WO2022145036A1 - Route generation device, route generation method, and route generation program - Google Patents

Route generation device, route generation method, and route generation program Download PDF

Info

Publication number
WO2022145036A1
WO2022145036A1 PCT/JP2020/049288 JP2020049288W WO2022145036A1 WO 2022145036 A1 WO2022145036 A1 WO 2022145036A1 JP 2020049288 W JP2020049288 W JP 2020049288W WO 2022145036 A1 WO2022145036 A1 WO 2022145036A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
road
image data
moving body
passability determination
Prior art date
Application number
PCT/JP2020/049288
Other languages
French (fr)
Japanese (ja)
Inventor
明 平田
康 洲鎌
雄史 長谷川
道学 吉田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021525730A priority Critical patent/JP7158581B1/en
Priority to PCT/JP2020/049288 priority patent/WO2022145036A1/en
Priority to JP2021182828A priority patent/JP7270017B2/en
Publication of WO2022145036A1 publication Critical patent/WO2022145036A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates to a technique for generating a movement path of a moving body.
  • PMV Personal Mobility Vehicle
  • the movement route from the current location to the destination is set in advance, and the PMV moves according to the movement route.
  • a PMV moves in an urban area with a person or an object on it, it moves on the sidewalk in the same manner as an electric wheelchair.
  • Patent Document 1 describes a method for determining the movement route of PMV.
  • the site is divided by a mesh to define a section, the degree of congestion of people or obstacles included in the section is specified for each section, and a route through the uncrowded section is generated.
  • Patent Document 1 produces a route through a non-congested compartment, but does not consider whether the PMV is physically passable through the generated route. Therefore, there is a possibility that a route including a place where PMV cannot pass may be generated.
  • An object of the present disclosure is to enable a moving body to obtain a route avoiding a place where the moving body cannot pass due to an obstacle or the like that is not within the detection range of a sensor mounted on the moving body such as PMV.
  • the route generator is An image acquisition unit that acquires image data of the road that constitutes the route from the position where the moving object exists to the destination, Based on the image data acquired by the image acquisition unit, a passability determination unit for determining whether or not the moving body can pass on the road, and a passability determination unit. It is provided with a route notification unit for notifying the moving body of a route composed of roads determined to be passable by the passability determination unit.
  • the moving body determines whether or not the moving body can pass through the road based on the image data of the roads constituting the route, and the route composed of the roads determined to be able to pass is notified to the moving body. Therefore, the moving body can obtain a route avoiding a place where the moving body cannot pass due to an obstacle or the like that is not within the detection range of the sensor.
  • FIG. 1 The block diagram of the movement control system 100 which concerns on Embodiment 1.
  • FIG. 1 The block diagram of the route generation apparatus 10 which concerns on Embodiment 1.
  • FIG. 1 The block diagram of the PMV apparatus 30 which concerns on Embodiment 1.
  • FIG. The flowchart which shows the operation flow of the movement control system 100 which concerns on Embodiment 1.
  • An explanatory diagram of a specific example of the passability determination process according to the first embodiment The figure which shows the bird's-eye view image corresponding to FIG. 5 which concerns on Embodiment 1.
  • FIG. An explanatory diagram of a specific example of the passability determination process according to the first embodiment.
  • the movement control system 100 includes a route generation device 10 and a PMV device 30.
  • the route generation device 10 and the PMV device 30 are connected to each other via a transmission line 90.
  • the transmission line 90 is, as a specific example, the Internet.
  • the route generation device 10 is a computer that generates a route for the moving body PMV50 to move to a destination.
  • the PMV device 30 is a computer mounted on the PMV50 and allowing the PMV50 to run independently.
  • the route generation device 10 includes hardware including a processor 11, a memory 12, a storage 13, a communication interface 14, and a camera interface 15.
  • the processor 11 is connected to other hardware via a signal line and controls these other hardware.
