WO2022145185A1 - Method for manufacturing scroll compressor and scroll compressor - Google Patents

Method for manufacturing scroll compressor and scroll compressor Download PDF

Info

Publication number
WO2022145185A1
WO2022145185A1 PCT/JP2021/045156 JP2021045156W WO2022145185A1 WO 2022145185 A1 WO2022145185 A1 WO 2022145185A1 JP 2021045156 W JP2021045156 W JP 2021045156W WO 2022145185 A1 WO2022145185 A1 WO 2022145185A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
scroll compressor
main shell
manufacturing
frame
Prior art date
Application number
PCT/JP2021/045156
Other languages
French (fr)
Japanese (ja)
Inventor
尭広 高橋
佑介 梅鉢
文昭 安田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022572960A priority Critical patent/JP7459306B2/en
Publication of WO2022145185A1 publication Critical patent/WO2022145185A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • Japanese Unexamined Patent Publication No. 2005-54562 paragraphs 0026 to 0048, FIG. 4
  • Japanese Patent No. 2712777 paragraph 0050, FIG. 9
  • FIG. 1 It is a vertical sectional view which shows the structure of the scroll compressor which concerns on Embodiment 1.
  • FIG. It is an upper perspective view which shows the appearance of the scroll compressor which concerns on Embodiment 1.
  • FIG. It is a perspective view which shows the structure of the main part of the main shell of the scroll compressor which concerns on Embodiment 1.
  • FIG. It is an upper perspective view and the top view which shows the structure of the main frame of the scroll compressor which concerns on Embodiment 1.
  • FIG. It It is a lower perspective view which shows the structure of the fixed scroll of the scroll compressor which concerns on Embodiment 1.
  • FIG. It is an upper perspective view and the lower perspective view which shows the structure of the swing scroll of the scroll compressor which concerns on Embodiment 1.
  • FIG. 1 It is sectional drawing which shows the manufacturing method of the scroll compressor which concerns on Embodiment 1.
  • FIG. 2 It is sectional drawing which shows the manufacturing method of the scroll compressor which concerns on Embodiment 1.
  • FIG. 2 It is sectional drawing and the perspective view which shows the manufacturing method of the scroll compressor which concerns on Embodiment 2.
  • FIG. It is sectional drawing, the front view and the perspective view which show the manufacturing method of the scroll compressor which concerns on Embodiment 3.
  • FIG. 1 It is sectional drawing which shows the manufacturing method of the scroll compressor which concerns on Embodiment 1.
  • the scroll compressor 101 is composed of a shell 1, a main frame 2, a compression mechanism unit 3, a drive mechanism unit 4, a subframe 5, a crankshaft 6, a bush 7, and a power feeding unit 8.
  • the shell 1 is a housing made of metal with both ends closed, and is composed of a main shell 11, an upper shell 12, and a lower shell 13 as shown in FIG.
  • the main shell 11 has a cylindrical shape, and a suction pipe 14 is connected to a side wall thereof by welding or the like.
  • the suction pipe 14 is a pipe that introduces the refrigerant into the shell 1 and communicates with the inside of the main shell 11.
  • the upper shell 12 has a substantially hemispherical shape, and a part of the side wall thereof is connected by welding or the like at the upper end portion 11a of the main shell 11 in the U direction to cover the opening of the upper end portion 11a of the main shell 11.
  • a discharge pipe 15 is connected to the upper part of the upper shell 12 by welding or the like.
  • the discharge pipe 15 is a pipe that discharges the refrigerant to the outside of the shell 1 and communicates with the internal space of the main shell 11.
  • the lower shell 13 has a substantially hemispherical shape, and a part of the side wall thereof is connected to the lower end portion 11b of the main shell 11 in the L direction by welding or the like to cover the opening of the lower end portion 11b of the main shell 11.
  • the shell 1 is supported by a fixing base 16 having a plurality of screw holes. A plurality of screw holes are formed in the fixing base 16, and by screwing screws into these screw holes, the scroll compressor can be fixed to other members such as the housing of the outdoor unit.
  • the main frame 2 is a hollow frame made of a metal such as cast iron and having cavities as shown in FIGS. 4 (a) and 4 (b), and is provided inside the shell 1.
  • the main frame 2 includes a main body portion 21, a main bearing portion 22, and an oil return pipe 23.
  • the main body portion 21 is fixed to the inner wall surface of the main shell 11 near the upper end portion 11a, and an accommodating portion 211 is formed in the center thereof along the longitudinal direction of the shell 1.
  • the main body portion 21 on the upper end side of the main frame 2 is open, and the main bearing portion 22 on the lower end side is provided with a step, so that the opening is narrow.
  • An annular flat surface 212 is formed on the upper end side of the main body 21 so as to surround the accommodating portion 211.
  • a ring-shaped thrust plate 24 made of a steel plate-based material such as valve steel is arranged on the flat surface 212.
  • the thrust plate 24 functions as a thrust bearing. Since the thrust plate 24 functions as a thrust bearing, a detent to suppress rotation is required.
  • a protrusion thinner than the thickness of the thrust plate 24 is provided on the flat surface 212 of the main frame 2 to suppress the rotation of the thrust plate 24, or the main frame 2 has a groove and the thrust plate 24 has a groove.
  • a structure such as forming a protrusion and fitting both parts is conceivable.
  • a suction port 213 is formed at a position that does not overlap with the thrust plate 24 on the outer peripheral side of the flat surface 212 of the main frame 2.
  • the suction port 213 is a notch portion that penetrates the main body portion 21 in the vertical direction, that is, to the upper shell 12 side and the lower shell 13 side.
  • two suction ports 213 and two oil return pipes 23 are provided, but the number is not limited to these. Further, although the suction port 213 is used as a notch, there is no problem even if the shape of the through hole is formed.
  • the shaft hole 221 penetrates the main bearing portion 22 in the vertical direction, and its upper end side in the U direction communicates with the accommodating portion 211.
  • the oil return pipe 23 is a pipe for returning the lubricating oil accumulated in the accommodating portion 211 to the oil reservoir inside the lower shell 13, and is inserted and fixed in the oil drain hole formed through the main frame 2 inside and outside. ..
  • the lubricating oil is, for example, a refrigerating machine oil containing an ester-based synthetic oil.
  • the lubricating oil is stored in the lower end of the shell 1 in the L direction, that is, in the lower shell 13, is sucked up by the oil pump 52 described later, passes through the oil passage 63 in the crankshaft 6, and is a machine such as the compression mechanism unit 3. Reduces wear between parts that come into contact with each other, controls the temperature of sliding parts, and improves sealing performance.
  • As the lubricating oil an oil having excellent lubrication characteristics, electrical insulation, stability, refrigerant solubility, low-temperature fluidity and the like, and having an appropriate viscosity is suitable.
  • the compression mechanism unit 3 is a compression mechanism that compresses the refrigerant.
  • the compression mechanism unit 3 is a scroll compression mechanism including a fixed scroll 31 and a swing scroll 32.
  • the fixed scroll 31 is made of a metal such as cast iron and includes a first substrate 311 and a first spiral body 312 as shown in FIG.
  • the first substrate 311 has a disk shape, and a discharge port 313 is formed in the center thereof so as to penetrate in the vertical direction.
  • the first spiral body 312 protrudes from the back surface of the first substrate 311 to form a spiral wall, and the tip thereof protrudes in the L direction.
  • the oscillating scroll 32 is made of a metal such as aluminum, and as shown in FIGS.
  • the second substrate 321 has a front surface on which the second spiral body 322 is formed, a back surface having at least a part of the sliding surface 3211, and a side surface 3212 located on the outer peripheral portion in the radial direction and connecting the front surface and the back surface. It has a disk shape provided, and its sliding surface 3211 is slidably supported (supported) by the main frame 2 so as to be slidable on the thrust plate 24.
  • the second spiral body 322 protrudes from the surface of the second substrate 321 to form a spiral wall, and the tip thereof protrudes in the U direction.
  • a seal member for suppressing leakage of the refrigerant is provided at the tip of the first spiral body 312 of the fixed scroll 31 and the second spiral body 322 of the rocking scroll 32.
  • the tubular portion 323 is a cylindrical boss formed so as to project in the L direction from substantially the center of the back surface of the second substrate 321.
  • a swing bearing that rotatably supports the slider 71 described later, a so-called journal bearing is provided so that its central axis is parallel to the central axis of the crankshaft 6. ..
  • the second Oldham groove 324 is an oval-shaped groove formed on the back surface of the second substrate 321.
  • the second Oldham groove 324 is provided so that a pair faces each other.
  • the line connecting the pair of second Oldham grooves 324 is provided so as to be orthogonal to the line connecting the pair of first Oldham grooves 215.
  • An old dam ring 33 is provided in the old dam accommodating portion 214 of the main frame 2.
  • the old dam ring 33 includes a ring portion 331, a first key portion 332, and a second key portion 333.
  • the first key portion 332 is formed so as to face the back surface side of the ring portion 331 in the L direction so as to face each other, and is accommodated in the pair of first old dam grooves 215 of the main frame 2.
  • the second key portion 333 is formed so as to face the U-direction surface side of the ring portion 331 so as to face each other, and is accommodated in the pair of second Oldham grooves 324 of the swing scroll 32.
  • the refrigerant comprises, for example, a halogenated hydrocarbon having a carbon double bond, a halogenated hydrocarbon having no carbon double bond, a hydrocarbon, or a mixture containing them in the composition.
  • the halogenated hydrocarbon having a carbon double bond is an HFC (Hybrid fiber-coaxial) refrigerant having a zero ozone layer destruction coefficient, a Freon-based low GWP (Global Warming Potential) refrigerant, and has a chemical formula of C 3 H 2 F.
  • HFO1234yf (2,3,3,3-tetrafluoro-1-propene), HFO1234ze (trans-1,3,3,3-tetrafluoropropene), HFO1243zf (3,3,3-trifluoro) represented by 4 .
  • Tetrafluoropropene such as propylene
  • the halogenated hydrocarbon having no carbon double bond include a refrigerant in which R32 (difluoromethane) represented by CH 2 F 2 and R41 (CH 3F, fluoromethane) are mixed.
  • the hydrocarbon include propane and propylene which are natural refrigerants.
  • the mixture include a mixed refrigerant in which R32, R41 and the like are mixed with HFO1234yf, HFO1234ze, HFO1243zf and the like.
  • the main shell 11 has a stepped portion whose inner diameter decreases in the L direction.
  • the first positioning surface 113 and the second positioning surface 116 are formed so as to be substantially perpendicular to the central axis of the crankshaft 6 and the normal vectors of both positioning surfaces face in the same direction. ..
  • the position of the feeding portion 8 with respect to the second positioning surface 116 is such that the feeding terminal 82 of the feeding portion 8 is located downward in the axial direction (L direction) of the second positioning surface 116, and the second positioning surface 116 and the feeding terminal 82 are positioned.
  • the main frame 2 is formed with a plurality of protrusions 216 protruding in the radial direction from the outer peripheral surface of the main body portion 21.
  • the axial position of the main frame 2 is determined by abutting (contacting) the protrusion 216 as a positioning portion provided on the axial end surface of the outer periphery of the main frame 2 with the second positioning surface 116 formed on the main shell 11. .. Further, in this state, the center position is determined by fixing to the second inner wall surface 114 of the main shell 11 by press fitting, shrink fitting, or the like.
  • the range of the protrusion 216 is not the entire circumference but a part thereof, the holding force received from the main shell can be lowered and the deformation of the main frame 2 can be suppressed. This makes it possible to obtain a high-performance, high-quality scroll compressor. If the holding force is insufficient, arc spot welding or the like may be further applied to the contact surface between the main shell 11 and the protrusion 216. As described above, the main frame 2 can be held by the main shell 11 in a state where the center position and the height position in the axial direction are determined.
  • the protrusion 216 is formed on the lower shell 13 side of the flat surface 212 of the main frame 2 (the surface installed via the sliding surface 3211 of the swing scroll 32 and the thrust plate 24). As a result, the flat surface 212 is prevented from being deformed by the holding force, so that a high-performance scroll compressor with low loss can be obtained.
  • the straight line connecting the centers of the pair of first Oldham grooves 215 is orthogonal to the Oldam central axis B and the Oldam central axis, and the distances from the pair of first Oldam grooves 215 are equal.
  • Let the straight line be the orthogonal axis C of symmetry.
  • the first key portion 332 of the old dam ring 33 is inserted into the pair of first old dam grooves 215 and slides along the groove 215.
  • the load is evenly applied to the pair of first Oldam grooves 215 when the mainframe 2 receives the holding force. Be loaded.
  • the pair of first Oldham grooves 215 does not have an axial deviation and a difference in groove width, so that a highly efficient scroll compressor with reduced sliding resistance of the Oldam ring 33 can be obtained.
  • the protrusion 216 is arranged on the Oldham central axis B and the Oldam symmetry axis C as shown in this figure, in the case of shrink fitting, the first Oldham groove 215 is applied to the protrusion 216 on the Oldam central axis B.
  • the first Oldham groove 215 Since the pressure applied in the direction in which the groove width is widened and the pressure applied in the direction in which the groove width of the first Oldham groove 215 is narrowed due to the load applied to the protrusion 216 on the axis of symmetry C of the Oldham are balanced, the first Oldham groove 215 Since the deformation itself can be suppressed, a high-performance scroll compressor can be obtained.
  • the refrigerant sucked into the shell 1 from the suction pipe 14 reaches the refrigerant intake space 37 through the suction port 213 of the main frame 2, and swings with the fixed scroll 31. It is taken into the compression chamber 34 formed by the moving scroll 32. Then, the refrigerant is compressed by reducing its volume while moving from the outer peripheral portion toward the center along with the eccentric revolution motion of the rocking scroll 32.
  • the swing scroll 32 moves in the radial direction together with the bush 7 due to its own centrifugal force, and the side wall surfaces of the second spiral body 322 and the first spiral body 312 come into close contact with each other.
  • the compressed refrigerant reaches the discharge hole 351 of the fixed scroll 31 from the discharge port 313 of the fixed scroll 31 and is discharged to the outside of the shell 1 against the discharge valve 36.
  • a step is formed by the protruding portion 112 (step S1203). Therefore, the inner diameter r1 of the first inner wall surface 111 is larger than the inner diameter r2 of the second inner wall surface 114.
  • the first protruding portion 112 is formed in the direction of the upper shell 12 with respect to the second protruding portion 115, and the inner wall surface thereof becomes the second inner wall surface 114.
  • the second protrusion 115 may be formed after the first protrusion 112 is formed.
  • connection portion of the first protrusion 112 with the first inner wall surface 111 (the side of the first inner wall surface 111 of the first positioning surface 113) and the connection portion of the second protrusion 115 with the second inner wall surface 114.
  • dents having a concave shape in the outer peripheral direction are formed (step S1204).
  • the dent is a so-called "nusumi” that removes a curved surface that is likely to occur in the connection portion by cutting. That is, as a result of cutting, the connecting portion between the first inner wall surface 111 and the first positioning surface 113 may not be at a right angle and may be rounded.
  • the fixed scroll 31 When the radius is formed in the portion, even if the fixed scroll 31 is arranged on the first protruding portion 112, it floats without contacting the first positioning surface 113, and the positioning accuracy is lowered. On the other hand, by forming the recess 1131, the fixed scroll 31 surely contacts the first positioning surface 113, so that the positioning accuracy can be improved. This also applies to the connection portion between the second inner wall surface 114 and the second positioning surface 116, and the positioning accuracy of the main frame 2 can be improved.
  • the region E of the main shell 11 is heated while cooling the feeding unit 8.
  • the main frame 2 is inserted in the L direction from the upper end side in the U direction of the main shell 11 while cooling the feeding portion 8, and is shrink-fitted.
  • the main frame 2 comes into contact with the second positioning surface 116 of the second protrusion 115 on a surface, and is positioned in the height direction (step S1205). Cooling is performed by local air cooling D with a fan or the like in the internal space of the cover 81. In the case of shrink fitting only, the shell 1 is then cooled (step S1206).
  • step S1207 the protrusion 216 of the main frame 2 is formed into the region I (second inner wall surface 114) of the main shell 11 while cooling the feeding portion 8. )
  • step S1208 the shell 1 is cooled.
  • the crankshaft 6 is inserted into the shaft hole 221 of the main frame 2, the bush 7 is attached to the eccentric shaft portion 62, and the old dam ring 33 and the swing scroll are further attached. 32 etc. are arranged.
  • the fixed scroll 31 is inserted from the upper end side of the main shell 11 in the U direction.
  • the fixed scroll 31 comes into contact with the first positioning surface 113 of the first protrusion 112 on a surface and is positioned in the height direction. In that state, the side surface 3111 of the first substrate 311 of the fixed scroll 31 is fixed to the first inner wall surface 111 by shrink fitting.
  • the main shell 11 and the upper shell 12 are fixed by welding, arc spot welding, or the like.
  • the main frame is equivalent to the method of connecting the main frame 2 and the fixed scroll 31 with screws or the like as in Patent Document 1 shown in the preceding example. 2.
  • the refrigerant intake space 37 can be expanded while assembling the fixed scroll 31 and the swing scroll 32. Since no screws or the like are used, the number of parts can be reduced and manufacturing can be facilitated. Further, by locally cooling a component having low heat resistance (glass terminal or the like), the distance limitation between the components can be relaxed.
  • the compression mechanism unit 3 having the fixed scroll 31 and the swing scroll 32 and the main that holds the swing scroll 32 slidably.
  • the fixed scroll 31 is fixed to the first inner wall surface 111 of the main shell 11 by shrink fitting, the fixed scroll is held without using a fastening member such as a bolt. This makes assembly easier, and the number of parts is reduced, so that the cost of the scroll compressor can be reduced.
  • the fixed scroll 31 is fixed to the first inner wall surface 111, the side surface 3212 located on the outermost side in the radial direction of the rocking scroll 32 and the inner wall surface of the main shell 11 face each other, and the main frame 2 is formed. Since the structure is such that it does not intervene between the side surface 3212 of the second substrate 321 and the inner wall surface of the main shell 11, a peripheral wall for fixing the fixed scroll as shown in Patent Document 2 is formed in the main frame. It is possible to arrange the fixed scroll in the shell and expand the refrigerant intake space in which the oscillating scroll is arranged. For example, the younger brother 1 vortex body 312 of the fixed scroll 31 and the second vortex body of the oscillating scroll 32 can be expanded. By enlarging 322, the discharge capacity for the physique of the scroll compressor can be increased.
  • a high-pressure refrigerant for example, R32 which has a low environmental load but a large load on the thrust bearing, and can reduce the environmental load of the scroll compressor. ..
  • the fixed scroll 31 is in contact with the first positioning surface 113 of the main shell 11 on the surface of the first substrate 311 on the side forming the first spiral body 312, the fixed scroll 31 is brought into contact with the first substrate 311 of the fixed scroll 31. Even when a high voltage is applied, since it is pressed against the first positioning surface 113, the fixed scroll is held more firmly, and the translational movement of the fixed scroll can be suppressed.
  • the directions of the first positioning surface 113 and the second positioning surface 116 of the main shell 11 are the same, even if the main frame 2 receives a thrust load from the swing scroll 32, it is pressed against the second positioning surface 116. , The mainframe is held more firmly, and the translational movement of the mainframe can be suppressed. This makes it possible to improve the reliability of the scroll compressor.
  • the processing is performed from one direction, the processing becomes easy and the processing time is shortened, so that the cost of the scroll compressor can be reduced.
  • the swing scroll 32 and the fixed scroll 31 can be sequentially inserted and fixed in the same posture as the main shell 11, that is, one-way assembly. Therefore, it is easy to assemble and the cost of the scroll compressor can be reduced.
  • the cooling metal is brought into contact with the terminal cover to cool the power feeding unit 8, so that damage to the terminals can be suppressed. It can improve the quality of the scroll compressor.
  • the chiller is brought into contact with the terminal cover for cooling, but the present invention is not limited to this, and for example, the feeding terminal 82 may be brought into contact with the chiller.
  • Embodiment 3 In the second embodiment, the chiller 84 is brought into contact with the terminal cover 81 of the feeding unit 8 for cooling, but in the third embodiment, a case where the terminal cover 81 is provided with a notch and is brought into contact with the main shell 11 will be described. ..
  • FIG. 16A is a sectional view showing a cooling method in the method for manufacturing a scroll compressor according to the third embodiment
  • FIG. 16B is a front view of the terminal cover 81
  • FIG. 16 (c) is a perspective view of a chiller used for cooling.
  • the feeding unit 8 is provided with a notch 811 (see FIG. 16B) in the terminal cover 81, and the contact surface 841 of the chiller 84 (see FIG. 16C). Is brought into contact with the outer peripheral surface of the main shell 11 through the notch 811 portion.
  • the shape of the notch 811 and the shape of the chiller 84 are not limited to this.
  • the thermal resistance between the contact portions can be reduced and the contact property can be improved, so that the cooling can be performed efficiently.
  • the heat conductive sheet 85 is made of a non-metal material or a composite material that can withstand the temperature of the contact portion.
  • Other configurations and manufacturing methods of the scroll compressor according to the fourth embodiment are the same as those of the scroll compressor 101 and the manufacturing method of the first embodiment, and the corresponding parts are designated by the same reference numerals and the description thereof is omitted. do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This method is for manufacturing a scroll compressor (101) provided with: a compression mechanism part (3) having a fixed scroll (31) and an oscillation scroll (32); and a main frame (2) that slidably holds the oscillation scroll (32). The method includes: a step for inserting the main frame (2) along an inner wall of a tubular molded main shell (11) and performing positioning by bringing a positioning part (protrusion (216)) of the outer circumference of the main frame 2 into contact with a second positioning surface (116) of a stepped part annularly provided to the inner wall; and a step for fixing the main frame (2) by input of heat while cooling a power supply part (8) provided to the outer circumference of the main shell (11). By performing local cooling, restrictions on distances between components are eased and cost is reduced.

