WO2022145599A1 - Collection apparatus for collecting fine dust generated from brake device of transportation means - Google Patents

Collection apparatus for collecting fine dust generated from brake device of transportation means Download PDF

Info

Publication number
WO2022145599A1
WO2022145599A1 PCT/KR2021/007704 KR2021007704W WO2022145599A1 WO 2022145599 A1 WO2022145599 A1 WO 2022145599A1 KR 2021007704 W KR2021007704 W KR 2021007704W WO 2022145599 A1 WO2022145599 A1 WO 2022145599A1
Authority
WO
WIPO (PCT)
Prior art keywords
collector
porous ceramic
rotor
ceramic foam
foam
Prior art date
Application number
PCT/KR2021/007704
Other languages
French (fr)
Korean (ko)
Inventor
황광택
김진호
김정헌
최청수
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200185420A external-priority patent/KR102538298B1/en
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Publication of WO2022145599A1 publication Critical patent/WO2022145599A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details

Definitions

  • the present invention relates to a collecting device, and more particularly, to a collecting device for collecting fine dust generated by friction between a rotor and a brake pad in a brake device of a transport engine.
  • the number of particles (fine dust) emitted by the non-exhaust pipe (non-exhaust system) is increasing due to the increase in transport facilities.
  • Transport institutions such as automobiles do not have a device for collecting fine dust caused by wear of brake pads and tires, so there is a problem that the air environment is polluted.
  • the development of a filter capable of collecting dust is required.
  • a new concept of filter material and technology is required for a collection filter to collect fine dust generated from non-exhaust systems of transportation such as brake pads and tires due to the specificity of the environment (temperature, moisture, vibration, etc.).
  • the collection filter for collecting fine dust generated from the brake device must be installed around the brake pad, where the surface temperature is expected to rise by more than several hundred degrees (up to 700°C) due to friction, so it is required to secure heat resistance, It is necessary to develop a filter material with excellent durability against contamination of the filter by dust and vibrations caused by vehicle driving.
  • NOx and SOx can be removed by catalyst or self-ignition, but fine dust generated from non-exhaust systems is difficult to oxidize. Differentiated technologies must be applied.
  • An object of the present invention is to provide a collecting device for collecting fine dust generated by friction between a rotor and a brake pad in a brake device of a transportation engine.
  • the present invention is a device for collecting fine dust generated by friction between a rotor and a brake pad in a brake device of a transportation engine, and includes a first collector surrounding a portion of an outer surface of the rotor, and a portion of an outer peripheral surface of the rotor An upper collector and a second collector surrounding a portion of an inner surface of the rotor, wherein the first collector and the second collector are formed of a porous ceramic foam.
  • the collecting device is provided in a U-shape in appearance to partially accommodate the rotor into the U-shaped interior.
  • the first collector is provided to face the outer surface of the rotor
  • the second collector is provided to face the inner surface of the rotor
  • the second collector is provided with the first collector with respect to the disk-shaped rotor It is preferable that the first collector and the second collector face each other with respect to the rotor.
  • the collection device includes a first collector cover for covering and protecting the first collector and preventing the fine dust flowing into the first collector from leaking to the outside, and a first collector cover for covering and protecting the second collector and flowing into the second collector It may further include a second collector cover for preventing the fine dust from leaking to the outside.
  • An upper collector cover for protecting the upper collector may be further provided on the upper collector.
  • Holes may be formed in the upper collector cover to allow clean air filtered by the upper collector to escape to the outside.
  • the porous ceramic foam is composed of alumina (Al 2 O 3 ), cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ), mullite (3Al 2 O 3 ⁇ 2SiO 2 ) and silicon carbide (SiC). It may be made of one or more ceramic materials selected from the group.
  • the porous ceramic foam preferably has a porosity of 40 to 90%.
  • the porous ceramic foam may include pores (cells) that serve as passageways for fine dust to flow in, and a wall forming a strut of the porous ceramic foam between the pores (cells). , a plurality of whiskers may protrude from the surface of the wall toward the pores (cells).
  • the whisker may be made of at least one needle-shaped ceramic material selected from the group consisting of mullite (3Al 2 O 3 ⁇ 2SiO 2 ), ZnO, and silicon carbide (SiC).
  • the porous ceramic foam may include a first region in which pores having a relatively small size compared to the second region are distributed, and a second region in which pores having a relatively large size compared to the first region are distributed, Area 1 may collect fine dust having a smaller size than fine dust collected in the second area.
  • the second region is located closer to the rotor than the first region.
  • the upper collector may be formed of a porous ceramic foam.
  • the first collector and the second collector may be formed of a porous ceramic foam having a stepped portion protruding to cover a portion of an outer circumferential surface of the rotor.
  • the porous ceramic foam is coated with a hydrophobic coating film and may exhibit hydrophobicity.
  • the first collector and the second collector may include ribs arranged in a serpentine type and a channel forming an empty space between the ribs.
  • the ribs have a curved shape.
  • a rib block may be provided at an end of the rib, and the rib block is a medium connecting the rib and the rib, and fine dust generated by friction between the rotor and the brake pad is may be introduced through the inlet of the channel, and in the Y-axis direction perpendicular to the X-axis, which is the rotation axis of the rotor, an empty space between the inlet of the channel and the rib block constitutes the channel, and the X-axis and Y-axis In the Z-axis direction perpendicular to the axis, an empty space between the ribs may be a region forming the channel.
  • the present invention it is possible to efficiently collect fine dust generated by friction between a rotor and a brake pad in a brake device of a transportation engine. Air pollution can be prevented by reducing fine dust generated during braking of transport institutions.
  • FIGS. 1 and 2 are diagrams illustrating an example of a collection device for collecting fine dust generated from a brake device of a transportation engine.
  • FIG 3 is a view showing an example of a state in which the collecting device is coupled to the brake device.
  • FIG. 4 is a view schematically showing an example of a porous ceramic foam.
  • FIG. 5 is a diagram schematically illustrating an example of a structure in which a whisker protrudes from a surface of a wall.
  • FIG. 6 is a view schematically showing another example of the porous ceramic foam.
  • FIG. 7 is a cutaway view of a portion of the porous ceramic foam shown in FIG. 6 in order to more clearly show the first region (A) and the second region (B).
  • FIG 8 and 9 are views schematically showing another example of the porous ceramic foam.
  • FIGS. 8 and 9 are partially exploded perspective view schematically showing a collecting device to which the porous ceramic foam shown in FIGS. 8 and 9 is applied.
  • FIG. 11 is a view showing an example of a state in which the collecting device to which the porous ceramic foam shown in FIGS. 8 and 9 is applied is coupled to the brake device.
  • FIG. 13 is a photograph showing a state in which the ceramic slurry was dip-coated on the polymer foam according to Experimental Example 1 and dried.
  • the term "transportation institution” is used in the sense that includes not only automobiles, trucks, buses, and railroad vehicles, but also two-wheeled vehicles such as motorcycles.
  • the term "pore” is used to include not only the pores forming the cell between the wall and the wall, but also the pores formed in the wall.
  • a collection device is a device for collecting fine dust generated by friction between a rotor and a brake pad in a brake device of a transportation engine, and includes a first collector surrounding a part of an outer surface of the rotor; An upper collector enclosing a portion of an outer circumferential surface of the rotor and a second collector enclosing a portion of an inner surface of the rotor, wherein the first collector and the second collector are made of porous ceramic foam.
  • the collecting device is provided in a U-shape in appearance to partially accommodate the rotor into the U-shaped interior.
  • the first collector is provided to face the outer surface of the rotor
  • the second collector is provided to face the inner surface of the rotor
  • the second collector is provided with the first collector with respect to the disk-shaped rotor It is preferable that the first collector and the second collector face each other with respect to the rotor.
  • the collection device includes a first collector cover for covering and protecting the first collector and preventing the fine dust flowing into the first collector from leaking to the outside, and a first collector cover for covering and protecting the second collector and flowing into the second collector It may further include a second collector cover for preventing the fine dust from leaking to the outside.
  • An upper collector cover for protecting the upper collector may be further provided on the upper collector.
  • Holes may be formed in the upper collector cover to allow clean air filtered by the upper collector to escape to the outside.
  • the porous ceramic foam is composed of alumina (Al 2 O 3 ), cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ), mullite (3Al 2 O 3 ⁇ 2SiO 2 ) and silicon carbide (SiC). It may be made of one or more ceramic materials selected from the group.
  • the porous ceramic foam preferably has a porosity of 40 to 90%.
  • the porous ceramic foam may include pores (cells) that serve as passageways for fine dust to flow in, and a wall forming a strut of the porous ceramic foam between the pores (cells). , a plurality of whiskers may protrude from the surface of the wall toward the pores (cells).
  • the whisker may be made of at least one needle-shaped ceramic material selected from the group consisting of mullite (3Al 2 O 3 ⁇ 2SiO 2 ), ZnO, and silicon carbide (SiC).
  • the porous ceramic foam may include a first region in which pores having a relatively small size compared to the second region are distributed, and a second region in which pores having a relatively large size compared to the first region are distributed, Area 1 may collect fine dust having a smaller size than fine dust collected in the second area.
  • the second region is located closer to the rotor than the first region.
  • the upper collector may be formed of a porous ceramic foam.
  • the first collector and the second collector may be formed of a porous ceramic foam having a stepped portion protruding to cover a portion of an outer circumferential surface of the rotor.
  • the porous ceramic foam is coated with a hydrophobic coating film and may exhibit hydrophobicity.
  • the first collector and the second collector may include ribs arranged in a serpentine type and a channel forming an empty space between the ribs.
  • the ribs have a curved shape.
  • a rib block may be provided at an end of the rib, and the rib block is a medium connecting the rib and the rib, and fine dust generated by friction between the rotor and the brake pad is may be introduced through the inlet of the channel, and in the Y-axis direction perpendicular to the X-axis, which is the rotation axis of the rotor, an empty space between the inlet of the channel and the rib block constitutes the channel, and the X-axis and Y-axis In the Z-axis direction perpendicular to the axis, an empty space between the ribs may be a region forming the channel.
  • FIGS. 1 and 2 are diagrams illustrating an example of a collection device for collecting fine dust generated from a brake device of a transportation engine.
  • 3 is a view showing an example of a state in which the collecting device is coupled to the brake device.
  • 4 is a view schematically showing an example of a porous ceramic foam.
  • the brake device is a device that performs braking by friction generated between a brake pad 20 and a rotor 10 .
  • the brake device has a disk-shaped rotor 10 that is connected to the axle to rotate, and an axial direction (X) in the rotor 10 to brake the rotation of the rotor 10 (direction perpendicular to the disk-shaped surface)
  • the brake pad 20 for applying pressure to the rotor 10, and the brake pad 20 in close contact with the rotor 10 or by separating the brake pad 20 in contact with the rotor 10 from the rotor 10 Includes a brake caliper (30) for controlling the rotation of.
  • the rotor 10 is a disk-shaped device that is connected to the axle and rotates.
  • the rotor 10 may include a first disk surface 10a perpendicular to the X-axis and a second disk surface 10b parallel to the first disk surface.
  • the first disk surface 10a and the second disk surface 10b may be coupled to each other by a rim or the like.
  • the brake pad 20 is a device for braking the rotation of the rotor 10 by applying pressure to the rotor 10 in the axial direction (X direction) (direction perpendicular to the surface forming the disk shape).
  • the brake pad 20 may include a first pad (not shown) for applying pressure to the first disc surface 10a and a second pad (not shown) for applying pressure to the second disc surface 10b. have.
  • the brake pad 20 is mounted on the brake caliper 30 so as to move along the axial direction (X direction).
  • the brake caliper 30 is for controlling the rotation of the rotor 10 by keeping the brake pad 20 in close contact with the rotor 10 or by separating the brake pad 20 in contact with the rotor 10 from the rotor 10 . It is a device
  • the brake pad 20 is accommodated in the brake caliper 30, a first pad (not shown) provided to face the rotor 10 while looking at the first disk surface 10a, and a second disk surface 10b It may include a second pad (not shown) provided to face the rotor 10 while looking at the .
  • the brake caliper 30 may be provided in a U-shape in overall appearance to surround a portion of the rotor 10 .
  • Fine dust harmful to the human body is generated due to friction between the brake pad 20 and the rotor 10 .
  • fine dust generated by wear of the brake pad 20 has a small particle size and may have a direct effect on the human body and the environment.
  • the amount of particulates emitted from brake devices due to an increase in traffic volume is increasing.
  • the collection device for collecting fine dust generated from the brake device of a transportation engine must be installed around the brake pad 20, which is expected to increase the surface temperature by more than several hundred degrees due to friction, it is required to secure heat resistance, It is necessary to develop a filter material with excellent durability against contamination of the device and vibration caused by vehicle driving.
  • the collecting device is a device for collecting fine dust (dust) generated by friction between the brake pad 20 and the rotor 10 .
  • the collecting device suctions and collects fine dust (dust) generated when the brake pad 20 or the rotor 10 is worn while the rotor 10 and the brake pad 20 come into contact with each other during braking while driving.
  • the collecting device according to a preferred embodiment of the present invention may be provided to be replaceable.
  • the collection device according to a preferred embodiment of the present invention may be replaced after use for a certain period of time or reused after removing fine dust.
  • the shape and installation position of the collecting device may change according to the positions of the brake pad 20 and the brake caliper 30 .
  • the collecting device is preferably installed behind the brake pad 20 (behind the brake pad when viewed from the rotational direction of the rotor) from the position of the brake pad 20 when viewed from the forward running direction of the transport engine.
  • Installing the collecting device behind the position of the brake pad 20 means that fine dust (dust) generated by the friction between the brake pad 20 and the rotor 10 when the transport engine is traveling forward is caused by wind, etc. This is because it is advantageous to flow into the collection device and collects more fine dust.
  • the collecting device may be provided to collect fine dust without power. Fine dust (dust) can be efficiently sucked into the collection device naturally by the direction of the air flowing while the vehicle is running (air flow).
  • the collecting device may be provided in a form that surrounds a part of the rotor 10 .
  • the collecting device may be provided in a U-shape in overall appearance so as to surround a portion of the rotor 10 .
  • the collecting device is configured to partially receive the rotor 10 into a U-shaped interior.
  • the collecting device includes a first collector 110 surrounding a portion of the outer surface (first disk surface 10a) of the rotor 10, an upper collector 130 surrounding a portion of the outer circumferential surface of the rotor 10, A second collector 120 may be included to surround a portion of the inner surface (the second disk surface 10b) of the rotor 10 .
  • the first collector 110 is provided to face the outer surface (the first disk surface 10a) of the rotor 10 .
  • the second collector 120 is provided to face the inner surface (the second disk surface 10b) of the rotor 10 .
  • the second collector 120 is installed to be positioned opposite the first collector 110 with respect to the disk-shaped rotor 10 .
  • the first collector 110 and the second collector 120 are disposed to face each other with respect to the rotor 10 .
  • the first collector 110 and the second collector 120 are disposed to be spaced apart from the rotor 10 .
  • the upper collector 130 is provided to surround a part of the outer circumferential surface of the rotor 10 .
  • the upper collector 130 may be connected to the first collector 110 and the second collector 120 .
  • the upper collector 130 is also installed to be spaced apart from the rotor 10 .
  • Collector covers 160 and 170 for protecting the first collector 110 and the second collector 120 and suppressing the fine dust flowing into the channel from leaking to the outside may be further provided.
  • the collector covers 160 and 170 may be made of a material such as a synthetic resin having good workability and a light weight, for example, a thermosetting synthetic resin, but a material having good durability and resistance to impact such as a metal or a metal alloy may be used.
  • the collector cover covers and protects the first collector 110, and covers and protects the first collector cover 160 and the second collector 120 to prevent fine dust flowing into the channel from leaking to the outside, and flows into the channel. It may include a second collector cover 170 for preventing the fine dust from leaking to the outside.
  • the first collector cover 160 is provided on the opposite side of the rotor 10 with respect to the first collector 110
  • the second collector cover 170 is provided on the opposite side of the rotor 10 with respect to the second collector 120 .
  • the collector covers 160 and 170 may serve to prevent foreign substances such as dust from entering the rotor 10 .
  • the first collector cover 160 may be configured to completely cover the side surface of the first collector 110 , and may be configured to be in close contact with the side surface of the first collector 110 .
  • the second collector cover 170 may be configured to completely cover the side surface of the second collector 120 , and may be configured to be in close contact with the side surface of the second collector 120 .
  • Holes may be formed in the first collector cover 160 to allow clean air filtered by the first collector 110 to escape to the outside. Fine dust generated by friction between the rotor 10 and the brake pad 20 is collected by the first collector 110 , and the clean air that has passed through the first collector 110 fills the holes of the first collector cover 160 . It is possible to suppress an increase in the temperature around the rotor 10 by allowing the discharge to pass through. Holes may also be formed in the second collector cover 170 to allow clean air filtered by the second collector 120 to escape to the outside. Fine dust generated by friction between the rotor 10 and the brake pad 20 is collected by the second collector 120 , and the clean air passing through the second collector 120 fills the holes of the second collector cover 170 . It is possible to suppress an increase in the temperature around the rotor 10 by allowing the discharge to pass through.
  • An upper collector cover 180 for protecting the upper collector 130 may be further provided.
  • the upper collector cover 180 may be made of a material such as a synthetic resin having good workability and a light weight, for example, a thermosetting synthetic resin, but a material having good durability and resistance to impact such as a metal or a metal alloy may be used.
  • the upper collector cover 180 may be provided on the upper collector 130 .
  • the upper collector cover 180 may be disposed on the outer circumferential surface of the rotor 10 to prevent foreign substances such as dust from entering the rotor 10 . Holes may be formed in the upper collector cover 180 to allow clean air filtered by the upper collector 130 to escape to the outside.
  • Fine dust generated by friction between the rotor 10 and the brake pad 20 is collected by the upper collector 130 , and the clean air that has passed through the upper collector 130 is discharged through the holes of the upper collector cover 180 . It can suppress that the temperature of the periphery of the rotor 10 rises by doing this.
  • the first collector 110 and the second collector 120 may be formed in a straight shape from one end to the other end, and more preferably have a curved shape (refer to 210 in FIG. 2 ) from one end to the other end. More preferably, the first collector 110 and the second collector 120 have a curved shape identical to the disk curvature of the disk-shaped rotor 10 .
  • the curvature of the first collector 110 and the second collector 120 forming a curved shape is preferably the same as the disk curvature of the rotor 10 having a disk shape.
  • the first collector 110 and the second collector 120 are made of porous ceramic foam. Since the first collector 110 and the second collector 120 are installed around the rotor 10, the surface temperature of which is expected to rise by several hundred degrees or more due to friction between the rotor 10 and the brake pad 20, it is required to secure heat resistance. Durability is required against contamination by rainwater or dust and vibrations caused by vehicle driving.
  • the first collector 110 and the second collector 120 are alumina (Al 2 O 3 ), cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ), mullite (3Al 2 ) O 3 ⁇ 2SiO 2 ), it is preferably made of a porous ceramic foam (ceramic porous body) having heat resistance such as silicon carbide (SiC) or a mixture thereof.
  • the first collector 110 and the second collector 120 may be formed of a porous ceramic foam having a stepped portion 200 protruding to cover a portion of an outer peripheral surface of the rotor 10 .
  • the porous ceramic foam is a porous body having countless pores.
  • the porous ceramic foam includes pores (cells) serving as passageways for fine dust to flow in, and a wall forming a strut of the porous ceramic foam between the pores (cells).
  • the large pores between the wall and the wall are also called cells, and smaller pores than the cells are formed in the wall, and the pores in the porous ceramic foam include not only the pores formed in the wall but also the cells. .
  • the porous ceramic foam preferably has a porosity of 40 to 90%, more preferably about 60 to 85%. If the porosity is too low, fine dust filtering efficiency may be low, and if the porosity is too high, cracks or breakage may occur easily due to vibration or impact, and thus durability may be reduced.
  • the size of the pores (cells) distributed in the porous ceramic foam is preferably about 50 ⁇ m to 2 mm, and the size of the pores formed on the wall is preferably about 50 nm to 50 ⁇ m.
  • the porous ceramic foam may be coated with a hydrophobic coating film in order to suppress the formation of water droplets on the surface.
  • a porous ceramic foam may be manufactured by coating the porous ceramic material with a hydrophobic material.
  • the hydrophobic coating film is preferably provided with a thickness of about 10 nm to 2 ⁇ m.
  • the hydrophobic coating film can be formed by coating a paste, suspension or colloid on the outer surface of the porous ceramic foam and heat-treating it at a temperature of about 400 to 1000°C.
  • a case of coating the boehmite-TiO 2 sol may be exemplified.
  • the boehmite-TiO 2 sol can be prepared as follows.
  • Boehmite is added to a solvent such as distilled water and hydrolyzed at a temperature of about 60°C, and an acid such as nitric acid (HNO 3 ) is added thereto for peptization Forms an emetic sol.
  • a solvent such as distilled water and hydrolyzed at a temperature of about 60°C
  • an acid such as nitric acid (HNO 3 ) is added thereto for peptization
  • TiO 2 precursor is added to a solvent such as distilled water, hydrolyzed at a temperature of about 50 ° C., and an acid such as nitric acid (HNO 3 ) is added thereto for peptization to obtain TiO 2 sol. to form
  • the TiO 2 precursor may be titanium isopropoxide (TTIP) or the like.
  • the boehmite sol and the TiO 2 sol are mixed to obtain a boehmite-TiO 2 sol.
  • the upper collector 130 may also be formed of a porous ceramic foam.
  • the upper collector 130 is alumina (Al 2 O 3 ), cordierite (cordierite, 2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ), mullite (mullite, 3Al 2 O 3 ⁇ 2SiO 2 ), silicon carbide (SiC) or It is preferable to form a porous ceramic foam having heat resistance, such as a mixture thereof.
  • the upper collector 130 is disposed on the outer peripheral surface of the rotor 10 and also serves to prevent foreign substances such as dust from entering the rotor 10 .
  • a porous polymer foam (eg, polyurethane foam) is used as a substrate to prepare the porous ceramic foam.
  • the polymer foam is a porous material having elasticity, such as a sponge.
  • the porosity, pore size, etc. of the polymer foam affect the porosity, pore size, etc. of the porous ceramic foam to be manufactured later.
  • After forming a polymer foam to correspond to the shape of the porous ceramic foam to be manufactured it is washed and dried through ultrasonic cleaning or the like.
  • the porous ceramic foam has the stepped portion 200 protruding to cover a portion of the outer circumferential surface of the rotor 10, the polymer foam is also formed to have a stepped portion.
  • the drying is preferably performed in an oven of about 30 to 90 °C lower than the melting temperature of the polymer foam.
  • a starting material including a ceramic raw material, a binder and a solvent is prepared.
  • the ceramic raw material is a main material of the porous ceramic foam (ceramic porous body) to be produced.
  • the ceramic raw material is alumina (Al 2 O 3 ) powder, cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ) powder, mullite (3Al 2 O 3 ⁇ 2SiO 2 ) powder, silicon carbide (SiC) It may be a powder or a mixed powder thereof.
  • the starting material may further include a glass frit.
  • the glass frit is preferably contained in an amount of 0.01 to 45 parts by weight, more preferably 0.1 to 40 parts by weight, based on 100 parts by weight of the ceramic raw material in the starting material.
  • the glass frit may serve to lower the sintering temperature and to contain Si in the porous ceramic foam itself, as well as to improve the growth property of the whisker.
  • the solvent may be distilled water or the like.
  • the binder may be polyvinyl alcohol (PVA), polyethylene glycol (PEG), or the like.
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • the binder serves to improve the adhesion of the ceramic slurry.
  • the binder is preferably contained in an amount of 1 to 50 parts by weight based on 100 parts by weight of the ceramic raw material in the starting material.
  • the starting material may further include a dispersing agent.
  • the dispersant may use a commercially available material, and there is no particular limitation on its use.
  • the dispersant is preferably contained in an amount of 0.1 to 25 parts by weight based on 100 parts by weight of the ceramic raw material in the starting material.
  • the starting materials are mixed to form a ceramic slurry.
  • the ceramic slurry is dip-coated on the polymer foam.
  • the polymer foam is completely immersed in the ceramic slurry and dip coating is performed in a vacuum atmosphere.
  • the polymer foam is compressed by applying an external force to remove the excess slurry contained in the polymer foam, and then released to return to the original polymer foam form, and in this way, some of the slurry contained in the polymer foam is It can also be pulled out of the polymer foam.
  • the drying is preferably performed in an oven of about 30 to 90 °C lower than the melting temperature of the polymer foam.
  • Polymer foam with dip coating is sintered.
  • the polymer foam with dip coating is charged in a furnace, etc., and the temperature is raised to a first temperature (for example, 400 to 800° C.) higher than the burning temperature of the polymer foam, and then maintained for a predetermined time to burn the polymer component.
  • a first temperature for example, 400 to 800° C.
  • the sintering temperature eg, 1100 to 1600° C.
  • alumina (Al 2 O 3 ) powder, cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ) powder, and mullite (3Al 2 O 3 ⁇ 2SiO 2 ) powder are used as the ceramic raw material.
  • Silver is preferably carried out in an oxidizing atmosphere such as air or oxygen (O 2 ), and when silicon carbide (SiC) powder is used as the ceramic raw material, it is preferably carried out in a reducing atmosphere. It is preferable to increase the temperature up to the sintering temperature at a temperature increase rate of 1 to 50 ° C./min. If the temperature increase rate is too slow, it takes a long time to decrease productivity.
  • the furnace temperature is lowered.
  • the furnace cooling may be performed to cool in a natural state by shutting off the furnace power, or to cool by arbitrarily setting a temperature drop rate (eg, 10°C/min). have. It is desirable to keep the pressure inside the furnace constant even while the furnace temperature is lowered.
  • the organic (or polymer) component is burned and disappears, and since sintering is performed at a temperature higher than the temperature at which the organic component is burned, all organic components are removed when the sintering process is completed, and the space where the polymer is located is pore , and the sintered body that has undergone the sintering process becomes porous.
  • the porous ceramic foam thus prepared is a porous body having countless pores.
  • the porous ceramic foam includes pores (cells) serving as passageways for fine dust to flow in, and a wall forming a strut of the porous ceramic foam between the pores (cells).
  • a whisker may be formed on the porous ceramic foam. More specifically, the porous ceramic foam has pores (cells) serving as passageways for fine dust to flow in, and a wall forming a strut of the porous ceramic foam between the pores (cells). It may include, and a plurality of whiskers may protrude from the surface of the wall toward the pores (cells).
  • the whisker may be made of at least one needle-shaped ceramic material selected from the group consisting of mullite (3Al 2 O 3 ⁇ 2SiO 2 ), ZnO, and silicon carbide (SiC).
  • the whisker may be compared to the hair of a human nose, the pores may be compared to the nostrils, and the wall may be compared to the nasal wall (the portion of the nose that surrounds the nostrils). Since a person's nose has nasal hairs, it is possible to better filter dust and the like flowing into the nostrils.
  • 5 is a diagram schematically illustrating an example of a structure in which a whisker protrudes from a surface of a wall. Referring to FIG.
  • the porous ceramic foam forms a strut of the porous ceramic foam between pores (cells) 112 serving as passageways for fine dust to flow in, and pores (cells). It includes a wall 114, and a plurality of whiskers 116 protrude from the surface of the wall 114 toward the pores (cells) 112, thereby maximizing the filtering effect of fine dust. .
  • the whisker serves to effectively collect fine dust while suppressing an increase in differential pressure during filtering.
  • a starting material including a source material, a binder and a solvent constituting the whisker is prepared.
  • the source material serves to provide a source of a component constituting a main material of a whisker to be manufactured.
  • Al metal salts such as alumina and aluminum tri sec butoxide may be used as the Al source, and as the Si source, silica sol, TEOS (Tetraethyl orthosilicate), glass , glass frit, fly ash, feldspar, kaolin, clay, Kyanite, etc. may be used.
  • the source material may further include mullite powder, which serves as a seed for mullite crystal growth.
  • the source material may further include a material such as AlF 3 , NH 4 F serving as an F source.
  • the solvent may be distilled water or the like.
  • the binder may be polyvinyl alcohol (PVA), polyethylene glycol (PEG), or the like.
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • the binder serves to improve the adhesion of the ceramic slurry.
  • the binder is preferably contained in an amount of 1 to 50 parts by weight based on 100 parts by weight of the source material in the starting material.
  • the starting material may further include a dispersing agent.
  • the dispersant may use a commercially available material, and there is no particular limitation on its use.
  • the dispersant is preferably contained in an amount of 0.1 to 25 parts by weight based on 100 parts by weight of the source material in the starting material.
  • the starting material may further include a thickener.
  • the thickener may use a commercially available material, and there is no particular limitation on its use.
  • the thickener serves to increase the viscosity of the ceramic slurry, which will be described later, to decrease the precipitation rate.
  • the thickener is preferably contained in an amount of 0.1 to 25 parts by weight based on 100 parts by weight of the source material in the starting material.
  • the starting materials are mixed to form a ceramic slurry.
  • the ceramic slurry is dip-coated on the porous ceramic foam. It is preferable to completely immerse the porous ceramic foam in the ceramic slurry and perform dip coating in a vacuum atmosphere.
  • Dry the porous ceramic foam with dip coating is preferably performed in an oven of about 30 to 90 °C.
  • the porous ceramic foam with dip coating is sintered.
  • the porous ceramic foam with dip coating is charged in a furnace, etc., heated to a sintering temperature (eg, 1100 to 1600° C.), and then maintained at the sintering temperature for a predetermined time to sinter to obtain a porous ceramic foam with whiskers. .
  • the sintering is preferably performed in an oxidizing atmosphere such as air or oxygen (O 2 ). It is preferable to increase the temperature up to the sintering temperature at a temperature increase rate of 1 to 50 ° C./min. If the temperature increase rate is too slow, it takes a long time to decrease productivity. Therefore, it is preferable to raise the temperature at a temperature increase rate in the above range.
  • the furnace temperature is lowered.
  • the furnace cooling may be performed to cool in a natural state by shutting off the furnace power, or to cool by arbitrarily setting a temperature drop rate (eg, 10°C/min). have. It is desirable to keep the pressure inside the furnace constant even while the furnace temperature is lowered.
  • the organic (or polymer) component is burned away, and since the sintering is performed at a temperature higher than the temperature at which the organic component burns, all the organic components are removed when the sintering process is completed.
  • the porous ceramic foam prepared in this way is a porous body having countless pores, the pores (cells) serving as passageways for fine dust to flow in, and the struts of the porous ceramic foam between the pores (cells). ), and a plurality of mullite whiskers protrude from the surface of the wall toward pores (cells).
  • a seed solution is formed by mixing a solvent and a source material constituting the whisker.
  • the source material serves to provide a source of a component constituting ZnO, which is a main material of a whisker to be manufactured.
  • As the source material zinc nitrate hexahydrate (Zn(NO 3 ) 2 .6H 2 O) serving as a source of Zn may be used.
  • the solvent may be an alcohol such as ethanol.
  • the seed solution is dip-coated on the porous ceramic foam. It is preferable to completely immerse the porous ceramic foam in the seed solution and perform dip coating in a vacuum atmosphere.
  • Annealing the porous ceramic foam with dip coating By the annealing, the seed solution may be well adhered to the porous ceramic foam.
  • the annealing is preferably performed in an oven at about 120 to 300 °C.
  • a starting material including a source material constituting the whisker, a growth promoter, a binder, and a solvent is prepared.
  • the source material serves to provide a source of a component constituting ZnO, which is a main material of a whisker to be manufactured.
  • As the source material zinc nitrate hexahydrate (Zn(NO 3 ) 2 .6H 2 O) serving as a source of Zn may be used.
  • the growth promoter may be hexamethylenetetramine (Hexamethylenetetramine) powder or the like.
  • the growth promoter is preferably contained in an amount of 50 to 200 parts by weight based on 100 parts by weight of the source material in the starting material.
  • the binder may be polyvinyl alcohol (PVA), polyethylene glycol (PEG), or the like.
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • the binder serves to improve the adhesion of the ceramic slurry.
  • the binder is preferably contained in an amount of 1 to 50 parts by weight based on 100 parts by weight of the source material in the starting material.
  • the solvent may be an alcohol such as ethanol.
  • the starting materials are mixed to form a growth solution.
  • the growth solution is dip-coated on the annealed porous ceramic foam. It is preferable to completely immerse the porous ceramic foam in the growth solution and perform dip coating in a vacuum atmosphere.
  • the porous ceramic foam is sintered with a porous ceramic foam that has been dip-coated with a growth solution.
  • a porous ceramic foam having a dip coating with a growth solution is charged in a furnace, etc., heated to a sintering temperature (eg, 1000 to 1500° C.), and then maintained at the sintering temperature for a predetermined time and sintered to form a porous ceramic with whiskers. get the form
  • the sintering is preferably performed in an oxidizing atmosphere such as air or oxygen (O 2 ). It is preferable to increase the temperature up to the sintering temperature at a temperature increase rate of 1 to 50 ° C./min. If the temperature increase rate is too slow, it takes a long time to decrease productivity.
  • the furnace temperature is lowered.
  • the furnace cooling may be performed to cool in a natural state by shutting off the furnace power, or to cool by arbitrarily setting a temperature drop rate (eg, 10°C/min). have. It is desirable to keep the pressure inside the furnace constant even while the furnace temperature is lowered.
  • the organic (or polymer) component is burned away, and since the sintering is performed at a temperature higher than the temperature at which the organic component burns, all the organic components are removed when the sintering process is completed.
  • the porous ceramic foam prepared in this way is a porous body having countless pores, the pores (cells) serving as passageways for fine dust to flow in, and the struts of the porous ceramic foam between the pores (cells). ), and a plurality of ZnO whiskers protrude from the surface of the wall toward pores (cells).
  • the porous ceramic foam is loaded into a growth device such as a tube furnace.
  • a growth device such as a tube furnace.
  • silica powder and carbon powder to be used as a source of whisker growth.
  • the silica powder and the carbon powder have a weight ratio of 1:1 to 1:2.
  • the temperature in the growth device is raised to a reaction temperature (eg, 1350 to 1600° C.), and silica powder and carbon powder are introduced into the growth device using a carrier gas to introduce a porous ceramic Allow SiC whiskers to grow on the foam surface.
  • the porous ceramic foam prepared in this way is a porous body having countless pores, with pores (cells) serving as passageways for fine dust to flow in, and a skeleton (cell) of the porous ceramic foam between the pores (cells).
  • strut and a plurality of SiC whiskers protrude from the surface of the wall toward pores (cells).
  • the method of manufacturing the porous ceramic foam and the method of forming the whisker on the porous ceramic foam have been described, the method of manufacturing the porous ceramic foam and the method of forming the whisker may vary and are not limited to the above-described examples.
  • the upper collector 130 may be formed of the above-described porous ceramic foam, but may also be formed of a ceramic fiber filter in which ceramic fibers are entangled in a network form.
  • the pores distributed in the upper collector 130 preferably have an average size of 50 nm to 10 ⁇ m.
  • the ceramic fiber is alumina (Al 2 O 3 ), cordierite (cordierite, 2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ), mullite (mullite, 3Al 2 O 3 ⁇ 2SiO 2 ), silicon carbide (SiC) or these It is preferable that the mixture is made of a ceramic material having heat resistance.
  • the upper collector 130 made of a ceramic fiber material may be manufactured by a method such as electrospinning the ceramic fiber. For example, by electrospinning a solution containing ceramic fibers under the conditions of a voltage difference of 1 to 100 kV, a spinning flow rate of 0.1 to 10 ml/hr, a spinning distance of 2 to 50 cm, and a nozzle hole size of 0.01 to 2.0 mm, the ceramic fibers are formed. Ceramic fiber filters entangled in a network can be manufactured.
  • the configuration of the collecting device is the same as that of the first embodiment, and only the porous ceramic foam constituting the first collector 110, the second collector 120, or the upper collector 130 is configured differently, so the description of the collecting device is omit Hereinafter, only the porous ceramic foam different from that in Example 1 will be described.
  • the first collector 110 and the second collector 120 are made of porous ceramic foam.
  • the first collector 110 and the second collector 120 are alumina (Al 2 O 3 ), cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ), mullite (mullite, 3Al 2 O 3 ⁇ 2SiO 2 ) ), silicon carbide (SiC), or a mixture thereof is preferably made of a porous ceramic foam having heat resistance.
  • the first collector 110 and the second collector 120 may be formed of a porous ceramic foam having a stepped portion 200 protruding to cover a portion of an outer peripheral surface of the rotor 10 .
  • the porous ceramic foam preferably has a porosity of 40 to 90%, more preferably about 60 to 85%. If the porosity is too low, fine dust filtering efficiency may be low, and if the porosity is too high, cracks or breakage may occur easily due to vibration or impact, and thus durability may be reduced.
  • the size of the pores (cells) distributed in the porous ceramic foam is preferably about 50 ⁇ m to 2 mm, and the size of the pores formed on the wall is preferably about 50 nm to 50 ⁇ m.
  • the upper collector 130 may also be formed of a porous ceramic foam.
  • the upper collector 130 is alumina (Al 2 O 3 ), cordierite (cordierite, 2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ), mullite (mullite, 3Al 2 O 3 ⁇ 2SiO 2 ), silicon carbide (SiC) or It is preferable to form a porous ceramic foam having heat resistance, such as a mixture thereof.
  • the upper collector 130 is disposed on the outer peripheral surface of the rotor 10 and also serves to prevent foreign substances such as dust from entering the rotor 10 .
  • the porous ceramic foam is a porous body having countless pores.
  • the porous ceramic foam includes pores (cells) serving as passageways through which fine dust is introduced, and a wall forming a strut of the porous ceramic foam between the pores (cells).
  • the porous ceramic foam has a first region (A) in which pores having a relatively small size are distributed compared to the second region (B), and a second region in which pores having a relatively large size are distributed compared to the first region (A). (B) is included.
  • FIG. 6 shows a first region (A) in which pores having a relatively small size are distributed compared to the second region (B), and a second region (B) in which pores having a relatively large size are distributed compared to the second region (A). It is a view schematically showing a porous ceramic foam including It is a drawing.
  • the porous ceramic foam has a first region (A) in which pores (pores of a first size) having a relatively smaller size than that of the second region (B) are distributed, and a first It may include a second region B in which pores (pores of second size) having a relatively larger size than that of the region A are distributed, and the first region A is formed in the second region B. It is possible to collect fine dust of a smaller size than the collected fine dust. It is preferable that the pores of the second size have an average particle diameter larger than that of the pores of the first size, and that the second area B is located closer to the rotor than the first area A.
  • the porous ceramic foam including the first region (A) and the second region (B) may be coated with a hydrophobic coating film to suppress water droplets from forming on the surface.
  • a porous ceramic foam may be manufactured by coating the porous ceramic material with a hydrophobic material.
  • the hydrophobic coating film is preferably provided with a thickness of about 10 nm to 2 ⁇ m.
  • a porous polymer foam (eg, polyurethane foam) is used as a substrate to prepare the porous ceramic foam.
  • the polymer foam is a porous material having elasticity, such as a sponge.
  • the porosity, pore size, etc. of the polymer foam affect the porosity, pore size, etc. of the porous ceramic foam to be manufactured later.
  • After cutting the polymer foam to correspond to the shape of the porous ceramic foam to be manufactured it is washed and dried through ultrasonic cleaning or the like. The drying is preferably performed in an oven of about 30 to 90 °C lower than the melting temperature of the polymer foam.
  • a starting material including a ceramic raw material, a binder and a solvent is prepared.
  • the ceramic raw material is a main material of the porous ceramic foam (ceramic porous body) to be produced.
  • the ceramic raw material is alumina (Al 2 O 3 ) powder, cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ) powder, mullite (3Al 2 O 3 ⁇ 2SiO 2 ) powder, silicon carbide (SiC) It may be a powder or a mixed powder thereof.
  • the starting material may further include a glass frit.
  • the glass frit is preferably contained in an amount of 0.01 to 45 parts by weight, more preferably 0.1 to 40 parts by weight, based on 100 parts by weight of the ceramic raw material in the starting material.
  • the glass frit may serve to lower the sintering temperature and to contain Si in the porous ceramic foam itself, as well as to improve the growth property of the whisker.
  • the solvent may be distilled water or the like.
  • the binder may be polyvinyl alcohol (PVA), polyethylene glycol (PEG), or the like.
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • the binder serves to improve the adhesion of the ceramic slurry.
  • the binder is preferably contained in an amount of 1 to 50 parts by weight based on 100 parts by weight of the ceramic raw material in the starting material.
  • the starting material may further include a dispersing agent.
  • the dispersant may use a commercially available material, and there is no particular limitation on its use.
  • the dispersant is preferably contained in an amount of 0.1 to 25 parts by weight based on 100 parts by weight of the ceramic raw material in the starting material.
  • the starting materials are mixed to form a ceramic slurry.
  • the ceramic slurry is dip-coated on the polymer foam.
  • the polymer foam is completely immersed in the ceramic slurry and dip coating is performed in a vacuum atmosphere.
  • the polymer foam is compressed by applying an external force to remove the excess slurry contained in the polymer foam, and then released to return to the original polymer foam form, and in this way, some of the slurry contained in the polymer foam is It can also be pulled out of the polymer foam.
  • the drying is preferably performed in an oven of about 30 to 90 °C lower than the melting temperature of the polymer foam.
  • Polymer foam with dip coating is sintered.
  • the polymer foam with dip coating is charged in a furnace, etc., and the temperature is raised to a first temperature (for example, 400 to 800° C.) higher than the burning temperature of the polymer foam, and then maintained for a predetermined time to burn the polymer component.
  • a first temperature for example, 400 to 800° C.
  • the sintering temperature eg, 1100 to 1600° C.
  • the sintering is maintained at the sintering temperature for a predetermined time, and the porous ceramic foam is obtained by furnace cooling.
  • alumina (Al 2 O 3 ) powder, cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ) powder, and mullite (3Al 2 O 3 ⁇ 2SiO 2 ) powder are used as the ceramic raw material.
  • Silver is preferably carried out in an oxidizing atmosphere such as air or oxygen (O 2 ), and when silicon carbide (SiC) powder is used as the ceramic raw material, it is preferably carried out in a reducing atmosphere. It is preferable to increase the temperature up to the sintering temperature at a temperature increase rate of 1 to 50 ° C./min. If the temperature increase rate is too slow, it takes a long time to decrease productivity.
  • the furnace temperature is lowered.
  • the furnace cooling may be performed to cool in a natural state by shutting off the furnace power, or to cool by arbitrarily setting a temperature drop rate (eg, 10°C/min). have. It is desirable to keep the pressure inside the furnace constant even while the furnace temperature is lowered.
  • the organic (or polymer) component is burned and disappears, and since sintering is performed at a temperature higher than the temperature at which the organic component is burned, all organic components are removed when the sintering process is completed, and the space where the polymer is located is pore , and the sintered body that has undergone the sintering process becomes porous.
  • the porous ceramic foam prepared in this way is a porous body having countless pores, the pores (cells) serving as passageways for fine dust to flow in, and the struts of the porous ceramic foam between the pores (cells). ), and pores (pores of the second size) of the same or similar size to the second region (B) in which pores having a relatively larger size than that of the first region (A) are distributed .
  • a starting material including a ceramic raw material, a binder, and a solvent to form a first region (A) in which pores (pores of the first size) having a relatively smaller size than that of the second region (B) are distributed .
  • the ceramic raw material it is preferable to use a powder of the same material as the ceramic, which is the main component of the porous ceramic foam.
  • the ceramic raw material is alumina (Al 2 O 3 ) powder, cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ) powder, mullite (3Al 2 O 3 ⁇ 2SiO 2 ) powder, silicon carbide (SiC) It may be a powder or a mixed powder thereof.
  • the porous ceramic foam In consideration of the porosity, pore size, strength, etc. of the porous ceramic foam to be manufactured, it is preferable to use a powder having an average particle diameter of about 10 nm to 40 ⁇ m, more preferably 100 nm to 30 ⁇ m, as the ceramic raw material.
  • the starting material may further include a glass frit.
  • the glass frit is preferably contained in an amount of 0.01 to 45 parts by weight, more preferably 0.1 to 40 parts by weight, based on 100 parts by weight of the ceramic raw material in the starting material.
  • the glass frit may serve to lower the sintering temperature and to contain Si in the porous ceramic foam itself, as well as to improve the growth property of the whisker.
  • the solvent may be distilled water or the like.
  • the binder may be polyvinyl alcohol (PVA), polyethylene glycol (PEG), or the like.
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • the binder serves to improve the adhesion of the ceramic slurry.
  • the binder is preferably contained in an amount of 1 to 50 parts by weight based on 100 parts by weight of the ceramic raw material in the starting material.
  • the starting material may further include a dispersing agent.
  • the dispersant may use a commercially available material, and there is no particular limitation on its use.
  • the dispersant is preferably contained in an amount of 0.1 to 25 parts by weight based on 100 parts by weight of the ceramic raw material in the starting material.
  • the starting materials are mixed to form a ceramic slurry.
  • the ceramic slurry is coated on a porous ceramic foam in which pores of the second size are distributed.
  • the coating is selectively performed by immersing only the tip (surface portion) of the porous ceramic foam to be coated, instead of completely immersing the porous ceramic foam in the ceramic slurry and then taking it out.
  • the slurry is coated only to a certain depth from the surface of the porous ceramic foam, and the portion coated with the slurry is uncoated.
  • the pores having a size smaller than the portion (pores of the first size) are distributed.
  • the portion on which the slurry is not coated becomes a region (second region) of the porous ceramic foam having pores (pores of the second size) having relatively larger sizes compared to the first region (A), and the portion on which the slurry is coated becomes a region (first region) of the porous ceramic foam having pores (pores of the first size) having a relatively small size compared to the second region (B).
  • Dry the porous ceramic foam with optional coating is preferably performed in an oven of about 30 to 90 °C.
  • a porous ceramic foam with selective coating is sintered.
  • the porous ceramic foam with selective coating is charged in a furnace, etc., and the temperature is raised to a first temperature higher than the burning temperature of the polymer (eg, 400 to 800° C.), and then maintained for a predetermined time to burn the polymer component.
  • the temperature is raised to the sintering temperature (eg, 1000 to 1500° C.)
  • the porous ceramic foam having the first region (A) and the second region (B) formed by sintering is maintained at the sintering temperature for a predetermined time.
  • alumina (Al 2 O 3 ) powder, cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ) powder, and mullite (3Al 2 O 3 ⁇ 2SiO 2 ) powder are used.
  • Silver is preferably carried out in an oxidizing atmosphere such as air or oxygen (O 2 ), and when silicon carbide (SiC) powder is used as the ceramic raw material, it is preferably carried out in a reducing atmosphere. It is preferable to increase the temperature up to the sintering temperature at a temperature increase rate of 1 to 50 ° C./min. If the temperature increase rate is too slow, it takes a long time to decrease productivity.
  • the furnace temperature is lowered.
  • the furnace cooling may be performed to cool in a natural state by shutting off the furnace power, or to cool by arbitrarily setting a temperature drop rate (eg, 10°C/min). have. It is desirable to keep the pressure inside the furnace constant even while the furnace temperature is lowered.
  • the organic (or polymer) component is burned away, and since the sintering is performed at a temperature higher than the temperature at which the organic component burns, all the organic components are removed when the sintering process is completed.
  • the porous ceramic foam prepared in this way is a porous body having countless pores, the pores (cells) serving as passageways for fine dust to flow in, and the struts of the porous ceramic foam between the pores (cells). ), and in the first region (A), relatively small-sized pores (pores of the first size) are distributed compared to the second region (B), and in the second region (B), the second region (B) The pores (pores of the second size) having a relatively larger size than that of the first region (A) are distributed.
  • the porous ceramic foam including the first region (A) and the second region (B) may be manufactured by the following method. Hereinafter, another example of manufacturing the porous ceramic foam including the first region (A) and the second region (B) will be described.
  • Two porous polymer foams are used as a substrate to prepare a porous ceramic foam including the first region (A) and the second region (B) do.
  • Two polymer foams (the first polymer foam and the second polymer foam) are used to have different pore sizes (PPI; Pore per inch), for example, the average pore size of the first polymer foam is the average pore size of the second polymer foam Use one smaller than the size.
  • the first and second polymer foams are porous materials having elasticity, such as a sponge. The porosity, pore size, etc. of the polymer foam affect the porosity, pore size, etc. of the porous ceramic foam to be manufactured later.
  • the first and second polymer foams are cut to fit the size of the specimen to be manufactured, and then washed and dried through ultrasonic cleaning or the like.
  • the drying is preferably performed in an oven of about 30 to 90 °C lower than the melting temperature of the polymer foam.
  • a starting material including a ceramic raw material, a binder and a solvent is prepared.
  • the ceramic raw material is a main material of the porous ceramic foam (ceramic porous body) to be produced.
  • the ceramic raw material is alumina (Al 2 O 3 ) powder, cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ) powder, mullite (3Al 2 O 3 ⁇ 2SiO 2 ) powder, silicon carbide (SiC) It may be a powder or a mixed powder thereof.
  • the starting material may further include a glass frit.
  • the glass frit is preferably contained in an amount of 0.01 to 45 parts by weight, more preferably 0.1 to 40 parts by weight, based on 100 parts by weight of the ceramic raw material in the starting material.
  • the glass frit may serve to lower the sintering temperature and to contain Si in the porous ceramic foam itself, as well as to improve the growth property of the whisker.
  • the solvent may be distilled water or the like.
  • the binder may be polyvinyl alcohol (PVA), polyethylene glycol (PEG), or the like.
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • the binder serves to improve the adhesion of the ceramic slurry.
  • the binder is preferably contained in an amount of 1 to 50 parts by weight based on 100 parts by weight of the ceramic raw material in the starting material.
  • the starting material may further include a dispersing agent.
  • the dispersant may use a commercially available material, and there is no particular limitation on its use.
  • the dispersant is preferably contained in an amount of 0.1 to 25 parts by weight based on 100 parts by weight of the ceramic raw material in the starting material.
  • the starting materials are mixed to form a ceramic slurry.
  • the ceramic slurry is dip-coated on the first and second polymer foams.
  • the first and second polymer foams are completely immersed in the ceramic slurry, and dip coating is performed in a vacuum atmosphere.
  • the first and second polymer foams are compressed by applying an external force to take out the excess slurry contained in the first and second polymer foams, and then released to return to the original polymer foam form, in this way may cause some of the slurry contained in the first and second polymer foams to escape from the first and second polymer foams.
  • the first polymer foam coated with the dip coating and the second polymer foam coated with the dip coating are overlapped and dried in an overlapping state.
  • the drying is preferably performed in an oven of about 30 to 90 °C lower than the melting temperature of the first and second polymer foams.
  • the first polymer foam and the second polymer foam are overlapped to sinter the dried product.
  • the first polymer foam and the second polymer foam are overlapped and the dried result is charged into a furnace, and the temperature is raised to a first temperature (eg, 400 to 800° C.) higher than the burning temperature of the first and second polymer foams. After that, it is maintained for a predetermined time so that the polymer component is burned and removed, and the temperature is raised to the sintering temperature (eg, 1100 to 1600° C.)
  • the sintering temperature eg, 1100 to 1600° C.
  • alumina (Al 2 O 3 ) powder, cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ) powder, and mullite (3Al 2 O 3 ⁇ 2SiO 2 ) powder are used as the ceramic raw material.
  • Silver is preferably carried out in an oxidizing atmosphere such as air or oxygen (O 2 ), and when silicon carbide (SiC) powder is used as the ceramic raw material, it is preferably carried out in a reducing atmosphere. It is preferable to increase the temperature up to the sintering temperature at a temperature increase rate of 1 to 50 ° C./min. If the temperature increase rate is too slow, it takes a long time to decrease productivity.
  • the furnace temperature is lowered.
  • the furnace cooling may be performed to cool in a natural state by shutting off the furnace power, or to cool by arbitrarily setting a temperature drop rate (eg, 10°C/min). have. It is desirable to keep the pressure inside the furnace constant even while the furnace temperature is lowered.
  • the organic (or polymer) component is burned and disappears, and since sintering is performed at a temperature higher than the temperature at which the organic component is burned, all organic components are removed when the sintering process is completed, and the space where the polymer is located is pore , and the sintered body that has undergone the sintering process becomes porous.
  • a porous ceramic foam consisting of a single body is formed.
  • the first polymer foam and the second polymer foam are used to have different pore sizes (PPI; Pore per inch), and the region where the first polymer foam is positioned and the region where the second polymer foam is positioned have different pore sizes. Accordingly, the region (the first region) having pores (pores of the first size) having a relatively small size compared to the second region and pores having a relatively large size (second size) compared to the first region A porous ceramic foam in which the region (the second region) having the pores) is separated can be obtained.
  • the porous ceramic foam prepared in this way is a porous body having countless pores, the pores (cells) serving as passageways for fine dust to flow in, and the struts of the porous ceramic foam between the pores (cells). ), and in the first region (A), relatively small-sized pores (pores of the first size) are distributed compared to the second region (B), and in the second region (B), the second region (B) The pores (pores of the second size) having a relatively larger size than that of the first region (A) are distributed.
  • a whisker may also be formed in the porous ceramic foam in which the branch region (the second region) is divided. More specifically, the first region (A) of the porous ceramic foam has pores (cells) serving as passageways for fine dust to flow in, and a strut of the porous ceramic foam between the pores (cells). ), a plurality of whiskers may protrude from the surface of the wall toward pores (cells), and the second region (B) of the porous ceramic foam also serves as a passageway for fine dust to flow in.
  • the pores formed in the first region (A) of the porous ceramic foam are distributed in relatively small sizes compared to the pores formed in the second region (B) of the porous ceramic foam.
  • the whisker may be made of at least one needle-shaped ceramic material selected from the group consisting of mullite (3Al 2 O 3 ⁇ 2SiO 2 ), ZnO, and silicon carbide (SiC).
  • a plurality of whiskers protrude from the surface of the wall toward the pores (cells), thereby maximizing the filtering effect of fine dust.
  • the whisker serves to effectively collect fine dust while suppressing an increase in differential pressure during filtering.
  • the configuration of the collecting device is the same as that of the first embodiment, and only the porous ceramic foam constituting the first collector 110 and the second collector 120 is configured differently, so the description of the collecting device will be omitted.
  • the porous ceramic foam different from that in Example 1 will be described.
  • the first collector 110 and the second collector 120 are made of porous ceramic foam.
  • the first collector 110 and the second collector 120 are alumina (Al 2 O 3 ), cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ), mullite (mullite, 3Al 2 O 3 ⁇ 2SiO 2 ) ), silicon carbide (SiC), or a mixture thereof is preferably made of a porous ceramic foam having heat resistance.
  • the porous ceramic foam preferably has a porosity of 40 to 90%, more preferably about 60 to 85%. If the porosity is too low, fine dust filtering efficiency may be low, and if the porosity is too high, cracks or breakage may occur easily due to vibration or impact, and thus durability may be reduced.
  • the size of the pores (cells) distributed in the porous ceramic foam is preferably about 50 ⁇ m to 2 mm, and the size of the pores formed on the wall is preferably about 50 nm to 50 ⁇ m.
  • the porous ceramic foam is a porous body having countless pores.
  • the porous ceramic foam includes pores (cells) serving as passageways for fine dust to flow in, and a wall forming a strut of the porous ceramic foam between the pores (cells).
  • the porous ceramic foam applied to the first collector 110 and the second collector 120 includes ribs 140 arranged in a serpentine type and a channel 150 forming an empty space between the ribs and the ribs.
  • the ribs 140 are arranged staggering each other in a zigzag as shown in FIGS. 8 to 11 rather than being arranged in a straight line.
  • the ribs 140 are arranged in a meandering form in the form of a serpentine type.
  • the ribs 140 may be formed in a straight line from one end to the other end, and more preferably in a curved shape from one end to the other end. More preferably, the ribs 140 have a curved shape identical to the disk curvature of the rotor 10 having a disk shape.
  • the curvature of the ribs forming the curved shape is preferably the same as the disk curvature of the rotor 10 having the disk shape.
  • the distance between the ribs and the ribs is preferably the same, but is not limited thereto.
  • Fine dust (dust) generated by friction between the brake pad 20 and the rotor 10 is introduced along the channel 150 through the inlet 155 .
  • the channel 150 is an empty space between the ribs and the ribs, and provides a path through which fine dust is introduced.
  • the channel 150 is opened through the inlet 155 through which the fine dust is introduced and is blocked by the rib and the rib block connecting the ribs.
  • the empty space between the inlet 155 and the rib block 145 forms a channel
  • the empty space between the inlet 155 and the rib block 145 forms a channel
  • the Z-axis direction (X-axis) and in a direction perpendicular to the Y-axis) is an area in which the rib and the empty space between the ribs form a channel.
  • the inlet 155 faces the brake pad 20 .
  • FIGS. 8 to 11 show a porous ceramic foam comprising eight ribs (first rib, second rib, third rib, fourth rib, fifth rib, sixth rib, seventh rib and eighth rib) show an example
  • the first rib 140a and the second rib 140b are connected at one end
  • the second rib 140b and the third rib 140c are connected at the other end
  • the second rib 140b is connected at the other end.
  • the third rib 140c and the fourth rib 140d are connected at one end
  • the fourth rib 140d and the fifth rib 140e are connected at the other end
  • the fifth rib 140e and the sixth rib (140e) are connected to each other.
  • 140f) is connected at one end
  • the seventh rib 140g and the eighth rib 140h are connected at the other end.
  • the separation distance between the first rib 140a and the second rib 140b, the separation distance between the second rib 140b and the third rib 140c, and the third rib 140c and the fourth rib 140d distance between the fourth rib 140d and the fifth rib 140e, the fifth rib 140e and the sixth rib 140f, the seventh rib 140g and the eighth rib 140h ) is configured to be the same.
  • the thickness of the ribs 140 may be the same (constant).
  • a rib block 145 is provided at an end of the rib 140 , and the rib block 145 is a medium connecting the rib and the rib 140 .
  • the rib block 145 is a medium connecting the rib and the rib 140 .
  • one end of the first rib 140a and one end of the second rib 140b are connected by a first rib block 145a, and the other end of the second rib 140b and the other end of the third rib 140c are connected.
  • the first rib block 145a, the third rib block 145c and the fifth rib block 145e are located at the left end of the porous ceramic foam, while the second rib block 145b and the fourth rib block 145d ) and the sixth rib block 145f is configured to be positioned at the right end of the porous ceramic foam.
  • the rib 140 and the rib block 145 are preferably made of the same material.
  • the empty space between the first rib 140a and the second rib 140b constitutes the first channel 150a
  • the empty space between the second rib 140b and the third rib 140c constitutes the second channel ( 150b)
  • the empty space between the third rib 140c and the fourth rib 140d constitutes the third channel 150c
  • the empty space between the fourth rib 140d and the fifth rib 140e The space constitutes the fourth channel 150d
  • the empty space between the fifth rib 140e and the sixth rib 140f constitutes the fifth channel 150e
  • the empty space between 140g constitutes the sixth channel 150f
  • the empty space between the seventh rib 140g and the eighth rib 140h constitutes the seventh channel 150g.
  • the porous ceramic foam including the ribs 140 arranged in a serpentine type and the channel 150 forming an empty space between the ribs and the ribs may be manufactured as follows.
  • a porous ceramic foam including ribs 140 arranged in a serpentine type and a channel 150 forming an empty space between the ribs and the ribs is a hydrophobic coating film to inhibit water droplets from forming on the surface.
  • a porous ceramic foam may be manufactured by coating the porous ceramic material with a hydrophobic material.
  • the hydrophobic coating film is preferably provided with a thickness of about 10 nm to 2 ⁇ m.
  • the porous ceramic foam including the ribs 140 arranged in a meandering shape and the channel 150 forming an empty space between the ribs and the ribs will be described.
  • a porous polymer foam (eg, polyurethane foam) is used as a substrate to prepare the porous ceramic foam.
  • the polymer foam is a porous material having elasticity, such as a sponge.
  • the porosity, pore size, etc. of the polymer foam affect the porosity, pore size, etc. of the porous ceramic foam to be manufactured later.
  • a polymer foam is prepared corresponding to the shape of the porous ceramic foam to be manufactured.
  • the polymer foam is manufactured to have a structure including ribs arranged in a serpentine type as shown in FIGS. 8 and 9 and a channel forming an empty space between the ribs and the ribs.
  • the manufacture of the polymer foam may use injection molding, etc.
  • a starting material including a ceramic raw material, a binder and a solvent is prepared.
  • a subsequent process proceeds in the same manner as described in Example 1 to form a porous ceramic foam.
  • the porous ceramic foam thus prepared is a porous body having countless pores.
  • the porous ceramic foam includes pores (cells) serving as passageways through which fine dust flows, and a wall forming a strut of the porous ceramic foam between the pores (cells), FIG. and ribs 140 arranged in a serpentine type as shown in FIG. 9 , and a channel 150 forming an empty space between the ribs and the ribs.
  • a whisker may be formed in the porous ceramic foam including the ribs 140 arranged in a serpentine type and the channel 150 forming an empty space between the ribs and the ribs. More specifically, the porous ceramic foam has pores (cells) serving as passageways for fine dust to flow in, and a wall forming a strut of the porous ceramic foam between the pores (cells). It also includes ribs 140 arranged in a serpentine type, and a channel 150 forming an empty space between the ribs and the ribs, and a plurality of whiskers have pores (cells) on the surface of the wall. cell)) may protrude toward the
  • the whisker may be made of at least one needle-shaped ceramic material selected from the group consisting of mullite (3Al 2 O 3 ⁇ 2SiO 2 ), ZnO, and silicon carbide (SiC).
  • a plurality of whiskers protrude from the surface of the wall toward the pores (cells), thereby maximizing the filtering effect of fine dust.
  • the whisker serves to effectively collect fine dust while suppressing an increase in differential pressure during filtering.
  • a porous polymer foam (more specifically, polyurethane foam) was used as a substrate to prepare the porous ceramic foam.
  • the polymer foam is a porous material having elasticity, such as a sponge.
  • Polymer foam was cut to fit the size of the specimen to be fabricated, washed through ultrasonic cleaning, and then dried in an oven at 70° C. for 24 hours.
  • FIG. 12 is a photograph showing a polyurethane foam used as a polymer foam in Experimental Example 1. Referring to Figure 10, it can be seen that the polyurethane foam has a porous sponge shape.
  • the solute and the solvent were prepared, and the ratio of the solute and the solvent was measured in a weight ratio of 50:50.
  • alumina powder and glass frit were used as the solute.
  • Alumina powder and glass frit were used in a weight ratio of 47.5:2.5.
  • the alumina powder is the main material of the porous ceramic foam (ceramic porous body) to be produced, and the glass frit not only serves to lower the sintering temperature and contains Si in the porous ceramic foam itself, but also to increase the growth of mullite. can play a role in improving it. Distilled water was used as the solvent.
  • a dispersant BYK-111
  • alumina powder which is the main material
  • alumina powder which is the main material
  • a glass frit was added to the solvent in which the alumina powder is dispersed and stirring for 1 hour
  • PVA solution Polyvinyl alcohol solution
  • As the PVA solution a solution in which polyvinyl alcohol (PVA) having a molecular weight of about 89000 to 99000 was dissolved in distilled water was used. The PVA solution serves to improve the adhesion of the ceramic slurry.
  • the ceramic slurry was dip-coated on a polymer foam.
  • the polymer foam was completely immersed in the ceramic slurry, and dip coating was performed in a vacuum atmosphere for 5 minutes. After dip coating, the polymer foam was compressed to less than 2/3 of the thickness of the polymer foam by applying an external force to remove the excess slurry contained in the polymer foam, and then released to return to the original polymer foam form. Some of the slurry contained in the polymer was allowed to escape from the polymer foam.
  • the dip-coated polymer foam was dried in an oven at a temperature of 80° C. for 3 hours.
  • 13 is a photograph showing a state in which a ceramic slurry is dip-coated on a polymer foam and dried.
  • the dip-coated polymer foam was sintered.
  • the polymer foam was charged into a furnace, and the temperature was raised to 550°C at a rate of 5°C per minute, and then maintained at 550°C for 1 hour so that the polymer component was burned and removed, at a rate of 5°C per minute. After raising the temperature to 1450°C, it was maintained at 1450°C for 3 hours for sintering, followed by furnace cooling to obtain a porous ceramic foam. The sintering was performed in an air atmosphere. The porous ceramic foam thus prepared is shown in FIG. 14 .
  • the porous ceramic foam is a porous body having countless pores.
  • the porous ceramic foam prepared according to Experimental Example 1 was immersed in ethanol and ultrasonically washed, and then dried in an oven at a temperature of 75° C. for 24 hours.
  • the solute and the solvent were prepared, and the ratio of the solute and the solvent was measured at a weight ratio of 34.66:65.34.
  • Mullite powder, AlF 3 powder and silica sol were used as the solute.
  • the mullite powder, the AlF 3 powder, and the silica sol were used in a weight ratio of 13.33:13.33:8.
  • the mullite powder serves as a seed of mullite crystal growth
  • the AlF 3 powder serves as a source of Al and F ions
  • the silica sol serves as a source of Si ions. Distilled water was used as the solvent.
  • a dispersant BYK-111
  • silica sol was slowly added and stirred for 30 minutes.
  • AlF 3 powder was added to the silica sol-added solvent and stirred for 1 hour.
  • Mullite powder was added to the AlF 3 powder-added solvent and stirred for 1 hour.
  • a CMC (Carboxylic methyl cellulose) solution as a thickener is added to a solvent to which mullite powder is added based on 100 parts by weight of the solute and stirred for 30 minutes, and then a PVA solution as a binder is added to 100 parts by weight of the solute by 5 parts by weight. After addition, the mixture was stirred for 1 hour to form a ceramic slurry.
  • a CMC solution a solution in which Carboxylic methyl cellulose (CMC) was dissolved in distilled water at 0.1 wt% was used.
  • the CMC solution serves to increase the viscosity of the coating solution to decrease the precipitation rate.
  • PVA solution a solution in which polyvinyl alcohol (PVA) having a molecular weight of about 89000 to 99000 was dissolved in distilled water was used.
  • the PVA solution serves to improve the adhesion of the ceramic slurry.
  • the ceramic slurry was dip-coated on the porous ceramic foam prepared according to Experimental Example 1.
  • the porous ceramic foam was completely immersed in the ceramic slurry, and dip coating was performed in a vacuum atmosphere for 5 minutes.
  • the dip-coated porous ceramic foam was dried in an oven at a temperature of 80° C. for 3 hours.
  • a porous ceramic foam with dip coating was sintered.
  • the porous ceramic foam was charged into a furnace, and the temperature was raised to 1400° C. at a rate of 5° C. per minute, maintained at 1400° C. for 3 hours, and sintered, followed by furnace cooling to obtain a whisker-formed porous ceramic foam.
  • the sintering was performed in an air atmosphere.
  • a porous ceramic foam having whiskers according to Experimental Example 2 is shown in FIG. 18 .
  • the porous ceramic foam is a porous body having innumerable pores.
  • the whiskers are formed on the porous ceramic foam.
  • the porous ceramic foam prepared according to Experimental Example 1 was immersed in ethanol and ultrasonically washed, and then dried in an oven at a temperature of 75° C. for 24 hours.
  • the solute and the solvent were prepared, and the ratio of the solute and the solvent was measured in a weight ratio of 20:80.
  • alumina powder which is the same material as alumina, which is the main component of the porous ceramic foam, was used.
  • a dispersant (Darvan C) was added based on 100 parts by weight of the solute while stirring using a magnetic bar. After the dispersant was added and stirred for 1 hour, alumina powder was added and stirred for 1 hour.
  • a ceramic slurry was formed by adding 50 parts by weight of a PVA solution as a binder to a solvent to which alumina powder was added based on 100 parts by weight of the solute and stirring for 1 hour.
  • a solution in which polyvinyl alcohol (PVA) having a molecular weight of about 89000 to 99000 was dissolved in distilled water was used. The PVA solution serves to improve the adhesion of the ceramic slurry.
  • the ceramic slurry was coated on the surface of the porous ceramic foam prepared according to Experimental Example 1.
  • the coating was selectively carried out by immersing only the tip (surface) of the porous ceramic foam to be coated and then taking it out, rather than completely immersing the porous ceramic foam in the ceramic slurry.
  • the slurry is coated only to a certain depth from the surface of the porous ceramic foam, and the portion coated with the slurry is uncoated.
  • the pores (pores of the first size) having a relatively smaller size than the portion are distributed.
  • the portion on which the slurry is not coated becomes a region (second region) of the porous ceramic foam having relatively large-sized pores (pores of the second size), and the portion coated with the slurry has relatively small-sized pores A region (a first region) of the porous ceramic foam having (pores of a first size).
  • the porous ceramic foam with the selective coating was dried in an oven at a temperature of 80° C. for 3 hours.
  • a porous ceramic foam with selective coating was sintered.
  • a porous ceramic foam with selective coating was charged into a furnace, and the temperature was raised to 550°C at a rate of 5°C per minute, and then maintained at 550°C for 1 hour so that the polymer component was burned and removed. After raising the temperature to 1250°C at a rate of 5°C, it was maintained at 1250°C for 3 hours for sintering, and then furnace-cooled to obtain a porous ceramic foam. The sintering was performed in an air atmosphere.
  • the porous ceramic foam prepared in this way is relatively large compared to the first region (A) and the first region (A) having pores (pores of the first size) having a relatively small size compared to the second region (B). and a second region B having pores of a size (pores of a second size).
  • a porous polymer foam (more specifically, polyurethane foam) as a substrate to produce a porous ceramic foam including the first region (A) and the second region (B) 2 dog was used.
  • Two polymer foams (the first polymer foam and the second polymer foam) were used to have different pore sizes (PPI; Pore per inch), for example, the average pore size of the first polymer foam is the average pore size of the second polymer foam A smaller size was used.
  • the first and second polymer foams are porous materials having elasticity, such as a sponge. The first and second polymer foams were cut to fit the size of the specimen to be manufactured, and then washed through ultrasonic cleaning, and then dried in an oven at 70° C. for 24 hours.
  • the solute and the solvent were prepared, and the ratio of the solute and the solvent was measured in a weight ratio of 50:50.
  • alumina powder and glass frit were used as the solute.
  • Alumina powder and glass frit were used in a weight ratio of 47.5:2.5.
  • the alumina powder is the main material of the porous ceramic foam (ceramic porous body) to be produced, and the glass frit not only serves to lower the sintering temperature and contains Si in the porous ceramic foam itself, but also to increase the growth of mullite. can play a role in improving it. Distilled water was used as the solvent.
  • a dispersant BYK-111
  • alumina powder which is the main material
  • alumina powder which is the main material
  • a glass frit was added to the solvent in which the alumina powder is dispersed and stirring for 1 hour
  • PVA solution Polyvinyl alcohol solution
  • As the PVA solution a solution in which polyvinyl alcohol (PVA) having a molecular weight of about 89000 to 99000 was dissolved in distilled water was used. The PVA solution serves to improve the adhesion of the ceramic slurry.
  • the ceramic slurry was dip-coated on the first and second polymer foams.
  • the first and second polymer foams were completely immersed in the ceramic slurry, and dip coating was performed in a vacuum atmosphere for 5 minutes. After dip coating, compressing to 2/3 or less of the thickness of the first and second polymer foams by applying an external force to remove the excess slurry contained in the first and second polymer foams, and then releasing the compression to restore the original polymer foam form Some of the slurry contained in the first and second polymer foams was released from the first and second polymer foams in this way.
  • the first polymer foam coated with the dip coating and the second polymer foam coated with the dip coating were overlapped, and dried in an overlapping state at a temperature of 80° C. for 3 hours.
  • the first polymer foam and the second polymer foam were overlapped and the dried product was sintered.
  • the resultant is charged into a furnace, heated to 550° C. at a rate of 5° C. per minute, and maintained at 550° C. for 1 hour to form a polymer component This was burned to be removed, and the temperature was raised to 1450°C at a rate of 5°C per minute, maintained at 1450°C for 3 hours, and sintered, followed by furnace cooling to obtain a porous ceramic foam.
  • the sintering was performed in an air atmosphere.
  • a porous ceramic foam consisting of a single body is formed.
  • the first polymer foam and the second polymer foam were used to have different pore sizes (PPI; Pore per inch), and the region where the first polymer foam was positioned and the region where the second polymer foam was positioned had different pore sizes. Accordingly, the region (the first region) having pores (pores of the first size) having a relatively small size compared to the second region and pores having a relatively large size (second size) compared to the first region A porous ceramic foam in which the region (the second region) having the pores) is separated can be obtained.
  • the porous ceramic foam prepared according to Experimental Example 1 was immersed in ethanol and ultrasonically washed, and then dried in an oven at a temperature of 75° C. for 24 hours.
  • zinc nitrate hexahydrate After adding ethanol as a solvent to a beaker, zinc nitrate hexahydrate was added and stirred for 1 hour to form a seed solution. The zinc nitrate hexahydrate was added so that the zinc nitrate hexahydrate and ethanol had a weight ratio of 6:94.
  • the zinc nitrate hexahydrate (Zn(NO 3 ) 2 ⁇ 6H 2 O) serves as a source of Zn.
  • the seed solution was dip-coated on the polymer foam prepared according to Experimental Example 1.
  • the porous ceramic foam was completely immersed in the seed solution, and dip coating was performed in a vacuum atmosphere for 20 minutes.
  • the porous ceramic foam with dip coating was annealed in an oven at a temperature of 200° C. for 3 hours. By the annealing, the seed solution may be well adhered to the porous ceramic foam.
  • a PVA solution was added thereto, followed by stirring for 1 hour to form a growth solution.
  • the zinc nitrate hexahydrate and hexamethylenetetramine powder were added so that zinc nitrate hexahydrate, hexamethylenetetramine powder and ethanol were in a weight ratio of 0.004:0.002:99.994.
  • the zinc nitrate hexahydrate serves as a source of Zn
  • the hexamethylenetetramine powder serves as a source of Al and F.
  • As the PVA solution a solution in which polyvinyl alcohol (PVA) having a molecular weight of about 89000 to 99000 was dissolved in distilled water was used. The PVA solution serves to improve the adhesion of the growth solution.
  • the annealed porous ceramic foam was immersed in the growth solution and coated.
  • the temperature of the growth solution was brought to 95° C., and the porous ceramic foam was immersed and coated for 24 hours.
  • the porous ceramic foam coated with the growth solution was placed in a beaker containing distilled water and washed by shaking slowly.
  • the washed porous ceramic foam was sintered.
  • the porous ceramic foam was charged into a furnace, and the temperature was raised to 1200°C at a rate of 5°C per minute, maintained at 1200°C for 1 hour and sintered, and then furnace cooled to obtain a porous ceramic foam having a whisker made of ZnO. .
  • the sintering was performed in an air atmosphere.
  • a porous polymer foam (more specifically, polyurethane foam) was used as a substrate to prepare the porous ceramic foam.
  • the polymer foam is a porous material having elasticity, such as a sponge.
  • Polymer foam was cut to fit the size of the specimen to be fabricated, washed through ultrasonic cleaning, and then dried in an oven at 70° C. for 24 hours.
  • the solute and the solvent were prepared, and the ratio of the solute and the solvent was measured in a weight ratio of 50:50.
  • Silicon carbide powder and glass frit were used as the solute.
  • Silicon carbide powder and glass frit were used in a weight ratio of 47.5:2.5.
  • the silicon carbide powder is the main material of the porous ceramic foam (ceramic porous body) to be produced, and the glass frit not only serves to lower the sintering temperature and contains Si in the porous ceramic foam itself, but also improves the growth of SiC. can play a role Distilled water was used as the solvent.
  • a dispersant BYK-111
  • silicon carbide powder as the main material was added to the solvent and stirred for 1 hour.
  • a glass frit was added to the solvent in which the silicon carbide powder was dispersed and stirred for 1 hour, and then 5 parts by weight of a PVA (Polyvinyl alcohol) solution as a binder was added based on 100 parts by weight of the solute and stirred for 1 hour.
  • a ceramic slurry was formed.
  • the PVA solution a solution in which polyvinyl alcohol (PVA) having a molecular weight of about 89000 to 99000 was dissolved in distilled water was used. The PVA solution serves to improve the adhesion of the ceramic slurry.
  • the ceramic slurry was dip-coated on a polymer foam.
  • the polymer foam was completely immersed in the ceramic slurry, and dip coating was performed in a vacuum atmosphere for 5 minutes. After dip coating, the polymer foam was compressed to less than 2/3 of the thickness of the polymer foam by applying an external force to remove the excess slurry contained in the polymer foam, and then released to return to the original polymer foam form. Some of the slurry contained in the polymer was allowed to escape from the polymer foam.
  • the dip-coated polymer foam was dried in an oven at a temperature of 80° C. for 3 hours.
  • the dip-coated polymer foam was sintered.
  • the polymer foam was charged into a furnace, and the temperature was raised to 550°C at a rate of 5°C per minute, and then maintained at 550°C for 1 hour so that the polymer component was burned and removed, at a rate of 5°C per minute. After raising the temperature to 1450°C, it was maintained at 1450°C for 3 hours for sintering, followed by furnace cooling to obtain a porous ceramic foam. The sintering was performed in a reducing atmosphere.
  • the thus-prepared porous ceramic foam was soaked in ethanol for ultrasonic cleaning, and then dried in an oven at a temperature of 75° C. for 24 hours.
  • the dried porous ceramic foam was placed in the center of the tube, and at the entrance to the tube, silica powder and carbon powder to be used as a source for whisker growth were mounted on an alumina plate.
  • the silica powder and the carbon powder were in a weight ratio of 1:1.6.
  • Argon (Ar) was used as a carrier gas, and the flow rate of the carrier gas was 0.2 L/min.
  • the reaction temperature was set to 1450° C. and it was carried out for 4 hours to allow SiC whiskers to grow.
  • the present invention it is possible to efficiently collect fine dust generated by friction between the rotor and the brake pad in a brake device of a transportation engine, and has industrial applicability.

