation of each sensing device is different.
*도 4를 참조하면 센싱 디바이스 3은 비교적 소비전력이 적고, 센싱 디바이스 4는 비교적 소비전력이 높은 것으로 나타난다.* Referring to FIG. 4 , the sensing device 3 has relatively low power consumption and the sensing device 4 has relatively high power consumption.
도 5는 센서모듈 별 동작패턴 테이블 예시도이다.5 is an exemplary diagram of an operation pattern table for each sensor module.
도 5를 참조하면, (D)단계(S400)에서 결정되는 동작 패턴이 표현된 동작 패턴 테이블은 다음과 같이 나타낼 수 있다.Referring to FIG. 5 , the operation pattern table in which the operation pattern determined in step (D) is expressed may be represented as follows.
좌측 1열에 기재된 ID1, ID2, ID3, ID4는 각각의 센서모듈(100)의 ID를 나타낸다.ID1, ID2, ID3, and ID4 described in the first column on the left represent IDs of the respective sensor modules 100 .
또한 우측 행에 기재된 1, 2, 3, 4는 각각의 개별 센서, 즉 센싱 디바이스(110)의 번호를 나타낸다. Also, 1, 2, 3, and 4 described in the right row indicate the number of each individual sensor, that is, the sensing device 110 .
예를 들어 센싱 디바이스 1은 풍향, 센싱 디바이스 2는 풍속, 센싱 디바이스 3은 온도, 센싱 디바이스 4는 습도를 측정할 수 있다.For example, sensing device 1 may measure a wind direction, sensing device 2 may measure wind speed, sensing device 3 may measure temperature, and sensing device 4 may measure humidity.
도 5를 참조하면 ID1에서는 센싱 디바이스 1, 2, 3, 4 모두가 활성화 되어 있는 상태로 표현한 것이며, ID2에서는 센싱 디바이스 1만이 활성화 되어 있는 상태, ID3에서는 센싱 디바이스 2만이 활성화 되어 있는 상태, ID4에서는 센싱 디바이스 3만이 활성화 되어 있는 상태를 표현한 것이다.5, in ID1, all sensing devices 1, 2, 3, and 4 are expressed in an activated state, in ID2 only sensing device 1 is activated, in ID3 only sensing device 2 is activated, in ID4 It expresses the state that only sensing device 3 is activated.
센싱 디바이스(110)의 단위 동작에 따른 소비전력 분석과 배터리 및 에너지 하베스팅 예측에 따라 동작 패턴과 같이 센싱 디바이스(110)의 동작을 제어할 수 있다.The operation of the sensing device 110 may be controlled such as an operation pattern according to the power consumption analysis according to the unit operation of the sensing device 110 and the prediction of battery and energy harvesting.
이를 위해 동작패턴 제어 서버(300)는 배터리 상태가 전반적으로 저하된 경우 무선 센서 모듈별 동작 패턴 지정을 통해 데이터의 품질 저하 발생이 최소화가 되도록 각 무선센서 모듈별 동작 패턴을 생성 및 전달한다.To this end, the operation pattern control server 300 generates and transmits an operation pattern for each wireless sensor module so that the occurrence of data quality deterioration is minimized by designating operation patterns for each wireless sensor module when the battery state is generally deteriorated.
따라서 동작패턴 제어 서버(300)는 에너지 하베스팅을 통해 수집된 배터리의 잔량이 센서가 허용할 수 있는 수준일 경우에는 센싱 디바이스의 동작패턴을 전체 데이터 수집으로 제어한다. Therefore, the operation pattern control server 300 controls the operation pattern of the sensing device to collect the entire data when the remaining amount of the battery collected through energy harvesting is at a level that the sensor can allow.
이와 관련하여, 도 6은 동작 패턴 별 센싱 디바이스 동작에 따른 소비전력 변화 그래프이다.In this regard, FIG. 6 is a graph showing a change in power consumption according to an operation of a sensing device for each operation pattern.
도 6을 참조하면, 도 6-(a)는 도 5의 ID1에 대응될 수 있는 무선센서모듈 1의 소비전력을 나타낸 것으로, 시간의 경과에 따라 센싱 디바이스 1, 2, 3, 4 모두가 동작한 것으로 나타난다. Referring to FIG. 6, FIG. 6-(a) shows the power consumption of the wireless sensor module 1 that may correspond to ID1 of FIG. 5, and all sensing devices 1, 2, 3, and 4 operate over time. appears to have been
또한 도 6-(b)는 도 5의 ID2에 대응될 수 있는 무선센서모듈 2의 소비전력을 나타낸 것으로, 시간의 경과에 따라 센싱 디바이스 1만이 동작한 것으로 나타난다.6-(b) shows the power consumption of the wireless sensor module 2 that can correspond to ID2 of FIG. 5, and it appears that only the sensing device 1 operates over time.
또한 도 6-(c)는 도 5의 ID3에 대응될 수 있는 무선센서모듈 3의 소비전력을 나타낸 것으로, 시간의 경과에 따라 센싱 디바이스 2만이 동작한 것으로 나타난다.6-(c) shows the power consumption of the wireless sensor module 3 that can correspond to ID3 of FIG. 5, and it appears that only the sensing device 2 operates over time.
또한 도 6-(d)는 도 5의 ID4에 대응될 수 있는 무선센서모듈 4의 소비전력을 나타낸 것으로, 시간의 경과에 따라 센싱 디바이스 3만이 동작한 것으로 나타난다.6-(d) shows the power consumption of the wireless sensor module 4 that can correspond to ID4 of FIG. 5, and it appears that only the sensing device 3 operates over time.
이처럼 (D)단계(S400)에서 결정되는 센싱 디바이스(110)의 동작 패턴은 센싱 디바이스의 정보의 중요도에 따라 다양하게 결정될 수 있으며, 정보의 공백을 최소화하기 위한 방법이 될 수 있다.As such, the operation pattern of the sensing device 110 determined in step (D) ( S400 ) may be variously determined according to the importance of information of the sensing device, and may be a method for minimizing the information gap.
도 7은 본 발명의 실시예에 의한 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 시스템의 구성도이다.7 is a block diagram of a system for saving power by determining an operation pattern of an energy harvesting sensor according to an embodiment of the present invention.
도 7을 참조하면, 본 발명의 실시예에 의한 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 시스템은, 센서모듈(100), 데이터 수집 서버(200), 동작패턴 제어 서버(300) 및 데이터베이스(400)를 포함할 수 있다.Referring to FIG. 7 , a power saving system by determining an operation pattern of an energy harvesting sensor according to an embodiment of the present invention includes a sensor module 100 , a data collection server 200 , an operation pattern control server 300 and a database. (400).