  • the route generation device 10 is connected to one or more cameras 16 via the camera interface 15.
  • the route generation device 10 includes a request acquisition unit 21, a candidate generation unit 22, an image acquisition unit 23, a passability determination unit 24, and a route notification unit 25 as functional components.
  • the functions of each functional component of the route generator 10 are realized by software.
  • the storage 13 stores a program that realizes the functions of each functional component of the route generation device 10. This program is read into the memory 12 by the processor 11 and executed by the processor 11. As a result, the functions of each functional component of the route generation device 10 are realized.
  • the configuration of the PMV device 30 according to the first embodiment will be described with reference to FIG.
  • the PMV device 30 includes hardware such as a processor 31, a memory 32, a storage 33, and a communication interface 34.
  • the processor 31 is connected to other hardware via a signal line and controls these other hardware.
  • the PMV device 30 includes a destination setting unit 41, a route request unit 42, and a movement control unit 43 as functional components.
  • the functions of each functional component of the PMV device 30 are realized by software.
  • the storage 33 stores a program that realizes the functions of each functional component of the PMV device 30. This program is read into the memory 32 by the processor 31 and executed by the processor 31. As a result, the functions of each functional component of the PMV device 30 are realized.
  • Processors 11 and 31 are ICs (Integrated Circuits) that perform processing. Specific examples of the processors 11 and 31 are a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • GPU Graphics Processing Unit
  • the memories 12 and 32 are storage devices for temporarily storing data. Specific examples of the memories 12 and 32 are SRAM (Static Random Access Memory) and DRAM (Dynamic Random Access Memory).
  • the storages 13 and 33 are storage devices for storing data.
  • the storages 13 and 33 are, as a specific example, an HDD (Hard Disk Drive).
  • the storages 13 and 33 include SD (registered trademark, Secure Digital) memory card, CF (CompactFlash, registered trademark), NAND flash, flexible disk, optical disk, compact disk, Blu-ray (registered trademark) disk, and DVD (Digital Versaille Disk). ) May be a portable recording medium.
  • Communication interfaces 14 and 34 are interfaces for communicating with an external device. Specific examples of the communication interfaces 14 and 34 are Ethernet (registered trademark) and USB (Universal Serial Bus) ports.
  • the camera interface 15 is an interface for communicating with the camera 16.
  • the camera interface 15 is a port of Ethernet (registered trademark) or USB (Universal Serial Bus).
  • FIG. 2 only one processor 11 was shown. However, the number of processors 11 may be plural, and the plurality of processors 11 may execute programs that realize each function in cooperation with each other. Similarly, the number of processors 31 may be plural, and the plurality of processors 31 may execute programs that realize each function in cooperation with each other.
  • the operation of the movement control system 100 according to the first embodiment will be described with reference to FIGS. 4 to 8.
  • the operation procedure of the movement control system 100 according to the first embodiment corresponds to the movement control method according to the first embodiment.
  • the program that realizes the operation of the movement control system 100 according to the first embodiment corresponds to the movement control program according to the first embodiment.
  • the operation procedure of the route generation device 10 in the movement control system 100 according to the first embodiment corresponds to the route generation method according to the first embodiment.
  • the program that realizes the operation of the route generation device 10 in the movement control system 100 according to the first embodiment corresponds to the route generation program according to the first embodiment.
  • Step S11 Destination setting process
  • the destination setting unit 41 of the PMV device 30 sets the destination of the PMV 50. Specifically, the destination of the PMV 50 is set by accepting the input of the destination from the passengers of the PMV 50 or the like.
  • the destination setting unit 41 writes the destination information indicating the destination in the memory 32.
  • Step S12 Route request processing
  • the route requesting unit 42 of the PMV device 30 requests the route generation device 10 to generate a route to the destination set in step S11. Specifically, the route request unit 42 reads the destination information from the memory 32. The route request unit 42 transmits a route generation request including the position information indicating the current position of the PMV 50 and the destination information to the route generation device 10 via the communication interface 34.