Abstract

The present invention relates to a collection apparatus for collecting fine dust generated by the friction between a rotor and a brake pad in a brake device of a transportation means, the apparatus comprising: a first collector encompassing a portion of the outer surface of the rotor; an upper collector encompassing a portion of the outer circumferential surface of the rotor; and a second collector encompassing a portion of the inner surface of the rotor, wherein the first collector and the second collector are made of porous ceramic foam. According to the present invention, fine dust generated by the friction between the rotor and the brake pad in the brake device of the transportation means can be efficiently collected, and fine dust generated during braking of the transportation means is reduced so that air pollution can be prevented.

Description

수송기관의 브레이크 장치에서 발생한 미세먼지를 포집하기 위한 포집장치A collection device to collect fine dust generated from the brake system of a transportation engine
본 발명은 포집장치에 관한 것으로, 더욱 상세하게는 수송기관의 브레이크 장치에서 로터와 브레이크 패드의 마찰에 의해 발생한 미세먼지를 포집하기 위한 포집장치에 관한 것이다.The present invention relates to a collecting device, and more particularly, to a collecting device for collecting fine dust generated by friction between a rotor and a brake pad in a brake device of a transport engine.
수송기관의 증가로 인해 비배기관(비배기계)에 의해 방출된 입자들(미세먼지)이 증가하고 있다.The number of particles (fine dust) emitted by the non-exhaust pipe (non-exhaust system) is increasing due to the increase in transport facilities.
배기계 미세 먼지 규제가 강화되면서 수송기관의 비배기관(비배기계)에서 발생하는 미세먼지도 최근 이슈가 되고 있다. 비배기계에서 발생하는 미세먼지 발생원은 브레이크 마모, 타이어 마모 등이 있다. 브레이크 패드와 로터(rotor)의 마찰로 인해 미세한 분진과 인체에 해로운 물질이 발생한다. 브레이크 패드의 마모에 의해 발생되는 미세먼지는 입자의 크기가 작아 인체 및 환경에 직접적인 영향을 미칠 수 있다. 특히, 도시지역에서, 교통량의 증가로 인한 브레이크 장치에서 나오는 미립자의 양이 증가하고 있다.As regulations on fine dust in the exhaust system have been strengthened, fine dust generated from non-exhaust pipes (non-exhaust systems) of transportation systems has recently become an issue. Sources of fine dust generated from non-exhaust systems include brake wear and tire wear. The friction between the brake pad and the rotor generates fine dust and substances harmful to the human body. Fine dust generated by the wear of brake pads has a small particle size and can have a direct impact on the human body and the environment. In particular, in urban areas, the amount of particulates emitted from brake devices due to an increase in traffic volume is increasing.
자동차 등의 수송기관에는 브레이크 패드, 타이어 등의 마모에 의해 발생하는 미세먼지를 회수하는 장치가 구비되지 않아 대기환경이 오염되는 문제점이 있었고, 브레이크 패드, 타이어 등 수송기관의 비배기계에서 발생하는 미세먼지를 포집할 수 있는 필터의 개발이 요구되고 있다. Transport institutions such as automobiles do not have a device for collecting fine dust caused by wear of brake pads and tires, so there is a problem that the air environment is polluted. The development of a filter capable of collecting dust is required.
브레이크 패드, 타이어 등 수송기관의 비배기계에서 발생하는 미세먼지를 포집하기 위한 포집필터는 관련 환경의 특수성(온도, 수분, 진동 등)으로 인해 새로운 개념의 필터 소재와 기술이 요구되고 있다.A new concept of filter material and technology is required for a collection filter to collect fine dust generated from non-exhaust systems of transportation such as brake pads and tires due to the specificity of the environment (temperature, moisture, vibration, etc.).
특히, 브레이크 장치에서 발생하는 미세먼지를 포집하기 위한 포집필터는 마찰에 의해 수백도 이상(최고 700℃) 표면 온도의 상승이 예상되는 브레이크 패드 주변에 설치되어야 하므로 내열성 확보가 요구되며, 도로변 빗물 및 먼지 등에 의한 필터의 오염과 차량 주행에 따른 진동 발생 등에 대한 내구성이 우수한 필터 소재의 개발이 필요하다.In particular, the collection filter for collecting fine dust generated from the brake device must be installed around the brake pad, where the surface temperature is expected to rise by more than several hundred degrees (up to 700℃) due to friction, so it is required to secure heat resistance, It is necessary to develop a filter material with excellent durability against contamination of the filter by dust and vibrations caused by vehicle driving.
NOx와 SOx는 촉매나 자체 발화에 의한 제거가 가능하지만, 비배기계에서 발생하는 미세먼지는 산화가 어려운 조성으로 효과적인 미세먼지 포집이 가능한 소재의 개발과 이를 적용한 부품의 개발, 포집먼지를 제거할 수 있는 차별화된 기술이 적용되어야 한다.NOx and SOx can be removed by catalyst or self-ignition, but fine dust generated from non-exhaust systems is difficult to oxidize. Differentiated technologies must be applied.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
대한민국 공개특허공보 제10-2017-0085015호Republic of Korea Patent Publication No. 10-2017-0085015
본 발명이 해결하고자 하는 과제는 수송기관의 브레이크 장치에서 로터와 브레이크 패드의 마찰에 의해 발생한 미세먼지를 포집하기 위한 포집장치를 제공함에 있다. An object of the present invention is to provide a collecting device for collecting fine dust generated by friction between a rotor and a brake pad in a brake device of a transportation engine.
본 발명은, 수송기관의 브레이크 장치에서 로터와 브레이크 패드의 마찰에 의해 발생한 미세먼지를 포집하기 위한 장치로서, 상기 로터의 외측면 일부를 감싸는 제1 컬렉터와, 상기 로터의 바깥 둘레면 일부를 감싸는 상부 컬렉터와, 상기 로터의 내측면 일부를 감싸는 제2 컬렉터를 포함하고, 상기 제1 컬렉터와 상기 제2 컬렉터는 다공성 세라믹 폼으로 이루어진 포집장치를 제공한다.The present invention is a device for collecting fine dust generated by friction between a rotor and a brake pad in a brake device of a transportation engine, and includes a first collector surrounding a portion of an outer surface of the rotor, and a portion of an outer peripheral surface of the rotor An upper collector and a second collector surrounding a portion of an inner surface of the rotor, wherein the first collector and the second collector are formed of a porous ceramic foam.
상기 포집장치는 전체 외관상 U자형으로 구비되어 상기 U자형 내부로 상기 로터를 부분 수용하도록 구성되는 것이 바람직하다.Preferably, the collecting device is provided in a U-shape in appearance to partially accommodate the rotor into the U-shaped interior.
상기 제1 컬렉터는 상기 로터의 외측면과 마주하게 구비되고, 상기 제2 컬렉터는 상기 로터의 내측면과 마주하게 구비되며, 상기 제2 컬렉터는 디스크 형상의 로터를 기준으로 상기 제1 컬렉터가 있는 반대편에 위치되고, 상기 제1 컬렉터와 상기 제2 컬렉터는 상기 로터를 기준으로 서로 마주하게 배치되는 것이 바람직하다.The first collector is provided to face the outer surface of the rotor, the second collector is provided to face the inner surface of the rotor, and the second collector is provided with the first collector with respect to the disk-shaped rotor It is preferable that the first collector and the second collector face each other with respect to the rotor.
상기 포집장치는 상기 제1 컬렉터를 덮어 보호하고 상기 제1 컬렉터로 유입된 미세먼지가 외부로 유출되는 것을 억제하기 위한 제1 컬렉터 커버와, 상기 제2 컬렉터를 덮어 보호하고 상기 제2 컬렉터로 유입된 미세먼지가 외부로 유출되는 것을 억제하기 위한 제2 컬렉터 커버를 더 포함할 수 있다.The collection device includes a first collector cover for covering and protecting the first collector and preventing the fine dust flowing into the first collector from leaking to the outside, and a first collector cover for covering and protecting the second collector and flowing into the second collector It may further include a second collector cover for preventing the fine dust from leaking to the outside.
상기 상부 컬렉터를 보호하기 위한 상부 컬렉터 커버가 상기 상부 컬렉터 상부에 더 구비되어 있을 수 있다.An upper collector cover for protecting the upper collector may be further provided on the upper collector.
상기 상부 컬렉터에서 걸러진 깨끗한 공기가 외부로 빠져나갈 수 있도록 상기 상부 컬렉터 커버에 구멍들이 형성되어 있을 수 있다.Holes may be formed in the upper collector cover to allow clean air filtered by the upper collector to escape to the outside.
상기 다공성 세라믹 폼은 알루미나(Al2O3), 코디어라이트(cordierite, 2MgO·2Al2O3·5SiO2), 뮬라이트(mullite, 3Al2O3·2SiO2) 및 탄화규소(SiC)로 이루어진 군으로부터 선택된 1종 이상의 세라믹 재질로 이루어질 수 있다.The porous ceramic foam is composed of alumina (Al 2 O 3 ), cordierite (2MgO·2Al 2 O 3 ·5SiO 2 ), mullite (3Al 2 O 3 ·2SiO 2 ) and silicon carbide (SiC). It may be made of one or more ceramic materials selected from the group.
상기 다공성 세라믹 폼은 기공율이 40∼90%를 이루는 것이 바람직하다.The porous ceramic foam preferably has a porosity of 40 to 90%.
상기 다공성 세라믹 폼은, 미세먼지가 유입되는 통로 역할을 하는 기공(셀(cell))과, 상기 기공(셀(cell)) 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체를 포함할 수 있으며, 다수의 휘스커가 상기 벽체의 표면에서 기공(셀(cell))을 향해 돌출되어 있을 수 있다.The porous ceramic foam may include pores (cells) that serve as passageways for fine dust to flow in, and a wall forming a strut of the porous ceramic foam between the pores (cells). , a plurality of whiskers may protrude from the surface of the wall toward the pores (cells).
상기 휘스커는 뮬라이트(mullite, 3Al2O3·2SiO2), ZnO 및 탄화규소(SiC)로 이루어진 군으로부터 선택된 1종 이상의 침상형 세라믹 재질로 이루어질 수 있다.The whisker may be made of at least one needle-shaped ceramic material selected from the group consisting of mullite (3Al 2 O 3 ·2SiO 2 ), ZnO, and silicon carbide (SiC).
상기 다공성 세라믹 폼은 제2 영역에 비해 상대적으로 작은 크기의 기공들이 분포하는 제1 영역과, 상기 제1 영역에 비해 상대적으로 큰 크기의 기공들이 분포하는 제2 영역을 포함할 수 있고, 상기 제1 영역은 상기 제2 영역에서 포집되는 미세먼지보다 더 작은 크기의 미세먼지를 포집할 수 있다.The porous ceramic foam may include a first region in which pores having a relatively small size compared to the second region are distributed, and a second region in which pores having a relatively large size compared to the first region are distributed, Area 1 may collect fine dust having a smaller size than fine dust collected in the second area.
상기 제1 영역보다 상기 제2 영역이 상기 로터에 더 인접하게 위치되는 것이 바람직하다. Preferably, the second region is located closer to the rotor than the first region.
상기 상부 컬렉터는 다공성 세라믹 폼으로 이루어질 수 있다.The upper collector may be formed of a porous ceramic foam.
상기 제1 컬렉터 및 상기 제2 컬렉터는 상기 로터의 바깥 둘레면 일부를 덮도록 돌출된 단턱부를 갖는 다공성 세라믹 폼으로 이루어질 수 있다.The first collector and the second collector may be formed of a porous ceramic foam having a stepped portion protruding to cover a portion of an outer circumferential surface of the rotor.
상기 다공성 세라믹 폼은 소수성 코팅막으로 도포되어 있고 소수성을 나타낼 수 있다.The porous ceramic foam is coated with a hydrophobic coating film and may exhibit hydrophobicity.
상기 제1 컬렉터와 상기 제2 컬렉터는 사행(serpentine type) 형태로 배열된 리브들과, 리브와 리브 사이의 빈 공간을 이루는 채널을 포함할 수 있다.The first collector and the second collector may include ribs arranged in a serpentine type and a channel forming an empty space between the ribs.
상기 리브들은 곡선형 형태를 이루는 것이 바람직하다.Preferably, the ribs have a curved shape.
상기 제1 컬렉터와 상기 제2 컬렉터에서, 리브의 단부에는 리브블럭이 구비될 수 있고, 상기 리브블럭은 리브와 리브를 연결하는 매개체이며, 상기 로터와 상기 브레이크 패드의 마찰에 의해 발생한 미세먼지는 상기 채널의 유입구를 통해 유입될 수 있고, 상기 로터의 회전축인 X축에 수직한 Y축 방향으로는 상기 채널의 유입구와 리브블럭 사이의 빈 공간이 상기 채널을 이루는 영역이고, 상기 X축 및 Y축에 수직한 Z축 방향으로는 리브와 리브 사이의 빈 공간이 상기 채널을 이루는 영역일 수 있다.In the first collector and the second collector, a rib block may be provided at an end of the rib, and the rib block is a medium connecting the rib and the rib, and fine dust generated by friction between the rotor and the brake pad is may be introduced through the inlet of the channel, and in the Y-axis direction perpendicular to the X-axis, which is the rotation axis of the rotor, an empty space between the inlet of the channel and the rib block constitutes the channel, and the X-axis and Y-axis In the Z-axis direction perpendicular to the axis, an empty space between the ribs may be a region forming the channel.
본 발명에 의하면, 수송기관의 브레이크 장치에서 로터와 브레이크 패드의 마찰에 의해 발생한 미세먼지를 효율적으로 포집할 수 있다. 수송기관의 제동시 발생하는 미세먼지를 줄여줌으로써 대기환경오염을 방지할 수 있다.According to the present invention, it is possible to efficiently collect fine dust generated by friction between a rotor and a brake pad in a brake device of a transportation engine. Air pollution can be prevented by reducing fine dust generated during braking of transport institutions.
도 1 및 도 2는 수송기관의 브레이크 장치에서 발생한 미세먼지를 포집하기 위한 포집장치의 일 예를 도시한 도면이다.1 and 2 are diagrams illustrating an example of a collection device for collecting fine dust generated from a brake device of a transportation engine.
도 3은 포집장치가 브레이크 장치에 결합된 모습의 일 예를 보여주는 도면이다. 3 is a view showing an example of a state in which the collecting device is coupled to the brake device.
도 4는 다공성 세라믹 폼의 일 예를 개략적으로 도시한 도면이다. 4 is a view schematically showing an example of a porous ceramic foam.
도 5는 벽체의 표면에서 휘스커가 돌출된 구조의 일 예를 개략적으로 도시한 도면이다.5 is a diagram schematically illustrating an example of a structure in which a whisker protrudes from a surface of a wall.
도 6은 다공성 세라믹 폼의 다른 예를 개략적으로 도시한 도면이다. 6 is a view schematically showing another example of the porous ceramic foam.
도 7은 제1 영역(A)과 제2 영역(B)을 더욱 명확하게 나타내기 위하여 도 6에 나타낸 다공성 세라믹 폼의 일부를 절단하여 나타낸 도면이다. 7 is a cutaway view of a portion of the porous ceramic foam shown in FIG. 6 in order to more clearly show the first region (A) and the second region (B).
도 8 및 도 9는 다공성 세라믹 폼의 또 다른 예를 개략적으로 도시한 도면이다. 8 and 9 are views schematically showing another example of the porous ceramic foam.
도 10은 도 8 및 도 9에 나타낸 다공성 세라믹 폼이 적용된 포집장치를 개략적으로 도시한 부분 분해 사시도이다.10 is a partially exploded perspective view schematically showing a collecting device to which the porous ceramic foam shown in FIGS. 8 and 9 is applied.
도 11은 도 8 및 도 9에 나타낸 다공성 세라믹 폼이 적용된 포집장치가 브레이크 장치에 결합된 모습의 일 예를 보여주는 도면이다. 11 is a view showing an example of a state in which the collecting device to which the porous ceramic foam shown in FIGS. 8 and 9 is applied is coupled to the brake device.
도 12는 실험예 1에서 폴리머 폼으로 사용된 폴리우레탄 폼을 보여주는 사진이다.12 is a photograph showing a polyurethane foam used as a polymer foam in Experimental Example 1.
도 13은 실험예 1에 따라 폴리머 폼에 세라믹 슬러리가 딥 코팅되어 건조된 모습을 보여주는 사진이다. 13 is a photograph showing a state in which the ceramic slurry was dip-coated on the polymer foam according to Experimental Example 1 and dried.
도 14는 실험예 1에 따라 제조된 다공성 세라믹 폼을 보여주는 사진이다.14 is a photograph showing a porous ceramic foam prepared according to Experimental Example 1.
도 15 내지 도 17은 실험예 1에 따라 제조된 다공성 세라믹 폼의 미세구조를 보여주는 주사전자현미경(SEM; scanning electron microscope) 사진이다. 15 to 17 are scanning electron microscope (SEM) photographs showing the microstructure of the porous ceramic foam prepared according to Experimental Example 1. Referring to FIG.
도 18은 실험예 2에 따라 휘스커가 형성된 다공성 세라믹 폼을 보여주는 사진이다. 18 is a photograph showing a porous ceramic foam in which a whisker is formed according to Experimental Example 2.
도 19 내지 도 26은 실험예 2에 따라 휘스커가 형성된 다공성 세라믹 폼의 미세구조를 보여주는 주사전자현미경(SEM) 사진이다. 19 to 26 are scanning electron microscope (SEM) photographs showing the microstructure of the porous ceramic foam in which the whiskers are formed according to Experimental Example 2.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세하게 설명한다. 그러나, 이하의 실시예는 이 기술분야에서 통상적인 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것으로서 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 기술되는 실시예에 한정되는 것은 아니다. Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings. However, the following examples are provided so that those of ordinary skill in the art can fully understand the present invention, and can be modified in various other forms, and the scope of the present invention is limited to the examples described below it is not going to be
발명의 상세한 설명 또는 청구범위에서 어느 하나의 구성요소가 다른 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 당해 구성요소만으로 이루어지는 것으로 한정되어 해석되지 아니하며, 다른 구성요소를 더 포함할 수 있는 것으로 이해되어야 한다.In the detailed description or claims of the invention, when it is said that any one component "includes" another component, it is not construed as being limited to only the component unless otherwise stated, and other components are further added. It should be understood as being able to include
이하에서, 수송기관이라 함은 자동차, 트럭, 버스, 철도차량 뿐만 아니라, 오토바이크 등의 2륜차도 포함하는 의미로 사용한다. 또한, 다공성 세라믹 폼(porous ceramic foam)에서 기공이라 함은 벽체와 벽체 사이의 셀(cell)을 형성하는 기공뿐만 아니라 벽체에 형성된 기공도 포함하는 것으로 사용한다.Hereinafter, the term "transportation institution" is used in the sense that includes not only automobiles, trucks, buses, and railroad vehicles, but also two-wheeled vehicles such as motorcycles. In addition, in porous ceramic foam, the term "pore" is used to include not only the pores forming the cell between the wall and the wall, but also the pores formed in the wall.
본 발명의 바람직한 실시예에 따른 포집장치는, 수송기관의 브레이크 장치에서 로터와 브레이크 패드의 마찰에 의해 발생한 미세먼지를 포집하기 위한 장치로서, 상기 로터의 외측면 일부를 감싸는 제1 컬렉터와, 상기 로터의 바깥 둘레면 일부를 감싸는 상부 컬렉터와, 상기 로터의 내측면 일부를 감싸는 제2 컬렉터를 포함하고, 상기 제1 컬렉터와 상기 제2 컬렉터는 다공성 세라믹 폼(porous ceramic foam)으로 이루어진다.A collection device according to a preferred embodiment of the present invention is a device for collecting fine dust generated by friction between a rotor and a brake pad in a brake device of a transportation engine, and includes a first collector surrounding a part of an outer surface of the rotor; An upper collector enclosing a portion of an outer circumferential surface of the rotor and a second collector enclosing a portion of an inner surface of the rotor, wherein the first collector and the second collector are made of porous ceramic foam.
상기 포집장치는 전체 외관상 U자형으로 구비되어 상기 U자형 내부로 상기 로터를 부분 수용하도록 구성되는 것이 바람직하다.Preferably, the collecting device is provided in a U-shape in appearance to partially accommodate the rotor into the U-shaped interior.
상기 제1 컬렉터는 상기 로터의 외측면과 마주하게 구비되고, 상기 제2 컬렉터는 상기 로터의 내측면과 마주하게 구비되며, 상기 제2 컬렉터는 디스크 형상의 로터를 기준으로 상기 제1 컬렉터가 있는 반대편에 위치되고, 상기 제1 컬렉터와 상기 제2 컬렉터는 상기 로터를 기준으로 서로 마주하게 배치되는 것이 바람직하다.The first collector is provided to face the outer surface of the rotor, the second collector is provided to face the inner surface of the rotor, and the second collector is provided with the first collector with respect to the disk-shaped rotor It is preferable that the first collector and the second collector face each other with respect to the rotor.
상기 포집장치는 상기 제1 컬렉터를 덮어 보호하고 상기 제1 컬렉터로 유입된 미세먼지가 외부로 유출되는 것을 억제하기 위한 제1 컬렉터 커버와, 상기 제2 컬렉터를 덮어 보호하고 상기 제2 컬렉터로 유입된 미세먼지가 외부로 유출되는 것을 억제하기 위한 제2 컬렉터 커버를 더 포함할 수 있다.The collection device includes a first collector cover for covering and protecting the first collector and preventing the fine dust flowing into the first collector from leaking to the outside, and a first collector cover for covering and protecting the second collector and flowing into the second collector It may further include a second collector cover for preventing the fine dust from leaking to the outside.
상기 상부 컬렉터를 보호하기 위한 상부 컬렉터 커버가 상기 상부 컬렉터 상부에 더 구비되어 있을 수 있다.An upper collector cover for protecting the upper collector may be further provided on the upper collector.
상기 상부 컬렉터에서 걸러진 깨끗한 공기가 외부로 빠져나갈 수 있도록 상기 상부 컬렉터 커버에 구멍들이 형성되어 있을 수 있다.Holes may be formed in the upper collector cover to allow clean air filtered by the upper collector to escape to the outside.
상기 다공성 세라믹 폼은 알루미나(Al2O3), 코디어라이트(cordierite, 2MgO·2Al2O3·5SiO2), 뮬라이트(mullite, 3Al2O3·2SiO2) 및 탄화규소(SiC)로 이루어진 군으로부터 선택된 1종 이상의 세라믹 재질로 이루어질 수 있다.The porous ceramic foam is composed of alumina (Al 2 O 3 ), cordierite (2MgO·2Al 2 O 3 ·5SiO 2 ), mullite (3Al 2 O 3 ·2SiO 2 ) and silicon carbide (SiC). It may be made of one or more ceramic materials selected from the group.
상기 다공성 세라믹 폼은 기공율이 40∼90%를 이루는 것이 바람직하다.The porous ceramic foam preferably has a porosity of 40 to 90%.
상기 다공성 세라믹 폼은, 미세먼지가 유입되는 통로 역할을 하는 기공(셀(cell))과, 상기 기공(셀(cell)) 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체를 포함할 수 있으며, 다수의 휘스커가 상기 벽체의 표면에서 기공(셀(cell))을 향해 돌출되어 있을 수 있다.The porous ceramic foam may include pores (cells) that serve as passageways for fine dust to flow in, and a wall forming a strut of the porous ceramic foam between the pores (cells). , a plurality of whiskers may protrude from the surface of the wall toward the pores (cells).
상기 휘스커는 뮬라이트(mullite, 3Al2O3·2SiO2), ZnO 및 탄화규소(SiC)로 이루어진 군으로부터 선택된 1종 이상의 침상형 세라믹 재질로 이루어질 수 있다.The whisker may be made of at least one needle-shaped ceramic material selected from the group consisting of mullite (3Al 2 O 3 ·2SiO 2 ), ZnO, and silicon carbide (SiC).
상기 다공성 세라믹 폼은 제2 영역에 비해 상대적으로 작은 크기의 기공들이 분포하는 제1 영역과, 상기 제1 영역에 비해 상대적으로 큰 크기의 기공들이 분포하는 제2 영역을 포함할 수 있고, 상기 제1 영역은 상기 제2 영역에서 포집되는 미세먼지보다 더 작은 크기의 미세먼지를 포집할 수 있다.The porous ceramic foam may include a first region in which pores having a relatively small size compared to the second region are distributed, and a second region in which pores having a relatively large size compared to the first region are distributed, Area 1 may collect fine dust having a smaller size than fine dust collected in the second area.
상기 제1 영역보다 상기 제2 영역이 상기 로터에 더 인접하게 위치되는 것이 바람직하다. Preferably, the second region is located closer to the rotor than the first region.
상기 상부 컬렉터는 다공성 세라믹 폼으로 이루어질 수 있다.The upper collector may be formed of a porous ceramic foam.
상기 제1 컬렉터 및 상기 제2 컬렉터는 상기 로터의 바깥 둘레면 일부를 덮도록 돌출된 단턱부를 갖는 다공성 세라믹 폼으로 이루어질 수 있다.The first collector and the second collector may be formed of a porous ceramic foam having a stepped portion protruding to cover a portion of an outer circumferential surface of the rotor.
상기 다공성 세라믹 폼은 소수성 코팅막으로 도포되어 있고 소수성을 나타낼 수 있다.The porous ceramic foam is coated with a hydrophobic coating film and may exhibit hydrophobicity.
상기 제1 컬렉터와 상기 제2 컬렉터는 사행(serpentine type) 형태로 배열된 리브들과, 리브와 리브 사이의 빈 공간을 이루는 채널을 포함할 수 있다.The first collector and the second collector may include ribs arranged in a serpentine type and a channel forming an empty space between the ribs.
상기 리브들은 곡선형 형태를 이루는 것이 바람직하다.Preferably, the ribs have a curved shape.
상기 제1 컬렉터와 상기 제2 컬렉터에서, 리브의 단부에는 리브블럭이 구비될 수 있고, 상기 리브블럭은 리브와 리브를 연결하는 매개체이며, 상기 로터와 상기 브레이크 패드의 마찰에 의해 발생한 미세먼지는 상기 채널의 유입구를 통해 유입될 수 있고, 상기 로터의 회전축인 X축에 수직한 Y축 방향으로는 상기 채널의 유입구와 리브블럭 사이의 빈 공간이 상기 채널을 이루는 영역이고, 상기 X축 및 Y축에 수직한 Z축 방향으로는 리브와 리브 사이의 빈 공간이 상기 채널을 이루는 영역일 수 있다.In the first collector and the second collector, a rib block may be provided at an end of the rib, and the rib block is a medium connecting the rib and the rib, and fine dust generated by friction between the rotor and the brake pad is may be introduced through the inlet of the channel, and in the Y-axis direction perpendicular to the X-axis, which is the rotation axis of the rotor, an empty space between the inlet of the channel and the rib block constitutes the channel, and the X-axis and Y-axis In the Z-axis direction perpendicular to the axis, an empty space between the ribs may be a region forming the channel.
이하에서, 수송기관의 브레이크 장치에서 발생한 미세먼지를 포집하기 위한 포집장치를 더욱 구체적으로 설명한다. Hereinafter, a collection device for collecting fine dust generated from a brake device of a transport engine will be described in more detail.
<실시예 1><Example 1>
도 1 및 도 2는 수송기관의 브레이크 장치에서 발생한 미세먼지를 포집하기 위한 포집장치의 일 예를 도시한 도면이다. 도 3은 포집장치가 브레이크 장치에 결합된 모습의 일 예를 보여주는 도면이다. 도 4는 다공성 세라믹 폼의 일 예를 개략적으로 도시한 도면이다.1 and 2 are diagrams illustrating an example of a collection device for collecting fine dust generated from a brake device of a transportation engine. 3 is a view showing an example of a state in which the collecting device is coupled to the brake device. 4 is a view schematically showing an example of a porous ceramic foam.
도 1 내지 도 4를 참조하면, 브레이크 장치는 브레이크 패드(brake pad)(20)와 로터(rotor)(10) 사이에 발생하는 마찰에 의해 제동을 수행하는 장치이다. 상기 브레이크 장치는 차축에 연결되어 회전하는 디스크 형상의 로터(10)와, 로터(10)의 회전을 제동하기 위해서 로터(10)에 축 방향(X)(디스크 형상을 이루는 면에 수직한 방향)으로 압력을 가하기 위한 브레이크 패드(20)와, 브레이크 패드(20)를 로터(10)에 밀착시키거나 로터(10)와 접촉된 브레이크 패드(20)를 로터(10)로부터 이격시켜 로터(10)의 회전을 제어하기 위한 브레이크 캘리퍼(brake caliper)(30)를 포함한다. 1 to 4 , the brake device is a device that performs braking by friction generated between a brake pad 20 and a rotor 10 . The brake device has a disk-shaped rotor 10 that is connected to the axle to rotate, and an axial direction (X) in the rotor 10 to brake the rotation of the rotor 10 (direction perpendicular to the disk-shaped surface) The brake pad 20 for applying pressure to the rotor 10, and the brake pad 20 in close contact with the rotor 10 or by separating the brake pad 20 in contact with the rotor 10 from the rotor 10 Includes a brake caliper (30) for controlling the rotation of.
로터(rotor)(10)는 차축에 연결되어 회전하는 디스크 형상의 장치이다. 로터(10)는 X축에 수직인 제1 디스크면(10a)과, 제1 디스크면에 평행한 제2 디스크면(10b)을 포함할 수 있다. 제1 디스크면(10a)과 제2 디스크면(10b)은 림(rim) 등에 의해 결합되어 있을 수 있다.The rotor 10 is a disk-shaped device that is connected to the axle and rotates. The rotor 10 may include a first disk surface 10a perpendicular to the X-axis and a second disk surface 10b parallel to the first disk surface. The first disk surface 10a and the second disk surface 10b may be coupled to each other by a rim or the like.
브레이크 패드(brake pad)(20)는 로터(10)에 축 방향(X 방향)(디스크 형상을 이루는 면에 수직한 방향)으로 압력을 가하여 로터(10)의 회전을 제동하기 위한 장치이다. 브레이크 패드(20)는 제1 디스크면(10a)에 압력을 가하기 위한 제1 패드(미도시)와, 제2 디스크면(10b)에 압력을 가하기 위한 제2 패드(미도시)를 포함할 수 있다. 브레이크 패드(20)는 축 방향(X 방향)을 따라 이동할 수 있도록 브레이크 캘리퍼(brake caliper)(30)에 실장된다. The brake pad 20 is a device for braking the rotation of the rotor 10 by applying pressure to the rotor 10 in the axial direction (X direction) (direction perpendicular to the surface forming the disk shape). The brake pad 20 may include a first pad (not shown) for applying pressure to the first disc surface 10a and a second pad (not shown) for applying pressure to the second disc surface 10b. have. The brake pad 20 is mounted on the brake caliper 30 so as to move along the axial direction (X direction).
브레이크 캘리퍼(30)는 브레이크 패드(20)를 로터(10)에 밀착시키거나 로터(10)와 접촉된 브레이크 패드(20)를 로터(10)로부터 이격시켜 로터(10)의 회전을 제어하기 위한 장치이다. 브레이크 패드(20)는 브레이크 캘리퍼(30) 내부에 수용되고, 제 1 디스크면(10a)을 바라보며 로터(10)와 마주하게 구비되는 제1 패드(미도시)와, 제 2 디스크면(10b)을 바라보며 로터(10)와 마주하게 구비되는 제2 패드(미도시)를 포함할 수 있다. 브레이크 캘리퍼(30)는 로터(10)의 일부를 감싸도록 전체 외관상 U자형으로 구비될 수 있다. The brake caliper 30 is for controlling the rotation of the rotor 10 by keeping the brake pad 20 in close contact with the rotor 10 or by separating the brake pad 20 in contact with the rotor 10 from the rotor 10 . it is a device The brake pad 20 is accommodated in the brake caliper 30, a first pad (not shown) provided to face the rotor 10 while looking at the first disk surface 10a, and a second disk surface 10b It may include a second pad (not shown) provided to face the rotor 10 while looking at the . The brake caliper 30 may be provided in a U-shape in overall appearance to surround a portion of the rotor 10 .
브레이크 패드(20)와 로터(rotor)(10)의 마찰로 인해 인체에 해로운 미세먼지가 발생한다. 특히, 브레이크 패드(20)의 마모에 의해 발생되는 미세먼지는 입자의 크기가 작아 인체 및 환경에 직접적인 영향을 미칠 수 있다. 특히, 도시지역에서, 교통량의 증가로 인한 브레이크 장치에서 나오는 미립자의 양이 증가하고 있다.Fine dust harmful to the human body is generated due to friction between the brake pad 20 and the rotor 10 . In particular, fine dust generated by wear of the brake pad 20 has a small particle size and may have a direct effect on the human body and the environment. In particular, in urban areas, the amount of particulates emitted from brake devices due to an increase in traffic volume is increasing.
수송기관의 브레이크 장치에서 발생한 미세먼지를 포집하기 위한 포집장치는 마찰에 의해 수백도 이상 표면 온도의 상승이 예상되는 브레이크 패드(20) 주변에 설치되어야 하므로 내열성 확보가 요구되며, 도로변 빗물 및 먼지 등에 의한 장치의 오염과 차량 주행에 따른 진동 발생 등에 대한 내구성이 우수한 필터 소재의 개발이 필요하다.Since the collection device for collecting fine dust generated from the brake device of a transportation engine must be installed around the brake pad 20, which is expected to increase the surface temperature by more than several hundred degrees due to friction, it is required to secure heat resistance, It is necessary to develop a filter material with excellent durability against contamination of the device and vibration caused by vehicle driving.
NOx와 SOx는 촉매나 자체 발화에 의한 제거가 가능하지만, 브레이크 장치에서 발생하는 미세먼지는 산화가 어려운 조성으로 효과적인 미세먼지 포집이 가능한 소재의 개발과 이를 적용한 부품의 개발, 포집먼지를 제거할 수 있는 차별화된 기술이 적용되어야 한다.Although NOx and SOx can be removed by catalyst or self-ignition, fine dust generated from the brake system is difficult to oxidize, so it is possible to develop a material that can effectively collect fine dust, develop parts to which it is applied, and remove the collected dust. Differentiated technologies must be applied.
본 발명의 바람직한 실시예에 따른 포집장치는 브레이크 패드(20)와 로터(10)의 마찰에 의해 발생한 미세먼지(분진)를 포집하는 장치이다. 상기 포집장치는 자동차의 주행 중 브레이킹 시 로터(10)와 브레이크 패드(20)가 접촉되면서 브레이크 패드(20)나 로터(10)가 마모되어 발생되는 미세먼지(분진)을 흡입하여 포집한다. 본 발명의 바람직한 실시예에 따른 포집장치는 교체가 가능하도록 구비될 수 있다. 본 발명의 바람직한 실시예에 따른 포집장치는 어느 정도의 시간 동안 사용 후에 교체하거나 미세먼지를 제거한 후에 재사용이 가능할 수도 있다.The collecting device according to a preferred embodiment of the present invention is a device for collecting fine dust (dust) generated by friction between the brake pad 20 and the rotor 10 . The collecting device suctions and collects fine dust (dust) generated when the brake pad 20 or the rotor 10 is worn while the rotor 10 and the brake pad 20 come into contact with each other during braking while driving. The collecting device according to a preferred embodiment of the present invention may be provided to be replaceable. The collection device according to a preferred embodiment of the present invention may be replaced after use for a certain period of time or reused after removing fine dust.
브레이크 패드(20)와 로터(10) 사이의 마찰에서 발생하는 미세먼지를 흡입하기 위해서 포집장치는 브레이크 패드(20)와 브레이크 캘리퍼(30)의 위치에 따라 형상, 설치 위치 등이 변할 수 있다. In order to suck fine dust generated from friction between the brake pad 20 and the rotor 10 , the shape and installation position of the collecting device may change according to the positions of the brake pad 20 and the brake caliper 30 .
바람직하게는, 상기 포집장치는 수송기관의 정주행 방향에서 바라볼 때 브레이크 패드(20)의 위치보다 후방(로터의 회전방향에서 볼 때 브페이크 패드 보다 후방)에 설치되는 것이 바람직하다. 브레이크 패드(20)의 위치보다 후방에 포집장치를 설치하는 것은, 수송기관이 정주행 할 때, 브레이크 패드(20)와 로터(10) 사이의 마찰에 의해 발생하는 미세먼지(분진)가 바람 등에 포집장치로 유입되기가 유리하고 더욱 많은 미세먼지를 포집할 수가 있기 때문이다. 수송기관이 정주행 할 때, 브레이크 패드(20)와 로터(10) 사이의 마찰에 의해 발생된 미세먼지(분진)의 대부분은 바람 등에 의해 후방으로 이동하게 되고 브레이크 패드(20)의 위치보다 후방에 설치된 포집장치로 유입되어 포집될 수가 있다. 상기 포집장치는 전원이 없이도 미세먼지를 포집할 수 있게 구비될 수 있다. 자동차가 주행 중 흐르는 공기의 방향(공기의 흐름)에 의해 자연스럽게 미세먼지(분진)가 포집장치로 효율적으로 흡입될 수가 있다.Preferably, the collecting device is preferably installed behind the brake pad 20 (behind the brake pad when viewed from the rotational direction of the rotor) from the position of the brake pad 20 when viewed from the forward running direction of the transport engine. Installing the collecting device behind the position of the brake pad 20 means that fine dust (dust) generated by the friction between the brake pad 20 and the rotor 10 when the transport engine is traveling forward is caused by wind, etc. This is because it is advantageous to flow into the collection device and collects more fine dust. When the transport engine travels forward, most of the fine dust (dust) generated by friction between the brake pad 20 and the rotor 10 is moved rearward by wind, etc., and is rearward from the position of the brake pad 20 It can be collected by flowing into the collection device installed in the The collecting device may be provided to collect fine dust without power. Fine dust (dust) can be efficiently sucked into the collection device naturally by the direction of the air flowing while the vehicle is running (air flow).
상기 포집장치는 로터(10)의 일부를 감싸는 형태로 구비될 수 있다. 상기 포집장치는 로터(10)의 일부를 감싸도록 전체 외관상 U자형으로 구비될 수 있다. 포집장치는 U자형 내부로 로터(10)를 부분 수용하도록 구성된다. The collecting device may be provided in a form that surrounds a part of the rotor 10 . The collecting device may be provided in a U-shape in overall appearance so as to surround a portion of the rotor 10 . The collecting device is configured to partially receive the rotor 10 into a U-shaped interior.
상기 포집장치는 로터(10)의 외측면(제1 디스크면(10a)) 일부를 감싸는 제1 컬렉터(collector)(110), 로터(10)의 바깥 둘레면 일부를 감싸는 상부 컬렉터(130), 로터(10)의 내측면(제2 디스크면(10b)) 일부를 감싸는 제2 컬렉터(collector)(120)를 포함할 수 있다. 제1 컬렉터(110)는 로터(10)의 외측면(제1 디스크면(10a))과 마주하게 구비된다. 제2 컬렉터(120)는 로터(10)의 내측면(제2 디스크면(10b))과 마주하게 구비된다. 제2 컬렉터(120)는 디스크 형상의 로터(10)를 기준으로 제1 컬렉터(110)가 있는 반대편에 위치되게 설치된다. 제1 컬렉터(110)와 제2 컬렉터(120)는 로터(10)를 기준으로 서로 마주하게 배치된다. 제1 컬렉터(110)와 제2 컬렉터(120)는 로터(10)와 이격되게 배치된다. The collecting device includes a first collector 110 surrounding a portion of the outer surface (first disk surface 10a) of the rotor 10, an upper collector 130 surrounding a portion of the outer circumferential surface of the rotor 10, A second collector 120 may be included to surround a portion of the inner surface (the second disk surface 10b) of the rotor 10 . The first collector 110 is provided to face the outer surface (the first disk surface 10a) of the rotor 10 . The second collector 120 is provided to face the inner surface (the second disk surface 10b) of the rotor 10 . The second collector 120 is installed to be positioned opposite the first collector 110 with respect to the disk-shaped rotor 10 . The first collector 110 and the second collector 120 are disposed to face each other with respect to the rotor 10 . The first collector 110 and the second collector 120 are disposed to be spaced apart from the rotor 10 .