Description

スクロール圧縮機の製造方法およびスクロール圧縮機Manufacturing method of scroll compressor and scroll compressor
 本願は、スクロール圧縮機の製造方法およびスクロール圧縮機に関する。 This application relates to a method for manufacturing a scroll compressor and a scroll compressor.
 例えば、特許文献1には、スクロール圧縮機の組立において、内部部品を溶接または焼き嵌めなどでシェルに固定する際、耐熱性の低い部品(ガラス端子など)の、熱による変形および破損の影響を少なくするため、(1)耐熱性の低い部品(ガラス端子など)と高温部と距離を設ける方法、(2)耐熱性の低い部品(ガラス端子など)とシェルとの接合力を向上させる方法、が開示されている。 For example, Patent Document 1 describes the effects of heat deformation and breakage of parts with low heat resistance (glass terminals, etc.) when fixing internal parts to the shell by welding or shrink fitting in the assembly of a scroll compressor. In order to reduce the number, (1) a method of providing a distance between a part with low heat resistance (glass terminal, etc.) and a high temperature part, (2) a method of improving the bonding force between a part with low heat resistance (glass terminal, etc.) and the shell, Is disclosed.
 また、特許文献2のスクロール圧縮機では、固定スクロールの外周に、軸方向に伸びる円環を形成し、円環の先端でフレームとボルト固定している。固定スクロールおよび揺動スクロールからなる圧縮機構を円環の内側で構成する必要があるため、揺動スクロールの外径サイズが制約され、圧縮機の出力が抑制されてしまうという課題があった。 Further, in the scroll compressor of Patent Document 2, an annulus extending in the axial direction is formed on the outer circumference of the fixed scroll, and the frame and the bolt are fixed at the tip of the annulus. Since it is necessary to configure the compression mechanism consisting of the fixed scroll and the swing scroll inside the ring, there is a problem that the outer diameter size of the swing scroll is restricted and the output of the compressor is suppressed.
 この課題に対して、周壁のないフレームおよび固定スクロールをシェルに固定する構造が提案されている。この構造では、固定スクロールをフレームへボルト固定する従来の固定方法と同等の固定強度が求められる。そこで、固定スクロールをシェルに焼き嵌め、スポット溶接およびシェル外側から溶接等により固定することが考えられる。 To solve this problem, a structure has been proposed in which a frame without a peripheral wall and a fixed scroll are fixed to the shell. This structure requires a fixing strength equivalent to that of the conventional fixing method in which the fixed scroll is bolted to the frame. Therefore, it is conceivable to shrink the fixed scroll into the shell and fix it by spot welding or welding from the outside of the shell.
特開2005-54652号公報(段落0026~0048、図4)Japanese Unexamined Patent Publication No. 2005-54562 (paragraphs 0026 to 0048, FIG. 4) 特許2712777号公報(段落0050、図9)Japanese Patent No. 2712777 (paragraph 0050, FIG. 9)
 しかしながら、これらの固定方法では、固定工程の際に多大の熱が局部的に加わる時、例えば、特許文献1のスクロール圧縮機では、端子など耐熱性の低い部品が入熱部の近くにあり、接合に支障をきたす、もしくは破損するという問題があった。 However, in these fixing methods, when a large amount of heat is locally applied during the fixing process, for example, in the scroll compressor of Patent Document 1, a component having low heat resistance such as a terminal is located near the heat input portion. There was a problem that the joining was hindered or damaged.
 本願は、上記のような課題を解決するためになされたものであり、端子等の耐熱性の低い部品と入熱部の距離制限を設けることなく固定するスクロール圧縮機の製造方法およびスクロール圧縮機を得ることを目的とする。 The present application has been made to solve the above-mentioned problems, and is a method for manufacturing a scroll compressor and a scroll compressor for fixing a part having low heat resistance such as a terminal and a heat input part without limiting the distance. The purpose is to obtain.
 本願に開示されるスクロール圧縮機の製造方法は、固定スクロールおよび揺動スクロールを有する圧縮機構部と、前記揺動スクロールを摺動可能に保持するフレームとを備えたスクロール圧縮機の製造方法であって、管状に成形されたメインシェルの内壁に沿って前記フレームを挿入し、前記内壁に円環状に設けられた段差部の位置決め面に前記フレーム外周の位置決め部を接触させることで位置決めをする工程と、前記メインシェルの外周に設けられた給電部を冷却しながら前記メインシェルに前記フレームを入熱により固定する工程と、を含むことを特徴とする。 The method for manufacturing a scroll compressor disclosed in the present application is a method for manufacturing a scroll compressor including a compression mechanism unit having a fixed scroll and a swinging scroll, and a frame for holding the swinging scroll slidably. Then, the frame is inserted along the inner wall of the main shell formed into a tubular shape, and the positioning portion on the outer periphery of the frame is brought into contact with the positioning surface of the step portion provided in an annular shape on the inner wall for positioning. It is characterized by including a step of fixing the frame to the main shell by heat input while cooling the feeding portion provided on the outer periphery of the main shell.
 本願に開示されるスクロール圧縮機は、固定スクロールおよび揺動スクロールを有する圧縮機構部と、前記揺動スクロールを摺動可能に保持するフレームとを備えたスクロール圧縮機であって、前記フレームは、管状に成形されたメインシェルの内壁に挿入され、前記内壁に円環状に設けられた段差部の前記フレームの位置決め面に前記フレーム外周の位置決め部を接触させることで位置決めされ、前記メインシェルの外周に設けられた給電部は、前記メインシェルに形成された前記位置決め面と前記揺動スクロールを駆動させる駆動機構部との前記円環軸方向の間に設けられ、前記メインシェルの側壁に形成された吸入管と、前記メインシェルの外周方向で異なる位相に設けられたことを特徴とする。 The scroll compressor disclosed in the present application is a scroll compressor including a compression mechanism unit having a fixed scroll and an oscillating scroll, and a frame for holding the oscillating scroll slidably. It is inserted into the inner wall of the main shell formed into a tubular shape, and is positioned by bringing the positioning portion on the outer periphery of the frame into contact with the positioning surface of the frame of the step portion provided in an annular shape on the inner wall, and is positioned on the outer periphery of the main shell. The feeding portion provided in the main shell is provided between the positioning surface formed on the main shell and the driving mechanism portion for driving the swing scroll in the annular axial direction, and is formed on the side wall of the main shell. It is characterized in that the suction pipe and the main shell are provided in different phases in the outer peripheral direction.
 本願によれば、耐熱性の低い部品を局所冷却することで、部品間の距離制限を緩和することができる。また、高さ方向の寸法を短くすることができるため、スクロール圧縮機を低コスト化することができる。 According to the present application, the distance limitation between parts can be relaxed by locally cooling a part having low heat resistance. Further, since the dimension in the height direction can be shortened, the cost of the scroll compressor can be reduced.
実施の形態1に係るスクロール圧縮機の構成を示す縦断面図である。It is a vertical sectional view which shows the structure of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機の外観を示す上方斜視図である。It is an upper perspective view which shows the appearance of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機のメインシェルの要部の構成を示す斜視図である。It is a perspective view which shows the structure of the main part of the main shell of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機のメインフレームの構成を示す上方斜視図および上面図である。It is an upper perspective view and the top view which shows the structure of the main frame of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機の固定スクロールの構成を示す下方斜視図である。It is a lower perspective view which shows the structure of the fixed scroll of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機の揺動スクロールの構成を示す上方斜視図および下方斜視図である。It is an upper perspective view and the lower perspective view which shows the structure of the swing scroll of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機のオルダムリングの構成を示す上方斜視図である。It is an upper perspective view which shows the structure of the old dam ring of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機のクランクシャフトの構成を示す上方斜視図である。It is an upper perspective view which shows the structure of the crankshaft of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機のブッシュの構成を示す上方斜視図である。It is an upper perspective view which shows the structure of the bush of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機の給電部の構成を示す断面拡大図である。It is sectional drawing which shows the structure of the feeding part of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機の圧縮機構部の保持構成を示す断面拡大図である。It is sectional drawing which shows the holding structure of the compression mechanism part of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機の製造方法の製造工程を示すフローチャート図である。It is a flowchart which shows the manufacturing process of the manufacturing method of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態2に係るスクロール圧縮機の製造方法を示す断面図および斜視図である。It is sectional drawing and the perspective view which shows the manufacturing method of the scroll compressor which concerns on Embodiment 2. FIG. 実施の形態3に係るスクロール圧縮機の製造方法を示す断面図、正面図および斜視図である。It is sectional drawing, the front view and the perspective view which show the manufacturing method of the scroll compressor which concerns on Embodiment 3. FIG. 実施の形態4に係るスクロール圧縮機の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the scroll compressor which concerns on Embodiment 4. FIG.
実施の形態1.
 図1は、実施の形態1に係るスクロール圧縮機101の構成を示す縦断面図であり、図2は、スクロール圧縮機の外観を示す斜視図である。図3から図9は、実施の形態1に係るスクロール圧縮機101のメインシェル11、メインフレーム2、固定スクロール31、揺動スクロール32、オルダムリング33、クランクシャフト6およびブッシュ7の各斜視図である。図10は、図1の領域Aにおける断面拡大図である。図11は、図1の領域Fにおける断面拡大図である。なお、図1のスクロール圧縮機は、クランクシャフトの中心軸が地面に対して略垂直の状態で使用される、いわゆる縦型のスクロール圧縮機である。
Embodiment 1.
FIG. 1 is a vertical sectional view showing the configuration of the scroll compressor 101 according to the first embodiment, and FIG. 2 is a perspective view showing the appearance of the scroll compressor. 3 to 9 are perspective views of the main shell 11, the main frame 2, the fixed scroll 31, the swing scroll 32, the old dam ring 33, the crankshaft 6 and the bush 7 of the scroll compressor 101 according to the first embodiment. be. FIG. 10 is an enlarged cross-sectional view of the region A in FIG. FIG. 11 is an enlarged cross-sectional view of the region F in FIG. The scroll compressor of FIG. 1 is a so-called vertical scroll compressor used in a state where the central axis of the crankshaft is substantially perpendicular to the ground.
 図1に示すように、スクロール圧縮機101は、シェル1、メインフレーム2、圧縮機構部3、駆動機構部4、サブフレーム5、クランクシャフト6、ブッシュ7および給電部8から構成される。 As shown in FIG. 1, the scroll compressor 101 is composed of a shell 1, a main frame 2, a compression mechanism unit 3, a drive mechanism unit 4, a subframe 5, a crankshaft 6, a bush 7, and a power feeding unit 8.
 シェル1は、金属からなる両端が閉塞された筐体であり、図2に示すように、メインシェル11、アッパーシェル12およびロアシェル13からなる。メインシェル11は、図3に示すように、円筒状を呈し、その側壁に吸入管14が溶接等により接続されている。吸入管14は、冷媒をシェル1内に導入する管であり、メインシェル11内と連通している。アッパーシェル12は、略半球状で、その側壁の一部がメインシェル11のU方向上端部11aにおいて溶接等により接続され、メインシェル11の上端部11aの開口を覆っている。アッパーシェル12の上部には、吐出管15が溶接等により接続されている。吐出管15は、冷媒をシェル1外に吐出する管であり、メインシェル11の内部空間と連通している。ロアシェル13は、略半球状で、その側壁の一部がメインシェル11のL方向下端部11bにおいて、溶接等により接続され、メインシェル11の下端部11bの開口を覆っている。なお、シェル1は、複数のネジ穴を備える固定台16によって支持されている。固定台16には、複数のネジ穴が形成されており、それらのネジ穴にネジをねじ込むことによって、スクロール圧縮機を室外機の筐体等の他の部材に固定可能になっている。 The shell 1 is a housing made of metal with both ends closed, and is composed of a main shell 11, an upper shell 12, and a lower shell 13 as shown in FIG. As shown in FIG. 3, the main shell 11 has a cylindrical shape, and a suction pipe 14 is connected to a side wall thereof by welding or the like. The suction pipe 14 is a pipe that introduces the refrigerant into the shell 1 and communicates with the inside of the main shell 11. The upper shell 12 has a substantially hemispherical shape, and a part of the side wall thereof is connected by welding or the like at the upper end portion 11a of the main shell 11 in the U direction to cover the opening of the upper end portion 11a of the main shell 11. A discharge pipe 15 is connected to the upper part of the upper shell 12 by welding or the like. The discharge pipe 15 is a pipe that discharges the refrigerant to the outside of the shell 1 and communicates with the internal space of the main shell 11. The lower shell 13 has a substantially hemispherical shape, and a part of the side wall thereof is connected to the lower end portion 11b of the main shell 11 in the L direction by welding or the like to cover the opening of the lower end portion 11b of the main shell 11. The shell 1 is supported by a fixing base 16 having a plurality of screw holes. A plurality of screw holes are formed in the fixing base 16, and by screwing screws into these screw holes, the scroll compressor can be fixed to other members such as the housing of the outdoor unit.
 メインフレーム2は、例えば鋳鉄等の金属からなり、図4(a)および図4(b)に示すような空洞が形成された中空なフレームであり、シェル1の内部に設けられている。メインフレーム2は、本体部21、主軸受部22および返油管23を備えている。本体部21は、メインシェル11の上端部11a寄りの内壁面に固定されており、その中央にはシェル1の長手方向に沿って収容部211が形成されている。収容部211は、メインフレーム2の上端側の本体部21が開口しているとともに、下端側の主軸受部22で段差が設けられ、開口が狭くなっている。本体部21の上端側には、収容部211を囲むように環状の平坦面212が形成されている。平坦面212の上には、バルブ鋼などの鋼板系材料からなるリング状のスラストプレート24が配置されている。本実施の形態1では、スラストプレート24がスラスト軸受として機能する。なお、スラストプレート24がスラスト軸受として機能するため、回転を抑制する回り止めが必要になる。ここでは図示しないが、例えば、メインフレーム2の平坦面212に、スラストプレート24の厚みよりも薄い突起を設け、スラストプレート24の回転を抑制する、または、メインフレーム2に溝、スラストプレート24に突起を形成し、両部品を嵌合させる等の構造が考えられる。メインフレーム2の平坦面212の外周側のスラストプレート24と重ならない位置には、吸入ポート213が形成されている。吸入ポート213は、本体部21の上下方向に、すなわちアッパーシェル12側とロアシェル13側に貫通する切欠き部である。図4(a)および図4(b)で、吸入ポート213を2箇所、返油管23を2本もうけているが、数はこれに限定するものではない。また、吸入ポート213を切欠き部としているが、貫通孔の形状であっても問題はない。 The main frame 2 is a hollow frame made of a metal such as cast iron and having cavities as shown in FIGS. 4 (a) and 4 (b), and is provided inside the shell 1. The main frame 2 includes a main body portion 21, a main bearing portion 22, and an oil return pipe 23. The main body portion 21 is fixed to the inner wall surface of the main shell 11 near the upper end portion 11a, and an accommodating portion 211 is formed in the center thereof along the longitudinal direction of the shell 1. In the accommodating portion 211, the main body portion 21 on the upper end side of the main frame 2 is open, and the main bearing portion 22 on the lower end side is provided with a step, so that the opening is narrow. An annular flat surface 212 is formed on the upper end side of the main body 21 so as to surround the accommodating portion 211. A ring-shaped thrust plate 24 made of a steel plate-based material such as valve steel is arranged on the flat surface 212. In the first embodiment, the thrust plate 24 functions as a thrust bearing. Since the thrust plate 24 functions as a thrust bearing, a detent to suppress rotation is required. Although not shown here, for example, a protrusion thinner than the thickness of the thrust plate 24 is provided on the flat surface 212 of the main frame 2 to suppress the rotation of the thrust plate 24, or the main frame 2 has a groove and the thrust plate 24 has a groove. A structure such as forming a protrusion and fitting both parts is conceivable. A suction port 213 is formed at a position that does not overlap with the thrust plate 24 on the outer peripheral side of the flat surface 212 of the main frame 2. The suction port 213 is a notch portion that penetrates the main body portion 21 in the vertical direction, that is, to the upper shell 12 side and the lower shell 13 side. In FIGS. 4A and 4B, two suction ports 213 and two oil return pipes 23 are provided, but the number is not limited to these. Further, although the suction port 213 is used as a notch, there is no problem even if the shape of the through hole is formed.