여기서 센서모듈(100)은 하나 이상의 센싱 디바이스를 가지고 데이터를 측정하며, 상기 센싱 디바이스의 측정 과정에서 소비전류 측정을 통해 에너지 소비 패턴을 추출하여 동작패턴 제어 서버에 전송하고, 상기 동작패턴 제어 서버에서 수신된 센싱 디바이스의 동작 패턴에 따라 센서를 동작시킨다.Here, the sensor module 100 measures data with one or more sensing devices, extracts an energy consumption pattern through current consumption measurement in the measurement process of the sensing device, and transmits it to the operation pattern control server, and in the operation pattern control server The sensor is operated according to the received operation pattern of the sensing device.
또한 센서모듈(100)은 센싱 디바이스(110), 소비전력 측정 센서(120), MCU(130), RF Block(140)을 포함한다.In addition, the sensor module 100 includes a sensing device 110 , a power consumption measuring sensor 120 , an MCU 130 , and an RF Block 140 .
여기서 센싱 디바이스(110)는 데이터를 측정하는 센서로서, 센서모듈(100)에는 적어도 하나 이상의 센싱 디바이스(110)가 포함된다.Here, the sensing device 110 is a sensor that measures data, and the sensor module 100 includes at least one sensing device 110 .
여기서 소비전력 측정 센서(120)는 센싱 디바이스(110)의 동작시 소비전력을 측정한다.Here, the power consumption measuring sensor 120 measures power consumption when the sensing device 110 operates.
여기서 MCU(130)는 Micro Control Unit으로 데이터를 수집하고, 상기 동작패턴 제어 서버에서 수신된 센싱 디바이스의 동작 패턴에 따라 센서모듈(100)의 동작을 전반적으로 제어하는 프로세서를 의미하며, 컨트롤러(controller), 중앙처리장치(central processing unit, CPU), MPU(micro processing unit), 어플리케이션 프로세서(application processor(AP)), 또는 커뮤니케이션 프로세서(communication processor(CP)), ARM 프로세서 등으로 표현될 수 있다.Here, the MCU 130 means a processor that collects data with a Micro Control Unit and controls the overall operation of the sensor module 100 according to the operation pattern of the sensing device received from the operation pattern control server, and the controller ), a central processing unit (CPU), a micro processing unit (MPU), an application processor (AP), a communication processor (CP), an ARM processor, or the like.
여기서 MCU(130)는 기존의 센싱 전력 관리 기술에서처럼 센싱 주기를 제어함으로서 센서의 전력을 관리하는 것이 아니라, 센싱된 데이터의 연속성이 중요한 센서 응용에 있어서 다수의 센싱 디바이스(110) 중 중요도가 낮은 센서의 데이터 수집을 조정하는 등으로 센싱 디바이스(110)의 동작 패턴에 따라 센서모듈(100)의 동작을 제어한다.Here, the MCU 130 does not manage the power of the sensor by controlling the sensing cycle as in the conventional sensing power management technology, but a sensor with low importance among the plurality of sensing devices 110 in a sensor application in which the continuity of sensed data is important. Controls the operation of the sensor module 100 according to the operation pattern of the sensing device 110 by adjusting the data collection of
여기서 RF Block(140)은 일반적으로 수신 블록에 해당하며, 동작패턴 제어 서버(300)에서 전송한 데이터를 수신할 수 있는 등 무선 통신이 이루어지는 부분을 의미한다.Here, the RF block 140 generally corresponds to a reception block, and means a portion in which wireless communication is performed, such as being able to receive data transmitted from the operation pattern control server 300 .
다만, 송신블록을 포함하는 통신부의 의미로 사용될 수도 있다.However, it may be used in the sense of a communication unit including a transmission block.
여기서 RF(Radio Frequency)는 통상 무선통신용으로 사용되는 주파수를 의미하며, 10kHz 내지 300GHz의 전자파 스팩트럼 영역 내의 주파수를 의미할 수 있다.Here, RF (Radio Frequency) means a frequency generally used for wireless communication, and may mean a frequency within an electromagnetic wave spectrum region of 10 kHz to 300 GHz.
이처럼 센서모듈(100)은 센싱 디바이스의 측정 과정의 1주기 동안 상기 센싱 디바이스를 초기화 기간 및 동작 기간 동안 공급되는 전류 샘플링 및 데이터 측정하고, 상기 센싱 디바이스의 초기화 기간 동안 상기 센싱 디바이스에서 소비되는 전력량 측정을 통하여 센싱 디바이스의 오류를 검출한다.As such, the sensor module 100 measures the current sampling and data supplied to the sensing device during an initialization period and an operation period for one cycle of the measurement process of the sensing device, and measures the amount of power consumed by the sensing device during the initialization period of the sensing device Detects the error of the sensing device through
도 8은 센서 모듈의 블록도이다.8 is a block diagram of a sensor module.
도 8을 참조하면, 센서모듈(100) 에서 센서 배터리를 측정하는 부분은 에너지 소스(Energy Source), 전력관리 IC(PMIC, Power Management IC), 마이크로 컨트롤러 및 부하(MCU & Load), 아날로그-디지털 변환회로(ADC), 션트 저항, 배터리를 포함할 수 있다.Referring to FIG. 8 , the part measuring the sensor battery in the sensor module 100 includes an energy source, a power management IC (PMIC, power management IC), a microcontroller and a load (MCU & Load), and analog-digital. It may include a conversion circuit (ADC), a shunt resistor, and a battery.
여기서 에너지 소스는 태양광, 진동, 열원 등이 포함된다.Here, the energy source includes sunlight, vibration, heat source, and the like.
여기서 션트 저항은 Shunt 저항으로, 션트 저항을 통과하는 전류에 의해 배터리 전압과 부하 전압의 차이가 발생하며, 무선 센서의 동작 상태 변화에 따라 두 전압차 측정과 고정된 저항값을 활용하여 전류를 측정하기 위해 포함된다.Here, the shunt resistor is a shunt resistor, and the difference between the battery voltage and the load voltage is generated by the current passing through the shunt resistor. According to the change in the operating state of the wireless sensor, the current is measured by measuring the difference between the two voltages and using the fixed resistance value. included to do