상부 컬렉터(130)는 로터(10)의 바깥 둘레면 일부를 감싸도록 구비된다. 상부 컬렉터(130)는 제1 컬렉터(110)와 제2 컬렉터(120)에 연결되어 있을 수 있다. 상부 컬렉터(130)도 로터(10)와 이격되게 설치된다. The upper collector 130 is provided to surround a part of the outer circumferential surface of the rotor 10 . The upper collector 130 may be connected to the first collector 110 and the second collector 120 . The upper collector 130 is also installed to be spaced apart from the rotor 10 .
제1 컬렉터(110)와 제2 컬렉터(120)를 보호하고 채널로 유입된 미세먼지가 외부로 유출되는 것을 억제하기 위한 컬렉터 커버(160, 170)가 더 구비될 수도 있다. 컬렉터 커버(160, 170)는 가공성이 양호하고 무게가 가벼운 합성수지, 예컨대 열경화성 합성수지 등의 재질로 이루어질 수 있으나, 금속, 금속합금 등과 같이 내구성이 양호하고 충격에 견딜 수 있는 재료가 사용될 수도 있다. 컬렉터 커버는 제1 컬렉터(110)를 덮어 보호하고 채널로 유입된 미세먼지가 외부로 유출되는 것을 억제하기 위한 제1 컬렉터 커버(160)와, 제2 컬렉터(120)를 덮어 보호하고 채널로 유입된 미세먼지가 외부로 유출되는 것을 억제하기 위한 제2 컬렉터 커버(170)를 포함할 수 있다. 제1 컬렉터 커버(160)는 제1 컬렉터(110)를 기준으로 로터(10)의 반대편에 구비되고, 제2 컬렉터 커버(170)는 제2 컬렉터(120)를 기준으로 로터(10)의 반대편에 구비된다. 컬렉터 커버(160, 170)는 로터(10)로 먼지 등의 이물질이 유입되는 것을 방지하는 역할을 할 수도 있다. Collector covers 160 and 170 for protecting the first collector 110 and the second collector 120 and suppressing the fine dust flowing into the channel from leaking to the outside may be further provided. The collector covers 160 and 170 may be made of a material such as a synthetic resin having good workability and a light weight, for example, a thermosetting synthetic resin, but a material having good durability and resistance to impact such as a metal or a metal alloy may be used. The collector cover covers and protects the first collector 110, and covers and protects the first collector cover 160 and the second collector 120 to prevent fine dust flowing into the channel from leaking to the outside, and flows into the channel. It may include a second collector cover 170 for preventing the fine dust from leaking to the outside. The first collector cover 160 is provided on the opposite side of the rotor 10 with respect to the first collector 110 , and the second collector cover 170 is provided on the opposite side of the rotor 10 with respect to the second collector 120 . is provided in The collector covers 160 and 170 may serve to prevent foreign substances such as dust from entering the rotor 10 .
제1 컬렉터 커버(160)는 제1 컬렉터(110)의 측면을 완전히 덮는 형태로 구성되어 있고, 제1 컬렉터(110)의 측면과 밀착되게 구성되어 있을 수 있다. 제2 컬렉터 커버(170)는 제2 컬렉터(120)의 측면을 완전히 덮는 형태로 구성되어 있고, 제2 컬렉터(120)의 측면과 밀착되게 구성되어 있을 수 있다. The first collector cover 160 may be configured to completely cover the side surface of the first collector 110 , and may be configured to be in close contact with the side surface of the first collector 110 . The second collector cover 170 may be configured to completely cover the side surface of the second collector 120 , and may be configured to be in close contact with the side surface of the second collector 120 .
제1 컬렉터 커버(160)에는 제1 컬렉터(110)에서 걸러진 깨끗한 공기가 외부로 빠져나갈 수 있도록 구멍들이 형성되어 있을 수 있다. 로터(10)와 브레이크 패드(20)의 마찰에 의해 발생한 미세먼지는 제1 컬렉터(110)에서 포집되고, 제1 컬렉터(110)를 통과한 깨끗한 공기는 제1 컬렉터 커버(160)의 구멍들을 통해서 배출되도록 함으로써 로터(10)의 주변의 온도가 상승하는 것을 억제할 수 있다. 제2 컬렉터 커버(170)에도 제2 컬렉터(120)에서 걸러진 깨끗한 공기가 외부로 빠져나갈 수 있도록 구멍들이 형성되어 있을 수 있다. 로터(10)와 브레이크 패드(20)의 마찰에 의해 발생한 미세먼지는 제2 컬렉터(120)에서 포집되고, 제2 컬렉터(120)를 통과한 깨끗한 공기는 제2 컬렉터 커버(170)의 구멍들을 통해서 배출되도록 함으로써 로터(10)의 주변의 온도가 상승하는 것을 억제할 수 있다.Holes may be formed in the first collector cover 160 to allow clean air filtered by the first collector 110 to escape to the outside. Fine dust generated by friction between the rotor 10 and the brake pad 20 is collected by the first collector 110 , and the clean air that has passed through the first collector 110 fills the holes of the first collector cover 160 . It is possible to suppress an increase in the temperature around the rotor 10 by allowing the discharge to pass through. Holes may also be formed in the second collector cover 170 to allow clean air filtered by the second collector 120 to escape to the outside. Fine dust generated by friction between the rotor 10 and the brake pad 20 is collected by the second collector 120 , and the clean air passing through the second collector 120 fills the holes of the second collector cover 170 . It is possible to suppress an increase in the temperature around the rotor 10 by allowing the discharge to pass through.
상부 컬렉터(130)를 보호하기 위한 상부 컬렉터 커버(180)가 더 구비될 수도 있다. 상부 컬렉터 커버(180)는 가공성이 양호하고 무게가 가벼운 합성수지, 예컨대 열경화성 합성수지 등의 재질로 이루어질 수 있으나, 금속, 금속합금 등과 같이 내구성이 양호하고 충격에 견딜 수 있는 재료가 사용될 수도 있다. 상부 컬렉터 커버(180)는 상부 컬렉터(130) 상부에 구비될 수 있다. 상부 컬렉터 커버(180)는 로터(10)의 바깥 둘레면에 배치되어 로터(10)로 먼지 등의 이물질이 유입되는 것을 방지하는 역할을 할 수도 있다. 상부 컬렉터 커버(180)에는 상부 컬렉터(130)에서 걸러진 깨끗한 공기가 외부로 빠져나갈 수 있도록 구멍들이 형성되어 있을 수 있다. 로터(10)와 브레이크 패드(20)의 마찰에 의해 발생한 미세먼지는 상부 컬렉터(130)에서 포집되고, 상부 컬렉터(130)를 통과한 깨끗한 공기는 상부 컬렉터 커버(180)의 구멍들을 통해서 배출되도록 함으로써 로터(10)의 주변의 온도가 상승하는 것을 억제할 수 있다. An upper collector cover 180 for protecting the upper collector 130 may be further provided. The upper collector cover 180 may be made of a material such as a synthetic resin having good workability and a light weight, for example, a thermosetting synthetic resin, but a material having good durability and resistance to impact such as a metal or a metal alloy may be used. The upper collector cover 180 may be provided on the upper collector 130 . The upper collector cover 180 may be disposed on the outer circumferential surface of the rotor 10 to prevent foreign substances such as dust from entering the rotor 10 . Holes may be formed in the upper collector cover 180 to allow clean air filtered by the upper collector 130 to escape to the outside. Fine dust generated by friction between the rotor 10 and the brake pad 20 is collected by the upper collector 130 , and the clean air that has passed through the upper collector 130 is discharged through the holes of the upper collector cover 180 . It can suppress that the temperature of the periphery of the rotor 10 rises by doing this.
제1 컬렉터(110)와 제2 컬렉터(120)는 일단에서 타단까지가 직선형인 것으로 이루어질 수도 있고, 더욱 바람직하게는 일단에서 타단까지 곡선형(도 2에서 210 참조)인 것으로 이루어지는 것이 바람직하다. 더욱 바람직하게는 제1 컬렉터(110)와 제2 컬렉터(120)는 디스크 형상을 갖는 로터(10)의 디스크 곡률과 동일하게 곡선형 형태를 이루는 것이 바람직하다. 곡선형 형태를 이루는 제1 컬렉터(110)와 제2 컬렉터(120)의 곡률은 디스크 형상을 갖는 로터(10)의 디스크 곡률(curvature)과 동일한 것이 바람직하다. The first collector 110 and the second collector 120 may be formed in a straight shape from one end to the other end, and more preferably have a curved shape (refer to 210 in FIG. 2 ) from one end to the other end. More preferably, the first collector 110 and the second collector 120 have a curved shape identical to the disk curvature of the disk-shaped rotor 10 . The curvature of the first collector 110 and the second collector 120 forming a curved shape is preferably the same as the disk curvature of the rotor 10 having a disk shape.
브레이크 패드(20)와 로터(10) 사이의 마찰에 의해 발생하는 미세먼지(분진)는 제1 컬렉터(110)와 제2 컬렉터(120)에 유입된다. 제1 컬렉터(110)와 제2 컬렉터(120)는 다공성 세라믹 폼(porous ceramic foam)으로 이루어진다. 로터(10)와 브레이크 패드(20)의 마찰에 의해 수백도 이상 표면 온도의 상승이 예상되는 로터(10) 주변에 제1 컬렉터(110)와 제2 컬렉터(120)가 설치되므로 내열성 확보가 요구되고, 빗물이나 먼지 등에 의한 오염과 차량 주행에 따른 진동 발생 등에 대하여 내구성이 요구된다. 이러한 점들을 고려하여 제1 컬렉터(110)와 제2 컬렉터(120)는 알루미나(Al2O3), 코디어라이트(cordierite, 2MgO·2Al2O3·5SiO2), 뮬라이트(mullite, 3Al2O3·2SiO2), 탄화규소(SiC) 또는 이들의 혼합물과 같이 내열성을 갖는 다공성 세라믹 폼(세라믹 다공체)으로 이루어지는 것이 바람직하다. 제1 컬렉터(110) 및 제2 컬렉터(120)는 로터(10)의 바깥 둘레면 일부를 덮도록 돌출된 단턱부(200)를 갖는 다공성 세라믹 폼으로 이루어질 수 있다.Fine dust (dust) generated by friction between the brake pad 20 and the rotor 10 flows into the first collector 110 and the second collector 120 . The first collector 110 and the second collector 120 are made of porous ceramic foam. Since the first collector 110 and the second collector 120 are installed around the rotor 10, the surface temperature of which is expected to rise by several hundred degrees or more due to friction between the rotor 10 and the brake pad 20, it is required to secure heat resistance. Durability is required against contamination by rainwater or dust and vibrations caused by vehicle driving. In consideration of these points, the first collector 110 and the second collector 120 are alumina (Al 2 O 3 ), cordierite (2MgO·2Al 2 O 3 ·5SiO 2 ), mullite (3Al 2 ) O 3 ·2SiO 2 ), it is preferably made of a porous ceramic foam (ceramic porous body) having heat resistance such as silicon carbide (SiC) or a mixture thereof. The first collector 110 and the second collector 120 may be formed of a porous ceramic foam having a stepped portion 200 protruding to cover a portion of an outer peripheral surface of the rotor 10 .
상기 다공성 세라믹 폼은 무수히 많은 기공들을 갖는 다공체이다. 상기 다공성 세라믹 폼은 미세먼지가 유입되는 통로 역할을 하는 기공(셀(cell))과, 상기 기공(셀(cell)) 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체를 포함한다. 다공성 세라믹 폼에서 벽체와 벽체 사이의 큰 기공을 셀(cell)이라고도 하며, 벽체에도 상기 셀보다는 작은 기공들이 형성되어 있으며, 다공성 세라믹 폼에서 기공이라 함은 벽체에 형성된 기공뿐만 아니라 상기 셀도 포함한다.The porous ceramic foam is a porous body having countless pores. The porous ceramic foam includes pores (cells) serving as passageways for fine dust to flow in, and a wall forming a strut of the porous ceramic foam between the pores (cells). In the porous ceramic foam, the large pores between the wall and the wall are also called cells, and smaller pores than the cells are formed in the wall, and the pores in the porous ceramic foam include not only the pores formed in the wall but also the cells. .
상기 다공성 세라믹 폼은 기공율이 40∼90%, 더욱 바람직하게는 60∼85% 정도인 것이 바람직하다. 기공율이 너무 낮을 경우에는 미세먼지 필터링 효율이 낮을 수 있고, 기공율이 너무 높을 경우에는 진동 충격 등에 쉽게 크랙 등의 생기거나 깨지거나 하여 내구성이 저하될 수 있다. 상기 다공성 세라믹 폼에 분포하는 기공(셀) 크기는 50㎛∼2㎜ 정도인 것이 바람직하고, 벽체에 형성되는 기공의 크기는 50㎚∼50㎛ 정도인 것이 바람직하다. The porous ceramic foam preferably has a porosity of 40 to 90%, more preferably about 60 to 85%. If the porosity is too low, fine dust filtering efficiency may be low, and if the porosity is too high, cracks or breakage may occur easily due to vibration or impact, and thus durability may be reduced. The size of the pores (cells) distributed in the porous ceramic foam is preferably about 50 μm to 2 mm, and the size of the pores formed on the wall is preferably about 50 nm to 50 μm.
상기 다공성 세라믹 폼은 표면에 물방울이 맺히는 것을 억제하기 위하여 소수성(hydrophobic) 코팅막으로 도포되어 있을 수 있다. 소수성을 갖게 하기 위하여 다공성 세라믹 재질에 소수성을 갖는 물질을 코팅하여 다공성 세라믹 폼을 제조할 수 있다. 친수성(hydorphilic)을 가질 경우에 다공성 세라믹 폼의 표면에 물방울이 다량으로 맺힐 수 있어서 필터링 효과가 저하될 수 있다. 소수성 코팅막은 10㎚∼2㎛ 정도의 두께로 구비되는 것이 바람직하다. The porous ceramic foam may be coated with a hydrophobic coating film in order to suppress the formation of water droplets on the surface. In order to have hydrophobicity, a porous ceramic foam may be manufactured by coating the porous ceramic material with a hydrophobic material. In the case of having hydrophilic properties, a large amount of water droplets may form on the surface of the porous ceramic foam, thereby reducing the filtering effect. The hydrophobic coating film is preferably provided with a thickness of about 10 nm to 2 μm.
소수성 코팅막은 페이스트, 현탁액(suspension) 또는 콜로이드(colloid)를 다공성 세라믹 폼의 외곽 표면에 코팅하고 400∼1000℃ 정도의 온도에서 열처리하여 형성할 수 있다. 소수성 코팅막을 형성하기 위한 예로서 보에마이트-TiO2 졸을 코팅하는 경우를 예로 들수 있다. The hydrophobic coating film can be formed by coating a paste, suspension or colloid on the outer surface of the porous ceramic foam and heat-treating it at a temperature of about 400 to 1000°C. As an example for forming a hydrophobic coating film, a case of coating the boehmite-TiO 2 sol may be exemplified.
보에마이트-TiO2 졸은 다음과 같이 제조할 수 있다. The boehmite-TiO 2 sol can be prepared as follows.
보에마이트(boehmite)를 증류수 등의 용매에 첨가하고 60℃ 정도의 온도에서 가수분해(hydrolysis) 시키고, 여기에 질산(HNO3) 등의 산(acid)을 첨가하여 용액화(peptization)하여 보에마이트 졸을 형성한다. Boehmite is added to a solvent such as distilled water and hydrolyzed at a temperature of about 60°C, and an acid such as nitric acid (HNO 3 ) is added thereto for peptization Forms an emetic sol.
TiO2 전구체를 증류수 등의 용매에 첨가하고 50℃ 정도의 온도에서 가수분해(hydrolysis) 시키고, 여기에 질산(HNO3) 등의 산(acid)을 첨가하여 용액화(peptization)하여 TiO2 졸을 형성한다. 상기 TiO2 전구체는 TTIP(Titanium isopropoxide) 등일 수 있다.TiO 2 precursor is added to a solvent such as distilled water, hydrolyzed at a temperature of about 50 ° C., and an acid such as nitric acid (HNO 3 ) is added thereto for peptization to obtain TiO 2 sol. to form The TiO 2 precursor may be titanium isopropoxide (TTIP) or the like.
상기 보에마이트 졸과 상기 TiO2 졸을 혼합하여 보에마이트-TiO2 졸을 수득한다. The boehmite sol and the TiO 2 sol are mixed to obtain a boehmite-TiO 2 sol.
상부 컬렉터(130)도 다공성 세라믹 폼으로 이루어질 수 있다. 상부 컬렉터(130)는 알루미나(Al2O3), 코디어라이트(cordierite, 2MgO·2Al2O3·5SiO2), 뮬라이트(mullite, 3Al2O3·2SiO2), 탄화규소(SiC) 또는 이들의 혼합물과 같이 내열성을 갖는 다공성 세라믹 폼으로 이루어지는 것이 바람직하다. 상부 컬렉터(130)는 로터(10)의 바깥 둘레면에 배치되어 로터(10)로 먼지 등의 이물질이 유입되는 것을 방지하는 역할도 한다. The upper collector 130 may also be formed of a porous ceramic foam. The upper collector 130 is alumina (Al 2 O 3 ), cordierite (cordierite, 2MgO·2Al 2 O 3 ·5SiO 2 ), mullite (mullite, 3Al 2 O 3 ·2SiO 2 ), silicon carbide (SiC) or It is preferable to form a porous ceramic foam having heat resistance, such as a mixture thereof. The upper collector 130 is disposed on the outer peripheral surface of the rotor 10 and also serves to prevent foreign substances such as dust from entering the rotor 10 .
이하에서, 다공성 세라믹 폼을 제조하는 방법을 구체적으로 설명한다. Hereinafter, a method for manufacturing the porous ceramic foam will be described in detail.
다공성 세라믹 폼를 제조하기 위하여 기판(substrate)으로 다공성의 폴리머 폼(polymer foam)(예컨대, 폴리우레탄 폼(polyurethane foam))을 사용한다. 상기 폴리머 폼은 스펀지(sponge)와 같이 탄성이 있는 다공성 물질이다. 상기 폴리머 폼의 기공율, 기공 크기 등은 이후 제조되는 다공성 세라믹 폼의 기공율, 기공 크기 등에 영향을 미친다. 제조하려는 다공성 세라믹 폼의 형상에 대응되게 폴리머 폼(polymer foam)을 형성한 후 초음파 세척 등을 통해 세척하고 건조한다. 다공성 세라믹 폼이 로터(10)의 바깥 둘레면 일부를 덮도록 돌출된 단턱부(200)를 갖는 경우에 폴리머 폼도 단턱부를 갖는 형태로 형성한다. 상기 건조는 폴리머 폼의 용융 온도보다 낮은 30∼90℃ 정도의 오븐(Oven)에서 수행하는 것이 바람직하다. A porous polymer foam (eg, polyurethane foam) is used as a substrate to prepare the porous ceramic foam. The polymer foam is a porous material having elasticity, such as a sponge. The porosity, pore size, etc. of the polymer foam affect the porosity, pore size, etc. of the porous ceramic foam to be manufactured later. After forming a polymer foam to correspond to the shape of the porous ceramic foam to be manufactured, it is washed and dried through ultrasonic cleaning or the like. When the porous ceramic foam has the stepped portion 200 protruding to cover a portion of the outer circumferential surface of the rotor 10, the polymer foam is also formed to have a stepped portion. The drying is preferably performed in an oven of about 30 to 90 ℃ lower than the melting temperature of the polymer foam.
세라믹 원료, 바인더 및 용매를 포함하는 출발원료를 준비한다. A starting material including a ceramic raw material, a binder and a solvent is prepared.
상기 세라믹 원료는 제작할 다공성 세라믹 폼(세라믹 다공체)의 주 소재이다. 상기 세라믹 원료는 알루미나(Al2O3) 분말, 코디어라이트(cordierite, 2MgO·2Al2O3·5SiO2) 분말, 뮬라이트(mullite, 3Al2O3·2SiO2) 분말, 탄화규소(SiC) 분말 또는 이들의 혼합분말 등일 수 있다. 제조되는 다공성 세라믹 폼의 기공율, 기공 크기, 강도 등을 고려하여 상기 세라믹 원료는 10㎚∼40㎛, 더욱 바람직하게는 100㎚∼30㎛인 정도의 평균입경을 갖는 분말을 사용하는 것이 바람직하다. The ceramic raw material is a main material of the porous ceramic foam (ceramic porous body) to be produced. The ceramic raw material is alumina (Al 2 O 3 ) powder, cordierite (2MgO·2Al 2 O 3 ·5SiO 2 ) powder, mullite (3Al 2 O 3 ·2SiO 2 ) powder, silicon carbide (SiC) It may be a powder or a mixed powder thereof. In consideration of the porosity, pore size, strength, etc. of the porous ceramic foam to be manufactured, it is preferable to use a powder having an average particle diameter of about 10 nm to 40 μm, more preferably 100 nm to 30 μm, as the ceramic raw material.
상기 출발원료는 유리 프릿(Glass frit)을 더 포함할 수 있다. 상기 유리 프릿은 상기 출발원료에 상기 세라믹 원료 100중량부에 대하여 0.01∼45중량부, 더욱 바람직하게는 0.1∼40중량부 정도 함유되는 것이 바람직하다. 상기 유리 프릿은 소결온도를 낮추고, 다공성 세라믹 폼 자체에 Si를 함유시키는 역할을 역할을 할 뿐만 아니라, 휘스커의 성장성을 향상시키는 역할을 할 수 있다. The starting material may further include a glass frit. The glass frit is preferably contained in an amount of 0.01 to 45 parts by weight, more preferably 0.1 to 40 parts by weight, based on 100 parts by weight of the ceramic raw material in the starting material. The glass frit may serve to lower the sintering temperature and to contain Si in the porous ceramic foam itself, as well as to improve the growth property of the whisker.
상기 용매(solvent)는 증류수 등일 수 있다. The solvent may be distilled water or the like.
상기 바인더는 폴리비닐알콜(polyvinyl alchol; PVA), 폴리에틸렌글리콜(polyethylene glycol; PEG) 등을 사용할 수 있다. 상기 바인더는 세라믹 슬러리의 접착력을 향상시키는 역할을 한다. 상기 바인더는 상기 출발원료에 상기 세라믹 원료 100중량부에 대하여 1∼50중량부 정도 함유되는 것이 바람직하다. The binder may be polyvinyl alcohol (PVA), polyethylene glycol (PEG), or the like. The binder serves to improve the adhesion of the ceramic slurry. The binder is preferably contained in an amount of 1 to 50 parts by weight based on 100 parts by weight of the ceramic raw material in the starting material.
상기 출발원료는 분산제를 더 포함할 수도 있다. 상기 분산제는 상업적으로 판매되고 있는 물질을 사용할 수 있으며, 그 사용에 특별한 제한이 있는 것은 아니다. 상기 분산제는 출발원료에 상기 세라믹 원료 100중량부에 대하여 0.1∼25중량부 함유되는 것이 바람직하다. The starting material may further include a dispersing agent. The dispersant may use a commercially available material, and there is no particular limitation on its use. The dispersant is preferably contained in an amount of 0.1 to 25 parts by weight based on 100 parts by weight of the ceramic raw material in the starting material.
상기 출발원료를 혼합하여 세라믹 슬러리(ceramic slurry)를 형성한다. The starting materials are mixed to form a ceramic slurry.
상기 세라믹 슬러리(ceramic slurry)를 폴리머 폼에 딥 코팅(Dip coating) 한다. 상기 폴리머 폼을 상기 세라믹 슬러리에 완전히 담그고, 진공 분위기에서 딥 코팅을 수행하는 것이 바람직하다. 딥 코팅 후, 폴리머 폼에 함유된 과량의 슬러리를 빼기 위해 외력을 주어 폴리머 폼을 압축했다가 압축을 해제하여 원래의 폴리머 폼 형태로 복귀되게 하고, 이러한 방식에 의해 폴리머 폼에 함유된 일부 슬러리가 폴리머 폼에서 빠져나오게 할 수도 있다.The ceramic slurry is dip-coated on the polymer foam. Preferably, the polymer foam is completely immersed in the ceramic slurry and dip coating is performed in a vacuum atmosphere. After dip coating, the polymer foam is compressed by applying an external force to remove the excess slurry contained in the polymer foam, and then released to return to the original polymer foam form, and in this way, some of the slurry contained in the polymer foam is It can also be pulled out of the polymer foam.
딥 코팅이 이루어진 폴리머 폼을 건조한다. 상기 건조는 폴리머 폼의 용융 온도보다 낮은 30∼90℃ 정도의 오븐(Oven)에서 수행하는 것이 바람직하다. Dry the dip-coated polymer foam. The drying is preferably performed in an oven of about 30 to 90 ℃ lower than the melting temperature of the polymer foam.
딥 코팅이 이루어진 폴리머 폼을 소결한다. 딥 코팅이 이루어진 폴리머 폼을 퍼니스(furnace) 등에 장입하고, 폴리머 폼의 타는 온도보다 높은 제1 온도(예컨대, 400∼800℃)까지 승온시킨 후, 소정 시간 동안 유지하여 폴리머(polymer) 성분이 태워져서 제거되게 하며, 소결온도(예컨대, 1100∼1600℃)까지 승온시킨 후, 상기 소결온도에서 소정 시간 동안 유지하여 소결하여 다공성 세라믹 폼을 얻는다. 상기 세라믹 원료로 알루미나(Al2O3) 분말, 코디어라이트(cordierite, 2MgO·2Al2O3·5SiO2) 분말, 뮬라이트(mullite, 3Al2O3·2SiO2) 분말을 사용한 경우에 상기 소결은 공기(air), 산소(O2)와 같은 산화 분위기에서 수행하는 것이 바람직하며, 상기 세라믹 원료로 탄화규소(SiC) 분말을 사용한 경우에는 환원 분위기에서 수행하는 것이 바람직하다. 상기 소결온도까지는 1∼50℃/min의 승온속도로 상승시키는 것이 바람직한데, 승온 속도가 너무 느린 경우에는 시간이 오래 걸려 생산성이 떨어지고 승온 속도가 너무 빠른 경우에는 급격한 온도 상승에 의해 열적 스트레스가 가해질 수 있으므로 상기 범위의 승온 속도로 온도를 올리는 것이 바람직하다. 소결 공정을 수행한 후, 퍼니스 온도를 하강시키는데, 상기 퍼니스 냉각은 퍼니스 전원을 차단하여 자연적인 상태로 냉각되게 하거나, 임의적으로 온도 하강률(예컨대, 10℃/min)을 설정하여 냉각되게 할 수도 있다. 퍼니스 온도를 하강시키는 동안에도 퍼니스 내부의 압력은 일정하게 유지하는 것이 바람직하다. 상기 소결 공정에서 유기물(또는 폴리머) 성분은 태워져 없어지게 되며, 소결은 유기물 성분이 타는 온도보다 높은 온도에서 이루어지므로 소결 공정이 완료되면 유기물 성분은 모두 제거되게 되며, 폴리머가 위치하는 공간은 기공을 이루고 소결 공정을 거친 소결체는 다공성을 띠게 된다. Polymer foam with dip coating is sintered. The polymer foam with dip coating is charged in a furnace, etc., and the temperature is raised to a first temperature (for example, 400 to 800° C.) higher than the burning temperature of the polymer foam, and then maintained for a predetermined time to burn the polymer component. After the temperature is raised to the sintering temperature (eg, 1100 to 1600° C.), it is maintained at the sintering temperature for a predetermined time to be sintered to obtain a porous ceramic foam. As the ceramic raw material, alumina (Al 2 O 3 ) powder, cordierite (2MgO·2Al 2 O 3 ·5SiO 2 ) powder, and mullite (3Al 2 O 3 ·2SiO 2 ) powder are used. Silver is preferably carried out in an oxidizing atmosphere such as air or oxygen (O 2 ), and when silicon carbide (SiC) powder is used as the ceramic raw material, it is preferably carried out in a reducing atmosphere. It is preferable to increase the temperature up to the sintering temperature at a temperature increase rate of 1 to 50 ° C./min. If the temperature increase rate is too slow, it takes a long time to decrease productivity. Therefore, it is preferable to raise the temperature at a temperature increase rate in the above range. After performing the sintering process, the furnace temperature is lowered. The furnace cooling may be performed to cool in a natural state by shutting off the furnace power, or to cool by arbitrarily setting a temperature drop rate (eg, 10°C/min). have. It is desirable to keep the pressure inside the furnace constant even while the furnace temperature is lowered. In the sintering process, the organic (or polymer) component is burned and disappears, and since sintering is performed at a temperature higher than the temperature at which the organic component is burned, all organic components are removed when the sintering process is completed, and the space where the polymer is located is pore , and the sintered body that has undergone the sintering process becomes porous.
이렇게 제조된 다공성 세라믹 폼은 무수히 많은 기공들을 갖는 다공체이다. 상기 다공성 세라믹 폼은 미세먼지가 유입되는 통로 역할을 하는 기공(셀(cell))과, 상기 기공(셀(cell)) 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체를 포함한다. The porous ceramic foam thus prepared is a porous body having countless pores. The porous ceramic foam includes pores (cells) serving as passageways for fine dust to flow in, and a wall forming a strut of the porous ceramic foam between the pores (cells).
상기 다공성 세라믹 폼에 휘스커가 형성되어 있을 수도 있다. 더욱 구체적으로, 상기 다공성 세라믹 폼은, 미세먼지가 유입되는 통로 역할을 하는 기공(셀(cell))과, 상기 기공(셀(cell)) 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체를 포함할 수 있으며, 다수의 휘스커가 상기 벽체의 표면에서 기공(셀(cell))을 향해 돌출되어 있을 수 있다. A whisker may be formed on the porous ceramic foam. More specifically, the porous ceramic foam has pores (cells) serving as passageways for fine dust to flow in, and a wall forming a strut of the porous ceramic foam between the pores (cells). It may include, and a plurality of whiskers may protrude from the surface of the wall toward the pores (cells).
상기 휘스커는 뮬라이트(mullite, 3Al2O3·2SiO2), ZnO 및 탄화규소(SiC)로 이루어진 군으로부터 선택된 1종 이상의 침상형 세라믹 재질로 이루어질 수 있다. 상기 휘스커는 사람의 코털에 비유될 수 있고, 기공은 콧구멍에 비유될 수 있으며, 상기 벽체는 코벽(콧구멍을 둘러싸는 코의 부분)에 비유될 수 있다. 사람의 코에 코털이 있으므로 콧구멍으로 유입되는 먼지 등을 더 잘 필터링할 수 있는데, 본 발명의 발명자들은 이러한 점을 고려하여 벽체의 표면으로부터 휘스커가 돌출된 구조를 생각해내었다. 도 5는 벽체의 표면에서 휘스커가 돌출된 구조의 일 예를 개략적으로 도시한 도면이다. 도 5를 참조하면, 다공성 세라믹 폼은 미세먼지가 유입되는 통로 역할을 하는 기공(셀(cell))(112)과, 기공(셀(cell)) 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체(114)를 포함하며, 다수의 휘스커(116)가 벽체(114)의 표면에서 기공(셀(cell))(112)을 향해 돌출되어 있으며, 이에 따라 미세먼지의 필터링 효과를 극대화할 수가 있다. 상기 휘스커는 필터링시의 차압이 높아지는 것을 억제하면서 미세먼지를 효과적으로 포집하는 역할을 한다.The whisker may be made of at least one needle-shaped ceramic material selected from the group consisting of mullite (3Al 2 O 3 ·2SiO 2 ), ZnO, and silicon carbide (SiC). The whisker may be compared to the hair of a human nose, the pores may be compared to the nostrils, and the wall may be compared to the nasal wall (the portion of the nose that surrounds the nostrils). Since a person's nose has nasal hairs, it is possible to better filter dust and the like flowing into the nostrils. 5 is a diagram schematically illustrating an example of a structure in which a whisker protrudes from a surface of a wall. Referring to FIG. 5 , the porous ceramic foam forms a strut of the porous ceramic foam between pores (cells) 112 serving as passageways for fine dust to flow in, and pores (cells). It includes a wall 114, and a plurality of whiskers 116 protrude from the surface of the wall 114 toward the pores (cells) 112, thereby maximizing the filtering effect of fine dust. . The whisker serves to effectively collect fine dust while suppressing an increase in differential pressure during filtering.
이하에서, 벽체의 표면에서 돌출된 휘스커가 구비된 다공성 세라믹 폼을 제조하는 방법을 설명한다. Hereinafter, a method for manufacturing a porous ceramic foam having a whisker protruding from the surface of the wall will be described.
먼저, 뮬라이트(mullite, 3Al2O3·2SiO2) 재질로 이루어진 휘스커를 다공성 세라믹 폼 표면에 형성하는 방법을 설명한다. First, a method of forming a whisker made of a mullite (3Al 2 O 3 ·2SiO 2 ) material on the surface of the porous ceramic foam will be described.
휘스커를 구성하는 성분의 소스 물질, 바인더 및 용매를 포함하는 출발원료를 준비한다. A starting material including a source material, a binder and a solvent constituting the whisker is prepared.
상기 소스 물질은 제조할 휘스커의 주 소재를 구성하는 성분의 소스(source)를 제공하는 역할을 한다. Al 소스로는 알루미나(Alumina), 알루미늄트리부톡사이드(Alumininum tri sec butoxide)과 같은 Al 금속염 등이 사용될 수 있고, Si 소스로는 실리카 졸(Silica sol), TEOS(Tetraethyl orthosilicate), 유리(Glass), 유리 프릿(Glass frit), 플라이애쉬(Fly ash), 장석(Feldspar), 카올린(Kaolin), 점토(Clay), 키아나이트(Kyanite) 등이 사용될 수 있다. 상기 소스 물질은 뮬라이트 분말을 더 포함할 수도 있는데, 상기 뮬라이트 분말은 뮬라이트 결정 성장의 씨드(seed) 역할을 한다. 또한, 소스 물질은 F 소스로 작용하는 AlF3, NH4F와 같은 물질을 더 포함할 수도 있다. The source material serves to provide a source of a component constituting a main material of a whisker to be manufactured. Al metal salts such as alumina and aluminum tri sec butoxide may be used as the Al source, and as the Si source, silica sol, TEOS (Tetraethyl orthosilicate), glass , glass frit, fly ash, feldspar, kaolin, clay, Kyanite, etc. may be used. The source material may further include mullite powder, which serves as a seed for mullite crystal growth. In addition, the source material may further include a material such as AlF 3 , NH 4 F serving as an F source.
상기 용매(solvent)는 증류수 등일 수 있다. The solvent may be distilled water or the like.
상기 바인더는 폴리비닐알콜(polyvinyl alchol; PVA), 폴리에틸렌글리콜(polyethylene glycol; PEG) 등을 사용할 수 있다. 상기 바인더는 세라믹 슬러리의 접착력을 향상시키는 역할을 한다. 상기 바인더는 상기 출발원료에 상기 소스 물질 100중량부에 대하여 1∼50중량부 정도 함유되는 것이 바람직하다. The binder may be polyvinyl alcohol (PVA), polyethylene glycol (PEG), or the like. The binder serves to improve the adhesion of the ceramic slurry. The binder is preferably contained in an amount of 1 to 50 parts by weight based on 100 parts by weight of the source material in the starting material.
상기 출발원료는 분산제를 더 포함할 수도 있다. 상기 분산제는 상업적으로 판매되고 있는 물질을 사용할 수 있으며, 그 사용에 특별한 제한이 있는 것은 아니다. 상기 분산제는 출발원료에 상기 소스 물질 100중량부에 대하여 0.1∼25중량부 함유되는 것이 바람직하다. The starting material may further include a dispersing agent. The dispersant may use a commercially available material, and there is no particular limitation on its use. The dispersant is preferably contained in an amount of 0.1 to 25 parts by weight based on 100 parts by weight of the source material in the starting material.
상기 출발원료는 증점제를 더 포함할 수도 있다. 상기 증점제는 상업적으로 판매되고 있는 물질을 사용할 수 있으며, 그 사용에 특별한 제한이 있는 것은 아니다. 상기 증점제는 후술하는 세라믹 슬러리의 점도를 높여 침전속도를 감소시키는 역할을 한다. 상기 증점제는 출발원료에 상기 소스 물질 100중량부에 대하여 0.1∼25중량부 함유되는 것이 바람직하다. The starting material may further include a thickener. The thickener may use a commercially available material, and there is no particular limitation on its use. The thickener serves to increase the viscosity of the ceramic slurry, which will be described later, to decrease the precipitation rate. The thickener is preferably contained in an amount of 0.1 to 25 parts by weight based on 100 parts by weight of the source material in the starting material.
상기 출발원료를 혼합하여 세라믹 슬러리(ceramic slurry)를 형성한다. The starting materials are mixed to form a ceramic slurry.
상기 세라믹 슬러리(ceramic slurry)를 다공성 세라믹 폼에 딥 코팅(Dip coating) 한다. 상기 다공성 세라믹 폼을 상기 세라믹 슬러리에 완전히 담그고, 진공 분위기에서 딥 코팅을 수행하는 것이 바람직하다. The ceramic slurry is dip-coated on the porous ceramic foam. It is preferable to completely immerse the porous ceramic foam in the ceramic slurry and perform dip coating in a vacuum atmosphere.
딥 코팅이 이루어진 다공성 세라믹 폼을 건조한다. 상기 건조는 30∼90℃ 정도의 오븐(Oven)에서 수행하는 것이 바람직하다. Dry the porous ceramic foam with dip coating. The drying is preferably performed in an oven of about 30 to 90 ℃.
딥 코팅이 이루어진 다공성 세라믹 폼을 소결한다. 딥 코팅이 이루어진 다공성 세라믹 폼을 퍼니스(furnace) 등에 장입하고, 소결온도(예컨대, 1100∼1600℃)까지 승온시킨 후, 상기 소결온도에서 소정 시간 동안 유지하여 소결하여 휘스커가 형성된 다공성 세라믹 폼을 얻는다. 상기 소결은 공기(air), 산소(O2)와 같은 산화 분위기에서 수행하는 것이 바람직하다. 상기 소결온도까지는 1∼50℃/min의 승온속도로 상승시키는 것이 바람직한데, 승온 속도가 너무 느린 경우에는 시간이 오래 걸려 생산성이 떨어지고 승온 속도가 너무 빠른 경우에는 급격한 온도 상승에 의해 열적 스트레스가 가해질 수 있으므로 상기 범위의 승온 속도로 온도를 올리는 것이 바람직하다. 소결 공정을 수행한 후, 퍼니스 온도를 하강시키는데, 상기 퍼니스 냉각은 퍼니스 전원을 차단하여 자연적인 상태로 냉각되게 하거나, 임의적으로 온도 하강률(예컨대, 10℃/min)을 설정하여 냉각되게 할 수도 있다. 퍼니스 온도를 하강시키는 동안에도 퍼니스 내부의 압력은 일정하게 유지하는 것이 바람직하다. 상기 소결 공정에서 유기물(또는 폴리머) 성분은 태워져 없어지게 되며, 소결은 유기물 성분이 타는 온도보다 높은 온도에서 이루어지므로 소결 공정이 완료되면 유기물 성분은 모두 제거되게 된다. The porous ceramic foam with dip coating is sintered. The porous ceramic foam with dip coating is charged in a furnace, etc., heated to a sintering temperature (eg, 1100 to 1600° C.), and then maintained at the sintering temperature for a predetermined time to sinter to obtain a porous ceramic foam with whiskers. . The sintering is preferably performed in an oxidizing atmosphere such as air or oxygen (O 2 ). It is preferable to increase the temperature up to the sintering temperature at a temperature increase rate of 1 to 50 ° C./min. If the temperature increase rate is too slow, it takes a long time to decrease productivity. Therefore, it is preferable to raise the temperature at a temperature increase rate in the above range. After performing the sintering process, the furnace temperature is lowered. The furnace cooling may be performed to cool in a natural state by shutting off the furnace power, or to cool by arbitrarily setting a temperature drop rate (eg, 10°C/min). have. It is desirable to keep the pressure inside the furnace constant even while the furnace temperature is lowered. In the sintering process, the organic (or polymer) component is burned away, and since the sintering is performed at a temperature higher than the temperature at which the organic component burns, all the organic components are removed when the sintering process is completed.
이렇게 제조된 다공성 세라믹 폼은 무수히 많은 기공들을 갖는 다공체로서, 미세먼지가 유입되는 통로 역할을 하는 기공(셀(cell))과, 상기 기공(셀(cell)) 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체를 포함하며, 다수의 뮬라이트 휘스커가 상기 벽체의 표면에서 기공(셀(cell))을 향해 돌출되어 있다. The porous ceramic foam prepared in this way is a porous body having countless pores, the pores (cells) serving as passageways for fine dust to flow in, and the struts of the porous ceramic foam between the pores (cells). ), and a plurality of mullite whiskers protrude from the surface of the wall toward pores (cells).
이하에서, ZnO 재질로 이루어진 휘스커를 다공성 세라믹 폼 표면에 형성하는 방법을 설명한다. Hereinafter, a method of forming a whisker made of a ZnO material on the surface of the porous ceramic foam will be described.
용매에 휘스커를 구성하는 성분의 소스 물질을 혼합하여 씨드 용액(seed solution)을 형성한다. 상기 소스 물질은 제조할 휘스커의 주 소재인 ZnO를 구성하는 성분의 소스(source)를 제공하는 역할을 한다. 상기 소스 물질로는 Zn의 소스(source) 역할을 하는 질산아연 6수화물(zinc nitrate hexahydrate; Zn(NO3)2·6H2O) 등을 사용할 수 있다. 상기 용매는 에탄올과 같은 알콜 등일 수 있다.A seed solution is formed by mixing a solvent and a source material constituting the whisker. The source material serves to provide a source of a component constituting ZnO, which is a main material of a whisker to be manufactured. As the source material, zinc nitrate hexahydrate (Zn(NO 3 ) 2 .6H 2 O) serving as a source of Zn may be used. The solvent may be an alcohol such as ethanol.
