WO2022145505A1 - 홀로그래픽 프린터를 위한 3차원 영상 렌더링 방법 - Google Patents

홀로그래픽 프린터를 위한 3차원 영상 렌더링 방법 Download PDF

Info

Publication number
WO2022145505A1
WO2022145505A1 PCT/KR2020/019267 KR2020019267W WO2022145505A1 WO 2022145505 A1 WO2022145505 A1 WO 2022145505A1 KR 2020019267 W KR2020019267 W KR 2020019267W WO 2022145505 A1 WO2022145505 A1 WO 2022145505A1
Authority
WO
WIPO (PCT)
Prior art keywords
rendering
frustum
rendered
hogel
volumes
Prior art date
Application number
PCT/KR2020/019267
Other languages
English (en)
French (fr)
Inventor
홍지수
홍성희
김영민
정진수
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Publication of WO2022145505A1 publication Critical patent/WO2022145505A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0476Holographic printer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/268Holographic stereogram
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/20Perspective computation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • G03H2001/0436Holographic camera

Definitions

  • the present invention relates to holographic-related technology, and more particularly, to a method of rendering a three-dimensional image and printing the rendered three-dimensional image on a holographic medium.
  • Conventional holographic printing limits the expression range of the 3D holographic image to the back of the holographic film as shown in FIG. 1 due to the difficulty of rendering the image, and renders a 3D model to be shown by placing a perspective rendering camera for each hogel Thus, color and depth information were extracted, and holograms for each Hogel were generated and printed.
  • the image expression range of the printed hologram is limited to the back of the hologram film, so there is no way to express this when you want to show a 3D image in front of the hologram film.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to generate a hologram when a three-dimensional image to be shown is continuously arranged on the back and front of the hologram film.
  • An object of the present invention is to provide a method of rendering color and depth information.
  • a 3D image rendering method includes: rendering rear frustum among rendering volumes to be rendered by each hogel; rendering anterior frustum among rendering volumes to be rendered by each hogel; Including; overlaying (overlay) the rendered posterior frustum and the anterior frustum.
  • the near plane is the holographic film plane
  • the far plane is the rear limit of the rendering volume
  • the angle of view may use the first rendering camera that matches the size of the Hogel on the near plane.
  • the first rendering camera may be a perspective camera.
  • sampling rays in the same direction may be collected and rendered together using second rendering cameras.
  • the number of rays in the same direction that the second rendering camera renders together may be the same as the number of hogels, and the number of second rendering cameras may be the same as the number of sampling rays.
  • the second rendering cameras may be located on the side where the user is located from the holographic film plane.
  • the near plane may be the front limit of the rendering volume and the far plane may be the holographic film plane.
  • the second rendering cameras may be oblique orthographic cameras.
  • the front frustum rendering step may render the front frustum by collecting sampling rays for rendering each hogel from the results of gathering and rendering only rays in the same direction and rendering them at a corresponding position.
  • the 3D image rendering system renders the rear frustum among the rendering volumes to be rendered by each hogel, and renders the front frustum among the rendering volumes to be rendered by each hogel.
  • a processor overlaying the posterior frustum and the anterior frustum; and a storage unit that provides a storage space required for rendering and overlaying by the processor.
  • the hologram printing method rendering the rear frustum among the rendering volumes to be rendered by each Hogel; rendering anterior frustum among rendering volumes to be rendered by each hogel; overlaying the rendered posterior frustum and anterior frustum; and printing the rendered volumes completed by the overlaying step on the holographic medium in units of hogels.
  • the holographic printing system renders the rear frustum among the rendering volumes to be rendered by each hogel, and renders the front frustum among the rendering volumes to be rendered by each hogel, and the rendered rear a 3D image rendering system overlaying the frustums and the anterior frustum; and a holographic printer that prints the rendered volumes completed by the 3D image rendering system on a holographic medium in units of hogels.
  • Figure 2 A case in which a three-dimensional image to be shown is arranged over the front and back of the holographic film
  • Fig. 8 Area and sampling ladles rendered by front rendering cameras
  • FIG. 13 An oblique orthographic camera for rendering parallel sampling rays of the forward rendering cameras.
  • Fig. 15 A method of mapping the rendering result of the oblique orthographic camera to the rendering result of the forward rendering camera
  • a 3D image rendering method for a hogel of a holographic printer is presented.
  • the 3D image to be displayed is centered on the holographic film. Renders color and depth information for hologram generation when continuously arranged over the back and front.
  • FIG. 2 shows a holographic image playback situation according to an embodiment of the present invention.
  • the hologram film square hogels of a certain size are tiled two-dimensionally, and a calculated hologram pattern is recorded on each hogel. reach
  • the observer observes the 3D hologram image by the sum of the diffraction wavefronts from all Hogels, and in the case of the present invention, the 3D holographic image restored is continuously present before and after the hologram film, unlike FIG. 1 . .
  • the wavefront diffracted from each hogel can express meaningful information within the diffraction angle 2atan ( ⁇ /2p) determined by the pixel size p of the hologram pattern recorded on the hogel and the wavelength ⁇ of the light source.
  • ⁇ /2p the diffraction angle 2atan
  • the rendering volume to be rendered by each Hogel has two frustums attached to it, and the rear and front limits of the rendering volume are limited to the z b distance and the forward z f distance, respectively, centering on the holographic film. do.
  • a rendering volume like this cannot be rendered by a normal rendering method. Therefore, in order to render it properly, a desired rendering result can be obtained by dividing the rendering volume into a rear frustum and a front frustum and rendering each, and then overlaying and merging each rendering result.
  • hologram space is defined in which the hologram is placed on the xy plane, the z-axis is facing the viewer, and the origin of the coordinate system is located at the center of the hologram film.
  • each hogel is a square with a side length of ⁇
  • N x hogels in the x -direction and N y hogels in the y-direction are tiled two-dimensionally on the plane of the hologram film to form the entire hologram.
  • the index of each Hogel is (h x , h y )
  • h x is indexed from left to right
  • h y is indexed from top to bottom
  • the range of h x , h y is
  • the angle of the frustum slope is set to atan( ⁇ /2p), which is half the diffraction angle of the hologram.
  • the backward rendering camera for rendering the rear frustum is located at the center position of the corresponding Hogel in the xy direction and at a position p ⁇ / ⁇ away from the hologram film plane in the z direction.
  • the near plane of the rear rendering camera becomes the holographic film plane, and the angle of view of the rear rendering camera coincides with the size of the Hogel on the near plane.