여기서 배터리는 상태 추정의 대상이 되는 배터리로서 SoC(State of charge, 충전 상태), SoH(State Of Health, 성능 상태)를 통해 그 상태를 나타낼 수 있다.Here, the battery is a battery that is a target of state estimation, and its state may be expressed through a state of charge (SoC) and a state of health (SoH).
이와 같은 센서모듈(100)에서 측정된 데이터는 데이터 수집 서버(200)에 전송되며, 데이터 수집 서버(200)는 측정된 데이터를 수집하여 데이터베이스(400)에 저장한다.The data measured by the sensor module 100 is transmitted to the data collection server 200 , and the data collection server 200 collects the measured data and stores it in the database 400 .
본 발명에서 센서에 적용되는 전압, 전류 측정 구조는 shunt 저항을 통과하는 전류에 의해 battery 전압과 Load 전압의 차이가 발생하며, 무선 센서의 동작 상태 변화에 따라 두 전압차 측정과 고정된 저항값을 활용하여 전류를 측정하고, 측정된 전압, 전류 정보를 무선통신을 통해 전달한다.In the voltage and current measurement structure applied to the sensor in the present invention, the difference between the battery voltage and the load voltage occurs due to the current passing through the shunt resistor. It measures the current and transmits the measured voltage and current information through wireless communication.
또한 동작패턴 제어 서버(300)는 전압 및 전류 데이터를 분석하여 에너지 소비 패턴을 분석하고, 예측에 따라 상기 센싱 디바이스(110)의 동작 패턴을 결정하여 센서모듈(100)에 전달한다.In addition, the operation pattern control server 300 analyzes the voltage and current data to analyze the energy consumption pattern, and determines the operation pattern of the sensing device 110 according to the prediction, and transmits it to the sensor module 100 .
도 7을 참조하면, 이러한 동작패턴 제어 서버(300)는 서버분석부(310), 서버예측부(320), 동작패턴 결정부(330), 서버전송부(340)를 포함한다.Referring to FIG. 7 , the operation pattern control server 300 includes a server analysis unit 310 , a server prediction unit 320 , an operation pattern determination unit 330 , and a server transmission unit 340 .
여기서 서버분석부(310)는 센싱 디바이스(110)의 동작 패턴에 따른 소비 전력을 분석한다.Here, the server analysis unit 310 analyzes power consumption according to the operation pattern of the sensing device 110 .
서버분석부(310)는 센서모듈(100)에서 측정된 전압 및 전류 데이터 및/또는 소비전력을 통해 센싱 디바이스(110)의 동작 패턴에 따른 소비 전력을 분석하는데, 예를 들어 대기, 준비, 동작, 대기 모드를 포함하는 한 주기의 데이터 측정 주기 동안의 에너지 소비 패턴 분석하여 센싱 디바이스의 동작 패턴에 따른 전력 소비 패턴을 분석한다. The server analysis unit 310 analyzes power consumption according to the operation pattern of the sensing device 110 through the voltage and current data and/or power consumption measured by the sensor module 100, for example, standby, preparation, operation , and a power consumption pattern according to an operation pattern of a sensing device is analyzed by analyzing an energy consumption pattern during a data measurement period of one period including a standby mode.
여기서 서버예측부(320)는 에너지 하베스터 및 배터리의 소비전력 예측을 수행한다. Here, the server prediction unit 320 predicts power consumption of the energy harvester and the battery.
도 9는 도 7의 서버예측부의 세부구성도이다.9 is a detailed configuration diagram of the server prediction unit of FIG. 7 .
도 9를 참조하면, 서버예측부(320)는 SoC 추정부(321), 수확 에너지 예측부(322), SoH 추정부(323)를 포함할 수 있다.Referring to FIG. 9 , the server predictor 320 may include an SoC estimator 321 , a harvest energy predictor 322 , and an SoH estimator 323 .
여기서 SoC 추정부(321)는, 서버분석부(310)에서 분석된 센싱 디바이스의 동작 패턴에 따른 소비전력 정보를 기준으로 배터리의 SoC를 추정한다.Here, the SoC estimator 321 estimates the SoC of the battery based on power consumption information according to the operation pattern of the sensing device analyzed by the server analysis unit 310 .
여기서 수확 에너지 예측부(322)는, 서버분석부(310)에서 분석된 소비전력 정보를 기준으로 센싱 디바이스 별로 소비되는 전력 및 에너지 하베스터로 충전 가능한 전력을 예측한다.Here, the harvested energy prediction unit 322 predicts the power consumed by each sensing device and the power that can be charged by the energy harvester based on the power consumption information analyzed by the server analysis unit 310 .
여기서 SoH 추정부(323)는, 상기 SoC 추정부(221)에서 배터리의 SoC를 추정하는 과정에서 얻은 소비전력 증가에 따른 배터리 전압 강하값을 기준으로 배터리의 SoH를 추정한다.Here, the SoH estimator 323 estimates the SoH of the battery based on the battery voltage drop value according to the increase in power consumption obtained in the process of estimating the SoC of the battery by the SoC estimator 221 .
또한 동작패턴 결정부(330)는 서버분석부(310)에서 분석된 소비전력 및 상기 서버예측부(320)에서 예측된 에너지 하베스터 및 배터리의 예측 결과를 기반으로 센싱 디바이스의 정보의 중요도에 따라 센싱 디바이스(110)의 전력 상태별 동작 패턴을 결정한다.In addition, the operation pattern determining unit 330 senses according to the importance of the information of the sensing device based on the power consumption analyzed by the server analysis unit 310 and the prediction results of the energy harvester and the battery predicted by the server prediction unit 320 . An operation pattern for each power state of the device 110 is determined.
여기서 센싱 디바이스(110) 정보의 중요도는, 센싱 디바이스(10)에서 센싱되는 데이터의 중요도에 따라 동작 주기 별 가동여부를 결정할 수 있기 때문에 센싱 디바이스(110)에서 센싱되는 정보의 중요도를 의미한다.Here, the importance of the information of the sensing device 110 means the importance of the information sensed by the sensing device 110 because it is possible to determine whether to operate for each operation period according to the importance of the data sensed by the sensing device 10 .