  • Step S13 Request acquisition process
  • the request acquisition unit 21 of the route generation device 10 acquires the route generation request transmitted in step S12 via the communication interface 14.
  • the request acquisition unit 21 writes the position information and the destination information included in the route generation request to the memory 12.
  • Step S14 Candidate generation process
  • the candidate generation unit 22 of the route generation device 10 is 1 from the position where the PMV50 indicated by the position information included in the route generation request acquired in step S13 exists to the destination indicated by the destination information included in the route generation request. Identify one or more routes.
  • the candidate generation unit 22 reads the position information and the destination information from the memory 12.
  • the candidate generation unit 22 identifies one or more routes from the position where the PMV 50 indicated by the location information exists to the destination indicated by the destination information by the existing route search algorithm using the map information.
  • the candidate generation unit 22 writes the route candidate information indicating one or more specified routes to the memory 12.
  • Step S15 Image acquisition process
  • the image acquisition unit 23 of the route generation device 10 acquires image data of the road constituting the route specified in step S14. Specifically, the image acquisition unit 23 reads the route candidate information from the memory 12. The image acquisition unit 23 sets each of one or more routes indicated by the route candidate information as the target route. The image acquisition unit 23 acquires image data of the road constituting the target route acquired by the camera 16. The image acquisition unit 23 writes the acquired image data to the memory 12. As a specific example, the image acquisition unit 23 acquires image data obtained by a camera 16 which is a surveillance camera installed on a road constituting a target route.
  • the image acquisition unit 23 may acquire image data acquired by a camera 16 which is an in-vehicle camera mounted on a vehicle traveling near a road constituting the target route.
  • a camera 16 which is an in-vehicle camera mounted on a vehicle traveling near a road constituting the target route.
  • the in-vehicle camera for example, there is a camera for a drive recorder.
  • the image acquisition unit 23 may acquire image data obtained by photographing the vicinity of the road constituting the target route with a camera 16 mounted on a drone or the like. It is desirable that the image data be acquired at all points of the road constituting the target route.
  • Step S16 Passability determination process
  • the passability determination unit 24 of the route generation device 10 determines whether or not the moving body can pass on the road constituting the route specified in step S14. Specifically, the passability determination unit 24 reads the route candidate information and the image data from the memory 12. The passability determination unit 24 sets each of one or more routes indicated by the route candidate information as the target route, and sets each road constituting the target route as the target road. The passability determination unit 24 identifies an area through which the PMV 50 can pass from the image data of the target road. The passability determination unit 24 determines whether or not the PMV50 can pass on the road by comparing the size of the area where the PMV50 can pass on the road with the size of the PMV50.
  • FIGS. 5 and 6 A specific example of the passability determination process will be described with reference to FIGS. 5 and 6. As shown in FIG. 5, it is assumed that there is an obstacle on the road. In FIG. 5, there is a two-wheeled vehicle that has fallen as an obstacle. In this case, the passability determination unit 24 generates a bird's-eye view image of the road as shown in FIG. 6 from the image data acquired from the camera 16 which is a surveillance camera installed near the road. The passability determination unit 24 specifies the width W_spc of the area where the PMV50 can pass on the road based on the bird's-eye view image. At this time, the passability determination unit 24 specifies the width of the narrowest portion of the area where the PMV50 can pass on the road as the width W_spc.
  • the width of the portion where the obstacle exists is specified as the width W_spc.
  • the passability determination unit 24 determines whether or not the PMV50 can pass on the road by comparing the specified width W_spc with the width W_pmv of the PMV50. For example, the passability determination unit 24 determines that the PMV50 can pass on the road if the specified width W_spc is wider than the width W_pmv of the PMV50. Further, the passability determination unit 24 may determine that the PMV50 can pass on the road if the specified width W_spc is wider than the reference value W_pmv of the PMV50.