상기 씨드 용액을 다공성 세라믹 폼에 딥 코팅(Dip coating) 한다. 상기 다공성 세라믹 폼을 상기 씨드 용액에 완전히 담그고, 진공 분위기에서 딥 코팅을 수행하는 것이 바람직하다. The seed solution is dip-coated on the porous ceramic foam. It is preferable to completely immerse the porous ceramic foam in the seed solution and perform dip coating in a vacuum atmosphere.
딥 코팅이 이루어진 다공성 세라믹 폼을 어닐링(annealing) 한다. 상기 어닐링에 의해 씨드 용액이 다공성 세라믹 폼에 잘 접착될 수가 있다. 상기 어닐링은 120∼300℃ 정도의 오븐(Oven)에서 수행하는 것이 바람직하다. Annealing the porous ceramic foam with dip coating. By the annealing, the seed solution may be well adhered to the porous ceramic foam. The annealing is preferably performed in an oven at about 120 to 300 °C.
휘스커를 구성하는 성분의 소스 물질, 성장촉진제, 바인더 및 용매를 포함하는 출발원료를 준비한다. A starting material including a source material constituting the whisker, a growth promoter, a binder, and a solvent is prepared.
상기 소스 물질은 제조할 휘스커의 주 소재인 ZnO를 구성하는 성분의 소스(source)를 제공하는 역할을 한다. 상기 소스 물질로는 Zn의 소스(source) 역할을 하는 질산아연 6수화물(zinc nitrate hexahydrate; Zn(NO3)2·6H2O) 등을 사용할 수 있다. The source material serves to provide a source of a component constituting ZnO, which is a main material of a whisker to be manufactured. As the source material, zinc nitrate hexahydrate (Zn(NO 3 ) 2 .6H 2 O) serving as a source of Zn may be used.
상기 성장촉진제는 헥사메틸렌테트라민(Hexamethylenetetramine) 분말 등을 사용할 수 있다. 상기 성장촉진제는 상기 출발원료에 상기 소스 물질 100중량부에 대하여 50∼200중량부 정도 함유되는 것이 바람직하다. The growth promoter may be hexamethylenetetramine (Hexamethylenetetramine) powder or the like. The growth promoter is preferably contained in an amount of 50 to 200 parts by weight based on 100 parts by weight of the source material in the starting material.
상기 바인더는 폴리비닐알콜(polyvinyl alchol; PVA), 폴리에틸렌글리콜(polyethylene glycol; PEG) 등을 사용할 수 있다. 상기 바인더는 세라믹 슬러리의 접착력을 향상시키는 역할을 한다. 상기 바인더는 상기 출발원료에 상기 소스 물질 100중량부에 대하여 1∼50중량부 정도 함유되는 것이 바람직하다. The binder may be polyvinyl alcohol (PVA), polyethylene glycol (PEG), or the like. The binder serves to improve the adhesion of the ceramic slurry. The binder is preferably contained in an amount of 1 to 50 parts by weight based on 100 parts by weight of the source material in the starting material.
상기 용매는 에탄올과 같은 알콜 등일 수 있다.The solvent may be an alcohol such as ethanol.
상기 출발원료를 혼합하여 성장 용액을 형성한다. The starting materials are mixed to form a growth solution.
상기 성장 용액을 어닐링이 이루어진 다공성 세라믹 폼에 딥 코팅(Dip coating) 한다. 상기 다공성 세라믹 폼을 상기 성장 용액에 완전히 담그고, 진공 분위기에서 딥 코팅을 수행하는 것이 바람직하다. The growth solution is dip-coated on the annealed porous ceramic foam. It is preferable to completely immerse the porous ceramic foam in the growth solution and perform dip coating in a vacuum atmosphere.
성장 용액으로 딥 코팅이 이루어진 다공성 세라믹 폼을 다공성 세라믹 폼을 소결한다. 성장 용액으로 딥 코팅이 이루어진 다공성 세라믹 폼을 퍼니스(furnace) 등에 장입하고, 소결온도(예컨대, 1000∼1500℃)까지 승온시킨 후, 상기 소결온도에서 소정 시간 동안 유지하여 소결하여 휘스커가 형성된 다공성 세라믹 폼을 얻는다. 상기 소결은 공기(air), 산소(O2)와 같은 산화 분위기에서 수행하는 것이 바람직하다. 상기 소결온도까지는 1∼50℃/min의 승온속도로 상승시키는 것이 바람직한데, 승온 속도가 너무 느린 경우에는 시간이 오래 걸려 생산성이 떨어지고 승온 속도가 너무 빠른 경우에는 급격한 온도 상승에 의해 열적 스트레스가 가해질 수 있으므로 상기 범위의 승온 속도로 온도를 올리는 것이 바람직하다. 소결 공정을 수행한 후, 퍼니스 온도를 하강시키는데, 상기 퍼니스 냉각은 퍼니스 전원을 차단하여 자연적인 상태로 냉각되게 하거나, 임의적으로 온도 하강률(예컨대, 10℃/min)을 설정하여 냉각되게 할 수도 있다. 퍼니스 온도를 하강시키는 동안에도 퍼니스 내부의 압력은 일정하게 유지하는 것이 바람직하다. 상기 소결 공정에서 유기물(또는 폴리머) 성분은 태워져 없어지게 되며, 소결은 유기물 성분이 타는 온도보다 높은 온도에서 이루어지므로 소결 공정이 완료되면 유기물 성분은 모두 제거되게 된다. The porous ceramic foam is sintered with a porous ceramic foam that has been dip-coated with a growth solution. A porous ceramic foam having a dip coating with a growth solution is charged in a furnace, etc., heated to a sintering temperature (eg, 1000 to 1500° C.), and then maintained at the sintering temperature for a predetermined time and sintered to form a porous ceramic with whiskers. get the form The sintering is preferably performed in an oxidizing atmosphere such as air or oxygen (O 2 ). It is preferable to increase the temperature up to the sintering temperature at a temperature increase rate of 1 to 50 ° C./min. If the temperature increase rate is too slow, it takes a long time to decrease productivity. Therefore, it is preferable to raise the temperature at a temperature increase rate in the above range. After performing the sintering process, the furnace temperature is lowered. The furnace cooling may be performed to cool in a natural state by shutting off the furnace power, or to cool by arbitrarily setting a temperature drop rate (eg, 10°C/min). have. It is desirable to keep the pressure inside the furnace constant even while the furnace temperature is lowered. In the sintering process, the organic (or polymer) component is burned away, and since the sintering is performed at a temperature higher than the temperature at which the organic component burns, all the organic components are removed when the sintering process is completed.
이렇게 제조된 다공성 세라믹 폼은 무수히 많은 기공들을 갖는 다공체로서, 미세먼지가 유입되는 통로 역할을 하는 기공(셀(cell))과, 상기 기공(셀(cell)) 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체를 포함하며, 다수의 ZnO 휘스커가 상기 벽체의 표면에서 기공(셀(cell))을 향해 돌출되어 있다. The porous ceramic foam prepared in this way is a porous body having countless pores, the pores (cells) serving as passageways for fine dust to flow in, and the struts of the porous ceramic foam between the pores (cells). ), and a plurality of ZnO whiskers protrude from the surface of the wall toward pores (cells).
이하에서, SiC 재질로 이루어진 휘스커를 다공성 세라믹 폼 표면에 형성하는 방법을 설명한다. Hereinafter, a method of forming a whisker made of a SiC material on the surface of the porous ceramic foam will be described.
다공성 세라믹 폼을 튜브로 등의 성장장치에 장입한다. 휘스커(whisker) 성장의 소스로 사용될 실리카 분말(Silica powder)과 카본 분말(Carbon powder)을 준비한다. 상기 실리카 분말(Silica powder)과 카본 분말(Carbon powder)은 1:1 내지 1:2의 중량비를 이루게 하는 것이 바람직하다. 성장장치 내의 온도를 반응온도(예컨대, 1350∼1600℃)로 상승시키고, 캐리어 가스(Carrier gas)를 이용하여 실리카 분말(Silica powder)과 카본 분말(Carbon powder)을 성장장치로 유입되게 하여 다공성 세라믹 폼 표면에서 SiC 휘스커가 성장되게 한다. The porous ceramic foam is loaded into a growth device such as a tube furnace. Prepare silica powder and carbon powder to be used as a source of whisker growth. Preferably, the silica powder and the carbon powder have a weight ratio of 1:1 to 1:2. The temperature in the growth device is raised to a reaction temperature (eg, 1350 to 1600° C.), and silica powder and carbon powder are introduced into the growth device using a carrier gas to introduce a porous ceramic Allow SiC whiskers to grow on the foam surface.
이렇게 제조된 다공성 세라믹 폼은 무수히 많은 기공들을 갖는 다공체로서, 미세먼지가 유입되는 통로 역할을 하는 기공(셀(cell))과, 상기 기(셀(cell))공 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체를 포함하며, 다수의 SiC 휘스커가 상기 벽체의 표면에서 기공(셀(cell))을 향해 돌출되어 있다. The porous ceramic foam prepared in this way is a porous body having countless pores, with pores (cells) serving as passageways for fine dust to flow in, and a skeleton (cell) of the porous ceramic foam between the pores (cells). strut), and a plurality of SiC whiskers protrude from the surface of the wall toward pores (cells).
다공성 세라믹 폼을 제조하는 방법과 다공성 세라믹 폼에 휘스커를 형성하는 방법을 설명하였으나, 다공성 세라믹 폼의 제조 방법과 휘스커의 형성 방법은 다양할 수 있으며 상술한 예들에 한정되는 것은 아니다.Although the method of manufacturing the porous ceramic foam and the method of forming the whisker on the porous ceramic foam have been described, the method of manufacturing the porous ceramic foam and the method of forming the whisker may vary and are not limited to the above-described examples.
상부 컬렉터(130)는 상술한 다공성 세라믹 폼으로 이루어질 수도 있지만, 세라믹 섬유가 네트워크 형태로 얽혀있는 세라믹 섬유 필터로 이루어질 수도 있다. 이 경우, 상부 컬렉터(130)에 분포하는 기공들은 50㎚∼10㎛의 평균 크기를 갖는 것이 바람직하다. 상기 세라믹 섬유는 알루미나(Al2O3), 코디어라이트(cordierite, 2MgO·2Al2O3·5SiO2), 뮬라이트(mullite, 3Al2O3·2SiO2), 탄화규소(SiC) 또는 이들의 혼합물과 같이 내열성을 갖는 세라믹 재질로 이루어지는 것이 바람직하다. The upper collector 130 may be formed of the above-described porous ceramic foam, but may also be formed of a ceramic fiber filter in which ceramic fibers are entangled in a network form. In this case, the pores distributed in the upper collector 130 preferably have an average size of 50 nm to 10 μm. The ceramic fiber is alumina (Al 2 O 3 ), cordierite (cordierite, 2MgO·2Al 2 O 3 ·5SiO 2 ), mullite (mullite, 3Al 2 O 3 ·2SiO 2 ), silicon carbide (SiC) or these It is preferable that the mixture is made of a ceramic material having heat resistance.
세라믹 섬유 재질의 상부 컬렉터(130)는 세라믹 섬유를 전기방사하여 제조하는 등의 방법으로 제조할 수 있다. 예컨대, 세라믹 섬유를 포함하는 용액을 전압차 1∼100kV, 방사 유속 0.1∼10㎖/hr, 방사 거리 2∼50㎝, 노즐의 구멍 크기 0.01∼2.0㎜의 조건으로 전기방사를 실시하여 세라믹 섬유가 네트워크 형태로 얽혀있는 세라믹 섬유 필터를 제조할 수 있다. The upper collector 130 made of a ceramic fiber material may be manufactured by a method such as electrospinning the ceramic fiber. For example, by electrospinning a solution containing ceramic fibers under the conditions of a voltage difference of 1 to 100 kV, a spinning flow rate of 0.1 to 10 ml/hr, a spinning distance of 2 to 50 cm, and a nozzle hole size of 0.01 to 2.0 mm, the ceramic fibers are formed. Ceramic fiber filters entangled in a network can be manufactured.
<실시예 2><Example 2>
포집장치의 구성은 상기 실시예 1과 동일하고, 제1 컬렉터(110), 제2 컬렉터(120) 또는 상부 컬렉터(130)를 구성하는 다공성 세라믹 폼만이 다르게 구성되며, 따라서 포집장치에 대한 설명은 생략한다. 이하에서, 실시예 1에서와 다른 다공성 세라믹 폼에 대하여만 설명한다. The configuration of the collecting device is the same as that of the first embodiment, and only the porous ceramic foam constituting the first collector 110, the second collector 120, or the upper collector 130 is configured differently, so the description of the collecting device is omit Hereinafter, only the porous ceramic foam different from that in Example 1 will be described.
제1 컬렉터(110)와 제2 컬렉터(120)는 다공성 세라믹 폼(porous ceramic foam)으로 이루어진다. 제1 컬렉터(110)와 제2 컬렉터(120)는 알루미나(Al2O3), 코디어라이트(cordierite, 2MgO·2Al2O3·5SiO2), 뮬라이트(mullite, 3Al2O3·2SiO2), 탄화규소(SiC) 또는 이들의 혼합물과 같이 내열성을 갖는 다공성 세라믹 폼으로 이루어지는 것이 바람직하다. 제1 컬렉터(110) 및 제2 컬렉터(120)는 로터(10)의 바깥 둘레면 일부를 덮도록 돌출된 단턱부(200)를 갖는 다공성 세라믹 폼으로 이루어질 수 있다.The first collector 110 and the second collector 120 are made of porous ceramic foam. The first collector 110 and the second collector 120 are alumina (Al 2 O 3 ), cordierite (2MgO·2Al 2 O 3 ·5SiO 2 ), mullite (mullite, 3Al 2 O 3 ·2SiO 2 ) ), silicon carbide (SiC), or a mixture thereof is preferably made of a porous ceramic foam having heat resistance. The first collector 110 and the second collector 120 may be formed of a porous ceramic foam having a stepped portion 200 protruding to cover a portion of an outer peripheral surface of the rotor 10 .
상기 다공성 세라믹 폼은 기공율이 40∼90%, 더욱 바람직하게는 60∼85% 정도인 것이 바람직하다. 기공율이 너무 낮을 경우에는 미세먼지 필터링 효율이 낮을 수 있고, 기공율이 너무 높을 경우에는 진동 충격 등에 쉽게 크랙 등의 생기거나 깨지거나 하여 내구성이 저하될 수 있다. 상기 다공성 세라믹 폼에 분포하는 기공(셀) 크기는 50㎛∼2㎜ 정도인 것이 바람직하고, 벽체에 형성되는 기공의 크기는 50㎚∼50㎛ 정도인 것이 바람직하다.The porous ceramic foam preferably has a porosity of 40 to 90%, more preferably about 60 to 85%. If the porosity is too low, fine dust filtering efficiency may be low, and if the porosity is too high, cracks or breakage may occur easily due to vibration or impact, and thus durability may be reduced. The size of the pores (cells) distributed in the porous ceramic foam is preferably about 50 μm to 2 mm, and the size of the pores formed on the wall is preferably about 50 nm to 50 μm.
상부 컬렉터(130)도 다공성 세라믹 폼으로 이루어질 수 있다. 상부 컬렉터(130)는 알루미나(Al2O3), 코디어라이트(cordierite, 2MgO·2Al2O3·5SiO2), 뮬라이트(mullite, 3Al2O3·2SiO2), 탄화규소(SiC) 또는 이들의 혼합물과 같이 내열성을 갖는 다공성 세라믹 폼으로 이루어지는 것이 바람직하다. 상부 컬렉터(130)는 로터(10)의 바깥 둘레면에 배치되어 로터(10)로 먼지 등의 이물질이 유입되는 것을 방지하는 역할도 한다. The upper collector 130 may also be formed of a porous ceramic foam. The upper collector 130 is alumina (Al 2 O 3 ), cordierite (cordierite, 2MgO·2Al 2 O 3 ·5SiO 2 ), mullite (mullite, 3Al 2 O 3 ·2SiO 2 ), silicon carbide (SiC) or It is preferable to form a porous ceramic foam having heat resistance, such as a mixture thereof. The upper collector 130 is disposed on the outer peripheral surface of the rotor 10 and also serves to prevent foreign substances such as dust from entering the rotor 10 .
상기 다공성 세라믹 폼은 무수히 많은 기공들을 갖는 다공체이다. 상기 다공성 세라믹 폼은 미세먼지가 유입되는 통로 역할을 하는 기공(셀(cell))과, 상기 기공(셀(cell)) 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체를 포함한다. The porous ceramic foam is a porous body having countless pores. The porous ceramic foam includes pores (cells) serving as passageways through which fine dust is introduced, and a wall forming a strut of the porous ceramic foam between the pores (cells).
상기 다공성 세라믹 폼은 제2 영역(B)에 비해 상대적으로 작은 크기의 기공들이 분포하는 제1 영역(A)과, 제1 영역(A)에 비해 상대적으로 큰 크기의 기공들이 분포하는 제2 영역(B)을 포함한다. The porous ceramic foam has a first region (A) in which pores having a relatively small size are distributed compared to the second region (B), and a second region in which pores having a relatively large size are distributed compared to the first region (A). (B) is included.
도 6은 제2 영역(B)에 비해 상대적으로 작은 크기의 기공들이 분포하는 제1 영역(A)과, 제 영역(A)에 비해 상대적으로 큰 크기의 기공들이 분포하는 제2 영역(B)을 포함하는 다공성 세라믹 폼을 개략적으로 도시한 도면이고, 도 7은 제1 영역(A)과 제2 영역(B)을 더욱 명확하게 나타내기 위하여 도 6에 나타낸 다공성 세라믹 폼의 일부를 절단하여 나타낸 도면이다. 6 shows a first region (A) in which pores having a relatively small size are distributed compared to the second region (B), and a second region (B) in which pores having a relatively large size are distributed compared to the second region (A). It is a view schematically showing a porous ceramic foam including It is a drawing.
도 6 및 도 7을 참조하면, 상기 다공성 세라믹 폼은 제2 영역(B)에 비해 상대적으로 작은 크기의 기공들(제1 크기의 기공들)이 분포하는 제1 영역(A)과, 제1 영역(A)에 비해 상대적으로 큰 크기의 기공들(제2 크기의 기공들)이 분포하는 제2 영역(B)을 포함할 수 있고, 제1 영역(A)은 제2 영역(B)에서 포집되는 미세먼지보다 더 작은 크기의 미세먼지를 포집할 수 있다. 제2 크기의 기공들은 제1 크기의 기공들보다 평균입경이 크고, 제1 영역(A)보다 제2 영역(B)이 상기 로터에 더 인접하게 위치되는 것이 바람직하다. Referring to FIGS. 6 and 7 , the porous ceramic foam has a first region (A) in which pores (pores of a first size) having a relatively smaller size than that of the second region (B) are distributed, and a first It may include a second region B in which pores (pores of second size) having a relatively larger size than that of the region A are distributed, and the first region A is formed in the second region B. It is possible to collect fine dust of a smaller size than the collected fine dust. It is preferable that the pores of the second size have an average particle diameter larger than that of the pores of the first size, and that the second area B is located closer to the rotor than the first area A.
제1 영역(A)과 제2 영역(B)을 포함하는 다공성 세라믹 폼은 표면에 물방울이 맺히는 것을 억제하기 위하여 소수성(hydrophobic) 코팅막으로 도포되어 있을 수 있다. 소수성을 갖게 하기 위하여 다공성 세라믹 재질에 소수성을 갖는 물질을 코팅하여 다공성 세라믹 폼을 제조할 수 있다. 친수성(hydorphilic)을 가질 경우에 다공성 세라믹 폼의 표면에 물방울이 다량으로 맺힐 수 있어서 필터링 효과가 저하될 수 있다. 소수성 코팅막은 10㎚∼2㎛ 정도의 두께로 구비되는 것이 바람직하다. The porous ceramic foam including the first region (A) and the second region (B) may be coated with a hydrophobic coating film to suppress water droplets from forming on the surface. In order to have hydrophobicity, a porous ceramic foam may be manufactured by coating the porous ceramic material with a hydrophobic material. In the case of having hydrophilic properties, a large amount of water droplets may form on the surface of the porous ceramic foam, thereby reducing the filtering effect. The hydrophobic coating film is preferably provided with a thickness of about 10 nm to 2 μm.
이하에서, 제1 영역(A)과 제2 영역(B)을 포함하는 다공성 세라믹 폼을 제조하는 방법을 설명한다. Hereinafter, a method of manufacturing the porous ceramic foam including the first region (A) and the second region (B) will be described.
다공성 세라믹 폼를 제조하기 위하여 기판(substrate)으로 다공성의 폴리머 폼(polymer foam)(예컨대, 폴리우레탄 폼(polyurethane foam))을 사용한다. 상기 폴리머 폼은 스펀지(sponge)와 같이 탄성이 있는 다공성 물질이다. 상기 폴리머 폼의 기공율, 기공 크기 등은 이후 제조되는 다공성 세라믹 폼의 기공율, 기공 크기 등에 영향을 미친다. 제조하려는 다공성 세라믹 폼의 형상에 대응되게 폴리머 폼(polymer foam)을 자른 후 초음파 세척 등을 통해 세척하고 건조한다. 상기 건조는 폴리머 폼의 용융 온도보다 낮은 30∼90℃ 정도의 오븐(Oven)에서 수행하는 것이 바람직하다. A porous polymer foam (eg, polyurethane foam) is used as a substrate to prepare the porous ceramic foam. The polymer foam is a porous material having elasticity, such as a sponge. The porosity, pore size, etc. of the polymer foam affect the porosity, pore size, etc. of the porous ceramic foam to be manufactured later. After cutting the polymer foam to correspond to the shape of the porous ceramic foam to be manufactured, it is washed and dried through ultrasonic cleaning or the like. The drying is preferably performed in an oven of about 30 to 90 ℃ lower than the melting temperature of the polymer foam.
세라믹 원료, 바인더 및 용매를 포함하는 출발원료를 준비한다. A starting material including a ceramic raw material, a binder and a solvent is prepared.
상기 세라믹 원료는 제작할 다공성 세라믹 폼(세라믹 다공체)의 주 소재이다. 상기 세라믹 원료는 알루미나(Al2O3) 분말, 코디어라이트(cordierite, 2MgO·2Al2O3·5SiO2) 분말, 뮬라이트(mullite, 3Al2O3·2SiO2) 분말, 탄화규소(SiC) 분말 또는 이들의 혼합분말 등일 수 있다. 제조되는 다공성 세라믹 폼의 기공율, 기공 크기, 강도 등을 고려하여 상기 세라믹 원료는 10㎚∼40㎛, 더욱 바람직하게는 100㎚∼30㎛인 정도의 평균입경을 갖는 분말을 사용하는 것이 바람직하다. The ceramic raw material is a main material of the porous ceramic foam (ceramic porous body) to be produced. The ceramic raw material is alumina (Al 2 O 3 ) powder, cordierite (2MgO·2Al 2 O 3 ·5SiO 2 ) powder, mullite (3Al 2 O 3 ·2SiO 2 ) powder, silicon carbide (SiC) It may be a powder or a mixed powder thereof. In consideration of the porosity, pore size, strength, etc. of the porous ceramic foam to be manufactured, it is preferable to use a powder having an average particle diameter of about 10 nm to 40 μm, more preferably 100 nm to 30 μm, as the ceramic raw material.
상기 출발원료는 유리 프릿(Glass frit)을 더 포함할 수 있다. 상기 유리 프릿은 상기 출발원료에 상기 세라믹 원료 100중량부에 대하여 0.01∼45중량부, 더욱 바람직하게는 0.1∼40중량부 정도 함유되는 것이 바람직하다. 상기 유리 프릿은 소결온도를 낮추고, 다공성 세라믹 폼 자체에 Si를 함유시키는 역할을 역할을 할 뿐만 아니라, 휘스커의 성장성을 향상시키는 역할을 할 수 있다. The starting material may further include a glass frit. The glass frit is preferably contained in an amount of 0.01 to 45 parts by weight, more preferably 0.1 to 40 parts by weight, based on 100 parts by weight of the ceramic raw material in the starting material. The glass frit may serve to lower the sintering temperature and to contain Si in the porous ceramic foam itself, as well as to improve the growth property of the whisker.
상기 용매(solvent)는 증류수 등일 수 있다. The solvent may be distilled water or the like.
상기 바인더는 폴리비닐알콜(polyvinyl alchol; PVA), 폴리에틸렌글리콜(polyethylene glycol; PEG) 등을 사용할 수 있다. 상기 바인더는 세라믹 슬러리의 접착력을 향상시키는 역할을 한다. 상기 바인더는 상기 출발원료에 상기 세라믹 원료 100중량부에 대하여 1∼50중량부 정도 함유되는 것이 바람직하다. The binder may be polyvinyl alcohol (PVA), polyethylene glycol (PEG), or the like. The binder serves to improve the adhesion of the ceramic slurry. The binder is preferably contained in an amount of 1 to 50 parts by weight based on 100 parts by weight of the ceramic raw material in the starting material.
상기 출발원료는 분산제를 더 포함할 수도 있다. 상기 분산제는 상업적으로 판매되고 있는 물질을 사용할 수 있으며, 그 사용에 특별한 제한이 있는 것은 아니다. 상기 분산제는 출발원료에 상기 세라믹 원료 100중량부에 대하여 0.1∼25중량부 함유되는 것이 바람직하다. The starting material may further include a dispersing agent. The dispersant may use a commercially available material, and there is no particular limitation on its use. The dispersant is preferably contained in an amount of 0.1 to 25 parts by weight based on 100 parts by weight of the ceramic raw material in the starting material.
상기 출발원료를 혼합하여 세라믹 슬러리(ceramic slurry)를 형성한다. The starting materials are mixed to form a ceramic slurry.
상기 세라믹 슬러리(ceramic slurry)를 폴리머 폼에 딥 코팅(Dip coating) 한다. 상기 폴리머 폼을 상기 세라믹 슬러리에 완전히 담그고, 진공 분위기에서 딥 코팅을 수행하는 것이 바람직하다. 딥 코팅 후, 폴리머 폼에 함유된 과량의 슬러리를 빼기 위해 외력을 주어 폴리머 폼을 압축했다가 압축을 해제하여 원래의 폴리머 폼 형태로 복귀되게 하고, 이러한 방식에 의해 폴리머 폼에 함유된 일부 슬러리가 폴리머 폼에서 빠져나오게 할 수도 있다.The ceramic slurry is dip-coated on the polymer foam. Preferably, the polymer foam is completely immersed in the ceramic slurry and dip coating is performed in a vacuum atmosphere. After dip coating, the polymer foam is compressed by applying an external force to remove the excess slurry contained in the polymer foam, and then released to return to the original polymer foam form, and in this way, some of the slurry contained in the polymer foam is It can also be pulled out of the polymer foam.
딥 코팅이 이루어진 폴리머 폼을 건조한다. 상기 건조는 폴리머 폼의 용융 온도보다 낮은 30∼90℃ 정도의 오븐(Oven)에서 수행하는 것이 바람직하다. Dry the dip-coated polymer foam. The drying is preferably performed in an oven of about 30 to 90 ℃ lower than the melting temperature of the polymer foam.
딥 코팅이 이루어진 폴리머 폼을 소결한다. 딥 코팅이 이루어진 폴리머 폼을 퍼니스(furnace) 등에 장입하고, 폴리머 폼의 타는 온도보다 높은 제1 온도(예컨대, 400∼800℃)까지 승온시킨 후, 소정 시간 동안 유지하여 폴리머(polymer) 성분이 태워져서 제거되게 하며, 소결온도(예컨대, 1100∼1600℃)까지 승온시킨 후, 상기 소결온도에서 소정 시간 동안 유지하여 소결하고, 로냉하여 다공성 세라믹 폼을 얻는다. 상기 세라믹 원료로 알루미나(Al2O3) 분말, 코디어라이트(cordierite, 2MgO·2Al2O3·5SiO2) 분말, 뮬라이트(mullite, 3Al2O3·2SiO2) 분말을 사용한 경우에 상기 소결은 공기(air), 산소(O2)와 같은 산화 분위기에서 수행하는 것이 바람직하며, 상기 세라믹 원료로 탄화규소(SiC) 분말을 사용한 경우에는 환원 분위기에서 수행하는 것이 바람직하다. 상기 소결온도까지는 1∼50℃/min의 승온속도로 상승시키는 것이 바람직한데, 승온 속도가 너무 느린 경우에는 시간이 오래 걸려 생산성이 떨어지고 승온 속도가 너무 빠른 경우에는 급격한 온도 상승에 의해 열적 스트레스가 가해질 수 있으므로 상기 범위의 승온 속도로 온도를 올리는 것이 바람직하다. 소결 공정을 수행한 후, 퍼니스 온도를 하강시키는데, 상기 퍼니스 냉각은 퍼니스 전원을 차단하여 자연적인 상태로 냉각되게 하거나, 임의적으로 온도 하강률(예컨대, 10℃/min)을 설정하여 냉각되게 할 수도 있다. 퍼니스 온도를 하강시키는 동안에도 퍼니스 내부의 압력은 일정하게 유지하는 것이 바람직하다. 상기 소결 공정에서 유기물(또는 폴리머) 성분은 태워져 없어지게 되며, 소결은 유기물 성분이 타는 온도보다 높은 온도에서 이루어지므로 소결 공정이 완료되면 유기물 성분은 모두 제거되게 되며, 폴리머가 위치하는 공간은 기공을 이루고 소결 공정을 거친 소결체는 다공성을 띠게 된다. Polymer foam with dip coating is sintered. The polymer foam with dip coating is charged in a furnace, etc., and the temperature is raised to a first temperature (for example, 400 to 800° C.) higher than the burning temperature of the polymer foam, and then maintained for a predetermined time to burn the polymer component. After the temperature is raised to the sintering temperature (eg, 1100 to 1600° C.), the sintering is maintained at the sintering temperature for a predetermined time, and the porous ceramic foam is obtained by furnace cooling. As the ceramic raw material, alumina (Al 2 O 3 ) powder, cordierite (2MgO·2Al 2 O 3 ·5SiO 2 ) powder, and mullite (3Al 2 O 3 ·2SiO 2 ) powder are used. Silver is preferably carried out in an oxidizing atmosphere such as air or oxygen (O 2 ), and when silicon carbide (SiC) powder is used as the ceramic raw material, it is preferably carried out in a reducing atmosphere. It is preferable to increase the temperature up to the sintering temperature at a temperature increase rate of 1 to 50 ° C./min. If the temperature increase rate is too slow, it takes a long time to decrease productivity. Therefore, it is preferable to raise the temperature at a temperature increase rate in the above range. After performing the sintering process, the furnace temperature is lowered. The furnace cooling may be performed to cool in a natural state by shutting off the furnace power, or to cool by arbitrarily setting a temperature drop rate (eg, 10°C/min). have. It is desirable to keep the pressure inside the furnace constant even while the furnace temperature is lowered. In the sintering process, the organic (or polymer) component is burned and disappears, and since sintering is performed at a temperature higher than the temperature at which the organic component is burned, all organic components are removed when the sintering process is completed, and the space where the polymer is located is pore , and the sintered body that has undergone the sintering process becomes porous.
이렇게 제조된 다공성 세라믹 폼은 무수히 많은 기공들을 갖는 다공체로서, 미세먼지가 유입되는 통로 역할을 하는 기공(셀(cell))과, 상기 기공(셀(cell)) 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체를 포함하며, 제1 영역(A)에 비해 상대적으로 큰 크기의 기공들이 분포하는 제2 영역(B)과 동일 또는 유사한 크기의 기공들(제2 크기의 기공들)이 분포한다. The porous ceramic foam prepared in this way is a porous body having countless pores, the pores (cells) serving as passageways for fine dust to flow in, and the struts of the porous ceramic foam between the pores (cells). ), and pores (pores of the second size) of the same or similar size to the second region (B) in which pores having a relatively larger size than that of the first region (A) are distributed .
제2 영역(B)에 비해 상대적으로 작은 크기의 기공들(제1 크기의 기공들)이 분포하는 제1 영역(A)을 형성하기 위하여 세라믹 원료, 바인더 및 용매를 포함하는 출발원료를 준비한다. 상기 세라믹 원료는 다공성 세라믹 폼의 주성분인 세라믹과 동일한 재질의 분말을 사용하는 것이 바람직하다. 상기 세라믹 원료는 알루미나(Al2O3) 분말, 코디어라이트(cordierite, 2MgO·2Al2O3·5SiO2) 분말, 뮬라이트(mullite, 3Al2O3·2SiO2) 분말, 탄화규소(SiC) 분말 또는 이들의 혼합분말 등일 수 있다. 제조되는 다공성 세라믹 폼의 기공율, 기공 크기, 강도 등을 고려하여 상기 세라믹 원료는 10㎚∼40㎛, 더욱 바람직하게는 100㎚∼30㎛인 정도의 평균입경을 갖는 분말을 사용하는 것이 바람직하다. Prepare a starting material including a ceramic raw material, a binder, and a solvent to form a first region (A) in which pores (pores of the first size) having a relatively smaller size than that of the second region (B) are distributed . As the ceramic raw material, it is preferable to use a powder of the same material as the ceramic, which is the main component of the porous ceramic foam. The ceramic raw material is alumina (Al 2 O 3 ) powder, cordierite (2MgO·2Al 2 O 3 ·5SiO 2 ) powder, mullite (3Al 2 O 3 ·2SiO 2 ) powder, silicon carbide (SiC) It may be a powder or a mixed powder thereof. In consideration of the porosity, pore size, strength, etc. of the porous ceramic foam to be manufactured, it is preferable to use a powder having an average particle diameter of about 10 nm to 40 μm, more preferably 100 nm to 30 μm, as the ceramic raw material.
상기 출발원료는 유리 프릿(Glass frit)을 더 포함할 수 있다. 상기 유리 프릿은 상기 출발원료에 상기 세라믹 원료 100중량부에 대하여 0.01∼45중량부, 더욱 바람직하게는 0.1∼40중량부 정도 함유되는 것이 바람직하다. 상기 유리 프릿은 소결온도를 낮추고, 다공성 세라믹 폼 자체에 Si를 함유시키는 역할을 역할을 할 뿐만 아니라, 휘스커의 성장성을 향상시키는 역할을 할 수 있다. The starting material may further include a glass frit. The glass frit is preferably contained in an amount of 0.01 to 45 parts by weight, more preferably 0.1 to 40 parts by weight, based on 100 parts by weight of the ceramic raw material in the starting material. The glass frit may serve to lower the sintering temperature and to contain Si in the porous ceramic foam itself, as well as to improve the growth property of the whisker.
상기 용매(solvent)는 증류수 등일 수 있다. The solvent may be distilled water or the like.
상기 바인더는 폴리비닐알콜(polyvinyl alchol; PVA), 폴리에틸렌글리콜(polyethylene glycol; PEG) 등을 사용할 수 있다. 상기 바인더는 세라믹 슬러리의 접착력을 향상시키는 역할을 한다. 상기 바인더는 상기 출발원료에 상기 세라믹 원료 100중량부에 대하여 1∼50중량부 정도 함유되는 것이 바람직하다. The binder may be polyvinyl alcohol (PVA), polyethylene glycol (PEG), or the like. The binder serves to improve the adhesion of the ceramic slurry. The binder is preferably contained in an amount of 1 to 50 parts by weight based on 100 parts by weight of the ceramic raw material in the starting material.
상기 출발원료는 분산제를 더 포함할 수도 있다. 상기 분산제는 상업적으로 판매되고 있는 물질을 사용할 수 있으며, 그 사용에 특별한 제한이 있는 것은 아니다. 상기 분산제는 출발원료에 상기 세라믹 원료 100중량부에 대하여 0.1∼25중량부 함유되는 것이 바람직하다. The starting material may further include a dispersing agent. The dispersant may use a commercially available material, and there is no particular limitation on its use. The dispersant is preferably contained in an amount of 0.1 to 25 parts by weight based on 100 parts by weight of the ceramic raw material in the starting material.
상기 출발원료를 혼합하여 세라믹 슬러리(ceramic slurry)를 형성한다. The starting materials are mixed to form a ceramic slurry.
상기 세라믹 슬러리(ceramic slurry)를 제2 크기의 기공들이 분포하는 다공성 세라믹 폼에 코팅한다. 상기 코팅은 다공성 세라믹 폼을 세라믹 슬러리에 완전히 담그는 것이 아니라, 코팅하려는 다공성 세라믹 폼의 끝부분(표면 부분)만 담궜다가 빼는 방식으로 선택적으로 실시한다. 이러한 방식으로 코팅하게 되면, 다공성 세라믹 폼 전체가 코팅되는 것이 아니라 코팅하려는 선택 부분만 코팅할 수 있으며, 다공성 세라믹 폼의 표면에서 일정 깊이까지만 슬러리가 코팅되게 되고, 슬러리가 코팅된 부분은 코팅되지 않은 부분보다 작은 크기의 기공들(제1 크기의 기공들)이 분포하게 된다. 슬러리가 코팅되지 않은 부분은 제1 영역(A)에 비해 상대적으로 큰 크기의 기공들(제2 크기의 기공들)을 가지는 다공성 세라믹 폼의 영역(제2 영역)이 되고, 슬러리가 코팅된 부분은 제2 영역(B)에 비해 상대적으로 작은 크기의 기공들(제1 크기의 기공들)을 가지는 다공성 세라믹 폼의 영역(제1 영역)이 되게 된다. The ceramic slurry is coated on a porous ceramic foam in which pores of the second size are distributed. The coating is selectively performed by immersing only the tip (surface portion) of the porous ceramic foam to be coated, instead of completely immersing the porous ceramic foam in the ceramic slurry and then taking it out. When coated in this way, not the entire porous ceramic foam is coated, but only the selected portion to be coated can be coated, and the slurry is coated only to a certain depth from the surface of the porous ceramic foam, and the portion coated with the slurry is uncoated. The pores having a size smaller than the portion (pores of the first size) are distributed. The portion on which the slurry is not coated becomes a region (second region) of the porous ceramic foam having pores (pores of the second size) having relatively larger sizes compared to the first region (A), and the portion on which the slurry is coated becomes a region (first region) of the porous ceramic foam having pores (pores of the first size) having a relatively small size compared to the second region (B).
선택적 코팅이 이루어진 다공성 세라믹 폼을 건조한다. 상기 건조는 30∼90℃ 정도의 오븐(Oven)에서 수행하는 것이 바람직하다. Dry the porous ceramic foam with optional coating. The drying is preferably performed in an oven of about 30 to 90 ℃.
선택적 코팅이 이루어진 다공성 세라믹 폼을 소결한다. 선택적 코팅이 이루어진 다공성 세라믹 폼을 퍼니스(furnace) 등에 장입하고, 폴리머의 타는 온도보다 높은 제1 온도(예컨대, 400∼800℃)까지 승온시킨 후, 소정 시간 동안 유지하여 폴리머(polymer) 성분이 태워져서 제거되게 하며, 소결온도(예컨대, 1000∼1500℃)까지 승온시킨 후, 상기 소결온도에서 소정 시간 동안 유지하여 소결하여 제1 영역(A)과 제2 영역(B)이 형성된 다공성 세라믹 폼을 얻는다. 상기 세라믹 원료로 알루미나(Al2O3) 분말, 코디어라이트(cordierite, 2MgO·2Al2O3·5SiO2) 분말, 뮬라이트(mullite, 3Al2O3·2SiO2) 분말을 사용한 경우에 상기 소결은 공기(air), 산소(O2)와 같은 산화 분위기에서 수행하는 것이 바람직하며, 상기 세라믹 원료로 탄화규소(SiC) 분말을 사용한 경우에는 환원 분위기에서 수행하는 것이 바람직하다. 상기 소결온도까지는 1∼50℃/min의 승온속도로 상승시키는 것이 바람직한데, 승온 속도가 너무 느린 경우에는 시간이 오래 걸려 생산성이 떨어지고 승온 속도가 너무 빠른 경우에는 급격한 온도 상승에 의해 열적 스트레스가 가해질 수 있으므로 상기 범위의 승온 속도로 온도를 올리는 것이 바람직하다. 소결 공정을 수행한 후, 퍼니스 온도를 하강시키는데, 상기 퍼니스 냉각은 퍼니스 전원을 차단하여 자연적인 상태로 냉각되게 하거나, 임의적으로 온도 하강률(예컨대, 10℃/min)을 설정하여 냉각되게 할 수도 있다. 퍼니스 온도를 하강시키는 동안에도 퍼니스 내부의 압력은 일정하게 유지하는 것이 바람직하다. 상기 소결 공정에서 유기물(또는 폴리머) 성분은 태워져 없어지게 되며, 소결은 유기물 성분이 타는 온도보다 높은 온도에서 이루어지므로 소결 공정이 완료되면 유기물 성분은 모두 제거되게 된다. A porous ceramic foam with selective coating is sintered. The porous ceramic foam with selective coating is charged in a furnace, etc., and the temperature is raised to a first temperature higher than the burning temperature of the polymer (eg, 400 to 800° C.), and then maintained for a predetermined time to burn the polymer component. After the temperature is raised to the sintering temperature (eg, 1000 to 1500° C.), the porous ceramic foam having the first region (A) and the second region (B) formed by sintering is maintained at the sintering temperature for a predetermined time. get As the ceramic raw material, alumina (Al 2 O 3 ) powder, cordierite (2MgO·2Al 2 O 3 ·5SiO 2 ) powder, and mullite (3Al 2 O 3 ·2SiO 2 ) powder are used. Silver is preferably carried out in an oxidizing atmosphere such as air or oxygen (O 2 ), and when silicon carbide (SiC) powder is used as the ceramic raw material, it is preferably carried out in a reducing atmosphere. It is preferable to increase the temperature up to the sintering temperature at a temperature increase rate of 1 to 50 ° C./min. If the temperature increase rate is too slow, it takes a long time to decrease productivity. Therefore, it is preferable to raise the temperature at a temperature increase rate in the above range. After performing the sintering process, the furnace temperature is lowered. The furnace cooling may be performed to cool in a natural state by shutting off the furnace power, or to cool by arbitrarily setting a temperature drop rate (eg, 10°C/min). have. It is desirable to keep the pressure inside the furnace constant even while the furnace temperature is lowered. In the sintering process, the organic (or polymer) component is burned away, and since the sintering is performed at a temperature higher than the temperature at which the organic component burns, all the organic components are removed when the sintering process is completed.
