WO2022145681A1 - 물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 방법 및 시스템 - Google Patents

물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 방법 및 시스템 Download PDF

Info

Publication number
WO2022145681A1
WO2022145681A1 PCT/KR2021/015779 KR2021015779W WO2022145681A1 WO 2022145681 A1 WO2022145681 A1 WO 2022145681A1 KR 2021015779 W KR2021015779 W KR 2021015779W WO 2022145681 A1 WO2022145681 A1 WO 2022145681A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
wind
wind turbine
power generation
prediction
Prior art date
Application number
PCT/KR2021/015779
Other languages
English (en)
French (fr)
Inventor
김태형
임정택
함경선
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Publication of WO2022145681A1 publication Critical patent/WO2022145681A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/045Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with model-based controls
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/82Forecasts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/84Modelling or simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to a method and system for predicting generation amount, and more particularly, to a method and system for predicting generation amount of a wind farm in one day based on a mixed physical and data model.
  • a power generation company that owns renewable energy needs a system that predicts the next day's power generation and bids the day before, and in particular, predicting the power generation amount for a wind power farm, a large-capacity resource, is key.
  • the existing method has a disadvantage in that it is biased toward a data model method using machine learning and deep learning based on the weather data and output data of the wind farm.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to change the operating state of a wind turbine depending on the type of operation of the park, such as an output limit command and maintenance, and a change in wind due to a wake in the wind farm and It is to provide a method and system for predicting the amount of electricity generated a day before a wind farm that can perform a more accurate prediction of generation by comprehensively reflecting factors that affect output.
  • the generation amount prediction system calculates the generation amount based on the output change of the wind turbine according to the input wind speed in order to calculate the predicted generation amount for each wind turbine in the wind farm.
  • a wind turbine mixed model provided with a data model for calculating a predicted power generation amount of a wind turbine according to a physical model and time unit weather data; a weather prediction model for predicting an input wind speed input for each wind turbine; and a wind farm operation model that reflects factors affecting the state and output of the wind turbine in the prediction result of the predicted power generation for each wind turbine.
  • the wind turbine mixed model may mix a physical model capable of accurately simulating a wind turbine and a data model capable of utilizing time unit prediction data in order to calculate the predicted generation amount for the next day for each wind turbine.
  • the weather prediction model uses a numerical forecasting model (NWP, Numerical Weather Prediction) that predicts the initial wind of the next day based on satellite data to predict the input wind speed for each wind turbine, and a meteorological tower installed in the wind farm.
  • NWP numerical forecasting model
  • the nacelle transfer function (NTF) derived by analyzing the correlation between the measured initial wind and the wind measured by the wind direction anemometer provided in the wind turbine nacelle and the wake effect in the rear wind turbine disposed at the rear of the wind farm is reflected.
  • a wake model may be provided.
  • the wind farm operation model may reflect the output control situation according to the wind turbine periodic inspection, stop due to error, or detection instruction of the system operator when factors affecting the state and output of the wind turbine are reflected.
  • the wind turbine mixed model generates a plurality of prediction basic models by mixing a physical model and a data model, trains each prediction basic model, and based on the prediction result, it is used to calculate the predicted generation amount for each wind turbine the next day. You can choose a specific predictive base model.
  • the reduction amount included in the output limit command transmitted from the grid operator through the wind farm operation model is reflected in each trained prediction basic model, and then the prediction result of each prediction basic model in which the reduction amount is reflected It is possible to select a specific prediction base model to be used as an optimal model based on .
  • the wind farm operation model calculates the predicted generation amount for each wind turbine the next day through the selected optimal model, and then the specifications and status information of the wind turbine, the operation data of the wind turbine, the periodic inspection history of the wind turbine, and the stopping history due to errors By reflecting this, it is possible to determine the power generation demand allocated to each wind turbine.
  • a method of predicting an amount of power generation predicting an input wind speed input for each wind turbine in a wind farm by using a weather prediction model; Prediction for each wind turbine by using a wind turbine mixed model equipped with a physical model for calculating the amount of power generation based on a change in the output of the wind turbine according to the input wind speed and a data model for calculating the predicted generation amount of the wind turbine according to time unit meteorological data calculating the amount of power generation; and reflecting factors affecting the state and output of the wind turbine in the prediction result of the predicted power generation for each wind turbine by using the wind farm operation model.
  • FIG. 1 is a diagram provided for explaining the configuration of a system for predicting power generation a day before a wind farm based on a physical and data mixture model according to an embodiment of the present invention
  • Figure 2 is a diagram provided for a more detailed description of the configuration of a wind farm one day prior generation amount prediction system based on a physical and data mixture model according to an embodiment of the present invention
  • FIG. 3 is a view provided for explaining a method of predicting the amount of power generation one day before a wind farm based on a physical and data mixture model according to an embodiment of the present invention.
  • FIG. 1 is a diagram provided for explaining the configuration of a system for predicting power generation a day before a wind farm based on a physical and data mixing model according to an embodiment of the present invention
  • FIG. 2 is a physical and data mixing according to an embodiment of the present invention. It is a diagram provided for a more detailed description of the configuration of the model-based wind farm one day prior generation amount prediction system.
  • the physical and data mixture model-based wind power generation complex prediction system according to this embodiment (hereinafter, collectively referred to as the 'day-ahead generation amount prediction system') is By comprehensively reflecting the factors affecting the output, such as the operation status of the wind turbine and the change in wind caused by the wake in the wind farm, it is possible to perform a more precise power generation prediction.
  • the system for predicting the amount of electricity generated one day before may include a communication unit 100 , a processor 200 , and a storage unit 300 .
  • the communication unit 100 is a communication means provided so that the power generation prediction system a day before is communicatively connected with the facilities and systems in the wind farm, and the server of the power exchange, and the storage unit 300, the processor 200 operates It is a storage medium for storing programs and data necessary for operation.
  • the processor 200 may perform service functions such as bidding and settlement of predicted generation amount with the power exchange, and may monitor weather and operation data of the wind farm in real time.
  • the processor 200 may calculate the predicted power generation amount for the next 24 hours based on the weather data generated through the weather prediction model 220 every 9:00 and 16:00 every day, and the predicted power generation amount is the power exchange bidding time. It can be delivered to the power exchange system at 10:00 and 17:00.
  • the processor 200 may determine an error rate between the actual power generation amount and the predicted power generation amount to perform a settlement reflecting the real-time power generation cost and the prediction incentive.
  • the processor 200 comprehensively reflects factors affecting the output, such as the operation state of the wind turbine that varies depending on the type of operation of the park, such as the output limit command and maintenance, and the change in wind due to the wake in the wind farm, I can predict the next day's power generation for each wind turbine.
  • the processor 200 may include a wind turbine mixed model 210 , a weather prediction model 220 , and a wind farm operation model 230 .
  • the wind turbine mixed model 210 may calculate the predicted power generation amount for each wind turbine in the wind farm.
  • the wind turbine mixed model 210 is a physical model and time unit weather data for calculating the amount of power generation based on the output change of the wind turbine according to the input wind speed in order to calculate the predicted power generation amount for each wind turbine in the wind farm.
  • the wind turbine mixed model 210 may mix a physical model capable of accurately simulating the wind turbine and a data model capable of utilizing time unit prediction data in order to calculate the predicted generation amount for the next day for each wind turbine.
  • the wind turbine contains various physical characteristics such as fluid, gas, and mechanical dynamics, it is difficult to accurately simulate only the data modeling based on the correlation between the input wind speed and the output.
  • Drive train tower fan (Tower FAN), generator (Generator), a physical model (211) based on the specifications and characteristics of the main core modules such as controller is required.
  • the precise output change according to the input wind speed can be checked through the physical model, but in the case of the power generation forecast a day before, it is difficult to generate the predicted weather data (wind speed, wind direction, temperature, atmospheric pressure, turbulence intensity, etc.)
  • a data model that calculates the amount of power generated by a wind turbine based on unit weather data can supplement this.
  • the wind turbine mixed model 210 consists of a mixed model 210 that combines a physical model 211 capable of high-resolution wind turbine precise simulation and a data model 212 capable of using time-unit prediction data, so that the two models have By compensating for the shortcomings, it is possible to more accurately calculate the predicted generation amount for the next day for each wind turbine.
  • the weather prediction model 220 may predict an input wind speed input for each wind turbine.
  • the weather prediction model 220 is, in order to predict the input wind speed for each wind turbine, the numerical forecast model 221 for predicting the initial wind of the next day based on satellite data, and a weather measurement tower installed in the wind farm.
