WO2022145169A1 - Optical film, production method therefor, and polarizing plate - Google Patents

Optical film, production method therefor, and polarizing plate Download PDF

Info

Publication number
WO2022145169A1
WO2022145169A1 PCT/JP2021/044208 JP2021044208W WO2022145169A1 WO 2022145169 A1 WO2022145169 A1 WO 2022145169A1 JP 2021044208 W JP2021044208 W JP 2021044208W WO 2022145169 A1 WO2022145169 A1 WO 2022145169A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical film
polymer
birefringence
crystalline
Prior art date
Application number
PCT/JP2021/044208
Other languages
French (fr)
Japanese (ja)
Inventor
恭輔 井上
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020237019618A priority Critical patent/KR20230121743A/en
Priority to CN202180085915.5A priority patent/CN116685610A/en
Priority to JP2022572946A priority patent/JPWO2022145169A1/ja
Publication of WO2022145169A1 publication Critical patent/WO2022145169A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an optical film, a method for producing the same, and a polarizing plate.
  • Patent Documents 1 to 3 Conventionally, a film manufacturing technique using a resin has been proposed (Patent Documents 1 to 3).
  • a resin may be used to manufacture an optical film having anisotropy in the refractive index.
  • Such an optical film having anisotropy in the refractive index may have birefringence.
  • the optical film having birefringence can be provided in the display device as a film such as a reflection suppression film and a viewing angle compensation film.
  • the optical film When the optical film is provided in the display device, it is required to appropriately adjust the balance between the birefringence in the thickness direction and the birefringence in the in-plane direction perpendicular to the thickness direction.
  • the balance between the birefringence in the thickness direction and the birefringence in the in-plane direction can be expressed by the NZ coefficient of the optical film. For example, if an optical film having an NZ coefficient of more than 0.0 and less than 1.0 is obtained, the optical film makes it possible to improve the display quality when the display surface is viewed from an inclined direction.
  • the optical film is required to have reverse wavelength dispersibility.
  • An optical film having a reverse wavelength dispersibility can usually exhibit its optical function in a wide wavelength range.
  • a wave plate as an optical film having anti-wavelength dispersibility can be used as a wide-band wave plate capable of functioning in a wide wavelength range.
  • an optical film having an NZ coefficient of more than 0.0 and less than 1.0 Conventionally, a method for manufacturing an optical film having an NZ coefficient of more than 0.0 and less than 1.0 is known. Further, an optical film having a reverse wavelength dispersibility is conventionally known. However, it has not been conventionally achieved to realize an optical film having an NZ coefficient of more than 0.0 and less than 1.0 and having anti-wavelength dispersibility by a film having negative birefringence characteristics.
  • the present invention was devised in view of the above problems, and is an optic having a negative birefringence characteristic, a reverse wavelength dispersibility, and an NZ coefficient larger than 0.0 and less than 1.0. It is an object of the present invention to provide a film and a method for producing the same; and a polarizing plate provided with the above-mentioned optical film;
  • the present inventor has diligently studied to solve the above-mentioned problems. As a result, the present inventor has used a method including a step of bringing a resin film containing a crystalline polymer into contact with a solvent to change birefringence in the thickness direction and a step of stretching the resin film in this order. For example, they have found that the above-mentioned problems can be solved, and have completed the present invention. That is, the present invention includes the following.
  • An optical film containing a crystalline polymer The optical film has a negative birefringence characteristic and The in-plane retardations Re (450), Re (550) and Re (650) of the optical film at the measurement wavelengths of 450 nm, 550 nm and 650 nm satisfy the formula (1).
  • the optical film according to [1] wherein the optical film has a single-layer structure.
  • the crystalline polymer having a negative intrinsic birefringence is a polystyrene-based polymer.
  • a polarizing plate comprising the optical film according to any one of [1] to [8] and a polarizing film.
  • a step of preparing a resin film made of a resin containing a crystalline polymer having a negative intrinsic birefringence and a thermoplastic polymer having a positive intrinsic birefringence comprising the steps of stretching the resin film in this order.
  • a polarizing plate provided with an optical film; can be provided.
  • the birefringence in the in-plane direction of the film is a value represented by (nx-ny), and is therefore represented by Re / d, unless otherwise specified.
  • the birefringence in the thickness direction of the film is a value represented by [ ⁇ (nx + ny) / 2 ⁇ -nz], and is therefore represented by Rth / d, unless otherwise specified.
  • the NZ coefficient of the film is a value represented by (nx-nz) / (nx-ny) unless otherwise specified.
  • nx represents the refractive index in the direction perpendicular to the thickness direction of the film (in-plane direction) and in the direction giving the maximum refractive index.
  • ny represents the refractive index in the in-plane direction of the film and perpendicular to the direction of nx.
  • nz represents the refractive index in the thickness direction of the film.
  • d represents the thickness of the film.
  • the measurement wavelength is 550 nm unless otherwise specified.
  • the material having positive intrinsic birefringence means a material in which the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular to it, unless otherwise specified. Therefore, a polymer having positive intrinsic birefringence means a polymer in which the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular to the refractive index, unless otherwise specified.
  • the material having negative birefringence means a material in which the refractive index in the stretching direction is smaller than the refractive index in the direction perpendicular to the refractive index, unless otherwise specified. Therefore, a polymer having negative intrinsic birefringence means a polymer in which the refractive index in the stretching direction is smaller than the refractive index in the direction perpendicular to the refractive index, unless otherwise specified.
  • the "long" shape means a shape having a length of 5 times or more, preferably 10 times or more, and specifically a roll. It refers to the shape of a film that has a length that allows it to be rolled up and stored or transported. There is no particular limitation on the upper limit of the length, but it is usually 100,000 times or less with respect to the width.
  • the directions of the elements are "parallel”, “vertical” and “orthogonal”, and include errors within a range that does not impair the effect of the present invention, for example, within a range of ⁇ 5 °, unless otherwise specified. You may go out.
  • the angle formed by the optical axis (absorption axis, transmission axis, slow phase axis, etc.) of each film in the member including a plurality of films represents the angle when the film is viewed from the thickness direction.
  • the "polarizing plate”, “circular polarizing plate”, “wave plate” and “negative C plate” are not only rigid members but also flexible members such as resin films. Also includes. It was
  • optical film contains a crystalline polymer. This optical film meets the following requirements (A) to (C) in combination.
  • Requirement (A) The optical film has negative birefringence characteristics.
  • optical film has been difficult to manufacture in the past, but it can be easily manufactured when a specific manufacturing method described later is used.
  • the optical film according to this embodiment has a negative birefringence characteristic.
  • the film has negative birefringence characteristics means that when the film is stretched in one stretching direction, the amount of increase in the refractive index in the direction perpendicular to the stretching direction is larger than the amount of increase in the refractive index in the stretching direction. , Say big. Further, the film "has a positive birefringence characteristic” means that when the film is stretched in one stretching direction, the amount of increase in the refractive index in the stretching direction is the amount of increase in the refractive index in the direction perpendicular to the stretching direction. It means that it is bigger than.
  • the stretching direction is usually perpendicular to the thickness direction, and thus may be in-plane.
  • the birefringence characteristics of the optical film can be examined by stretching the optical film.
  • the birefringence characteristics of an optical film usually depend on the composition of the optical film. Therefore, when a resin film having the same composition as an optical film is stretched to produce an optical film as in the manufacturing method described later, the birefringence characteristics of the optical film are usually examined by stretching the resin film as well. be able to. Specifically, when the resin film is stretched in one stretching direction, if the amount of increase in the refractive index in the direction perpendicular to the stretching direction is larger than the amount of increase in the refractive index in the stretching direction, it is obtained from the resin film.
  • the birefringence characteristic of the optical film to be obtained can be negative.
  • the optical film of the present embodiment having a negative birefringence characteristic and an NZ coefficient satisfying the formula (2) is an optical film that has never existed before. Its industrial value is high.
  • the in-plane retardation Re (450) at a measurement wavelength of 450 nm, the in-plane retardation Re (550) at a measurement wavelength of 550 nm, and the in-plane retardation Re (650) at a measurement wavelength of 650 nm according to the present embodiment are Equation (1) is satisfied.
  • An optical film having an in-plane retardation satisfying the formula (1) usually has a reverse wavelength dispersibility. Therefore, the in-plane retardation of this optical film can be larger as the measurement wavelength is longer. Therefore, the optical film can exhibit its optical function in a wide wavelength range. For example, when the optical film can function as a 1/4 wave plate at one wavelength, the optical film can also function as a 1/4 wave plate in a wide wavelength range other than the one wavelength. Further, for example, when the optical film can function as a 1/2 wave plate at one wavelength, the optical film can also function as a 1/2 wave plate in a wide wavelength range other than the one wavelength.
  • NZ coefficient of optical film The NZ coefficient Nz of the optical film according to the present embodiment satisfies the formula (2).
  • the three-dimensional birefringence nx, ny and nz of the optical film having the NZ coefficient Nz satisfying this equation (2) can satisfy nx>nz> ny. 0 ⁇ Nz ⁇ 1 (2)
  • the NZ coefficient Nz of the optical film is usually greater than 0.0, preferably greater than 0.1, more preferably greater than 0.2, and usually less than 1.0, preferably less than 0.9. , More preferably less than 0.8.
  • An optical film having an NZ coefficient satisfying the formula (2) is not only in the polarized state of light passing through the optical film in the thickness direction, but also in the polarized state of light passing in an inclined direction that is neither parallel nor perpendicular to the thickness direction. Can be changed appropriately. Therefore, the optical film can exert its optical function not only for light in the thickness direction but also for light in the tilt direction. For example, when the optical film can give a phase difference of 1/4 wavelength to the light passing in the thickness direction, the optical film also gives a phase difference of 1/4 wavelength to the light passing in the tilt direction. sell. Further, for example, when the optical film can give a phase difference of 1/2 wavelength to the light passing in the thickness direction, the optical film has a phase difference of 1/2 wavelength to the light passing in the tilt direction. Can be given.
  • the optical film according to an embodiment of the present invention contains a crystalline polymer.
  • the crystalline polymer represents a polymer having crystallinity.
  • the crystalline polymer represents a polymer having a melting point Tm. That is, the crystalline polymer represents a polymer whose melting point Tm can be observed with a differential scanning calorimeter (DSC).
  • a resin containing a crystalline polymer may be referred to as a "crystalline resin”.
  • This crystalline resin is preferably a thermoplastic resin.
  • the optical film preferably contains a crystalline resin, and more preferably consists only of the crystalline resin.
  • the crystalline polymer preferably has a negative intrinsic birefringence.
  • a crystalline polymer having negative intrinsic birefringence When a crystalline polymer having negative intrinsic birefringence is stretched, it can exhibit a large refractive index in the direction perpendicular to the stretching direction. Therefore, when a crystalline polymer having a negative intrinsic birefringence is used, an optical film having a negative birefringence characteristic can be easily obtained. Further, when the crystalline polymer having negative intrinsic birefringence is used as described above, the in-plane retardation satisfying the formula (1) and the NZ coefficient satisfying the formula (2) can be easily achieved. ..
  • crystalline polystyrene-based polymer As the crystalline polymer having negative intrinsic birefringence, a polymer containing an aromatic ring is preferable, and examples thereof include polystyrene-based polymers.
  • the polystyrene-based polymer having crystallinity may be referred to as "crystalline polystyrene-based polymer”.
  • the crystalline polystyrene-based polymer can be a polymer of a styrene-based monomer. Therefore, the crystalline polystyrene-based polymer can be a polymer containing a structural unit having a structure formed by polymerizing a styrene-based monomer (hereinafter, appropriately referred to as “styrene-based unit”).
  • the styrene-based monomer may be an aromatic vinyl compound such as styrene or a styrene derivative.
  • the styrene derivative include compounds in which the benzene ring of styrene or the ⁇ -position or ⁇ -position is substituted with a substituent.
  • styrene-based monomer examples include styrene, alkylstyrene, halogenated styrene, halogenated alkylstyrene, alkoxystyrene, vinyl benzoic acid ester, and hydrogenated polymers thereof.
  • alkyl styrene examples include methyl styrene, ethyl styrene, isopropyl styrene, t-butyl styrene, 2,4-dimethyl styrene, phenyl styrene, vinyl naphthalene, and vinyl styrene.
  • halogenated styrene examples include chlorostyrene, bromostyrene, and fluorostyrene.
  • halogenated alkyl styrenes examples include chloromethyl styrene.
  • alkoxystyrene examples include methoxystyrene and ethoxystyrene.
  • styrene-based monomers styrene, methylstyrene, ethylstyrene, and 2,4-dimethylstyrene are preferable. Further, one type of styrene-based monomer may be used, or two or more types may be used in combination.
  • the crystalline polystyrene-based polymer preferably has an isotactic structure or a syndiotactic structure, and more preferably has a syndiotactic structure.
  • the fact that the crystalline polystyrene-based polymer has a syndiotactic structure means that the stereochemical structure of the crystalline polystyrene-based polymer has a syndiotactic structure.
  • the syndiotactic structure is a three-dimensional structure in which phenyl groups, which are side chains, are alternately located in opposite directions with respect to the main chain formed by a carbon-carbon bond in the Fischer projection formula. Compared with the polystyrene-based polymer having an atactic structure, the polystyrene-based polymer having a syndiotactic structure usually has a low specific density and is excellent in hydrolysis resistance, heat resistance and chemical resistance.
  • the tacticity of a crystalline polystyrene-based polymer can be quantified by a nuclear magnetic resonance method ( 13 C-NMR method) using isotope carbon.
  • 13 C-NMR method nuclear magnetic resonance method
  • the tacticity measured by the C-NMR method can be indicated by the abundance ratio of a plurality of consecutive constituent units. In general, for example, when there are two consecutive building blocks, it is a diad, when there are three, it is a triad, and when there are five, it is a pentad.
  • the crystalline polystyrene-based polymer having a syndiotactic structure may have a syndiotacticity of usually 75% or more, preferably 85% or more in diad (racemic diad), or pentad (racemic pen).
  • (Tad) may have a syndiotacticity of usually 30% or more, preferably 50% or more.
  • the crystalline polystyrene-based polymer may be a homopolymer or a copolymer. Therefore, the crystalline polystyrene-based polymer may be a homopolymer of one kind of styrene-based monomer, or may be a copolymer of two or more kinds of styrene-based monomers.
  • the ratio of each styrene-based unit to 100% by weight of the entire crystalline polystyrene-based polymer is preferably 5% by weight. As described above, it is more preferably 10% by weight or more, preferably 95% by weight or less, and more preferably 90% by weight or less.
  • the crystalline polystyrene-based polymer may be a copolymer of one or more types of styrene-based monomers and a monomer other than the styrene-based monomers.
  • the proportion of the styrene-based unit contained in the crystalline polystyrene-based polymer is preferably 80% by weight or more, more preferably 83% by weight or more, still more preferably 85% by weight or more from the viewpoint of obtaining an optical film having desired optical properties. Is.
  • the ratio of a certain structural unit contained in the crystalline polystyrene-based polymer can match the ratio of the monomer corresponding to the structural unit to all the monomers of the crystalline polystyrene-based polymer. Therefore, the ratio of the styrene-based unit contained in the crystalline polystyrene-based polymer may match the ratio of the styrene-based monomer to all the monomers of the crystalline polystyrene-based polymer.
  • the crystalline polystyrene-based polymer is obtained, for example, by polymerizing a styrene-based monomer in an inert hydrocarbon solvent or in the absence of a solvent, using a titanium compound and a condensation product of water and trialkylaluminum as a catalyst. It can be manufactured (see Japanese Patent Application Laid-Open No. 62-187708).
  • one type may be used alone, or two or more types may be used in combination at any ratio.
  • the weight average molecular weight Mw of the crystalline polymer is preferably 130,000 or more, more preferably 140,000 or more, particularly preferably 150,000 or more, preferably 500,000 or less, and more preferably 450,000 or less. Particularly preferably, it is 400,000 or less. Since the crystalline polymer having such a weight average molecular weight Mw can have a high glass transition temperature Tg, the heat resistance of the optical film can be enhanced.
  • the weight average molecular weight (Mw) of the polymer can be measured as a polystyrene-equivalent value by gel permeation chromatography (GPC) using 1,2,4-trichlorobenzene as a developing solvent.
  • the glass transition temperature Tg of the crystalline polymer is preferably 85 ° C. or higher, more preferably 90 ° C. or higher, and particularly preferably 95 ° C. or higher.
  • the glass transition temperature of the crystalline polymer is preferably 160 ° C. or lower, more preferably 155 ° C. or lower, and particularly preferably 150 ° C. or lower.
  • the melting point Tm of the crystalline polymer is preferably 200 ° C. or higher, more preferably 210 ° C. or higher, particularly preferably 220 ° C. or higher, preferably 300 ° C. or lower, more preferably 290 ° C. or lower, and particularly preferably 280 ° C. or lower. Is.
  • Tm of the crystalline polymer is within the above range, when the crystalline resin is molded to obtain a resin film, unintended progress of crystallization of the crystalline polymer and generation of foreign substances due to thermal decomposition are suppressed. can. Therefore, an optical film having good appearance and optical characteristics can be easily obtained.
  • the glass transition temperature Tg and melting point Tm of the polymer can be measured by the following methods. First, the polymer is melted by heating, and the melted polymer is rapidly cooled with dry ice. Subsequently, using this polymer as a test piece, the glass transition temperature Tg and melting point Tm of the polymer were measured at a heating rate of 10 ° C./min (heating mode) using a differential scanning calorimeter (DSC). Can be measured.
  • the amount of the crystalline polymer in 100% by weight of the crystalline resin is preferably 30% by weight or more, more preferably 40% by weight or more, and particularly preferably 45% by weight or more from the viewpoint of obtaining an optical film having desired optical properties. It is preferably 80% by weight or less, more preferably 70% by weight or less, and particularly preferably 65% by weight or less.
  • the crystallinity of the crystalline polymer contained in the optical film is usually higher than a certain level.
  • the specific range of crystallinity is preferably 10% or more, more preferably 15% or more, and particularly preferably 30% or more.
  • the crystallinity of the crystalline polymer can be measured by X-ray diffraction.
  • the crystalline resin may contain an amorphous polymer having no crystallinity in combination with the crystalline polymer.
  • a thermoplastic polymer is usually used. Above all, this amorphous thermoplastic polymer preferably has a positive intrinsic birefringence. When a polymer having positive intrinsic birefringence is used in combination with the above-mentioned crystalline polymer having negative intrinsic birefringence, the inverse wavelength dispersibility of the optical film can be easily obtained.
  • polyphenylene ether is preferable from the viewpoint of transparency and toughness.
  • Polyphenylene ethers can usually have excellent compatibility with crystalline polystyrene-based polymers.
  • Polyphenylene ether represents a polymer having a phenylene ether skeleton. Substituents may or may not be attached to the benzene ring of the phenylene ether skeleton. Polyphenylene ether usually has a phenylene ether skeleton in its backbone. As the polyphenylene ether, a polymer containing a phenylene ether unit represented by the following formula (I) is preferable.
  • Q 1 is independently a halogen atom, a lower alkyl group (for example, an alkyl group having 1 or more and 7 or less carbon atoms), a phenyl group, a haloalkyl group, an aminoalkyl group, a hydrocarbon oxy group, or Represents a halohydrocarbon oxy group (where the halogen atom and the oxygen atom are separated by at least two carbon atoms).
  • a halogen atom for example, an alkyl group having 1 or more and 7 or less carbon atoms
  • a phenyl group for example, an alkyl group having 1 or more and 7 or less carbon atoms
  • a phenyl group for example, a phenyl group, a haloalkyl group, an aminoalkyl group, a hydrocarbon oxy group, or Represents a halohydrocarbon oxy group (where the halogen atom and the oxygen atom are separated by at least two carbon atoms
  • Q 2 is independently a hydrogen atom, a halogen atom, a lower alkyl group (for example, an alkyl group having 1 or more and 7 or less carbon atoms), a phenyl group, a haloalkyl group, a hydrocarbon oxy group, or a halo.
  • a hydrocarbon oxy group where the halogen atom and the oxygen atom are separated by at least two carbon atoms.
  • a hydrogen atom is preferable as Q2 .
  • the polyphenylene ether may be a homopolymer having one kind of structural unit or a copolymer having two or more kinds of structural units.
  • the polymer containing the structural unit represented by the formula (I) is a homopolymer
  • a preferred example of the homopolymer is 2,6-dimethyl-1,4-phenylene ether unit ("-(”.
  • Examples thereof include homopolymers having a structural unit (represented by C 6 H 2 (CH 3 ) 2 -O)-”.
  • the polymer containing the structural unit represented by the formula (I) is a copolymer
  • preferred examples of the copolymer include 2,6-dimethyl-1,4-phenylene ether unit and 2,3. , 6-trimethyl-1,4-phenylene ether unit (structural unit represented by "-(C 6 H (CH 3 ) 3 -O-)-”) and a random copolymer having a combination thereof.
  • the polyphenylene ether may contain structural units other than the phenylene ether unit.
  • the polyphenylene ether can be a copolymer having a phenylene ether unit and other structural units.
  • the ratio of structural units other than the phenylene ether unit in the polyphenylene ether is preferably small as long as the desired optical properties can be obtained.
  • the content of the phenylene ether unit in 100% by weight of the polyphenylene ether is preferably 50% by weight or more, more preferably 70% by weight or more, still more preferably 80% by weight or more, still more preferably 90% by weight or more. Particularly preferably, it is 95% by weight or more.
  • polyphenylene ethers having other substituents grafted on the polymer chain can also be mentioned.
  • Such polyphenylene ethers can be synthesized, for example, by grafting another substituent onto the polyphenylene ether by an appropriate method.
  • Specific examples include polyphenylene ether grafted with a polymer such as polystyrene, polybutadiene, or other vinyl-containing polymer.
  • polyphenylene ether may be produced by the method described in JP-A-11-302259.
  • amorphous polymer one type may be used alone, or two or more types may be used in combination at any ratio.
  • the weight average molecular weight Mw of the amorphous polymer such as polyphenylene ether is preferably 15,000 or more, more preferably 25,000 or more, particularly preferably 35,000 or more, and preferably 100,000 or less. It is preferably 85,000 or less, and particularly preferably 70,000 or less.
  • the weight average molecular weight Mw of the amorphous polymer is not more than the lower limit of the above range, the mechanical strength of the optical film can be increased. Further, when the weight average molecular weight Mw of the amorphous polymer is not more than the upper limit of the above range, the crystalline polymer and the amorphous polymer can be uniformly mixed at a high level.
  • the glass transition temperature of an amorphous polymer such as polyphenylene ether is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, particularly preferably 120 ° C. or higher, preferably 350 ° C. or lower, more preferably 300 ° C. or lower. Particularly preferably, it is 250 ° C. or lower.
  • the glass transition temperature of the amorphous polymer is at least the lower limit of the above range, the heat resistance of the optical film can be enhanced. Further, when the glass transition temperature of the amorphous polymer is not more than the upper limit of the above range, stretching in the manufacturing process of the optical film can be smoothly performed.
  • the amount of the amorphous polymer in 100% by weight of the crystalline resin is preferably 20% by weight or more, more preferably 30% by weight or more, and particularly preferably 35% by weight from the viewpoint of obtaining an optical film having desired optical properties. % Or more, preferably 70% by weight or less, more preferably 60% by weight or less, and particularly preferably 55% by weight or less.
  • the weight ratio (thermoplastic polymer / crystalline polymer) is , Preferably within a specific range. Specifically, the weight ratio (thermoplastic polymer / crystalline polymer) is preferably 3/7 or more, more preferably 3.5 / 6.5 or more, and particularly preferably 4/6 or more. Is 8/2 or less, more preferably 7.5 / 2.5 or less, and particularly preferably 7/3 or less.
  • the weight ratio (thermoplastic polymer / crystalline polymer) is in the above range, the inverse wavelength dispersibility of the optical film can be easily obtained.
  • the crystalline resin may contain any component in combination with the above-mentioned crystalline polymer and amorphous polymer.
  • Optional components include, for example, lubricants; layered crystal compounds; fine particles such as inorganic fine particles; antioxidants, heat stabilizers, light stabilizers, weathering stabilizers, ultraviolet absorbers, stabilizers such as near-infrared absorbers; plastics. Agents; colorants such as dyes and pigments; antistatic agents; and the like. Any component may be used alone or in combination of two or more. The amount of any component can be appropriately determined as long as the effect of the present invention is not significantly impaired. The amount of any component may be, for example, in the range where the total light transmittance of the optical film can be maintained at 85% or more.
  • the optical film may have a multi-layer structure including a plurality of layers, but preferably has a single-layer structure.
  • the single-layer structure represents a structure having only a single layer having the same composition and not having a layer having a composition different from the above-mentioned composition. Therefore, it is preferable that the optical film has a single layer formed of the crystalline resin.
  • the optical film preferably has an in-plane retardation in an appropriate range according to the application.
  • the specific in-plane retardation Re of the optical film may be preferably 100 nm or more, more preferably 110 nm or more, particularly preferably 120 nm or more, and preferably 180 nm or less, more preferably 170 nm or less at a measurement wavelength of 550 nm. Particularly preferably, it may be 160 nm or less.
  • the optical film can function as a 1/4 wave plate.
  • the specific in-plane retardation Re of the optical film may be preferably 245 nm or more, more preferably 265 nm or more, particularly preferably 270 nm or more, and preferably 320 nm or less, more preferably 300 nm at a measurement wavelength of 550 nm.
  • it may be particularly preferably 295 nm or less.
  • the optical film can function as a 1/2 wave plate.
  • the film retardation can be measured using a phase difference meter (for example, "AXoScan OPMF-1" manufactured by AXOMETRICS).
  • a phase difference meter for example, "AXoScan OPMF-1" manufactured by AXOMETRICS.
  • the optical film preferably has high transparency.
  • the specific total light transmittance of the optical film is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more.
  • the total light transmittance of the film can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet / visible spectrometer.
  • the optical film preferably has a small haze.
  • the haze of the optical film is preferably less than 1.0%, more preferably less than 0.8%, particularly preferably less than 0.5%, ideally 0.0%.
  • the haze of the film can be measured using a haze meter (for example, "NDH5000" manufactured by Nippon Denshoku Kogyo Co., Ltd.).
  • the optical film may contain a solvent.
  • This solvent may be incorporated into the film in the step of bringing the resin film into contact with the solvent in the production method described later. Specifically, all or part of the solvent incorporated into the film upon contact with the resin film can enter the interior of the polymer. Therefore, it is difficult to completely remove the solvent even if the drying is performed above the boiling point of the solvent. Therefore, the optical film may contain a solvent.
  • the optical film is preferably a stretched film.
  • the stretched film represents a film produced through a stretching treatment.
  • the optical film is preferably a uniaxially stretched film.
  • the uniaxially stretched film represents a film that is positively stretched only in one direction and is not positively stretched in any other direction. Since the uniaxially stretched film can be manufactured by stretching in only one direction, the manufacturing process can be simplified, and thus simple manufacturing can be realized.
  • the optical film may be a single-wafer film or a long film having a long shape.
  • the optical film has a long shape, it is possible to continuously manufacture a polarizing plate by laminating the optical film and the long polarizing film.
  • the thickness of the optical film can be set appropriately according to the application of the optical film.
  • the specific thickness of the optical film is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, particularly preferably 30 ⁇ m or more, preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less, and particularly preferably 200 ⁇ m or less.
  • the above-mentioned optical film is The step (i) of preparing a resin film made of a crystalline resin containing a crystalline polymer having a negative intrinsic birefringence and a thermoplastic polymer having a positive intrinsic birefringence; The step (ii) of bringing the resin film into contact with a solvent to change the birefringence in the thickness direction; The step of stretching the resin film (iii) and Can be manufactured by a manufacturing method containing the above in this order.
  • the resin film before being brought into contact with the solvent in step (ii) is referred to as "raw film”, and the resin film after being brought into contact with the solvent in step (ii) is referred to as "pre-stretched film”. ".
  • the present inventor presumes that the mechanism for obtaining the above-mentioned optical film by the above-mentioned manufacturing method is as follows. However, the technical scope of the present invention is not limited by the following mechanism.
  • an optical film is manufactured using a resin film containing a crystalline polymer having a negative intrinsic birefringence.
  • a crystalline polymer having a negative intrinsic birefringence When a crystalline polymer having a negative intrinsic birefringence is oriented in a certain orientation direction, it can exhibit a small refractive index in the orientation direction and a large refractive index in the direction perpendicular to the orientation direction. Therefore, the resin film and the optical film containing this crystalline polymer can have negative birefringence characteristics as represented by the requirement (A).
  • the optical film may contain a thermoplastic polymer having a positive intrinsic birefringence in combination with a crystalline polymer having a negative intrinsic birefringence.
  • a thermoplastic polymer having positive intrinsic birefringence When oriented in a certain orientation direction, a large refractive index may be developed in the orientation direction, and a small refractive index may be developed in the direction perpendicular to the orientation direction. Therefore, when oriented in a certain orientation direction, the direction in which the refractive index of the crystalline polymer is maximized and the direction in which the refractive index of the thermoplastic polymer is maximized can be perpendicular to each other.
  • the entire birefringence of the optical film containing the combination of the crystalline polymer and the thermoplastic polymer may reflect the difference between the birefringence of the crystalline polymer and the birefringence of the thermoplastic polymer.
  • the difference between the birefringence of the crystalline polymer and the birefringence of the thermoplastic polymer is small at a short measurement wavelength and large at a long measurement wavelength. Therefore, the optical film obtained by the above-mentioned manufacturing method can have a reverse wavelength dispersibility as represented by the requirement (B).
  • the solvent infiltrates into the raw fabric film.
  • the action of the infiltrated solvent causes microBrownian motion in the molecules of the crystalline polymer in the film, and the molecular chains are oriented. According to the study of the present inventor, it is considered that the solvent-induced crystallization phenomenon of the crystalline polymer may proceed when the molecular chain is oriented.
  • the surface area of the film is large on the front surface and the back surface, which are the main surfaces. Therefore, as for the infiltration rate of the solvent, the infiltration rate in the thickness direction through the front surface or the back surface is high. Then, the orientation of the molecules of the crystalline polymer can proceed so that the molecules of the polymer are oriented in the thickness direction. Therefore, in the step (ii), the molecules of the crystalline polymer can be oriented in the thickness direction.
  • the pre-stretched film as a resin film in which the molecules of the crystalline polymer are oriented in the thickness direction in the step (ii) is stretched in the step (iii).
  • the molecules of the polymer contained in the pre-stretched film can be oriented in a direction perpendicular to the thickness direction. Therefore, by combining the orientation in the thickness direction in the step (iii) and the orientation in the direction perpendicular to the thickness direction in the step (iii), the orientation direction of the polymer molecules can be three-dimensionally adjusted. can. Therefore, the optical film obtained by the above-mentioned manufacturing method can have an NZ coefficient in an appropriate range as represented by the requirement (C).
  • Step of preparing a resin film includes a step of preparing a raw film as a resin film before contacting with a solvent.
  • a crystalline resin containing a crystalline polymer can be used as the material of the raw film prepared in the step (i).
  • the raw film is preferably made of only crystalline resin.
  • the crystalline resin contained in the raw film may be the same as the crystalline resin contained in the optical film.
  • the crystallinity of the crystalline polymer contained in the raw film is preferably small.
  • the specific crystallinity is preferably less than 10%, more preferably less than 5%, and particularly preferably less than 3%. If the crystallinity of the crystalline polymer contained in the raw film before contact with the solvent is low, many molecules of the crystalline polymer can be oriented in the thickness direction by contact with the solvent, so that in a wide range.
  • the NZ coefficient can be adjusted.
  • the raw film preferably has optical isotropic properties. Therefore, the raw film preferably has a small birefringence Re / d in the in-plane direction, and preferably has a small absolute value
  • the birefringence Re / d of the raw film in the in-plane direction is preferably less than 1.0 ⁇ 10 -3 , more preferably less than 0.5 ⁇ 10 -3 , and particularly preferably 0.3 ⁇ . It is less than 10 -3 .
  • of the birefringence in the thickness direction of the raw film is preferably less than 1.0 ⁇ 10 -3 , more preferably less than 0.5 ⁇ 10 -3 , and particularly preferably 0.3. It is less than ⁇ 10 -3 .
  • Having optical isotropic properties as described above indicates that the molecular orientation of the crystalline polymer contained in the raw film is low and is substantially non-oriented.
  • the raw film preferably has a small solvent content, and more preferably does not contain a solvent.
  • the ratio (solvent content) of the solvent contained in the raw film to 100% by weight of the raw film is preferably 1% or less, more preferably 0.5% or less, and particularly preferably 0.1% or less. Ideally, it is 0.0%. Since the amount of the solvent contained in the raw film before contact with the solvent is small, many molecules of the crystalline polymer can be oriented in the thickness direction by the contact with the solvent, so that the NZ coefficient can be adjusted in a wide range. Is possible.
  • the solvent content of the raw film can be measured by the density.
  • the haze of the raw film is preferably less than 1.0%, preferably less than 0.8%, more preferably less than 0.5%, and ideally 0.0%.
  • the thickness of the raw film is set according to the thickness of the optical film to be manufactured.
  • the thickness is increased by contacting with the solvent in the step (ii).
  • the thickness becomes smaller. Therefore, the thickness of the raw film may be set in consideration of the change in thickness in the step (ii) and the step (iii) as described above.
  • the raw film may be a single-wafer film, but it is preferably a long film.
  • a long raw film it is possible to continuously produce an optical film by a roll-to-roll method, so that the productivity of the optical film can be effectively increased.
  • a method for producing the raw fabric film since a raw fabric film containing no solvent can be obtained, an injection molding method, an extrusion molding method, a press molding method, an inflation molding method, a blow molding method, a calendar molding method, and a casting molding method.
  • a resin molding method such as a compression molding method is preferable.
  • the extrusion molding method is preferable because the thickness can be easily controlled.
  • the manufacturing conditions in the extrusion molding method are preferably as follows.
  • the cylinder temperature (molten resin temperature) is preferably Tm or higher, more preferably “Tm + 20 ° C” or higher, preferably “Tm + 100 ° C” or lower, and more preferably “Tm + 50 ° C” or lower.
  • the cooling body that the molten resin extruded into a film comes into contact with first is not particularly limited, but a cast roll is usually used.
  • the cast roll temperature is preferably "Tg-50 ° C.” or higher, preferably "Tg + 70 ° C.” or lower, and more preferably "Tg + 40 ° C.” or lower.
  • the raw fabric film When the raw fabric film is manufactured under such conditions, the raw fabric film having a thickness of 1 ⁇ m to 1 mm can be easily manufactured.
  • Tm represents the melting point of the crystalline polymer
  • Tg represents the glass transition temperature of the crystalline polymer.
  • the method for producing an optical film includes a step (ii) in which a resin film as a raw film is brought into contact with a solvent after the step (i). By this step (ii), the birefringence in the thickness direction of the raw film is changed, and a pre-stretched film having a birefringence in the thickness direction different from that of the raw film is obtained.
  • an organic solvent is usually used.
  • a solvent that can penetrate into the resin film without dissolving the crystalline polymer contained in the resin film can be used, and for example, a hydrocarbon solvent such as cyclohexane, toluene, limonene, and decalin can be used. ; Carbon disulfide;
  • the type of the solvent may be one type or two or more types.
  • the contact method between the resin film and the solvent there are no restrictions on the contact method between the resin film and the solvent.
  • Examples of the contact method include a spray method in which a solvent is sprayed on a resin film; a coating method in which a solvent is applied to a resin film; a dipping method in which a resin film is immersed in a solvent; and the like. Above all, the dipping method is preferable because continuous contact can be easily performed.
  • the temperature of the solvent in contact with the resin film is arbitrary as long as the solvent can maintain the liquid state, and therefore can be set in the range of the melting point or more and the boiling point or less of the solvent.
  • the contact time is preferably 0.5 seconds or longer, more preferably 1.0 seconds or longer, and particularly preferably 5.0 seconds or longer.
  • the upper limit is not particularly limited and may be, for example, 24 hours or less. However, since the degree of progress of orientation tends not to change significantly even if the contact time is lengthened, it is preferable that the contact time is short as long as the desired optical characteristics can be obtained.
  • the birefringence Rth / d in the thickness direction of the resin film changes.
  • the amount of change in birefringence Rth / d in the thickness direction caused by contact with the solvent is preferably 0.1 ⁇ 10 -3 or more, more preferably 0.2 ⁇ 10 -3 or more, and particularly preferably 0.3 ⁇ 10 It is -3 or more, preferably 50.0 ⁇ 10 -3 or less, more preferably 30.0 ⁇ 10 -3 or less, and particularly preferably 20.0 ⁇ 10 -3 or less.
  • the amount of change in the birefringence Rth / d in the thickness direction represents an absolute value of the change in the birefringence Rth / d in the thickness direction of the resin film.
  • the specific amount of change in the birefringence Rth / d in the thickness direction is obtained by subtracting the birefringence Rth / d in the thickness direction of the original film from the birefringence Rth / d in the thickness direction of the unstretched film and obtaining it as an absolute value. Be done.
  • the birefringence Rth / d in the thickness direction is increased by contact between the resin film and the solvent.
  • the birefringence Re / d in the in-plane direction of the resin film may or may not change due to contact with the solvent. From the viewpoint of simplifying the control of the in-plane retardation Re of the optical film, it is preferable that the change in the birefringence Re / d in the in-plane direction caused by the contact with the solvent is small, and it is more preferable that the change does not occur. preferable.
  • the amount of change in birefringence Re / d in the in-plane direction caused by contact with the solvent is preferably 0.0 ⁇ 10 -3 to 0.2 ⁇ 10 -3 , more preferably 0.0 ⁇ 10 -3 to 0.
  • the amount of change in the birefringence Re / d in the in-plane direction represents an absolute value of the change in the birefringence Re / d in the in-plane direction of the resin film.
  • the specific amount of change in the in-plane birefringence Re / d is obtained by subtracting the in-plane birefringence Re / d of the raw film from the in-plane birefringence Re / d of the unstretched film. Obtained as a value.
  • the pre-stretched film as the resin film after contact with the solvent is a negative C plate. Therefore, it is preferable that the refractive index nz in the thickness direction of the unstretched film is smaller than the refractive indexes nx and ny in the in-plane direction. Further, it is preferable that the refractive indexes nx and ny in the in-plane direction of the unstretched film are the same value or close to each other.
  • the difference between the refractive index nx and the refractive index ny is relatively small, the difference between the refractive index nz and the refractive index nz is relatively large, and the difference between the refractive index ny and the refractive index nz is relatively large. It is preferably relatively large.
  • the difference between the rate nz and the in-plane refractive indexes nx and ny can be expressed.
  • the birefringence Rth / d in the thickness direction of the unstretched film is preferably 0.05 ⁇ 10 -3 or more, preferably 0.1 ⁇ 10 -3 or more, and particularly preferably 0.2 ⁇ 10 -3 or more. It is preferably 10 ⁇ 10 -3 or less, more preferably 6.0 ⁇ 10 -3 or less, and particularly preferably 4.0 ⁇ 10 -3 or less.
  • the birefringence Re / d in the in-plane direction of the pre-stretched film may be smaller than the birefringence Rth / d in the thickness direction of the pre-stretched film.
  • the specific range of birefringence Re / d in the in-plane direction of the unstretched film is preferably 0.01 ⁇ 10 -3 or more, preferably 0.05 ⁇ 10 -3 or more, and particularly preferably 0.1 ⁇ 10. It is -3 or more, preferably 1.0 ⁇ 10 -3 or less, more preferably 0.5 ⁇ 10 -3 or less, and particularly preferably 0.2 ⁇ 10 -3 or less.
  • the pre-stretched film as the resin film after contact with the solvent has an NZ coefficient greater than 1.0.
  • the specific NZ coefficient of the pre-stretched film is preferably greater than 1.0, more preferably greater than 5.0, particularly preferably greater than 10, and preferably less than 50, more preferably less than 40, particularly preferred. Is less than 30.
  • the thickness of the resin film is usually increased due to the infiltration of the solvent in contact with the resin film into the resin film.
  • the lower limit of the rate of change in the thickness of the resin film at this time may be, for example, 1% or more, 2% or more, or 3% or more.
  • the upper limit of the change rate of the thickness may be, for example, 80% or less, 50% or less, or 40% or less.
  • the rate of change in the thickness of the resin film is a ratio obtained by dividing the difference in thickness between the raw film and the unstretched film by the thickness of the raw film.
  • the method for producing an optical film includes a step (iii) of stretching a resin film as a pre-stretching film after the step (iii).
  • the molecules of the polymer contained in the resin film can be oriented in a direction corresponding to the stretching direction. Therefore, according to the stretching in the step (iii), the in-plane birefringence Re / d, the in-plane retardation Re, the thickness direction birefringence Rth / d, the thickness direction birefringence Rth, and the NZ coefficient
  • the above-mentioned optical film can be obtained by adjusting the optical characteristics such as.
  • the stretching direction there is no limitation on the stretching direction, and examples thereof include a longitudinal direction, a width direction, and an oblique direction.
  • the diagonal direction is a direction perpendicular to the thickness direction and is neither parallel nor perpendicular to the width direction.
  • the stretching direction may be one direction or two or more directions, but one direction is preferable. Further, among the stretching in one direction, free uniaxial stretching in which no binding force is applied in a direction other than the stretching direction is further preferable. According to these stretchings, the above-mentioned optical film can be easily manufactured.
  • the pre-stretched film usually has negative birefringence characteristics
  • an optical film having a slow axis in the direction perpendicular to the stretching direction can be obtained. Therefore, since the slow phase axis direction of the optical film can be adjusted by the stretching direction, the stretching direction may be selected according to the direction of the slow phase axis to be expressed in the optical film.
  • a long polarizing film has an absorption axis in its longitudinal direction and a transmission axis in its width direction.
  • the pre-stretched film is stretched in the longitudinal direction to obtain an optical film having a slow phase axis in the width direction. You may get it. In this case, it is possible to efficiently manufacture a polarizing plate by roll-to-roll using a long optical film and a long polarizing film.
  • the draw ratio is preferably 1.1 times or more, more preferably 1.2 times or more, preferably 20.0 times or less, more preferably 10.0 times or less, still more preferably 5.0 times or less, particularly. It is preferably 2.0 times or less. It is desirable to appropriately set the specific draw ratio according to factors such as the optical characteristics, thickness, and mechanical strength of the optical film to be manufactured.
  • the stretching ratio is equal to or higher than the lower limit of the above range, the birefringence can be significantly changed by stretching. Further, when the draw ratio is not more than the upper limit of the above range, the direction of the slow phase axis can be easily controlled and the film breakage can be effectively suppressed.
  • the stretching temperature is preferably "Tg R " or higher, more preferably “Tg R + 10 ° C” or higher, preferably “Tg R + 100 ° C” or lower, and more preferably “Tg R + 90 ° C” or lower.
  • Tg R represents the glass transition temperature of the crystalline resin.
  • the stretching temperature is equal to or higher than the lower limit of the above range, the resin film can be sufficiently softened and stretched uniformly. Further, when the stretching temperature is not more than the upper limit of the above range, the curing of the resin film due to the progress of crystallization of the crystalline polymer can be suppressed, so that the stretching can be smoothly performed, and the stretching causes a large birefringence. Can be expressed. In addition, the haze of the resulting optical film can usually be reduced to increase transparency.
  • an optical film can be obtained as a stretched resin film.
  • the balance between the birefringence Rth / d in the thickness direction and the birefringence Re / d in the in-plane direction can be adjusted to obtain a desired NZ coefficient. ..
  • the optical properties such as retardation are exhibited by the orientation of the polymer due to the contact with the solvent in the step (iii) and the orientation of the polymer due to the stretching in the step (iii), so that the optical film is desired. It can have optical properties.
  • the method for producing an optical film may be combined with the above-mentioned steps (i) to (iii) and further include any step.
  • a step of preheating the pre-stretched film before the step (iii) a step of heat-treating the optical film obtained in the step (iii) to promote the crystallization of the crystalline polymer, and the like.
  • Examples thereof include a step of drying the optical film to reduce the amount of the solvent in the film, a step of heat-shrinking the optical film to remove residual stress in the film, and the like.
  • a long optical film can be manufactured by using a long raw film.
  • the method for producing an optical film may include a step of winding the long optical film thus produced into a roll shape. Further, the method for producing an optical film may include a step of cutting a long optical film into a desired shape.
  • the polarizing plate according to the embodiment of the present invention includes the above-mentioned optical film and a polarizing film.
  • the polarizing film can usually function as a linear splitter. Therefore, the polarizing plate can transmit a part of the polarized light and block the other polarized light.
  • the polarizing film usually has an absorption axis and a transmission axis perpendicular to the absorption axis. Then, it is possible to absorb the linear polarization having a vibration direction parallel to the absorption axis and transmit the linear polarization having a vibration direction parallel to the transmission axis.
  • the vibration direction of linearly polarized light means the vibration direction of the electric field of linearly polarized light. At this time, it is preferable that the absorption axis of the polarizing film and the slow axis of the optical film form a specific angle.
  • the angle formed by the absorption axis of the polarizing film and the slow axis of the optical film is preferably 80 ° or more, more preferably 85 ° or more, particularly preferably 88 ° or more, and preferably 100 ° or less. It is more preferably 95 ° or less, and particularly preferably 92 ° or less.
  • the optical film preferably has an in-plane retardation that can function as a 1/2 wave plate.
  • the polarizing plate according to this example can be used as a polarizing plate capable of compensating the viewing angle when provided in an image display device.
  • the angle formed by the absorption axis of the polarizing film and the slow axis of the optical film is preferably 40 ° or more, more preferably 42 ° or more, particularly preferably 44 ° or more, and preferably 50 °. Below, it is more preferably 48 ° or less, and particularly preferably 46 ° or less.
  • the optical film preferably has an in-plane retardation that can function as a 1/4 wave plate.
  • the polarizing plate according to this example can be used as a circular polarizing plate capable of transmitting circular polarization in one rotation direction and blocking circular polarization in the other rotation direction. By providing this circularly polarizing plate on the display surface of the display device, it is possible to suppress the reflection of external light. It was
  • any polarizing film can be used as the polarizing film.
  • An example of a polarizing film is a film obtained by adsorbing iodine or a dichroic dye on a polyvinyl alcohol film and then uniaxially stretching it in a boric acid bath; adsorbing iodine or a dichroic dye on the polyvinyl alcohol film. Examples thereof include a film obtained by stretching and further modifying a part of polyvinyl alcohol units in the molecular chain to polyvinylene units. Of these, the polarizing film preferably contains polyvinyl alcohol. It was
  • the degree of polarization of this polarizing film is not particularly limited, but is preferably 98% or more, more preferably 99% or more.
  • the thickness of the polarizing film is preferably 5 ⁇ m to 80 ⁇ m. It was
  • the above-mentioned polarizing plate may further include an arbitrary layer.
  • the optional layer may be, for example, a polarizing element protective film layer; an adhesive layer for bonding a polarizing film and an optical film; a hard coat layer such as an impact-resistant polymethacrylate resin layer; a matte layer for improving the slipperiness of the film; Examples thereof include a reflection suppressing layer; an antifouling layer; an antistatic layer; and the like. Any of these layers may be provided with only one layer, or may be provided with two or more layers.
  • the glass transition temperature Tg and the melting point Tm of the polymer were measured as follows. First, the polymer was melted by heating, and the melted polymer was rapidly cooled with dry ice. Subsequently, using this polymer as a test piece, the glass transition temperature Tg and melting point Tm of the polymer were measured at a heating rate of 10 ° C./min (heating mode) using a differential scanning calorimeter (DSC). It was measured.
  • the weight average molecular weight of this polymer was measured by gel permeation chromatography at 135 ° C. using 1,2,4-trichlorobenzene as a solvent. As a result, the weight average molecular weight Mw of this polymer was 350,000. Further, it was confirmed by measuring the melting point Tm and 13 C-NMR that the obtained polymer was crystalline polystyrene having a syndiotactic structure. The melting point Tm of crystalline polystyrene was 270 ° C., and the glass transition temperature was 100 ° C. By repeating this operation, crystalline polystyrene having the syndiotactic structure required for evaluation was prepared.
  • 0.014 parts of the tetrachlorotungsten phenylimide (tetrahydrofuran) complex was dissolved in 0.70 parts of toluene to prepare a solution.
  • 0.061 part of a diethylaluminum ethoxide / n-hexane solution having a concentration of 19% was added and stirred for 10 minutes to prepare a catalytic solution.
  • This catalyst solution was added to a pressure resistant reactor to initiate a ring-opening polymerization reaction. Then, the reaction was carried out for 4 hours while maintaining 53 ° C. to obtain a solution of a ring-opening polymer of dicyclopentadiene.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained ring-opening polymer of dicyclopentadiene are 8,750 and 28,100, respectively, and the molecular weight distribution (Mw / Mn) obtained from these. was 3.21.
  • the hydride and the solution contained in the reaction solution were separated using a centrifuge and dried under reduced pressure at 60 ° C. for 24 hours to open dicyclopentadiene as a crystalline polymer having positive intrinsic birefringence. 28.5 parts of the hydride of the ring polymer was obtained.
  • the hydrogenation rate of this hydride was 99% or more, the glass transition temperature Tg was 93 ° C., the melting point Tm was 262 ° C., and the ratio of racemo diad was 89%.
  • Crystalline resin pellets are melt-extruded using a thermal melt extrusion film forming machine equipped with a T-die (“Measuring Extruder Type Me-20 / 2800V3” manufactured by Optical Control Systems) and rolled at a speed of 1.5 m / min. A long raw film was obtained as a resin film having a width of about 120 mm before contacting with a solvent.
  • the operating conditions of the film forming machine are itemized below.
  • the thickness of the original film was 158 ⁇ m.
  • a pre-stretched film was obtained. The pre-stretched film was taken out from cyclohexane, the cyclohexane adhering to the film surface was wiped off, and then the film was naturally dried in the air. The thickness of the obtained pre-stretched film was 160 ⁇ m.
  • the unstretched film was cut into a rectangle of 100 mm x 100 mm. Both ends of this rectangular pre-stretched film were gripped by the five clips of the stretching device, respectively.
  • the pre-stretched film was pulled with a clip and freely uniaxially stretched in the longitudinal direction of the long raw film obtained in the extrusion film formation step.
  • the stretching temperature was 138 ° C. and the stretching ratio was 1.2 times. By this stretching, an optical film as a uniaxially stretched film was obtained.
  • the direction of the slow axis of the optical film was perpendicular to the stretching direction. Further, the NZ coefficient at the measurement wavelength of 550 nm was 0.45.
  • step (1-2) The line speed in step (1-2) was changed to change the thickness of the long raw film to 115 ⁇ m.
  • the raw film was not immersed in the solvent in step (1-3).
  • step (1-4) the raw film was stretched instead of the pre-stretched film, the stretching temperature was changed to 132 ° C., and the stretching ratio was changed to 2.2 times.
  • the optical film was manufactured by the same method as in Example 1 except for the above items.
  • a mixture of a hydride of a ring-opening polymer of dicyclopentadiene and an antioxidant was formed into a strand by hot melt extrusion molding, and then shredded with a strand cutter to obtain pellets of a crystalline resin.
  • a polarizing film (“HLC2-5618S” manufactured by Sanritz Co., Ltd., a polarizing element having a thickness of 180 ⁇ m and a polarization transmission axis in the width direction) was prepared. With respect to one surface of the polarizing film and the optical films obtained in Examples 1 to 3 and Comparative Examples 1 and 2, the polarization transmission axis of the polarizing film and the slow axis of the optical film form an angle of 45 °.
  • a circular polarizing plate was obtained by laminating with a pressure-sensitive adhesive layer (“CS9621” manufactured by Nitto Denko).
  • a mirror was prepared and the prepared circular polarizing plate was placed on the mirror so that the optical film was on the mirror side.
  • the circularly polarizing plate was illuminated with a fluorescent lamp, and the reflected light from the mirror was observed in the front direction and in the tilt direction with a polar angle of about 60 °.
  • the front direction is the front direction of the mirror and represents a direction parallel to the thickness direction of the circularly polarizing plate. In each observation direction, " ⁇ " if the coloring is not visible, “ ⁇ ” if the coloring is visible but very slight, and " ⁇ " if the coloring is visible at an unacceptable level. And said.
  • Example 4 [Evaluation of Optical Film Obtained in Example 4] Two polarizing films (“HLC2-5618S” manufactured by Sanritz, 180 ⁇ m in thickness, and a polarizing element having a polarizing transmission axis in the width direction) were prepared and placed on a cross Nicol.
  • Cross Nicol means that the polarization transmission axis is vertical when viewed from the thickness direction.
  • the optical film obtained in Example 4 is placed on the polarizing transmission axis of the polarizing film on the viewing side (that is, the polarizing film on the viewing side when installed in a backlight described later) and the slow axis of the optical film. It was installed so that it matches.
  • a polarizing film and an optical film were bonded to each other via an adhesive layer (“CS9621” manufactured by Nitto Denko) to obtain a laminated body.
  • a backlight was prepared in a dark room, and the prepared laminate was placed on the backlight. With the backlight turned on, the light transmitted through the laminate was observed in the front direction and in the tilting direction with a polar angle of about 60 °. At each observation position, “ ⁇ ” is visible if the tint is not visible, “ ⁇ ” if the tint is visible but very slight, and the tint and light leakage are visible at an unacceptable level. If it is, it is set as "x".
  • crystalline polystyrene is used as the crystalline polymer having negative intrinsic birefringence to produce an optical film.
  • the delayed phase axis was developed in the direction perpendicular to the stretching direction in all the examples, so that the obtained optical film was negatively birefringent. It can be confirmed that it has a refraction characteristic.
  • all of the optical films obtained in the examples have an in-plane retardation satisfying the formula (1) and an NZ coefficient satisfying the formula (2).
  • the optical film obtained in the examples has a reverse wavelength dispersibility, its optical function can be exhibited in a wide wavelength range. Therefore, the optical films of Examples 1 to 3 can function as a quarter wave plate in a wide wavelength range. Therefore, the circularly polarizing plate provided with the optical film can suppress the reflection of light in a wide wavelength range as a reflection suppressing film. Therefore, it is possible to suppress the coloring caused by the light of a part of the wavelength passing through the circularly polarizing plate. Further, the optical film of Example 4 can function as a 1/2 wave plate in a wide wavelength range. Therefore, the optical film can convert the vibration direction of linearly polarized light in a wide wavelength range transmitted through the optical film by 90 °. Therefore, it is possible to suppress coloring and light leakage due to the passage of light having a part of wavelengths through the laminate.
  • the optical film obtained in the examples has an appropriate NZ coefficient, not only the light transmitted through the optical film in the thickness direction but also the polarization of the light transmitted in the inclined direction which is neither parallel nor perpendicular to the thickness direction.
  • the state can also be changed appropriately. Therefore, since the optical films of Examples 1 to 3 can suppress the reflection of the light transmitted through the circularly polarizing plate in the tilting direction, the tinting can be suppressed not only in the front direction but also in the tilting direction. Further, since the optical film of Example 4 can suppress the passage of light of the laminated body in the inclined direction, it is possible to suppress coloring and light leakage not only in the front direction but also in the inclined direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