  • the far plane of the rear rendering camera is defined as the rear limit of the entire rendering volume.
  • the rear rendering camera for rendering such a rear frustum can be rendered as a general perspective camera
  • the rear frustum is rendered by arranging the perspective camera in the above-described manner for each Hogel, the overall rendered area is as shown in FIG. 5 .
  • the projection matrix for the rear rendering camera can use the projection matrix of a general perspective camera as it is, which is as follows.
  • the left (l b ), right (r b ), top (t b ), and bottom (b b ) are as follows.
  • the geometry of the front frustum for rendering the target holographic image for each Hogel is equal to 6.
  • the forward rendering camera for rendering the front frustum on the holographic space is the center position of the corresponding hogel in the xy direction and p ⁇ / ⁇ backward from the hologram film plane in the z direction. located in a remote location.
  • the near plane of the front rendering camera is determined as the front limit of the entire rendering volume, and the far plane of the front rendering camera becomes the holographic film plane.
  • the angle of view of the front rendering camera coincides with the size of the Hogel on the far plane.
  • the three-dimensional coordinates (c x,f , c y,f , c z,f ) of the forward rendering camera position for the (h x , h y )th hogel are as follows,
  • each Hogel is composed of n x , n y pixels in the horizontal direction and n y pixels in the vertical direction
  • the rendering method of the front rendering camera is replaced with a ray tracing method, n x ⁇ n y You can think of it as sampling and rendering with rays.
  • sampling ray sampling ray
  • FIG. 7 Such sampling ray (sampling ray) is distributed as shown in FIG. 7 in the front frustum, and since the direction of the ray is in the opposite direction to the general perspective camera, it is difficult to render through the rendering of the general perspective camera.
  • FIG. 8 it is the same as in the examples of FIGS. 9 to 12 when looking at the sampling ladle for all the front frustums among the ladles in the same direction.
  • sampling rays in the rendering area are parallel, rendering is usually performed with an orthographic camera.
  • an oblique orthographic camera whose rendering volume is inclined as shown in FIG. 13 is used. You can render it by defining it.
  • the oblique orthographic camera renders with N x ⁇ N y sampling rays equal to the number of hogels, and the z coordinate of the camera position is located at an appropriate distance z c (> z f ).
  • the near plane of this oblique orthographic camera is equal to the forward limit of the entire rendering volume, and the far plane becomes the holographic film plane.
  • the anchoring aperture Passing through an anchoring aperture of area N x ⁇ ⁇ N y ⁇ on a plane spaced a distance apart, the anchoring aperture aligns the entire plane of the holographic film of N x ⁇ N y hogels in the plane of the anchoring aperture. Same as projected
  • FIG. 14 is a geometry and related parameters for defining an oblique orthographic camera in a camera coordinate system obtained by coordinate transformation using a model matrix and a view matrix.
  • n, f, l, r, t, b, etc. are the same as for a general orthographic camera.
  • the midpoint of the cut plane on the near plane of the rendering volume is taken as the starting point, and the midpoint of the cut plane on the far plane as the end point.
  • a direction vector d is defined.
  • the length of the direction vector is not important in the process of calculating the projection matrix later.
  • the direction vector of the oblique orthographic camera we are interested in exists as many as the number of pixels in one hogel, and when indexed as m x from left to right in the x direction and m y to the bottom in the y direction,
  • the three-dimensional coordinates (c x,o , c y,o , c z,o ) of the oblique orthographic camera position with the (m x , m y ) th direction vector can be computed as
  • Each parameter can be calculated as follows by adding the subscript f to n, f, l, r, t, b, etc.
  • the projection matrix for converting the rendering volume of the oblique orthographic camera into the equivalent coordinates is as follows.
  • the rendered z homo From ,f , z holo,f can be obtained by the following relation.
  • Each oblique orthographic camera has a resolution of N x ⁇ N y , and as a result, color images and depth maps are rendered for n x ⁇ n y oblique orthographic cameras having a resolution of N x ⁇ N y . All sampling rays will be rendered.
  • mapping method is the (m x , m y )-th oblique orthographic camera’s (h x , h y )-th pixel value and the (h x , h y )-th forward rendering camera’s (m x , m y )-th pixel value.
  • sampling rays for rendering each hogel are collected and rendered at the corresponding location to obtain the rendering results of the front rendering camera for the front frustums.
  • the rendering volume for the (h x , h y )-th hogel You can get the rendering result.
  • the depth maps by the front rendering camera and the rear rendering camera must be converted into values of z holo,f and z holo,b before overlaying, and the z value of the overlaid depth map may be collectively referred to as z holo .
  • the x-coordinate (x holo ) and the y-coordinate (y holo ) in the hologram space of the (m x , m y )-th pixel of the (h x , h y )-th hogel's rendering result can be calculated as follows. :
  • 3D image rendering system 100 includes a communication unit 110 , an output unit 120 , a processor 130 , an input unit 140 , and a storage unit 150 . It can be implemented with a computing system that
  • the communication unit 110 communicates with a holographic printer (not shown) to transmit a 3D image to be printed by the holographic printer.
  • the processor 130 performs 3D image rendering as described above.
  • the output unit 120 is a display on which the processing result by the processor 130 is displayed, and the input unit 140 is a user interface means for transmitting a user command to the processor 130 .
  • the storage unit 150 provides a storage space necessary for the processor 130 to perform 3D image rendering.
  • FIG. 17 is a block diagram of a holographic printing system according to another embodiment of the present invention. As shown in the holographic printing system according to another embodiment of the present invention, the 3D image rendering system 100 and the holographic printer 200 are connected so as to be communicated and constructed.
  • the configuration and function of the 3D image rendering system 100 have been described above.
  • the holographic printer 200 records the rendering volumes of the 3D image completed by the 3D image rendering system 100 in the holographic medium in units of hogels.
  • the technical idea of the present invention can be applied to a computer-readable recording medium containing a computer program for performing the functions of the apparatus and method according to the present embodiment.
  • the technical ideas according to various embodiments of the present invention may be implemented in the form of computer-readable codes recorded on a computer-readable recording medium.
  • the computer-readable recording medium may be any data storage device readable by the computer and capable of storing data.
  • the computer-readable recording medium may be a ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical disk, hard disk drive, or the like.
  • the computer-readable code or program stored in the computer-readable recording medium may be transmitted through a network connected between computers.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Geometry (AREA)
  • Computer Graphics (AREA)
  • Holo Graphy (AREA)