 メインフレーム2の平坦面212よりも下端側の段差部分には、オルダム収容部214が形成されている。オルダム収容部214には、第1オルダム溝215が形成されている。第1オルダム溝215の外側端部は、オルダム収容部214の外周側の一部と平坦面212の内周側を削るように形成されている。そのため、メインフレーム2をU方向の上端側から見たときに、第1オルダム溝215の一部は、スラストプレート24と重なる。第1オルダム溝215は、一対が対向するように形成されている。主軸受部22は、本体部21のL方向下端側に連続して形成され、その内部には軸孔221が形成されている。軸孔221は、主軸受部22の上下方向に貫通し、そのU方向上端側が収容部211と連通している。返油管23は、収容部211に溜まった潤滑油をロアシェル13の内側の油溜めに戻すための管であり、メインフレーム2に内外に貫通して形成された排油孔に挿入固定されている。 An oldham accommodating portion 214 is formed at a step portion on the lower end side of the flat surface 212 of the main frame 2. A first Oldham groove 215 is formed in the Oldham accommodating portion 214. The outer end portion of the first Oldham groove 215 is formed so as to scrape a part of the outer peripheral side of the Oldam accommodating portion 214 and the inner peripheral side of the flat surface 212. Therefore, when the main frame 2 is viewed from the upper end side in the U direction, a part of the first Oldham groove 215 overlaps with the thrust plate 24. The first Oldham groove 215 is formed so that a pair faces each other. The main bearing portion 22 is continuously formed on the lower end side in the L direction of the main body portion 21, and a shaft hole 221 is formed inside the main bearing portion 22. The shaft hole 221 penetrates the main bearing portion 22 in the vertical direction, and its upper end side in the U direction communicates with the accommodating portion 211. The oil return pipe 23 is a pipe for returning the lubricating oil accumulated in the accommodating portion 211 to the oil reservoir inside the lower shell 13, and is inserted and fixed in the oil drain hole formed through the main frame 2 inside and outside. ..
 潤滑油は、例えば、エステル系合成油を含む冷凍機油である。潤滑油は、シェル1のL方向下端部、すなわちロアシェル13に貯留されており、後述するオイルポンプ52で吸い上げられて、クランクシャフト6内の通油路63を通り、圧縮機構部3等の機械的に接触するパーツ同士の摩耗低減、摺動部の温度調節、シール性を改善する。潤滑油としては、潤滑特性、電気絶縁性、安定性、冷媒溶解性、低温流動性などに優れるとともに、適度な粘度の油が好適である。 The lubricating oil is, for example, a refrigerating machine oil containing an ester-based synthetic oil. The lubricating oil is stored in the lower end of the shell 1 in the L direction, that is, in the lower shell 13, is sucked up by the oil pump 52 described later, passes through the oil passage 63 in the crankshaft 6, and is a machine such as the compression mechanism unit 3. Reduces wear between parts that come into contact with each other, controls the temperature of sliding parts, and improves sealing performance. As the lubricating oil, an oil having excellent lubrication characteristics, electrical insulation, stability, refrigerant solubility, low-temperature fluidity and the like, and having an appropriate viscosity is suitable.
 圧縮機構部3は、冷媒を圧縮する圧縮機構である。圧縮機構部3は、固定スクロール31と、揺動スクロール32を備えたスクロール圧縮機構である。固定スクロール31は、鋳鉄等の金属からなり、図5に示すように、第1基板311と第1渦巻体312を備えている。第1基板311は、円板状を呈しており、その中央には上下方向に貫通して吐出ポート313が形成されている。第1渦巻体312は、第1基板311の裏面から突出して渦巻状の壁を形成しており、その先端はL方向に突出している。揺動スクロール32は、例えばアルミニウム等の金属からなり、図6(a)および図6(b)に示すように、第2基板321、第2渦巻体322、筒状部323および第2オルダム溝324を備えている。第2基板321は、第2渦巻体322が形成された表面と、少なくとも一部が摺動面3211となる裏面と、径方向の外周部に位置し、表面と裏面とを接続する側面3212を備えた円板状を呈し、その摺動面3211がスラストプレート24に摺動可能に、メインフレーム2に支持(支承)されている。第2渦巻体322は、第2基板321の表面から突出して渦巻状の壁を形成しており、その先端はU方向に突出している。なお、固定スクロール31の第1渦巻体312と、揺動スクロール32の第2渦巻体322の先端部には、冷媒の漏れを抑制するためのシール部材が設けられている。筒状部323は、第2基板321の裏面の略中央からL方向に突出して形成された円筒状のボスである。筒状部323の内周面には、後述するスライダ71を回転自在に支持する揺動軸受、いわゆるジャーナル軸受が、その中心軸がクランクシャフト6の中心軸と平行になるように設けられている。第2オルダム溝324は、第2基板321の裏面に形成された長丸形状の溝である。第2オルダム溝324は、一対が対向するように設けられている。一対の第2オルダム溝324を結ぶ線は、一対の第1オルダム溝215を結ぶ線に対して、直交するように設けられている。 The compression mechanism unit 3 is a compression mechanism that compresses the refrigerant. The compression mechanism unit 3 is a scroll compression mechanism including a fixed scroll 31 and a swing scroll 32. The fixed scroll 31 is made of a metal such as cast iron and includes a first substrate 311 and a first spiral body 312 as shown in FIG. The first substrate 311 has a disk shape, and a discharge port 313 is formed in the center thereof so as to penetrate in the vertical direction. The first spiral body 312 protrudes from the back surface of the first substrate 311 to form a spiral wall, and the tip thereof protrudes in the L direction. The oscillating scroll 32 is made of a metal such as aluminum, and as shown in FIGS. 6 (a) and 6 (b), the second substrate 321 and the second spiral body 322, the tubular portion 323 and the second oldham groove are formed. It is equipped with 324. The second substrate 321 has a front surface on which the second spiral body 322 is formed, a back surface having at least a part of the sliding surface 3211, and a side surface 3212 located on the outer peripheral portion in the radial direction and connecting the front surface and the back surface. It has a disk shape provided, and its sliding surface 3211 is slidably supported (supported) by the main frame 2 so as to be slidable on the thrust plate 24. The second spiral body 322 protrudes from the surface of the second substrate 321 to form a spiral wall, and the tip thereof protrudes in the U direction. A seal member for suppressing leakage of the refrigerant is provided at the tip of the first spiral body 312 of the fixed scroll 31 and the second spiral body 322 of the rocking scroll 32. The tubular portion 323 is a cylindrical boss formed so as to project in the L direction from substantially the center of the back surface of the second substrate 321. On the inner peripheral surface of the tubular portion 323, a swing bearing that rotatably supports the slider 71 described later, a so-called journal bearing, is provided so that its central axis is parallel to the central axis of the crankshaft 6. .. The second Oldham groove 324 is an oval-shaped groove formed on the back surface of the second substrate 321. The second Oldham groove 324 is provided so that a pair faces each other. The line connecting the pair of second Oldham grooves 324 is provided so as to be orthogonal to the line connecting the pair of first Oldham grooves 215.
 メインフレーム2のオルダム収容部214には、オルダムリング33が設けられている。オルダムリング33は、図7に示すように、リング部331、第1キー部332および第2キー部333を備えている。第1キー部332は、リング部331のL方向裏面側に一対が対向するように形成されており、メインフレーム2の一対の第1オルダム溝215に収容される。第2キー部333は、リング部331のU方向表面側に一対が対向するように形成されており、揺動スクロール32の一対の第2オルダム溝324に収容される。クランクシャフト6の回転によって揺動スクロール32が公転旋回する際に、第1キー部332は第1オルダム溝215、第2キー部333は第2オルダム溝324でスライドすることにより、オルダムリング33は、揺動スクロール32が自転することを防止する。 An old dam ring 33 is provided in the old dam accommodating portion 214 of the main frame 2. As shown in FIG. 7, the old dam ring 33 includes a ring portion 331, a first key portion 332, and a second key portion 333. The first key portion 332 is formed so as to face the back surface side of the ring portion 331 in the L direction so as to face each other, and is accommodated in the pair of first old dam grooves 215 of the main frame 2. The second key portion 333 is formed so as to face the U-direction surface side of the ring portion 331 so as to face each other, and is accommodated in the pair of second Oldham grooves 324 of the swing scroll 32. When the swing scroll 32 revolves due to the rotation of the crankshaft 6, the first key portion 332 slides on the first Oldham groove 215 and the second key portion 333 slides on the second Oldam groove 324, whereby the Oldam ring 33 becomes. , Prevents the swing scroll 32 from rotating.
 圧縮室34は、これら固定スクロール31の第1渦巻体312と、揺動スクロール32の第2渦巻体322を互いに噛み合わせることにより形成される。圧縮室34は、半径方向において、外周側から内周側へ向かうに従って容積が縮小するものであるため、冷媒を渦巻体の外周側端部から取り入れて、中央側に移動させることで徐々に圧縮される。圧縮室34は、固定スクロール31の中央部において、吐出ポート313と連通する。固定スクロール31の表面には、吐出孔351を有するマフラー35が設けられているとともに、吐出孔351を所定に開閉し、冷媒の逆流を防止する吐出弁36が設けられている。 The compression chamber 34 is formed by engaging the first spiral body 312 of the fixed scroll 31 and the second spiral body 322 of the rocking scroll 32 with each other. Since the volume of the compression chamber 34 decreases from the outer peripheral side to the inner peripheral side in the radial direction, the refrigerant is taken in from the outer peripheral side end of the spiral body and moved to the central side to gradually compress the compression chamber 34. Will be done. The compression chamber 34 communicates with the discharge port 313 at the center of the fixed scroll 31. On the surface of the fixed scroll 31, a muffler 35 having a discharge hole 351 is provided, and a discharge valve 36 that opens and closes the discharge hole 351 in a predetermined manner to prevent backflow of the refrigerant is provided.
 冷媒は、例えば、組成中に、炭素の二重結合を有するハロゲン化炭化水素、炭素の二重結合を有しないハロゲン化炭化水素、炭化水素、又は、それらを含む混合物からなる。炭素の二重結合を有するハロゲン化炭化水素は、オゾン層破壊係数がゼロであるHFC(Hybrid fiber-coaxial)冷媒、フロン系低GWP(Global Warming Potential)冷媒であり、化学式がCで表されるHFO1234yf(2,3,3,3-テトラフルオロ-1-プロペン)、HFO1234ze(トランス-1,3,3,3-テトラフルオロプロペン)、HFO1243zf(3,3,3-トリフルオロプロピレン)等のテトラフルオロプロペンが例示される。炭素の二重結合を有しないハロゲン化炭化水素は、CHで表されるR32(ジフルオロメタン)、R41(CH3F、フルオロメタン)等が混合された冷媒が例示される。炭化水素は、自然冷媒であるプロパンおよびプロピレン等が例示される。混合物は、HFO1234yf、HFO1234ze、HFO1243zf等に、R32、R41等を混合した混合冷媒が例示される。 The refrigerant comprises, for example, a halogenated hydrocarbon having a carbon double bond, a halogenated hydrocarbon having no carbon double bond, a hydrocarbon, or a mixture containing them in the composition. The halogenated hydrocarbon having a carbon double bond is an HFC (Hybrid fiber-coaxial) refrigerant having a zero ozone layer destruction coefficient, a Freon-based low GWP (Global Warming Potential) refrigerant, and has a chemical formula of C 3 H 2 F. HFO1234yf (2,3,3,3-tetrafluoro-1-propene), HFO1234ze (trans-1,3,3,3-tetrafluoropropene), HFO1243zf (3,3,3-trifluoro) represented by 4 . Tetrafluoropropene such as propylene) is exemplified. Examples of the halogenated hydrocarbon having no carbon double bond include a refrigerant in which R32 (difluoromethane) represented by CH 2 F 2 and R41 (CH 3F, fluoromethane) are mixed. Examples of the hydrocarbon include propane and propylene which are natural refrigerants. Examples of the mixture include a mixed refrigerant in which R32, R41 and the like are mixed with HFO1234yf, HFO1234ze, HFO1243zf and the like.
 駆動機構部4は、シェル1内部のメインフレーム2のL方向下端側に設けられている。駆動機構部4は、ステータ41とロータ42を備えている。ステータ41は、例えば電磁鋼板を複数積層してなる鉄心に、絶縁層を介して巻線を巻回してなる固定子で、リング状に形成されている。ステータ41は、焼き嵌め等によりメインシェル11内部に固着支持されている。ロータ42は、電磁鋼板を複数積層してなる鉄心の内部に永久磁石を内蔵するとともに、中央に上下方向に貫通する貫通穴を有する円筒状の回転子であり、ステータ41の内部空間に配置されている。 The drive mechanism unit 4 is provided on the lower end side in the L direction of the main frame 2 inside the shell 1. The drive mechanism unit 4 includes a stator 41 and a rotor 42. The stator 41 is formed in a ring shape, for example, with a stator formed by winding windings around an iron core formed by laminating a plurality of electromagnetic steel sheets via an insulating layer. The stator 41 is fixedly supported inside the main shell 11 by shrink fitting or the like. The rotor 42 is a cylindrical rotor having a permanent magnet built in an iron core made by laminating a plurality of electrical steel sheets and having a through hole penetrating in the vertical direction in the center, and is arranged in the internal space of the stator 41. ing.
 サブフレーム5は、例えば鋳鉄等の金属からなるフレームであり、シェル1内部の駆動機構部4のL方向下端側に設けられている。サブフレーム5は、焼き嵌め、または溶接等によってメインシェル11の下端部11b寄りの内周面に固着支持されている。サブフレーム5は、副軸受部51とオイルポンプ52を備えている。副軸受部51は、サブフレーム5の中央部に設けられたボールベアリングであり、中央に上下方向に貫通する孔を有している。オイルポンプ52は、サブフレーム5の中央部下側に設けられており、シェル1の油溜めに貯留された潤滑油に少なくとも一部が浸漬するように配置されている。なお、図1で副軸受部51にボールベアリングを例示しているが、これが例えばジャーナル軸受であっても問題はない。 The subframe 5 is a frame made of metal such as cast iron, and is provided on the lower end side of the drive mechanism portion 4 inside the shell 1 in the L direction. The subframe 5 is fixedly supported on the inner peripheral surface of the main shell 11 near the lower end portion 11b by shrink fitting, welding, or the like. The subframe 5 includes an auxiliary bearing portion 51 and an oil pump 52. The sub-bearing portion 51 is a ball bearing provided in the central portion of the sub-frame 5, and has a hole in the center that penetrates in the vertical direction. The oil pump 52 is provided below the central portion of the subframe 5, and is arranged so that at least a part of the oil pump 52 is immersed in the lubricating oil stored in the oil reservoir of the shell 1. Although a ball bearing is illustrated as the auxiliary bearing portion 51 in FIG. 1, there is no problem even if this is a journal bearing, for example.