  • the nacelle transfer function 222 derived by analyzing the correlation between the measured initial wind and the wind measured by the wind direction anemometer provided in the wind turbine nacelle and the wake model 223 reflecting the wake effect on the rear wind turbine disposed at the rear of the wind farm. ) may be provided.
  • wind can be divided into an initial wind blowing into a wind farm and a wake propagating through a turbine.
  • the weather prediction model 220 in the case of the initial wind, can be measured through a meteorological tower (Met mast) installed in the wind farm, and the correlation between the wind of the meteorological tower and the wind measured by the wind direction anemometer in the wind turbine nacelle It is possible to more precisely calculate the input wind speed input to the wind turbine rotor by using the nacelle transfer function 222 derived through the relational analysis.
  • Metal mast meteorological tower
  • the upstream turbine of the wind farm in the wind direction can directly calculate the input wind speed through NTF, but the rear turbines receive dirty wind due to the wake effect of the upstream turbine, so the operation of the wind turbine changes in real time
  • a wake model 223 reflecting the wake effect according to the state is required.
  • the weather prediction model 220 may use the wake model 223 to predict a wind field in the wind farm that is propagated as an initial wind.
  • the weather prediction model 220 enables prediction of the input wind speed for each wind turbine through the nacelle transfer function 222, the wake model, etc. .
  • the initial wind may predict the initial wind input to the wind farm the next day through the numerical forecast model 221 based on satellite data.
  • the wind farm operation model 230 may reflect factors affecting the state and output of the wind turbine in the prediction result of the predicted generation amount for each wind turbine.
  • a wind farm operation model 230 including factors affecting the state and output of the wind turbine, such as regular inspection of the wind turbine, stopping due to an error, and controlling the output according to the detection instruction of the system operator.
  • the wind farm operation model 230 may reflect the output control situation according to the periodic inspection of the wind turbine, the stop due to an error, or the detection instruction of the system operator when factors affecting the state and output of the wind turbine are reflected.
  • the wind farm operation model 230 sets the event label configuration and constraint conditions during model training and operation of the wind turbine mixed model 210 to reflect the state change information for each turbine.
  • the wind turbine mixed model 210 generates a plurality of prediction basic models by mixing the physical model and the data model, trains each prediction basic model, and calculates the predicted power generation amount for each wind turbine the next day based on the prediction result It is possible to select a specific prediction base model to be used as the optimal model.
  • the reduction amount included in the output limit command transmitted from the system operator through the wind farm operation model 230 is reflected in each predicted basic model trained, and then the reduction amount A specific prediction basic model to be used may be selected as an optimal model based on the prediction result of each reflected prediction basic model.
  • the wind turbine mixed model 210 generates a plurality of prediction basic models based on the wind turbine data model 212 through the weather conditions including wake effect and the amount of power generation, trains each, and trains each prediction.
  • the reduction amount included in the output limit command transmitted from the grid operator through the wind farm operation model 230 to be reflected in the basic model, an optimal model in which the wind turbine and the farm operation state are reflected in the prediction basic model can be selected.
  • the wind farm operation model 230 calculates the predicted generation amount for each wind turbine the next day through the optimal model selected by the wind turbine mixed model 210, and then the specifications and status information of the wind turbine, the operation data of the wind turbine, and the wind turbine It is possible to generate an advanced model by reflecting the periodic inspection history and the history of stopping due to errors, and determine the power generation demand allocated to each wind turbine based on the generated advanced model.
  • the wind farm operation model 230 may receive the specifications and state information of the wind turbine from the wind turbine mixed model 210 when the advanced model is generated.
  • the wind farm operation model 230 may receive bladed project data, which is a design file containing the specifications and characteristics of the wind turbine, and when it is difficult to provide the bladed project data, basic specifications for modeling the wind turbine / You can receive data on the main parameters in the aerodynamics, drive train, tower fan, generator, and controller of the wind turbine, which are characteristic information.
  • the wind farm operation model 230 may receive the RPM, torque, pitch angle, yaw angle, and output data of the turbine.
  • the allocation result of the reduction amount allocated to each wind turbine among the plurality of prediction basic models reflects the wind turbine and complex operation state.
  • an optimal model that derives the most optimal results is selected, and the predicted generation amount is calculated the next day through the selected optimal model.
  • An advanced model is generated by reflecting the data and the history of periodic inspection of wind turbines and the history of stopping due to errors, and the power generation demand allocated to each wind turbine can be determined based on the generated advanced model.
  • a weight is applied to a wind turbine in which the amount of electricity produced relative to the amount of electricity consumed is relatively higher than that of other wind turbines.
  • a basic prediction model that derives optimal results by minimizing the weighted reduction in wind turbines and setting the maximum reduction in wind turbines that produces less electricity compared to the amount of electricity consumed compared to other turbines It can be selected as the optimal model.
  • the wind farm operation model 230 through the selected optimal model, when the predicted generation amount is calculated the next day, the specifications and status information of the wind turbine, the operation data of the wind turbine, the periodic inspection history of the wind turbine, and the stopping history due to errors Reflecting, it is determined whether correction of the amount of electricity that can be produced the next day is necessary in consideration of the amount of reduction allocated to each wind turbine.
  • the efficiency of the load consumed relative to the generation amount of a specific wind turbine is lower than a threshold value, the power generation demand of the corresponding wind turbine is reduced, and the efficiency of the load consumed compared to the generation amount is the most From the highest wind turbines, the generation demand is increased or decreased until an acceptable power output is reached, and then the generation demand of the next most efficient wind turbine is increased or decreased until the acceptable power output is reached. production can be corrected.
  • the power generation demand of the corresponding wind turbine is reduced, and the number of periodic inspections From the wind turbine with the lowest , the power generation requirement is increased or decreased until it reaches the allowable power output, and then the power generation demand for the wind turbine with the least number of regular inspections is increased or decreased until it reaches the allowable power production.
  • the amount of power that can be produced can be calibrated.
  • the data used for the prediction basic model are wind speed data, wind direction data, temperature data and atmospheric pressure data of Met Mast installed in the meteorological observation tower of the wind farm, power generation data for each wind turbine, wind speed data and wind direction data, and a numerical forecast model (221) data may be included.
  • the output limit command may include an output limit start time, an application time, a limited output amount, an active power command value for each wind turbine, and the like.
  • the operation data of the wind turbine may include UTM coordinate-based wind turbine arrangement information.
  • FIG. 3 is a view provided for explaining a method of predicting the amount of power generation one day before a wind farm based on a physical and data mixture model according to an embodiment of the present invention.
  • the method for predicting the amount of power generation a day before a wind farm based on a mixed physical and data model according to the present embodiment may be executed through the aforementioned system for predicting power generation a day before.
  • the method for predicting the amount of power generation a day before a wind farm based on a physical and data mixed model predicts the input wind speed input for each wind turbine in the wind farm by using the weather prediction model 220 .
  • a wind turbine mixed model 210 equipped with a physical model for calculating the amount of power generation based on a change in the output of the wind turbine according to the input wind speed and a data model for calculating the predicted power generation amount of the wind turbine according to time unit weather data. It is possible to calculate the predicted power generation amount for each wind turbine by using ( S320 ).
  • the wind turbine mixed model 210 mixes a physical model and a data model to obtain a plurality of prediction basics. Create a model, use the prediction result of the weather prediction model 220 to train each prediction basic model, and based on the prediction result of the trained prediction basic model, a specific to be used for calculating the predicted power generation amount for the next day for each wind turbine
  • the prediction base model can be selected as the optimal model.
  • the wind farm operation model 230 calculates the predicted generation amount for each wind turbine the next day through the optimal model, and then the specifications and status information of the wind turbine, the operation data of the wind turbine, and the periodic inspection history and errors of the wind turbine By reflecting the stop history, an advanced model may be generated, and a power generation demand allocated to each wind turbine may be determined based on the generated advanced model.
  • the technical idea of the present invention can be applied to a computer-readable recording medium containing a computer program for performing the functions of the apparatus and method according to the present embodiment.
  • the technical ideas according to various embodiments of the present invention may be implemented in the form of computer-readable codes recorded on a computer-readable recording medium.
  • the computer-readable recording medium may be any data storage device readable by the computer and capable of storing data.
  • the computer-readable recording medium may be a ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical disk, hard disk drive, or the like.
  • the computer-readable code or program stored in the computer-readable recording medium may be transmitted through a network connected between computers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