The present invention produces an optical film by means of a production method involving, in the order given, a step for preparing a resin film comprising a resin that includes a crystalline polymer having a negative intrinsic birefringence and a thermoplastic polymer having a positive intrinsic birefringence, a step for bringing the resin film into contact with a solvent to cause the birefringence of the film in the thickness direction to change, and a step for stretching the resin film.

Description

光学フィルム及びその製造方法、並びに偏光板Optical film and its manufacturing method, and polarizing plate
 本発明は、光学フィルム及びその製造方法、並びに偏光板に関する。 The present invention relates to an optical film, a method for producing the same, and a polarizing plate.
 従来から、樹脂を用いたフィルムの製造技術が提案されている(特許文献1~3)。 Conventionally, a film manufacturing technique using a resin has been proposed (Patent Documents 1 to 3).
特許第4592004号公報Japanese Patent No. 4592004 国際公開第2017/145935号International Publication No. 2017/145935 国際公開第2020/137409号International Publication No. 2020/137409
 樹脂を用いて、屈折率に異方性を有する光学フィルムを製造することがある。このように屈折率に異方性を有する光学フィルムは、複屈折を有しうる。複屈折を有する光学フィルムは、例えば、反射抑制フィルム、視野角補償フィルムなどのフィルムとして表示装置に設けられうる。 A resin may be used to manufacture an optical film having anisotropy in the refractive index. Such an optical film having anisotropy in the refractive index may have birefringence. The optical film having birefringence can be provided in the display device as a film such as a reflection suppression film and a viewing angle compensation film.
 光学フィルムを表示装置に設ける場合、厚み方向の複屈折と、この厚み方向に垂直な面内方向の複屈折とのバランスを適切に調整することが求められる。厚み方向の複屈折と面内方向の複屈折とのバランスは、光学フィルムのNZ係数によって表すことができる。例えば、NZ係数が0.0より大きく1.0未満の光学フィルムが得られれば、その光学フィルムによって、表示面を傾斜方向から見た場合の表示品質の改善が可能になる。 When the optical film is provided in the display device, it is required to appropriately adjust the balance between the birefringence in the thickness direction and the birefringence in the in-plane direction perpendicular to the thickness direction. The balance between the birefringence in the thickness direction and the birefringence in the in-plane direction can be expressed by the NZ coefficient of the optical film. For example, if an optical film having an NZ coefficient of more than 0.0 and less than 1.0 is obtained, the optical film makes it possible to improve the display quality when the display surface is viewed from an inclined direction.
 また、光学フィルムは、逆波長分散性を有することが求められる。逆波長分散性を有する光学フィルムは、通常、広い波長範囲においてその光学的機能を発揮することができる。例えば、逆波長分散性を有する光学フィルムとしての波長板は、広い波長範囲で機能できる広帯域の波長板として用いることができる。 Further, the optical film is required to have reverse wavelength dispersibility. An optical film having a reverse wavelength dispersibility can usually exhibit its optical function in a wide wavelength range. For example, a wave plate as an optical film having anti-wavelength dispersibility can be used as a wide-band wave plate capable of functioning in a wide wavelength range.
 NZ係数が0.0より大きく1.0未満の光学フィルムの製造方法は、従来、知られている。また、逆波長分散性を有する光学フィルムは、従来、知られている。しかし、0.0より大きく1.0未満のNZ係数を有し且つ逆波長分散性を有する光学フィルムを、負の複屈折特性を有するフィルムによって実現することは、従来、達成されていなかった。 Conventionally, a method for manufacturing an optical film having an NZ coefficient of more than 0.0 and less than 1.0 is known. Further, an optical film having a reverse wavelength dispersibility is conventionally known. However, it has not been conventionally achieved to realize an optical film having an NZ coefficient of more than 0.0 and less than 1.0 and having anti-wavelength dispersibility by a film having negative birefringence characteristics.
 本発明は、前記の課題に鑑みて創案されたもので、負の複屈折特性を有し、逆波長分散性を有し、且つ、0.0より大きく1.0未満のNZ係数を有する光学フィルム及びその製造方法;並びに、前記の光学フィルムを備えた偏光板;を提供することを目的とする。 The present invention was devised in view of the above problems, and is an optic having a negative birefringence characteristic, a reverse wavelength dispersibility, and an NZ coefficient larger than 0.0 and less than 1.0. It is an object of the present invention to provide a film and a method for producing the same; and a polarizing plate provided with the above-mentioned optical film;
 本発明者は、前記の課題を解決するべく鋭意検討した。その結果、本発明者は、結晶性重合体を含む樹脂フィルムを溶媒に接触させて、厚み方向の複屈折を変化させる工程と、その樹脂フィルムを延伸する工程と、をこの順に含む方法を用いれば、前記の課題を解決できることを見い出し、本発明を完成させた。
 すなわち、本発明は、下記のものを含む。
The present inventor has diligently studied to solve the above-mentioned problems. As a result, the present inventor has used a method including a step of bringing a resin film containing a crystalline polymer into contact with a solvent to change birefringence in the thickness direction and a step of stretching the resin film in this order. For example, they have found that the above-mentioned problems can be solved, and have completed the present invention.
That is, the present invention includes the following.
 〔1〕 結晶性重合体を含む光学フィルムであって、
 前記光学フィルムが、負の複屈折特性を有し、
 前記光学フィルムの測定波長450nm、550nm及び650nmにおける面内レターデーションRe(450)、Re(550)及びRe(650)が式(1)を満たし、
 前記光学フィルムのNZ係数Nzが、式(2)を満たす、光学フィルム。
  Re(450)<Re(550)<Re(650)   (1)
  0<Nz<1   (2)
 〔2〕 前記光学フィルムが、単層構造を有する、〔1〕に記載の光学フィルム。
 〔3〕 前記光学フィルムが、延伸フィルムである、〔1〕又は〔2〕に記載の光学フィルム。
 〔4〕 前記光学フィルムが、一軸延伸フィルムである、〔1〕~〔3〕のいずれか一項に記載の光学フィルム。
 〔5〕 前記光学フィルムが、長尺の形状を有する、〔1〕~〔4〕のいずれか一項に記載の光学フィルム。
 〔6〕 負の固有複屈折を有する前記結晶性重合体と、正の固有複屈折を有する熱可塑性重合体と、を含む樹脂からなる、〔1〕~〔5〕のいずれか一項に記載の光学フィルム。
 〔7〕 正の固有複屈折を有する前記熱可塑性重合体と負の固有複屈折を有する前記結晶性重合体との重量比(熱可塑性重合体/結晶性重合体)が、3/7以上である、〔6〕に記載の光学フィルム。
 〔8〕 負の固有複屈折を有する前記結晶性重合体が、ポリスチレン系重合体であり、
 正の固有複屈折を有する前記熱可塑性重合体が、ポリフェニレンエーテルである、〔6〕又は〔7〕に記載の光学フィルム。
 〔9〕 〔1〕~〔8〕のいずれか一項に記載の光学フィルムと、偏光フィルムと、を備える偏光板。
 〔10〕 前記光学フィルムの遅相軸と、前記偏光フィルムの吸収軸と、が80°~100°の角度をなす、〔9〕に記載の偏光板。
 〔11〕 〔1〕~〔8〕のいずれか一項に記載の光学フィルムの製造方法であって、
 負の固有複屈折を有する結晶性重合体と、正の固有複屈折を有する熱可塑性重合体と、を含む樹脂からなる樹脂フィルムを用意する工程と、
 前記樹脂フィルムを、溶媒に接触させて、厚み方向の複屈折を変化させる工程と、
 前記樹脂フィルムを延伸する工程と、をこの順に含む、光学フィルムの製造方法。
[1] An optical film containing a crystalline polymer.
The optical film has a negative birefringence characteristic and
The in-plane retardations Re (450), Re (550) and Re (650) of the optical film at the measurement wavelengths of 450 nm, 550 nm and 650 nm satisfy the formula (1).
An optical film in which the NZ coefficient Nz of the optical film satisfies the formula (2).
Re (450) <Re (550) <Re (650) (1)
0 <Nz <1 (2)
[2] The optical film according to [1], wherein the optical film has a single-layer structure.
[3] The optical film according to [1] or [2], wherein the optical film is a stretched film.
[4] The optical film according to any one of [1] to [3], wherein the optical film is a uniaxially stretched film.
[5] The optical film according to any one of [1] to [4], wherein the optical film has a long shape.
[6] The item according to any one of [1] to [5], which comprises a resin containing the crystalline polymer having a negative intrinsic birefringence and a thermoplastic polymer having a positive intrinsic birefringence. Optical film.
[7] When the weight ratio (thermoplastic polymer / crystalline polymer) of the thermoplastic polymer having positive intrinsic birefringence and the crystalline polymer having negative intrinsic birefringence is 3/7 or more. The optical film according to [6].
[8] The crystalline polymer having a negative intrinsic birefringence is a polystyrene-based polymer.
The optical film according to [6] or [7], wherein the thermoplastic polymer having positive intrinsic birefringence is a polyphenylene ether.
[9] A polarizing plate comprising the optical film according to any one of [1] to [8] and a polarizing film.
[10] The polarizing plate according to [9], wherein the slow axis of the optical film and the absorption axis of the polarizing film form an angle of 80 ° to 100 °.
[11] The method for producing an optical film according to any one of [1] to [8].
A step of preparing a resin film made of a resin containing a crystalline polymer having a negative intrinsic birefringence and a thermoplastic polymer having a positive intrinsic birefringence.
The step of bringing the resin film into contact with a solvent to change the birefringence in the thickness direction,
A method for producing an optical film, comprising the steps of stretching the resin film in this order.
 本発明によれば、負の複屈折特性を有し、逆波長分散性を有し、且つ、0.0より大きく1.0未満のNZ係数を有する光学フィルム及びその製造方法;並びに、前記の光学フィルムを備えた偏光板;を提供できる。 According to the present invention, an optical film having negative birefringence characteristics, anti-wavelength dispersibility, and an NZ coefficient of more than 0.0 and less than 1.0; and a method for producing the same; A polarizing plate provided with an optical film; can be provided.
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail by showing embodiments and examples. However, the present invention is not limited to the embodiments and examples shown below, and may be arbitrarily modified and carried out without departing from the scope of claims of the present invention and the equivalent scope thereof.
 以下の説明において、フィルムの面内レターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。また、フィルムの面内方向の複屈折は、別に断らない限り、(nx-ny)で表される値であり、よってRe/dで表される。さらに、フィルムの厚み方向のレターデーションRthは、別に断らない限り、Rth=[{(nx+ny)/2}-nz]×dで表される値である。また、フィルムの厚み方向の複屈折は、別に断らない限り、[{(nx+ny)/2}-nz]で表される値であり、よってRth/dで表される。さらに、フィルムのNZ係数は、別に断らない限り、(nx-nz)/(nx-ny)で表される値である。ここで、nxは、フィルムの厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、フィルムの前記面内方向であってnxの方向に垂直な方向の屈折率を表す。nzは、フィルムの厚み方向の屈折率を表す。dは、フィルムの厚みを表す。測定波長は、別に断らない限り、550nmである。 In the following description, the in-plane retardation Re of the film is a value represented by Re = (nx-ny) × d unless otherwise specified. Further, the birefringence in the in-plane direction of the film is a value represented by (nx-ny), and is therefore represented by Re / d, unless otherwise specified. Further, the retardation Rth in the thickness direction of the film is a value represented by Rth = [{(nx + ny) / 2} -nz] × d unless otherwise specified. Further, the birefringence in the thickness direction of the film is a value represented by [{(nx + ny) / 2} -nz], and is therefore represented by Rth / d, unless otherwise specified. Further, the NZ coefficient of the film is a value represented by (nx-nz) / (nx-ny) unless otherwise specified. Here, nx represents the refractive index in the direction perpendicular to the thickness direction of the film (in-plane direction) and in the direction giving the maximum refractive index. ny represents the refractive index in the in-plane direction of the film and perpendicular to the direction of nx. nz represents the refractive index in the thickness direction of the film. d represents the thickness of the film. The measurement wavelength is 550 nm unless otherwise specified.
 以下の説明において、正の固有複屈折を有する材料とは、別に断らない限り、延伸方向の屈折率がそれに垂直な方向の屈折率よりも大きくなる材料を意味する。よって、正の固有複屈折を有する重合体とは、別に断らない限り、延伸方向の屈折率がそれに垂直な方向の屈折率よりも大きくなる重合体を意味する。また、負の固有複屈折を有する材料とは、別に断らない限り、延伸方向の屈折率がそれに垂直な方向の屈折率よりも小さくなる材料を意味する。よって、負の固有複屈折を有する重合体とは、別に断らない限り、延伸方向の屈折率がそれに垂直な方向の屈折率よりも小さくなる重合体を意味する。 In the following description, the material having positive intrinsic birefringence means a material in which the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular to it, unless otherwise specified. Therefore, a polymer having positive intrinsic birefringence means a polymer in which the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular to the refractive index, unless otherwise specified. Further, the material having negative birefringence means a material in which the refractive index in the stretching direction is smaller than the refractive index in the direction perpendicular to the refractive index, unless otherwise specified. Therefore, a polymer having negative intrinsic birefringence means a polymer in which the refractive index in the stretching direction is smaller than the refractive index in the direction perpendicular to the refractive index, unless otherwise specified.
 以下の説明において、「長尺」の形状とは、幅に対して、5倍以上の長さを有する形状をいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムの形状をいう。長さの上限に特段の制限は無いが、通常、幅に対して10万倍以下である。 In the following description, the "long" shape means a shape having a length of 5 times or more, preferably 10 times or more, and specifically a roll. It refers to the shape of a film that has a length that allows it to be rolled up and stored or transported. There is no particular limitation on the upper limit of the length, but it is usually 100,000 times or less with respect to the width.
 以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±5°の範囲内での誤差を含んでいてもよい。 In the following description, the directions of the elements are "parallel", "vertical" and "orthogonal", and include errors within a range that does not impair the effect of the present invention, for example, within a range of ± 5 °, unless otherwise specified. You may go out.
 複数のフィルムを備える部材における各フィルムの光学軸(吸収軸、透過軸、遅相軸等)がなす角度は、別に断らない限り、前記のフィルムを厚み方向から見たときの角度を表す。 Unless otherwise specified, the angle formed by the optical axis (absorption axis, transmission axis, slow phase axis, etc.) of each film in the member including a plurality of films represents the angle when the film is viewed from the thickness direction.
 「偏光板」、「円偏光板」、「波長板」及び「ネガティブCプレート」とは、別に断らない限り、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。  Unless otherwise specified, the "polarizing plate", "circular polarizing plate", "wave plate" and "negative C plate" are not only rigid members but also flexible members such as resin films. Also includes. It was
[1.光学フィルムの概要]
 本発明の一実施形態に係る光学フィルムは、結晶性重合体を含む。この光学フィルムは、下記の要件(A)~(C)を組み合わせて満たす。
[1. Overview of optical film]
The optical film according to an embodiment of the present invention contains a crystalline polymer. This optical film meets the following requirements (A) to (C) in combination.
 要件(A):光学フィルムが、負の複屈折特性を有する。
 要件(B):光学フィルムの測定波長450nm、550nm及び650nmにおける面内レターデーションRe(450)、Re(550)及びRe(650)が式(1)を満たす。
 要件(C):光学フィルムのNZ係数Nzが、式(2)を満たす。
  Re(450)<Re(550)<Re(650)   (1)
  0<Nz<1   (2)
Requirement (A): The optical film has negative birefringence characteristics.
Requirement (B): In-plane retardations Re (450), Re (550) and Re (650) of the optical film at the measurement wavelengths of 450 nm, 550 nm and 650 nm satisfy the formula (1).
Requirement (C): The NZ coefficient Nz of the optical film satisfies the equation (2).
Re (450) <Re (550) <Re (650) (1)
0 <Nz <1 (2)
 前記の光学フィルムは、従来は製造が困難であったが、後述する特定の製造方法を用いた場合に、容易に製造することが可能である。 The above-mentioned optical film has been difficult to manufacture in the past, but it can be easily manufactured when a specific manufacturing method described later is used.
[2.光学フィルムの複屈折特性]
 本実施形態に係る光学フィルムは、負の複屈折特性を有する。
 フィルムが「負の複屈折特性を有する」とは、フィルムを一の延伸方向に延伸した場合に、延伸方向における屈折率の増加量よりも、延伸方向に垂直な方向における屈折率の増加量が、大きいことをいう。また、フィルムが「正の複屈折特性を有する」とは、フィルムを一の延伸方向に延伸した場合に、延伸方向における屈折率の増加量が、延伸方向に垂直な方向における屈折率の増加量よりも、大きいことをいう。増加量であるから、延伸によって屈折率が大きくなった場合には、当該屈折率の増加量はプラスの値となり、延伸によって屈折率が小さくなった場合には、当該屈折率の増加量はマイナスの値となる。ここで、前記の延伸方向は、通常、厚み方向に対して垂直であり、よって、面内方向でありうる。
[2. Birefringence characteristics of optical film]
The optical film according to this embodiment has a negative birefringence characteristic.
"The film has negative birefringence characteristics" means that when the film is stretched in one stretching direction, the amount of increase in the refractive index in the direction perpendicular to the stretching direction is larger than the amount of increase in the refractive index in the stretching direction. , Say big. Further, the film "has a positive birefringence characteristic" means that when the film is stretched in one stretching direction, the amount of increase in the refractive index in the stretching direction is the amount of increase in the refractive index in the direction perpendicular to the stretching direction. It means that it is bigger than. Since it is an increase amount, when the refractive index increases due to stretching, the increase amount of the refractive index becomes a positive value, and when the refractive index decreases due to stretching, the increase amount of the refractive index becomes negative. Is the value of. Here, the stretching direction is usually perpendicular to the thickness direction, and thus may be in-plane.
 光学フィルムの複屈折特性は、当該光学フィルムを延伸することによって調べることができる。また、光学フィルムの複屈折特性は、通常、その光学フィルムの組成に依存する。よって、後述する製造方法のように光学フィルムと同じ組成を有する樹脂フィルムを延伸して光学フィルムを製造する場合には、通常、樹脂フィルムを延伸することによっても、光学フィルムの複屈折特性を調べることができる。具体的には、樹脂フィルムを一の延伸方向に延伸した場合に、延伸方向における屈折率の増加量よりも、延伸方向に垂直な方向における屈折率の増加量が大きい場合、その樹脂フィルムから得られる光学フィルムの複屈折特性は負でありうる。 The birefringence characteristics of the optical film can be examined by stretching the optical film. Also, the birefringence characteristics of an optical film usually depend on the composition of the optical film. Therefore, when a resin film having the same composition as an optical film is stretched to produce an optical film as in the manufacturing method described later, the birefringence characteristics of the optical film are usually examined by stretching the resin film as well. be able to. Specifically, when the resin film is stretched in one stretching direction, if the amount of increase in the refractive index in the direction perpendicular to the stretching direction is larger than the amount of increase in the refractive index in the stretching direction, it is obtained from the resin film. The birefringence characteristic of the optical film to be obtained can be negative.
 一般に、負の複屈折特性を有するフィルムは、厚み方向に垂直な方向に延伸されると、厚み方向の複屈折が大きくなる。よって、延伸によれば、NZ係数が0以下になることが通常であり、延伸によって0より大きいNZ係数を有するフィルムを製造することは困難であった。よって、負の複屈折特性を有しながら式(2)を満たすNZ係数を有する本実施形態の光学フィルムが得られることは、当業者によって驚くべきことである。したがって、負の複屈折特性、式(1)を満たす面内レターデーション、及び、式(2)を満たすNZ係数を組み合わせて有する本実施形態の光学フィルムは、従来に無かった光学フィルムであり、その産業的な価値は高い。 Generally, when a film having a negative birefringence characteristic is stretched in a direction perpendicular to the thickness direction, the birefringence in the thickness direction becomes large. Therefore, according to stretching, the NZ coefficient is usually 0 or less, and it is difficult to produce a film having an NZ coefficient larger than 0 by stretching. Therefore, it is surprising to those skilled in the art that an optical film of the present embodiment having a negative birefringence characteristic and an NZ coefficient satisfying the formula (2) can be obtained. Therefore, the optical film of the present embodiment having a combination of negative birefringence characteristics, an in-plane retardation satisfying the formula (1), and an NZ coefficient satisfying the formula (2) is an optical film that has never existed before. Its industrial value is high.
[3.光学フィルムの波長分散性]
 本実施形態に係る光学フィルムの測定波長450nmにおける面内レターデーションRe(450)、測定波長550nmにおける面内レターデーションRe(550)、及び、測定波長650nmにおける面内レターデーションRe(650)は、式(1)を満たす。
  Re(450)<Re(550)<Re(650)   (1)
[3. Wavelength dispersibility of optical film]
The in-plane retardation Re (450) at a measurement wavelength of 450 nm, the in-plane retardation Re (550) at a measurement wavelength of 550 nm, and the in-plane retardation Re (650) at a measurement wavelength of 650 nm according to the present embodiment are Equation (1) is satisfied.
Re (450) <Re (550) <Re (650) (1)
 式(1)を満たす面内レターデーションを有する光学フィルムは、通常、逆波長分散性を有する。よって、この光学フィルムの面内レターデーションは、測定波長が長いほど、大きいものであることができる。したがって、光学フィルムは、広い波長範囲においてその光学的機能を発揮できる。例えば、光学フィルムが一波長において1/4波長板として機能できる場合、当該光学フィルムは、前記一波長以外の広い波長範囲においても1/4波長板として機能できる。また、例えば、光学フィルムが一波長において1/2波長板として機能できる場合、当該光学フィルムは、前記一波長以外の広い波長範囲においても1/2波長板として機能できる。 An optical film having an in-plane retardation satisfying the formula (1) usually has a reverse wavelength dispersibility. Therefore, the in-plane retardation of this optical film can be larger as the measurement wavelength is longer. Therefore, the optical film can exhibit its optical function in a wide wavelength range. For example, when the optical film can function as a 1/4 wave plate at one wavelength, the optical film can also function as a 1/4 wave plate in a wide wavelength range other than the one wavelength. Further, for example, when the optical film can function as a 1/2 wave plate at one wavelength, the optical film can also function as a 1/2 wave plate in a wide wavelength range other than the one wavelength.
[4.光学フィルムのNZ係数]
 本実施形態に係る光学フィルムのNZ係数Nzは、式(2)を満たす。この式(2)を満たすNZ係数Nzを有する光学フィルムの三次元複屈折nx、ny及びnzは、nx>nz>nyを満たすことができる。
  0<Nz<1   (2)
 詳細には、光学フィルムのNZ係数Nzは、通常0.0より大きく、好ましくは0.1より大きく、更に好ましくは0.2より大きく、また、通常1.0未満、好ましくは0.9未満、更に好ましくは0.8未満である。
[4. NZ coefficient of optical film]
The NZ coefficient Nz of the optical film according to the present embodiment satisfies the formula (2). The three-dimensional birefringence nx, ny and nz of the optical film having the NZ coefficient Nz satisfying this equation (2) can satisfy nx>nz> ny.
0 <Nz <1 (2)
Specifically, the NZ coefficient Nz of the optical film is usually greater than 0.0, preferably greater than 0.1, more preferably greater than 0.2, and usually less than 1.0, preferably less than 0.9. , More preferably less than 0.8.
 式(2)を満たすNZ係数を有する光学フィルムは、当該光学フィルムを厚み方向に通過する光の偏光状態だけでなく、厚み方向に平行でも垂直でもない傾斜方向に通過する光の偏光状態も、適切に変化させることができる。よって、光学フィルムは、厚み方向の光に対してだけでなく、傾斜方向の光に対しても、その光学的機能を発揮することができる。例えば、光学フィルムが厚み方向に通過する光に対して1/4波長の位相差を与えうる場合、当該光学フィルムは、傾斜方向に通過する光に対しても1/4波長の位相差を与えうる。また、例えば、光学フィルムが厚み方向に通過する光に対して1/2波長の位相差を与えうる場合、当該光学フィルムは、傾斜方向に通過する光に対しても1/2波長の位相差を与えうる。 An optical film having an NZ coefficient satisfying the formula (2) is not only in the polarized state of light passing through the optical film in the thickness direction, but also in the polarized state of light passing in an inclined direction that is neither parallel nor perpendicular to the thickness direction. Can be changed appropriately. Therefore, the optical film can exert its optical function not only for light in the thickness direction but also for light in the tilt direction. For example, when the optical film can give a phase difference of 1/4 wavelength to the light passing in the thickness direction, the optical film also gives a phase difference of 1/4 wavelength to the light passing in the tilt direction. sell. Further, for example, when the optical film can give a phase difference of 1/2 wavelength to the light passing in the thickness direction, the optical film has a phase difference of 1/2 wavelength to the light passing in the tilt direction. Can be given.
[5.光学フィルムの組成]
 本発明の一実施形態に係る光学フィルムは、結晶性重合体を含む。結晶性重合体とは、結晶性を有する重合体を表す。結晶性を有する重合体とは、融点Tmを有する重合体を表す。すなわち、結晶性を有する重合体とは、示差走査熱量計(DSC)で融点Tmを観測することができる重合体を表す。以下の説明において、結晶性重合体を含む樹脂を「結晶性樹脂」ということがある。この結晶性樹脂は、好ましくは熱可塑性樹脂である。光学フィルムは、結晶性樹脂を含むこと好ましく、結晶性樹脂のみからなることがより好ましい。
[5. Optical film composition]
The optical film according to an embodiment of the present invention contains a crystalline polymer. The crystalline polymer represents a polymer having crystallinity. The crystalline polymer represents a polymer having a melting point Tm. That is, the crystalline polymer represents a polymer whose melting point Tm can be observed with a differential scanning calorimeter (DSC). In the following description, a resin containing a crystalline polymer may be referred to as a "crystalline resin". This crystalline resin is preferably a thermoplastic resin. The optical film preferably contains a crystalline resin, and more preferably consists only of the crystalline resin.