여기서 센싱되는 데이터는 풍향, 풍속, 온도, 습도, 분진, 기압, 가스 농도 중 어느 하나 이상을 포함할 수 있다.Here, the sensed data may include any one or more of wind direction, wind speed, temperature, humidity, dust, atmospheric pressure, and gas concentration.
따라서 동작패턴 결정부(330)는 센서모듈(100)에 포함되는 다수의 센싱 디바이스(110)에서 측정되는 데이터의 중요도를 판단하여, 센서의 데이터 수집 여부를 전력 상태 별로 결정한다.Accordingly, the operation pattern determiner 330 determines the importance of data measured by the plurality of sensing devices 110 included in the sensor module 100, and determines whether to collect data from the sensor for each power state.
또한 동작패턴 결정부(330)는 서버분석부(310)에서 분석된 소비전력 및 상기 서버예측부(320)에서 예측된 에너지 하베스터 및 배터리의 예측 결과를 기반으로 센싱 디바이스의 정보의 중요도에 따라 센서에서 관리하는 센싱 디바이스(110)의 전력 상태별 동작 패턴을 동작 패턴 테이블로 생성하고, 상기 동작 패턴 테이블을 상기 센서모듈(100)로 전달할 수 있다.In addition, the operation pattern determination unit 330 is a sensor according to the importance of the information of the sensing device based on the power consumption analyzed by the server analysis unit 310 and the prediction results of the energy harvester and the battery predicted by the server prediction unit 320 . may generate an operation pattern for each power state of the sensing device 110 managed by the operation pattern table, and transmit the operation pattern table to the sensor module 100 .
즉, 센싱 디바이스(110)의 전력 상태별 동작 패턴은 동작 패턴 테이블로 생성할 수 있다.That is, the operation pattern for each power state of the sensing device 110 may be generated as an operation pattern table.
여기서 동작 패턴 테이블은 도 5에 도시된 바와 같이 센서모듈(100) 별로 개별 센싱 디바이스(110)의 동작여부를 포함할 수 있다.Here, the operation pattern table may include whether the individual sensing device 110 operates for each sensor module 100 as shown in FIG. 5 .
또한 서버전송부(340)는 상기 동작패턴 결정부(330)에서 결정된 센싱 디바이스(110)의 전력 상태별 동작 패턴을 센서모듈(100)에 전송한다.In addition, the server transmitter 340 transmits the operation pattern for each power state of the sensing device 110 determined by the operation pattern determiner 330 to the sensor module 100 .
여기서 전송은 주로 무선 통신을 이용하며, 여기에는, RF 수신기 등 무선 송수신기가 포함될 수 있다.Here, the transmission mainly uses wireless communication, which may include a wireless transceiver such as an RF receiver.
이처럼 동작패턴 결정부(330)에서 결정된 센싱 디바이스(110)의 전력 상태 별 동작 패턴은 센서모듈(100)로 전송되어 센서모듈(100)은 RF Block(140)에서 수신된 센싱 디바이스(110)의 전력 상태 별 동작 패턴을 기준으로 센싱 디바이스(110)의 전력 공급을 관리한다.As such, the operation pattern for each power state of the sensing device 110 determined by the operation pattern determiner 330 is transmitted to the sensor module 100 so that the sensor module 100 is the sensing device 110 received from the RF Block 140 . The power supply of the sensing device 110 is managed based on the operation pattern for each power state.
이후 센서모듈(100)은 동작패턴 제어 서버(300)로부터 수신된 센싱 디바이스(110)의 동작 패턴에 따라 상기 MCU(130)에서 센싱 디바이스의 전원을 켜 데이터를 수집하도록 하거나 전원을 꺼 데이터를 수집하지 않도록 하는 등 전력 공급을 관리한다.Then, the sensor module 100 turns on the power of the sensing device in the MCU 130 to collect data or turns off the power to collect data according to the operation pattern of the sensing device 110 received from the operation pattern control server 300 . Control the power supply, such as not to do so.
기존의 센싱 전력 관리 기술은 센싱 주기를 제어함으로서 센서의 전력을 관리하는 방식이 주류를 이루었으나, 본 발명의 실시예에 의한 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법 및 시스템은, 센싱된 데이터의 연속성이 중요한 센서 응용에 있어 다수의 센싱 디바이스 중 중요도가 높은 센싱 디바이스 대비 중요도가 낮은 센서의 데이터 수집 회수를 줄이도록 센서의 동작 패턴을 조정함으로서 전체 센서모듈에서 소비되는 전력을 절감시킬 수 있도록 함에 차이점이 있다.In the conventional sensing power management technology, the method of managing the power of the sensor by controlling the sensing period has been mainstream, but the method and system for power saving by determining the operation pattern of the energy harvesting sensor according to the embodiment of the present invention, the sensing In sensor applications where the continuity of data is important, the power consumption of the entire sensor module can be reduced by adjusting the operation pattern of the sensor to reduce the number of times of data collection of a low-importance sensor compared to a high-importance sensing device among a number of sensing devices. There is a difference in making it possible.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of this embodiment, and a person skilled in the art to which this embodiment belongs may make various modifications and variations without departing from the essential characteristics of the present embodiment. Accordingly, the present embodiments are intended to explain rather than limit the technical spirit of the present embodiment, and the scope of the technical spirit of the present embodiment is not limited by these embodiments. The protection scope of this embodiment should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be interpreted as being included in the scope of the present embodiment.