물리 및 데이터 혼합 모델 기반으로 풍력발전단지의 하루 전 발전량을 예측하는 방법 및 시스템이 제공된다. 본 발명의 실시예에 따른 발전량 예측 시스템은, 풍력단지 내 각각의 풍력터빈별 예측 발전량을 산출하기 위해, 입력 풍속에 따른 풍력터빈의 출력 변화를 기반으로 발전량을 산출하는 물리 모델 및 시간 단위 기상 데이터에 따른 풍력터빈의 예측 발전량을 산출하는 데이터 모델이 구비되는 풍력터빈 혼합모델; 각 풍력터빈별 입력되는 입력 풍속을 예측하는 기상 예측 모델; 및 풍력터빈별 예측 발전량의 예측 결과에 풍력터빈의 상태 및 출력에 영향을 미치는 요소를 반영하는 풍력단지 운영모델;을 포함한다. 이에 의해, 출력제한지령 및 유지보수 등 단지 운영 형태에 따라 달라지는 풍력터빈의 운전 상태 및 풍력단지 내 후류로 인한 바람의 변화와 같이 출력에 영향을 미치는 요소를 종합적으로 반영하여, 보다 정밀한 발전량 예측을 수행할 수 있다.

Description

물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 방법 및 시스템
본 발명은 발전량 예측 방법 및 시스템에 관한 것으로, 더욱 상세하게는 물리 및 데이터 혼합 모델 기반으로 풍력발전단지의 하루 전 발전량을 예측하는 방법 및 시스템에 관한 것이다.
최근 재생에너지가 급증하여 재생에너지로 인한 계통 안정성이 영향을 받게 됨으로써, 기존 발전자원과 같이 전력도매시장에서 하루 전 입찰을 받는 제도가 마련되어 있다.
이에 따라, 재생에너지를 소유한 발전사업자는 다음날 발전량을 예측하여 하루 전 입찰하는 시스템을 필요로 하며, 특히 대용량 자원인 풍력발전단지에 대한 발전량을 예측하는 것이 핵심이다.
기존의 풍력발전단지 발전량 예측은 단지의 이용률 및 경제성 분석을 위해, 1년 이상의 장주기 발전량 예측이 주류였으며, 과거 기상 데이터를 활용하고 풍력단지 운영 데이터가 포함되지 않아 예측 정확도가 낮다는 단점이 존재한다.
또한, 하루 전 발전량 예측의 경우 기존 방식은 풍력발전단지의 기상 데이터와 출력 데이터를 기반으로 머신러닝 및 딥러닝을 활용한 데이터 모델 방식에 치우쳐져 있다는 단점이 존재한다.
그러나 풍력발전단지는 출력제한지령 및 유지보수 등 단지 운영 형태에 따라 풍력터빈의 운전 상태가 달라지며, 또한 풍력단지 내 후류로 인한 바람의 변화가 심하므로 이를 종합적으로 고려하여 발전량을 예측할 수 있는 방안의 모색이 요구된다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 출력제한지령 및 유지보수 등 단지 운영 형태에 따라 달라지는 풍력터빈의 운전 상태 및 풍력단지 내 후류로 인한 바람의 변화와 같이 출력에 영향을 미치는 요소를 종합적으로 반영하여, 보다 정밀한 발전량 예측을 수행할 수 있는 풍력발전단지 하루 전 발전량 예측 방법 및 시스템을 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른, 발전량 예측 시스템은, 풍력단지 내 각각의 풍력터빈별 예측 발전량을 산출하기 위해, 입력 풍속에 따른 풍력터빈의 출력 변화를 기반으로 발전량을 산출하는 물리 모델 및 시간 단위 기상 데이터에 따른 풍력터빈의 예측 발전량을 산출하는 데이터 모델이 구비되는 풍력터빈 혼합모델; 각 풍력터빈별 입력되는 입력 풍속을 예측하는 기상 예측 모델; 및 풍력터빈별 예측 발전량의 예측 결과에 풍력터빈의 상태 및 출력에 영향을 미치는 요소를 반영하는 풍력단지 운영모델;을 포함한다.
그리고 풍력터빈 혼합모델은, 풍력터빈별 다음날 예측 발전량을 산출하기 위해, 풍력터빈의 정밀 모사가 가능한 물리 모델과 시간 단위 예측 데이터 활용이 가능한 데이터 모델을 혼용할 수 있다.
또한, 기상 예측 모델은, 각 풍력터빈별 입력되는 풍속을 예측하기 위해, 위성 데이터를 기반으로 다음날 초기 바람을 예측하는 수치예보모델(NWP, Numerical Weather Prediction), 풍력단지에 설치된 기상 측정탑을 통해 측정된 초기 바람과 풍력터빈 나셀에 마련된 풍향풍속계에서 측정된 바람의 상관관계를 분석하여 도출된 나셀전달함수(NTF, Nacelle Transfer Function) 및 풍력단지내 후방에 배치되는 후방 풍력터빈에 후류 효과를 반영하는 후류 모델이 구비될 수 있다.
그리고 풍력단지 운영모델은, 풍력터빈의 상태 및 출력에 영향을 미치는 요소 반영 시, 풍력터빈 정기점검, 오류로 인한 중지 또는 계통운영자의 감발지시에 따른 출력 제어 상황을 반영할 수 있다.
또한, 풍력터빈 혼합모델은, 물리 모델 및 데이터 모델을 혼용하여 복수의 예측 기본 모델을 생성하고, 각각의 예측 기본 모델을 트레이닝하여, 예측 결과를 기반으로 풍력터빈별 다음날 예측 발전량을 산출에 이용될 특정 예측 기본 모델을 선택할 수 있다.
그리고 풍력터빈 혼합모델은, 트레이닝된 각각의 예측 기본 모델에 풍력단지 운영모델을 통해 계통운영자로부터 전달된 출력 제한지령에 포함된 감축량이 반영되도록 한 이후, 감축량이 반영된 각각의 예측 기본 모델의 예측 결과를 기반으로 이용될 특정 예측 기본 모델을 최적 모델로 선택할 수 있다.
또한, 풍력단지 운영모델은, 선택된 최적 모델을 통해 풍력터빈별 다음날 예측 발전량을 산출한 이후, 풍력터빈의 제원 및 상태 정보, 풍력터빈의 운전 데이터 및 풍력터빈의 정기점검 이력 및 오류로 인한 중지 이력을 반영하여, 각각의 풍력터빈에 할당되는 발전 요구량을 결정할 수 있다.
한편, 본 발명의 다른 실시예에 따른, 발전량 예측 방법은, 기상 예측 모델을 이용하여, 풍력단지 내 각 풍력터빈별 입력되는 입력 풍속을 예측하는 단계; 입력 풍속에 따른 풍력터빈의 출력 변화를 기반으로 발전량을 산출하는 물리 모델 및 시간 단위 기상 데이터에 따른 풍력터빈의 예측 발전량을 산출하는 데이터 모델이 구비되는 풍력터빈 혼합모델을 이용하여, 풍력터빈별 예측 발전량을 산출하는 단계; 및 풍력단지 운영모델을 이용하여, 풍력터빈별 예측 발전량의 예측 결과에 풍력터빈의 상태 및 출력에 영향을 미치는 요소를 반영하는 단계;를 포함한다.