Abstract

홀로그래픽 프린터를 위한 3차원 영상 렌더링 방법이 제공된다. 본 발명의 실시예에 따른 3차원 영상 렌더링 방법은, 각 호겔이 렌더링 해야하는 렌더링 볼륨들 중 후방 절두체들을 렌더링하고, 각 호겔이 렌더링 해야하는 렌더링 볼륨들 중 전방 절두체들을 렌더링하며, 렌더링된 후방 절두체들과 전방 절두체들을 오버레이 한다. 이에 의해, 보여주고자 하는 3차원 영상이 홀로그램 필름의 뒤쪽과 앞쪽에 걸쳐 연속적으로 배치될 수 있도록 홀로그램을 생성 및 프린팅할 수 있게 되어, 재생되는 홀로그램의 입체감과 현실감을 극대화할 수 있게 된다.

Description

홀로그래픽 프린터를 위한 3차원 영상 렌더링 방법
본 발명은 홀로그래픽 관련 기술에 관한 것으로, 더욱 상세하게는 3차원 영상을 렌더링하고, 렌더링한 3차원 영상을 홀로그래픽 매질에 인쇄하는 방법에 관한 것이다.
기존의 홀로그래픽 프린팅은 영상 렌더링의 어려움으로 인해 도 1과 같이 홀로그램 필름의 뒤쪽으로 3차원 홀로그램 영상의 표현 범위를 한정하고, 각 호겔당 perspective rendering camera를 배치하여 보여주고자 하는 3차원 모델을 렌더링 하여 컬러와 뎁스 정보를 뽑아 이로부터 호겔별 홀로그램을 생성하여 프린팅을 하였다.
하지만 기존의 렌더링 방식의 경우 프린팅된 홀로그램의 영상 표현 범위를 홀로그램 필름 뒤쪽으로 한정하게 되어 홀로그램 필름 앞쪽에 3차원 영상을 보여주고자 할 때 이를 표현할 방법이 없다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 보여주고자 하는 3차원 영상이 홀로그램 필름을 중심으로 뒤쪽과 앞쪽에 걸쳐 연속적으로 배치되어 있을 때, 홀로그램 생성을 위한 컬러 및 뎁스 정보를 렌더링하는 방법을 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른, 3차원 영상 렌더링 방법은, 각 호겔이 렌더링 해야하는 렌더링 볼륨들 중 후방 절두체들을 렌더링하는 단계; 각 호겔이 렌더링 해야하는 렌더링 볼륨들 중 전방 절두체들을 렌더링하는 단계; 렌더링된 후방 절두체들과 전방 절두체들을 오버레이(overlay) 하는 단계;를 포함한다.
후방 절두체 렌더링 단계는, near 평면은 홀로그램 필름 평면이고, far 평면은 렌더링 볼륨의 후방 한계이며, 화각은 near 평면 상에서 호겔의 크기와 일치하는 제1 렌더링 카메라를 이용할 수 있다. 그리고, 제1 렌더링 카메라는, perspective 카메라일 수 있다.
전방 절두체 렌더링 단계는, 각 호겔들을 렌더링하기 위한 샘플링 레이들에 대해, 같은 방향의 샘플링 레이들만 모아 함께 렌더링하는 제2 렌더링 카메라들을 이용할 수 있다.
제2 렌더링 카메라가 함께 렌더링하는 같은 방향의 레이들은, 호겔들과 개수가 동일하고, 제2 렌더링 카메라들의 개수는, 샘플링 레이들의 개수와 동일할 수 있다.
제2 렌더링 카메라들은, 홀로그램 필름 평면으로부터 사용자가 위치하는 쪽에 위치할 수 있다.
제2 렌더링 카메라들은, near 평면은 렌더링 볼륨의 전방 한계이고, far 평면은 홀로그램 필름 평면일 수 있다. 그리고, 제2 렌더링 카메라들은, oblique orthographic 카메라들일 수 있다.
전방 절두체 렌더링 단계는, 같은 방향의 레이들만 모아 함께 렌더링한 결과들로부터 각 호겔들을 렌더링하기 위한 샘플링 레이들을 모아 해당 위치에 렌더링하여, 전방 절두체들을 렌더링할 수 있다.
한편, 본 발명의 다른 실시예에 따른, 3차원 영상 렌더링 시스템은, 각 호겔이 렌더링 해야하는 렌더링 볼륨들 중 후방 절두체들을 렌더링하고, 각 호겔이 렌더링 해야하는 렌더링 볼륨들 중 전방 절두체들을 렌더링하며, 렌더링된 후방 절두체들과 전방 절두체들을 오버레이 하는 프로세서; 및 프로세서가 렌더링하고 오버레이 함에 있어 필요한 저장 공간을 제공하는 저장부;를 포함한다.
한편, 본 발명의 다른 실시예에 따른, 홀로그램 프린팅 방법은, 각 호겔이 렌더링 해야하는 렌더링 볼륨들 중 후방 절두체들을 렌더링하는 단계; 각 호겔이 렌더링 해야하는 렌더링 볼륨들 중 전방 절두체들을 렌더링하는 단계; 렌더링된 후방 절두체들과 전방 절두체들을 오버레이 하는 단계; 및 오버레이 단계에 의해 완성된 렌더링 볼륨들을 호겔 단위로 홀로그래픽 매질에 인쇄하는 단계;를 포함한다.
한편, 본 발명의 다른 실시예에 따른, 홀로그래픽 프린팅 시스템은, 각 호겔이 렌더링 해야하는 렌더링 볼륨들 중 후방 절두체들을 렌더링하고, 각 호겔이 렌더링 해야하는 렌더링 볼륨들 중 전방 절두체들을 렌더링하며, 렌더링된 후방 절두체들과 전방 절두체들을 오버레이 하는 3차원 영상 렌더링 시스템; 및 3차원 영상 렌더링 시스템에 의해 완성된 렌더링 볼륨들을 호겔 단위로 홀로그래픽 매질에 인쇄하는 홀로그래픽 프린터;를 포함한다.
이상 설명한 바와 같이, 본 발명의 실시예들에 따르면, 보여주고자 하는 3차원 영상이 홀로그램 필름의 뒤쪽과 앞쪽에 걸쳐 연속적으로 배치될 수 있도록 홀로그램을 생성 및 프린팅할 수 있게 되어, 재생되는 홀로그램의 입체감과 현실감을 극대화할 수 있게 된다.
도 1. 기존 홀로그램 프린팅을 위한 3차원 영상 표현 범위 및 렌더링 방법
도 2. 보여주고자 하는 3차원 영상이 홀로그램 필름의 앞뒤에 걸쳐 배치되어 있는 경우
도 3. 3차원 영상이 홀로그램 필름의 앞뒤에 걸쳐 배치된 경우 각 호겔의 렌더링 볼륨
도 4. 호겔별 영상 렌더링을 위한 후방 절두체
도 5. 후방 렌더링 카메라들에 의해서 렌더링되는 영역