Claims (17)

  1. 하나 이상의 센싱 디바이스, 소비전력 측정 센서, MCU, RF Block을 포함하는 센서모듈, 데이터 수집 서버, 동작패턴 제어 서버 및 데이터베이스를 이용한 전력 절감 방법에 있어서,In the power saving method using one or more sensing device, power consumption measuring sensor, MCU, a sensor module including an RF block, a data collection server, an operation pattern control server, and a database,
    (A) 상기 센서모듈은, 상기 센싱 디바이스의 측정 과정에서 소비전류 측정을 통해 에너지 소비 패턴을 추출하여 상기 데이터 수집 서버로 전송하는 단계;(A) the sensor module, extracting an energy consumption pattern through current consumption measurement in the measurement process of the sensing device and transmitting it to the data collection server;
    (B) 상기 데이터 수집 서버는, 상기 센싱 디바이스에서 측정된 전압 및 전류 데이터와 에너지 소비 패턴을 무선통신을 통해 수집하여 상기 데이터베이스에 저장하는 단계;(B) the data collection server, collecting voltage and current data and energy consumption patterns measured by the sensing device through wireless communication and storing the data in the database;
    (C) 상기 동작패턴 제어 서버는, 상기 전압 및 전류 데이터를 분석하여 에너지 소비 패턴을 통해 상기 센싱 디바이스의 동작 패턴에 따른 소비전력을 분석하고, 에너지 하베스터 및 배터리의 소비전력 예측을 수행하는 단계;(C) performing, by the operation pattern control server, analyzing the voltage and current data, analyzing the power consumption according to the operation pattern of the sensing device through the energy consumption pattern, and predicting the power consumption of the energy harvester and the battery;
    (D) 상기 동작패턴 제어 서버는, 예측된 결과를 기반으로 상기 센싱 디바이스 정보의 중요도에 따라 센서에서 관리하는 센싱 디바이스의 전력 상태별 동작 패턴을 결정하고 상기 동작 패턴을 상기 센서모듈로 전달하는 단계; 및(D) the operation pattern control server, based on the predicted result, determining the operation pattern for each power state of the sensing device managed by the sensor according to the importance of the sensing device information, and transmitting the operation pattern to the sensor module ; and
    (E) 상기 센서모듈은, 수신된 센싱 디바이스의 동작 패턴에 따라 상기 MCU에서 센서의 동작을 제어하는 단계;(E) controlling, by the sensor module, the operation of the sensor in the MCU according to the received operation pattern of the sensing device;
    를 포함하는 것을 특징으로 하는 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법.Power saving method by determining the operation pattern of the energy harvesting sensor comprising a.
  2. 제1항에 있어서,According to claim 1,
    상기 (A)단계는,The step (A) is,
    상기 센서모듈은, 상기 센싱 디바이스의 측정 과정의 1주기 동안 상기 센싱 디바이스의 초기화 기간 및 동작 기간 동안 공급되는 전류 샘플링 및 데이터 측정하는 것The sensor module is configured to sample and measure the current supplied during the initialization period and the operation period of the sensing device during one cycle of the measurement process of the sensing device
    을 특징으로 하는 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법.Power saving method by determining the operation pattern of the energy harvesting sensor, characterized in that.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 (A)단계는,The step (A) is,
    상기 센서모듈은, 상기 센싱 디바이스의 초기화 기간 동안 상기 센싱 디바이스에서 소비되는 전력량 측정을 통하여 센싱 디바이스의 오류를 검출하는 것The sensor module is configured to detect an error in the sensing device by measuring the amount of power consumed by the sensing device during the initialization period of the sensing device.
    을 특징으로 하는 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법.Power saving method by determining the operation pattern of the energy harvesting sensor, characterized in that.
  4. 제1항에 있어서,According to claim 1,
    상기 (C)단계는,The step (C) is,
    상기 동작패턴 제어 서버는, 센싱 디바이스의 동작 패턴에 따른 소비전력 정보를 분석하여 배터리의 SoC를 추정하고, 에너지 하베스팅으로 수확 가능한 에너지를 예측하는 것The operation pattern control server estimates the SoC of the battery by analyzing power consumption information according to the operation pattern of the sensing device, and predicts energy harvestable through energy harvesting
    을 특징으로 하는 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법.Power saving method by determining the operation pattern of the energy harvesting sensor, characterized in that.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 (C)단계는,The step (C) is,
    상기 동작패턴 제어 서버는, 상기 배터리의 SoC를 추정하는 과정에서 소비전력 증가에 따른 배터리 전압 강하로부터 배터리의 SoH를 추정하는 것The operation pattern control server, in the process of estimating the SoC of the battery, estimating the SoH of the battery from the battery voltage drop according to the increase in power consumption
    을 특징으로 하는 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법.Power saving method by determining the operation pattern of the energy harvesting sensor, characterized in that.
  6. 제1항에 있어서,According to claim 1,
    상기 (D)단계는,The step (D) is,
    상기 동작패턴 제어 서버는, 예측된 결과를 기반으로 상기 센싱 디바이스 정보의 중요도에 따라 센서에서 관리하는 센싱 디바이스의 전력 상태별 동작 패턴을 결정하고 상기 동작 패턴을 복수 개의 센서모듈로 전달하는 것The operation pattern control server determines the operation pattern for each power state of the sensing device managed by the sensor according to the importance of the sensing device information based on the predicted result, and transmits the operation pattern to a plurality of sensor modules