이상 설명한 바와 같이, 본 발명의 실시예들에 따르면, 출력제한지령 및 유지보수 등 단지 운영 형태에 따라 달라지는 풍력터빈의 운전 상태 및 풍력단지 내 후류로 인한 바람의 변화와 같이 출력에 영향을 미치는 요소를 종합적으로 반영하여, 보다 정밀한 발전량 예측을 수행할 수 있다.
도 1은, 본 발명의 일 실시예에 따른 물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 시스템 구성의 설명에 제공된 도면,
도 2는, 본 발명의 일 실시예에 따른 물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 시스템 구성의 더욱 상세한 설명에 제공된 도면, 그리고
도 3은, 본 발명의 일 실시예에 따른 물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 방법의 설명에 제공된 도면이다.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.
도 1은, 본 발명의 일 실시예에 따른 물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 시스템 구성의 설명에 제공된 도면이고, 도 2는, 본 발명의 일 실시예에 따른 물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 시스템 구성의 더욱 상세한 설명에 제공된 도면이다.
본 실시예에 따른 물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 시스템(이하에서는 '하루 전 발전량 예측 시스템'으로 총칭하기로 함)은, 출력제한지령 및 유지보수 등 단지 운영 형태에 따라 달라지는 풍력터빈의 운전 상태 및 풍력단지 내 후류로 인한 바람의 변화와 같이 출력에 영향을 미치는 요소를 종합적으로 반영하여, 보다 정밀한 발전량 예측을 수행할 수 있다.
도 1을 참조하면, 본 하루 전 발전량 예측 시스템은, 통신부(100), 프로세서(200) 및 저장부(300)를 포함할 수 있다.
통신부(100)는, 하루 전 발전량 예측 시스템이 풍력발전단지 내 설비 및 시스템, 그리고 전력 거래소의 서버와 통신 연결되도록 하기 위해 마련되는 통신 수단이고, 저장부(300)는, 프로세서(200)가 동작함에 있어 필요한 프로그램 및 데이터를 저장하는 저장매체이다.
프로세서(200)는, 전력거래소와의 예측 발전량 입찰, 정산 등의 서비스 기능을 수행할 수 있으며, 풍력발전단지의 기상 및 운영 데이터를 실시간으로 모니터링 할 수 있다.
예를 들면, 프로세서(200)는, 매일 9시, 16시마다 기상 예측 모델(220)을 통해 생성된 기상 데이터를 바탕으로 다음날 24시간 예측 발전량을 산출할 수 있으며, 예측 발전량은 전력거래소 입찰 시점인 10시, 17시에 전력거래소 시스템으로 전달할 수 있다.
또한, 프로세서(200)는, 실 발전량과 예측 발전량의 오차율을 판단하여 실시간 발전 비용 및 예측 인센티브를 반영한 정산을 수행할 수 있다.
그리고 프로세서(200)는, 출력제한지령 및 유지보수 등 단지 운영 형태에 따라 달라지는 풍력터빈의 운전 상태 및 풍력단지 내 후류로 인한 바람의 변화와 같이 출력에 영향을 미치는 요소를 종합적으로 반영하여 풍력단지 내 각각의 풍력터빈별 다음날 발전량을 예측할 수 있다.
이를 위해, 프로세서(200)는, 풍력터빈 혼합모델(210), 기상 예측 모델(220) 및 풍력단지 운영모델(230)을 구비할 수 있다.
풍력터빈 혼합모델(210)은, 풍력단지 내 각각의 풍력터빈별 예측 발전량을 산출할 수 있다.
구체적으로, 풍력터빈 혼합모델(210)은, 풍력단지 내 각각의 풍력터빈별 예측 발전량을 산출하기 위해, 입력 풍속에 따른 풍력터빈의 출력 변화를 기반으로 발전량을 산출하는 물리 모델 및 시간 단위 기상 데이터에 따른 풍력터빈의 예측 발전량을 산출하는 데이터 모델이 구비될 수 있다.
즉, 풍력터빈 혼합모델(210)은, 풍력터빈별 다음날 예측 발전량을 산출하기 위해, 풍력터빈의 정밀 모사가 가능한 물리 모델과 시간 단위 예측 데이터 활용이 가능한 데이터 모델을 혼용할 수 있다.
여기서, 풍력터빈은 유체, 기체, 기계 역학 등 다양한 물리적 특성을 내포하고 있으므로 입력 풍속과 출력을 상관관계에 따른 데이터 모델링만으로는 정확한 모사가 어렵기 때문에, 풍력터빈의 공기역학(Aerodynamics), 드라이브트레인(Drive train), 타워 팬(Tower FAN), 발전기(Generator), 컨트롤러(Controller) 등 주요 핵심 모듈에 대한 제원 및 특성을 기반으로 한 물리모델(211)이 필요하다.
그리고 입력 풍속에 따른 정밀한 출력 변화를 물리 모델을 통해 확인할 수 있으나 하루 전 발전량 예측의 경우 예측 기상 데이터(풍속, 풍향, 온도, 대기압, 난류강도 등)를 초단위의 고해상도로 생성하는 것은 어렵기에 시간 단위 기상 데이터에 따른 풍력터빈의 발전량을 산출하는 데이터 모델이 이를 보완할 수 있다.
결국, 풍력터빈 혼합모델(210)은, 고해상도 풍력터빈 정밀 모사가 가능한 물리모델(211)과 시간 단위 예측 데이터 활용이 가능한 데이터모델(212)을 결합한 혼합모델(210)을 구성함으로써 두 모델이 가진 단점을 보완함으로써, 보다 정밀하게 풍력터빈별 다음날 예측 발전량을 산출할 수 있다.
기상 예측 모델(220)은, 각 풍력터빈별 입력되는 입력 풍속을 예측할 수 있다.