 クランクシャフト6は、長尺な金属製の棒状部材であり、シェル1の内部に設けられている。クランクシャフト6は、図8に示すように、主軸部61、偏心軸部62および通油路63を備えている。主軸部61は、クランクシャフト6の主要部を構成する軸であり、その中心軸がメインシェル11の中心軸と一致するように配置されている。主軸部61は、その外表面にはロータ42が接触固定されている。偏心軸部62は、その中心軸が主軸部61の中心軸に対して偏心するように主軸部61のU方向上端部に設けられている。通油路63は、主軸部61および偏心軸部62の内部に上下に貫通して設けられている。このクランクシャフト6は、主軸部61のU方向上端部がメインフレーム2の主軸受部22内に挿入され、L方向下端部がサブフレーム5の副軸受部51に挿入固定される。これにより、偏心軸部62は筒状部323の筒内に配置され、ロータ42は、その外周面がステータ41の内周面と所定の隙間を保って配置される。また、主軸部61のU方向上端寄りには第1バランサ64、L方向下端寄りには第2バランサ65が、揺動スクロール32の搖動によるアンバランスを相殺するために設けられている。 The crankshaft 6 is a long metal rod-shaped member, which is provided inside the shell 1. As shown in FIG. 8, the crankshaft 6 includes a main shaft portion 61, an eccentric shaft portion 62, and an oil passage 63. The main shaft portion 61 is a shaft constituting the main portion of the crankshaft 6, and the central shaft thereof is arranged so as to coincide with the central shaft of the main shell 11. A rotor 42 is contact-fixed to the outer surface of the spindle portion 61. The eccentric shaft portion 62 is provided at the upper end portion of the spindle portion 61 in the U direction so that the central shaft thereof is eccentric with respect to the central axis of the spindle portion 61. The oil passage 63 is provided so as to vertically penetrate the inside of the main shaft portion 61 and the eccentric shaft portion 62. In the crankshaft 6, the upper end portion in the U direction of the main shaft portion 61 is inserted into the main bearing portion 22 of the main frame 2, and the lower end portion in the L direction is inserted and fixed in the sub bearing portion 51 of the subframe 5. As a result, the eccentric shaft portion 62 is arranged in the cylinder of the tubular portion 323, and the outer peripheral surface of the rotor 42 is arranged with a predetermined gap from the inner peripheral surface of the stator 41. Further, a first balancer 64 is provided near the upper end of the main shaft portion 61 in the U direction, and a second balancer 65 is provided near the lower end in the L direction in order to offset the imbalance caused by the swing of the swing scroll 32.
 ブッシュ7は、鉄等の金属からなり、揺動スクロール32とクランクシャフト6を接続する接続部材である。ブッシュ7は、図9に示すように、本実施形態では2つの部材で構成され、スライダ71とバランスウエイト72を備える。スライダ71は、鍔が形成された筒状の部材であり、偏心軸部62および筒状部323のそれぞれに嵌入されている。バランスウエイト72は、U方向から見た形状が略C状を呈するウエイト部721を備えたドーナツ状の部材であり、揺動スクロール32の遠心力を相殺するために、回転中心に対して偏芯して設けられている。バランスウエイト72は、例えばスライダ71の鍔に焼き嵌め等の方法により、嵌合されている。なお、ブッシュ7について、例えば機械加工で、スライダ71とバランスウエイト72を一体で削りだした1部材としてもよい。 The bush 7 is made of a metal such as iron and is a connecting member for connecting the swing scroll 32 and the crankshaft 6. As shown in FIG. 9, the bush 7 is composed of two members in the present embodiment, and includes a slider 71 and a balance weight 72. The slider 71 is a cylindrical member on which a cross is formed, and is fitted into each of the eccentric shaft portion 62 and the tubular portion 323. The balance weight 72 is a donut-shaped member having a weight portion 721 whose shape when viewed from the U direction is substantially C-shaped, and is eccentric with respect to the center of rotation in order to cancel the centrifugal force of the swing scroll 32. It is provided. The balance weight 72 is fitted to the crossguard of the slider 71 by a method such as shrink fitting. The bush 7 may be a member in which the slider 71 and the balance weight 72 are integrally machined, for example, by machining.
 給電部8は、スクロール圧縮機に給電する給電部材であり、シェル1のメインシェル11の外周面に形成されている。給電部8の軸方向に垂直な面内における周方向の位置である位相は、吸入管14が設けられた位相と異なるように設けられる。給電部8と吸入管14の位相差は、90°から270°であることが望ましく、本実施の形態では100°とした。給電部8は、カバー81、給電端子82および配線83を備えている。カバー81は、有底開口のカバー部材である。給電端子82は、金属部材からなり、図10に示すように、一方がカバー81の内部に設けられ、他方がメインシェル11の内部に設けられている。配線83は、一方が給電端子82と接続され、他方がステータ41の巻線と接続されている。 The power feeding unit 8 is a power feeding member that supplies power to the scroll compressor, and is formed on the outer peripheral surface of the main shell 11 of the shell 1. The phase, which is the position in the circumferential direction in the plane perpendicular to the axial direction of the feeding portion 8, is provided so as to be different from the phase in which the suction pipe 14 is provided. The phase difference between the feeding unit 8 and the suction pipe 14 is preferably 90 ° to 270 °, and is set to 100 ° in this embodiment. The feeding unit 8 includes a cover 81, a feeding terminal 82, and a wiring 83. The cover 81 is a cover member having a bottomed opening. The power feeding terminal 82 is made of a metal member, and as shown in FIG. 10, one is provided inside the cover 81 and the other is provided inside the main shell 11. One of the wiring 83 is connected to the feeding terminal 82, and the other is connected to the winding of the stator 41.
 次に、メインフレーム2、固定スクロール31をメインシェル11に保持する保持構造と、メインシェル11、メインフレーム2および圧縮機構部3の関係について、詳細を説明する。 Next, the relationship between the holding structure for holding the main frame 2 and the fixed scroll 31 in the main shell 11 and the main shell 11, the main frame 2, and the compression mechanism unit 3 will be described in detail.
 メインシェル11は、図3に示すように、第1内壁面111から径方向に突出する第1突出部112、第1突出部112のアッパーシェル12の側に向いた端面で、固定スクロール31の第1基板311と接触して固定スクロール31の軸方向位置を決める第1位置決め面113と第1突出部112の内壁面となる第2内壁面114、第1突出部112からさらに径方向に突出する第2突出部115、および第2突出部115のアッパーシェル12の側に向いた端面で、メインフレーム2の本体部21と接触して、メインフレーム2の軸方向位置を決める第2位置決め面116と第2突出部115の内壁面となる第3内壁面117を有している。つまり、メインシェル11は、L方向に向かって内径が小さくなる段状の部分を備えている。この際、第1位置決め面113と第2位置決め面116は、クランクシャフト6の中心軸に対して略垂直であり、かつ、両位置決め面の法線ベクトルが同一方向を向くように形成されている。また、第2位置決め面116に対する給電部8の位置は、給電部8の給電端子82が第2位置決め面116の軸方向下方(L方向)に位置し、第2位置決め面116と給電端子82の固定部上端との軸方向距離が、5mmから7mmであることが望ましい。第1位置決め面113と第1内壁面111が交差した角部、および、第2位置決め面116と第2内壁面114が交差した角部には、図11(a)、図11(b)および図11(c)に示すように、それぞれ、凹み1131と1161が設けられている。これにより、各位置決め面に固定スクロール31、メインフレーム2を確実に接触させることができる。 As shown in FIG. 3, the main shell 11 is an end surface of the first protrusion 112 that protrudes radially from the first inner wall surface 111 and the first protrusion 112 that faces the upper shell 12, and is a fixed scroll 31. Further radially projecting from the first positioning surface 113 that contacts the first substrate 311 to determine the axial position of the fixed scroll 31, the second inner wall surface 114 that is the inner wall surface of the first protruding portion 112, and the first protruding portion 112. A second positioning surface that contacts the main body 21 of the main frame 2 at the end faces of the second protrusion 115 and the upper shell 12 of the second protrusion 115 to determine the axial position of the main frame 2. It has a third inner wall surface 117 which is an inner wall surface of the 116 and the second protruding portion 115. That is, the main shell 11 has a stepped portion whose inner diameter decreases in the L direction. At this time, the first positioning surface 113 and the second positioning surface 116 are formed so as to be substantially perpendicular to the central axis of the crankshaft 6 and the normal vectors of both positioning surfaces face in the same direction. .. Further, the position of the feeding portion 8 with respect to the second positioning surface 116 is such that the feeding terminal 82 of the feeding portion 8 is located downward in the axial direction (L direction) of the second positioning surface 116, and the second positioning surface 116 and the feeding terminal 82 are positioned. It is desirable that the axial distance from the upper end of the fixed portion is 5 mm to 7 mm. The corners where the first positioning surface 113 and the first inner wall surface 111 intersect, and the corner portions where the second positioning surface 116 and the second inner wall surface 114 intersect, are shown in FIGS. 11 (a), 11 (b), and FIG. As shown in FIG. 11 (c), recesses 1131 and 1161 are provided, respectively. As a result, the fixed scroll 31 and the main frame 2 can be reliably brought into contact with each positioning surface.
 メインフレーム2には、図4(a)および図4(b)に示すように、本体部21の外周面から径方向に突出する突起216を複数個所に形成している。メインフレーム2外周の軸方向端面に設けた位置決め部としての突起216を、メインシェル11に形成した第2位置決め面116に当てる(接触させる)ことで、メインフレーム2の軸方向位置を決めている。さらに、この状態で、メインシェル11の第2内壁面114に圧入、焼き嵌め等で固定することで、中心位置を決めている。この際、突起216の範囲が全周でなく一部であるため、メインシェルから受ける保持力を下げ、メインフレーム2の変形を抑えることができる。これにより、高性能、高品質のスクロール圧縮機を得ることができる。なお、保持力が足りない場合に、メインシェル11と突起216の接触面にさらにアークスポット溶接等をほどこしてもよい。以上により、メインフレーム2を、中心位置、軸方向高さ位置を決めた状態で、メインシェル11に保持することができる。なお、突起216をメインフレーム2の平坦面212(揺動スクロール32の摺動面3211とスラストプレート24を介して設置する面)よりもロアシェル13側に形成している。これにより、平坦面212が保持力をうけて変形することを抑制するため、損失の少ない高性能のスクロール圧縮機をえることができる。 As shown in FIGS. 4 (a) and 4 (b), the main frame 2 is formed with a plurality of protrusions 216 protruding in the radial direction from the outer peripheral surface of the main body portion 21. The axial position of the main frame 2 is determined by abutting (contacting) the protrusion 216 as a positioning portion provided on the axial end surface of the outer periphery of the main frame 2 with the second positioning surface 116 formed on the main shell 11. .. Further, in this state, the center position is determined by fixing to the second inner wall surface 114 of the main shell 11 by press fitting, shrink fitting, or the like. At this time, since the range of the protrusion 216 is not the entire circumference but a part thereof, the holding force received from the main shell can be lowered and the deformation of the main frame 2 can be suppressed. This makes it possible to obtain a high-performance, high-quality scroll compressor. If the holding force is insufficient, arc spot welding or the like may be further applied to the contact surface between the main shell 11 and the protrusion 216. As described above, the main frame 2 can be held by the main shell 11 in a state where the center position and the height position in the axial direction are determined. The protrusion 216 is formed on the lower shell 13 side of the flat surface 212 of the main frame 2 (the surface installed via the sliding surface 3211 of the swing scroll 32 and the thrust plate 24). As a result, the flat surface 212 is prevented from being deformed by the holding force, so that a high-performance scroll compressor with low loss can be obtained.
 次に、メインフレーム2の突起216と1対の第1オルダム溝215の位置関係を説明する。
 図4(b)に示すように、1対の第1オルダム溝215の中心を結ぶ直線をオルダム中心軸B、オルダム中心軸と直交し、かつ1対の第1オルダム溝215との距離が等しくなる直線をオルダム対称軸Cとする。1対の第1オルダム溝215に、オルダムリング33の第1キー部332が挿入され、溝215に沿って摺動する。突起216をオルダム中心軸B、および、オルダム対称軸Cに対して軸対称に配置することで、メインフレーム2が保持力を受ける際に、1対の第1オルダム溝215にも荷重が均等に負荷される。これにより、1対の第1オルダム溝215に軸ずれ、および溝幅の相違が生じないため、オルダムリング33の摺動抵抗を下げた高効率のスクロール圧縮機をえることができる。さらに本図のように突起216をオルダム中心軸Bとオルダム対称軸C上に配置すると、焼き嵌めをする場合には、オルダム中心軸B上の突起216に負荷される荷重により第1オルダム溝215の溝幅が広がる方向に加わる圧力と、オルダム対称軸C上の突起216に負荷される荷重により第1オルダム溝215の溝幅が狭まる方向に加わる圧力とが釣り合うため、第1オルダム溝215の変形そのものを抑えることができるので、高性能のスクロール圧縮機をえることができる。
Next, the positional relationship between the protrusion 216 of the main frame 2 and the pair of first Oldham grooves 215 will be described.
As shown in FIG. 4B, the straight line connecting the centers of the pair of first Oldham grooves 215 is orthogonal to the Oldam central axis B and the Oldam central axis, and the distances from the pair of first Oldam grooves 215 are equal. Let the straight line be the orthogonal axis C of symmetry. The first key portion 332 of the old dam ring 33 is inserted into the pair of first old dam grooves 215 and slides along the groove 215. By arranging the protrusions 216 axisymmetrically with respect to the Oldham central axis B and the Oldam symmetry axis C, the load is evenly applied to the pair of first Oldam grooves 215 when the mainframe 2 receives the holding force. Be loaded. As a result, the pair of first Oldham grooves 215 does not have an axial deviation and a difference in groove width, so that a highly efficient scroll compressor with reduced sliding resistance of the Oldam ring 33 can be obtained. Further, when the protrusion 216 is arranged on the Oldham central axis B and the Oldam symmetry axis C as shown in this figure, in the case of shrink fitting, the first Oldham groove 215 is applied to the protrusion 216 on the Oldam central axis B. Since the pressure applied in the direction in which the groove width is widened and the pressure applied in the direction in which the groove width of the first Oldham groove 215 is narrowed due to the load applied to the protrusion 216 on the axis of symmetry C of the Oldham are balanced, the first Oldham groove 215 Since the deformation itself can be suppressed, a high-performance scroll compressor can be obtained.
 固定スクロール31の第1基板311の第1渦巻体312を形成する側の面を、メインシェル11に形成した第1位置決め面113に当てることで、固定スクロール31の軸方向位置を決めている。さらに、この状態で、メインシェル11の第1内壁面111に第1基板311の側面3111を焼き嵌めで固定することで、中心位置が決まる。以上により、固定スクロール31を、中心位置、軸方向高さ位置を決めた状態で、メインシェル11に保持することができる。ここでは図示しないが、固定スクロール31の位相を例えば位置決めピンを使用してあわせることで、固定スクロール31の位置を完全に拘束することができる。なお、本実施の形態で、シェル1内部の高低圧の分離機能を、固定スクロール31に持たせている。 The axial position of the fixed scroll 31 is determined by applying the surface of the first substrate 311 of the fixed scroll 31 on the side forming the first spiral body 312 to the first positioning surface 113 formed on the main shell 11. Further, in this state, the center position is determined by fixing the side surface 3111 of the first substrate 311 to the first inner wall surface 111 of the main shell 11 by shrink fitting. As described above, the fixed scroll 31 can be held in the main shell 11 in a state where the center position and the height position in the axial direction are determined. Although not shown here, the position of the fixed scroll 31 can be completely constrained by adjusting the phase of the fixed scroll 31 using, for example, a positioning pin. In this embodiment, the fixed scroll 31 has a high / low voltage separation function inside the shell 1.
 次に、本実施の形態1のスクロール圧縮機101の動作について説明する。
 給電部8の給電端子82に通電すると、ステータ41とロータ42にトルクが発生し、これに伴ってクランクシャフト6が回転する。クランクシャフト6の回転は、偏心軸部62およびブッシュ7を介して揺動スクロール32に伝えられる。回転駆動力が伝達された揺動スクロール32は、オルダムリング33により自転を規制され、固定スクロール31に対して偏心公転運動する。その際、揺動スクロール32の他方の面が、スラストプレート24と摺動する。
Next, the operation of the scroll compressor 101 of the first embodiment will be described.
When the power supply terminal 82 of the power supply unit 8 is energized, torque is generated in the stator 41 and the rotor 42, and the crankshaft 6 rotates accordingly. The rotation of the crankshaft 6 is transmitted to the swing scroll 32 via the eccentric shaft portion 62 and the bush 7. The oscillating scroll 32 to which the rotational driving force is transmitted is restricted from rotating by the old dam ring 33, and eccentrically revolves with respect to the fixed scroll 31. At that time, the other surface of the swing scroll 32 slides with the thrust plate 24.