    을 특징으로 하는 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법.Power saving method by determining the operation pattern of the energy harvesting sensor, characterized in that.
  7. 제1항에 있어서,According to claim 1,
    상기 (D)단계는,The step (D) is,
    상기 동작패턴 제어 서버는, 예측된 결과를 기반으로 상기 센싱 디바이스 정보의 중요도에 따라 센서에서 관리하는 센싱 디바이스의 전력 상태별 동작 패턴을 동작 패턴 테이블로 생성하고, 상기 동작 패턴 테이블을 상기 센서모듈로 전달하는 것The operation pattern control server generates an operation pattern for each power state of the sensing device managed by the sensor according to the importance of the sensing device information based on the predicted result as an operation pattern table, and converts the operation pattern table to the sensor module to convey
    을 특징으로 하는 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법.Power saving method by determining the operation pattern of the energy harvesting sensor, characterized in that.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 (E)단계는,The step (E) is,
    상기 센서모듈은 상기 센싱 디바이스의 동작 패턴 테이블에 따라 상기 하나 이상의 센싱 디바이스 각각의 단위 동작을 제어하는 것The sensor module controls the unit operation of each of the one or more sensing devices according to the operation pattern table of the sensing device
    을 특징으로 하는 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법.Power saving method by determining the operation pattern of the energy harvesting sensor, characterized in that.
  9. 제1항에 있어서,According to claim 1,
    상기 (E)단계는,The step (E) is,
    상기 센서모듈은, 수신된 센싱 디바이스의 동작 패턴에 따라 상기 MCU에서 센싱 디바이스의 전원을 켜 데이터를 수집하도록 하거나 전원을 꺼 데이터를 수집하지 않도록 하는 등 전력 공급을 관리하는 것The sensor module manages the power supply, such as turning on the power of the sensing device in the MCU to collect data or turning off the power to not collect data according to the received operation pattern of the sensing device
    을 특징으로 하는 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 방법.Power saving method by determining the operation pattern of the energy harvesting sensor, characterized in that.
  10. 센서의 동작 주기 별로 변화하는 전압 및 전류를 단계 별로 측정하는 센서모듈;A sensor module for measuring the voltage and current that change for each operation period of the sensor step by step;
    상기 센서모듈에서 측정된 전압 및 전류 데이터를 무선통신을 통해 수집하는 데이터 수집 서버;a data collection server that collects voltage and current data measured by the sensor module through wireless communication;
    상기 전압 및 전류 데이터를 분석하여 배터리 수명 및 에너지 하베스팅 예측을 수행하고, 예측에 따라 센서모듈의 동작 패턴을 결정하여 상기 센서모듈의 동작을 제어하는 동작패턴 제어 서버; 및 an operation pattern control server that analyzes the voltage and current data to predict battery life and energy harvesting, and determines an operation pattern of the sensor module according to the prediction to control the operation of the sensor module; and
    상기 데이터 수집 서버에서 수집된 전압 및 전류 데이터 및 상기 동작패턴 제어 서버에서 예측된 배터리 수명 및 에너지 하베스팅 예측값을 저장하는 데이터베이스;a database for storing voltage and current data collected by the data collection server and battery life and energy harvesting predicted values predicted by the operation pattern control server;
    를 포함하는 것을 특징으로 하는 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 시스템.Power saving system by determining the operation pattern of the energy harvesting sensor comprising a.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 센서모듈은,The sensor module is
    데이터를 측정하는 하나 이상의 센싱 디바이스;one or more sensing devices for measuring data;
    상기 센싱 디바이스의 동작시 소비전력을 측정하는 소비전력 측정 센서;a power consumption measuring sensor for measuring power consumption during operation of the sensing device;
    데이터를 수집하고, 상기 동작패턴 제어 서버에서 수신된 센싱 디바이스의 동작 패턴에 따라 센서의 동작을 제어하는 MCU(Micro Control Unit); 및an MCU (Micro Control Unit) that collects data and controls the operation of the sensor according to the operation pattern of the sensing device received from the operation pattern control server; and
    상기 동작패턴 제어 서버에서 전송하는 데이터를 수신하기 위한 RF Block;an RF Block for receiving data transmitted from the operation pattern control server;
    을 포함하는 것을 특징으로 하는 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 시스템.Power saving system by determining the operation pattern of the energy harvesting sensor comprising a.
  12. 제11항에 있어서,12. The method of claim 11,
    상기 센서모듈은,The sensor module is
    상기 센싱 디바이스의 측정 과정의 1주기 동안 상기 센싱 디바이스를 초기화 기간 및 동작 기간 동안 공급되는 전류 샘플링 및 데이터 측정하고, 상기 센싱 디바이스의 초기화 기간 동안 상기 센싱 디바이스에서 소비되는 전력량 측정을 통하여 센싱 디바이스의 오류를 검출하는 것During one cycle of the measurement process of the sensing device, current sampling and data supplied to the sensing device during the initialization period and operation period are measured, and the amount of power consumed by the sensing device during the initialization period of the sensing device is measured through the sensing device error to detect