  • FIGS. 7 and 8 Another specific example of the passability determination process will be described with reference to FIGS. 7 and 8.
  • the passability determination unit 24 may determine whether or not the PMV50 can pass through the road based on the area of the three-dimensional space. As shown in FIG. 7, it is assumed that there is an obstacle on the road. In FIG. 7, there are posts and trees as obstacles. In this case, the passability determination unit 24 generates a three-dimensional schematic diagram of the road as shown in FIG. 8 from the image data acquired from the camera 16 which is a surveillance camera installed near the road.
  • the passability determination unit 24 specifies the width W_spc and the height H_spc of the area where the PMV50 can pass on the road based on the three-dimensional schematic diagram. At this time, the passability determination unit 24 specifies the width of the narrowest portion of the area where the PMV50 can pass on the road as the width W_spc and the height of the lowest portion as the height H_spc. Therefore, in FIG. 6, the width of the portion where the post is present is specified as the width W_spc, and the height of the portion where the tree is present is specified as the height H_spc.
  • the passability determination unit 24 compares the specified width W_spc with the width W_pmv of the PMV50, and compares the specified height H_spc with the height H_pmv of the PMV50 so that the PMV50 can drive the road. Determine if it can pass. For example, the passability determination unit 24 determines that the PMV50 can pass on the road if the specified width W_spc is wider than the width W_pmv of the PMV50 and the specified height H_spc is higher than the height H_pmv of the PMV50. do.
  • the specified width W_spc is wider than the width W_pmv of the PMV50 by the first reference value or more, and the specified height H_spc is higher than the height H_pmv of the PMV50 by the second reference value or more. For example, it may be determined that the PMV 50 can pass on the road.
  • Step S17 Route notification processing
  • the route notification unit 25 of the route generation device 10 notifies the PMV 50 of the route composed of the roads determined to be passable in step S16.
  • the route notification unit 25 identifies a route configured by a road determined to be passable in step S16 among one or more routes specified in step S14.
  • the route notification unit 25 connects the areas through which the PMV 50 can pass on the road constituting the specified route to generate a passage route.
  • the route notification unit 25 transmits the passage route information indicating the passage route to the PMV device 30 mounted on the PMV 50 via the communication interface 14.
  • the route notification unit 25 may notify only the passage route for the route having the highest priority, or may notify the passage route for all the routes. good.
  • the priority is set, for example, to be higher as the travel distance is shorter, or to be higher as the travel time is shorter. Further, when no route is specified, the route notification unit 25 notifies that there is no route.
  • Step S18 Movement control process
  • the movement control unit 43 of the PMV device 30 controls the PMV 50 so as to travel on the route notified in step S17. Specifically, the movement control unit 43 acquires the passage route information via the communication interface 34. The movement control unit 43 controls a device such as the steering of the PMV 50 so as to travel on the passage route indicated by the passage route information. When there are a plurality of traffic routes indicated by the traffic route information, the movement control unit 43 selects one of the traffic routes and controls the vehicle to travel on the selected traffic route. At this time, the movement control unit 43 detects an object existing in the vicinity of the PMV 50 by using a sensor mounted on the PMV 50, and controls the vehicle so as to travel while avoiding a collision with the object existing in the vicinity.
  • the route requesting unit 42 again requests the generation of the route to the destination.
  • the movement control system 100 determines whether or not the moving body can pass through the road based on the image data of the road constituting the route by the route generation device 10, and determines that the moving body can pass through the road.
  • the PMV device 30 is notified of the route composed of the roads. Therefore, the PMV 50 can obtain a route that avoids a place where a moving object cannot pass due to an obstacle or the like that is not within the detection range of the sensor.
  • the passability determination unit 24 determines whether or not the PMV50 can pass through the road based on the image data of the road.
  • the passability determination unit 24 may determine whether or not a moving object can pass on the road based on the drawing data of the road in addition to the image data.
  • the drawing data is data including information such as the width of the road, the slope, the presence or absence of a step, and the height of the step.