 揺動スクロール32の揺動運動に伴い、吸入管14からシェル1の内部に吸入された冷媒は、メインフレーム2の吸入ポート213を通って冷媒取込空間37に到達し、固定スクロール31と揺動スクロール32とで形成される圧縮室34に取り込まれる。そして、冷媒は、揺動スクロール32の偏心公転運動に伴い、外周部から中心方向に移動しながら体積を減じられて圧縮される。揺動スクロール32の偏心公転運転時、揺動スクロール32は自身の遠心力により、ブッシュ7と共に径方向に移動し、第2渦巻体322と第1渦巻体312の側壁面同士が密接する。圧縮された冷媒は、固定スクロール31の吐出ポート313から固定スクロール31の吐出孔351に至り、吐出弁36に逆らってシェル1の外部に吐出される。 Along with the swinging motion of the swing scroll 32, the refrigerant sucked into the shell 1 from the suction pipe 14 reaches the refrigerant intake space 37 through the suction port 213 of the main frame 2, and swings with the fixed scroll 31. It is taken into the compression chamber 34 formed by the moving scroll 32. Then, the refrigerant is compressed by reducing its volume while moving from the outer peripheral portion toward the center along with the eccentric revolution motion of the rocking scroll 32. During the eccentric revolution operation of the swing scroll 32, the swing scroll 32 moves in the radial direction together with the bush 7 due to its own centrifugal force, and the side wall surfaces of the second spiral body 322 and the first spiral body 312 come into close contact with each other. The compressed refrigerant reaches the discharge hole 351 of the fixed scroll 31 from the discharge port 313 of the fixed scroll 31 and is discharged to the outside of the shell 1 against the discharge valve 36.
 次に、本実施の形態1のスクロール圧縮機101の製造方法を、図12を用いて説明する。図12は、本実施の形態1のスクロール圧縮機101の製造方法での製造工程を示すフローチャート図である。 Next, the method of manufacturing the scroll compressor 101 of the first embodiment will be described with reference to FIG. FIG. 12 is a flowchart showing a manufacturing process in the manufacturing method of the scroll compressor 101 of the first embodiment.
 まず、板状鋼材をロールあるいはプレスによって管状に成形後、継目を溶接で接続して鋼管とした溶接鋼管を製作し、これに、吸入管14を溶接し、給電部8を取り付けて、メインシェル11を製作する(ステップS1201)。 First, a plate-shaped steel material is formed into a tubular shape by a roll or a press, and then a welded steel pipe is manufactured by connecting the seams by welding to form a steel pipe. 11 is manufactured (step S1201).
 続いて、メインシェル11の内壁面を厚み方向に所定の深さだけ切削加工することで、メインフレーム2を位置決め固定する第2内壁面114および第2突出部115による段差を形成する(ステップS1202)。メインシェル11の厚みは、例えば4mmから6mmであり、突出部の高さ、すなわち切削加工による削り深さは、例えば0.5mm前後である。 Subsequently, by cutting the inner wall surface of the main shell 11 by a predetermined depth in the thickness direction, a step is formed by the second inner wall surface 114 and the second protruding portion 115 for positioning and fixing the main frame 2 (step S1202). ). The thickness of the main shell 11 is, for example, 4 mm to 6 mm, and the height of the protruding portion, that is, the cutting depth by cutting is, for example, about 0.5 mm.
 次に、第2突出部115からアッパーシェル12の方向に所定距離離れた内壁面を厚み方向に所定の深さだけ切削加工することで、固定スクロール31を位置決め固定する第1内壁面111および第1突出部112による段差を形成する(ステップS1203)。このため、第1内壁面111の内径r1は、第2内壁面114の内径r2よりも大きくなる。また、第1突出部112は、第2突出部115よりもアッパーシェル12の方向に形成され、その内壁面は第2内壁面114となる。なお、第1突出部112を形成した後で、第2突出部115を形成するようにしても良い。 Next, the first inner wall surface 111 and the first inner wall surface 111 for positioning and fixing the fixed scroll 31 by cutting the inner wall surface separated from the second protruding portion 115 in the direction of the upper shell 12 by a predetermined distance in the thickness direction. 1 A step is formed by the protruding portion 112 (step S1203). Therefore, the inner diameter r1 of the first inner wall surface 111 is larger than the inner diameter r2 of the second inner wall surface 114. Further, the first protruding portion 112 is formed in the direction of the upper shell 12 with respect to the second protruding portion 115, and the inner wall surface thereof becomes the second inner wall surface 114. The second protrusion 115 may be formed after the first protrusion 112 is formed.
 続いて、第1突出部112における第1内壁面111との接続部分(第1位置決め面113の第1内壁面111の側)、および第2突出部115における第2内壁面114との接続部分(第2位置決め面116の第2内壁面114の側)に、加工することで、外周方向に凹んだ形状の凹みをそれぞれ形成する(ステップS1204)。凹みは、切削加工によって上記接続部分に生じやすい曲面を除去する、いわゆるヌスミである。すなわち、切削加工の結果、第1内壁面111と第1位置決め面113との接続部分が直角ではなく、アールが形成されることがある。当該部分にアールが形成されると、固定スクロール31を第1突出部112に配置しても、第1位置決め面113に接触せずに浮いてしまい、位置決めの精度が低くなる。これに対して、凹み1131を形成することで、固定スクロール31が第1位置決め面113に確実に接触するため、位置決め精度を高めることができる。これは、第2内壁面114と第2位置決め面116との接続部分についても同様で、メインフレーム2の位置決め精度を高めることができる。 Subsequently, the connection portion of the first protrusion 112 with the first inner wall surface 111 (the side of the first inner wall surface 111 of the first positioning surface 113) and the connection portion of the second protrusion 115 with the second inner wall surface 114. By processing (on the side of the second inner wall surface 114 of the second positioning surface 116), dents having a concave shape in the outer peripheral direction are formed (step S1204). The dent is a so-called "nusumi" that removes a curved surface that is likely to occur in the connection portion by cutting. That is, as a result of cutting, the connecting portion between the first inner wall surface 111 and the first positioning surface 113 may not be at a right angle and may be rounded. When the radius is formed in the portion, even if the fixed scroll 31 is arranged on the first protruding portion 112, it floats without contacting the first positioning surface 113, and the positioning accuracy is lowered. On the other hand, by forming the recess 1131, the fixed scroll 31 surely contacts the first positioning surface 113, so that the positioning accuracy can be improved. This also applies to the connection portion between the second inner wall surface 114 and the second positioning surface 116, and the positioning accuracy of the main frame 2 can be improved.
 次に、図13(a)に示すように、給電部8を冷却しながら、メインシェル11の領域Eを加熱する。加熱後、図13(b)に示すように、給電部8を冷却しながら、メインシェル11のU方向上端側からL方向にメインフレーム2を挿入し、焼き嵌めする。メインフレーム2は、第2突出部115の第2位置決め面116に面で接触し、高さ方向の位置決めがされる(ステップS1205)。冷却は、カバー81の内部空間をファンなどで局所的な空冷Dにより行う。焼き嵌めのみの場合は、その後シェル1を冷却する(ステップS1206)。 Next, as shown in FIG. 13A, the region E of the main shell 11 is heated while cooling the feeding unit 8. After heating, as shown in FIG. 13B, the main frame 2 is inserted in the L direction from the upper end side in the U direction of the main shell 11 while cooling the feeding portion 8, and is shrink-fitted. The main frame 2 comes into contact with the second positioning surface 116 of the second protrusion 115 on a surface, and is positioned in the height direction (step S1205). Cooling is performed by local air cooling D with a fan or the like in the internal space of the cover 81. In the case of shrink fitting only, the shell 1 is then cooled (step S1206).
 焼き嵌め後にメインフレーム2をメインシェル11に溶接する場合は、図14に示すように、給電部8を冷却しながら、メインフレーム2の突起216をメインシェル11の領域I(第2内壁面114)にアークスポット溶接等により固定する(ステップS1207)。その後、シェル1を冷却する(ステップS1208)。 When the main frame 2 is welded to the main shell 11 after shrink fitting, as shown in FIG. 14, the protrusion 216 of the main frame 2 is formed into the region I (second inner wall surface 114) of the main shell 11 while cooling the feeding portion 8. ) By arc spot welding or the like (step S1207). After that, the shell 1 is cooled (step S1208).
 従来の外壁を有するフレームでは、焼き嵌め、またはアークスポット溶接等の高温部に高さ方向に距離を取っていた。本実施の形態のスクロール圧縮機101の製造方法では、固定スクロール31を固定するための周壁をメインフレーム2に形成していないため、焼き嵌め、またはアークスポット溶接等の高温部が給電部に近い場合であっても、カバー81の内部空間を局所的に冷却することで給電部の温度上昇を抑制することができる。 In the conventional frame with an outer wall, a distance was taken in the height direction to a high temperature part such as shrink fitting or arc spot welding. In the method of manufacturing the scroll compressor 101 of the present embodiment, since the peripheral wall for fixing the fixed scroll 31 is not formed on the main frame 2, the high temperature portion such as shrink fitting or arc spot welding is close to the feeding portion. Even in this case, the temperature rise of the feeding portion can be suppressed by locally cooling the internal space of the cover 81.
 そして、シェル1を冷却(ステップS1207またはステップS1208)した後、メインフレーム2の軸孔221にクランクシャフト6を挿入したのち、偏心軸部62にブッシュ7を取り付け、さらにオルダムリング33および揺動スクロール32等を配置する。次いで、メインシェル11のU方向上端側から、固定スクロール31を挿入する。固定スクロール31は、第1突出部112の第1位置決め面113に面で接触し、高さ方向に位置決めされる。その状態で、固定スクロール31の第1基板311の側面3111を第1内壁面111に焼き嵌めで固定する。最後に、メインシェル11のU方向上端側から、アッパーシェル12を挿入したのち、メインシェル11とアッパーシェル12を溶接またはアークスポット溶接等により固定する。 Then, after cooling the shell 1 (step S1207 or step S1208), the crankshaft 6 is inserted into the shaft hole 221 of the main frame 2, the bush 7 is attached to the eccentric shaft portion 62, and the old dam ring 33 and the swing scroll are further attached. 32 etc. are arranged. Next, the fixed scroll 31 is inserted from the upper end side of the main shell 11 in the U direction. The fixed scroll 31 comes into contact with the first positioning surface 113 of the first protrusion 112 on a surface and is positioned in the height direction. In that state, the side surface 3111 of the first substrate 311 of the fixed scroll 31 is fixed to the first inner wall surface 111 by shrink fitting. Finally, after inserting the upper shell 12 from the upper end side of the main shell 11 in the U direction, the main shell 11 and the upper shell 12 are fixed by welding, arc spot welding, or the like.
 このように、本実施の形態1のスクロール圧縮機101の製造方法により、先行例に示した特許文献1のようにメインフレーム2と固定スクロール31をネジ等で接続する方法と同等に、メインフレーム2、固定スクロール31および揺動スクロール32を組み立てつつ、冷媒取込空間37を拡大することができる。ネジ等を使わないため、部品を削減し、かつ、製造を容易化することができる。また、耐熱性の低い部品(ガラス端子など)を局所冷却することで、部品間の距離制限を緩和することができる。 As described above, according to the method of manufacturing the scroll compressor 101 of the first embodiment, the main frame is equivalent to the method of connecting the main frame 2 and the fixed scroll 31 with screws or the like as in Patent Document 1 shown in the preceding example. 2. The refrigerant intake space 37 can be expanded while assembling the fixed scroll 31 and the swing scroll 32. Since no screws or the like are used, the number of parts can be reduced and manufacturing can be facilitated. Further, by locally cooling a component having low heat resistance (glass terminal or the like), the distance limitation between the components can be relaxed.
 以上のように、実施の形態1に係るスクロール圧縮機101の製造方法によれば、固定スクロール31および揺動スクロール32を有する圧縮機構部3と、揺動スクロール32を摺動可能に保持するメインフレーム2とを備えたスクロール圧縮機101の製造方法であって、管状に成形されたメインシェル11の内壁に沿ってメインフレーム2を挿入し、内壁に円環状に設けられた段差部の第2位置決め面116にメインフレーム2外周の位置決め部(突起216)を接触させることで位置決めをする工程と、メインフレーム2が位置決めされたメインシェル11の、外周に設けられた給電部8を冷却しながらメインシェル11にメインフレーム2を入熱により固定する工程と、を含むようにしたので、焼嵌めまたはアークスポット溶接等で内部部品を固定する工程時に、耐熱性の低い部品(ガラス端子など)を局所冷却することで、部品間の距離制限を緩和することができる。また、高さ方向の寸法を短くすることができるため、スクロール圧縮機を低コスト化することができる。さらに、特許文献1のようにメインフレームと固定スクロールをネジ等で接続する方法と同等に、メインフレーム、固定スクロールおよび揺動スクロールを組み立てつつ、冷媒取込空間を拡大することができる。ネジ等を使わないため、部品を削減し、かつ、製造を容易化することができる。また、耐熱性の低い部品(ガラス端子など)を局所冷却することで、部品間の距離制限を緩和することができる。 As described above, according to the manufacturing method of the scroll compressor 101 according to the first embodiment, the compression mechanism unit 3 having the fixed scroll 31 and the swing scroll 32 and the main that holds the swing scroll 32 slidably. A method for manufacturing a scroll compressor 101 including a frame 2, wherein the main frame 2 is inserted along the inner wall of a tubular main shell 11, and a second step portion provided in an annular shape on the inner wall is provided. The process of positioning by bringing the positioning portion (projection 216) on the outer periphery of the main frame 2 into contact with the positioning surface 116, and cooling the feeding portion 8 provided on the outer periphery of the main shell 11 in which the main frame 2 is positioned. Since the process of fixing the main frame 2 to the main shell 11 by heat input is included, parts with low heat resistance (glass terminals, etc.) are used in the process of fixing internal parts by shrink fitting or arc spot welding. By local cooling, the distance limitation between parts can be relaxed. Further, since the dimension in the height direction can be shortened, the cost of the scroll compressor can be reduced. Further, as in the method of connecting the main frame and the fixed scroll with screws or the like as in Patent Document 1, the refrigerant intake space can be expanded while assembling the main frame, the fixed scroll and the swing scroll. Since no screws or the like are used, the number of parts can be reduced and manufacturing can be facilitated. Further, by locally cooling a component having low heat resistance (glass terminal or the like), the distance limitation between the components can be relaxed.
 また、メインシェル11の第1内壁面111に固定スクロール31の第1基板311の側面3111を焼き嵌めで固定するようにしたので、ボルト等の締結部材を使用せずに、固定スクロールを保持することができ、組立が簡易になり、かつ、部品点数が低減するため、スクロール圧縮機を低コスト化することができる。 Further, since the side surface 3111 of the first substrate 311 of the fixed scroll 31 is fixed to the first inner wall surface 111 of the main shell 11 by shrink fitting, the fixed scroll is held without using a fastening member such as a bolt. This makes assembly easier, and the number of parts is reduced, so that the cost of the scroll compressor can be reduced.
 また、固定スクロール31は、第1内壁面111に固定されているため、揺動スクロール32の径方向の最外部に位置する側面3212とメインシェル11の内壁面とが対向し、メインフレーム2が第2基板321の側面3212とメインシェル11の内壁面との間に介在しない構造となるようにしたので、特許文献2で示したような固定スクロールを固定するための周壁をメインフレームに形成することなく、固定スクロールをシェル内へ配置し、揺動スクロールを配置する冷媒取込空間を拡大することができ、例えば、固定スクロール31の弟1渦巻体312と揺動スクロール32の第2渦巻体322を拡大することで、スクロール圧縮機の体格に対する吐出容量を増やすことができる。 Further, since the fixed scroll 31 is fixed to the first inner wall surface 111, the side surface 3212 located on the outermost side in the radial direction of the rocking scroll 32 and the inner wall surface of the main shell 11 face each other, and the main frame 2 is formed. Since the structure is such that it does not intervene between the side surface 3212 of the second substrate 321 and the inner wall surface of the main shell 11, a peripheral wall for fixing the fixed scroll as shown in Patent Document 2 is formed in the main frame. It is possible to arrange the fixed scroll in the shell and expand the refrigerant intake space in which the oscillating scroll is arranged. For example, the younger brother 1 vortex body 312 of the fixed scroll 31 and the second vortex body of the oscillating scroll 32 can be expanded. By enlarging 322, the discharge capacity for the physique of the scroll compressor can be increased.