    을 특징으로 하는 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 시스템.Power saving system by determining the operation pattern of the energy harvesting sensor, characterized in that.
  13. 제11항에 있어서,12. The method of claim 11,
    상기 동작패턴 제어 서버는,The operation pattern control server,
    상기 전압 및 전류 데이터를 통해 상기 센싱 디바이스의 동작 패턴에 따른 소비 전력을 분석하는 서버분석부;a server analysis unit analyzing power consumption according to an operation pattern of the sensing device through the voltage and current data;
    에너지 하베스터 및 배터리 예측을 수행하는 서버예측부;a server prediction unit that predicts energy harvesters and batteries;
    상기 서버분석부에서 분석된 소비전력 및 상기 서버예측부에서 예측된 에너지 하베스터 및 배터리의 예측 결과를 기반으로 센싱 디바이스의 정보의 중요도에 따라 센싱 디바이스의 전력 상태별 동작 패턴을 결정하는 동작패턴 결정부; 및An operation pattern determination unit that determines an operation pattern for each power state of the sensing device according to the importance of information of the sensing device based on the power consumption analyzed by the server analysis unit and the prediction results of the energy harvester and the battery predicted by the server prediction unit ; and
    상기 결정된 센싱 디바이스의 전력 상태별 동작 패턴을 상기 센서모듈에 전송하는 서버전송부;a server transmission unit transmitting the determined operation pattern for each power state of the sensing device to the sensor module;
    를 포함하는 것을 특징으로 하는 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 시스템.Power saving system by determining the operation pattern of the energy harvesting sensor comprising a.
  14. 제13항에 있어서,14. The method of claim 13,
    상기 서버분석부는,The server analysis unit,
    상기 센싱 디바이스의 단위 동작에 따라 상기 전압 및 전류 데이터를 통해 소비전력 및 전압 변동값을 연산하는 것Calculating power consumption and voltage fluctuation values through the voltage and current data according to the unit operation of the sensing device
    을 특징으로 하는 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 시스템.Power saving system by determining the operation pattern of the energy harvesting sensor, characterized in that.
  15. 제13항에 있어서,14. The method of claim 13,
    상기 서버예측부는,The server prediction unit,
    센싱 디바이스의 동작 패턴에 따른 소비전력 정보를 분석하여 배터리의 SoC를 추정하고, 상기 배터리의 SoC를 추정하는 과정에서 소비전력 증가에 따른 배터리 전압 강하로부터 배터리의 SoH를 추정하며, 센싱 디바이스 별로 소비되는 전력 및 에너지 하베스터로 충전 가능한 전력을 예측하는 것The SoC of the battery is estimated by analyzing the power consumption information according to the operation pattern of the sensing device, and the SoH of the battery is estimated from the battery voltage drop according to the increase in power consumption in the process of estimating the SoC of the battery. Predicting how much power a power and energy harvester can charge
    을 특징으로 하는 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 시스템.Power saving system by determining the operation pattern of the energy harvesting sensor, characterized in that.
  16. 제13항에 있어서,14. The method of claim 13,
    상기 동작패턴 결정부는,The operation pattern determining unit,
    상기 서버분석부에서 분석된 소비전력 및 상기 서버예측부에서 예측된 에너지 하베스터 및 배터리의 예측 결과를 기반으로 센싱 디바이스의 정보의 중요도에 따라 센서에서 관리하는 센싱 디바이스의 전력 상태별 동작 패턴을 동작 패턴 테이블로 생성하고, 상기 동작 패턴 테이블을 상기 센서모듈로 전달하는 것Based on the power consumption analyzed by the server analysis unit and the prediction results of the energy harvester and the battery predicted by the server prediction unit, the operation pattern for each power state of the sensing device managed by the sensor according to the importance of the information of the sensing device. Creating a table and transmitting the operation pattern table to the sensor module
    을 특징으로 하는 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 시스템.Power saving system by determining the operation pattern of the energy harvesting sensor, characterized in that.
  17. 제11항에 있어서,12. The method of claim 11,
    상기 센서모듈은, The sensor module is
    상기 동작패턴 제어 서버에서 수신된 센싱 디바이스의 동작 패턴에 따라 상기 MCU에서 센싱 디바이스의 전원을 켜 데이터를 수집하도록 하거나 전원을 꺼 데이터를 수집하지 않도록 하는 등 전력 공급을 관리하는 것Managing power supply, such as turning on the power of the sensing device in the MCU to collect data or turning off the power to not collect data according to the operation pattern of the sensing device received from the operation pattern control server
    을 특징으로 하는 에너지 하베스팅 센서의 동작 패턴 결정을 통한 전력 절감 시스템.Power saving system by determining the operation pattern of the energy harvesting sensor, characterized in that.
PCT/KR2021/019291 2020-12-31 2021-12-17 Power saving method and system by determining operation pattern of energy harvesting sensor WO2022145834A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0188634 2020-12-31
KR1020200188634A KR20220096315A (en) 2020-12-31 2020-12-31 Power saving method and system by determining the operation pattern of energy harvesting sensor