이렇게 제조된 다공성 세라믹 폼은 무수히 많은 기공들을 갖는 다공체로서, 미세먼지가 유입되는 통로 역할을 하는 기공(셀(cell))과, 상기 기공(셀(cell)) 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체를 포함하며, 제1 영역(A)에는 제2 영역(B)에 비해 상대적으로 작은 크기의 기공들(제1 크기의 기공들)이 분포하고, 제2 영역(B)에는 제1 영역(A)에 비해 상대적으로 큰 크기의 기공들(제2 크기의 기공들)이 분포한다.The porous ceramic foam prepared in this way is a porous body having countless pores, the pores (cells) serving as passageways for fine dust to flow in, and the struts of the porous ceramic foam between the pores (cells). ), and in the first region (A), relatively small-sized pores (pores of the first size) are distributed compared to the second region (B), and in the second region (B), the second region (B) The pores (pores of the second size) having a relatively larger size than that of the first region (A) are distributed.
제1 영역(A)과 제2 영역(B)을 포함하는 다공성 세라믹 폼은 다음과 같은 방법으로 제조할 수도 있다. 이하에서, 제1 영역(A)과 제2 영역(B)을 포함하는 다공성 세라믹 폼을 제조하는 다른 예를 설명한다. The porous ceramic foam including the first region (A) and the second region (B) may be manufactured by the following method. Hereinafter, another example of manufacturing the porous ceramic foam including the first region (A) and the second region (B) will be described.
제1 영역(A)과 제2 영역(B)을 포함하는 다공성 세라믹 폼를 제조하기 위하여 기판(substrate)으로 다공성의 폴리머 폼(polymer foam)(예컨대, 폴리우레탄 폼(polyurethane foam)) 2개를 사용한다. 2개의 폴리머 폼(제1 폴리머 폼과 제2 폴리머 폼)은 서로 다른 기공 크기(PPI; Pore per inch)를 갖는 것을 사용하는데, 예컨대 제1 폴리머 폼의 평균 기공 크기는 제2 폴리머 폼의 평균 기공 크기보다 작은 것을 사용한다. 상기 제1 및 제2 폴리머 폼은 스펀지(sponge)와 같이 탄성이 있는 다공성 물질이다. 상기 폴리머 폼의 기공율, 기공 크기 등은 이후 제조되는 다공성 세라믹 폼의 기공율, 기공 크기 등에 영향을 미친다. 제작될 시편의 사이즈(size)에 맞게 제1 및 제2 폴리머 폼(polymer foam)을 자른 후 초음파 세척 등을 통해 세척하고 건조한다. 상기 건조는 폴리머 폼의 용융 온도보다 낮은 30∼90℃ 정도의 오븐(Oven)에서 수행하는 것이 바람직하다. Two porous polymer foams (eg, polyurethane foam) are used as a substrate to prepare a porous ceramic foam including the first region (A) and the second region (B) do. Two polymer foams (the first polymer foam and the second polymer foam) are used to have different pore sizes (PPI; Pore per inch), for example, the average pore size of the first polymer foam is the average pore size of the second polymer foam Use one smaller than the size. The first and second polymer foams are porous materials having elasticity, such as a sponge. The porosity, pore size, etc. of the polymer foam affect the porosity, pore size, etc. of the porous ceramic foam to be manufactured later. The first and second polymer foams are cut to fit the size of the specimen to be manufactured, and then washed and dried through ultrasonic cleaning or the like. The drying is preferably performed in an oven of about 30 to 90 ℃ lower than the melting temperature of the polymer foam.
세라믹 원료, 바인더 및 용매를 포함하는 출발원료를 준비한다. A starting material including a ceramic raw material, a binder and a solvent is prepared.
상기 세라믹 원료는 제작할 다공성 세라믹 폼(세라믹 다공체)의 주 소재이다. 상기 세라믹 원료는 알루미나(Al2O3) 분말, 코디어라이트(cordierite, 2MgO·2Al2O3·5SiO2) 분말, 뮬라이트(mullite, 3Al2O3·2SiO2) 분말, 탄화규소(SiC) 분말 또는 이들의 혼합분말 등일 수 있다. 제조되는 다공성 세라믹 폼의 기공율, 기공 크기, 강도 등을 고려하여 상기 세라믹 원료는 10㎚∼40㎛, 더욱 바람직하게는 100㎚∼30㎛인 정도의 평균입경을 갖는 분말을 사용하는 것이 바람직하다. The ceramic raw material is a main material of the porous ceramic foam (ceramic porous body) to be produced. The ceramic raw material is alumina (Al 2 O 3 ) powder, cordierite (2MgO·2Al 2 O 3 ·5SiO 2 ) powder, mullite (3Al 2 O 3 ·2SiO 2 ) powder, silicon carbide (SiC) It may be a powder or a mixed powder thereof. In consideration of the porosity, pore size, strength, etc. of the porous ceramic foam to be manufactured, it is preferable to use a powder having an average particle diameter of about 10 nm to 40 μm, more preferably 100 nm to 30 μm, as the ceramic raw material.
상기 출발원료는 유리 프릿(Glass frit)을 더 포함할 수 있다. 상기 유리 프릿은 상기 출발원료에 상기 세라믹 원료 100중량부에 대하여 0.01∼45중량부, 더욱 바람직하게는 0.1∼40중량부 정도 함유되는 것이 바람직하다. 상기 유리 프릿은 소결온도를 낮추고, 다공성 세라믹 폼 자체에 Si를 함유시키는 역할을 역할을 할 뿐만 아니라, 휘스커의 성장성을 향상시키는 역할을 할 수 있다. The starting material may further include a glass frit. The glass frit is preferably contained in an amount of 0.01 to 45 parts by weight, more preferably 0.1 to 40 parts by weight, based on 100 parts by weight of the ceramic raw material in the starting material. The glass frit may serve to lower the sintering temperature and to contain Si in the porous ceramic foam itself, as well as to improve the growth property of the whisker.
상기 용매(solvent)는 증류수 등일 수 있다. The solvent may be distilled water or the like.
상기 바인더는 폴리비닐알콜(polyvinyl alchol; PVA), 폴리에틸렌글리콜(polyethylene glycol; PEG) 등을 사용할 수 있다. 상기 바인더는 세라믹 슬러리의 접착력을 향상시키는 역할을 한다. 상기 바인더는 상기 출발원료에 상기 세라믹 원료 100중량부에 대하여 1∼50중량부 정도 함유되는 것이 바람직하다. The binder may be polyvinyl alcohol (PVA), polyethylene glycol (PEG), or the like. The binder serves to improve the adhesion of the ceramic slurry. The binder is preferably contained in an amount of 1 to 50 parts by weight based on 100 parts by weight of the ceramic raw material in the starting material.
상기 출발원료는 분산제를 더 포함할 수도 있다. 상기 분산제는 상업적으로 판매되고 있는 물질을 사용할 수 있으며, 그 사용에 특별한 제한이 있는 것은 아니다. 상기 분산제는 출발원료에 상기 세라믹 원료 100중량부에 대하여 0.1∼25중량부 함유되는 것이 바람직하다. The starting material may further include a dispersing agent. The dispersant may use a commercially available material, and there is no particular limitation on its use. The dispersant is preferably contained in an amount of 0.1 to 25 parts by weight based on 100 parts by weight of the ceramic raw material in the starting material.
상기 출발원료를 혼합하여 세라믹 슬러리(ceramic slurry)를 형성한다. The starting materials are mixed to form a ceramic slurry.
상기 세라믹 슬러리(ceramic slurry)를 제1 및 제2 폴리머 폼에 딥 코팅(Dip coating) 한다. 상기 제1 및 제2 폴리머 폼을 상기 세라믹 슬러리에 완전히 담그고, 진공 분위기에서 딥 코팅을 수행하는 것이 바람직하다. 딥 코팅 후, 제1 및 제2 폴리머 폼에 함유된 과량의 슬러리를 빼기 위해 외력을 주어 제1 및 제2 폴리머 폼을 압축했다가 압축을 해제하여 원래의 폴리머 폼 형태로 복귀되게 하고, 이러한 방식에 의해 제1 및 제2 폴리머 폼에 함유된 일부 슬러리가 제1 및 제2 폴리머 폼에서 빠져나오게 할 수도 있다.The ceramic slurry is dip-coated on the first and second polymer foams. Preferably, the first and second polymer foams are completely immersed in the ceramic slurry, and dip coating is performed in a vacuum atmosphere. After dip coating, the first and second polymer foams are compressed by applying an external force to take out the excess slurry contained in the first and second polymer foams, and then released to return to the original polymer foam form, in this way may cause some of the slurry contained in the first and second polymer foams to escape from the first and second polymer foams.
딥 코팅이 이루어진 제1 폴리머 폼과 딥 코팅이 이루어진 제2 폴리머 폼을 겹치고, 겹친 상태에서 건조한다. 상기 건조는 제1 및 제2 폴리머 폼의 용융 온도보다 낮은 30∼90℃ 정도의 오븐(Oven)에서 수행하는 것이 바람직하다. The first polymer foam coated with the dip coating and the second polymer foam coated with the dip coating are overlapped and dried in an overlapping state. The drying is preferably performed in an oven of about 30 to 90 ℃ lower than the melting temperature of the first and second polymer foams.
제1 폴리머 폼과 제2 폴리머 폼이 겹쳐져서 건조된 결과물을 소결한다. 제1 폴리머 폼과 제2 폴리머 폼이 겹쳐져서 건조된 결과물을 퍼니스(furnace)에 장입하고, 제1 및 제2 폴리머 폼의 타는 온도보다 높은 제1 온도(예컨대, 400∼800℃)까지 승온시킨 후, 소정 시간 동안 유지하여 폴리머(polymer) 성분이 태워져서 제거되게 하며, 소결온도(예컨대, 1100∼1600℃)까지 승온시킨 후, 상기 소결온도에서 소정 시간 동안 유지하여 소결하고, 로냉하여 제1 영역(A) 및 제2 영역(B)이 형성된 다공성 세라믹 폼을 얻는다. 상기 세라믹 원료로 알루미나(Al2O3) 분말, 코디어라이트(cordierite, 2MgO·2Al2O3·5SiO2) 분말, 뮬라이트(mullite, 3Al2O3·2SiO2) 분말을 사용한 경우에 상기 소결은 공기(air), 산소(O2)와 같은 산화 분위기에서 수행하는 것이 바람직하며, 상기 세라믹 원료로 탄화규소(SiC) 분말을 사용한 경우에는 환원 분위기에서 수행하는 것이 바람직하다. 상기 소결온도까지는 1∼50℃/min의 승온속도로 상승시키는 것이 바람직한데, 승온 속도가 너무 느린 경우에는 시간이 오래 걸려 생산성이 떨어지고 승온 속도가 너무 빠른 경우에는 급격한 온도 상승에 의해 열적 스트레스가 가해질 수 있으므로 상기 범위의 승온 속도로 온도를 올리는 것이 바람직하다. 소결 공정을 수행한 후, 퍼니스 온도를 하강시키는데, 상기 퍼니스 냉각은 퍼니스 전원을 차단하여 자연적인 상태로 냉각되게 하거나, 임의적으로 온도 하강률(예컨대, 10℃/min)을 설정하여 냉각되게 할 수도 있다. 퍼니스 온도를 하강시키는 동안에도 퍼니스 내부의 압력은 일정하게 유지하는 것이 바람직하다. 상기 소결 공정에서 유기물(또는 폴리머) 성분은 태워져 없어지게 되며, 소결은 유기물 성분이 타는 온도보다 높은 온도에서 이루어지므로 소결 공정이 완료되면 유기물 성분은 모두 제거되게 되며, 폴리머가 위치하는 공간은 기공을 이루고 소결 공정을 거친 소결체는 다공성을 띠게 된다. The first polymer foam and the second polymer foam are overlapped to sinter the dried product. The first polymer foam and the second polymer foam are overlapped and the dried result is charged into a furnace, and the temperature is raised to a first temperature (eg, 400 to 800° C.) higher than the burning temperature of the first and second polymer foams. After that, it is maintained for a predetermined time so that the polymer component is burned and removed, and the temperature is raised to the sintering temperature (eg, 1100 to 1600° C.) A porous ceramic foam in which the region (A) and the second region (B) are formed is obtained. As the ceramic raw material, alumina (Al 2 O 3 ) powder, cordierite (2MgO·2Al 2 O 3 ·5SiO 2 ) powder, and mullite (3Al 2 O 3 ·2SiO 2 ) powder are used. Silver is preferably carried out in an oxidizing atmosphere such as air or oxygen (O 2 ), and when silicon carbide (SiC) powder is used as the ceramic raw material, it is preferably carried out in a reducing atmosphere. It is preferable to increase the temperature up to the sintering temperature at a temperature increase rate of 1 to 50 ° C./min. If the temperature increase rate is too slow, it takes a long time to decrease productivity. Therefore, it is preferable to raise the temperature at a temperature increase rate in the above range. After performing the sintering process, the furnace temperature is lowered. The furnace cooling may be performed to cool in a natural state by shutting off the furnace power, or to cool by arbitrarily setting a temperature drop rate (eg, 10°C/min). have. It is desirable to keep the pressure inside the furnace constant even while the furnace temperature is lowered. In the sintering process, the organic (or polymer) component is burned and disappears, and since sintering is performed at a temperature higher than the temperature at which the organic component is burned, all organic components are removed when the sintering process is completed, and the space where the polymer is located is pore , and the sintered body that has undergone the sintering process becomes porous.
세라믹 슬러리가 코팅된 제1 폴리머 폼과 제2 폴리머 폼이 겹쳐져서 소결되게 되면 하나의 몸체로 이루어진 다공성 세라믹 폼이 형성되게 된다. 제1 폴리머 폼과 제2 폴리머 폼은 서로 다른 기공 크기(PPI; Pore per inch)를 갖는 것을 사용하는데, 제1 폴리머 폼이 위치하던 영역과 제2 폴리머 폼이 위치하던 영역은 서로 다른 기공 크기를 갖게 되며, 이에 따라 제2 영역에 비해 상대적으로 작은 크기의 기공들(제1 크기의 기공들)을 가지는 영역(제1 영역)과 제1 영역에 비해 상대적으로 큰 크기의 기공들(제2 크기의 기공들)을 가지는 영역(제2 영역)이 구분된 다공성 세라믹 폼을 얻을 수가 있다. When the ceramic slurry-coated first polymer foam and the second polymer foam are overlapped and sintered, a porous ceramic foam consisting of a single body is formed. The first polymer foam and the second polymer foam are used to have different pore sizes (PPI; Pore per inch), and the region where the first polymer foam is positioned and the region where the second polymer foam is positioned have different pore sizes. Accordingly, the region (the first region) having pores (pores of the first size) having a relatively small size compared to the second region and pores having a relatively large size (second size) compared to the first region A porous ceramic foam in which the region (the second region) having the pores) is separated can be obtained.
이렇게 제조된 다공성 세라믹 폼은 무수히 많은 기공들을 갖는 다공체로서, 미세먼지가 유입되는 통로 역할을 하는 기공(셀(cell))과, 상기 기공(셀(cell)) 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체를 포함하며, 제1 영역(A)에는 제2 영역(B)에 비해 상대적으로 작은 크기의 기공들(제1 크기의 기공들)이 분포하고, 제2 영역(B)에는 제1 영역(A)에 비해 상대적으로 큰 크기의 기공들(제2 크기의 기공들)이 분포한다.The porous ceramic foam prepared in this way is a porous body having countless pores, the pores (cells) serving as passageways for fine dust to flow in, and the struts of the porous ceramic foam between the pores (cells). ), and in the first region (A), relatively small-sized pores (pores of the first size) are distributed compared to the second region (B), and in the second region (B), the second region (B) The pores (pores of the second size) having a relatively larger size than that of the first region (A) are distributed.
제2 영역에 비해 상대적으로 작은 크기의 기공들(제1 크기의 기공들)을 가지는 영역(제1 영역)과 제1 영역에 비해 상대적으로 큰 크기의 기공들(제2 크기의 기공들)을 가지는 영역(제2 영역)이 구분된 다공성 세라믹 폼에도 휘스커가 형성되어 있을 수 있다. 더욱 구체적으로, 다공성 세라믹 폼의 제1 영역(A)은 미세먼지가 유입되는 통로 역할을 하는 기공(셀(cell))과, 상기 기공(셀(cell)) 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체를 포함하며, 다수의 휘스커가 상기 벽체의 표면에서 기공(셀(cell))을 향해 돌출되어 있을 수 있고, 다공성 세라믹 폼의 제2 영역(B)도 미세먼지가 유입되는 통로 역할을 하는 기공(셀(cell))과, 상기 기공(셀(cell)) 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체를 포함하며, 다수의 휘스커가 상기 벽체의 표면에서 기공(셀(cell))을 향해 돌출되어 있을 수 있으며, 다공성 세라믹 폼의 제1 영역(A)에 형성된 기공들은 다공성 세라믹 폼의 제2 영역(B)에 형성된 기공들에 비하여 그 크기가 상대적을 작게 분포한다. A region (a first region) having pores (pores of a first size) having a relatively small size compared to the second region and pores (pores of a second size) having a size relatively larger than that of the first region A whisker may also be formed in the porous ceramic foam in which the branch region (the second region) is divided. More specifically, the first region (A) of the porous ceramic foam has pores (cells) serving as passageways for fine dust to flow in, and a strut of the porous ceramic foam between the pores (cells). ), a plurality of whiskers may protrude from the surface of the wall toward pores (cells), and the second region (B) of the porous ceramic foam also serves as a passageway for fine dust to flow in. and a wall forming a strut of a porous ceramic foam between the pores (cells), and a plurality of whiskers form pores (cells) on the surface of the wall. )), the pores formed in the first region (A) of the porous ceramic foam are distributed in relatively small sizes compared to the pores formed in the second region (B) of the porous ceramic foam.
상기 휘스커는 뮬라이트(mullite, 3Al2O3·2SiO2), ZnO 및 탄화규소(SiC)로 이루어진 군으로부터 선택된 1종 이상의 침상형 세라믹 재질로 이루어질 수 있다. 다수의 휘스커가 벽체의 표면에서 기공(셀(cell))을 향해 돌출되어 있으며, 이에 따라 미세먼지의 필터링 효과를 극대화할 수가 있다. 상기 휘스커는 필터링시의 차압이 높아지는 것을 억제하면서 미세먼지를 효과적으로 포집하는 역할을 한다.The whisker may be made of at least one needle-shaped ceramic material selected from the group consisting of mullite (3Al 2 O 3 ·2SiO 2 ), ZnO, and silicon carbide (SiC). A plurality of whiskers protrude from the surface of the wall toward the pores (cells), thereby maximizing the filtering effect of fine dust. The whisker serves to effectively collect fine dust while suppressing an increase in differential pressure during filtering.
다공성 세라믹 폼 표면에 휘스커를 형성하는 방법은 실시예 1에서 설명한 방법과 동일하므로 여기서는 그 상세한 설명을 생략한다. Since the method of forming the whisker on the surface of the porous ceramic foam is the same as the method described in Example 1, a detailed description thereof will be omitted here.
<실시예 3><Example 3>
포집장치의 구성은 상기 실시예 1과 동일하고, 제1 컬렉터(110), 제2 컬렉터(120)를 구성하는 다공성 세라믹 폼만이 다르게 구성되며, 따라서 포집장치에 대한 설명은 생략한다. 이하에서, 실시예 1에서와 다른 다공성 세라믹 폼에 대하여만 설명한다. The configuration of the collecting device is the same as that of the first embodiment, and only the porous ceramic foam constituting the first collector 110 and the second collector 120 is configured differently, so the description of the collecting device will be omitted. Hereinafter, only the porous ceramic foam different from that in Example 1 will be described.
제1 컬렉터(110)와 제2 컬렉터(120)는 다공성 세라믹 폼(porous ceramic foam)으로 이루어진다. 제1 컬렉터(110)와 제2 컬렉터(120)는 알루미나(Al2O3), 코디어라이트(cordierite, 2MgO·2Al2O3·5SiO2), 뮬라이트(mullite, 3Al2O3·2SiO2), 탄화규소(SiC) 또는 이들의 혼합물과 같이 내열성을 갖는 다공성 세라믹 폼으로 이루어지는 것이 바람직하다. The first collector 110 and the second collector 120 are made of porous ceramic foam. The first collector 110 and the second collector 120 are alumina (Al 2 O 3 ), cordierite (2MgO·2Al 2 O 3 ·5SiO 2 ), mullite (mullite, 3Al 2 O 3 ·2SiO 2 ) ), silicon carbide (SiC), or a mixture thereof is preferably made of a porous ceramic foam having heat resistance.
상기 다공성 세라믹 폼은 기공율이 40∼90%, 더욱 바람직하게는 60∼85% 정도인 것이 바람직하다. 기공율이 너무 낮을 경우에는 미세먼지 필터링 효율이 낮을 수 있고, 기공율이 너무 높을 경우에는 진동 충격 등에 쉽게 크랙 등의 생기거나 깨지거나 하여 내구성이 저하될 수 있다. 상기 다공성 세라믹 폼에 분포하는 기공(셀) 크기는 50㎛∼2㎜ 정도인 것이 바람직하고, 벽체에 형성되는 기공의 크기는 50㎚∼50㎛ 정도인 것이 바람직하다.The porous ceramic foam preferably has a porosity of 40 to 90%, more preferably about 60 to 85%. If the porosity is too low, fine dust filtering efficiency may be low, and if the porosity is too high, cracks or breakage may occur easily due to vibration or impact, and thus durability may be reduced. The size of the pores (cells) distributed in the porous ceramic foam is preferably about 50 μm to 2 mm, and the size of the pores formed on the wall is preferably about 50 nm to 50 μm.
상기 다공성 세라믹 폼은 무수히 많은 기공들을 갖는 다공체이다. 상기 다공성 세라믹 폼은 미세먼지가 유입되는 통로 역할을 하는 기공(셀(cell))과, 상기 기공(셀(cell)) 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체를 포함한다. The porous ceramic foam is a porous body having countless pores. The porous ceramic foam includes pores (cells) serving as passageways for fine dust to flow in, and a wall forming a strut of the porous ceramic foam between the pores (cells).
제1 컬렉터(110)와 제2 컬렉터(120)에 적용되는 다공성 세라믹 폼은 사행(serpentine type) 형태로 배열된 리브(140)들과, 리브와 리브 사이의 빈 공간을 이루는 채널(150)을 포함한다. The porous ceramic foam applied to the first collector 110 and the second collector 120 includes ribs 140 arranged in a serpentine type and a channel 150 forming an empty space between the ribs and the ribs. include
리브(rib)(140)들은 일렬로 반듯하게 배열되는 것보다 도 8 내지 도 11에 도시된 것처럼 서로 지그재그로 엇갈리면서 배열된다. 리브(140)들은 사행(serpentine type) 형태로서 구불구불하게 배열된다.The ribs 140 are arranged staggering each other in a zigzag as shown in FIGS. 8 to 11 rather than being arranged in a straight line. The ribs 140 are arranged in a meandering form in the form of a serpentine type.
리브(140)들은 일단에서 타단까지가 직선형인 것으로 이루어질 수도 있고, 더욱 바람직하게는 일단에서 타단까지 곡선형인 것으로 이루어지는 것이 바람직하다. 더욱 바람직하게는 리브(140)들은 디스크 형상을 갖는 로터(10)의 디스크 곡률과 동일하게 곡선형 형태를 이루는 것이 바람직하다. 곡선형 형태를 이루는 리브들의 곡률은 디스크 형상을 갖는 로터(10)의 디스크 곡률(curvature)과 동일한 것이 바람직하다. 리브와 리브 사이의 이격거리는 동일한 것이 바람직하지만, 이에 한정되는 것은 아니다. The ribs 140 may be formed in a straight line from one end to the other end, and more preferably in a curved shape from one end to the other end. More preferably, the ribs 140 have a curved shape identical to the disk curvature of the rotor 10 having a disk shape. The curvature of the ribs forming the curved shape is preferably the same as the disk curvature of the rotor 10 having the disk shape. The distance between the ribs and the ribs is preferably the same, but is not limited thereto.
브레이크 패드(20)와 로터(10) 사이의 마찰에 의해 발생하는 미세먼지(분진)는 유입구(155)를 통해 채널(150)을 따라 유입된다. 채널(150)은 리브와 리브 사이는 빈 공간으로서 미세먼지가 유입되는 경로를 제공한다. 채널(150)은 미세먼지가 유입되는 유입구(155)를 통해 개방되어 있고 리브와 리브를 연결하는 리브블럭에 의해 막혀진 형태를 이룬다. Y축방향(로터의 외측면 또는 내측면과 평행하고 X축에 수직한 방향)으로는 유입구(155)와 리브블럭(145) 사이의 빈 공간이 채널을 이루는 영역이고, Z축 방향(X축 및 Y축에 수직한 방행)으로는 리브와 리브 사이의 빈 공간이 채널을 이루는 영역이다. 유입구(155)는 브레이크 패드(20)를 향해 있다.Fine dust (dust) generated by friction between the brake pad 20 and the rotor 10 is introduced along the channel 150 through the inlet 155 . The channel 150 is an empty space between the ribs and the ribs, and provides a path through which fine dust is introduced. The channel 150 is opened through the inlet 155 through which the fine dust is introduced and is blocked by the rib and the rib block connecting the ribs. In the Y-axis direction (a direction parallel to the outer or inner surface of the rotor and perpendicular to the X-axis), the empty space between the inlet 155 and the rib block 145 forms a channel, and in the Z-axis direction (X-axis) and in a direction perpendicular to the Y-axis) is an area in which the rib and the empty space between the ribs form a channel. The inlet 155 faces the brake pad 20 .
도 8 내지 도 11은 8개의 리브(제1 리브, 제2 리브, 제3 리브, 제4 리브, 제5 리브, 제6 리브, 제7 리브 및 제8 리브)를 포함하는 다공성 세라믹 폼의 일 예를 보여준다. 8 to 11 show a porous ceramic foam comprising eight ribs (first rib, second rib, third rib, fourth rib, fifth rib, sixth rib, seventh rib and eighth rib) show an example
도 8 내지 도 11을 참조하면, 제1 리브(140a)와 제2 리브(140b)는 일단에서 연결되어 있고, 제2 리브(140b)와 제3 리브(140c)는 타단에서 연결되어 있으며, 제3 리브(140c)와 제4 리브(140d)는 일단에서 연결되어 있고, 제4 리브(140d)와 제5 리브(140e)는 타단에서 연결되어 있고, 제5 리브(140e)와 제6 리브(140f)는 일단에서 연결되어 있고, 제7 리브(140g)와 제8 리브(140h)는 타단에서 연결되어 있다. 제1 리브(140a)와 제2 리브(140b) 사이의 이격거리, 제2 리브(140b)와 제3 리브(140c) 사이의 이격거리, 제3 리브(140c)와 제4 리브(140d) 사이의 이격거리, 제4 리브(140d)와 제5 리브(140e)의 이격거리, 제5 리브(140e)와 제6 리브(140f)의 이격거리, 제7 리브(140g)와 제8 리브(140h)의 이격거리는 동일하게 구성되어 있다. 리브(140)들의 두께는 동일(일정)할 수 있다.8 to 11 , the first rib 140a and the second rib 140b are connected at one end, the second rib 140b and the third rib 140c are connected at the other end, and the second rib 140b is connected at the other end. The third rib 140c and the fourth rib 140d are connected at one end, the fourth rib 140d and the fifth rib 140e are connected at the other end, and the fifth rib 140e and the sixth rib (140e) are connected to each other. 140f) is connected at one end, and the seventh rib 140g and the eighth rib 140h are connected at the other end. The separation distance between the first rib 140a and the second rib 140b, the separation distance between the second rib 140b and the third rib 140c, and the third rib 140c and the fourth rib 140d distance between the fourth rib 140d and the fifth rib 140e, the fifth rib 140e and the sixth rib 140f, the seventh rib 140g and the eighth rib 140h ) is configured to be the same. The thickness of the ribs 140 may be the same (constant).
리브(140)의 단부에는 리브블럭(145)이 구비되고, 리브블럭(145)은 리브와 리브(140)를 연결하는 매개체이다. 예컨대, 제1 리브(140a)의 일단과 제2 리브(140b)의 일단은 제1 리브블럭(145a)에 의해 연결되어 있고, 제2 리브(140b)의 타단과 제3 리브(140c)의 타단은 제2 리브블럭(145b)에 의해 연결되어 있으며, 제3 리브(140c)의 일단과 제4 리브(140d)의 일단은 제3 리브블럭(145c)에 의해 연결되어 있고, 제4 리브(140d)의 타단과 제5 리브(140e)의 타단은 제4 리브블럭(145d)에 의해 연결되어 있으며, 제5 리브(140e)의 일단과 제6 리브(140f)의 일단은 제5 리브블럭(145e)에 의해 연결되어 있고, 제6 리브(140f)의 일단과 제7 리브(140g)의 일단은 제6 리브블럭(145f)에 의해 연결되어 있으며, 제7 리브(140g)의 일단과 제8 리브(140h)의 일단은 제7 리브블럭(145g)에 의해 연결되어 있다. 제1 리브블럭(145a), 제3 리브블럭(145c) 및 제5 리브블럭(145e)은 다공성 세라믹 폼의 좌측단에 위치되고, 반면에 제2 리브블럭(145b), 제4 리브블럭(145d) 및 제6 리브블럭(145f)은 다공성 세라믹 폼의 우측단에 위치된 형태로 구성되어 있다. 리브(140)와 리브블럭(145)은 동일한 재질로 이루어지는 것이 바람직하다. A rib block 145 is provided at an end of the rib 140 , and the rib block 145 is a medium connecting the rib and the rib 140 . For example, one end of the first rib 140a and one end of the second rib 140b are connected by a first rib block 145a, and the other end of the second rib 140b and the other end of the third rib 140c are connected. is connected by a second rib block 145b, one end of the third rib 140c and one end of the fourth rib 140d are connected by a third rib block 145c, and a fourth rib 140d ) and the other end of the fifth rib 140e are connected by a fourth rib block 145d, and one end of the fifth rib 140e and one end of the sixth rib 140f have a fifth rib block 145e. ), one end of the sixth rib 140f and one end of the seventh rib 140g are connected by a sixth rib block 145f, and one end of the seventh rib 140g and the eighth rib One end of (140h) is connected by a seventh rib block (145g). The first rib block 145a, the third rib block 145c and the fifth rib block 145e are located at the left end of the porous ceramic foam, while the second rib block 145b and the fourth rib block 145d ) and the sixth rib block 145f is configured to be positioned at the right end of the porous ceramic foam. The rib 140 and the rib block 145 are preferably made of the same material.
제1 리브(140a)와 제2 리브(140b) 사이의 빈 공간은 제1 채널(150a)을 구성하고, 제2 리브(140b)와 제3 리브(140c) 사이의 빈 공간은 제2 채널(150b)을 구성하며, 제3 리브(140c)와 제4 리브(140d) 사이의 빈 공간은 제3 채널(150c)을 구성하고, 제4 리브(140d)와 제5 리브(140e) 사이의 빈 공간은 제4 채널(150d)을 구성하고, 제5 리브(140e)와 제6 리브(140f) 사이의 빈 공간은 제5 채널(150e)을 구성하며, 제6 리브(140f)와 제7 리브(140g) 사이의 빈 공간은 제6 채널(150f)을 구성하고, 제7 리브(140g)와 제8 리브(140h) 사이의 빈 공간은 제7 채널(150g)을 구성한다.The empty space between the first rib 140a and the second rib 140b constitutes the first channel 150a, and the empty space between the second rib 140b and the third rib 140c constitutes the second channel ( 150b), the empty space between the third rib 140c and the fourth rib 140d constitutes the third channel 150c, and the empty space between the fourth rib 140d and the fifth rib 140e The space constitutes the fourth channel 150d, the empty space between the fifth rib 140e and the sixth rib 140f constitutes the fifth channel 150e, and the sixth rib 140f and the seventh rib 140f The empty space between 140g constitutes the sixth channel 150f, and the empty space between the seventh rib 140g and the eighth rib 140h constitutes the seventh channel 150g.
사행(serpentine type) 형태로 배열된 리브(140)들과, 리브와 리브 사이의 빈 공간을 이루는 채널(150)을 포함하는 다공성 세라믹 폼은 다음과 같은 방법으로 제조할 수 있다. The porous ceramic foam including the ribs 140 arranged in a serpentine type and the channel 150 forming an empty space between the ribs and the ribs may be manufactured as follows.
사행(serpentine type) 형태로 배열된 리브(140)들과, 리브와 리브 사이의 빈 공간을 이루는 채널(150)을 포함하는 다공성 세라믹 폼은 표면에 물방울이 맺히는 것을 억제하기 위하여 소수성(hydrophobic) 코팅막으로 도포되어 있을 수 있다. 소수성을 갖게 하기 위하여 다공성 세라믹 재질에 소수성을 갖는 물질을 코팅하여 다공성 세라믹 폼을 제조할 수 있다. 친수성(hydorphilic)을 가질 경우에 다공성 세라믹 폼의 표면에 물방울이 다량으로 맺힐 수 있어서 필터링 효과가 저하될 수 있다. 소수성 코팅막은 10㎚∼2㎛ 정도의 두께로 구비되는 것이 바람직하다. A porous ceramic foam including ribs 140 arranged in a serpentine type and a channel 150 forming an empty space between the ribs and the ribs is a hydrophobic coating film to inhibit water droplets from forming on the surface. may be coated with In order to have hydrophobicity, a porous ceramic foam may be manufactured by coating the porous ceramic material with a hydrophobic material. In the case of having hydrophilic properties, a large amount of water droplets may form on the surface of the porous ceramic foam, thereby reducing the filtering effect. The hydrophobic coating film is preferably provided with a thickness of about 10 nm to 2 μm.
이하에서, 사행(serpentine type) 형태로 배열된 리브(140)들과, 리브와 리브 사이의 빈 공간을 이루는 채널(150)을 포함하는 다공성 세라믹 폼을 제조하는 방법을 설명한다. Hereinafter, a method of manufacturing the porous ceramic foam including the ribs 140 arranged in a meandering shape and the channel 150 forming an empty space between the ribs and the ribs will be described.
다공성 세라믹 폼를 제조하기 위하여 기판(substrate)으로 다공성의 폴리머 폼(polymer foam)(예컨대, 폴리우레탄 폼(polyurethane foam))을 사용한다. 상기 폴리머 폼은 스펀지(sponge)와 같이 탄성이 있는 다공성 물질이다. 상기 폴리머 폼의 기공율, 기공 크기 등은 이후 제조되는 다공성 세라믹 폼의 기공율, 기공 크기 등에 영향을 미친다. 제조하려는 다공성 세라믹 폼의 형상에 대응되게 폴리머 폼(polymer foam)을 제조한다. 폴리머 폼은 도 8 및 도 9에 도시된 바와 같이 사행(serpentine type) 형태로 배열된 리브들과, 리브와 리브 사이의 빈 공간을 이루는 채널을 포함하는 형태의 구조로 제조한다. 상기 폴리머 폼의 제조는 복잡 형상(도 8 및 도 9 등에 도시된 구불구불하거나 지그재그로 배열된 형태의 사행(serpentine type) 형상) 등을 고려하여 사출 성형 등을 이용할 수 있다. 사행(serpentine type) 형상(구불구불하거나 지그재그로 배열된 형태)을 갖는 폴리머 폼(polymer foam)을 제조한 후 초음파 세척 등을 통해 세척하고 건조한다. 상기 건조는 폴리머 폼의 용융 온도보다 낮은 30∼90℃ 정도의 오븐(Oven)에서 수행하는 것이 바람직하다. A porous polymer foam (eg, polyurethane foam) is used as a substrate to prepare the porous ceramic foam. The polymer foam is a porous material having elasticity, such as a sponge. The porosity, pore size, etc. of the polymer foam affect the porosity, pore size, etc. of the porous ceramic foam to be manufactured later. A polymer foam is prepared corresponding to the shape of the porous ceramic foam to be manufactured. The polymer foam is manufactured to have a structure including ribs arranged in a serpentine type as shown in FIGS. 8 and 9 and a channel forming an empty space between the ribs and the ribs. The manufacture of the polymer foam may use injection molding, etc. in consideration of a complex shape (serpentine type shape of a serpentine or zigzag arrangement shown in FIGS. 8 and 9, etc.). After preparing a polymer foam having a serpentine type shape (a serpentine or zigzag arrangement), it is washed and dried through ultrasonic cleaning or the like. The drying is preferably performed in an oven of about 30 to 90 ℃ lower than the melting temperature of the polymer foam.
세라믹 원료, 바인더 및 용매를 포함하는 출발원료를 준비한다. 이후의 공정은 상기 실시예 1에서 설명한 방법과 동일하게 진행하여 다공성 세라믹 폼을 형성한다. A starting material including a ceramic raw material, a binder and a solvent is prepared. A subsequent process proceeds in the same manner as described in Example 1 to form a porous ceramic foam.
이렇게 제조된 다공성 세라믹 폼은 무수히 많은 기공들을 갖는 다공체이다. 상기 다공성 세라믹 폼은 미세먼지가 유입되는 통로 역할을 하는 기공(셀(cell))과, 상기 기공(셀(cell)) 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체를 포함하며, 도 8 및 도 9에 도시된 바와 같이 사행(serpentine type) 형태로 배열된 리브(140)들과, 리브와 리브 사이의 빈 공간을 이루는 채널(150)을 포함한다. The porous ceramic foam thus prepared is a porous body having countless pores. The porous ceramic foam includes pores (cells) serving as passageways through which fine dust flows, and a wall forming a strut of the porous ceramic foam between the pores (cells), FIG. and ribs 140 arranged in a serpentine type as shown in FIG. 9 , and a channel 150 forming an empty space between the ribs and the ribs.
사행(serpentine type) 형태로 배열된 리브(140)들과, 리브와 리브 사이의 빈 공간을 이루는 채널(150)을 포함하는 다공성 세라믹 폼에 휘스커가 형성될 수도 있다. 더욱 구체적으로, 상기 다공성 세라믹 폼은, 미세먼지가 유입되는 통로 역할을 하는 기공(셀(cell))과, 상기 기공(셀(cell)) 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체를 포함하며, 또한 사행(serpentine type) 형태로 배열된 리브(140)들과, 리브와 리브 사이의 빈 공간을 이루는 채널(150)을 포함하고, 다수의 휘스커가 상기 벽체의 표면에서 기공(셀(cell))을 향해 돌출되어 있을 수 있다. A whisker may be formed in the porous ceramic foam including the ribs 140 arranged in a serpentine type and the channel 150 forming an empty space between the ribs and the ribs. More specifically, the porous ceramic foam has pores (cells) serving as passageways for fine dust to flow in, and a wall forming a strut of the porous ceramic foam between the pores (cells). It also includes ribs 140 arranged in a serpentine type, and a channel 150 forming an empty space between the ribs and the ribs, and a plurality of whiskers have pores (cells) on the surface of the wall. cell)) may protrude toward the
상기 휘스커는 뮬라이트(mullite, 3Al2O3·2SiO2), ZnO 및 탄화규소(SiC)로 이루어진 군으로부터 선택된 1종 이상의 침상형 세라믹 재질로 이루어질 수 있다. 다수의 휘스커가 벽체의 표면에서 기공(셀(cell))을 향해 돌출되어 있으며, 이에 따라 미세먼지의 필터링 효과를 극대화할 수가 있다. 상기 휘스커는 필터링시의 차압이 높아지는 것을 억제하면서 미세먼지를 효과적으로 포집하는 역할을 한다.The whisker may be made of at least one needle-shaped ceramic material selected from the group consisting of mullite (3Al 2 O 3 ·2SiO 2 ), ZnO, and silicon carbide (SiC). A plurality of whiskers protrude from the surface of the wall toward the pores (cells), thereby maximizing the filtering effect of fine dust. The whisker serves to effectively collect fine dust while suppressing an increase in differential pressure during filtering.
다공성 세라믹 폼 표면에 휘스커를 형성하는 방법은 실시예 1에서 설명한 방법과 동일하므로 여기서는 그 상세한 설명을 생략한다. Since the method of forming the whisker on the surface of the porous ceramic foam is the same as the method described in Example 1, a detailed description thereof will be omitted here.
이하에서, 본 발명에 따른 실험예들을 구체적으로 제시하며, 다음에 제시하는 실험예들에 본 발명이 한정되는 것은 아니다. Hereinafter, experimental examples according to the present invention are specifically presented, and the present invention is not limited to the experimental examples presented below.
<실험예 1><Experimental Example 1>
다공성 세라믹 폼을 제작하기 위하여 기판(substrate)으로 다공성의 폴리머 폼(polymer foam)(더욱 구체적으로는 폴리우레탄 폼(polyurethane foam))을 사용하였다. 상기 폴리머 폼은 스펀지(sponge)와 같이 탄성이 있는 다공성 물질이다. 제작될 시편의 사이즈(size)에 맞게 폴리머 폼(polymer foam)을 자른 후 초음파 세척을 통해 세척한 후, 오븐(Oven)에서 70℃에서 24시간 동안 건조하였다. A porous polymer foam (more specifically, polyurethane foam) was used as a substrate to prepare the porous ceramic foam. The polymer foam is a porous material having elasticity, such as a sponge. Polymer foam was cut to fit the size of the specimen to be fabricated, washed through ultrasonic cleaning, and then dried in an oven at 70° C. for 24 hours.