도 6. 호겔별 영상 렌더링을 위한 전방 절두체
도 7. 전방 렌더링 카메라의 렌더링을 위한 샘플링 레이들
도 8. 전방 렌더링 카메라들에 의해서 렌더링되는 영역과 샘플링 레이들
도 9 내지 도 12. 전방 렌더링 카메라들의 샘플링 레이들 중 같은 방향의 레이들끼리 모은 경우의 예시
도 13. 전방 렌더링 카메라들의 평행한 샘플링 레이들을 렌더링 하기위한 oblique orthographic 카메라
도 14. Oblique orthographic 카메라를 정의하기 위한 지오메트리
도 15. oblique orthographic 카메라의 렌더링 결과를 전방 렌더링 카메라 렌더링 결과로 매핑하는 방법
도 16. 본 발명의 다른 실시예에 따른 3차원 영상 렌더링 시스템의 블럭도
도 17. 본 발명의 또 다른 실시예에 따른 홀로그래픽 프린팅 시스템의 블럭도
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.
본 발명의 실시예에서는, 홀로그래픽 프린터의 호겔을 위한 3D 영상 렌더링 방법을 제시한다.
본 발명의 실시예에 따른 홀로그래픽 프린팅의 영상 렌더링 방법은, 보여주고자 하는 3차원 영상이 홀로그램 필름 뒤쪽에만 한정되어있는 기존의 렌더링 방식과 달리, 보여주고자 하는 3차원 영상이 홀로그램 필름을 중심으로 뒤쪽과 앞쪽에 걸쳐 연속적으로 배치되어 있을 때, 홀로그램 생성을 위한 컬러 및 뎁스 정보를 렌더링한다.
도 2는 본 발명의 실시예 따른 홀로그램 영상 재생 상황을 보여준다. 홀로그램 필름은 일정한 크기의 정사각형 호겔들이 2차원적으로 타일링되어 있으며, 각 호겔에는 계산된 홀로그램 패턴이 기록되어 있어 참조 광(reference beam)을 조사하여 주었을 때 각 호겔에서는 의도된 파면이 회절되어 관찰자에게 도달한다.
이 때 모든 호겔로부터의 회절 파면의 총합에 의해 관찰자는 3차원 홀로그램 영상을 관찰하게 되며, 본 발명의 실시예의 경우 복원되는 3차원 홀로그램 영상은 도 1과 달리 홀로그램 필름의 앞뒤에 연속적으로 존재하게 된다.
이 때, 각 호겔에서 회절되는 파면은 호겔에 기록되는 홀로그램 패턴의 픽셀 크기 p와 광원의 파장 λ에 의해 결정되는 회절각 2atan(λ/2p) 이내에서 의미있는 정보를 표현할 수 있으며, 따라서 표현하고자 하는 3차원 영상이 홀로그램 필름 뒤로 zb 거리, 앞으로 zf 거리 이내의 영역에 존재한다고 할 때, 각 호겔이 렌더링 해야하는 적절한 렌더링 볼륨은 도 3과 같다.
도 3과 같이 각 호겔이 렌더링 해야하는 렌더링 볼륨은 두 개의 절두체가 붙어있는 형태를 가지고 있으며, 렌더링 볼륨의 후방 한계와 전방 한계는 홀로그램 필름을 중심으로 각각 뒤로 zb 거리, 앞으로 zf 거리로 제한되게 된다.
이와 같은 렌더링 볼륨은 일반적인 렌더링 방법으로는 렌더링 할 수 없다. 따라서 이를 적절히 렌더링 하기 위해서는 이와 같은 렌더링 볼륨을 후방 절두체와 전방 절두체로 나누어 각각 렌더링 한 후에 각 렌더링 결과를 오버레이(overlay) 하여 합쳐줌으로써 원하는 렌더링 결과를 얻어낼 수 있다.
도 4는 목표로 하는 호겔별 영상 렌더링을 위한 후방 절두체의 지오메트리(geometry)를 보여준다. 이 지오메트리를 위해서 xy 평면상에 홀로그램이 놓여있고, z축이 관찰자를 향하고 있으며, 홀로그램 필름의 중심에 좌표계의 원점이 위치하도록 하는 홀로그램 공간(hologram space)을 정의한다.
이 때 각 호겔은 한 변의 길이가 φ인 정사각형이며, 홀로그램 필름 평면상에 2차원적으로 x방향 Nx개, y방향 Ny개의 호겔이 타일링되어 전체 홀로그램을 형성한다. 이 때 각 호겔의 인덱스(index)를 (hx, hy)라 하고, hx는 좌측에서 우측으로, hy는 위에서 아래의 순서로 인덱싱 한다고 하면, hx, hy의 범위는
Figure PCTKR2020019267-appb-I000001
와 같이 정해진다. 홀로그램 영상 디스플레이를 위해 사용되는 광원의 파장이 λ라고 하고, 호겔에 기록되는 홀로그램 패턴의 픽셀 크기가 p라고 할 때, 절두체 경사면의 각도는 홀로그램의 회절각의 절반인 atan(λ/2p)로 정해지게 되며, 후방 절두체를 렌더링하기 위한 후방 렌더링 카메라(backward rendering camera)는 xy 방향으로는 해당 호겔의 중심 위치, z 방향으로는 홀로그램 필름 평면으로부터 pφ/λ만큼 떨어진 위치에 위치하게 된다.
이 때 후방 렌더링 카메라의 near 평면은 홀로그램 필름 평면이 되며, 후방 렌더링 카메라의 화각은 near 평면 상에서 호겔의 크기와 일치하게 된다. 후방 렌더링 카메라의 far 평면은 전체 렌더링 볼륨의 후방 한계로 정해지게 된다.
이와 같은 후방 절두체를 렌더링 하기 위한 후방 렌더링 카메라는 일반적인 perspective 카메라로 렌더링할 수 있기 때문에, 각 호겔별로 전술한 방식으로 perspective 카메라를 배치하여 후방 절두체들을 렌더링하였을 때 전체적으로 렌더링되는 영역은 도 5와 같다.
(hx, hy)번째 호겔을 위한 후방 렌더링 카메라 위치의 3차원 좌표를 (cx,b, cy,b, cz,b)라 했을 때, 이는 다음과 같이 계산할 수 있다.
Figure PCTKR2020019267-appb-I000002
또한 후방 렌더링 카메라를 위한 투영 행렬(projection matrix)은 일반적인 perspective 카메라의 투영 행렬을 그대로 사용할 수 있으며, 이는 다음과 같다.
Figure PCTKR2020019267-appb-I000003