 結晶性重合体は、負の固有複屈折を有することが好ましい。負の固有複屈折を有する結晶性重合体は、延伸された場合に、その延伸方向に垂直な方向に大きな屈折率を発現できる。よって、負の固有複屈折を有する結晶性重合体を用いる場合、負の複屈折特性を有する光学フィルムを容易に得ることができる。また、このように負の固有複屈折を有する結晶性重合体を用いた場合、式(1)を満たす面内レターデーション、及び、式(2)を満たすNZ係数を容易に達成することができる。 The crystalline polymer preferably has a negative intrinsic birefringence. When a crystalline polymer having negative intrinsic birefringence is stretched, it can exhibit a large refractive index in the direction perpendicular to the stretching direction. Therefore, when a crystalline polymer having a negative intrinsic birefringence is used, an optical film having a negative birefringence characteristic can be easily obtained. Further, when the crystalline polymer having negative intrinsic birefringence is used as described above, the in-plane retardation satisfying the formula (1) and the NZ coefficient satisfying the formula (2) can be easily achieved. ..
 負の固有複屈折を有する結晶性重合体としては、芳香環を含む重合体が好ましく、例えば、ポリスチレン系重合体が挙げられる。以下の説明では、結晶性を有するポリスチレン系重合体を「結晶性ポリスチレン系重合体」と呼ぶことがある。 As the crystalline polymer having negative intrinsic birefringence, a polymer containing an aromatic ring is preferable, and examples thereof include polystyrene-based polymers. In the following description, the polystyrene-based polymer having crystallinity may be referred to as "crystalline polystyrene-based polymer".
 結晶性ポリスチレン系重合体は、スチレン系単量体の重合体でありうる。よって、結晶性ポリスチレン系重合体は、スチレン系単量体を重合して形成される構造を有する構造単位(以下、適宜「スチレン系単位」という。)を含む重合体でありうる。 The crystalline polystyrene-based polymer can be a polymer of a styrene-based monomer. Therefore, the crystalline polystyrene-based polymer can be a polymer containing a structural unit having a structure formed by polymerizing a styrene-based monomer (hereinafter, appropriately referred to as “styrene-based unit”).
 スチレン系単量体とは、スチレン、又はスチレン誘導体等の、芳香族ビニル化合物でありうる。スチレン誘導体としては、例えば、スチレンのベンゼン環またはα位若しくはβ位に置換基が置換した化合物が挙げられる。 The styrene-based monomer may be an aromatic vinyl compound such as styrene or a styrene derivative. Examples of the styrene derivative include compounds in which the benzene ring of styrene or the α-position or β-position is substituted with a substituent.
 スチレン系単量体としては、例えば、スチレン、アルキルスチレン、ハロゲン化スチレン、ハロゲン化アルキルスチレン、アルコキシスチレン、ビニル安息香酸エステル、及びこれらの水素化重合体が挙げられる。 Examples of the styrene-based monomer include styrene, alkylstyrene, halogenated styrene, halogenated alkylstyrene, alkoxystyrene, vinyl benzoic acid ester, and hydrogenated polymers thereof.
 アルキルスチレンの例としては、メチルスチレン、エチルスチレン、イソプロピルスチレン、t-ブチルスチレン、2,4-ジメチルスチレン、フェニルスチレン、ビニルナフタレン、及びビニルスチレンが挙げられる。ハロゲン化スチレンの例としては、クロロスチレン、ブロモスチレン、及びフルオロスチレンが挙げられる。ハロゲン化アルキルスチレンの例としては、クロロメチルスチレンが挙げられる。アルコキシスチレンの例としては、メトキシスチレン及びエトキシスチレンが挙げられる。スチレン系単量体の中でも、スチレン、メチルスチレン、エチルスチレン、2,4-ジメチルスチレンが好ましい。また、スチレン系単量体は、1種類を用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of alkyl styrene include methyl styrene, ethyl styrene, isopropyl styrene, t-butyl styrene, 2,4-dimethyl styrene, phenyl styrene, vinyl naphthalene, and vinyl styrene. Examples of halogenated styrene include chlorostyrene, bromostyrene, and fluorostyrene. Examples of halogenated alkyl styrenes include chloromethyl styrene. Examples of alkoxystyrene include methoxystyrene and ethoxystyrene. Among the styrene-based monomers, styrene, methylstyrene, ethylstyrene, and 2,4-dimethylstyrene are preferable. Further, one type of styrene-based monomer may be used, or two or more types may be used in combination.
 結晶性ポリスチレン系重合体は、アイソタクチック構造またはシンジオタクチック構造を有することが好ましく、シンジオタクチック構造を有することがより好ましい。結晶性ポリスチレン系重合体がシンジオタクチック構造を有する、とは、結晶性ポリスチレン系重合体の立体化学構造がシンジオタクチック構造となっていることをいう。シンジオタクチック構造とは、炭素-炭素結合で形成される主鎖に対して、側鎖であるフェニル基が、フィッシャー投影式において、交互に反対方向に位置する立体構造のことをいう。アタクチック構造を有するポリスチレン系重合体と比較すると、シンジオタクチック構造を有するポリスチレン系重合体は、通常は低比重であり、耐加水分解性、耐熱性及び耐薬品性に優れる。 The crystalline polystyrene-based polymer preferably has an isotactic structure or a syndiotactic structure, and more preferably has a syndiotactic structure. The fact that the crystalline polystyrene-based polymer has a syndiotactic structure means that the stereochemical structure of the crystalline polystyrene-based polymer has a syndiotactic structure. The syndiotactic structure is a three-dimensional structure in which phenyl groups, which are side chains, are alternately located in opposite directions with respect to the main chain formed by a carbon-carbon bond in the Fischer projection formula. Compared with the polystyrene-based polymer having an atactic structure, the polystyrene-based polymer having a syndiotactic structure usually has a low specific density and is excellent in hydrolysis resistance, heat resistance and chemical resistance.
 結晶性ポリスチレン系重合体のタクティシティー(tacticity:立体規則性)は、同位体炭素による核磁気共鳴法(13C-NMR法)により定量されうる。13C-NMR法により測定されるタクティシティーは、連続する複数個の構成単位の存在割合により示すことができる。一般に、例えば、連続する構成単位が2個の場合はダイアッド、3個の場合はトリアッド、5個の場合はペンタッドである。この場合、シンジオタクチック構造を有する結晶性ポリスチレン系重合体は、ダイアッド(ラセミダイアッド)で通常75%以上、好ましくは85%以上のシンジオタクティシティーを有しうるか、若しくは、ペンタッド(ラセミペンタッド)で通常30%以上、好ましくは50%以上のシンジオタクティシティーを有しうる。 The tacticity of a crystalline polystyrene-based polymer can be quantified by a nuclear magnetic resonance method ( 13 C-NMR method) using isotope carbon. 13 The tacticity measured by the C-NMR method can be indicated by the abundance ratio of a plurality of consecutive constituent units. In general, for example, when there are two consecutive building blocks, it is a diad, when there are three, it is a triad, and when there are five, it is a pentad. In this case, the crystalline polystyrene-based polymer having a syndiotactic structure may have a syndiotacticity of usually 75% or more, preferably 85% or more in diad (racemic diad), or pentad (racemic pen). (Tad) may have a syndiotacticity of usually 30% or more, preferably 50% or more.
 結晶性ポリスチレン系重合体は、単独重合体でもよく、共重合体であってもよい。よって、結晶性ポリスチレン系重合体は、1種類のスチレン系単量体の単独重合体であってもよく、2種類以上のスチレン系単量体の共重合体であってもよい。結晶性ポリスチレン系重合体が2種類以上のスチレン系単量体の共重合体である場合、結晶性ポリスチレン系重合体の全体100重量%に対するそれぞれのスチレン系単位の割合は、好ましくは5重量%以上、より好ましくは10重量%以上であり、好ましくは95重量%以下、より好ましくは90重量%以下である。 The crystalline polystyrene-based polymer may be a homopolymer or a copolymer. Therefore, the crystalline polystyrene-based polymer may be a homopolymer of one kind of styrene-based monomer, or may be a copolymer of two or more kinds of styrene-based monomers. When the crystalline polystyrene-based polymer is a copolymer of two or more types of styrene-based monomers, the ratio of each styrene-based unit to 100% by weight of the entire crystalline polystyrene-based polymer is preferably 5% by weight. As described above, it is more preferably 10% by weight or more, preferably 95% by weight or less, and more preferably 90% by weight or less.
 また、結晶性ポリスチレン系重合体は、1又2種類以上のスチレン系単量体とスチレン系単量体以外の単量体との共重合体であってもよい。結晶性ポリスチレン系重合体が含むスチレン系単位の割合は、所望の光学特性を有する光学フィルムを得る観点から、好ましくは80重量%以上、より好ましくは83重量%以上、更に好ましくは85重量%以上である。 Further, the crystalline polystyrene-based polymer may be a copolymer of one or more types of styrene-based monomers and a monomer other than the styrene-based monomers. The proportion of the styrene-based unit contained in the crystalline polystyrene-based polymer is preferably 80% by weight or more, more preferably 83% by weight or more, still more preferably 85% by weight or more from the viewpoint of obtaining an optical film having desired optical properties. Is.
 通常は、結晶性ポリスチレン系重合体が含むある構造単位の割合は、結晶性ポリスチレン系重合体の全単量体に対する前記構造単位に対応した単量体の割合に一致しうる。よって、結晶性ポリスチレン系重合体が含むスチレン系単位の割合は、結晶性ポリスチレン系重合体の全単量体に対するスチレン系単量体の割合に一致しうる。 Normally, the ratio of a certain structural unit contained in the crystalline polystyrene-based polymer can match the ratio of the monomer corresponding to the structural unit to all the monomers of the crystalline polystyrene-based polymer. Therefore, the ratio of the styrene-based unit contained in the crystalline polystyrene-based polymer may match the ratio of the styrene-based monomer to all the monomers of the crystalline polystyrene-based polymer.
 結晶性ポリスチレン系重合体は、例えば、不活性炭化水素溶媒中又は溶媒の不存在下において、チタン化合物及び水とトリアルキルアルミニウムの縮合生成物を触媒として、スチレン系単量体を重合することにより製造しうる(特開昭62-187708号公報参照)。 The crystalline polystyrene-based polymer is obtained, for example, by polymerizing a styrene-based monomer in an inert hydrocarbon solvent or in the absence of a solvent, using a titanium compound and a condensation product of water and trialkylaluminum as a catalyst. It can be manufactured (see Japanese Patent Application Laid-Open No. 62-187708).
 結晶性重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As the crystalline polymer, one type may be used alone, or two or more types may be used in combination at any ratio.
 結晶性重合体の重量平均分子量Mwは、好ましくは130,000以上、より好ましくは140,000以上、特に好ましくは150,000以上であり、好ましくは500,000以下、より好ましくは450,000以下、特に好ましくは400,000以下である。このような重量平均分子量Mwを有する結晶性重合体は、高いガラス転移温度Tgを有することができるので、光学フィルムの耐熱性を高めることができる。 The weight average molecular weight Mw of the crystalline polymer is preferably 130,000 or more, more preferably 140,000 or more, particularly preferably 150,000 or more, preferably 500,000 or less, and more preferably 450,000 or less. Particularly preferably, it is 400,000 or less. Since the crystalline polymer having such a weight average molecular weight Mw can have a high glass transition temperature Tg, the heat resistance of the optical film can be enhanced.
 重合体の重量平均分子量(Mw)は、1,2,4-トリクロロベンゼンを展開溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリスチレン換算値として測定しうる。 The weight average molecular weight (Mw) of the polymer can be measured as a polystyrene-equivalent value by gel permeation chromatography (GPC) using 1,2,4-trichlorobenzene as a developing solvent.
 結晶性重合体のガラス転移温度Tgは、好ましくは85℃以上、より好ましくは90℃以上、特に好ましくは95℃以上である。このように高いガラス転移温度Tgを有する結晶性重合体を用いた場合、光学フィルムの耐熱性を高めることができる。光学フィルムの製造過程において延伸を円滑に行う観点から、結晶性重合体のガラス転移温度は、好ましくは160℃以下、より好ましくは155℃以下、特に好ましくは150℃以下である。 The glass transition temperature Tg of the crystalline polymer is preferably 85 ° C. or higher, more preferably 90 ° C. or higher, and particularly preferably 95 ° C. or higher. When a crystalline polymer having such a high glass transition temperature Tg is used, the heat resistance of the optical film can be enhanced. From the viewpoint of smooth stretching in the manufacturing process of the optical film, the glass transition temperature of the crystalline polymer is preferably 160 ° C. or lower, more preferably 155 ° C. or lower, and particularly preferably 150 ° C. or lower.
 結晶性重合体の融点Tmは、好ましくは200℃以上、より好ましくは210℃以上、特に好ましくは220℃以上であり、好ましくは300℃以下、より好ましくは290℃以下、特に好ましくは280℃以下である。結晶性重合体の融点Tmが前記範囲にある場合、結晶性樹脂を成形して樹脂フィルムを得るときに、意図しない結晶性重合体の結晶化の進行、及び、熱分解による異物の発生を抑制できる。よって、良好な外観及び光学特性を有する光学フィルムを容易に得ることができる。 The melting point Tm of the crystalline polymer is preferably 200 ° C. or higher, more preferably 210 ° C. or higher, particularly preferably 220 ° C. or higher, preferably 300 ° C. or lower, more preferably 290 ° C. or lower, and particularly preferably 280 ° C. or lower. Is. When the melting point Tm of the crystalline polymer is within the above range, when the crystalline resin is molded to obtain a resin film, unintended progress of crystallization of the crystalline polymer and generation of foreign substances due to thermal decomposition are suppressed. can. Therefore, an optical film having good appearance and optical characteristics can be easily obtained.
 重合体のガラス転移温度Tg及び融点Tmは、以下の方法によって測定できる。まず、重合体を、加熱によって融解させ、融解した重合体をドライアイスで急冷する。続いて、この重合体を試験体として用いて、示差走査熱量計(DSC)を用いて、10℃/分の昇温速度(昇温モード)で、重合体のガラス転移温度Tg及び融点Tmを測定しうる。 The glass transition temperature Tg and melting point Tm of the polymer can be measured by the following methods. First, the polymer is melted by heating, and the melted polymer is rapidly cooled with dry ice. Subsequently, using this polymer as a test piece, the glass transition temperature Tg and melting point Tm of the polymer were measured at a heating rate of 10 ° C./min (heating mode) using a differential scanning calorimeter (DSC). Can be measured.
 結晶性樹脂100重量%における結晶性重合体の量は、所望の光学特性を有する光学フィルムを得る観点から、好ましくは30重量%以上、より好ましくは40重量%以上、特に好ましくは45重量%以上であり、好ましくは80重量%以下、より好ましくは70重量%以下、特に好ましくは65重量%以下である。 The amount of the crystalline polymer in 100% by weight of the crystalline resin is preferably 30% by weight or more, more preferably 40% by weight or more, and particularly preferably 45% by weight or more from the viewpoint of obtaining an optical film having desired optical properties. It is preferably 80% by weight or less, more preferably 70% by weight or less, and particularly preferably 65% by weight or less.
 光学フィルムに含まれる結晶性重合体の結晶化度は、通常は、ある程度以上高い。具体的な結晶化度の範囲は、好ましくは10%以上、より好ましくは15%以上、特に好ましくは30%以上である。結晶性重合体の結晶化度は、X線回折法によって測定しうる。 The crystallinity of the crystalline polymer contained in the optical film is usually higher than a certain level. The specific range of crystallinity is preferably 10% or more, more preferably 15% or more, and particularly preferably 30% or more. The crystallinity of the crystalline polymer can be measured by X-ray diffraction.
 結晶性樹脂は、結晶性重合体に組み合わせて、結晶性を有さない非晶性の重合体を含んでいてもよい。非晶性の重合体としては、通常、熱可塑性重合体を用いる。中でも、この非晶性の熱可塑性重合体は、正の固有複屈折を有することが好ましい。正の固有複屈折を有する重合体を、上述した負の固有複屈折を有する結晶性重合体と組み合わせて用いた場合に、光学フィルムの逆波長分散性を容易に得ることができる。 The crystalline resin may contain an amorphous polymer having no crystallinity in combination with the crystalline polymer. As the amorphous polymer, a thermoplastic polymer is usually used. Above all, this amorphous thermoplastic polymer preferably has a positive intrinsic birefringence. When a polymer having positive intrinsic birefringence is used in combination with the above-mentioned crystalline polymer having negative intrinsic birefringence, the inverse wavelength dispersibility of the optical film can be easily obtained.
 正の固有複屈折を有する熱可塑性重合体としては、透明性及び強靭性の観点から、ポリフェニレンエーテルが好ましい。ポリフェニレンエーテルは、通常、結晶性ポリスチレン系重合体との相溶性に優れることができる。 As the thermoplastic polymer having positive intrinsic birefringence, polyphenylene ether is preferable from the viewpoint of transparency and toughness. Polyphenylene ethers can usually have excellent compatibility with crystalline polystyrene-based polymers.
 ポリフェニレンエーテルは、フェニレンエーテル骨格を有する重合体を表す。フェニレンエーテル骨格のベンゼン環には、置換基が結合していてもよく、置換基が結合していなくてもよい。ポリフェニレンエーテルは、通常、その主鎖にフェニレンエーテル骨格を有する。このポリフェニレンエーテルとしては、下記式(I)で表されるフェニレンエーテル単位を含む重合体が好ましい。 Polyphenylene ether represents a polymer having a phenylene ether skeleton. Substituents may or may not be attached to the benzene ring of the phenylene ether skeleton. Polyphenylene ether usually has a phenylene ether skeleton in its backbone. As the polyphenylene ether, a polymer containing a phenylene ether unit represented by the following formula (I) is preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(I)において、Qは、それぞれ独立に、ハロゲン原子、低級アルキル基(例えば炭素数1以上7以下のアルキル基)、フェニル基、ハロアルキル基、アミノアルキル基、炭化水素オキシ基、または、ハロ炭化水素オキシ基(ただし、そのハロゲン原子と酸素原子とを少なくとも2つの炭素原子が分離している基)を表す。中でも、Qとしてはアルキル基及びフェニル基が好ましく、特に炭素数1以上4以下のアルキル基がより好ましい。 In formula (I), Q 1 is independently a halogen atom, a lower alkyl group (for example, an alkyl group having 1 or more and 7 or less carbon atoms), a phenyl group, a haloalkyl group, an aminoalkyl group, a hydrocarbon oxy group, or Represents a halohydrocarbon oxy group (where the halogen atom and the oxygen atom are separated by at least two carbon atoms). Of these, an alkyl group and a phenyl group are preferable as Q 1 , and an alkyl group having 1 or more and 4 or less carbon atoms is particularly preferable.
 式(I)において、Qは、それぞれ独立に、水素原子、ハロゲン原子、低級アルキル基(例えば炭素数1以上7以下のアルキル基)、フェニル基、ハロアルキル基、炭化水素オキシ基、または、ハロ炭化水素オキシ基(ただし、そのハロゲン原子と酸素原子とを少なくとも2つの炭素原子が分離している基)を表す。中でも、Qとしては水素原子が好ましい。 In the formula (I), Q 2 is independently a hydrogen atom, a halogen atom, a lower alkyl group (for example, an alkyl group having 1 or more and 7 or less carbon atoms), a phenyl group, a haloalkyl group, a hydrocarbon oxy group, or a halo. Represents a hydrocarbon oxy group (where the halogen atom and the oxygen atom are separated by at least two carbon atoms). Of these, a hydrogen atom is preferable as Q2 .
 ポリフェニレンエーテルは、1種類の構造単位を有する単独重合体であってもよく、2種類以上の構造単位を有する共重合体であってもよい。 The polyphenylene ether may be a homopolymer having one kind of structural unit or a copolymer having two or more kinds of structural units.
 式(I)で表される構造単位を含む重合体が単独重合体である場合、当該単独重合体の好ましい例を挙げると、2,6-ジメチル-1,4-フェニレンエーテル単位(「-(C(CH-O)-」で表される構造単位)を有する単独重合体が挙げられる。 When the polymer containing the structural unit represented by the formula (I) is a homopolymer, a preferred example of the homopolymer is 2,6-dimethyl-1,4-phenylene ether unit ("-(". Examples thereof include homopolymers having a structural unit (represented by C 6 H 2 (CH 3 ) 2 -O)-”.
 式(I)で表される構造単位を含む重合体が共重合体である場合、当該共重合体の好ましい例を挙げると、2,6-ジメチル-1,4-フェニレンエーテル単位と2,3,6-トリメチル-1,4-フェニレンエーテル単位(「-(CH(CH-O-)-」で表される構造単位)とを組み合わせて有するランダム共重合体が挙げられる。 When the polymer containing the structural unit represented by the formula (I) is a copolymer, preferred examples of the copolymer include 2,6-dimethyl-1,4-phenylene ether unit and 2,3. , 6-trimethyl-1,4-phenylene ether unit (structural unit represented by "-(C 6 H (CH 3 ) 3 -O-)-") and a random copolymer having a combination thereof.
 ポリフェニレンエーテルは、フェニレンエーテル単位以外の構造単位を含んでいてもよい。この場合、ポリフェニレンエーテルは、フェニレンエーテル単位とそれ以外の構造単位とを有する共重合体でありうる。ただし、ポリフェニレンエーテルにおけるフェニレンエーテル単位以外の構造単位の比率は、所望の光学特性が得られる範囲で少ないことが好ましい。具体的には、ポリフェニレンエーテル100重量%におけるフェニレンエーテル単位の含有量は、好ましくは50重量%以上、より好ましくは70重量%以上、更に好ましくは80重量%以上、更に好ましくは90重量%以上、特に好ましくは95重量%以上である。 The polyphenylene ether may contain structural units other than the phenylene ether unit. In this case, the polyphenylene ether can be a copolymer having a phenylene ether unit and other structural units. However, the ratio of structural units other than the phenylene ether unit in the polyphenylene ether is preferably small as long as the desired optical properties can be obtained. Specifically, the content of the phenylene ether unit in 100% by weight of the polyphenylene ether is preferably 50% by weight or more, more preferably 70% by weight or more, still more preferably 80% by weight or more, still more preferably 90% by weight or more. Particularly preferably, it is 95% by weight or more.
 例えば、ポリマー鎖にグラフトされた他の置換基を有するポリフェニレンエーテルも挙げられる。このようなポリフェニレンエーテルは、例えば、適切な方法でポリフェニレンエーテル上に他の置換基をグラフトさせることにより合成できる。具体例を挙げると、ポリスチレン、ポリブタジエン、又はその他のビニル含有ポリマー等のポリマーでグラフトされたポリフェニレンエーテルが挙げられる。 For example, polyphenylene ethers having other substituents grafted on the polymer chain can also be mentioned. Such polyphenylene ethers can be synthesized, for example, by grafting another substituent onto the polyphenylene ether by an appropriate method. Specific examples include polyphenylene ether grafted with a polymer such as polystyrene, polybutadiene, or other vinyl-containing polymer.
 ポリフェニレンエーテルの製造方法に制限は無く、例えば、特開平11-302529号公報に記載の方法により製造してもよい。 There are no restrictions on the method for producing polyphenylene ether, and for example, the polyphenylene ether may be produced by the method described in JP-A-11-302259.
 非晶性の重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As the amorphous polymer, one type may be used alone, or two or more types may be used in combination at any ratio.
 ポリフェニレンエーテル等の非晶性の重合体の重量平均分子量Mwは、好ましくは15,000以上、より好ましくは25,000以上、特に好ましくは35,000以上であり、好ましくは100,000以下、より好ましくは85,000以下、特に好ましくは70,000以下である。非晶性の重合体の重量平均分子量Mwが前記範囲の下限値以上である場合、光学フィルムの機械的強度を高めることができる。また、非晶性の重合体の重量平均分子量Mwが前記範囲の上限値以下である場合、結晶性重合体と非晶性の重合体とを高いレベルで均一に混合することが可能となる。 The weight average molecular weight Mw of the amorphous polymer such as polyphenylene ether is preferably 15,000 or more, more preferably 25,000 or more, particularly preferably 35,000 or more, and preferably 100,000 or less. It is preferably 85,000 or less, and particularly preferably 70,000 or less. When the weight average molecular weight Mw of the amorphous polymer is not more than the lower limit of the above range, the mechanical strength of the optical film can be increased. Further, when the weight average molecular weight Mw of the amorphous polymer is not more than the upper limit of the above range, the crystalline polymer and the amorphous polymer can be uniformly mixed at a high level.
 ポリフェニレンエーテル等の非晶性の重合体のガラス転移温度は、好ましくは100℃以上、より好ましくは110℃以上、特に好ましくは120℃以上であり、好ましくは350℃以下、より好ましくは300℃以下、特に好ましくは250℃以下である。非晶性の重合体のガラス転移温度が前記範囲の下限値以上である場合、光学フィルムの耐熱性を高めることができる。また、非晶性の重合体のガラス転移温度が前記範囲の上限値以下である場合、光学フィルムの製造過程における延伸を円滑に行うことができる。 The glass transition temperature of an amorphous polymer such as polyphenylene ether is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, particularly preferably 120 ° C. or higher, preferably 350 ° C. or lower, more preferably 300 ° C. or lower. Particularly preferably, it is 250 ° C. or lower. When the glass transition temperature of the amorphous polymer is at least the lower limit of the above range, the heat resistance of the optical film can be enhanced. Further, when the glass transition temperature of the amorphous polymer is not more than the upper limit of the above range, stretching in the manufacturing process of the optical film can be smoothly performed.
 結晶性樹脂100重量%における非晶性の重合体の量は、所望の光学特性を有する光学フィルムを得る観点から、好ましくは20重量%以上、より好ましくは30重量%以上、特に好ましくは35重量%以上であり、好ましくは70重量%以下、より好ましくは60重量%以下、特に好ましくは55重量%以下である。 The amount of the amorphous polymer in 100% by weight of the crystalline resin is preferably 20% by weight or more, more preferably 30% by weight or more, and particularly preferably 35% by weight from the viewpoint of obtaining an optical film having desired optical properties. % Or more, preferably 70% by weight or less, more preferably 60% by weight or less, and particularly preferably 55% by weight or less.
 結晶性樹脂が、正の固有複屈折を有する熱可塑性重合体と負の固有複屈折を有する結晶性重合体とを組み合わせて含む場合、その重量比(熱可塑性重合体/結晶性重合体)は、特定の範囲にあることが好ましい。具体的には、重量比(熱可塑性重合体/結晶性重合体)は、好ましくは3/7以上、より好ましくは3.5/6.5以上、特に好ましくは4/6以上であり、好ましくは8/2以下、より好ましくは7.5/2.5以下、特に好ましくは7/3以下である。重量比(熱可塑性重合体/結晶性重合体)が前記の範囲にある場合、光学フィルムの逆波長分散性を容易に得ることができる。 When the crystalline resin contains a combination of a thermoplastic polymer having a positive intrinsic compound refraction and a crystalline polymer having a negative intrinsic compound refraction, the weight ratio (thermoplastic polymer / crystalline polymer) is , Preferably within a specific range. Specifically, the weight ratio (thermoplastic polymer / crystalline polymer) is preferably 3/7 or more, more preferably 3.5 / 6.5 or more, and particularly preferably 4/6 or more. Is 8/2 or less, more preferably 7.5 / 2.5 or less, and particularly preferably 7/3 or less. When the weight ratio (thermoplastic polymer / crystalline polymer) is in the above range, the inverse wavelength dispersibility of the optical film can be easily obtained.
 結晶性樹脂は、上述した結晶性重合体及び非晶性の重合体に組み合わせて、任意の成分を含んでいてもよい。任意の成分としては、例えば、滑剤;層状結晶化合物;無機微粒子等の微粒子;酸化防止剤、熱安定剤、光安定剤、耐候安定剤、紫外線吸収剤、近赤外線吸収剤等の安定剤;可塑剤;染料及び顔料等の着色剤;帯電防止剤;などが挙げられる。任意の成分は、1種類を用いてもよく、2種類以上を組み合わせて用いてもよい。任意の成分の量は、本発明の効果を著しく損なわない範囲で適宜定めうる。任意の成分の量は、例えば、光学フィルムの全光線透過率を85%以上に維持できる範囲でありうる。 The crystalline resin may contain any component in combination with the above-mentioned crystalline polymer and amorphous polymer. Optional components include, for example, lubricants; layered crystal compounds; fine particles such as inorganic fine particles; antioxidants, heat stabilizers, light stabilizers, weathering stabilizers, ultraviolet absorbers, stabilizers such as near-infrared absorbers; plastics. Agents; colorants such as dyes and pigments; antistatic agents; and the like. Any component may be used alone or in combination of two or more. The amount of any component can be appropriately determined as long as the effect of the present invention is not significantly impaired. The amount of any component may be, for example, in the range where the total light transmittance of the optical film can be maintained at 85% or more.