도 12는 실험예 1에서 폴리머 폼으로 사용된 폴리우레탄 폼을 보여주는 사진이다. 도 10을 참조하면, 폴리우레탄 폼은 다공성의 스펀지 형상을 띠고 있는 것을 볼 수 있다. 12 is a photograph showing a polyurethane foam used as a polymer foam in Experimental Example 1. Referring to Figure 10, it can be seen that the polyurethane foam has a porous sponge shape.
용질과 용매를 준비하고, 용질(solute)과 용매(solvent)의 비는 50:50의 중량비로 측량하였다. 상기 용질은 알루미나 분말(Alumina powder)과 유리 프릿(Glass frit)를 사용하였다. 알루미나 분말(Alumina powder)과 유리 프릿(Glass frit)은 47.5:2.5의 중량비로 사용하였다. 상기 알루미나 분말은 제작할 다공성 세라믹 폼(세라믹 다공체)의 주 소재이고, 상기 유리 프릿은 소결온도를 낮추고, 다공성 세라믹 폼 자체에 Si를 함유시키는 역할을 역할을 할 뿐만 아니라, 뮬라이트(Mullite)의 성장성을 향상시키는 역할을 할 수 있다. 상기 용매(solvent)는 증류수를 사용하였다. The solute and the solvent were prepared, and the ratio of the solute and the solvent was measured in a weight ratio of 50:50. As the solute, alumina powder and glass frit were used. Alumina powder and glass frit were used in a weight ratio of 47.5:2.5. The alumina powder is the main material of the porous ceramic foam (ceramic porous body) to be produced, and the glass frit not only serves to lower the sintering temperature and contains Si in the porous ceramic foam itself, but also to increase the growth of mullite. can play a role in improving it. Distilled water was used as the solvent.
비커에 용매인 증류수를 넣은 후 마그네틱바를 이용하여 교반(stirring) 하면서 분산제(Dispersant)(BYK-111)를 상기 용질 100중량부에 대하여 1중량부 첨가하였다. 분산제 투입 후 30분 동안 교반한 후, 주재료인 알루미나 분말을 용매에 투입하고 1시간 동안 교반하였다. 알루미나 분말이 분산된 용매에 유리 프릿을 첨가하고 1시간 동안 교반한 다음, 바인더인 PVA(Polyvinyl alcohol) 용액(PVA solution)을 상기 용질 100중량부에 대하여 5중량부 첨가하고 1시간 동안 교반하여 세라믹 슬러리(ceramic slurry)를 형성하였다. 상기 PVA 용액은 분자량이 89000~99000 정도인 PVA(Polyvinyl alcohol)가 증류수에 10wt% 용해된 용액을 사용하였다. 상기 PVA 용액은 세라믹 슬러리의 접착력을 향상시키는 역할을 한다. After adding distilled water as a solvent to a beaker, 1 part by weight of a dispersant (BYK-111) was added based on 100 parts by weight of the solute while stirring using a magnetic bar. After the dispersant was added and stirred for 30 minutes, alumina powder, which is the main material, was added to the solvent and stirred for 1 hour. After adding a glass frit to the solvent in which the alumina powder is dispersed and stirring for 1 hour, 5 parts by weight of a PVA (Polyvinyl alcohol) solution (PVA solution) as a binder is added based on 100 parts by weight of the solute and stirred for 1 hour to make the ceramic A ceramic slurry was formed. As the PVA solution, a solution in which polyvinyl alcohol (PVA) having a molecular weight of about 89000 to 99000 was dissolved in distilled water was used. The PVA solution serves to improve the adhesion of the ceramic slurry.
상기 세라믹 슬러리(ceramic slurry)를 폴리머 폼에 딥 코팅(Dip coating) 하였다. 폴리머 폼을 세라믹 슬러리에 완전히 담그고, 진공 분위기에서 5분 동안 딥 코팅을 수행하였다. 딥 코팅 후, 폴리머 폼에 함유된 과량의 슬러리를 빼기 위해 외력을 주어 폴리머 폼 두께의 2/3 이하로 압축했다가 압축을 해제하여 원래의 폴리머 폼 형태로 복귀되게 하였으며, 이러한 방식에 의해 폴리머 폼에 함유된 일부 슬러리가 폴리머 폼에서 빠져나오게 하였다.The ceramic slurry was dip-coated on a polymer foam. The polymer foam was completely immersed in the ceramic slurry, and dip coating was performed in a vacuum atmosphere for 5 minutes. After dip coating, the polymer foam was compressed to less than 2/3 of the thickness of the polymer foam by applying an external force to remove the excess slurry contained in the polymer foam, and then released to return to the original polymer foam form. Some of the slurry contained in the polymer was allowed to escape from the polymer foam.
딥 코팅이 이루어진 폴리머 폼을 오븐에서 80℃의 온도로 3시간 동안 건조하였다. 도 13은 폴리머 폼에 세라믹 슬러리가 딥 코팅되어 건조된 모습을 보여주는 사진이다. The dip-coated polymer foam was dried in an oven at a temperature of 80° C. for 3 hours. 13 is a photograph showing a state in which a ceramic slurry is dip-coated on a polymer foam and dried.
딥 코팅이 이루어진 폴리머 폼을 소결하였다. 폴리머 폼을 퍼니스(furnace)에 장입하고, 분당 5℃의 속도로 550℃까지 승온시킨 후, 550℃에서 1시간 동안 유지하여 폴리머(polymer) 성분이 태워져서 제거되게 하였으며, 분당 5℃의 속도로 1450℃까지 승온시킨 후, 1450℃에서 3시간 동안 유지하여 소결하였으며, 이후 로냉하여 다공성 세라믹 폼을 얻었다. 상기 소결은 공기(air) 분위기에서 수행하였다. 이렇게 제조된 다공성 세라믹 폼을 도 14에 나타내었다. The dip-coated polymer foam was sintered. The polymer foam was charged into a furnace, and the temperature was raised to 550°C at a rate of 5°C per minute, and then maintained at 550°C for 1 hour so that the polymer component was burned and removed, at a rate of 5°C per minute. After raising the temperature to 1450°C, it was maintained at 1450°C for 3 hours for sintering, followed by furnace cooling to obtain a porous ceramic foam. The sintering was performed in an air atmosphere. The porous ceramic foam thus prepared is shown in FIG. 14 .
도 15 내지 도 17은 실험예 1에 따라 제조된 다공성 세라믹 폼의 미세구조를 보여주는 주사전자현미경(SEM; scanning electron microscope) 사진이다. 15 to 17 are scanning electron microscope (SEM) photographs showing the microstructure of the porous ceramic foam prepared according to Experimental Example 1. Referring to FIG.
도 13a 내지 도 13c를 참조하면, 다공성 세라믹 폼은 무수히 많은 기공들을 갖는 다공체임을 확인할 수 있다.13A to 13C , it can be seen that the porous ceramic foam is a porous body having countless pores.
<실험예 2><Experimental Example 2>
실험예 1에 따라 제조된 다공성 세라믹 폼을 에탄올에 담궈서 초음파 세척한 후, 오븐에서 75℃의 온도로 24시간 동안 건조하였다.The porous ceramic foam prepared according to Experimental Example 1 was immersed in ethanol and ultrasonically washed, and then dried in an oven at a temperature of 75° C. for 24 hours.
용질과 용매를 준비하고, 용질(solute)과 용매(solvent)의 비는 34.66:65.34의 중량비로 측량하였다. 상기 용질은 뮬라이트 분말(Mullite powder), AlF3 분말 및 실리카 졸을 사용하였다. 상기 뮬라이트 분말(Mullite powder), 상기 AlF3 분말 및 상기 실리카 졸은 13.33:13.33:8의 중량비로 사용하였다. 상기 뮬라이트 분말은 뮬라이트 결정 성장의 씨드(seed) 역할을 하고, 상기 AlF3 분말은 Al과 F 이온의 소스(source) 역할을 하며, 상기 실리카 졸은 Si 이온의 소스 역할을 한다. 상기 용매(solvent)는 증류수를 사용하였다. The solute and the solvent were prepared, and the ratio of the solute and the solvent was measured at a weight ratio of 34.66:65.34. Mullite powder, AlF 3 powder and silica sol were used as the solute. The mullite powder, the AlF 3 powder, and the silica sol were used in a weight ratio of 13.33:13.33:8. The mullite powder serves as a seed of mullite crystal growth, the AlF 3 powder serves as a source of Al and F ions, and the silica sol serves as a source of Si ions. Distilled water was used as the solvent.
비커에 용매인 증류수를 넣은 후 마그네틱바를 이용하여 교반(stirring) 하면서 분산제(Dispersant)(BYK-111)를 상기 용질 100중량부에 대하여 1중량부 첨가하였다. 분산제 투입 후 1시간 동안 교반한 후, 실리카 졸(Silica sol)을 천천히 첨가하고 30분 동안 교반하였다. 실리카 졸이 첨가된 용매에 AlF3 분말을 첨가하고 1시간 동안 교반하였다. AlF3 분말이 첨가된 용매에 뮬라이트 분말(Mullite powder)를 첨가하고 1시간 동안 교반하였다. 뮬라이트 분말이 첨가된 용매에 증점제인 CMC(Carboxylic methyl cellulose) 용액을 상기 용질 100중량부에 대하여 5중량부 첨가하고 30분 동안 교반한 후, 바인더인 PVA 용액을 상기 용질 100중량부에 대하여 5중량부 첨가하고 1시간 동안 교반하여 세라믹 슬러리를 형성하였다. 상기 CMC 용액은 CMC(Carboxylic methyl cellulose)가 증류수에 0.1wt% 용해된 용액을 사용하였다. 상기 CMC 용액은 코팅액의 점도를 높여 침전속도를 감소시키는 역할을 한다. 상기 PVA 용액은 분자량이 89000~99000 정도인 PVA(Polyvinyl alcohol)가 증류수에 10wt% 용해된 용액을 사용하였다. 상기 PVA 용액은 세라믹 슬러리의 접착력을 향상시키는 역할을 한다. After adding distilled water as a solvent to a beaker, 1 part by weight of a dispersant (BYK-111) was added based on 100 parts by weight of the solute while stirring using a magnetic bar. After the dispersant was added and stirred for 1 hour, silica sol was slowly added and stirred for 30 minutes. AlF 3 powder was added to the silica sol-added solvent and stirred for 1 hour. Mullite powder was added to the AlF 3 powder-added solvent and stirred for 1 hour. 5 parts by weight of a CMC (Carboxylic methyl cellulose) solution as a thickener is added to a solvent to which mullite powder is added based on 100 parts by weight of the solute and stirred for 30 minutes, and then a PVA solution as a binder is added to 100 parts by weight of the solute by 5 parts by weight. After addition, the mixture was stirred for 1 hour to form a ceramic slurry. As the CMC solution, a solution in which Carboxylic methyl cellulose (CMC) was dissolved in distilled water at 0.1 wt% was used. The CMC solution serves to increase the viscosity of the coating solution to decrease the precipitation rate. As the PVA solution, a solution in which polyvinyl alcohol (PVA) having a molecular weight of about 89000 to 99000 was dissolved in distilled water was used. The PVA solution serves to improve the adhesion of the ceramic slurry.
상기 세라믹 슬러리(ceramic slurry)를 실험예 1에 따라 제조된 다공성 세라믹 폼에 딥 코팅(Dip coating) 하였다. 다공성 세라믹 폼을 세라믹 슬러리에 완전히 담그고, 진공 분위기에서 5분 동안 딥 코팅을 수행하였다. The ceramic slurry was dip-coated on the porous ceramic foam prepared according to Experimental Example 1. The porous ceramic foam was completely immersed in the ceramic slurry, and dip coating was performed in a vacuum atmosphere for 5 minutes.
딥 코팅이 이루어진 다공성 세라믹 폼을 오븐에서 80℃의 온도로 3시간 동안 건조하였다. The dip-coated porous ceramic foam was dried in an oven at a temperature of 80° C. for 3 hours.
딥 코팅이 이루어진 다공성 세라믹 폼을 소결하였다. 다공성 세라믹 폼을 퍼니스(furnace)에 장입하고, 분당 5℃의 속도로 1400℃까지 승온시킨 후, 1400℃에서 3시간 동안 유지하여 소결하였으며, 이후 로냉하여 휘스커가 형성된 다공성 세라믹 폼을 얻었다. 상기 소결은 공기(air) 분위기에서 수행하였다. 실험예 2에 따라 휘스커가 형성된 다공성 세라믹 폼을 도 18에 나타내었다. A porous ceramic foam with dip coating was sintered. The porous ceramic foam was charged into a furnace, and the temperature was raised to 1400° C. at a rate of 5° C. per minute, maintained at 1400° C. for 3 hours, and sintered, followed by furnace cooling to obtain a whisker-formed porous ceramic foam. The sintering was performed in an air atmosphere. A porous ceramic foam having whiskers according to Experimental Example 2 is shown in FIG. 18 .
도 19 내지 도 26은 실험예 2에 따라 휘스커가 형성된 다공성 세라믹 폼의 미세구조를 보여주는 주사전자현미경(SEM) 사진이다. 19 to 26 are scanning electron microscope (SEM) photographs showing the microstructure of the porous ceramic foam in which the whiskers are formed according to Experimental Example 2.
도 19 내지 도 26을 참조하면, 다공성 세라믹 폼은 무수히 많은 기공들을 갖는 다공성체임을 확인할 수 있다. 또한, 다공성 세라믹 폼에 휘스커가 형성되어 있는 것을 확인할 수 있다. 19 to 26 , it can be confirmed that the porous ceramic foam is a porous body having innumerable pores. In addition, it can be seen that the whiskers are formed on the porous ceramic foam.
<실험예 3><Experimental Example 3>
실험예 1에 따라 제조된 다공성 세라믹 폼을 에탄올에 담궈서 초음파 세척한 후, 오븐에서 75℃의 온도로 24시간 동안 건조하였다.The porous ceramic foam prepared according to Experimental Example 1 was immersed in ethanol and ultrasonically washed, and then dried in an oven at a temperature of 75° C. for 24 hours.
용질과 용매를 준비하고, 용질(solute)과 용매(solvent)의 비는 20:80의 중량비로 측량하였다. 상기 용질은 상기 다공성 세라믹 폼의 주성분인 알루미나와 동일한 재질인 알루미나 분말을 사용하였다. The solute and the solvent were prepared, and the ratio of the solute and the solvent was measured in a weight ratio of 20:80. As the solute, alumina powder, which is the same material as alumina, which is the main component of the porous ceramic foam, was used.
비커에 용매인 증류수를 넣은 후 마그네틱바를 이용하여 교반(stirring) 하면서 분산제(Dispersant)(Darvan C)를 상기 용질 100중량부에 대하여 10중량부 첨가하였다. 분산제 투입 후 1시간 동안 교반한 후, 알루미나 분말을 첨가하고 1시간 동안 교반하였다. 알루미나 분말이 첨가된 용매에 바인더인 PVA 용액을 상기 용질 100중량부에 대하여 50중량부 첨가하고 1시간 동안 교반하여 세라믹 슬러리를 형성하였다. 상기 PVA 용액은 분자량이 89000~99000 정도인 PVA(Polyvinyl alcohol)가 증류수에 10wt% 용해된 용액을 사용하였다. 상기 PVA 용액은 세라믹 슬러리의 접착력을 향상시키는 역할을 한다. After adding distilled water as a solvent to a beaker, 10 parts by weight of a dispersant (Darvan C) was added based on 100 parts by weight of the solute while stirring using a magnetic bar. After the dispersant was added and stirred for 1 hour, alumina powder was added and stirred for 1 hour. A ceramic slurry was formed by adding 50 parts by weight of a PVA solution as a binder to a solvent to which alumina powder was added based on 100 parts by weight of the solute and stirring for 1 hour. As the PVA solution, a solution in which polyvinyl alcohol (PVA) having a molecular weight of about 89000 to 99000 was dissolved in distilled water was used. The PVA solution serves to improve the adhesion of the ceramic slurry.
상기 세라믹 슬러리(ceramic slurry)를 실험예 1에 따라 제조된 다공성 세라믹 폼 표면에 코팅 하였다. 상기 코팅은 다공성 세라믹 폼을 세라믹 슬러리에 완전히 담그는 것이 아니라, 코팅하려는 다공성 세라믹 폼의 끝부분(표면)만 담궜다가 빼는 방식으로 선택적으로 실시하였다. 이러한 방식으로 코팅하게 되면, 다공성 세라믹 폼 전체가 코팅되는 것이 아니라 코팅하려는 선택 부분만 코팅할 수 있으며, 다공성 세라믹 폼의 표면에서 일정 깊이까지만 슬러리가 코팅되게 되고, 슬러리가 코팅된 부분은 코팅되지 않은 부분보다 상대적으로 작은 크기의 기공들(제1 크기의 기공들)이 분포하게 된다. 슬러리가 코팅되지 않은 부분은 상대적으로 큰 크기의 기공들(제2 크기의 기공들)을 가지는 다공성 세라믹 폼의 영역(제2 영역)이 되고, 슬러리가 코팅된 부분은 상대적으로 작은 크기의 기공들(제1 크기의 기공들)을 가지는 다공성 세라믹 폼의 영역(제1 영역)이 되게 된다. The ceramic slurry was coated on the surface of the porous ceramic foam prepared according to Experimental Example 1. The coating was selectively carried out by immersing only the tip (surface) of the porous ceramic foam to be coated and then taking it out, rather than completely immersing the porous ceramic foam in the ceramic slurry. When coated in this way, not the entire porous ceramic foam is coated, but only the selected portion to be coated can be coated, and the slurry is coated only to a certain depth from the surface of the porous ceramic foam, and the portion coated with the slurry is uncoated. The pores (pores of the first size) having a relatively smaller size than the portion are distributed. The portion on which the slurry is not coated becomes a region (second region) of the porous ceramic foam having relatively large-sized pores (pores of the second size), and the portion coated with the slurry has relatively small-sized pores A region (a first region) of the porous ceramic foam having (pores of a first size).
선택적 코팅이 이루어진 다공성 세라믹 폼을 오븐에서 80℃의 온도로 3시간 동안 건조하였다. The porous ceramic foam with the selective coating was dried in an oven at a temperature of 80° C. for 3 hours.
선택적 코팅이 이루어진 다공성 세라믹 폼을 소결하였다. 선택적 코팅이 이루어진 다공성 세라믹 폼을 퍼니스(furnace)에 장입하고, 분당 5℃의 속도로 550℃까지 승온시킨 후, 550℃에서 1시간 동안 유지하여 폴리머(polymer) 성분이 태워져서 제거되게 하였으며, 분당 5℃의 속도로 1250℃까지 승온시킨 후, 1250℃에서 3시간 동안 유지하여 소결하였으며, 이후 로냉하여 다공성 세라믹 폼을 얻었다. 상기 소결은 공기(air) 분위기에서 수행하였다. A porous ceramic foam with selective coating was sintered. A porous ceramic foam with selective coating was charged into a furnace, and the temperature was raised to 550°C at a rate of 5°C per minute, and then maintained at 550°C for 1 hour so that the polymer component was burned and removed. After raising the temperature to 1250°C at a rate of 5°C, it was maintained at 1250°C for 3 hours for sintering, and then furnace-cooled to obtain a porous ceramic foam. The sintering was performed in an air atmosphere.
이렇게 제조된 다공성 세라믹 폼은 제2 영역(B)에 비해 상대적으로 작은 크기의 기공들(제1 크기의 기공들)을 가지는 제1 영역(A)과 제1 영역(A)에 비해 상대적으로 큰 크기의 기공들(제2 크기의 기공들)을 가지는 제2 영역(B)을 포함한다.The porous ceramic foam prepared in this way is relatively large compared to the first region (A) and the first region (A) having pores (pores of the first size) having a relatively small size compared to the second region (B). and a second region B having pores of a size (pores of a second size).
<실험예 4><Experimental Example 4>
제1 영역(A)과 제2 영역(B)을 포함하는 다공성 세라믹 폼을 제작하기 위하여 기판(substrate)으로 다공성의 폴리머 폼(polymer foam)(더욱 구체적으로는 폴리우레탄 폼(polyurethane foam)) 2개를 사용하였다. 2개의 폴리머 폼(제1 폴리머 폼과 제2 폴리머 폼)은 서로 다른 기공 크기(PPI; Pore per inch)를 갖는 것을 사용하였는데, 예컨대 제1 폴리머 폼의 평균 기공 크기는 제2 폴리머 폼의 평균 기공 크기보다 작은 것을 사용하였다. 상기 제1 및 제2 폴리머 폼은 스펀지(sponge)와 같이 탄성이 있는 다공성 물질이다. 제작될 시편의 사이즈(size)에 맞게 제1 및 제2 폴리머 폼(polymer foam)을 자른 후 초음파 세척을 통해 세척한 후, 오븐(Oven)에서 70℃에서 24시간 동안 건조하였다. A porous polymer foam (more specifically, polyurethane foam) as a substrate to produce a porous ceramic foam including the first region (A) and the second region (B) 2 dog was used. Two polymer foams (the first polymer foam and the second polymer foam) were used to have different pore sizes (PPI; Pore per inch), for example, the average pore size of the first polymer foam is the average pore size of the second polymer foam A smaller size was used. The first and second polymer foams are porous materials having elasticity, such as a sponge. The first and second polymer foams were cut to fit the size of the specimen to be manufactured, and then washed through ultrasonic cleaning, and then dried in an oven at 70° C. for 24 hours.
용질과 용매를 준비하고, 용질(solute)과 용매(solvent)의 비는 50:50의 중량비로 측량하였다. 상기 용질은 알루미나 분말(Alumina powder)과 유리 프릿(Glass frit)를 사용하였다. 알루미나 분말(Alumina powder)과 유리 프릿(Glass frit)은 47.5:2.5의 중량비로 사용하였다. 상기 알루미나 분말은 제작할 다공성 세라믹 폼(세라믹 다공체)의 주 소재이고, 상기 유리 프릿은 소결온도를 낮추고, 다공성 세라믹 폼 자체에 Si를 함유시키는 역할을 역할을 할 뿐만 아니라, 뮬라이트(Mullite)의 성장성을 향상시키는 역할을 할 수 있다. 상기 용매(solvent)는 증류수를 사용하였다. The solute and the solvent were prepared, and the ratio of the solute and the solvent was measured in a weight ratio of 50:50. As the solute, alumina powder and glass frit were used. Alumina powder and glass frit were used in a weight ratio of 47.5:2.5. The alumina powder is the main material of the porous ceramic foam (ceramic porous body) to be produced, and the glass frit not only serves to lower the sintering temperature and contains Si in the porous ceramic foam itself, but also to increase the growth of mullite. can play a role in improving it. Distilled water was used as the solvent.
비커에 용매인 증류수를 넣은 후 마그네틱바를 이용하여 교반(stirring) 하면서 분산제(Dispersant)(BYK-111)를 상기 용질 100중량부에 대하여 1중량부 첨가하였다. 분산제 투입 후 30분 동안 교반한 후, 주재료인 알루미나 분말을 용매에 투입하고 1시간 동안 교반하였다. 알루미나 분말이 분산된 용매에 유리 프릿을 첨가하고 1시간 동안 교반한 다음, 바인더인 PVA(Polyvinyl alcohol) 용액(PVA solution)을 상기 용질 100중량부에 대하여 5중량부 첨가하고 1시간 동안 교반하여 세라믹 슬러리(ceramic slurry)를 형성하였다. 상기 PVA 용액은 분자량이 89000~99000 정도인 PVA(Polyvinyl alcohol)가 증류수에 10wt% 용해된 용액을 사용하였다. 상기 PVA 용액은 세라믹 슬러리의 접착력을 향상시키는 역할을 한다. After adding distilled water as a solvent to a beaker, 1 part by weight of a dispersant (BYK-111) was added based on 100 parts by weight of the solute while stirring using a magnetic bar. After the dispersant was added and stirred for 30 minutes, alumina powder, which is the main material, was added to the solvent and stirred for 1 hour. After adding a glass frit to the solvent in which the alumina powder is dispersed and stirring for 1 hour, 5 parts by weight of a PVA (Polyvinyl alcohol) solution (PVA solution) as a binder is added based on 100 parts by weight of the solute and stirred for 1 hour to make the ceramic A ceramic slurry was formed. As the PVA solution, a solution in which polyvinyl alcohol (PVA) having a molecular weight of about 89000 to 99000 was dissolved in distilled water was used. The PVA solution serves to improve the adhesion of the ceramic slurry.
상기 세라믹 슬러리(ceramic slurry)를 제1 및 제2 폴리머 폼에 딥 코팅(Dip coating) 하였다. 제1 및 제2 폴리머 폼을 세라믹 슬러리에 완전히 담그고, 진공 분위기에서 5분 동안 딥 코팅을 수행하였다. 딥 코팅 후, 제1 및 제2 폴리머 폼에 함유된 과량의 슬러리를 빼기 위해 외력을 주어 제1 및 제2 폴리머 폼 두께의 2/3 이하로 압축했다가 압축을 해제하여 원래의 폴리머 폼 형태로 복귀되게 하였으며, 이러한 방식에 의해 제1 및 제2 폴리머 폼에 함유된 일부 슬러리가 제1 및 제2 폴리머 폼에서 빠져나오게 하였다.The ceramic slurry was dip-coated on the first and second polymer foams. The first and second polymer foams were completely immersed in the ceramic slurry, and dip coating was performed in a vacuum atmosphere for 5 minutes. After dip coating, compressing to 2/3 or less of the thickness of the first and second polymer foams by applying an external force to remove the excess slurry contained in the first and second polymer foams, and then releasing the compression to restore the original polymer foam form Some of the slurry contained in the first and second polymer foams was released from the first and second polymer foams in this way.
딥 코팅이 이루어진 제1 폴리머 폼과 딥 코팅이 이루어진 제2 폴리머 폼을 겹치고, 겹친 상태에서 오븐에서 80℃의 온도로 3시간 동안 건조하였다. The first polymer foam coated with the dip coating and the second polymer foam coated with the dip coating were overlapped, and dried in an overlapping state at a temperature of 80° C. for 3 hours.
제1 폴리머 폼과 제2 폴리머 폼이 겹쳐져서 건조된 결과물을 소결하였다. 제1 폴리머 폼과 제2 폴리머 폼이 겹쳐져서 건조된 결과물을 퍼니스(furnace)에 장입하고, 분당 5℃의 속도로 550℃까지 승온시킨 후, 550℃에서 1시간 동안 유지하여 폴리머(polymer) 성분이 태워져서 제거되게 하였으며, 분당 5℃의 속도로 1450℃까지 승온시킨 후, 1450℃에서 3시간 동안 유지하여 소결하였으며, 이후 로냉하여 다공성 세라믹 폼을 얻었다. 상기 소결은 공기(air) 분위기에서 수행하였다. 세라믹 슬러리가 코팅된 제1 폴리머 폼과 제2 폴리머 폼이 겹쳐져서 소결되게 되면 하나의 몸체로 이루어진 다공성 세라믹 폼이 형성되게 된다. 제1 폴리머 폼과 제2 폴리머 폼은 서로 다른 기공 크기(PPI; Pore per inch)를 갖는 것을 사용하였는데, 제1 폴리머 폼이 위치하던 영역과 제2 폴리머 폼이 위치하던 영역은 서로 다른 기공 크기를 갖게 되며, 이에 따라 제2 영역에 비해 상대적으로 작은 크기의 기공들(제1 크기의 기공들)을 가지는 영역(제1 영역)과 제1 영역에 비해 상대적으로 큰 크기의 기공들(제2 크기의 기공들)을 가지는 영역(제2 영역)이 구분된 다공성 세라믹 폼을 얻을 수가 있다. The first polymer foam and the second polymer foam were overlapped and the dried product was sintered. After the first polymer foam and the second polymer foam are overlapped and dried, the resultant is charged into a furnace, heated to 550° C. at a rate of 5° C. per minute, and maintained at 550° C. for 1 hour to form a polymer component This was burned to be removed, and the temperature was raised to 1450°C at a rate of 5°C per minute, maintained at 1450°C for 3 hours, and sintered, followed by furnace cooling to obtain a porous ceramic foam. The sintering was performed in an air atmosphere. When the ceramic slurry-coated first polymer foam and the second polymer foam are overlapped and sintered, a porous ceramic foam consisting of a single body is formed. The first polymer foam and the second polymer foam were used to have different pore sizes (PPI; Pore per inch), and the region where the first polymer foam was positioned and the region where the second polymer foam was positioned had different pore sizes. Accordingly, the region (the first region) having pores (pores of the first size) having a relatively small size compared to the second region and pores having a relatively large size (second size) compared to the first region A porous ceramic foam in which the region (the second region) having the pores) is separated can be obtained.
<실험예 5><Experimental Example 5>
실험예 1에 따라 제조된 다공성 세라믹 폼을 에탄올에 담궈서 초음파 세척한 후, 오븐에서 75℃의 온도로 24시간 동안 건조하였다.The porous ceramic foam prepared according to Experimental Example 1 was immersed in ethanol and ultrasonically washed, and then dried in an oven at a temperature of 75° C. for 24 hours.
비커에 용매인 에탄올을 넣은 후 질산아연 6수화물을 첨가하고 1시간 동안 교반하여 씨드 용액(seed solution)을 형성하였다. 질산아연 6수화물과 에탄올이 6:94의 중량비를 이루도록 상기 질산아연 6수화물을 첨가하였다. 상기 질산아연 6수화물(zinc nitrate hexahydrate; Zn(NO3)2·6H2O)은 Zn의 소스(source) 역할을 한다. After adding ethanol as a solvent to a beaker, zinc nitrate hexahydrate was added and stirred for 1 hour to form a seed solution. The zinc nitrate hexahydrate was added so that the zinc nitrate hexahydrate and ethanol had a weight ratio of 6:94. The zinc nitrate hexahydrate (Zn(NO 3 ) 2 ·6H 2 O) serves as a source of Zn.
상기 씨드 용액을 실험예 1에 따라 제조된 폴리머 폼에 딥 코팅(Dip coating) 하였다. 다공성 세라믹 폼을 씨드 용액에 완전히 담그고, 진공 분위기에서 20분 동안 딥 코팅을 수행하였다. The seed solution was dip-coated on the polymer foam prepared according to Experimental Example 1. The porous ceramic foam was completely immersed in the seed solution, and dip coating was performed in a vacuum atmosphere for 20 minutes.
딥 코팅이 이루어진 다공성 세라믹 폼을 오븐에서 200℃의 온도로 3시간 동안 어닐링(annealing)을 수행하였다. 상기 어닐링에 의해 씨드 용액이 다공성 세라믹 폼에 잘 접착될 수가 있다. The porous ceramic foam with dip coating was annealed in an oven at a temperature of 200° C. for 3 hours. By the annealing, the seed solution may be well adhered to the porous ceramic foam.
비커에 용매인 에탄올을 넣은 후 질산아연 6수화물과 헥사메틸렌테트라민(Hexamethylenetetramine) 분말을 첨가하고, 여기에 PVA 용액을 첨가한 후 1시간 동안 교반하여 성장 용액(growth solution)을 형성하였다. 질산아연 6수화물, 헥사메틸렌테트라민 분말 및 에탄올이 0.004:0.002:99.994의 중량비를 이루도록 상기 질산아연 6수화물과 헥사메틸렌테트라민 분말을 첨가하였다. 상기 질산아연 6수화물(zinc nitrate hexahydrate)은 Zn의 소스(source) 역할을 하고, 상기 헥사메틸렌테트라민 분말은 Al과 F의 소스 역할을 한다. 상기 PVA 용액은 분자량이 89000~99000 정도인 PVA(Polyvinyl alcohol)가 증류수에 10wt% 용해된 용액을 사용하였다. 상기 PVA 용액은 성장 용액의 접착력을 향상시키는 역할을 한다. After putting ethanol as a solvent in a beaker, zinc nitrate hexahydrate and hexamethylenetetramine powder were added, and a PVA solution was added thereto, followed by stirring for 1 hour to form a growth solution. The zinc nitrate hexahydrate and hexamethylenetetramine powder were added so that zinc nitrate hexahydrate, hexamethylenetetramine powder and ethanol were in a weight ratio of 0.004:0.002:99.994. The zinc nitrate hexahydrate serves as a source of Zn, and the hexamethylenetetramine powder serves as a source of Al and F. As the PVA solution, a solution in which polyvinyl alcohol (PVA) having a molecular weight of about 89000 to 99000 was dissolved in distilled water was used. The PVA solution serves to improve the adhesion of the growth solution.
상기 성장 용액에 어닐링이 이루어진 다공성 세라믹 폼을 담그어서 코팅하였다. 상기 성장 용액의 온도를 95℃가 되게 하고 다공성 세라믹 폼을 24시간 동안 담그어서 코팅하였다. The annealed porous ceramic foam was immersed in the growth solution and coated. The temperature of the growth solution was brought to 95° C., and the porous ceramic foam was immersed and coated for 24 hours.
성장 용액으로 코팅된 다공성 세라믹 폼을 증류수가 담긴 비이커에 담고 천천히 흔들어서 세척하였다. The porous ceramic foam coated with the growth solution was placed in a beaker containing distilled water and washed by shaking slowly.
세척된 다공성 세라믹 폼을 소결하였다. 다공성 세라믹 폼을 퍼니스(furnace)에 장입하고, 분당 5℃의 속도로 1200℃까지 승온시킨 후, 1200℃에서 1시간 동안 유지하여 소결하였으며, 이후 로냉하여 ZnO 재질의 휘스커가 형성된 다공성 세라믹 폼을 얻었다. 상기 소결은 공기(air) 분위기에서 수행하였다. The washed porous ceramic foam was sintered. The porous ceramic foam was charged into a furnace, and the temperature was raised to 1200°C at a rate of 5°C per minute, maintained at 1200°C for 1 hour and sintered, and then furnace cooled to obtain a porous ceramic foam having a whisker made of ZnO. . The sintering was performed in an air atmosphere.
<실험예 6><Experimental Example 6>
다공성 세라믹 폼을 제작하기 위하여 기판(substrate)으로 다공성의 폴리머 폼(polymer foam)(더욱 구체적으로는 폴리우레탄 폼(polyurethane foam))을 사용하였다. 상기 폴리머 폼은 스펀지(sponge)와 같이 탄성이 있는 다공성 물질이다. 제작될 시편의 사이즈(size)에 맞게 폴리머 폼(polymer foam)을 자른 후 초음파 세척을 통해 세척한 후, 오븐(Oven)에서 70℃에서 24시간 동안 건조하였다. A porous polymer foam (more specifically, polyurethane foam) was used as a substrate to prepare the porous ceramic foam. The polymer foam is a porous material having elasticity, such as a sponge. Polymer foam was cut to fit the size of the specimen to be fabricated, washed through ultrasonic cleaning, and then dried in an oven at 70° C. for 24 hours.
용질과 용매를 준비하고, 용질(solute)과 용매(solvent)의 비는 50:50의 중량비로 측량하였다. 상기 용질은 실리콘 카바이드 분말(Silicon carbide powder)과 유리 프릿(Glass frit)를 사용하였다. 실리콘 카바이드 분말과 유리 프릿(Glass frit)은 47.5:2.5의 중량비로 사용하였다. 상기 실리콘 카바이드 분말은 제작할 다공성 세라믹 폼(세라믹 다공체)의 주 소재이고, 상기 유리 프릿은 소결온도를 낮추고, 다공성 세라믹 폼 자체에 Si를 함유시키는 역할을 역할을 할 뿐만 아니라, SiC의 성장성을 향상시키는 역할을 할 수 있다. 상기 용매(solvent)는 증류수를 사용하였다. The solute and the solvent were prepared, and the ratio of the solute and the solvent was measured in a weight ratio of 50:50. Silicon carbide powder and glass frit were used as the solute. Silicon carbide powder and glass frit were used in a weight ratio of 47.5:2.5. The silicon carbide powder is the main material of the porous ceramic foam (ceramic porous body) to be produced, and the glass frit not only serves to lower the sintering temperature and contains Si in the porous ceramic foam itself, but also improves the growth of SiC. can play a role Distilled water was used as the solvent.
비커에 용매인 증류수를 넣은 후 마그네틱바를 이용하여 교반(stirring) 하면서 분산제(Dispersant)(BYK-111)를 상기 용질 100중량부에 대하여 1중량부 첨가하였다. 분산제 투입 후 30분 동안 교반한 후, 주재료인 실리콘 카바이드 분말을 용매에 투입하고 1시간 동안 교반하였다. 실리콘 카바이드 분말이 분산된 용매에 유리 프릿을 첨가하고 1시간 동안 교반한 다음, 바인더인 PVA(Polyvinyl alcohol) 용액(PVA solution)을 상기 용질 100중량부에 대하여 5중량부 첨가하고 1시간 동안 교반하여 세라믹 슬러리(ceramic slurry)를 형성하였다. 상기 PVA 용액은 분자량이 89000~99000 정도인 PVA(Polyvinyl alcohol)가 증류수에 10wt% 용해된 용액을 사용하였다. 상기 PVA 용액은 세라믹 슬러리의 접착력을 향상시키는 역할을 한다. After adding distilled water as a solvent to a beaker, 1 part by weight of a dispersant (BYK-111) was added based on 100 parts by weight of the solute while stirring using a magnetic bar. After the dispersant was added and stirred for 30 minutes, silicon carbide powder as the main material was added to the solvent and stirred for 1 hour. A glass frit was added to the solvent in which the silicon carbide powder was dispersed and stirred for 1 hour, and then 5 parts by weight of a PVA (Polyvinyl alcohol) solution as a binder was added based on 100 parts by weight of the solute and stirred for 1 hour. A ceramic slurry was formed. As the PVA solution, a solution in which polyvinyl alcohol (PVA) having a molecular weight of about 89000 to 99000 was dissolved in distilled water was used. The PVA solution serves to improve the adhesion of the ceramic slurry.
상기 세라믹 슬러리(ceramic slurry)를 폴리머 폼에 딥 코팅(Dip coating) 하였다. 폴리머 폼을 세라믹 슬러리에 완전히 담그고, 진공 분위기에서 5분 동안 딥 코팅을 수행하였다. 딥 코팅 후, 폴리머 폼에 함유된 과량의 슬러리를 빼기 위해 외력을 주어 폴리머 폼 두께의 2/3 이하로 압축했다가 압축을 해제하여 원래의 폴리머 폼 형태로 복귀되게 하였으며, 이러한 방식에 의해 폴리머 폼에 함유된 일부 슬러리가 폴리머 폼에서 빠져나오게 하였다.The ceramic slurry was dip-coated on a polymer foam. The polymer foam was completely immersed in the ceramic slurry, and dip coating was performed in a vacuum atmosphere for 5 minutes. After dip coating, the polymer foam was compressed to less than 2/3 of the thickness of the polymer foam by applying an external force to remove the excess slurry contained in the polymer foam, and then released to return to the original polymer foam form. Some of the slurry contained in the polymer was allowed to escape from the polymer foam.
딥 코팅이 이루어진 폴리머 폼을 오븐에서 80℃의 온도로 3시간 동안 건조하였다. The dip-coated polymer foam was dried in an oven at a temperature of 80° C. for 3 hours.
딥 코팅이 이루어진 폴리머 폼을 소결하였다. 폴리머 폼을 퍼니스(furnace)에 장입하고, 분당 5℃의 속도로 550℃까지 승온시킨 후, 550℃에서 1시간 동안 유지하여 폴리머(polymer) 성분이 태워져서 제거되게 하였으며, 분당 5℃의 속도로 1450℃까지 승온시킨 후, 1450℃에서 3시간 동안 유지하여 소결하였으며, 이후 로냉하여 다공성 세라믹 폼을 얻었다. 상기 소결은 환원 분위기에서 수행하였다. The dip-coated polymer foam was sintered. The polymer foam was charged into a furnace, and the temperature was raised to 550°C at a rate of 5°C per minute, and then maintained at 550°C for 1 hour so that the polymer component was burned and removed, at a rate of 5°C per minute. After raising the temperature to 1450°C, it was maintained at 1450°C for 3 hours for sintering, followed by furnace cooling to obtain a porous ceramic foam. The sintering was performed in a reducing atmosphere.
이렇게 제조된 다공성 세라믹 폼을 에탄올에 담궈서 초음파 세척한 후, 오븐에서 75℃의 온도로 24시간 동안 건조하였다.The thus-prepared porous ceramic foam was soaked in ethanol for ultrasonic cleaning, and then dried in an oven at a temperature of 75° C. for 24 hours.
건조된 다공성 세라믹 폼을 튜브로 중앙에 넣고 튜브로의 입구에는 휘스커(whisker) 성장의 소스로 사용될 실리카 분말(Silica powder)과 카본 분말(Carbon powder)을 알루미나 플레이트 위에 장착하였다. 상기 실리카 분말과 상기 카본 분말은 1:1.6의 중량비를 이루게 하였다. 캐리어 가스(Carrier gas)로 아르곤(Ar)을 사용하며, 캐리어 가스의 유량은 0.2L/min을 하였다. 반응온도는 1450℃로 하여 4시간 동안 실시하여 SiC 휘스커가 성장되게 하였다. The dried porous ceramic foam was placed in the center of the tube, and at the entrance to the tube, silica powder and carbon powder to be used as a source for whisker growth were mounted on an alumina plate. The silica powder and the carbon powder were in a weight ratio of 1:1.6. Argon (Ar) was used as a carrier gas, and the flow rate of the carrier gas was 0.2 L/min. The reaction temperature was set to 1450° C. and it was carried out for 4 hours to allow SiC whiskers to grow.
이상, 본 발명의 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되는 것은 아니며, 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.As mentioned above, although preferred embodiments of the present invention have been described in detail, the present invention is not limited to the above embodiments, and various modifications are possible by those skilled in the art.
[부호의 설명][Explanation of code]
10: 로터(rotor)10: rotor
20: 브레이크 패드20: brake pad
30: 브레이크 캘리퍼30: brake caliper
110: 제1 컬렉터110: first collector
120: 제2 컬렉터120: second collector
130: 상부 컬렉터130: upper collector
140: 리브140: rib
150: 채널150: channel
155: 유입구155: inlet
160: 제1 컬렉터 커버160: first collector cover
170: 제2 컬렉터 커버170: second collector cover
180: 상부 컬렉터 커버180: upper collector cover
본 발명에 의하면, 수송기관의 브레이크 장치에서 로터와 브레이크 패드의 마찰에 의해 발생한 미세먼지를 효율적으로 포집할 수 있으며, 산업상 이용가능성이 있다.According to the present invention, it is possible to efficiently collect fine dust generated by friction between the rotor and the brake pad in a brake device of a transportation engine, and has industrial applicability.