위의 투영 행렬에서 fb를 far 값, nb를 near 값이라 했을 때, 이들은 각각 아래와 같다.
Figure PCTKR2020019267-appb-I000004
또한 near 평면에서 좌(lb), 우(rb), 상(tb), 하(bb)는 다음과 같다.
Figure PCTKR2020019267-appb-I000005
이 투영 행렬에 의해 변환된 동치 좌표(homogeneous coordinate)에서 렌더링한 후 얻어지는 z값을 zhomo,b라 하고, 홀로그램 공간에서의 z값을 zholo,b라 했을 때, 투영 행렬 변환식에 의거하여, 렌더링된 zhomo,b로부터 zholo,b를 다음과 같은 관계식으로 얻을 수 있다.
Figure PCTKR2020019267-appb-I000006
반면, 목표로 하는 호겔별 홀로그램 영상을 렌더링하기 위한 전방 절두체의 지오메트리는 6과 같다.
도 6에서 볼 수 있듯이, 홀로그램 공간 상에서 전방 절두체를 렌더링하기 위한 전방 렌더링 카메라(forward rendering camera)는 xy 방향으로는 해당 호겔의 중심 위치, z 방향으로는 홀로그램 필름 평면으로부터 뒤쪽으로 pφ/λ만큼 떨어진 위치에 위치하게 된다.
이 때 전방 렌더링 카메라의 near 평면은 전체 렌더링 볼륨의 전방 한계로 정해지며, 전방 렌더링 카메라의 far 평면은 홀로그램 필름 평면이 된다. 전방 렌더링 카메라의 화각은 far 평면 상에서 호겔의 크기와 일치하게 된다.
(hx, hy)번째 호겔을 위한 전방 렌더링 카메라 위치의 3차원 좌표 (cx,f, cy,f, cz,f)는 다음과 같으며,
Figure PCTKR2020019267-appb-I000007
각 호겔의 홀로그램 패턴이 가로 방향으로 nx, 세로 방향으로 ny개의 픽셀로 구성되어 있다면, 전방 렌더링 카메라의 렌더링 방식을 레이 트레이싱(ray tracing) 방식으로 치환하여 생각한다면, nx×ny개의 레이(ray)들로 샘플링 하여 렌더링하는 것으로 생각할 수 있다.
이와 같은 샘플링 레이(sampling ray)들은 전방 절두체 안에 도 7과 같이 분포하고 있으며, 레이의 진행 방향이 일반적인 perspective 카메라와 반대 방향이기 때문에 일반적인 perspective 카메라의 렌더링을 통해 렌더링 하기가 어렵다.
이와 같은 전방 렌더링 카메라를 호겔마다 배치하여 전방 절두체를 렌더링한다고 했을 때, 전체적으로 렌더링되는 영역 및 각 카메라의 샘플링 레이들은 도 8과 같다.
이 때, 도 8과 같이 모든 전방 절두체들을 위한 샘플링 레이들 중 같은 방향의 레이들끼리 모아 보면 도 9 내지 도 12의 예시와 같다.
렌더링 영역 안의 샘플링 레이들이 평행한 경우 보통 orthographic 카메라로 렌더링을 하게 되며, 특히 도 9 내지 도 12의 경우와 같이 샘플링 레이들이 일정한 기울기를 가지는 경우, 도 13과 같이 렌더링 볼륨이 기울어진 oblique orthographic 카메라를 정의함으로써 렌더링할 수 있다.
oblique orthographic 카메라는 호겔의 개수와 동일한 Nx×Ny개의 샘플링 레이들로 렌더링을 하게 되며, 카메라 위치의 z 좌표는 임의의 적절한 거리인 zc(> zf)에 위치하게 된다.
또한 이 oblique orthographic 카메라의 near 평면은 전체 렌더링 볼륨의 전방 한계와 같으며, far 평면은 홀로그램 필름 평면이 된다. 목표로 하는 모든 샘플링 레이들을 렌더링 하기 위해서는 nx×ny 개의 서로 다른 기울기를 가지는 oblique orthographic 카메라들로 렌더링을 해주어야 하며, 이때 각 oblique orthographic 카메라들은 기울기에 상관없이, 홀로그램 필름 뒤쪽으로 pφ/λ만큼의 거리에 떨어진 평면상에 Nx φ×Ny φ의 넓이를 갖는 anchoring aperture를 지나게 되는데, 이 anchoring aperture는 Nx×Ny개의 호겔로 이루어진 전체 홀로그램 필름면을 anchoring aperture가 존재하는 평면에 투영한 것과 동일하다.
도 14는 모델 행렬(model matrix) 및 뷰 행렬(view matrix)에 의한 좌표 변환으로 얻어지는 카메라 좌표계에서 oblique orthographic 카메라를 정의하기 위한 지오메트리와 관련 파라미터들이다.
n, f, l, r, t, b 등은 일반적인 orthographic 카메라와 같으며, oblique orthographic 카메라의 기울기를 정하기 위해 렌더링 볼륨의 near 평면 상 절단면의 중점을 시점으로 하고 far 평면 상 절단면의 중점을 종점으로 하는 방향 벡터(direction vector) d를 정의한다.
이 때 추후 투영 행렬 계산 과정에서 방향 벡터의 길이는 중요하지 않다. 우리가 관심을 갖는 oblique orthographic 카메라의 방향 벡터는 한 호겔 안의 픽셀의 개수 만큼 존재하며, 이를 x방향 좌에서 우로 mx, y방향 상에서 하로 my로 인덱싱 할 경우,
Figure PCTKR2020019267-appb-I000008
이며, 이에 따른 방향 벡터는
Figure PCTKR2020019267-appb-I000009
로 계산할 수 있다. anchoring aperture를 고려하여, (mx, my)번째 방향 벡터를 갖는 oblique orthographic 카메라 위치의 3차원 좌표 (cx,o, cy,o, cz,o)는 다음과 같이 계산할 수 있으며,
Figure PCTKR2020019267-appb-I000010
n, f, l, r, t, b 등에 아랫첨자 f를 붙여 표현하면 각 파라미터는 아래와 같이 계산할 수 있다:
Figure PCTKR2020019267-appb-I000011
이 때, oblique orthographic 카메라의 렌더링 볼륨을 동치 좌표으로 변환하기 위한 투영 행렬은 다음과 같다.
Figure PCTKR2020019267-appb-I000012
이 투영 행렬에 의해 변환된 동치 좌표에서 렌더링한 후 얻어지는 z값을 zhomo,f라 하고, 홀로그램 공간에서의 z값을 zholo,f라 했을 때, 투영 행렬 변환식에 의거하여, 렌더링된 zhomo,f로부터 zholo,f를 다음과 같은 관계식으로 얻을 수 있다.
Figure PCTKR2020019267-appb-I000013
각 oblique orthographic 카메라는 Nx×Ny의 해상도를 가지며, 결과적으로 Nx×Ny의 해상도를 가지는 nx×ny 개의 oblique orthographic 카메라에 대해 컬러 이미지 및 뎁스맵을 렌더링 함으로써, 전방 렌더링 카메라들의 모든 샘플링 레이들을 렌더링할 수 있게 된다.
이렇게 렌더링된 결과를 도 15와 같이 nx×ny의 해상도를 가지는 Nx×Ny개의 컬러 이미지 및 뎁스맵으로 변환 매핑을 해줌으로써, 각 전방 렌더링 카메라에 의한 렌더링 결과를 얻을 수 있다. 이 때 매핑 방법은 (mx, my)번째 oblique orthographic 카메라의 (hx, hy)번째 픽셀 값을 (hx, hy)번째 전방 렌더링 카메라의 (mx, my)번째 픽셀 값으로 할당해주는 것이다.
같은 방향의 레이들만 모아 함께 렌더링한 결과들로부터 각 호겔들을 렌더링하기 위한 샘플링 레이들을 모아 해당 위치에 렌더링하여, 전방 절두체들에 대한 전방 렌더링 카메라의 렌더링 결과를 얻는 것이다.
이렇게 얻어진 (hx, hy)번째 전방 렌더링 카메라의 렌더링 결과를 (hx, hy)번째 후방 렌더링 카메라의 렌더링 결과 위에 오버레이 해줌으로써, (hx, hy)번째 호겔을 위한 렌더링 볼륨의 렌더링 결과를 얻을 수 있다. 이 때 전방 렌더링 카메라 및 후방 렌더링 카메라에 의한 뎁스맵들은 오버레이 하기 전에 zholo,f 및 zholo,b의 값으로 변환되어 있어야 하며, 오버레이 된 뎁스맵의 z값은 zholo로 통칭할 수 있다. 이 때, (hx, hy)번째 호겔의 렌더링 결과의 (mx, my)번째 픽셀의 홀로그램 공간 상에서의 x좌표(xholo) 및 y좌표(yholo)는 다음과 같이 계산할 수 있다:
Figure PCTKR2020019267-appb-I000014
도 16은 본 발명의 다른 실시예에 따른 3차원 영상 렌더링 시스템의 블럭도이다. 본 발명의 실시예에 따른 3차원 영상 렌더링 시스템(100)은, 도시된 바와 같이, 통신부(110), 출력부(120), 프로세서(130), 입력부(140) 및 저장부(150)를 포함하는 컴퓨팅 시스템으로 구현 가능하다.
통신부(110)는 홀로그래픽 프린터(미도시)와 통신 연결하여, 홀로그래픽 프린터로 인쇄할 3차원 영상을 전달한다. 프로세서(130)는 전술한 바에 따라 3차원 영상 렌더링을 수행한다. 출력부(120)는 프로세서(130)에 의한 처리 결과가 표시되는 디스플레이이고, 입력부(140)는 사용자 명령을 프로세서(130)로 전달하는 사용자 인터페이스 수단이다. 저장부(150)는 프로세서(130)가 3차원 영상 렌더링을 수행함에 있어 필요한 저장 공간을 제공한다.
도 17은 본 발명의 또 다른 실시예에 따른 홀로그래픽 프린팅 시스템의 블럭도이다. 본 발명의 다른 실시예에 따른 홀로그래픽 프린팅 시스템은, 도시된 바와 같이, 3차원 영상 렌더링 시스템(100)과 홀로그래픽 프린터(200)이 통신 가능하도록 연결되어 구축된다.
3차원 영상 렌더링 시스템(100)의 구성과 기능은 전술한 바 있다. 홀로그래픽 프린터(200)는 3차원 영상 렌더링 시스템(100)에 의해 완성된 3차원 영상의 렌더링 볼륨들을 호겔 단위로 홀로그래픽 매질에 기록한다.
지금까지 홀로그래픽 프린터의 호겔을 위한 영상 렌더링 방법과 시스템 및 이를 이용한 홀로그래픽 프린팅 시스템에 대해 바람직한 실시예들을 들어 상세히 설명하였다.
위 실시예에서는, 보여주고자 하는 3차원 영상이 홀로그램 필름을 중심으로 뒤쪽과 앞쪽에 걸쳐 연속적으로 배치되어 있을 때, 홀로그램 생성을 위한 컬러 및 뎁스 정보를 렌더링하는 방법을 제시하였으며, 이에 의해 보여주고자 하는 3차원 영상이 홀로그램 필름의 뒤쪽과 앞쪽에 걸쳐 연속적으로 배치될 수 있도록 홀로그램을 생성 및 프린팅할 수 있게 된다.
한편, 본 실시예에 따른 장치와 방법의 기능을 수행하게 하는 컴퓨터 프로그램을 수록한 컴퓨터로 읽을 수 있는 기록매체에도 본 발명의 기술적 사상이 적용될 수 있음은 물론이다. 또한, 본 발명의 다양한 실시예에 따른 기술적 사상은 컴퓨터로 읽을 수 있는 기록매체에 기록된 컴퓨터로 읽을 수 있는 코드 형태로 구현될 수도 있다. 컴퓨터로 읽을 수 있는 기록매체는 컴퓨터에 의해 읽을 수 있고 데이터를 저장할 수 있는 어떤 데이터 저장 장치이더라도 가능하다. 예를 들어, 컴퓨터로 읽을 수 있는 기록매체는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광디스크, 하드 디스크 드라이브, 등이 될 수 있음은 물론이다. 또한, 컴퓨터로 읽을 수 있는 기록매체에 저장된 컴퓨터로 읽을 수 있는 코드 또는 프로그램은 컴퓨터간에 연결된 네트워크를 통해 전송될 수도 있다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (12)