[6.光学フィルムの層構成]
 光学フィルムは、複数の層を含む複層構造を有していてもよいが、単層構造を有することが好ましい。単層構造とは、同じ組成を有する単一の層のみを有し、前記の組成とは異なる組成を有する層を備えない構造を表す。よって、光学フィルムは、前記の結晶性樹脂で形成された層を単独で有することが好ましい。
[6. Layer structure of optical film]
The optical film may have a multi-layer structure including a plurality of layers, but preferably has a single-layer structure. The single-layer structure represents a structure having only a single layer having the same composition and not having a layer having a composition different from the above-mentioned composition. Therefore, it is preferable that the optical film has a single layer formed of the crystalline resin.
[7.光学フィルムの特性]
 光学フィルムは、その用途に応じた適切な範囲の面内レターデーションを有することが好ましい。
[7. Characteristics of optical film]
The optical film preferably has an in-plane retardation in an appropriate range according to the application.
 例えば、光学フィルムの具体的な面内レターデーションReは、測定波長550nmにおいて、好ましくは100nm以上、より好ましくは110nm以上、特に好ましくは120nm以上でありえ、また、好ましくは180nm以下、より好ましく170nm以下、特に好ましくは160nm以下でありうる。この場合、光学フィルムは、1/4波長板として機能できる。 For example, the specific in-plane retardation Re of the optical film may be preferably 100 nm or more, more preferably 110 nm or more, particularly preferably 120 nm or more, and preferably 180 nm or less, more preferably 170 nm or less at a measurement wavelength of 550 nm. Particularly preferably, it may be 160 nm or less. In this case, the optical film can function as a 1/4 wave plate.
 例えば、光学フィルムの具体的な面内レターデーションReは、測定波長550nmにおいて、好ましくは245nm以上、より好ましくは265nm以上、特に好ましくは270nm以上でありえ、また、好ましくは320nm以下、より好ましくは300nm以下、特に好ましくは295nm以下でありうる。この場合、光学フィルムは、1/2波長板として機能できる。 For example, the specific in-plane retardation Re of the optical film may be preferably 245 nm or more, more preferably 265 nm or more, particularly preferably 270 nm or more, and preferably 320 nm or less, more preferably 300 nm at a measurement wavelength of 550 nm. Hereinafter, it may be particularly preferably 295 nm or less. In this case, the optical film can function as a 1/2 wave plate.
 フィルムのレターデーションは、位相差計(例えば、AXOMETRICS社製「AxoScan OPMF-1」)を用いて測定しうる。 The film retardation can be measured using a phase difference meter (for example, "AXoScan OPMF-1" manufactured by AXOMETRICS).
 光学フィルムは、高い透明性を有することが好ましい。光学フィルムの具体的な全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは88%以上である。フィルムの全光線透過率は、紫外・可視分光計を用いて、波長400nm~700nmの範囲で測定しうる。 The optical film preferably has high transparency. The specific total light transmittance of the optical film is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more. The total light transmittance of the film can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet / visible spectrometer.
 光学フィルムは、小さいヘイズを有することが好ましい。光学フィルムのヘイズは、好ましくは1.0%未満、より好ましくは0.8%未満、特に好ましくは0.5%未満であり、理想的には0.0%である。このようにヘイズが小さい光学フィルムは、表示装置に設けた場合に、その表示装置に表示される画像の鮮明性を高くできる。フィルムのヘイズは、ヘイズメーター(例えば、日本電色工業社製「NDH5000」)を用いて測定しうる。 The optical film preferably has a small haze. The haze of the optical film is preferably less than 1.0%, more preferably less than 0.8%, particularly preferably less than 0.5%, ideally 0.0%. When the optical film having such a small haze is provided in the display device, the sharpness of the image displayed on the display device can be improved. The haze of the film can be measured using a haze meter (for example, "NDH5000" manufactured by Nippon Denshoku Kogyo Co., Ltd.).
 光学フィルムは、溶媒を含みうる。この溶媒は、後述する製造方法において、樹脂フィルムを溶媒に接触させる工程においてフィルム中に取り込まれたものでありうる。詳細には、樹脂フィルムに接触することで当該フィルム中に取り込まれた溶媒の全部または一部は、重合体の内部に入り込みうる。したがって、溶媒の沸点以上で乾燥を行ったとしても、容易には溶媒を完全に除去することは難しい。よって、光学フィルムは、溶媒を含みうる。 The optical film may contain a solvent. This solvent may be incorporated into the film in the step of bringing the resin film into contact with the solvent in the production method described later. Specifically, all or part of the solvent incorporated into the film upon contact with the resin film can enter the interior of the polymer. Therefore, it is difficult to completely remove the solvent even if the drying is performed above the boiling point of the solvent. Therefore, the optical film may contain a solvent.
 光学フィルムは、延伸フィルムであることが好ましい。延伸フィルムとは、延伸処理を経て製造されたフィルムを表す。中でも、光学フィルムは、一軸延伸フィルムであることが好ましい。一軸延伸フィルムとは、積極的に延伸処理をするのは一の方向のみであり、それ以外の方向への積極的な延伸処理が行われていないフィルムを表す。一軸延伸フィルムは、一方向のみへの延伸によって製造できるので、製造工程をシンプルにでき、よって簡単な製造を実現できる。 The optical film is preferably a stretched film. The stretched film represents a film produced through a stretching treatment. Above all, the optical film is preferably a uniaxially stretched film. The uniaxially stretched film represents a film that is positively stretched only in one direction and is not positively stretched in any other direction. Since the uniaxially stretched film can be manufactured by stretching in only one direction, the manufacturing process can be simplified, and thus simple manufacturing can be realized.
 光学フィルムは、枚葉のフィルムであってもよく、長尺の形状を有する長尺フィルムであってもよい。光学フィルムが長尺の形状を有する場合、光学フィルムと長尺の偏光フィルムとを貼り合わせて、偏光板を連続的に製造することが可能である。 The optical film may be a single-wafer film or a long film having a long shape. When the optical film has a long shape, it is possible to continuously manufacture a polarizing plate by laminating the optical film and the long polarizing film.
 光学フィルムの厚みは、光学フィルムの用途に応じて適切に設定できる。光学フィルムの具体的な厚みは、好ましくは5μm以上、より好ましくは10μm以上、特に好ましくは30μm以上であり、好ましくは400μm以下、より好ましくは300μm以下で、特に好ましくは200μm以下である。 The thickness of the optical film can be set appropriately according to the application of the optical film. The specific thickness of the optical film is preferably 5 μm or more, more preferably 10 μm or more, particularly preferably 30 μm or more, preferably 400 μm or less, more preferably 300 μm or less, and particularly preferably 200 μm or less.
[8.光学フィルムの製造方法の概要]
 上述した光学フィルムは、
  負の固有複屈折を有する結晶性重合体と、正の固有複屈折を有する熱可塑性重合体と、を含む結晶性樹脂からなる樹脂フィルムを用意する工程(i)と;
  樹脂フィルムを、溶媒に接触させて、厚み方向の複屈折を変化させる工程(ii)と;
  樹脂フィルムを延伸する工程(iii)と、
 をこの順に含む製造方法によって、製造できる。
 以下の説明では、樹脂フィルムのうち、工程(ii)において溶媒と接触させられる前の樹脂フィルムを「原反フィルム」、工程(ii)において溶媒接触させられた後の樹脂フィルムを「延伸前フィルム」ということがある。
[8. Outline of manufacturing method of optical film]
The above-mentioned optical film is
The step (i) of preparing a resin film made of a crystalline resin containing a crystalline polymer having a negative intrinsic birefringence and a thermoplastic polymer having a positive intrinsic birefringence;
The step (ii) of bringing the resin film into contact with a solvent to change the birefringence in the thickness direction;
The step of stretching the resin film (iii) and
Can be manufactured by a manufacturing method containing the above in this order.
In the following description, among the resin films, the resin film before being brought into contact with the solvent in step (ii) is referred to as "raw film", and the resin film after being brought into contact with the solvent in step (ii) is referred to as "pre-stretched film". ".
 前記の製造方法によって上述した光学フィルムが得られる仕組みを、本発明者は下記の通りであると推察する。ただし、本発明の技術的範囲は、下記の仕組みによって制限されない。 The present inventor presumes that the mechanism for obtaining the above-mentioned optical film by the above-mentioned manufacturing method is as follows. However, the technical scope of the present invention is not limited by the following mechanism.
 この製造方法では、負の固有複屈折を有する結晶性重合体を含む樹脂フィルムを用いて光学フィルムを製造する。負の固有複屈折を有する結晶性重合体は、ある配向方向に配向すると、その配向方向に小さい屈折率を発現し、その配向方向に垂直な方向に大きな屈折率を発現しうる。よって、この結晶性重合体を含む樹脂フィルム及び光学フィルムは、要件(A)で表すように負の複屈折特性を有することができる。 In this manufacturing method, an optical film is manufactured using a resin film containing a crystalline polymer having a negative intrinsic birefringence. When a crystalline polymer having a negative intrinsic birefringence is oriented in a certain orientation direction, it can exhibit a small refractive index in the orientation direction and a large refractive index in the direction perpendicular to the orientation direction. Therefore, the resin film and the optical film containing this crystalline polymer can have negative birefringence characteristics as represented by the requirement (A).
 また、光学フィルムは、負の固有複屈折を有する結晶性重合体に組み合わせて、正の固有複屈折を有する熱可塑性重合体を含みうる。正の固有複屈折を有する熱可塑性重合体がある配向方向に配向すると、その配向方向に大きい屈折率が発現し、その配向方向に垂直な方向に小さな屈折率が発現しうる。よって、ある配向方向に配向した場合、結晶性重合体の屈折率が最大になる方向と、熱可塑性重合体の屈折率が最大になる方向とは、垂直でありうる。そうすると、それら結晶性重合体と熱可塑性重合体とを組み合わせて含む光学フィルムの全体の複屈折は、結晶性重合体の複屈折と熱可塑性重合体の複屈折との差が反映されうる。上述した光学フィルムでは、結晶性重合体の複屈折と熱可塑性重合体の複屈折との差が、短い測定波長では小さく、長い測定波長では大きい。そのため、上述した製造方法によって得られる光学フィルムは、要件(B)で表されるように逆波長分散性を有することができる。 Further, the optical film may contain a thermoplastic polymer having a positive intrinsic birefringence in combination with a crystalline polymer having a negative intrinsic birefringence. When a thermoplastic polymer having positive intrinsic birefringence is oriented in a certain orientation direction, a large refractive index may be developed in the orientation direction, and a small refractive index may be developed in the direction perpendicular to the orientation direction. Therefore, when oriented in a certain orientation direction, the direction in which the refractive index of the crystalline polymer is maximized and the direction in which the refractive index of the thermoplastic polymer is maximized can be perpendicular to each other. Then, the entire birefringence of the optical film containing the combination of the crystalline polymer and the thermoplastic polymer may reflect the difference between the birefringence of the crystalline polymer and the birefringence of the thermoplastic polymer. In the above-mentioned optical film, the difference between the birefringence of the crystalline polymer and the birefringence of the thermoplastic polymer is small at a short measurement wavelength and large at a long measurement wavelength. Therefore, the optical film obtained by the above-mentioned manufacturing method can have a reverse wavelength dispersibility as represented by the requirement (B).
 さらに、結晶性重合体を含む原反フィルムを、工程(ii)において溶媒と接触させると、その溶媒が原反フィルム中に浸入する。浸入した溶媒の作用により、フィルム中の結晶性重合体の分子にミクロブラウン運動が生じ、その分子鎖が配向する。本発明者の検討によれば、この分子鎖の配向の際には、結晶性重合体の溶媒誘起結晶化現象が進行することがありうると考えられる。 Further, when the raw fabric film containing the crystalline polymer is brought into contact with a solvent in the step (ii), the solvent infiltrates into the raw fabric film. The action of the infiltrated solvent causes microBrownian motion in the molecules of the crystalline polymer in the film, and the molecular chains are oriented. According to the study of the present inventor, it is considered that the solvent-induced crystallization phenomenon of the crystalline polymer may proceed when the molecular chain is oriented.
 一般に、フィルムの表面積は、主表面であるオモテ面及びウラ面が大きい。よって、溶媒の浸入速度は、前記のオモテ面又はウラ面を通った厚み方向への浸入速度が、大きい。そうすると、前記の結晶性重合体の分子の配向は、当該重合体の分子が厚み方向に配向するように進行しうる。よって、工程(ii)では、結晶性重合体の分子を厚み方向に配向させることができる。 Generally, the surface area of the film is large on the front surface and the back surface, which are the main surfaces. Therefore, as for the infiltration rate of the solvent, the infiltration rate in the thickness direction through the front surface or the back surface is high. Then, the orientation of the molecules of the crystalline polymer can proceed so that the molecules of the polymer are oriented in the thickness direction. Therefore, in the step (ii), the molecules of the crystalline polymer can be oriented in the thickness direction.
 そして、本実施形態に係る製造方法では、工程(ii)において結晶性重合体の分子を厚み方向に配向させられた樹脂フィルムとしての延伸前フィルムを、工程(iii)において延伸している。延伸によれば、延伸前フィルムに含まれる重合体の分子を、厚み方向に垂直な方向に配向させることができる。よって、工程(ii)における厚み方向への配向と、工程(iii)における厚み方向に垂直な方向への配向とを組み合わせることにより、重合体の分子の配向方向を三次元的に調整することができる。よって、上述した製造方法によって得られる光学フィルムは、要件(C)で表されるように適切な範囲のNZ係数を有することができる。 Then, in the production method according to the present embodiment, the pre-stretched film as a resin film in which the molecules of the crystalline polymer are oriented in the thickness direction in the step (ii) is stretched in the step (iii). According to stretching, the molecules of the polymer contained in the pre-stretched film can be oriented in a direction perpendicular to the thickness direction. Therefore, by combining the orientation in the thickness direction in the step (iii) and the orientation in the direction perpendicular to the thickness direction in the step (iii), the orientation direction of the polymer molecules can be three-dimensionally adjusted. can. Therefore, the optical film obtained by the above-mentioned manufacturing method can have an NZ coefficient in an appropriate range as represented by the requirement (C).
[9.樹脂フィルムを用意する工程(i)]
 光学フィルムの製造方法は、溶媒に接触させる前の樹脂フィルムとしての原反フィルムを用意する工程を含む。
[9. Step of preparing a resin film (i)]
The method for producing an optical film includes a step of preparing a raw film as a resin film before contacting with a solvent.
 工程(i)で用意される原反フィルムの材料としては、結晶性重合体を含む結晶性樹脂を用いうる。原反フィルムは、好ましくは、結晶性樹脂のみからなる。原反フィルムに含まれる結晶性樹脂は、光学フィルムに含まれる結晶性樹脂と同じものでありうる。ただし、原反フィルムに含まれる結晶性重合体の結晶化度は、小さいことが好ましい。具体的な結晶化度は、好ましくは10%未満、より好ましくは5%未満、特に好ましくは3%未満である。溶媒と接触する前の原反フィルムに含まれる結晶性重合体の結晶化度が低いと、溶媒との接触によって多くの結晶性重合体の分子を厚み方向に配向させられるので、広い範囲でのNZ係数の調整が可能となる。 As the material of the raw film prepared in the step (i), a crystalline resin containing a crystalline polymer can be used. The raw film is preferably made of only crystalline resin. The crystalline resin contained in the raw film may be the same as the crystalline resin contained in the optical film. However, the crystallinity of the crystalline polymer contained in the raw film is preferably small. The specific crystallinity is preferably less than 10%, more preferably less than 5%, and particularly preferably less than 3%. If the crystallinity of the crystalline polymer contained in the raw film before contact with the solvent is low, many molecules of the crystalline polymer can be oriented in the thickness direction by contact with the solvent, so that in a wide range. The NZ coefficient can be adjusted.
 原反フィルムは、好ましくは光学等方性を有する。よって、原反フィルムは、面内方向の複屈折Re/dが小さいことが好ましく、厚み方向の複屈折の絶対値|Rth/d|が小さいことが好ましい。具体的には、原反フィルムの面内方向の複屈折Re/dは、好ましくは1.0×10-3未満、より好ましくは0.5×10-3未満、特に好ましくは0.3×10-3未満である。また、原反フィルムの厚み方向の複屈折の絶対値|Rth/d|は、好ましくは1.0×10-3未満、より好ましくは0.5×10-3未満、特に好ましくは0.3×10-3未満である。このように光学等方性を有することは、原反フィルムに含まれる結晶性重合体の分子の配向性が低く、実質的に無配向状態となっていることを表す。このような光学等方性の原反フィルムを用いた場合、当該原反フィルムの光学特性の精密な制御が不要であり、よって結晶性重合体の分子の配向性の精密な制御が不要であるので、光学フィルムの製造方法をシンプルにできる。さらに、光学等方性の原反フィルムを用いた場合、通常は、ヘイズが小さい光学フィルムを得ることができる。 The raw film preferably has optical isotropic properties. Therefore, the raw film preferably has a small birefringence Re / d in the in-plane direction, and preferably has a small absolute value | Rth / d | of the birefringence in the thickness direction. Specifically, the birefringence Re / d of the raw film in the in-plane direction is preferably less than 1.0 × 10 -3 , more preferably less than 0.5 × 10 -3 , and particularly preferably 0.3 ×. It is less than 10 -3 . Further, the absolute value | Rth / d | of the birefringence in the thickness direction of the raw film is preferably less than 1.0 × 10 -3 , more preferably less than 0.5 × 10 -3 , and particularly preferably 0.3. It is less than × 10 -3 . Having optical isotropic properties as described above indicates that the molecular orientation of the crystalline polymer contained in the raw film is low and is substantially non-oriented. When such an optically isotropic raw fabric film is used, it is not necessary to precisely control the optical properties of the raw fabric film, and therefore, it is not necessary to precisely control the orientation of the molecules of the crystalline polymer. Therefore, the manufacturing method of the optical film can be simplified. Further, when an optically isotropic raw film is used, it is usually possible to obtain an optical film having a small haze.
 原反フィルムは、溶媒の含有量が小さいことが好ましく、溶媒を含まないことがより好ましい。原反フィルムの重量100%に対する当該原反フィルムに含まれる溶媒の比率(溶媒含有率)は、好ましくは1%以下、より好ましくは0.5%以下、特に好ましくは0.1%以下であり、理想的には0.0%である。溶媒と接触する前の原反フィルムに含まれる溶媒の量が少ないことにより、溶媒との接触によって多くの結晶性重合体の分子を厚み方向に配向させられるので、広い範囲でのNZ係数の調整が可能となる。原反フィルムの溶媒含有率は、密度によって測定しうる。 The raw film preferably has a small solvent content, and more preferably does not contain a solvent. The ratio (solvent content) of the solvent contained in the raw film to 100% by weight of the raw film is preferably 1% or less, more preferably 0.5% or less, and particularly preferably 0.1% or less. Ideally, it is 0.0%. Since the amount of the solvent contained in the raw film before contact with the solvent is small, many molecules of the crystalline polymer can be oriented in the thickness direction by the contact with the solvent, so that the NZ coefficient can be adjusted in a wide range. Is possible. The solvent content of the raw film can be measured by the density.
 原反フィルムのヘイズは、好ましくは1.0%未満、好ましくは0.8%未満、より好ましくは0.5%未満であり、理想的には0.0%である。原反フィルムのヘイズが小さいほど、得られる光学フィルムのヘイズを小さくし易い。 The haze of the raw film is preferably less than 1.0%, preferably less than 0.8%, more preferably less than 0.5%, and ideally 0.0%. The smaller the haze of the original film, the easier it is to reduce the haze of the obtained optical film.
 原反フィルムの厚みは、製造しようとする光学フィルムの厚みに応じて設定することが好ましい。通常、工程(ii)で溶媒と接触させることにより、厚みは大きくなる。工程(iii)において延伸を行うことにより、厚みは小さくなる。したがって、前記のような工程(ii)及び工程(iii)における厚みの変化を考慮して、原反フィルムの厚みを設定してもよい。 It is preferable to set the thickness of the raw film according to the thickness of the optical film to be manufactured. Usually, the thickness is increased by contacting with the solvent in the step (ii). By performing stretching in the step (iii), the thickness becomes smaller. Therefore, the thickness of the raw film may be set in consideration of the change in thickness in the step (ii) and the step (iii) as described above.
 原反フィルムは、枚葉のフィルムであってもよいが、長尺のフィルムであることが好ましい。長尺の原反フィルムを用いることにより、ロール・トゥ・ロール法による光学フィルムの連続的な製造が可能であるので、光学フィルムの生産性を効果的に高めることができる。 The raw film may be a single-wafer film, but it is preferably a long film. By using a long raw film, it is possible to continuously produce an optical film by a roll-to-roll method, so that the productivity of the optical film can be effectively increased.
 原反フィルムの製造方法としては、溶媒を含まない原反フィルムが得られることから、射出成形法、押出成形法、プレス成形法、インフレーション成形法、ブロー成形法、カレンダー成形法、注型成形法、圧縮成形法等の樹脂成形法が好ましい。これらの中でも、厚みの制御が容易であることから、押出成形法が好ましい。 As a method for producing the raw fabric film, since a raw fabric film containing no solvent can be obtained, an injection molding method, an extrusion molding method, a press molding method, an inflation molding method, a blow molding method, a calendar molding method, and a casting molding method. , A resin molding method such as a compression molding method is preferable. Among these, the extrusion molding method is preferable because the thickness can be easily controlled.
 押出成形法における製造条件は、好ましくは下記の通りである。シリンダー温度(溶融樹脂温度)は、好ましくはTm以上、より好ましくは「Tm+20℃」以上であり、好ましくは「Tm+100℃」以下、より好ましくは「Tm+50℃」以下である。また、フィルム状に押し出された溶融樹脂が最初に接触する冷却体は特に限定されないが、通常はキャストロールを用いる。このキャストロール温度は、好ましくは「Tg-50℃」以上であり、好ましくは「Tg+70℃」以下、より好ましくは「Tg+40℃」以下である。このような条件で原反フィルムを製造する場合、厚み1μm~1mmの原反フィルムを容易に製造できる。ここで、「Tm」は、結晶性重合体の融点を表し、「Tg」は結晶性重合体のガラス転移温度を表す。 The manufacturing conditions in the extrusion molding method are preferably as follows. The cylinder temperature (molten resin temperature) is preferably Tm or higher, more preferably "Tm + 20 ° C" or higher, preferably "Tm + 100 ° C" or lower, and more preferably "Tm + 50 ° C" or lower. Further, the cooling body that the molten resin extruded into a film comes into contact with first is not particularly limited, but a cast roll is usually used. The cast roll temperature is preferably "Tg-50 ° C." or higher, preferably "Tg + 70 ° C." or lower, and more preferably "Tg + 40 ° C." or lower. When the raw fabric film is manufactured under such conditions, the raw fabric film having a thickness of 1 μm to 1 mm can be easily manufactured. Here, "Tm" represents the melting point of the crystalline polymer, and "Tg" represents the glass transition temperature of the crystalline polymer.
[10.樹脂フィルムを溶媒に接触させる工程(ii)]
 光学フィルムの製造方法は、工程(i)の後に、原反フィルムとしての樹脂フィルムを溶媒に接触させる工程(ii)を含む。この工程(ii)により、原反フィルムの厚み方向の複屈折が変化して、原反フィルムとは異なる厚み方向の複屈折を有する延伸前フィルムが得られる。
[10. Step of bringing the resin film into contact with the solvent (ii)]
The method for producing an optical film includes a step (ii) in which a resin film as a raw film is brought into contact with a solvent after the step (i). By this step (ii), the birefringence in the thickness direction of the raw film is changed, and a pre-stretched film having a birefringence in the thickness direction different from that of the raw film is obtained.
 溶媒としては、通常は有機溶媒を用いる。溶媒の具体的な種類は、樹脂フィルムに含まれる結晶性重合体を溶解させずに当該樹脂フィルム中に浸入できる溶媒を用いることができ、例えば、シクロヘキサン、トルエン、リモネン、デカリン等の炭化水素溶媒;二硫化炭素;が挙げられる。溶媒の種類は、1種類でもよく、2種類以上でもよい。 As the solvent, an organic solvent is usually used. As a specific type of solvent, a solvent that can penetrate into the resin film without dissolving the crystalline polymer contained in the resin film can be used, and for example, a hydrocarbon solvent such as cyclohexane, toluene, limonene, and decalin can be used. ; Carbon disulfide; The type of the solvent may be one type or two or more types.
 樹脂フィルムと溶媒との接触方法は、制限は無い。接触方法としては、例えば、樹脂フィルムに溶媒をスプレーするスプレー法;樹脂フィルムに溶媒を塗布する塗布法;溶媒中に樹脂フィルムを浸漬する浸漬法;などが挙げられる。中でも、連続的な接触を容易に行えることから、浸漬法が好ましい。 There are no restrictions on the contact method between the resin film and the solvent. Examples of the contact method include a spray method in which a solvent is sprayed on a resin film; a coating method in which a solvent is applied to a resin film; a dipping method in which a resin film is immersed in a solvent; and the like. Above all, the dipping method is preferable because continuous contact can be easily performed.
 樹脂フィルムに接触させる溶媒の温度は、溶媒が液体状態を維持できる範囲で任意であり、よって、溶媒の融点以上沸点以下の範囲に設定しうる。 The temperature of the solvent in contact with the resin film is arbitrary as long as the solvent can maintain the liquid state, and therefore can be set in the range of the melting point or more and the boiling point or less of the solvent.
 接触時間は、好ましくは0.5秒以上、より好ましくは1.0秒以上、特に好ましくは5.0秒以上である。上限は、特段の制限は無く、例えば24時間以下であってもよい。ただし、接触時間を長くしても配向の進行の程度は大きく変わらない傾向があるので、所望の光学特性が得られる範囲で、接触時間は短いことが好ましい。 The contact time is preferably 0.5 seconds or longer, more preferably 1.0 seconds or longer, and particularly preferably 5.0 seconds or longer. The upper limit is not particularly limited and may be, for example, 24 hours or less. However, since the degree of progress of orientation tends not to change significantly even if the contact time is lengthened, it is preferable that the contact time is short as long as the desired optical characteristics can be obtained.