 また、揺動スクロール32の拡大とあわせて、スラストプレート24の直径を大きくすることで、摺動面積を大きくしスラスト荷重による面圧を低減することが可能となる。これにより、スクロール圧縮機の信頼性を向上することができる。 Further, by increasing the diameter of the thrust plate 24 together with the expansion of the swing scroll 32, it is possible to increase the sliding area and reduce the surface pressure due to the thrust load. This makes it possible to improve the reliability of the scroll compressor.
 また、スラスト荷重を下げることで、環境負荷が低いが、スラスト軸受にかかる負担が大きくなる高圧冷媒(例えばR32など)を使用することが可能となり、スクロール圧縮機の環境負荷を低減させることができる。 Further, by lowering the thrust load, it is possible to use a high-pressure refrigerant (for example, R32) which has a low environmental load but a large load on the thrust bearing, and can reduce the environmental load of the scroll compressor. ..
 また、メインフレーム2に固定スクロール31を固定するための壁が必要なくなるため、メインフレームの加工時間を短縮化することができるとともに、軽量化をはかることもできるので、スクロール圧縮機を低コスト化することができる。 Further, since the wall for fixing the fixed scroll 31 to the main frame 2 is not required, the processing time of the main frame can be shortened and the weight can be reduced, so that the cost of the scroll compressor can be reduced. can do.
 また、固定スクロール31を、第1基板311の第1渦巻体312を形成する側の面で、メインシェル11の第1位置決め面113に接触させているので、固定スクロール31の第1基板311に高圧がかかった場合であっても、第1位置決め面113に押さえつけられるため、固定スクロールがより強固に保持され、固定スクロールの並進移動を抑制できる。 Further, since the fixed scroll 31 is in contact with the first positioning surface 113 of the main shell 11 on the surface of the first substrate 311 on the side forming the first spiral body 312, the fixed scroll 31 is brought into contact with the first substrate 311 of the fixed scroll 31. Even when a high voltage is applied, since it is pressed against the first positioning surface 113, the fixed scroll is held more firmly, and the translational movement of the fixed scroll can be suppressed.
 また、メインシェル11の第1位置決め面113と第2位置決め面116の向きを同一としているため、メインフレーム2が揺動スクロール32からスラスト荷重をうけても、第2位置決め面116に押さえつけられるため、メインフレームがより強固に保持され、メインフレームの並進移動を抑制できる。これにより、スクロール圧縮機の信頼性を向上することができる。 Further, since the directions of the first positioning surface 113 and the second positioning surface 116 of the main shell 11 are the same, even if the main frame 2 receives a thrust load from the swing scroll 32, it is pressed against the second positioning surface 116. , The mainframe is held more firmly, and the translational movement of the mainframe can be suppressed. This makes it possible to improve the reliability of the scroll compressor.
 また、メインシェル11の第1位置決め面113と第2位置決め面116の加工を一方向から連続して行うことができる。これにより、両面の平行度を向上させることができるので、メインフレームと固定スクロールの組立精度、位置精度が向上し、スクロール圧縮機の性能を向上することができる。 Further, the processing of the first positioning surface 113 and the second positioning surface 116 of the main shell 11 can be continuously performed from one direction. As a result, the parallelism on both sides can be improved, so that the assembly accuracy and the position accuracy of the mainframe and the fixed scroll can be improved, and the performance of the scroll compressor can be improved.
 また、一方向からの加工のため、加工が容易になり、加工時間が短縮するため、スクロール圧縮機を低コスト化することができる。さらに、メインフレーム2をU方向上端側からメインシェル11に挿入固定後、メインシェル11をそのままの体勢で順次、揺動スクロール32および固定スクロール31を挿入固定することができる、すなわち、一方向組立が可能となるため、組立が容易となり、スクロール圧縮機を低コスト化することができる。 In addition, since the processing is performed from one direction, the processing becomes easy and the processing time is shortened, so that the cost of the scroll compressor can be reduced. Further, after the main frame 2 is inserted and fixed to the main shell 11 from the upper end side in the U direction, the swing scroll 32 and the fixed scroll 31 can be sequentially inserted and fixed in the same posture as the main shell 11, that is, one-way assembly. Therefore, it is easy to assemble and the cost of the scroll compressor can be reduced.
 また、本実施の形態1のスクロール圧縮機を、凝縮器、膨張弁、および蒸発器を備え、冷媒を循環させる冷凍サイクル装置に使用することで、大容量、高効率、低コストの冷凍サイクル装置を得ることができる。 Further, by using the scroll compressor of the first embodiment as a refrigerating cycle apparatus including a condenser, an expansion valve, and an evaporator and circulating a refrigerant, a large-capacity, high-efficiency, low-cost refrigerating cycle apparatus can be used. Can be obtained.
 実施の形態2.
 実施の形態1では、給電部8を局所的な空冷により冷却したが、実施の形態2では、冷却に冷やし金を用いた場合について説明する。
Embodiment 2.
In the first embodiment, the power feeding unit 8 is cooled by local air cooling, but in the second embodiment, a case where a chiller is used for cooling will be described.
 図15(a)は、実施の形態2に係るスクロール圧縮機の製造方法での冷却方法を示す断面図であり、図15(b)は冷却に用いる冷やし金の斜視図である。図15(a)に示すように、給電部8は、冷やし金84(図15(b)を参照)を端子カバー81に接触させることで、焼き嵌め、またはアークスポット溶接等で内部部品を固定する工程時に、端子への入熱が抑制される。これにより、端子の破損を抑制することができるため、スクロール圧縮機の品質を向上させることができる。冷やし金84は、金属からなり、中空もしくは有底開口状を呈し、一端に端子カバーとの接触面841、もう一方の他端に図示しないヒートシンクなどの吸熱部との接触面842を有している。実施の形態2によるスクロール圧縮機のその他の構成および製造方法については、実施の形態1のスクロール圧縮機101および製造方法と同様であり、対応する部分には同符号を付してその説明を省略する。 FIG. 15 (a) is a sectional view showing a cooling method in the method for manufacturing a scroll compressor according to the second embodiment, and FIG. 15 (b) is a perspective view of a chiller used for cooling. As shown in FIG. 15 (a), the power feeding unit 8 fixes the internal parts by shrink fitting, arc spot welding, or the like by bringing the chiller 84 (see FIG. 15 (b)) into contact with the terminal cover 81. During the process of welding, heat input to the terminals is suppressed. As a result, damage to the terminals can be suppressed, so that the quality of the scroll compressor can be improved. The chiller 84 is made of metal and has a hollow or bottomed opening shape, and has a contact surface 841 with a terminal cover at one end and a contact surface 842 with a heat absorbing portion such as a heat sink (not shown) at the other end. There is. Other configurations and manufacturing methods of the scroll compressor according to the second embodiment are the same as those of the scroll compressor 101 and the manufacturing method of the first embodiment, and the corresponding parts are designated by the same reference numerals and the description thereof is omitted. do.
 以上のように、実施の形態2に係るスクロール圧縮機の製造方法によれば、冷やし金を端子カバーに接触させて、給電部8を冷却するようにしたので、端子の破損を抑制することができ、スクロール圧縮機の品質を向上させることができる。 As described above, according to the method for manufacturing the scroll compressor according to the second embodiment, the cooling metal is brought into contact with the terminal cover to cool the power feeding unit 8, so that damage to the terminals can be suppressed. It can improve the quality of the scroll compressor.
 なお、本実施の形態2では、冷やし金を端子カバーに接触させて冷却するようにしたが、これに限るものではなく、例えば、給電端子82に接触させてもよい。 In the second embodiment, the chiller is brought into contact with the terminal cover for cooling, but the present invention is not limited to this, and for example, the feeding terminal 82 may be brought into contact with the chiller.
 実施の形態3.
 実施の形態2は、冷やし金84を給電部8の端子カバー81に接触させて冷却したが、実施の形態3では、端子カバー81に切り欠きを設けてメインシェル11に接触させる場合について説明する。
Embodiment 3.
In the second embodiment, the chiller 84 is brought into contact with the terminal cover 81 of the feeding unit 8 for cooling, but in the third embodiment, a case where the terminal cover 81 is provided with a notch and is brought into contact with the main shell 11 will be described. ..
 図16(a)は、実施の形態3に係るスクロール圧縮機の製造方法での冷却方法を示す断面図であり、図16(b)は端子カバー81の正面図である。また、図16(c)は、冷却に用いる冷やし金の斜視図である。図16(a)に示すように、給電部8は、端子カバー81に切り欠き811(図16(b)を参照)を設け、冷やし金84の接触面841(図16(c)を参照)を切り欠き811部分を通して、メインシェル11の外周面に接触させる。なお、切り欠き811の形状および冷やし金84の形状は、これに限るものではない。 FIG. 16A is a sectional view showing a cooling method in the method for manufacturing a scroll compressor according to the third embodiment, and FIG. 16B is a front view of the terminal cover 81. Further, FIG. 16 (c) is a perspective view of a chiller used for cooling. As shown in FIG. 16A, the feeding unit 8 is provided with a notch 811 (see FIG. 16B) in the terminal cover 81, and the contact surface 841 of the chiller 84 (see FIG. 16C). Is brought into contact with the outer peripheral surface of the main shell 11 through the notch 811 portion. The shape of the notch 811 and the shape of the chiller 84 are not limited to this.
 本実施の形態3では、端子カバー81に切り欠き811を設け、冷やし金84をメインシェル11に接触させることで、端子カバー81とメインシェル11との間の熱抵抗を低減させることができるため、効率的に冷却できる。これにより、スクロール圧縮機の品質、および性能を向上させることができる。実施の形態3によるスクロール圧縮機のその他の構成および製造方法については、実施の形態1のスクロール圧縮機101および製造方法と同様であり、対応する部分には同符号を付してその説明を省略する。 In the third embodiment, the terminal cover 81 is provided with a notch 811 and the cooling metal 84 is brought into contact with the main shell 11, so that the thermal resistance between the terminal cover 81 and the main shell 11 can be reduced. , Can be cooled efficiently. This can improve the quality and performance of the scroll compressor. Other configurations and manufacturing methods of the scroll compressor according to the third embodiment are the same as those of the scroll compressor 101 and the manufacturing method according to the first embodiment, and the corresponding parts are designated by the same reference numerals and the description thereof is omitted. do.
 以上のように、実施の形態3に係るスクロール圧縮機の製造方法によれば、冷やし金84を端子カバー81に設けた切り欠き811を介してメインシェル11に接触させて、給電部8を冷却するようにしたので、端子カバーとメインシェルとの間の熱抵抗を低減させることができるため、効率的に冷却することで、端子の破損を抑制することができ、スクロール圧縮機の品質、および性能を向上させることができる。 As described above, according to the method for manufacturing a scroll compressor according to the third embodiment, the cooling metal 84 is brought into contact with the main shell 11 via the notch 811 provided in the terminal cover 81 to cool the feeding unit 8. Because of this, the thermal resistance between the terminal cover and the main shell can be reduced, so efficient cooling can prevent terminal damage, the quality of the scroll compressor, and Performance can be improved.
 実施の形態4.
 実施の形態2および実施の形態3では、冷やし金84を端子カバー81もしくはメインシェルに、直接、接触させて冷却したが、実施の形態4では、冷やし金84を端子カバー81もしくはメインシェル11に、熱伝導シートを介して、接触させる場合について説明する。
Embodiment 4.
In the second embodiment and the third embodiment, the chiller 84 is directly brought into contact with the terminal cover 81 or the main shell for cooling, but in the fourth embodiment, the chiller 84 is attached to the terminal cover 81 or the main shell 11. , The case of contacting via a heat conductive sheet will be described.
 図17は、実施の形態4に係るスクロール圧縮機の製造方法での冷却方法を示す断面図であり、図17(a)は冷やし金84の接触面841を端子カバー81に接触させる場合の図を示し、図17(b)は冷やし金84の接触面841を、端子カバー81に設けられた切り欠き811部分を通して、メインシェル11に接触させる場合の図を示す。図17(a)および図17(b)に示すように、給電部8は冷やし金84を、それぞれ端子カバー81、メインシェル11に、冷やし金84の接触面841に取り付けられた熱伝導シート85を介して、接触させる。 FIG. 17 is a cross-sectional view showing a cooling method in the method for manufacturing a scroll compressor according to the fourth embodiment, and FIG. 17A is a diagram showing a case where the contact surface 841 of the chiller 84 is brought into contact with the terminal cover 81. 17 (b) shows a diagram in which the contact surface 841 of the chiller 84 is brought into contact with the main shell 11 through the notch 811 portion provided in the terminal cover 81. As shown in FIGS. 17A and 17B, the power feeding unit 8 attaches the chiller 84 to the terminal cover 81 and the main shell 11, respectively, and the heat conductive sheet 85 attached to the contact surface 841 of the chiller 84, respectively. To make contact through.
 本実施の形態4では、冷やし金84に熱伝導シート85を取り付けることで、接触部間の熱抵抗を小さくし、接触性を向上させることができるため、効率的に冷却できる。これにより、スクロール圧縮機の品質、および性能を向上させることができる。熱伝導シート85は接触部の温度に耐えうる非金属材料、もしくは複合材料からなる。実施の形態4によるスクロール圧縮機のその他の構成および製造方法については、実施の形態1のスクロール圧縮機101および製造方法と同様であり、対応する部分には同符号を付してその説明を省略する。 In the fourth embodiment, by attaching the heat conductive sheet 85 to the chiller 84, the thermal resistance between the contact portions can be reduced and the contact property can be improved, so that the cooling can be performed efficiently. This can improve the quality and performance of the scroll compressor. The heat conductive sheet 85 is made of a non-metal material or a composite material that can withstand the temperature of the contact portion. Other configurations and manufacturing methods of the scroll compressor according to the fourth embodiment are the same as those of the scroll compressor 101 and the manufacturing method of the first embodiment, and the corresponding parts are designated by the same reference numerals and the description thereof is omitted. do.
 以上のように、実施の形態4に係るスクロール圧縮機の製造方法によれば、冷やし金84を接触面841に取り付けられた熱伝導シート85を介して端子カバー81もしくはメインシェル11に接触させて、給電部8を冷却するようにしたので、接触部間の熱抵抗を小さくし、接触性を向上させることができるため、効率的に冷却することで、端子の破損を抑制することができ、スクロール圧縮機の品質、および性能を向上させることができる。 As described above, according to the method for manufacturing the scroll compressor according to the fourth embodiment, the chiller 84 is brought into contact with the terminal cover 81 or the main shell 11 via the heat conductive sheet 85 attached to the contact surface 841. Since the feeding portion 8 is cooled, the thermal resistance between the contact portions can be reduced and the contactability can be improved. Therefore, efficient cooling can suppress damage to the terminals. The quality and performance of the scroll compressor can be improved.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations. Therefore, innumerable variations not exemplified are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
 2 メインフレーム、3 圧縮機構部、8 給電部、11 メインシェル、31 固定スクロール、32 揺動スクロール、101 スクロール圧縮機、116 第2位置決め面、216 突起。 2 main frame, 3 compression mechanism part, 8 power supply part, 11 main shell, 31 fixed scroll, 32 swing scroll, 101 scroll compressor, 116 second positioning surface, 216 protrusions.