Claims (18)

  1. 수송기관의 브레이크 장치에서 로터와 브레이크 패드의 마찰에 의해 발생한 미세먼지를 포집하기 위한 장치로서, A device for collecting fine dust generated by friction between a rotor and a brake pad in a brake device of a transportation engine,
    상기 로터의 외측면 일부를 감싸는 제1 컬렉터;a first collector surrounding a portion of an outer surface of the rotor;
    상기 로터의 바깥 둘레면 일부를 감싸는 상부 컬렉터; 및 an upper collector surrounding a portion of an outer circumferential surface of the rotor; and
    상기 로터의 내측면 일부를 감싸는 제2 컬렉터를 포함하고,and a second collector surrounding a portion of the inner surface of the rotor;
    상기 제1 컬렉터와 상기 제2 컬렉터는,The first collector and the second collector,
    다공성 세라믹 폼으로 이루어진 것을 특징으로 하는 포집장치.A collection device, characterized in that made of a porous ceramic foam.
  2. 제1항에 있어서, 상기 포집장치는 전체 외관상 U자형으로 구비되어 상기 U자형 내부로 상기 로터를 부분 수용하도록 구성되는 것을 특징으로 하는 포집장치.The collecting device according to claim 1, wherein the collecting device is provided in a U-shape in appearance to partially accommodate the rotor inside the U-shape.
  3. 제1항에 있어서, 상기 제1 컬렉터는 상기 로터의 외측면과 마주하게 구비되고,According to claim 1, wherein the first collector is provided to face the outer surface of the rotor,
    상기 제2 컬렉터는 상기 로터의 내측면과 마주하게 구비되며, The second collector is provided to face the inner surface of the rotor,
    상기 제2 컬렉터는 디스크 형상의 로터를 기준으로 상기 제1 컬렉터가 있는 반대편에 위치되고,The second collector is positioned opposite to the first collector with respect to the disk-shaped rotor,
    상기 제1 컬렉터와 상기 제2 컬렉터는 상기 로터를 기준으로 서로 마주하게 배치되는 것을 특징으로 하는 포집장치.The first collector and the second collector are disposed to face each other with respect to the rotor.
  4. 제1항에 있어서, 상기 제1 컬렉터를 덮어 보호하고 상기 제1 컬렉터로 유입된 미세먼지가 외부로 유출되는 것을 억제하기 위한 제1 컬렉터 커버; 및 The apparatus of claim 1 , further comprising: a first collector cover for covering and protecting the first collector and suppressing the fine dust flowing into the first collector from leaking to the outside; and
    상기 제2 컬렉터를 덮어 보호하고 상기 제2 컬렉터로 유입된 미세먼지가 외부로 유출되는 것을 억제하기 위한 제2 컬렉터 커버를 더 포함하는 것을 특징으로 하는 포집장치.and a second collector cover to cover and protect the second collector and prevent the fine dust flowing into the second collector from leaking to the outside.
  5. 제1항에 있어서, 상기 상부 컬렉터를 보호하기 위한 상부 컬렉터 커버가 상기 상부 컬렉터 상부에 더 구비되어 있는 것을 특징으로 하는 포집장치.The collecting device according to claim 1, wherein an upper collector cover for protecting the upper collector is further provided on the upper collector.
  6. 제5항에 있어서, 상기 상부 컬렉터에서 걸러진 깨끗한 공기가 외부로 빠져나갈 수 있도록 상기 상부 컬렉터 커버에 구멍들이 형성되어 있는 것을 특징으로 하는 포집장치.The collecting device according to claim 5, wherein holes are formed in the upper collector cover so that the clean air filtered by the upper collector can escape to the outside.
  7. 제1항에 있어서, 상기 다공성 세라믹 폼은 알루미나(Al2O3), 코디어라이트(cordierite, 2MgO·2Al2O3·5SiO2), 뮬라이트(mullite, 3Al2O3·2SiO2) 및 탄화규소(SiC)로 이루어진 군으로부터 선택된 1종 이상의 세라믹 재질인 것을 특징으로 하는 포집장치.According to claim 1, wherein the porous ceramic foam is alumina (Al 2 O 3 ), cordierite (cordierite, 2MgO·2Al 2 O 3 ·5SiO 2 ), mullite (mullite, 3Al 2 O 3 ·2SiO 2 ) and carbonization A collection device, characterized in that at least one ceramic material selected from the group consisting of silicon (SiC).
  8. 제1항에 있어서, 상기 다공성 세라믹 폼은 기공율이 40∼90%를 이루는 것을 특징으로 하는 포집장치.The collecting device according to claim 1, wherein the porous ceramic foam has a porosity of 40 to 90%.
  9. 제1항에 있어서, 상기 다공성 세라믹 폼은, According to claim 1, wherein the porous ceramic foam,
    미세먼지가 유입되는 통로 역할을 하는 기공(셀); 및 pores (cells) that serve as passageways for fine dust to flow in; and
    상기 기공(셀) 사이에서 다공성 세라믹 폼의 골격(strut)을 이루는 벽체를 포함하며, and a wall forming a strut of the porous ceramic foam between the pores (cells),
    다수의 휘스커가 상기 벽체의 표면에서 기공(셀)을 향해 돌출되어 있는 것을 특징으로 하는 포집장치.A collection device, characterized in that a plurality of whiskers protrude from the surface of the wall toward the pores (cells).
  10. 제9항에 있어서, 상기 휘스커는 뮬라이트(mullite, 3Al2O3·2SiO2), ZnO 및 탄화규소(SiC)로 이루어진 군으로부터 선택된 1종 이상의 침상형 세라믹 재질로 이루어진 것을 특징으로 하는 포집장치.The collecting device according to claim 9, wherein the whisker is made of one or more needle-shaped ceramic materials selected from the group consisting of mullite (3Al 2 O 3 ·2SiO 2 ), ZnO, and silicon carbide (SiC).
  11. 제1항에 있어서, 상기 다공성 세라믹 폼은, According to claim 1, wherein the porous ceramic foam,
    제2 영역에 비해 상대적으로 작은 크기의 기공들이 분포하는 제1 영역; 및 a first region in which pores having a relatively smaller size than that of the second region are distributed; and
    상기 제1 영역에 비해 상대적으로 큰 크기의 기공들이 분포하는 제2 영역을 포함하고, and a second region in which pores having a relatively larger size than that of the first region are distributed,
    상기 제1 영역은 상기 제2 영역에서 포집되는 미세먼지보다 더 작은 크기의 미세먼지를 포집할 수 있는 것을 특징으로 하는 포집장치.The first area is a collection device, characterized in that capable of collecting fine dust having a smaller size than the fine dust collected in the second area.
  12. 제11항에 있어서, 상기 제1 영역보다 상기 제2 영역이 상기 로터에 더 인접하게 위치되는 것을 특징으로 하는 포집장치.12. The collecting device of claim 11, wherein the second area is located closer to the rotor than the first area.
  13. 제1항에 있어서, 상기 상부 컬렉터는 다공성 세라믹 폼으로 이루어진 것을 특징으로 하는 포집장치.The collecting device according to claim 1, wherein the upper collector is made of a porous ceramic foam.
  14. 제1항에 있어서, 상기 제1 컬렉터 및 상기 제2 컬렉터는 상기 로터의 바깥 둘레면 일부를 덮도록 돌출된 단턱부를 갖는 다공성 세라믹 폼으로 이루어진 것을 특징으로 하는 포집장치.The collecting device according to claim 1, wherein the first collector and the second collector are made of a porous ceramic foam having a stepped portion protruding to cover a portion of an outer circumferential surface of the rotor.
  15. 제1항에 있어서, 상기 다공성 세라믹 폼은 소수성 코팅막으로 도포되어 있고 소수성을 나타내는 것을 특징으로 하는 포집장치.The collecting device according to claim 1, wherein the porous ceramic foam is coated with a hydrophobic coating film and exhibits hydrophobicity.
  16. 제1항에 있어서, 상기 제1 컬렉터와 상기 제2 컬렉터는,According to claim 1, wherein the first collector and the second collector,
    사행(serpentine type) 형태로 배열된 리브들과, 리브와 리브 사이의 빈 공간을 이루는 채널을 포함하는 것을 특징으로 하는 포집장치.A collecting device comprising: ribs arranged in a serpentine type; and a channel forming an empty space between the ribs and the ribs.
  17. 제16항에 있어서, 상기 리브들은 곡선형 형태를 이루는 것을 특징으로 하는 포집장치.17. The collecting device according to claim 16, wherein the ribs have a curved shape.
  18. 제16항에 있어서, 상기 제1 컬렉터와 상기 제2 컬렉터에서, 17. The method of claim 16, wherein in the first collector and the second collector,
    리브의 단부에는 리브블럭이 구비되고, 상기 리브블럭은 리브와 리브를 연결하는 매개체이며,A rib block is provided at the end of the rib, and the rib block is a medium connecting the rib and the rib,
    상기 로터와 상기 브레이크 패드의 마찰에 의해 발생한 미세먼지는 상기 채널의 유입구를 통해 유입되고, Fine dust generated by friction between the rotor and the brake pad is introduced through the inlet of the channel,
    상기 로터의 회전축인 X축에 수직한 Y축 방향으로는 상기 채널의 유입구와 리브블럭 사이의 빈 공간이 상기 채널을 이루는 영역이고, 상기 X축 및 Y축에 수직한 Z축 방향으로는 리브와 리브 사이의 빈 공간이 상기 채널을 이루는 영역인 것을 특징으로 하는 포집장치.In the Y-axis direction perpendicular to the X-axis, which is the rotation axis of the rotor, an empty space between the inlet of the channel and the rib block constitutes the channel, and in the Z-axis direction perpendicular to the X-axis and the Y-axis, the rib and An empty space between the ribs is an area forming the channel.
PCT/KR2021/007704 2020-12-29 2021-06-18 Collection apparatus for collecting fine dust generated from brake device of transportation means WO2022145599A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020200185420A KR102538298B1 (en) 2020-12-29 2020-12-29 Dust collecting apparatus for capturing dust generated in break apparatus of transportation means and manufacturing method of dust collecting apparatus
KR10-2020-0185420 2020-12-29
JP2021065727A JP7353321B2 (en) 2020-12-29 2021-04-08 A collection device for collecting fine particulate matter generated by the brake equipment of transportation vehicles.
JP2021-065727 2021-04-08