 溶媒と接触させられることにより、樹脂フィルムの厚み方向の複屈折Rth/dが変化する。溶媒との接触によって生じる厚み方向の複屈折Rth/dの変化量は、好ましくは0.1×10-3以上、より好ましくは0.2×10-3以上、特に好ましくは0.3×10-3以上であり、好ましくは50.0×10-3以下、より好ましくは30.0×10-3以下、特に好ましくは20.0×10-3以下である。前記の厚み方向の複屈折Rth/dの変化量とは、樹脂フィルムの厚み方向の複屈折Rth/dの変化の絶対値を表す。具体的な厚み方向の複屈折Rth/dの変化量は、延伸前フィルムの厚み方向の複屈折Rth/dから原反フィルムの厚み方向の複屈折Rth/dを引き算し、その絶対値として求められる。好ましくは、厚み方向の複屈折Rth/dは、樹脂フィルムと溶媒との接触によって増加する。 By contacting with a solvent, the birefringence Rth / d in the thickness direction of the resin film changes. The amount of change in birefringence Rth / d in the thickness direction caused by contact with the solvent is preferably 0.1 × 10 -3 or more, more preferably 0.2 × 10 -3 or more, and particularly preferably 0.3 × 10 It is -3 or more, preferably 50.0 × 10 -3 or less, more preferably 30.0 × 10 -3 or less, and particularly preferably 20.0 × 10 -3 or less. The amount of change in the birefringence Rth / d in the thickness direction represents an absolute value of the change in the birefringence Rth / d in the thickness direction of the resin film. The specific amount of change in the birefringence Rth / d in the thickness direction is obtained by subtracting the birefringence Rth / d in the thickness direction of the original film from the birefringence Rth / d in the thickness direction of the unstretched film and obtaining it as an absolute value. Be done. Preferably, the birefringence Rth / d in the thickness direction is increased by contact between the resin film and the solvent.
 樹脂フィルムの面内方向の複屈折Re/dは、溶媒との接触によって変化してもよく、変化しなくてもよい。光学フィルムの面内レターデーションReの制御を簡単にする観点では、溶媒との接触によって樹脂フィルムに生じる面内方向の複屈折Re/dの変化は小さいことが好ましく、変化を生じないことがより好ましい。溶媒との接触によって生じる面内方向の複屈折Re/dの変化量は、好ましくは0.0×10-3~0.2×10-3、より好ましくは0.0×10-3~0.1×10-3、特に好ましくは0.0×10-3~0.05×10-3である。前記の面内方向の複屈折Re/dの変化量とは、樹脂フィルムの面内方向の複屈折Re/dの変化の絶対値を表す。具体的な面内方向の複屈折Re/dの変化量は、延伸前フィルムの面内方向の複屈折Re/dから原反フィルムの面内方向の複屈折Re/dを引き算し、その絶対値として求められる。 The birefringence Re / d in the in-plane direction of the resin film may or may not change due to contact with the solvent. From the viewpoint of simplifying the control of the in-plane retardation Re of the optical film, it is preferable that the change in the birefringence Re / d in the in-plane direction caused by the contact with the solvent is small, and it is more preferable that the change does not occur. preferable. The amount of change in birefringence Re / d in the in-plane direction caused by contact with the solvent is preferably 0.0 × 10 -3 to 0.2 × 10 -3 , more preferably 0.0 × 10 -3 to 0. .1 × 10 -3 , particularly preferably 0.0 × 10 -3 to 0.05 × 10 -3 . The amount of change in the birefringence Re / d in the in-plane direction represents an absolute value of the change in the birefringence Re / d in the in-plane direction of the resin film. The specific amount of change in the in-plane birefringence Re / d is obtained by subtracting the in-plane birefringence Re / d of the raw film from the in-plane birefringence Re / d of the unstretched film. Obtained as a value.
 好ましくは、溶媒との接触後の樹脂フィルムとしての延伸前フィルムは、ネガティブCプレートである。よって、延伸前フィルムの厚み方向の屈折率nzは、面内方向の屈折率nx及びnyよりも、小さいことが好ましい。また、延伸前フィルムの面内方向の屈折率nx及びnyは、同じ値であるか、近い値であることが好ましい。したがって、延伸前フィルムは、屈折率nxと屈折率nyとの差は相対的に小さく、屈折率nxと屈折率nzとの差は相対的に大きく、屈折率nyと屈折率nzとの差は相対的に大きいことが好ましい。 Preferably, the pre-stretched film as the resin film after contact with the solvent is a negative C plate. Therefore, it is preferable that the refractive index nz in the thickness direction of the unstretched film is smaller than the refractive indexes nx and ny in the in-plane direction. Further, it is preferable that the refractive indexes nx and ny in the in-plane direction of the unstretched film are the same value or close to each other. Therefore, in the unstretched film, the difference between the refractive index nx and the refractive index ny is relatively small, the difference between the refractive index nz and the refractive index nz is relatively large, and the difference between the refractive index ny and the refractive index nz is relatively large. It is preferably relatively large.
 このとき、厚み方向の屈折率nzと面内方向の屈折率nx及びnyとの差は、厚み方向の複屈折Rth/dによって表すことができる。すなわち、延伸前フィルムの厚み方向の複屈折Rth/dは、「Rth/d={(nx+ny)/2}-nz」で表せるから、その厚み方向の複屈折Rth/dによって、厚み方向の屈折率nzと面内方向の屈折率nx及びnyとの差を表すことができる。延伸前フィルムの厚み方向の複屈折Rth/dは、好ましくは0.05×10-3以上、好ましくは0.1×10-3以上、特に好ましくは0.2×10-3以上であり、好ましくは10×10-3以下、より好ましくは6.0×10-3以下、特に好ましくは4.0×10-3以下である。 At this time, the difference between the refractive index nz in the thickness direction and the refractive indexes nx and ny in the in-plane direction can be expressed by the birefringence Rth / d in the thickness direction. That is, since the birefringence Rth / d in the thickness direction of the unstretched film can be expressed by "Rth / d = {(nx + ny) / 2} -nz", the birefringence Rth / d in the thickness direction causes refraction in the thickness direction. The difference between the rate nz and the in-plane refractive indexes nx and ny can be expressed. The birefringence Rth / d in the thickness direction of the unstretched film is preferably 0.05 × 10 -3 or more, preferably 0.1 × 10 -3 or more, and particularly preferably 0.2 × 10 -3 or more. It is preferably 10 × 10 -3 or less, more preferably 6.0 × 10 -3 or less, and particularly preferably 4.0 × 10 -3 or less.
 また、面内方向の屈折率nxとnyとの差は、面内方向の複屈折Re/dによって表すことができる。すなわち、延伸前フィルムの面内方向の複屈折Re/dは、「Re/d=nx-ny」で表せるから、その面内方向の複屈折Re/dによって、面内方向の屈折率nxとnyとの差を表すことができる。通常は、面内方向の屈折率nxとnyとの差は、厚み方向の屈折率nzと面内方向の屈折率nx及びnyとの差よりも小さい。よって、延伸前フィルムの面内方向の複屈折Re/dは、延伸前フィルムの厚み方向の複屈折Rth/dよりも小さい値でありうる。延伸前フィルムの面内方向の複屈折Re/dの具体的な範囲は、好ましくは0.01×10-3以上、好ましくは0.05×10-3以上、特に好ましくは0.1×10-3以上であり、好ましくは1.0×10-3以下、より好ましくは0.5×10-3以下、特に好ましくは0.2×10-3以下である。 Further, the difference between the refractive indexes nx and ny in the in-plane direction can be expressed by the birefringence Re / d in the in-plane direction. That is, since the birefringence Re / d in the in-plane direction of the unstretched film can be expressed by "Re / d = nx-ny", the birefringence Re / d in the in-plane direction causes the refractive index nx in the in-plane direction. The difference from ny can be expressed. Normally, the difference between the in-plane refractive index nz and ny is smaller than the difference between the in-plane refractive index nz and the in-plane refractive index nx and ny. Therefore, the birefringence Re / d in the in-plane direction of the pre-stretched film may be smaller than the birefringence Rth / d in the thickness direction of the pre-stretched film. The specific range of birefringence Re / d in the in-plane direction of the unstretched film is preferably 0.01 × 10 -3 or more, preferably 0.05 × 10 -3 or more, and particularly preferably 0.1 × 10. It is -3 or more, preferably 1.0 × 10 -3 or less, more preferably 0.5 × 10 -3 or less, and particularly preferably 0.2 × 10 -3 or less.
 好ましくは、溶媒との接触後の樹脂フィルムとしての延伸前フィルムは、1.0より大きいNZ係数を有する。延伸前フィルムの具体的なNZ係数は、好ましくは1.0より大きく、より好ましくは5.0より大きく、特に好ましくは10より大きく、また、好ましくは50未満、より好ましくは40未満、特に好ましくは30未満である。 Preferably, the pre-stretched film as the resin film after contact with the solvent has an NZ coefficient greater than 1.0. The specific NZ coefficient of the pre-stretched film is preferably greater than 1.0, more preferably greater than 5.0, particularly preferably greater than 10, and preferably less than 50, more preferably less than 40, particularly preferred. Is less than 30.
 樹脂フィルムに接触した溶媒が樹脂フィルム中に浸入することにより、工程(ii)においては、通常、樹脂フィルムの厚みが大きくなる。この際の樹脂フィルムの厚みの変化率の下限は、例えば、1%以上、2%以上、又は3%以上でありうる。また、厚みの変化率の上限は、例えば、80%以下、50%以下、又は40%以下でありうる。前記の樹脂フィルムの厚みの変化率とは、原反フィルムと延伸前フィルムとの厚みの差を、原反フィルムの厚みで割って得られる比率である。 In the step (ii), the thickness of the resin film is usually increased due to the infiltration of the solvent in contact with the resin film into the resin film. The lower limit of the rate of change in the thickness of the resin film at this time may be, for example, 1% or more, 2% or more, or 3% or more. Further, the upper limit of the change rate of the thickness may be, for example, 80% or less, 50% or less, or 40% or less. The rate of change in the thickness of the resin film is a ratio obtained by dividing the difference in thickness between the raw film and the unstretched film by the thickness of the raw film.
[11.樹脂フィルムを延伸する工程(iii)]
 光学フィルムの製造方法は、工程(ii)の後に、延伸前フィルムとしての樹脂フィルムを延伸する工程(iii)を含む。延伸により、樹脂フィルムに含まれる重合体の分子を延伸方向に応じた方向に配向させることができる。よって、工程(iii)での延伸によれば、樹脂フィルムの面内方向の複屈折Re/d、面内レターデーションRe、厚み方向の複屈折Rth/d、厚み方向のレターデーションRth、NZ係数等の光学特性を調整して、上述した光学フィルムを得ることができる。
[11. Step of stretching the resin film (iii)]
The method for producing an optical film includes a step (iii) of stretching a resin film as a pre-stretching film after the step (iii). By stretching, the molecules of the polymer contained in the resin film can be oriented in a direction corresponding to the stretching direction. Therefore, according to the stretching in the step (iii), the in-plane birefringence Re / d, the in-plane retardation Re, the thickness direction birefringence Rth / d, the thickness direction birefringence Rth, and the NZ coefficient The above-mentioned optical film can be obtained by adjusting the optical characteristics such as.
 延伸方向に制限はなく、例えば、長手方向、幅方向、斜め方向などが挙げられる。ここで、斜め方向とは、厚み方向に対して垂直な方向であって、幅方向に平行でもなく垂直でもない方向を表す。また、延伸方向は、一方向でもよく、二以上の方向でもよいが、一方向が好ましい。さらに、一方向への延伸の中でも、延伸方向以外の方向に拘束力を加えない自由一軸延伸が更に好ましい。これらの延伸によれば、上述した光学フィルムを容易に製造できる。 There is no limitation on the stretching direction, and examples thereof include a longitudinal direction, a width direction, and an oblique direction. Here, the diagonal direction is a direction perpendicular to the thickness direction and is neither parallel nor perpendicular to the width direction. Further, the stretching direction may be one direction or two or more directions, but one direction is preferable. Further, among the stretching in one direction, free uniaxial stretching in which no binding force is applied in a direction other than the stretching direction is further preferable. According to these stretchings, the above-mentioned optical film can be easily manufactured.
 延伸前フィルムが通常、負の複屈折特性を有するので、一方向への延伸を行った場合には、その延伸方向に垂直な方向に遅相軸を有する光学フィルムが得られる。よって、延伸方向によって光学フィルムの遅相軸方向を調整できるので、延伸方向は、光学フィルムに発現させたい遅相軸の方向に応じて選択してもよい。通常、長尺の偏光フィルムは、その長手方向に吸収軸を有し、その幅方向に透過軸を有する。よって、例えば、偏光フィルムの吸収軸に対して垂直な遅相軸を有する光学フィルムを得たい場合には、延伸前フィルムを長手方向に延伸して、幅方向に遅相軸を有する光学フィルムを得てもよい。この場合、長尺の光学フィルムと長尺の偏光フィルムを用いたロール・トゥ・ロールによる効率的な偏光板の製造が可能である。 Since the pre-stretched film usually has negative birefringence characteristics, when stretching in one direction, an optical film having a slow axis in the direction perpendicular to the stretching direction can be obtained. Therefore, since the slow phase axis direction of the optical film can be adjusted by the stretching direction, the stretching direction may be selected according to the direction of the slow phase axis to be expressed in the optical film. Generally, a long polarizing film has an absorption axis in its longitudinal direction and a transmission axis in its width direction. Therefore, for example, when it is desired to obtain an optical film having a slow phase axis perpendicular to the absorption axis of the polarizing film, the pre-stretched film is stretched in the longitudinal direction to obtain an optical film having a slow phase axis in the width direction. You may get it. In this case, it is possible to efficiently manufacture a polarizing plate by roll-to-roll using a long optical film and a long polarizing film.
 延伸倍率は、好ましくは1.1倍以上、より好ましくは1.2倍以上であり、好ましくは20.0倍以下、より好ましくは10.0倍以下、更に好ましくは5.0倍以下、特に好ましくは2.0倍以下である。具体的な延伸倍率は、製造したい光学フィルムの光学特性、厚み、機械的強度などの要素に応じて適切に設定することが望ましい。延伸倍率が前記範囲の下限値以上である場合、延伸によって複屈折を大きく変化させることができる。また、延伸倍率が前記範囲の上限値以下である場合、遅相軸の方向を容易に制御したり、フィルム破断を効果的に抑制したりできる。 The draw ratio is preferably 1.1 times or more, more preferably 1.2 times or more, preferably 20.0 times or less, more preferably 10.0 times or less, still more preferably 5.0 times or less, particularly. It is preferably 2.0 times or less. It is desirable to appropriately set the specific draw ratio according to factors such as the optical characteristics, thickness, and mechanical strength of the optical film to be manufactured. When the stretching ratio is equal to or higher than the lower limit of the above range, the birefringence can be significantly changed by stretching. Further, when the draw ratio is not more than the upper limit of the above range, the direction of the slow phase axis can be easily controlled and the film breakage can be effectively suppressed.
 延伸温度は、好ましくは「Tg」以上、より好ましくは「Tg+10℃」以上であり、好ましくは「Tg+100℃」以下、より好ましくは「Tg+90℃」以下である。ここで、「Tg」は結晶性樹脂のガラス転移温度を表す。延伸温度が前記範囲の下限値以上である場合、樹脂フィルムを十分に軟化させて延伸を均一に行うことができる。また、延伸温度が前記範囲の上限値以下である場合、結晶性重合体の結晶化の進行による樹脂フィルムの硬化を抑制できるので、延伸を円滑に行うことができ、また、延伸によって大きな複屈折を発現させることができる。さらに、通常は、得られる光学フィルムのヘイズを小さくして透明性を高めることができる。 The stretching temperature is preferably "Tg R " or higher, more preferably "Tg R + 10 ° C" or higher, preferably "Tg R + 100 ° C" or lower, and more preferably "Tg R + 90 ° C" or lower. Here, "Tg R " represents the glass transition temperature of the crystalline resin. When the stretching temperature is equal to or higher than the lower limit of the above range, the resin film can be sufficiently softened and stretched uniformly. Further, when the stretching temperature is not more than the upper limit of the above range, the curing of the resin film due to the progress of crystallization of the crystalline polymer can be suppressed, so that the stretching can be smoothly performed, and the stretching causes a large birefringence. Can be expressed. In addition, the haze of the resulting optical film can usually be reduced to increase transparency.
 前記の延伸処理を施すことにより、延伸された樹脂フィルムとして光学フィルムを得ることができる。前記のように、延伸によって複屈折が変化しうるので、厚み方向の複屈折Rth/dと面内方向の複屈折Re/dとのバランスが調整されて、所望のNZ係数を得ることができる。また、工程(ii)での溶媒との接触による重合体の配向と、工程(iii)での延伸による重合体の配向とにより、レターデーション等の光学特性が発現するので、光学フィルムは所望の光学特性を有することができる。 By performing the above stretching treatment, an optical film can be obtained as a stretched resin film. As described above, since the birefringence can be changed by stretching, the balance between the birefringence Rth / d in the thickness direction and the birefringence Re / d in the in-plane direction can be adjusted to obtain a desired NZ coefficient. .. Further, the optical properties such as retardation are exhibited by the orientation of the polymer due to the contact with the solvent in the step (iii) and the orientation of the polymer due to the stretching in the step (iii), so that the optical film is desired. It can have optical properties.
[12.任意の工程]
 光学フィルムの製造方法は、上述した工程(i)~工程(iii)に組み合わせて、更に任意の工程を含んでいてもよい。任意の工程としては、例えば、工程(iii)の前に延伸前フィルムを予熱する工程、工程(iii)で得られた光学フィルムに熱処理を施して結晶性重合体の結晶化を促進する工程、光学フィルムを乾燥してフィルム中の溶媒量を減らす工程、光学フィルムを熱収縮させてフィルム中の残留応力を除去する工程、などが挙げられる。
[12. Arbitrary process]
The method for producing an optical film may be combined with the above-mentioned steps (i) to (iii) and further include any step. As an arbitrary step, for example, a step of preheating the pre-stretched film before the step (iii), a step of heat-treating the optical film obtained in the step (iii) to promote the crystallization of the crystalline polymer, and the like. Examples thereof include a step of drying the optical film to reduce the amount of the solvent in the film, a step of heat-shrinking the optical film to remove residual stress in the film, and the like.
 また、上述した製造方法によれば、長尺の原反フィルムを用いて、長尺の光学フィルムを製造することができる。光学フィルムの製造方法は、このように製造された長尺の光学フィルムをロール状に巻き取る工程を含んでいてもよい。さらに、光学フィルムの製造方法は、長尺の光学フィルムを所望の形状に切り出す工程を含んでいてもよい。 Further, according to the above-mentioned manufacturing method, a long optical film can be manufactured by using a long raw film. The method for producing an optical film may include a step of winding the long optical film thus produced into a roll shape. Further, the method for producing an optical film may include a step of cutting a long optical film into a desired shape.
[13.偏光板]
 本発明の一実施形態に係る偏光板は、上述した光学フィルムと、偏光フィルムとを備える。偏光フィルムは、通常、直線偏光子として機能できる。よって、偏光板は、一部の偏光を透過し、他の偏光を遮ることができる。
[13. Polarizer]
The polarizing plate according to the embodiment of the present invention includes the above-mentioned optical film and a polarizing film. The polarizing film can usually function as a linear splitter. Therefore, the polarizing plate can transmit a part of the polarized light and block the other polarized light.
 偏光フィルムは、通常、吸収軸と、当該吸収軸に垂直な透過軸とを有する。そして、吸収軸に平行な振動方向を有する直線偏光を吸収し、透過軸と平行な振動方向を有する直線偏光を透過させることができる。直線偏光の振動方向とは、直線偏光の電場の振動方向を意味する。この際、偏光フィルムの吸収軸と、光学フィルムの遅相軸とは、特定の角度をなすことが好ましい。 The polarizing film usually has an absorption axis and a transmission axis perpendicular to the absorption axis. Then, it is possible to absorb the linear polarization having a vibration direction parallel to the absorption axis and transmit the linear polarization having a vibration direction parallel to the transmission axis. The vibration direction of linearly polarized light means the vibration direction of the electric field of linearly polarized light. At this time, it is preferable that the absorption axis of the polarizing film and the slow axis of the optical film form a specific angle.
 一例において、偏光フィルムの吸収軸と、光学フィルムの遅相軸とがなす角度は、好ましくは80°以上、より好ましくは85°以上、特に好ましくは88°以上であり、好ましくは100°以下、より好ましくは95°以下、特に好ましくは92°以下である。この場合、光学フィルムは、1/2波長板として機能できる面内レターデーションを有することが好ましい。この例に係る偏光板は、画像表示装置に設けた場合に、視野角の補償が可能な偏光板として用いることができる。 In one example, the angle formed by the absorption axis of the polarizing film and the slow axis of the optical film is preferably 80 ° or more, more preferably 85 ° or more, particularly preferably 88 ° or more, and preferably 100 ° or less. It is more preferably 95 ° or less, and particularly preferably 92 ° or less. In this case, the optical film preferably has an in-plane retardation that can function as a 1/2 wave plate. The polarizing plate according to this example can be used as a polarizing plate capable of compensating the viewing angle when provided in an image display device.
 別の一例において、偏光フィルムの吸収軸と、光学フィルムの遅相軸とがなす角度は、好ましくは40°以上、より好ましくは42°以上、特に好ましくは44°以上であり、好ましくは50°以下、より好ましくは48°以下、特に好ましくは46°以下である。この場合、光学フィルムは、1/4波長板として機能できる面内レターデーションを有することが好ましい。この例に係る偏光板は、一方の回転方向の円偏光を透過し、他方の回転方向の円偏光を遮りうる円偏光板として用いることができる。この円偏光板は、表示装置の表示面に設けることにより、外光の反射を抑制できる。  In another example, the angle formed by the absorption axis of the polarizing film and the slow axis of the optical film is preferably 40 ° or more, more preferably 42 ° or more, particularly preferably 44 ° or more, and preferably 50 °. Below, it is more preferably 48 ° or less, and particularly preferably 46 ° or less. In this case, the optical film preferably has an in-plane retardation that can function as a 1/4 wave plate. The polarizing plate according to this example can be used as a circular polarizing plate capable of transmitting circular polarization in one rotation direction and blocking circular polarization in the other rotation direction. By providing this circularly polarizing plate on the display surface of the display device, it is possible to suppress the reflection of external light. It was
 偏光フィルムとしては、任意の偏光フィルムを用いうる。偏光フィルムの例としては、ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させた後、ホウ酸浴中で一軸延伸することによって得られるフィルム;ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させ延伸しさらに分子鎖中のポリビニルアルコール単位の一部をポリビニレン単位に変性することによって得られるフィルム;が挙げられる。これらのうち、偏光フィルムとしては、ポリビニルアルコールを含有するものが好ましい。  Any polarizing film can be used as the polarizing film. An example of a polarizing film is a film obtained by adsorbing iodine or a dichroic dye on a polyvinyl alcohol film and then uniaxially stretching it in a boric acid bath; adsorbing iodine or a dichroic dye on the polyvinyl alcohol film. Examples thereof include a film obtained by stretching and further modifying a part of polyvinyl alcohol units in the molecular chain to polyvinylene units. Of these, the polarizing film preferably contains polyvinyl alcohol. It was
 偏光フィルムに自然光を入射させると、一方の偏光だけが透過する。この偏光フィルムの偏光度は特に限定されないが、好ましくは98%以上、より好ましくは99%以上である。また、偏光フィルムの厚みは、好ましくは5μm~80μmである。  When natural light is incident on the polarizing film, only one of the polarizations is transmitted. The degree of polarization of this polarizing film is not particularly limited, but is preferably 98% or more, more preferably 99% or more. The thickness of the polarizing film is preferably 5 μm to 80 μm. It was
 上述した偏光板は、更に、任意の層を含みうる。任意の層としては、例えば、偏光子保護フィルム層;偏光フィルム及び光学フィルムを貼り合わせるための接着層;耐衝撃性ポリメタクリレート樹脂層などのハードコート層;フィルムの滑り性を良くするマット層;反射抑制層;防汚層;帯電抑制層;等が挙げられる。これらの任意の層は、1層だけを設けてもよく、2層以上を設けてもよい。 The above-mentioned polarizing plate may further include an arbitrary layer. The optional layer may be, for example, a polarizing element protective film layer; an adhesive layer for bonding a polarizing film and an optical film; a hard coat layer such as an impact-resistant polymethacrylate resin layer; a matte layer for improving the slipperiness of the film; Examples thereof include a reflection suppressing layer; an antifouling layer; an antistatic layer; and the like. Any of these layers may be provided with only one layer, or may be provided with two or more layers.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧(23℃1気圧)大気中の条件において行った。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the examples shown below, and may be arbitrarily modified and carried out without departing from the scope of claims of the present invention and the equivalent scope thereof.
In the following description, "%" and "part" representing quantities are based on weight unless otherwise specified. Further, the operations described below were performed under normal temperature and pressure (23 ° C., 1 atm) in the atmosphere unless otherwise specified.
[ガラス転移温度Tg及び融点Tmの測定方法]
 重合体のガラス転移温度Tg及び融点Tmの測定は、以下のようにして行った。まず、重合体を、加熱によって融解させ、融解した重合体をドライアイスで急冷した。続いて、この重合体を試験体として用いて、示差走査熱量計(DSC)を用いて、10℃/分の昇温速度(昇温モード)で、重合体のガラス転移温度Tg及び融点Tmを測定した。
[Measurement method of glass transition temperature Tg and melting point Tm]
The glass transition temperature Tg and the melting point Tm of the polymer were measured as follows. First, the polymer was melted by heating, and the melted polymer was rapidly cooled with dry ice. Subsequently, using this polymer as a test piece, the glass transition temperature Tg and melting point Tm of the polymer were measured at a heating rate of 10 ° C./min (heating mode) using a differential scanning calorimeter (DSC). It was measured.
[光学フィルムのレターデーション、NZ係数及び遅相軸方向の測定方法]
 光学フィルムの面内レターデーションRe、厚み方向のレターデーションRth、NZ係数及び遅相軸方向は、位相差計(AXOMETRICS社製「AxoScan OPMF-1」)により測定した。
[Measurement method of optical film retardation, NZ coefficient and slow phase axial direction]
The in-plane retardation Re of the optical film, the retardation Rth in the thickness direction, the NZ coefficient, and the slow phase axial direction were measured by a phase difference meter (“AXoScan OPMF-1” manufactured by AXOMETRICS).
[製造例1.結晶性ポリスチレンの製造]
 アルゴン置換した内容積500mlのガラス製容器に、硫酸銅5水塩(CuSO・5HO)17.8g(71ミリモル)、トルエン200ml、及び、トリメチルアルミニウム24ml(250ミリモル)を入れ、40℃で8時間反応させた。その後、固体部分を除去して溶液を得た。得られた溶液から、更に、トルエンを室温下で減圧留去して、接触生成物6.7gを得た。この接触生成物の分子量を、凝固点下降法によって測定したところ、610であった。
[Manufacturing example 1. Manufacture of crystalline polystyrene]
17.8 g (71 mmol) of copper sulfate pentahydrate (CuSO 4.5H 2 O), 200 ml of toluene, and 24 ml (250 mmol) of trimethylaluminum were placed in a glass container having an internal volume of 500 ml and substituted with argon, and the temperature was 40 ° C. Was reacted for 8 hours. Then, the solid part was removed to obtain a solution. Toluene was further distilled off from the obtained solution under reduced pressure at room temperature to obtain 6.7 g of a contact product. The molecular weight of this contact product was measured by the freezing point lowering method and found to be 610.