Claims (17)

  1.  固定スクロールおよび揺動スクロールを有する圧縮機構部と、前記揺動スクロールを摺動可能に保持するフレームとを備えたスクロール圧縮機の製造方法であって、
     管状に成形されたメインシェルの内壁に沿って前記フレームを挿入し、前記内壁に円環状に設けられた段差部の位置決め面に前記フレーム外周の位置決め部を接触させることで位置決めをする工程と、
     前記メインシェルの外周に設けられた給電部を冷却しながら前記メインシェルに前記フレームを入熱により固定する工程と、
    を含むことを特徴とするスクロール圧縮機の製造方法。
    A method for manufacturing a scroll compressor including a compression mechanism portion having a fixed scroll and a swing scroll, and a frame that slidably holds the swing scroll.
    A step of inserting the frame along the inner wall of the main shell formed into a tubular shape, and positioning by contacting the positioning portion on the outer circumference of the frame with the positioning surface of the step portion provided in an annular shape on the inner wall.
    A step of fixing the frame to the main shell by heat input while cooling the feeding portion provided on the outer periphery of the main shell.
    A method of manufacturing a scroll compressor, which comprises.
  2.  前記給電部は、前記メインシェルに形成された前記フレームの位置決め面と前記揺動スクロールを駆動させる駆動機構部との前記円環軸方向の間に設けられ、前記メインシェルの側壁に形成された吸入管と、前記メインシェルの外周方向で異なる位相に設けられることを特徴とする請求項1に記載のスクロール圧縮機の製造方法。 The feeding portion is provided between the positioning surface of the frame formed on the main shell and the driving mechanism portion for driving the swing scroll in the annular axial direction, and is formed on the side wall of the main shell. The method for manufacturing a scroll compressor according to claim 1, wherein the suction pipe and the main shell are provided in different phases in the outer peripheral direction.
  3.  前記フレームは、焼き嵌めにより前記メインシェルに固定されることを特徴とする請求項2に記載のスクロール圧縮機の製造方法。 The method for manufacturing a scroll compressor according to claim 2, wherein the frame is fixed to the main shell by shrink fitting.
  4.  前記フレームは、溶接により前記メインシェルに固定されることを特徴とする請求項2に記載のスクロール圧縮機の製造方法。 The method for manufacturing a scroll compressor according to claim 2, wherein the frame is fixed to the main shell by welding.
  5.  前記給電部は、空冷により冷却されることを特徴とする請求項1から請求項4のいずれか1項に記載のスクロール圧縮機の製造方法。 The method for manufacturing a scroll compressor according to any one of claims 1 to 4, wherein the feeding unit is cooled by air cooling.
  6.  前記給電部は、冷やし金を端子カバーに接触させて冷却されることを特徴とする請求項1から請求項4のいずれか1項に記載のスクロール圧縮機の製造方法。 The method for manufacturing a scroll compressor according to any one of claims 1 to 4, wherein the feeding unit is cooled by bringing a chiller into contact with a terminal cover.
  7.  前記給電部は、冷やし金を、端子カバーに設けた切り欠きを介して、前記メインシェルの外周面に接触させて冷却されることを特徴とする請求項1から請求項4のいずれか1項に記載のスクロール圧縮機の製造方法。 Any one of claims 1 to 4, wherein the feeding unit is cooled by bringing a chiller into contact with an outer peripheral surface of the main shell through a notch provided in the terminal cover. The manufacturing method of the scroll compressor described in.
  8.  前記給電部は、冷やし金を給電端子に接触させて冷却されることを特徴とする請求項1から請求項4のいずれか1項に記載のスクロール圧縮機の製造方法。 The method for manufacturing a scroll compressor according to any one of claims 1 to 4, wherein the feeding unit is cooled by bringing a cooling metal into contact with a feeding terminal.
  9.  前記給電部は、熱伝導シートを介して、前記冷やし金を接触させることを特徴とする請求項6から請求項8のいずれか1項に記載のスクロール圧縮機の製造方法。 The method for manufacturing a scroll compressor according to any one of claims 6 to 8, wherein the feeding unit is brought into contact with the chiller via a heat conductive sheet.
  10.  前記固定スクロールは、前記メインシェルの内壁に挿入され、前記内壁に円環状に設けられた段差部の前記固定スクロールの位置決め面に前記固定スクロールの外周部を接触させることで位置決めされることを特徴とする請求項1から請求項9のいずれか1項に記載のスクロール圧縮機の製造方法。 The fixed scroll is inserted into the inner wall of the main shell, and is positioned by bringing the outer peripheral portion of the fixed scroll into contact with the positioning surface of the fixed scroll at a step portion provided in an annular shape on the inner wall. The method for manufacturing a scroll compressor according to any one of claims 1 to 9.
  11.  前記フレームの位置決め面は、前記固定スクロールの位置決め面よりも前記円環軸方向で前記給電部側に設けられることを特徴とする請求項10に記載のスクロール圧縮機の製造方法。 The method for manufacturing a scroll compressor according to claim 10, wherein the positioning surface of the frame is provided on the feeding portion side in the annular axis direction with respect to the positioning surface of the fixed scroll.
  12.  前記フレームを位置決めした後、前記揺動スクロールを挟んで前記内壁に前記固定スクロールを挿入し、前記固定スクロールを位置決めする工程を含むことを特徴とする請求項1から請求項11のいずれか1項に記載のスクロール圧縮機の製造方法。 One of claims 1 to 11, wherein the fixed scroll is inserted into the inner wall of the inner wall after positioning the frame, and the fixed scroll is positioned. The manufacturing method of the scroll compressor described in.
  13.  固定スクロールおよび揺動スクロールを有する圧縮機構部と、前記揺動スクロールを摺動可能に保持するフレームとを備えたスクロール圧縮機であって、
     前記フレームは、管状に成形されたメインシェルの内壁に挿入され、前記内壁に円環状に設けられた段差部の前記フレームの位置決め面に前記フレーム外周の位置決め部を接触させることで位置決めされ、
     前記メインシェルの外周に設けられた給電部は、前記メインシェルに形成された前記位置決め面と前記揺動スクロールを駆動させる駆動機構部との前記円環軸方向の間に設けられ、前記メインシェルの側壁に形成された吸入管と、前記メインシェルの外周方向で異なる位相に設けられたことを特徴とするスクロール圧縮機。
    A scroll compressor including a compression mechanism having a fixed scroll and a swing scroll, and a frame that slidably holds the swing scroll.
    The frame is inserted into the inner wall of the main shell formed into a tubular shape, and is positioned by bringing the positioning portion on the outer periphery of the frame into contact with the positioning surface of the frame at a step portion provided in an annular shape on the inner wall.
    The feeding portion provided on the outer periphery of the main shell is provided between the positioning surface formed on the main shell and the driving mechanism portion for driving the swing scroll in the annular axial direction. A scroll compressor characterized in that the suction pipe formed on the side wall of the main shell and the scroll compressor are provided in different phases in the outer peripheral direction of the main shell.
  14.  前記固定スクロールは、前記メインシェルの内壁に挿入され、前記内壁に円環状に設けられた段差部の前記固定スクロールの位置決め面に前記固定スクロールの外周部を接触させることで位置決めされたことを特徴とする請求項13に記載のスクロール圧縮機。 The fixed scroll is inserted into the inner wall of the main shell, and is positioned by bringing the outer peripheral portion of the fixed scroll into contact with the positioning surface of the fixed scroll at a step portion provided in an annular shape on the inner wall. The scroll compressor according to claim 13.
  15.  前記フレームの位置決め面は、前記固定スクロールの位置決め面よりも前記円環軸方向で前記給電部側に設けられたことを特徴とする請求項14に記載のスクロール圧縮機。 The scroll compressor according to claim 14, wherein the positioning surface of the frame is provided on the feeding portion side in the annular axis direction with respect to the positioning surface of the fixed scroll.
  16.  前記給電部は、端子カバーの前記メインシェル側に切り欠きが設けられたことを特徴とする請求項13から請求項15のいずれか1項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 13 to 15, wherein the power feeding unit is provided with a notch on the main shell side of the terminal cover.
  17.  前記端子カバーの材質は、金属であることを特徴とする請求項16に記載のスクロール圧縮機。 The scroll compressor according to claim 16, wherein the material of the terminal cover is metal.
PCT/JP2021/045156 2020-12-28 2021-12-08 Method for manufacturing scroll compressor and scroll compressor WO2022145185A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022572960A JP7459306B2 (en) 2020-12-28 2021-12-08 Scroll compressor manufacturing method and scroll compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020218418 2020-12-28
JP2020-218418 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022145185A1 true WO2022145185A1 (en) 2022-07-07