  • the passability determination unit 24 may not only compare the width of the road and the width of the PMV50, but may also determine whether or not the PMV50 is passable in consideration of the slope of the road. Further, it may be determined whether or not the PMV 50 is passable depending on whether or not the step on the road is at a height that exceeds the PMV 50.
  • the passability determination unit 24 may acquire road information indicating the road that has passed from the PMV device 30 and store it in the storage 13. Then, in step S16 of FIG. 4, the passability determination unit 24 refers to the road information stored in the storage 13 and determines whether or not another PMV50 has passed through the road within the past reference period, and the determination result is obtained. Based on the above, it may be determined whether or not the PMV50 can pass on the road. Specifically, if the passability determination unit 24 determines that the PMV50 can pass through the road without making a determination based on the image data when another PMV50 has passed through the road within the past reference period. good. As a result, when a large number of PMVs 50 are traveling, there is a high possibility that the determination process based on the image data having a high processing load can be omitted, and the processing load of the route generation device 10 can be reduced. Become.
  • each functional component is realized by software.
  • each functional component may be realized by hardware. The difference between the third modification and the first embodiment will be described.
  • the route generation device 10 When each functional component is realized by hardware, the route generation device 10 includes an electronic circuit instead of the processor 11, the memory 12, and the storage 13.
  • the electronic circuit is a dedicated circuit that realizes the functions of each functional component, the memory 12, and the storage 13.
  • the PMV device 30 When each functional component is realized by hardware, the PMV device 30 includes an electronic circuit instead of the processor 31, the memory 32, and the storage 33.
  • the electronic circuit is a dedicated circuit that realizes the functions of each functional component, the memory 32, and the storage 33.
  • each functional component may be realized by one electronic circuit, or each functional component may be distributed and realized by a plurality of electronic circuits.
  • Modification example 4 As a modification 4, some functional components may be realized by hardware, and other functional components may be realized by software.
  • Processors 11, 31, memories 12, 32, storages 13, 33, and electronic circuits are called processing circuits. That is, the function of each functional component is realized by the processing circuit.
  • 100 mobile control system 10 route generator, 11 processor, 12 memory, 13 storage, 14 communication interface, 15 camera interface, 16 camera, 21 request acquisition unit, 22 candidate generation unit, 23 image acquisition unit, 24 passability judgment unit. , 25 route notification unit, 30 PMV device, 31 processor, 32 memory, 33 storage, 34 communication interface, 41 destination setting unit, 42 route request unit, 43 mobile control unit, 50 PMV, 90 transmission path.

Abstract

When a request acquisition unit (21) acquires a request from a mobile body to generate a route, an image acquisition unit (23) acquires image data of roads that constitute a route from the position where the mobile body is located to a destination. A passability determination unit (24) determines whether a road is passable for the mobile body on the basis of the image data acquired by the image acquisition unit (23). A route notification unit (25) notifies the mobile body of a route that is constituted by roads that are determined by the passability determination unit (24) to be passable.

Description

経路生成装置、経路生成方法及び経路生成プログラムRoute generator, route generation method and route generation program
 本開示は、移動体の移動経路を生成する技術に関する。 The present disclosure relates to a technique for generating a movement path of a moving body.
 PMV(Personal Mobility Vehicle)と呼ばれる、屋内又は屋外において人又は物を運搬する小型の自動走行車両の開発が進められている。PMVに対して、一般的な車両の自動運転技術を適用し、周辺の物体を検知して障害物を回避して自動で走行するシステムの適用が検討されている。 Development of a small self-driving vehicle called PMV (Personal Mobility Vehicle) that transports people or things indoors or outdoors is underway. The application of a system that applies general vehicle automatic driving technology to PMV, detects surrounding objects, avoids obstacles, and automatically travels is being studied.