 次いで、反応容器に、前記接触生成物をアルミニム原子として5モリモル、トリイソブチルアルミニウムを5ミリモル、ペンタメチルシクロペンタジエニルチタントリメトキシドを0.025ミリモル、および、精製スチレンを1ミリモル加え、90℃で5時間、重合反応を行った。その後、生成物を、水酸化ナトリウムのメタノール溶液で触媒成分を分解後に、メタノールで繰返し洗浄し、乾燥して、重合体(結晶性ポリスチレン)308gを得た。 Next, to the reaction vessel, 5 millimoles of the contact product as an aluminum atom, 5 mmol of triisobutylaluminum, 0.025 mmol of pentamethylcyclopentadienyl titaniumtrimethoxyde, and 1 mmol of purified styrene were added, and 90 was added. The polymerization reaction was carried out at ° C. for 5 hours. Then, the product was repeatedly washed with methanol after decomposing the catalyst component with a solution of sodium hydroxide in methanol, and dried to obtain 308 g of a polymer (crystalline polystyrene).
 この重合体の重量平均分子量を、1,2,4-トリクロロベンゼンを溶媒として、135℃でゲルパーミエーションクロマトグラフィーにて測定した。その結果、この重合体の重量平均分子量Mwは、350,000であった。また、融点Tm及び13C-NMR測定により、得られた重合体がシンジオタクチック構造を有する結晶性ポリスチレンであることを確認した。結晶性ポリスチレンの融点Tmは270℃、ガラス転移温度は100℃であった。
 この操作を繰り返して、評価に必要なシンジオタクチック構造を有する結晶性ポリスチレンを準備した。
The weight average molecular weight of this polymer was measured by gel permeation chromatography at 135 ° C. using 1,2,4-trichlorobenzene as a solvent. As a result, the weight average molecular weight Mw of this polymer was 350,000. Further, it was confirmed by measuring the melting point Tm and 13 C-NMR that the obtained polymer was crystalline polystyrene having a syndiotactic structure. The melting point Tm of crystalline polystyrene was 270 ° C., and the glass transition temperature was 100 ° C.
By repeating this operation, crystalline polystyrene having the syndiotactic structure required for evaluation was prepared.
[製造例2.正の固有複屈折を有する結晶性重合体の製造]
 金属製の耐圧反応器を、充分に乾燥した後、窒素置換した。この金属製耐圧反応器に、シクロヘキサン154.5部、ジシクロペンタジエン(エンド体含有率99%以上)の濃度70%シクロヘキサン溶液42.8部(ジシクロペンタジエンの量として30部)、及び1-ヘキセン1.9部を加え、53℃に加温した。
[Manufacturing example 2. Production of crystalline polymer with positive intrinsic birefringence]
The pressure resistant reactor made of metal was sufficiently dried and then replaced with nitrogen. In this metal pressure resistant reactor, 154.5 parts of cyclohexane, 42.8 parts of a 70% cyclohexane solution of dicyclopentadiene (endo content of 99% or more) (30 parts as the amount of dicyclopentadiene), and 1- 1.9 parts of hexene was added and heated to 53 ° C.
 テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体0.014部を0.70部のトルエンに溶解し、溶液を調製した。この溶液に、濃度19%のジエチルアルミニウムエトキシド/n-ヘキサン溶液0.061部を加えて10分間攪拌して、触媒溶液を調製した。この触媒溶液を耐圧反応器に加えて、開環重合反応を開始した。その後、53℃を保ちながら4時間反応させて、ジシクロペンタジエンの開環重合体の溶液を得た。得られたジシクロペンタジエンの開環重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、それぞれ、8,750および28,100であり、これらから求められる分子量分布(Mw/Mn)は3.21であった。 0.014 parts of the tetrachlorotungsten phenylimide (tetrahydrofuran) complex was dissolved in 0.70 parts of toluene to prepare a solution. To this solution, 0.061 part of a diethylaluminum ethoxide / n-hexane solution having a concentration of 19% was added and stirred for 10 minutes to prepare a catalytic solution. This catalyst solution was added to a pressure resistant reactor to initiate a ring-opening polymerization reaction. Then, the reaction was carried out for 4 hours while maintaining 53 ° C. to obtain a solution of a ring-opening polymer of dicyclopentadiene. The number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained ring-opening polymer of dicyclopentadiene are 8,750 and 28,100, respectively, and the molecular weight distribution (Mw / Mn) obtained from these. Was 3.21.
 得られたジシクロペンタジエンの開環重合体の溶液200部に、停止剤として1,2-エタンジオール0.037部を加えて、60℃に加温し、1時間攪拌して重合反応を停止させた。ここに、ハイドロタルサイト様化合物(協和化学工業社製「キョーワード(登録商標)2000」)を1部加えて、60℃に加温し、1時間攪拌した。その後、濾過助剤(昭和化学工業社製「ラヂオライト(登録商標)#1500」)を0.4部加え、PPプリーツカートリッジフィルター(ADVANTEC東洋社製「TCP-HX」)を用いて吸着剤と溶液を濾別した。 To 200 parts of the obtained solution of the ring-opening polymer of dicyclopentadiene, 0.037 parts of 1,2-ethanediol was added as a terminator, heated to 60 ° C., and stirred for 1 hour to stop the polymerization reaction. I let you. A part of a hydrotalcite-like compound (“Kyoward (registered trademark) 2000” manufactured by Kyowa Chemical Industry Co., Ltd.) was added thereto, and the mixture was heated to 60 ° C. and stirred for 1 hour. After that, 0.4 part of a filtration aid ("Radiolite (registered trademark) # 1500" manufactured by Showa Kagaku Kogyo Co., Ltd.) was added, and a PP pleated cartridge filter ("TCP-HX" manufactured by ADVANTEC Toyo Co., Ltd.) was used as an adsorbent. The solution was filtered off.
 濾過後のジシクロペンタジエンの開環重合体の溶液200部(重合体量30部)に、シクロヘキサン100部を加え、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.0043部を添加して、水素圧6MPa、180℃で4時間水素化反応を行なった。これにより、ジシクロペンタジエンの開環重合体の水素化物を含む反応液が得られた。この反応液は、水素化物が析出してスラリー溶液となっていた。 To 200 parts of a solution of a ring-opening polymer of dicyclopentadiene after filtration (polymer amount: 30 parts), 100 parts of cyclohexane is added, 0.0043 parts of chlorohydride carbonyltris (triphenylphosphine) ruthenium is added, and hydrogen is added. The hydrogenation reaction was carried out at a pressure of 6 MPa and 180 ° C. for 4 hours. As a result, a reaction solution containing a hydride of a ring-opening polymer of dicyclopentadiene was obtained. In this reaction solution, hydride was precipitated to form a slurry solution.
 前記の反応液に含まれる水素化物と溶液とを、遠心分離器を用いて分離し、60℃で24時間減圧乾燥して、正の固有複屈折を有する結晶性重合体としてジシクロペンタジエンの開環重合体の水素化物28.5部を得た。この水素化物の水素化率は99%以上、ガラス転移温度Tgは93℃、融点Tmは262℃、ラセモ・ダイアッドの割合は89%であった。 The hydride and the solution contained in the reaction solution were separated using a centrifuge and dried under reduced pressure at 60 ° C. for 24 hours to open dicyclopentadiene as a crystalline polymer having positive intrinsic birefringence. 28.5 parts of the hydride of the ring polymer was obtained. The hydrogenation rate of this hydride was 99% or more, the glass transition temperature Tg was 93 ° C., the melting point Tm was 262 ° C., and the ratio of racemo diad was 89%.
[実施例1]
(1-1.結晶性樹脂の用意)
 製造例1で得たシンジオタクチック構造を有する結晶性ポリスチレン60部と、ポリフェニレンエーテル(サビックイノベーティブプラスチックスジャパン社製「ノリルPPO640」、重量平均分子量Mw=43,000、ガラス転移温度Tg=130℃)40部とを、295℃において2軸押出機で混練し、透明な結晶性樹脂のペレットを製造した。
[Example 1]
(1-1. Preparation of crystalline resin)
60 parts of crystalline polystyrene having a syndiotactic structure obtained in Production Example 1, polyphenylene ether (“Noryl PPO640” manufactured by SABIC Innovative Plastics Japan Co., Ltd., weight average molecular weight Mw = 43,000, glass transition temperature Tg = 130 40 parts (° C.) was kneaded at 295 ° C. with a twin-screw extruder to produce transparent crystalline resin pellets.
(1-2.押出成膜)
 結晶性樹脂のペレットを、Tダイを備える熱溶融押出しフィルム成形機(Optical Control Systems社製「Measuring Extruder Type Me-20/2800V3」)を用いて溶融押し出しし、1.5m/分の速度でロールに巻き取って、およそ幅120mmの溶媒接触前の樹脂フィルムとして長尺の原反フィルムを得た。フィルム成形機の運転条件を、以下に箇条書きで記す。
 ・バレル温度設定=280℃~300℃
 ・ダイ温度=300℃
 ・スクリュー回転数=30rpm
 ・キャストロール温度=80℃
(1-2. Extrusion film formation)
Crystalline resin pellets are melt-extruded using a thermal melt extrusion film forming machine equipped with a T-die (“Measuring Extruder Type Me-20 / 2800V3” manufactured by Optical Control Systems) and rolled at a speed of 1.5 m / min. A long raw film was obtained as a resin film having a width of about 120 mm before contacting with a solvent. The operating conditions of the film forming machine are itemized below.
・ Barrel temperature setting = 280 ° C to 300 ° C
・ Die temperature = 300 ℃
・ Screw rotation speed = 30 rpm
・ Cast roll temperature = 80 ℃
 原反フィルムの厚みは、158μmであった。原反フィルムのレターデーションを測定波長550nmで測定したところ、面内レターデーションRe=3nm、厚み方向のレターデーションRth=-18nmであった。 The thickness of the original film was 158 μm. When the retardation of the raw film was measured at a measurement wavelength of 550 nm, the in-plane retardation Re = 3 nm and the thickness direction retardation Rth = -18 nm.
(1-3.溶媒接触)
 前記の原反フィルムを120mm×120mmの矩形にカットした。この矩形の原反フィルムを、バットに貯められた溶媒としてのシクロヘキサン中に、面内レターデーションRe=2nm、厚み方向のレターデーションRth=41nmになるまで浸漬して、溶媒接触後の樹脂フィルムとして延伸前フィルムを得た。延伸前フィルムをシクロヘキサンから取り出し、フィルム表面に付着したシクロヘキサンを拭き取った後、大気中で自然乾燥させた。得られた延伸前フィルムの厚みは、160μmであった。
(1-3. Solvent contact)
The raw film was cut into a rectangle of 120 mm × 120 mm. This rectangular raw film is immersed in cyclohexane as a solvent stored in a bat until the in-plane retardation Re = 2 nm and the thickness direction retardation Rth = 41 nm, and used as a resin film after contact with the solvent. A pre-stretched film was obtained. The pre-stretched film was taken out from cyclohexane, the cyclohexane adhering to the film surface was wiped off, and then the film was naturally dried in the air. The thickness of the obtained pre-stretched film was 160 μm.
(1-4.延伸)
 バッチ式二軸延伸装置(エトー社製)を用意した。この延伸装置は、オーブンユニットと、フィルムを固定可能な延伸用のクリップとを備えていた。この延伸装置を用いれば、オーブン内でクリップによってフィルムを引っ張って、前記のフィルムを延伸することが可能である。
(1-4. Stretching)
A batch type biaxial stretching device (manufactured by Eto'o) was prepared. The stretching device was equipped with an oven unit and a stretching clip capable of fixing the film. Using this stretching device, it is possible to stretch the film by pulling the film with a clip in the oven.
 延伸前フィルムを100mm×100mmの矩形にカットした。この矩形の延伸前フィルムの両端を、それぞれ、前記の延伸装置の5つのクリップで把持した。クリップで延伸前フィルムを引っ張って、押出成膜工程で得られた長尺の原反フィルムの長手方向に、自由一軸延伸した。延伸温度は138℃、延伸倍率は1.2倍であった。この延伸により、一軸延伸フィルムとしての光学フィルムを得た。 The unstretched film was cut into a rectangle of 100 mm x 100 mm. Both ends of this rectangular pre-stretched film were gripped by the five clips of the stretching device, respectively. The pre-stretched film was pulled with a clip and freely uniaxially stretched in the longitudinal direction of the long raw film obtained in the extrusion film formation step. The stretching temperature was 138 ° C. and the stretching ratio was 1.2 times. By this stretching, an optical film as a uniaxially stretched film was obtained.
 得られた光学フィルムの面内レターデーション及びNZ係数を測定したところ、測定波長450nm、550nm及び650nmの面内レターデーションRe(450)、Re(550)及びRe(650)はRe(450)=128nm、Re(550)=140nm、Re(650)=144nmであった。また、光学フィルムの遅相軸の方向は、延伸方向に対して垂直な方向であった。さらに、測定波長550nmにおけるNZ係数は、0.45であった。 When the in-plane retardation and NZ coefficient of the obtained optical film were measured, the in-plane retardations Re (450), Re (550) and Re (650) having measurement wavelengths of 450 nm, 550 nm and 650 nm were Re (450) =. It was 128 nm, Re (550) = 140 nm, and Re (650) = 144 nm. The direction of the slow axis of the optical film was perpendicular to the stretching direction. Further, the NZ coefficient at the measurement wavelength of 550 nm was 0.45.
[実施例2]
 工程(1-2)におけるライン速度を変更して、長尺の原反フィルムの厚みを107μmに変更した。
 また、工程(1-3)において原反フィルムの溶媒中への浸漬を、面内レターデーションRe=2nm、厚み方向のレターデーションRth=28nmの延伸前フィルムが得られるように浸漬時間を調整して行った。
 さらに、工程(1-4)における延伸倍率を1.3倍に変更した。
 以上の事項以外は実施例1と同じ方法によって、光学フィルムの製造を行った。
[Example 2]
The line speed in step (1-2) was changed to change the thickness of the long raw film to 107 μm.
Further, in step (1-3), the immersion time of the raw film in the solvent was adjusted so that a pre-stretched film having an in-plane retardation Re = 2 nm and a thickness direction retardation Rth = 28 nm could be obtained. I went there.
Further, the draw ratio in the step (1-4) was changed to 1.3 times.
The optical film was manufactured by the same method as in Example 1 except for the above items.
[実施例3]
 工程(1-2)におけるライン速度を変更して、長尺の原反フィルムの厚みを276μmに変更した。
 また、工程(1-3)において原反フィルムの溶媒中への浸漬を、面内レターデーションRe=4nm、厚み方向のレターデーションRth=71nmの延伸前フィルムが得られるように浸漬時間を調整して行った。
 さらに、工程(1-4)における延伸倍率を1.1倍に変更した。
 以上の事項以外は実施例1と同じ方法によって、光学フィルムの製造を行った。
[Example 3]
The line speed in step (1-2) was changed to change the thickness of the long raw film to 276 μm.
Further, in step (1-3), the immersion time of the raw film in the solvent was adjusted so that a pre-stretched film having an in-plane retardation Re = 4 nm and a thickness direction retardation Rth = 71 nm could be obtained. I went there.
Further, the draw ratio in the step (1-4) was changed to 1.1 times.
The optical film was manufactured by the same method as in Example 1 except for the above items.
[実施例4]
 工程(1-1)において、シンジオタクチック構造を有する結晶性ポリスチレンの量を50部に変更し、ポリフェニレンエーテルの量を50部に変更した。
 また、工程(1-2)におけるライン速度を変更して、長尺の原反フィルムの厚みを201μmに変更した。
 さらに、工程(1-3)において原反フィルムの溶媒中への浸漬を、面内レターデーションRe=42nm、厚み方向のレターデーションRth=540nmの延伸前フィルムが得られるように浸漬時間を調整して行った。
 また、工程(1-4)における延伸温度を160℃に、延伸倍率を1.6倍に変更した。
 以上の事項以外は実施例1と同じ方法によって、光学フィルムの製造を行った。
[Example 4]
In step (1-1), the amount of crystalline polystyrene having a syndiotactic structure was changed to 50 parts, and the amount of polyphenylene ether was changed to 50 parts.
Further, the line speed in the step (1-2) was changed to change the thickness of the long raw film to 201 μm.
Further, in step (1-3), the immersion time of the raw film in the solvent was adjusted so that a pre-stretched film having an in-plane retardation Re = 42 nm and a thickness direction retardation Rth = 540 nm could be obtained. I went there.
Further, the stretching temperature in the step (1-4) was changed to 160 ° C., and the stretching ratio was changed to 1.6 times.
The optical film was manufactured by the same method as in Example 1 except for the above items.
[比較例1]
 工程(1-2)におけるライン速度を変更して、長尺の原反フィルムの厚みを115μmに変更した。
 また、工程(1-3)における原反フィルムの溶媒中への浸漬を行わなかった。
 さらに、工程(1-4)において延伸前フィルムの代わりに原反フィルムを延伸し、延伸温度を132℃に変更し、延伸倍率を2.2倍に変更した。
 以上の事項以外は実施例1と同じ方法によって、光学フィルムの製造を行った。
[Comparative Example 1]
The line speed in step (1-2) was changed to change the thickness of the long raw film to 115 μm.
In addition, the raw film was not immersed in the solvent in step (1-3).
Further, in step (1-4), the raw film was stretched instead of the pre-stretched film, the stretching temperature was changed to 132 ° C., and the stretching ratio was changed to 2.2 times.
The optical film was manufactured by the same method as in Example 1 except for the above items.
[比較例2]
 製造例2で得られたジシクロペンタジエンの開環重合体の水素化物100部に、酸化防止剤(テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン;BASFジャパン社製「イルガノックス(登録商標)1010」)1.1部を混合後、内径3mmΦのダイ穴を4つ備えた二軸押出し機(東芝機械社製「TEM-37B」)に投入した。ジシクロペンタジエンの開環重合体の水素化物及び酸化防止剤の混合物を、熱溶融押出し成形によりストランド状の成形した後、ストランドカッターにて細断して、結晶性樹脂のペレットを得た。
[Comparative Example 2]
An antioxidant (tetrakis [methylene-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl)] was added to 100 parts of the hydride of the ring-opening polymer of dicyclopentadiene obtained in Production Example 2. ) Propionate] Methane; BASF Japan's "Irganox (registered trademark) 1010") After mixing 1.1 parts, a twin-screw extruder equipped with four die holes with an inner diameter of 3 mmΦ (Toshiba Machine Co., Ltd. "TEM-37B" ”). A mixture of a hydride of a ring-opening polymer of dicyclopentadiene and an antioxidant was formed into a strand by hot melt extrusion molding, and then shredded with a strand cutter to obtain pellets of a crystalline resin.
 このペレットを、工程(1-2)において用いた。また、工程(1-2)におけるライン速度を変更して、長尺の原反フィルムの厚みを13μmに変更した。
 また、工程(1-3)において、溶媒の種類をトルエンに変更した。更に、原反フィルムの溶媒中への浸漬を、面内レターデーションRe=8nm、厚み方向のレターデーションRth=-73nmの延伸前フィルムが得られるように浸漬時間を調整して行った。
 さらに、工程(1-4)における延伸温度を130℃に変更し、延伸倍率を1.5倍に変更した。
 以上の事項以外は実施例1と同じ方法によって、光学フィルムの製造を行った。
This pellet was used in step (1-2). Further, the line speed in the step (1-2) was changed to change the thickness of the long raw film to 13 μm.
Further, in step (1-3), the type of solvent was changed to toluene. Further, the raw film was immersed in the solvent by adjusting the immersion time so that a pre-stretched film having an in-plane retardation Re = 8 nm and a thickness direction retardation Rth = −73 nm could be obtained.
Further, the stretching temperature in the step (1-4) was changed to 130 ° C., and the stretching ratio was changed to 1.5 times.
The optical film was manufactured by the same method as in Example 1 except for the above items.
[実施例1~3及び比較例1~2で得られた光学フィルムの評価]
 偏光フィルム(サンリッツ社製「HLC2-5618S」、厚さ180μm、幅方向に偏光透過軸を有する偏光子)を用意した。この偏光フィルムの一方の面と、実施例1~3および比較例1~2で得た光学フィルムとを、偏光フィルムの偏光透過軸と光学フィルムの遅相軸とが45°の角度をなすように、粘着剤層(日東電工製「CS9621」)を介して貼り合わせて、円偏光板を得た。
[Evaluation of Optical Films Obtained in Examples 1 to 3 and Comparative Examples 1 and 2]
A polarizing film (“HLC2-5618S” manufactured by Sanritz Co., Ltd., a polarizing element having a thickness of 180 μm and a polarization transmission axis in the width direction) was prepared. With respect to one surface of the polarizing film and the optical films obtained in Examples 1 to 3 and Comparative Examples 1 and 2, the polarization transmission axis of the polarizing film and the slow axis of the optical film form an angle of 45 °. A circular polarizing plate was obtained by laminating with a pressure-sensitive adhesive layer (“CS9621” manufactured by Nitto Denko).
 鏡を準備し、作製した円偏光板を、光学フィルムが鏡側となるように、鏡の上に置いた。円偏光板を蛍光灯で照らし、鏡での反射光を正面方向及び極角およそ60°の傾斜方向において観察した。前記の正面方向は、鏡の前方方向であって、円偏光板の厚み方向に平行な方向を表す。それぞれの観察方向において、色味付きが視認されなければ「○」、色味付きが視認されるがごくわずかであれば「△」、色味付きが許容できないレベルで視認されれば「×」とした。 A mirror was prepared and the prepared circular polarizing plate was placed on the mirror so that the optical film was on the mirror side. The circularly polarizing plate was illuminated with a fluorescent lamp, and the reflected light from the mirror was observed in the front direction and in the tilt direction with a polar angle of about 60 °. The front direction is the front direction of the mirror and represents a direction parallel to the thickness direction of the circularly polarizing plate. In each observation direction, "○" if the coloring is not visible, "△" if the coloring is visible but very slight, and "×" if the coloring is visible at an unacceptable level. And said.
[実施例4で得られた光学フィルムの評価]
 偏光フィルム(サンリッツ社製「HLC2-5618S」、厚さ180μm、幅方向に偏光透過軸を有する偏光子)を2枚用意し、クロスニコルに配置した。クロスニコルとは、厚み方向から見て偏光透過軸が垂直になることをいう。これら偏光フィルムの間に実施例4で得た光学フィルムを、視認側の偏光フィルム(即ち、後述するバックライトに設置した時に視認側になる偏光フィルム)の偏光透過軸と光学フィルムの遅相軸とが一致するように設置した。粘着剤層(日東電工製「CS9621」)を介して偏光フィルムと光学フィルムとを貼り合わせて、積層体を得た。
[Evaluation of Optical Film Obtained in Example 4]
Two polarizing films (“HLC2-5618S” manufactured by Sanritz, 180 μm in thickness, and a polarizing element having a polarizing transmission axis in the width direction) were prepared and placed on a cross Nicol. Cross Nicol means that the polarization transmission axis is vertical when viewed from the thickness direction. Between these polarizing films, the optical film obtained in Example 4 is placed on the polarizing transmission axis of the polarizing film on the viewing side (that is, the polarizing film on the viewing side when installed in a backlight described later) and the slow axis of the optical film. It was installed so that it matches. A polarizing film and an optical film were bonded to each other via an adhesive layer (“CS9621” manufactured by Nitto Denko) to obtain a laminated body.
 暗室にバックライトを準備し、作製した積層体をバックライトの上に置いた。バックライトを点灯させた状態で、正面方向および極角およそ60°の傾斜方向において、積層体を透過する光を観察した。それぞれの観察位置にて、色味付きが視認されなければ「○」、色味付きが視認されるがごくわずかであれば「△」、色味付き及び光漏れが許容できないレベルで視認されれば「×」とした。 A backlight was prepared in a dark room, and the prepared laminate was placed on the backlight. With the backlight turned on, the light transmitted through the laminate was observed in the front direction and in the tilting direction with a polar angle of about 60 °. At each observation position, "○" is visible if the tint is not visible, "△" if the tint is visible but very slight, and the tint and light leakage are visible at an unacceptable level. If it is, it is set as "x".
[結果]
 前記の実施例及び比較例の結果を、下記の表に示す。下記の表において、略称の意味は、下記の通りである。
 SPS:結晶性ポリスチレン。
 PPE:ポリフェニレンエーテル。
 Cy:シクロヘキサン。
 Tl:トルエン。
[result]
The results of the above-mentioned Examples and Comparative Examples are shown in the table below. In the table below, the meanings of the abbreviations are as follows.
SPS: Crystalline polystyrene.
PPE: Polyphenylene ether.
Cy: Cyclohexane.
Tl: Toluene.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[検討]
 実施例においては、負の固有複屈折を有する結晶性重合体として結晶性ポリスチレンを用いて、光学フィルムを製造している。当該光学フィルムを製造するために延伸前フィルムを自由一軸延伸したとき、いずれの実施例でも延伸方向に垂直な方向に遅相軸が発現していることから、得られた光学フィルムが負の複屈折特性を有していることが確認できる。また、実施例で得られた光学フィルムは、いずれも、式(1)を満たす面内レターデーションを有し、且つ、式(2)を満たすNZ係数を有する。
[examination]
In the examples, crystalline polystyrene is used as the crystalline polymer having negative intrinsic birefringence to produce an optical film. When the pre-stretched film was freely uniaxially stretched to produce the optical film, the delayed phase axis was developed in the direction perpendicular to the stretching direction in all the examples, so that the obtained optical film was negatively birefringent. It can be confirmed that it has a refraction characteristic. Further, all of the optical films obtained in the examples have an in-plane retardation satisfying the formula (1) and an NZ coefficient satisfying the formula (2).
 実施例で得られた光学フィルムは、逆波長分散性を有しているので、広い波長範囲においてその光学的機能を発揮できる。
 よって、実施例1~3の光学フィルムは、広い波長範囲において1/4波長板として機能できる。したがって、その光学フィルムを備える円偏光板は、反射抑制フィルムとして広い波長範囲の光の反射を抑制できる。そのため、一部の波長の光が円偏光板を通過することによる色味付きを抑制できる。
 また、実施例4の光学フィルムは、広い波長範囲において1/2波長板として機能できる。したがって、その光学フィルムは、当該光学フィルムを透過する広い波長範囲の直線偏光の振動方向を90°変換することができる。そのため、一部の波長の光が積層体を通過することによる色味付き及び光漏れを抑制できる。
Since the optical film obtained in the examples has a reverse wavelength dispersibility, its optical function can be exhibited in a wide wavelength range.
Therefore, the optical films of Examples 1 to 3 can function as a quarter wave plate in a wide wavelength range. Therefore, the circularly polarizing plate provided with the optical film can suppress the reflection of light in a wide wavelength range as a reflection suppressing film. Therefore, it is possible to suppress the coloring caused by the light of a part of the wavelength passing through the circularly polarizing plate.
Further, the optical film of Example 4 can function as a 1/2 wave plate in a wide wavelength range. Therefore, the optical film can convert the vibration direction of linearly polarized light in a wide wavelength range transmitted through the optical film by 90 °. Therefore, it is possible to suppress coloring and light leakage due to the passage of light having a part of wavelengths through the laminate.
 また、実施例で得られた光学フィルムは、適切なNZ係数を有するので、当該光学フィルムを厚み方向に透過する光だけでなく、厚み方向に平行でも垂直でもない傾斜方向に透過する光の偏光状態をも適切に変化させることができる。
 よって、実施例1~3の光学フィルムは、傾斜方向に円偏光板を透過する光の反射を抑制できるので、正面方向だけでなく傾斜方向においても色味付きを抑制できる。
 また、実施例4の光学フィルムは、傾斜方向における積層体の光の通過を抑制できるので、正面方向だけでなく傾斜方向においても色味付き及び光漏れを抑制できる。
Further, since the optical film obtained in the examples has an appropriate NZ coefficient, not only the light transmitted through the optical film in the thickness direction but also the polarization of the light transmitted in the inclined direction which is neither parallel nor perpendicular to the thickness direction. The state can also be changed appropriately.
Therefore, since the optical films of Examples 1 to 3 can suppress the reflection of the light transmitted through the circularly polarizing plate in the tilting direction, the tinting can be suppressed not only in the front direction but also in the tilting direction.
Further, since the optical film of Example 4 can suppress the passage of light of the laminated body in the inclined direction, it is possible to suppress coloring and light leakage not only in the front direction but also in the inclined direction.