Publications (1)

Publication Number Publication Date
WO2022145599A1 true WO2022145599A1 (en) 2022-07-07

Family

ID=82260877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007704 WO2022145599A1 (en) 2020-12-29 2021-06-18 Collection apparatus for collecting fine dust generated from brake device of transportation means

Country Status (1)

Country Link
WO (1) WO2022145599A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080080A (en) * 2001-06-28 2003-03-18 Denso Corp Ceramic filter and ceramic filter with catalyst
KR100522041B1 (en) * 2003-03-19 2005-10-17 한국기계연구원 Method for Manufacturing Porous Material with Large Specific Surface Area
JP2007309406A (en) * 2006-05-18 2007-11-29 Akebono Brake Ind Co Ltd Disc brake with wear debris adsorbing means
US20140054121A1 (en) * 2012-08-27 2014-02-27 Mann+Hummel Gmbh Brake Dust Collector for Motor Vehicles
US20200278002A1 (en) * 2017-09-08 2020-09-03 Mann+Hummel Gmbh Brake Dust Particle Filter and Disc Brake Assembly Comprising a Brake Dust Particle Filter
CN112094107A (en) * 2019-05-31 2020-12-18 圣戈班研发(上海)有限公司 Separation medium for filter, preparation method thereof and filter comprising separation medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080080A (en) * 2001-06-28 2003-03-18 Denso Corp Ceramic filter and ceramic filter with catalyst
KR100522041B1 (en) * 2003-03-19 2005-10-17 한국기계연구원 Method for Manufacturing Porous Material with Large Specific Surface Area
JP2007309406A (en) * 2006-05-18 2007-11-29 Akebono Brake Ind Co Ltd Disc brake with wear debris adsorbing means
US20140054121A1 (en) * 2012-08-27 2014-02-27 Mann+Hummel Gmbh Brake Dust Collector for Motor Vehicles
US20200278002A1 (en) * 2017-09-08 2020-09-03 Mann+Hummel Gmbh Brake Dust Particle Filter and Disc Brake Assembly Comprising a Brake Dust Particle Filter
CN112094107A (en) * 2019-05-31 2020-12-18 圣戈班研发(上海)有限公司 Separation medium for filter, preparation method thereof and filter comprising separation medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HWANG IL SUN, LEE LIM: "Experimental and Numerical Analysis on Vehicle Brake Filter Flow", KSAE ANNUAL AUTUMN CONFERENCE AND EXHIBITION, 30 November 2019 (2019-11-30), pages 485 - 485, XP055948274 *

Similar Documents

Publication Publication Date Title
WO2015152625A1 (en) Ink composition for light sintering, wiring board using same and manufacturing method therefor
WO2016072774A1 (en) Compact air cleaner using uv led and photocatalytic filter
WO2017116174A1 (en) Harmful-substance-blocking health mask using air curtain
WO2022145599A1 (en) Collection apparatus for collecting fine dust generated from brake device of transportation means
WO2016085147A1 (en) Air cleaner
WO2021215680A1 (en) Filter device and air cleaner having the same
WO2021107391A1 (en) Air purifier
WO2015037872A1 (en) Electrostatic chuck and method for manufacturing electrostatic chuck
WO2018105951A1 (en) Air purifying filter, hybrid air purifying filter, and air purifier
WO2017073845A1 (en) Dressing apparatus and wafer polishing apparatus comprising same
WO2020004857A1 (en) Filter containing flake-shaped powder coating layer and manufacturing method therefor
WO2012033250A1 (en) Carbon dioxide absorbent and preparation method thereof
WO2018139765A1 (en) Dust collection unit, and air purification device including same
WO2020246802A1 (en) Electric dust collecting device and method for manufacturing same
WO2016064188A1 (en) Porous protective layer for gas sensor, method for producing same, and gas sensor comprising same
KR102311867B1 (en) Dust collecting filter for capturing dust generated in break apparatus of transportation means
NO952603L (en) Method and apparatus for glass shear preheating and reduction of contaminant release by glass making
WO2014081218A1 (en) Method for manufacturing ceramic filter
KR940020490A (en) APPARATUS AND METHOD FOR AIR CLEANING
WO2019151777A1 (en) Air blowing device having air purification function and portable air purifier
WO2018208040A2 (en) High-performance harmful substance collection filter and manufacturing method therefor
KR102538298B1 (en) Dust collecting apparatus for capturing dust generated in break apparatus of transportation means and manufacturing method of dust collecting apparatus
WO2019117534A1 (en) Air cleaning module mounted to vehicle-mounted air cleaning device
WO2022025336A1 (en) Nano membrane, nano membrane assembly, and method for manufacturing nano membrane
WO2018016916A1 (en) Rain sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915397

Country of ref document: EP

Kind code of ref document: A1