Family

ID=82260410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045156 WO2022145185A1 (en) 2020-12-28 2021-12-08 Method for manufacturing scroll compressor and scroll compressor

Country Status (2)

Country Link
JP (1) JP7459306B2 (en)
WO (1) WO2022145185A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219800A (en) * 2011-04-14 2012-11-12 Daikin Industries Ltd Compressor
JP2019157723A (en) * 2018-03-12 2019-09-19 三菱電機株式会社 Scroll compressor, refrigeration device, and air conditioning device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219800A (en) * 2011-04-14 2012-11-12 Daikin Industries Ltd Compressor
JP2019157723A (en) * 2018-03-12 2019-09-19 三菱電機株式会社 Scroll compressor, refrigeration device, and air conditioning device

Also Published As

Publication number Publication date
JP7459306B2 (en) 2024-04-01
JPWO2022145185A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
JP6678762B2 (en) Scroll compressor, refrigeration cycle device and shell
JP5117503B2 (en) Multi-cylinder rotary compressor and refrigeration cycle apparatus
JP6765508B2 (en) Scroll compressor and manufacturing method of scroll compressor
JP6896092B2 (en) Scroll compressor
JP6594523B2 (en) Scroll compressor and refrigeration cycle apparatus
JP2021076085A (en) Scroll compressor
WO2022145185A1 (en) Method for manufacturing scroll compressor and scroll compressor
JP7118177B2 (en) scroll compressor
JP7433697B2 (en) Scroll compressor and refrigeration cycle equipment using the scroll compressor
JP6057535B2 (en) Refrigerant compressor
JP7350101B2 (en) scroll compressor
JP7361585B2 (en) Scroll compressor and method for manufacturing scroll compressor
WO2022050142A1 (en) Scroll compressor
JP7055245B2 (en) Scroll compressor and method for manufacturing the scroll compressor
WO2019207760A1 (en) Scroll compressor
WO2023100304A1 (en) Scroll compressor
JP7191246B2 (en) Scroll compressor and refrigeration cycle equipment
WO2023063243A1 (en) Scroll compressor and method for manufacturing same
WO2018150525A1 (en) Scroll compressor
WO2023181173A1 (en) Scroll compressor
JP2014227919A (en) Compressor
WO2021014641A1 (en) Scroll compressor
WO2019207784A1 (en) Scroll compressor and refrigeration cycle device
WO2021009839A1 (en) Scroll compressor
WO2020234988A1 (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572960

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915046

Country of ref document: EP

Kind code of ref document: A1