  1. 각 호겔이 렌더링 해야하는 렌더링 볼륨들 중 후방 절두체들을 렌더링하는 단계;
    각 호겔이 렌더링 해야하는 렌더링 볼륨들 중 전방 절두체들을 렌더링하는 단계;
    렌더링된 후방 절두체들과 전방 절두체들을 오버레이(overlay) 하는 단계;를 포함하는 것을 특징으로 하는 3차원 영상 렌더링 방법.
  2. 청구항 1에 있어서,
    후방 절두체 렌더링 단계는,
    near 평면은 홀로그램 필름 평면이고, far 평면은 렌더링 볼륨의 후방 한계이며, 화각은 near 평면 상에서 호겔의 크기와 일치하는 제1 렌더링 카메라를 이용하는 것을 특징으로 하는 3차원 영상 렌더링 방법.
  3. 청구항 2에 있어서,
    제1 렌더링 카메라는,
    perspective 카메라인 것을 특징으로 하는 3차원 영상 렌더링 방법.
  4. 청구항 1에 있어서,
    전방 절두체 렌더링 단계는,
    각 호겔들을 렌더링하기 위한 샘플링 레이들에 대해, 같은 방향의 샘플링 레이들만 모아 함께 렌더링하는 제2 렌더링 카메라들을 이용하는 것을 특징으로 하는 3차원 영상 렌더링 방법.
  5. 청구항 4에 있어서,
    제2 렌더링 카메라가 함께 렌더링하는 같은 방향의 레이들은,
    호겔들과 개수가 동일하고,
    제2 렌더링 카메라들의 개수는,
    샘플링 레이들의 개수와 동일한 것을 특징으로 하는 3차원 영상 렌더링 방법.
  6. 청구항 4에 있어서,
    제2 렌더링 카메라들은,
    홀로그램 필름 평면으로부터 사용자가 위치하는 쪽에 위치하는 것을 특징으로 하는 3차원 영상 렌더링 방법.
  7. 청구항 4에 있어서,
    제2 렌더링 카메라들은,
    near 평면은 렌더링 볼륨의 전방 한계이고, far 평면은 홀로그램 필름 평면인 것을 특징으로 하는 3차원 영상 렌더링 방법.
  8. 청구항 4에 있어서,
    제2 렌더링 카메라들은,
    oblique orthographic 카메라들인 것을 특징으로 하는 3차원 영상 렌더링 방법.
  9. 청구항 4에 있어서,
    전방 절두체 렌더링 단계는,
    같은 방향의 레이들만 모아 함께 렌더링한 결과들로부터 각 호겔들을 렌더링하기 위한 샘플링 레이들을 모아 해당 위치에 렌더링하여, 전방 절두체들을 렌더링하는 것을 특징으로 하는 3차원 영상 렌더링 방법.
  10. 각 호겔이 렌더링 해야하는 렌더링 볼륨들 중 후방 절두체들을 렌더링하고, 각 호겔이 렌더링 해야하는 렌더링 볼륨들 중 전방 절두체들을 렌더링하며, 렌더링된 후방 절두체들과 전방 절두체들을 오버레이(overlay) 하는 프로세서; 및
    프로세서가 렌더링하고 오버레이 함에 있어 필요한 저장 공간을 제공하는 저장부;를 포함하는 것을 특징으로 하는 3차원 영상 렌더링 시스템.
  11. 각 호겔이 렌더링 해야하는 렌더링 볼륨들 중 후방 절두체들을 렌더링하는 단계;
    각 호겔이 렌더링 해야하는 렌더링 볼륨들 중 전방 절두체들을 렌더링하는 단계;
    렌더링된 후방 절두체들과 전방 절두체들을 오버레이(overlay) 하는 단계; 및
    오버레이 단계에 의해 완성된 렌더링 볼륨들을 호겔 단위로 홀로그래픽 매질에 인쇄하는 단계;를 포함하는 것을 특징으로 하는 홀로그램 프린팅 방법.
  12. 각 호겔이 렌더링 해야하는 렌더링 볼륨들 중 후방 절두체들을 렌더링하고, 각 호겔이 렌더링 해야하는 렌더링 볼륨들 중 전방 절두체들을 렌더링하며, 렌더링된 후방 절두체들과 전방 절두체들을 오버레이(overlay) 하는 3차원 영상 렌더링 시스템; 및
    3차원 영상 렌더링 시스템에 의해 완성된 렌더링 볼륨들을 호겔 단위로 홀로그래픽 매질에 인쇄하는 홀로그래픽 프린터;를 포함하는 것을 특징으로 하는 홀로그래픽 프린팅 시스템.
PCT/KR2020/019267 2020-12-28 2020-12-29 홀로그래픽 프린터를 위한 3차원 영상 렌더링 방법 WO2022145505A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0184204 2020-12-28
KR1020200184204A KR102551957B1 (ko) 2020-12-28 2020-12-28 홀로그래픽 프린터를 위한 3차원 영상 렌더링 방법