구체적으로, 기상 예측 모델(220)은, 각 풍력터빈별 입력되는 풍속을 예측하기 위해, 위성 데이터를 기반으로 다음날 초기 바람을 예측하는 수치예보모델(221), 풍력단지에 설치된 기상 측정탑을 통해 측정된 초기 바람과 풍력터빈 나셀에 마련된 풍향풍속계에서 측정된 바람의 상관관계를 분석하여 도출된 나셀전달함수(222) 및 풍력단지내 후방에 배치되는 후방 풍력터빈에 후류 효과를 반영하는 후류 모델(223)이 구비될 수 있다.
일반적으로 바람은 크게 풍력단지로 불어오는 초기 바람과 터빈을 거치면서 전파되는 후류로 나눌 수 있다.
기상 예측 모델(220)은, 초기 바람의 경우 풍력발전단지에 설치된 기상측정탑(Met mast)를 통해 측정이 가능하며, 기상측정탑의 바람과 풍력터빈 나셀에 있는 풍향풍속계에서 측정된 바람의 상관관계분석을 통해 도출된 나셀전달함수(222)를 이용하여 풍력터빈 로터에 입력되는 입력풍속을 보다 정밀하게 산출 가능하다.
바람이 불어오는 방향에 있는 풍력발전단지의 상류 터빈은 NTF를 통해 입력 풍속을 바로 산출할 수 있으나 후방 터빈들은 상류 터빈의 후류 효과로 인해서 지저분한 바람을 받게 되며, 따라서 실시간으로 변화하는 풍력터빈의 운전 상태에 따른 후류 효과를 반영한 후류 모델(223)이 필요하다.
즉, 기상 예측 모델(220)은, 후류 모델(223)을 이용하여, 초기 바람으로 전파되는 풍력단지 내 바람장(Wind Field)에 대한 예측이 가능하다.
그리고 기상 예측 모델(220)은, 나셀전달함수(222), 후류모델 등을 통해 각 풍력터빈별 입력되는 풍속 예측이 가능해짐에 따라 초기 바람에 따른 풍력발전단지 내 풍력터빈의 발전량 예측이 가능하다.
이때, 초기 바람은 위성 데이터 기반의 수치예보모델(221)을 통해 다음날 풍력단지에 입력되는 초기 바람을 예측할 수 있다.
풍력단지 운영모델(230)은, 풍력터빈별 예측 발전량의 예측 결과에 풍력터빈의 상태 및 출력에 영향을 미치는 요소를 반영할 수 있다.
일반적으로 풍력단지 운영 정보가 없는 상황에서 바람과 터빈 출력량과의 관계만을 통해 만들어진 모델은 실제 운영 요소를 제대로 반영하지 못함으로써 발전량 예측 정확도가 낮아진다.
따라서, 풍력터빈 정기점검, 오류로 인한 중지, 계통운영자의 감발지시에 따른 출력 제어 등 풍력터빈의 상태 및 출력에 영향을 미치는 요소를 포함한 풍력단지 운영모델(230)이 필요하다.
예를 들면, 풍력단지 운영모델(230)은, 풍력터빈의 상태 및 출력에 영향을 미치는 요소 반영 시, 풍력터빈 정기점검, 오류로 인한 중지 또는 계통운영자의 감발지시에 따른 출력 제어 상황을 반영할 수 있다.
그리고 풍력단지 운영모델(230)은, 풍력터빈 혼합모델(210)의 모델 트레이닝 및 운영 시 이벤트 레이블 구성 및 제약조건 등으로 설정함으로써, 터빈별 상태변화 정보를 반영할 수 있도록 한다.
한편, 풍력터빈 혼합모델(210)은, 물리 모델 및 데이터 모델을 혼용하여 복수의 예측 기본 모델을 생성하고, 각각의 예측 기본 모델을 트레이닝하여, 예측 결과를 기반으로 풍력터빈별 다음날 예측 발전량을 산출에 이용될 특정 예측 기본 모델을 최적 모델로 선택할 수 있다.
예를 들면, 풍력터빈 혼합모델(210)은, 트레이닝된 각각의 예측 기본 모델에 풍력단지 운영모델(230)을 통해 계통운영자로부터 전달된 출력 제한지령에 포함된 감축량이 반영되도록 한 이후, 감축량이 반영된 각각의 예측 기본 모델의 예측 결과를 기반으로 이용될 특정 예측 기본 모델을 최적 모델로 선택할 수 있다.
구체적으로, 풍력터빈 혼합모델(210)은, 후류 효과를 비롯한 기상 상태와 발전량을 통한 풍력터빈 데이터모델(212)을 기반으로 복수의 예측 기본 모델을 생성하여, 각각 트레이닝하고, 트레이닝된 각각의 예측 기본 모델에 풍력단지 운영모델(230)을 통해 계통운영자로부터 전달된 출력 제한지령에 포함된 감축량이 반영되도록 하여, 예측 기본 모델에 풍력터빈 및 단지 운영 상태가 반영된 최적 모델을 선택할 수 있다.
풍력단지 운영모델(230)은, 풍력터빈 혼합모델(210)에 의해 선택된 최적 모델을 통해 풍력터빈별 다음날 예측 발전량을 산출한 이후, 풍력터빈의 제원 및 상태 정보, 풍력터빈의 운전 데이터 및 풍력터빈의 정기점검 이력 및 오류로 인한 중지 이력을 반영하여, 고도화 모델을 생성하고, 생성된 고도화 모델을 기반으로 각각의 풍력터빈에 할당되는 발전 요구량을 결정할 수 있다.
이때, 풍력단지 운영모델(230)은, 고도화 모델 생성시, 풍력터빈 혼합모델(210)로부터 풍력터빈의 제원 및 상태 정보를 제공받을 수 있다.
구체적으로, 풍력단지 운영모델(230)은, 풍력터빈의 제원 및 특성을 담고 있는 설계 파일인 Bladed Project 데이터를 제공받을 수 있으며, Bladed Project 데이터의 제공이 어려울 경우, 풍력터빈의 모델링을 위한 기본 제원/특성 정보인 풍력터빈의 공기역학(Aerodynamics), 드라이브트레인(Drive train), 타워 팬(Tower FAN), 발전기(Generator), 컨트롤러(Controller) 내 주요 파라미터에 대한 데이터를 제공받을 수 있다.
또한, 풍력단지 운영모델(230)은, 터빈의 RPM, 토크, 피치각, 요각도, 출력 데이터를 제공받을 수 있다.
이를 통해, 풍력터빈 혼합모델(210)은, 출력 제한지령에 따라 감축량이 전달되면, 복수의 예측 기본 모델 중 각각의 풍력터빈에 각각 할당되는 감축량의 할당 결과가 풍력터빈 및 단지 운영 상태를 반영하여, 가장 최적의 결과를 도출하는 최적 모델을 선택하고, 선택된 최적 모델을 통해 다음날 예측 발전량을 산출한 이후, 풍력단지 운영모델(230)을 통해, 풍력터빈의 제원 및 상태 정보, 풍력터빈의 운전 데이터 및 풍력터빈의 정기점검 이력 및 오류로 인한 중지 이력을 반영하여 고도화 모델을 생성하고, 생성된 고도화 모델을 기반으로 각각의 풍력터빈에 할당되는 발전 요구량을 결정할 수 있다.