Claims (11)

  1.  結晶性重合体を含む光学フィルムであって、
     前記光学フィルムが、負の複屈折特性を有し、
     前記光学フィルムの測定波長450nm、550nm及び650nmにおける面内レターデーションRe(450)、Re(550)及びRe(650)が式(1)を満たし、
     前記光学フィルムのNZ係数Nzが、式(2)を満たす、光学フィルム。
      Re(450)<Re(550)<Re(650)   (1)
      0<Nz<1   (2)
    An optical film containing a crystalline polymer,
    The optical film has a negative birefringence characteristic and
    The in-plane retardations Re (450), Re (550) and Re (650) of the optical film at the measurement wavelengths of 450 nm, 550 nm and 650 nm satisfy the formula (1).
    An optical film in which the NZ coefficient Nz of the optical film satisfies the formula (2).
    Re (450) <Re (550) <Re (650) (1)
    0 <Nz <1 (2)
  2.  前記光学フィルムが、単層構造を有する、請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the optical film has a single-layer structure.
  3.  前記光学フィルムが、延伸フィルムである、請求項1又は2に記載の光学フィルム。 The optical film according to claim 1 or 2, wherein the optical film is a stretched film.
  4.  前記光学フィルムが、一軸延伸フィルムである、請求項1~3のいずれか一項に記載の光学フィルム。 The optical film according to any one of claims 1 to 3, wherein the optical film is a uniaxially stretched film.
  5.  前記光学フィルムが、長尺の形状を有する、請求項1~4のいずれか一項に記載の光学フィルム。 The optical film according to any one of claims 1 to 4, wherein the optical film has a long shape.
  6.  負の固有複屈折を有する前記結晶性重合体と、正の固有複屈折を有する熱可塑性重合体と、を含む樹脂からなる、請求項1~5のいずれか一項に記載の光学フィルム。 The optical film according to any one of claims 1 to 5, comprising a resin containing the crystalline polymer having a negative intrinsic birefringence and a thermoplastic polymer having a positive intrinsic birefringence.
  7.  正の固有複屈折を有する前記熱可塑性重合体と負の固有複屈折を有する前記結晶性重合体との重量比(熱可塑性重合体/結晶性重合体)が、3/7以上である、請求項6に記載の光学フィルム。 Claimed that the weight ratio (thermoplastic polymer / crystalline polymer) of the thermoplastic polymer having a positive intrinsic compound refraction to the crystalline polymer having a negative intrinsic compound refraction is 3/7 or more. Item 6. The optical film according to Item 6.
  8.  負の固有複屈折を有する前記結晶性重合体が、ポリスチレン系重合体であり、
     正の固有複屈折を有する前記熱可塑性重合体が、ポリフェニレンエーテルである、請求項6又は7に記載の光学フィルム。
    The crystalline polymer having a negative intrinsic birefringence is a polystyrene-based polymer.
    The optical film according to claim 6 or 7, wherein the thermoplastic polymer having positive intrinsic birefringence is a polyphenylene ether.
  9.  請求項1~8のいずれか一項に記載の光学フィルムと、偏光フィルムと、を備える偏光板。 A polarizing plate comprising the optical film according to any one of claims 1 to 8 and a polarizing film.
  10.  前記光学フィルムの遅相軸と、前記偏光フィルムの吸収軸と、が80°~100°の角度をなす、請求項9に記載の偏光板。 The polarizing plate according to claim 9, wherein the slow axis of the optical film and the absorption axis of the polarizing film form an angle of 80 ° to 100 °.
  11.  請求項1~8のいずれか一項に記載の光学フィルムの製造方法であって、
     負の固有複屈折を有する結晶性重合体と、正の固有複屈折を有する熱可塑性重合体と、を含む樹脂からなる樹脂フィルムを用意する工程と、
     前記樹脂フィルムを、溶媒に接触させて、厚み方向の複屈折を変化させる工程と、
     前記樹脂フィルムを延伸する工程と、をこの順に含む、光学フィルムの製造方法。
    The method for manufacturing an optical film according to any one of claims 1 to 8.
    A step of preparing a resin film made of a resin containing a crystalline polymer having a negative intrinsic birefringence and a thermoplastic polymer having a positive intrinsic birefringence.
    The step of bringing the resin film into contact with a solvent to change the birefringence in the thickness direction,
    A method for producing an optical film, comprising the steps of stretching the resin film in this order.
PCT/JP2021/044208 2020-12-28 2021-12-02 Optical film, production method therefor, and polarizing plate WO2022145169A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237019618A KR20230121743A (en) 2020-12-28 2021-12-02 Optical film and its manufacturing method, and polarizing plate
CN202180085915.5A CN116685610A (en) 2020-12-28 2021-12-02 Optical film, method for producing same, and polarizing plate
JP2022572946A JPWO2022145169A1 (en) 2020-12-28 2021-12-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-218296 2020-12-28
JP2020218296 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022145169A1 true WO2022145169A1 (en) 2022-07-07