Publications (1)

Publication Number Publication Date
WO2022145834A1 true WO2022145834A1 (en) 2022-07-07

Family

ID=82259482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019291 WO2022145834A1 (en) 2020-12-31 2021-12-17 Power saving method and system by determining operation pattern of energy harvesting sensor

Country Status (2)

Country Link
KR (1) KR20220096315A (en)
WO (1) WO2022145834A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4317803A1 (en) 2022-08-02 2024-02-07 LG Electronics Inc. Cooking appliance comprising an openable panel unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120072224A (en) * 2010-12-23 2012-07-03 한국전자통신연구원 Apparatus for controlling power of sensor nodes based on estimation of power acquisition and method thereof
KR20130134746A (en) * 2012-05-31 2013-12-10 주식회사 엘지화학 Energy management system for controlling priority of energy supply on occurrence of power failure in smart grid system and method thereof
US20150310461A1 (en) * 2014-04-25 2015-10-29 Samsung Electronics Co., Ltd. Operating method and apparatus of smart system for power consumption optimization
KR20160069080A (en) * 2014-12-05 2016-06-16 중앙대학교 산학협력단 Power control appratus and method for supplying power using thereof
KR20160142875A (en) * 2014-04-07 2016-12-13 구글 인코포레이티드 Systems and methods for power management of a modular mobile electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120072224A (en) * 2010-12-23 2012-07-03 한국전자통신연구원 Apparatus for controlling power of sensor nodes based on estimation of power acquisition and method thereof
KR20130134746A (en) * 2012-05-31 2013-12-10 주식회사 엘지화학 Energy management system for controlling priority of energy supply on occurrence of power failure in smart grid system and method thereof
KR20160142875A (en) * 2014-04-07 2016-12-13 구글 인코포레이티드 Systems and methods for power management of a modular mobile electronic device
US20150310461A1 (en) * 2014-04-25 2015-10-29 Samsung Electronics Co., Ltd. Operating method and apparatus of smart system for power consumption optimization
KR20160069080A (en) * 2014-12-05 2016-06-16 중앙대학교 산학협력단 Power control appratus and method for supplying power using thereof

Also Published As

Publication number Publication date
KR20220096315A (en) 2022-07-07

Similar Documents

Publication Publication Date Title
WO2022114871A1 (en) Battery diagnosis device, battery diagnosis method, battery pack, and vehicle
WO2022119308A1 (en) Ultra-low power wireless sensor network which can be selectively connected to various sensors
WO2019017595A1 (en) Wireless battery management system and battery pack including same
WO2019017596A1 (en) Wireless battery management system and battery pack including same
WO2010016647A1 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
WO2019074221A1 (en) Apparatus for estimating state-of-charge of secondary battery and method thereof
WO2019208924A1 (en) Battery state estimation method
WO2019182246A1 (en) Partial discharge detecting system
WO2009088272A2 (en) The method for measuring soc of a battery in a battery management system and the apparatus thereof
WO2018151431A1 (en) Method for estimating state of charge of energy storage device
WO2022103185A1 (en) Battery capacity measuring device and method, and battery control system comprising battery capacity measuring device
WO2021066555A1 (en) Battery diagnosis system and method
WO2022145834A1 (en) Power saving method and system by determining operation pattern of energy harvesting sensor
WO2022071697A1 (en) System and method for obtaining estrus information of livestock
WO2018194225A1 (en) Battery monitoring and protection system
WO2020262789A1 (en) Method for detecting abnormal battery cell
WO2019078475A1 (en) Heater control system for battery packs having parallel connection structure, and method therefor
WO2020117000A1 (en) Battery management device and method
WO2021230642A1 (en) Device and method for diagnosing battery
WO2021080161A1 (en) Battery management system, battery pack, electric vehicle, and battery management method
WO2023229326A1 (en) Apparatus and method for diagnosing battery cell
WO2023008980A1 (en) Method of load forecasting via attentive knowledge transfer, and an apparatus for the same
WO2022075709A1 (en) Battery management apparatus and method
WO2021261781A1 (en) Battery state management system and method
WO2020013619A1 (en) Substation asset management method and apparatus based on power system reliability index

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915632

Country of ref document: EP

Kind code of ref document: A1