예를 들면, 풍력터빈 혼합모델(210)은, 최적 모델 선택 시, 풍력터빈의 상태 및 단지 운영 상태를 기반으로, 소모되는 전력량 대비 생산되는 전력량이 다른 풍력터빈보다 상대적으로 많은 풍력터빈에 가중치를 부가하여, 가중치가 부여된 풍력터빈의 감축량을 최소로 하고, 다른 터빈보다 소모되는 전력량 대비 생산되는 전력량이 적은 풍력터빈의 감축량을 최대로 설정함으로써, 최적의 결과를 도출하는 예측 기본 모델을 최적 모델로 선택할 수 있다.
그리고 풍력단지 운영모델(230)은, 선택된 최적 모델을 통해, 다음날 예측 발전량이 산출되면, 풍력터빈의 제원 및 상태 정보, 풍력터빈의 운전 데이터 및 풍력터빈의 정기점검 이력 및 오류로 인한 중지 이력을 반영하여, 각각의 풍력터빈이 할당된 감축량을 고려하여 다음날 생산할 수 있는 전력량의 보정이 필요한 것인지 판단하고, 보정이 필요한 경우, 다음날 생산할 수 있는 전력량을 보정하여, 발전 요구량을 결정할 수 있다.
예를 들면, 풍력단지 운영모델(230)은, 특정 풍력터빈의 발전량 대비 소모되는 부하의 효율이 임계치 이하로 낮은 경우, 해당 풍력터빈의 발전 요구량을 감축하고, 발전량 대비 소모되는 부하의 효율이 가장 높은 풍력터빈부터 발전 요구량을 허용 가능한 전력 생산량에 도달할 때까지 증감시키고, 그 다음으로 효율이 높은 풍력터빈에 발전 요구량을 허용 가능한 전력 생산량에 도달할 때까지 증감시키는 방식으로, 다음날 생산할 수 있는 전력 생산량을 보정할 수 있다.
다른 예를 들면, 풍력단지 운영모델(230)은, 특정 풍력터빈이 오늘을 기점으로 기설정된 기간동안 임계치 이상의 횟수로 정기점검을 받은 경우, 해당 풍력터빈의 발전 요구량을 감축하고, 정기점검의 횟수가 가장 적은 풍력터빈부터 발전 요구량을 허용 가능한 전력 생산량에 도달할 때까지 증감시키고, 그 다음으로 정기점검 횟수가 적은 풍력터빈에 발전 요구량을 허용 가능한 전력 생산량에 도달할 때까지 증감시키는 방식으로, 다음날 생산할 수 있는 전력 생산량을 보정할 수 있다.
여기서, 예측 기본 모델에 이용되는 데이터는, 풍력단지 기상관측타워에 설치되는 Met Mast의 풍속 데이터, 풍향 데이터, 온도 데이터 및 대기압 데이터와 풍력터빈별 발전량 데이터, 풍속 데이터 및 풍향 데이터, 그리고 수치예보모델(221)의 데이터가 포함될 수 있다.
그리고 출력 제한지령에는, 출력제한 시작 시간, 적용 시간, 제한출력량, 풍력터빈별 유효전력 지령 값 등이 포함될 수 있다. 또한, 풍력터빈의 운전 데이터는, UTM 좌표 기반 풍력터빈 배치 정보가 포함될 수 있다.
도 3은, 본 발명의 일 실시예에 따른 물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 방법의 설명에 제공된 도면이다.
본 실시예에 따른 물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 방법은, 전술한 하루 전 발전량 예측 시스템을 통해 실행될 수 있다.
도 3을 참조하면, 본 실시예에 따른 물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 방법은, 기상 예측 모델(220)을 이용하여, 풍력단지 내 각 풍력터빈별 입력되는 입력 풍속을 예측하고(S310), 입력 풍속에 따른 풍력터빈의 출력 변화를 기반으로 발전량을 산출하는 물리 모델 및 시간 단위 기상 데이터에 따른 풍력터빈의 예측 발전량을 산출하는 데이터 모델이 구비되는 풍력터빈 혼합모델(210)을 이용하여, 풍력터빈별 예측 발전량을 산출할 수 있다(S320).
그리고 풍력단지 운영모델(230)을 이용하여, 풍력터빈별 예측 발전량의 예측 결과에 풍력터빈의 상태 및 출력에 영향을 미치는 요소를 반영하여(S330), 풍력터빈별 발전 요구량을 결정할 수 있다.
예를 들면, 기상 예측 모델(220)을 이용하여, 풍력단지 내 각 풍력터빈별 입력되는 입력 풍속을 예측하면, 풍력터빈 혼합모델(210)은, 물리 모델 및 데이터 모델을 혼용하여 복수의 예측 기본 모델을 생성하고, 기상 예측 모델(220)의 예측 결과를 이용하여, 각각의 예측 기본 모델을 트레이닝하고, 트레이닝된 예측 기본 모델의 예측 결과를 기반으로 풍력터빈별 다음날 예측 발전량을 산출에 이용될 특정 예측 기본 모델을 최적 모델로 선택할 수 있다.
또한, 풍력단지 운영모델(230)은, 최적 모델을 통해 풍력터빈별 다음날 예측 발전량을 산출한 이후, 풍력터빈의 제원 및 상태 정보, 풍력터빈의 운전 데이터 및 풍력터빈의 정기점검 이력 및 오류로 인한 중지 이력을 반영하여, 고도화 모델을 생성하고, 생성된 고도화 모델을 기반으로 각각의 풍력터빈에 할당되는 발전 요구량을 결정할 수 있다.
이를 통해, 출력제한지령 및 유지보수 등 단지 운영 형태에 따라 달라지는 풍력터빈의 운전 상태 및 풍력단지 내 후류로 인한 바람의 변화와 같이 출력에 영향을 미치는 요소를 종합적으로 반영하여, 보다 정밀한 발전량 예측을 수행할 수 있다.
한편, 본 실시예에 따른 장치와 방법의 기능을 수행하게 하는 컴퓨터 프로그램을 수록한 컴퓨터로 읽을 수 있는 기록매체에도 본 발명의 기술적 사상이 적용될 수 있음은 물론이다. 또한, 본 발명의 다양한 실시예에 따른 기술적 사상은 컴퓨터로 읽을 수 있는 기록매체에 기록된 컴퓨터로 읽을 수 있는 코드 형태로 구현될 수도 있다. 컴퓨터로 읽을 수 있는 기록매체는 컴퓨터에 의해 읽을 수 있고 데이터를 저장할 수 있는 어떤 데이터 저장 장치이더라도 가능하다. 예를 들어, 컴퓨터로 읽을 수 있는 기록매체는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광디스크, 하드 디스크 드라이브, 등이 될 수 있음은 물론이다. 또한, 컴퓨터로 읽을 수 있는 기록매체에 저장된 컴퓨터로 읽을 수 있는 코드 또는 프로그램은 컴퓨터간에 연결된 네트워크를 통해 전송될 수도 있다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (8)