Publications (1)

Publication Number Publication Date
WO2022145505A1 true WO2022145505A1 (ko) 2022-07-07

Family

ID=82260826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/019267 WO2022145505A1 (ko) 2020-12-28 2020-12-29 홀로그래픽 프린터를 위한 3차원 영상 렌더링 방법

Country Status (2)

Country Link
KR (1) KR102551957B1 (ko)
WO (1) WO2022145505A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102672491B1 (ko) * 2022-11-11 2024-06-05 한국전자기술연구원 실시간 홀로그램 프린팅 데이터 전송에 의한 홀로그램 프린팅 방법
KR102710193B1 (ko) * 2022-11-28 2024-09-26 한국전자기술연구원 재배치가 필요 없는 홀로그램 프린팅용 홀로그램 이미지 렌더링 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151849B1 (en) * 2000-01-11 2006-12-19 Zebra Imaging, Inc. Efficient block transform including pre-processing and post processing for autostereoscopic displays
KR20140092460A (ko) * 2012-12-28 2014-07-24 전자부품연구원 2차원 이미지의 홀로그램 이미지 변환 장치 및 그 방법
US20160042572A1 (en) * 2010-04-08 2016-02-11 Disney Enterprises, Inc. Interactive three dimensional displays on handheld devices
KR20160032296A (ko) * 2014-09-15 2016-03-24 전자부품연구원 서브-호겔 단위로 홀로그래픽 파면을 기록하는 홀로그래픽 프린터
US20170142398A1 (en) * 2015-11-13 2017-05-18 Craig Peterson 3d system including rendering with eye displacement

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6366370B1 (en) * 1998-12-30 2002-04-02 Zebra Imaging, Inc. Rendering methods for full parallax autostereoscopic displays
KR101901966B1 (ko) * 2016-10-24 2018-09-28 박지선 디지털 홀로그래픽 스테레오그램 제작 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151849B1 (en) * 2000-01-11 2006-12-19 Zebra Imaging, Inc. Efficient block transform including pre-processing and post processing for autostereoscopic displays
US20160042572A1 (en) * 2010-04-08 2016-02-11 Disney Enterprises, Inc. Interactive three dimensional displays on handheld devices
KR20140092460A (ko) * 2012-12-28 2014-07-24 전자부품연구원 2차원 이미지의 홀로그램 이미지 변환 장치 및 그 방법
KR20160032296A (ko) * 2014-09-15 2016-03-24 전자부품연구원 서브-호겔 단위로 홀로그래픽 파면을 기록하는 홀로그래픽 프린터
US20170142398A1 (en) * 2015-11-13 2017-05-18 Craig Peterson 3d system including rendering with eye displacement

Also Published As

Publication number Publication date
KR102551957B1 (ko) 2023-07-06
KR20220093472A (ko) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2022145505A1 (ko) 홀로그래픽 프린터를 위한 3차원 영상 렌더링 방법
US4276570A (en) Method and apparatus for producing an image of a person's face at a different age
EP0197341B1 (en) Method of and apparatus for measuring coordinates
US20010052935A1 (en) Image processing apparatus
WO2012176945A1 (ko) 차량 주변 시각화를 위한 3차원 영상 합성장치 및 그 방법
EP2374281A2 (en) Image data obtaining method and apparatus therefor
WO2019212129A1 (ko) 효율적인 데이터 관리를 위한 가상 전시 공간 제공 방법
WO2019139344A1 (en) Method and optical system for determining depth information
WO2015008932A1 (ko) 증강현실에서의 원격 협업을 위한 디지로그 공간 생성기 및 그를 이용한 디지로그 공간 생성 방법
KR100836695B1 (ko) 홀로그램 프린트 시스템 및 홀로그래픽 스테레오그램
TW588258B (en) Device for pointer positioning using photography method
WO2020085570A1 (ko) 복수의 가상 카메라를 이용한 게임 내 360 vr 영상 획득 장치 및 방법
WO2024117556A1 (ko) 재배치가 필요 없는 홀로그램 프린팅용 홀로그램 이미지 렌더링 방법
JPS6187461A (ja) 文書回覧方式
WO2021101213A1 (ko) 3d 투어 내에서 실제 거리 측정 방법
WO2021040342A2 (ko) 2d 이미지를 활용하여 3d 컨텐츠를 생성하는 영상 처리 방법 및 영상 처리 장치
JP2001249606A (ja) ホログラムプリントシステム及びホログラムプリント方法、並びに撮影装置
KR100591167B1 (ko) 획득된 이미지의 번짐자국 제거방법
WO2023095936A1 (ko) 가상공간의 객체생성 방법 및 그 장치
WO2022114308A1 (ko) 방향 식별을 위한 슬림형 xr 디바이스 및 그 제어 방법
WO2023113061A1 (ko) 서브 호겔 기반 홀로그래픽 스테레오그램 프린팅 방법
WO2024101485A1 (ko) 움직이는 이미지 홀로그램 제작 방법 및 시스템
WO2022124445A1 (ko) 홀로그래픽 광학 소자를 이용한 비행기 시뮬레이터 장치
WO2023113059A1 (ko) 포비티드 홀로그램의 파라미터 결정을 위한 주변시 영상 품질 변화에 대한 인지 실험 방법
WO2020111471A1 (ko) 증강현실을 위한 모바일 홀로그램 디스플레이 단말기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20968056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20968056

Country of ref document: EP

Kind code of ref document: A1