Family

ID=82260425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044208 WO2022145169A1 (en) 2020-12-28 2021-12-02 Optical film, production method therefor, and polarizing plate

Country Status (5)

Country Link
JP (1) JPWO2022145169A1 (en)
KR (1) KR20230121743A (en)
CN (1) CN116685610A (en)
TW (1) TW202232136A (en)
WO (1) WO2022145169A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161832A (en) * 2001-11-22 2003-06-06 Fuji Photo Film Co Ltd Retardation plate
JP2007191505A (en) * 2006-01-17 2007-08-02 Fujifilm Corp Cellulose acylate film, polarizing plate and liquid crystal display device
US20150042928A1 (en) * 2013-08-09 2015-02-12 Samsung Display Co., Ltd. Display device
JP2015157928A (en) * 2013-06-07 2015-09-03 東ソー株式会社 Resin composition and optical compensation film employing the same
JP2016079377A (en) * 2014-10-15 2016-05-16 東ソー株式会社 Resin composition and optical compensation film
WO2019188205A1 (en) * 2018-03-30 2019-10-03 日本ゼオン株式会社 Optical anisotropic layered body, polarizing plate, and image display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592004B2 (en) 2005-02-02 2010-12-01 日東電工株式会社 Retardation film, method for producing the same, and image display device using the retardation film
CN108700694B (en) 2016-02-22 2021-04-27 富士胶片株式会社 Optical film, method for manufacturing optical film, and display device
CN113196876A (en) 2018-12-27 2021-07-30 日本瑞翁株式会社 Optically anisotropic laminate, method for producing same, circularly polarizing plate, and image display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161832A (en) * 2001-11-22 2003-06-06 Fuji Photo Film Co Ltd Retardation plate
JP2007191505A (en) * 2006-01-17 2007-08-02 Fujifilm Corp Cellulose acylate film, polarizing plate and liquid crystal display device
JP2015157928A (en) * 2013-06-07 2015-09-03 東ソー株式会社 Resin composition and optical compensation film employing the same
US20150042928A1 (en) * 2013-08-09 2015-02-12 Samsung Display Co., Ltd. Display device
JP2016079377A (en) * 2014-10-15 2016-05-16 東ソー株式会社 Resin composition and optical compensation film
WO2019188205A1 (en) * 2018-03-30 2019-10-03 日本ゼオン株式会社 Optical anisotropic layered body, polarizing plate, and image display device

Also Published As

Publication number Publication date
CN116685610A (en) 2023-09-01
TW202232136A (en) 2022-08-16
KR20230121743A (en) 2023-08-21
JPWO2022145169A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
JP4905082B2 (en) Retardation film
JP5830949B2 (en) Fumaric acid diester resin for retardation film and retardation film comprising the same
JP6168045B2 (en) Phase difference film laminate, method for producing phase difference film laminate, and method for producing phase difference film
WO2001081957A1 (en) Optical film
CN110249244B (en) Optically anisotropic laminate, circularly polarizing plate, and image display device
WO2007100117A1 (en) Layered polarization film, phase difference film, and liquid crystal display device
US8497959B2 (en) Optical film and liquid crystal display
TW201942606A (en) Optical anisotropic layered body, polarizing plate, and image display device
WO2012091009A1 (en) Resin composition, phase-contrast film, method for manufacturing phase-contrast film, and long circularly-polarizing plate
JP2018163291A (en) Method for manufacturing optical film
JP2010078905A (en) Optical film and liquid crystal display
JP7484969B2 (en) Retardation film and manufacturing method
WO2022145169A1 (en) Optical film, production method therefor, and polarizing plate
JP5891870B2 (en) Optical film and method for producing optical film
JP5831174B2 (en) Fumaric acid diester resin for retardation film and retardation film comprising the same
WO2022145173A1 (en) Optical film, production method therefor, and polarizing plate
JP5387647B2 (en) Retardation film
JP6485348B2 (en) Optical laminate, polarizing plate composite, liquid crystal display device, and manufacturing method
JPWO2018221274A1 (en) Retardation film and manufacturing method
JP2014170068A (en) Retardation film, polarizing plate, and image display apparatus
JP6870429B2 (en) Resin solution and method for manufacturing optical film using it
JP6213132B2 (en) trans-stilbene-maleic anhydride copolymer and retardation film using the same
WO2022145238A1 (en) Birefringence film, method for manufacturing same, and method for manufacturing optical film
WO2022145171A1 (en) Multilayer film, optical film, and manufacturing method
JP2022104366A (en) Optical film and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572946

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180085915.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915030

Country of ref document: EP

Kind code of ref document: A1