  1. 풍력단지 내 각각의 풍력터빈별 예측 발전량을 산출하기 위해, 입력 풍속에 따른 풍력터빈의 출력 변화를 기반으로 발전량을 산출하는 물리 모델 및 시간 단위 기상 데이터에 따른 풍력터빈의 예측 발전량을 산출하는 데이터 모델이 구비되는 풍력터빈 혼합모델;
    각 풍력터빈별 입력되는 입력 풍속을 예측하는 기상 예측 모델; 및
    풍력터빈별 예측 발전량의 예측 결과에 풍력터빈의 상태 및 출력에 영향을 미치는 요소를 반영하는 풍력단지 운영모델;을 포함하는 발전량 예측 시스템.
  2. 청구항 1에 있어서,
    풍력터빈 혼합모델은,
    풍력터빈별 다음날 예측 발전량을 산출하기 위해, 풍력터빈의 정밀 모사가 가능한 물리 모델과 시간 단위 예측 데이터 활용이 가능한 데이터 모델을 혼용하는 것을 특징으로 하는 발전량 예측 시스템.
  3. 청구항 1에 있어서,
    기상 예측 모델은,
    각 풍력터빈별 입력되는 풍속을 예측하기 위해, 위성 데이터를 기반으로 다음날 초기 바람을 예측하는 수치예보모델(NWP, Numerical Weather Prediction), 풍력단지에 설치된 기상 측정탑을 통해 측정된 초기 바람과 풍력터빈 나셀에 마련된 풍향풍속계에서 측정된 바람의 상관관계를 분석하여 도출된 나셀전달함수(NTF, Nacelle Transfer Function) 및 풍력단지내 후방에 배치되는 후방 풍력터빈에 후류 효과를 반영하는 후류 모델이 구비되는 것을 특징으로 하는 발전량 예측 시스템.
  4. 청구항 1에 있어서,
    풍력단지 운영모델은,
    풍력터빈의 상태 및 출력에 영향을 미치는 요소 반영 시, 풍력터빈 정기점검, 오류로 인한 중지 또는 계통운영자의 감발지시에 따른 출력 제어 상황을 반영하는 것을 특징으로 하는 발전량 예측 시스템.
  5. 청구항 1에 있어서,
    풍력터빈 혼합모델은,
    물리 모델 및 데이터 모델을 혼용하여 복수의 예측 기본 모델을 생성하고, 각각의 예측 기본 모델을 트레이닝하여, 예측 결과를 기반으로 풍력터빈별 다음날 예측 발전량을 산출에 이용될 특정 예측 기본 모델을 선택하는 것을 특징으로 하는 발전량 예측 시스템.
  6. 청구항 5에 있어서,
    풍력터빈 혼합모델은,
    트레이닝된 각각의 예측 기본 모델에 풍력단지 운영모델을 통해 계통운영자로부터 전달된 출력 제한지령에 포함된 감축량이 반영되도록 한 이후, 감축량이 반영된 각각의 예측 기본 모델의 예측 결과를 기반으로 이용될 특정 예측 기본 모델을 최적 모델로 선택하는 것을 특징으로 하는 발전량 예측 시스템.
  7. 청구항 6에 있어서,
    풍력단지 운영모델은,
    선택된 최적 모델을 통해 풍력터빈별 다음날 예측 발전량을 산출한 이후, 풍력터빈의 제원 및 상태 정보, 풍력터빈의 운전 데이터 및 풍력터빈의 정기점검 이력 및 오류로 인한 중지 이력을 반영하여, 각각의 풍력터빈에 할당되는 발전 요구량을 결정하는 것을 특징으로 하는 발전량 예측 시스템.
  8. 기상 예측 모델을 이용하여, 풍력단지 내 각 풍력터빈별 입력되는 입력 풍속을 예측하는 단계;
    입력 풍속에 따른 풍력터빈의 출력 변화를 기반으로 발전량을 산출하는 물리 모델 및 시간 단위 기상 데이터에 따른 풍력터빈의 예측 발전량을 산출하는 데이터 모델이 구비되는 풍력터빈 혼합모델을 이용하여, 풍력터빈별 예측 발전량을 산출하는 단계; 및
    풍력단지 운영모델을 이용하여, 풍력터빈별 예측 발전량의 예측 결과에 풍력터빈의 상태 및 출력에 영향을 미치는 요소를 반영하는 단계;를 포함하는 발전량 예측 방법.
PCT/KR2021/015779 2020-12-29 2021-11-03 물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 방법 및 시스템 WO2022145681A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0186325 2020-12-29
KR1020200186325A KR102286672B1 (ko) 2020-12-29 2020-12-29 물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 방법 및 시스템

Publications (1)

Publication Number Publication Date
WO2022145681A1 true WO2022145681A1 (ko) 2022-07-07

Family

ID=77315253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015779 WO2022145681A1 (ko) 2020-12-29 2021-11-03 물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 방법 및 시스템

Country Status (2)

Country Link
KR (1) KR102286672B1 (ko)
WO (1) WO2022145681A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116596165A (zh) * 2023-07-17 2023-08-15 国网山东省电力公司汶上县供电公司 一种风力发电功率预测方法及系统
CN116821427A (zh) * 2023-08-25 2023-09-29 国网信息通信产业集团有限公司 信息存储方法、装置、电子设备和计算机可读介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102286672B1 (ko) * 2020-12-29 2021-08-06 한국전자기술연구원 물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 방법 및 시스템
KR102664614B1 (ko) * 2022-10-31 2024-05-09 주식회사 브이피피랩 풍력 발전량 예측 방법 및 장치
KR102693245B1 (ko) * 2022-11-28 2024-08-08 한국전자기술연구원 데이터 퓨전과 확률적 바람 모델을 이용한 풍력 발전기의 다음날 발전량 예측 방법
KR102586116B1 (ko) * 2022-11-30 2023-10-06 식스티헤르츠 주식회사 풍력 발전량 예측 방법 및 시스템
KR102675567B1 (ko) * 2023-12-18 2024-06-14 주식회사 해줌 멀티기간 풍력 발전량 경향성을 반영하는 풍력 발전량 예측 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101475A2 (en) * 2010-02-19 2011-08-25 Vestas Wind Systems A/S A method of operating a wind turbine to provide a corrected power curve
KR20120007783A (ko) * 2010-07-15 2012-01-25 엘지전자 주식회사 풍력발전장치의 발전량 예측방법
KR101411420B1 (ko) * 2013-06-14 2014-06-25 삼성중공업 주식회사 시뮬레이션 기법을 이용한 풍력 발전 단지의 풍력 발전기 제어 시스템 및 방법
JP2016136001A (ja) * 2015-01-23 2016-07-28 中国電力株式会社 予測装置
KR102286672B1 (ko) * 2020-12-29 2021-08-06 한국전자기술연구원 물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 방법 및 시스템

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910025B2 (ja) * 2011-11-22 2016-04-27 富士電機株式会社 風力発電量予測システム、そのプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101475A2 (en) * 2010-02-19 2011-08-25 Vestas Wind Systems A/S A method of operating a wind turbine to provide a corrected power curve
KR20120007783A (ko) * 2010-07-15 2012-01-25 엘지전자 주식회사 풍력발전장치의 발전량 예측방법
KR101411420B1 (ko) * 2013-06-14 2014-06-25 삼성중공업 주식회사 시뮬레이션 기법을 이용한 풍력 발전 단지의 풍력 발전기 제어 시스템 및 방법
JP2016136001A (ja) * 2015-01-23 2016-07-28 中国電力株式会社 予測装置
KR102286672B1 (ko) * 2020-12-29 2021-08-06 한국전자기술연구원 물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 방법 및 시스템

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116596165A (zh) * 2023-07-17 2023-08-15 国网山东省电力公司汶上县供电公司 一种风力发电功率预测方法及系统
CN116596165B (zh) * 2023-07-17 2023-10-13 国网山东省电力公司汶上县供电公司 一种风力发电功率预测方法及系统
CN116821427A (zh) * 2023-08-25 2023-09-29 国网信息通信产业集团有限公司 信息存储方法、装置、电子设备和计算机可读介质
CN116821427B (zh) * 2023-08-25 2024-01-12 国网信息通信产业集团有限公司 信息存储方法、装置、电子设备和计算机可读介质

Also Published As

Publication number Publication date
KR102286672B1 (ko) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2022145681A1 (ko) 물리 및 데이터 혼합 모델 기반 풍력발전단지 하루 전 발전량 예측 방법 및 시스템
Andersson et al. Wind farm control‐Part I: A review on control system concepts and structures
JP7194868B1 (ja) 風に対するヨーの異常を検出するための方法および装置、並びにそれらのデバイスおよび記憶媒体
CN103020462B (zh) 计及复杂尾流效应模型的风电场概率输出功率计算方法
WO2012108594A1 (ko) 급격한 풍속 변화시 풍력발전단지 제어 방법 및 시스템
CN102411367B (zh) 大型风力发电机组主控测试系统及方法
CN105844361A (zh) 风电机组风功率预测方法、解缆方法和装置
CN104682381A (zh) 大型风电场柔性直流输电系统可靠性计算方法
CN103344437A (zh) 一种风力发电机组半物理实时仿真平台
KR20150035083A (ko) 풍력발전단지의 시뮬레이션 장치
US20230272775A1 (en) Systems and methods of coordinated yaw control of multiple wind turbines
CN104133989A (zh) 计及覆冰损失的风电场时序输出功率计算方法
CN115456304A (zh) 考虑台风影响的海上风电场可靠性指标计算方法及装置
CN105305428A (zh) 用双冗余方式提高风预测系统可靠性的方法及系统
CN113030516A (zh) 风速仪故障检测方法、装置、设备和存储介质
CN115940273A (zh) 一种海上新能源并网和调度运行管控方法及系统
CN105783108B (zh) 节能供热控制的方法、系统及云端服务器
CN111342499A (zh) 一种基于风功率预测数据的风电场实时调度方法
CN103439970B (zh) 一种风力发电机组仿真测试方法
CN117669968A (zh) 一种风电场调度方法、装置、设备及介质
CN115935645B (zh) 基于测风塔数据的风电场上调备用容量评估方法及系统
CN114970945B (zh) 基于水-电响应关系的水电站中长期发电出力计算方法、装置及系统
CN115659682A (zh) 一种基于法兰挠度的风机塔筒安全性确定方法和装置
Topić et al. Reliability model of different wind power plant configuration using sequential Monte Carlo simulation
CN113153657A (zh) 风机发电率损失预测方法、系统、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915479

Country of ref document: EP

Kind code of ref document: A1