 PMVは、目的地まで移動する場合には、現在地から目的地までの移動経路が予め設定され、移動経路に従って移動する。PMVは、市街地を人又は物を載せて移動する場合には、電動車いすと同様に歩道上を移動する。しかし、PMVが通行できない狭い歩道、又は、歩道をふさぐような障害物が有る場合がある。この場合には、手動操作等により、PMVが通行できる場所までPMVを移動させて、経路を再設定する等の対応が必要になる。 When the PMV moves to the destination, the movement route from the current location to the destination is set in advance, and the PMV moves according to the movement route. When a PMV moves in an urban area with a person or an object on it, it moves on the sidewalk in the same manner as an electric wheelchair. However, there may be narrow sidewalks that PMVs cannot pass through, or obstacles that block the sidewalks. In this case, it is necessary to take measures such as moving the PMV to a place where the PMV can pass by manual operation or the like and resetting the route.
 特許文献1には、PMVの移動経路を決定する方法について記載されている。特許文献1では、敷地をメッシュで区切って区画を定義し、各区画についてその区画に含まれる人又は障害物の混雑度を特定し、混雑していない区画を通る経路を生成している。 Patent Document 1 describes a method for determining the movement route of PMV. In Patent Document 1, the site is divided by a mesh to define a section, the degree of congestion of people or obstacles included in the section is specified for each section, and a route through the uncrowded section is generated.
特開2019-191028号公報Japanese Unexamined Patent Publication No. 2019-191028
 特許文献1に記載された技術では、混雑していない区画を通る経路を生成するが、生成された経路をPMVが物理的に通行可能であるか否かは考慮されていない。そのため、PMVが通行できない箇所を含む経路が生成される恐れがある。
 本開示は、PMVといった移動体に搭載されたセンサの検知範囲にない障害物等が要因で移動体が通過できない箇所を回避した経路を、移動体が得られるようにすることを目的とする。
The technique described in Patent Document 1 produces a route through a non-congested compartment, but does not consider whether the PMV is physically passable through the generated route. Therefore, there is a possibility that a route including a place where PMV cannot pass may be generated.
An object of the present disclosure is to enable a moving body to obtain a route avoiding a place where the moving body cannot pass due to an obstacle or the like that is not within the detection range of a sensor mounted on the moving body such as PMV.
 本開示に係る経路生成装置は、
 移動体が存在する位置から目的地までの経路を構成する道路の画像データを取得する画像取得部と、
 前記画像取得部によって取得された前記画像データに基づき、前記道路を前記移動体が通行できるか否かを判定する通行可否判定部と、
 前記通行可否判定部によって通行できると判定された道路によって構成された経路を前記移動体に通知する経路通知部と
を備える。
The route generator according to the present disclosure is
An image acquisition unit that acquires image data of the road that constitutes the route from the position where the moving object exists to the destination,
Based on the image data acquired by the image acquisition unit, a passability determination unit for determining whether or not the moving body can pass on the road, and a passability determination unit.
It is provided with a route notification unit for notifying the moving body of a route composed of roads determined to be passable by the passability determination unit.
 本開示では、経路を構成する道路の画像データに基づき移動体が道路を通行できるか否かを判定し、通行できると判定された道路によって構成された経路が移動体に通知される。そのため、移動体は、センサの検知範囲にない障害物等が要因で移動体が通過できない箇所を回避した経路を得ることが可能である。 In the present disclosure, it is determined whether or not the moving body can pass through the road based on the image data of the roads constituting the route, and the route composed of the roads determined to be able to pass is notified to the moving body. Therefore, the moving body can obtain a route avoiding a place where the moving body cannot pass due to an obstacle or the like that is not within the detection range of the sensor.
実施の形態1に係る移動制御システム100の構成図。The block diagram of the movement control system 100 which concerns on Embodiment 1. FIG. 実施の形態1に係る経路生成装置10の構成図。The block diagram of the route generation apparatus 10 which concerns on Embodiment 1. FIG. 実施の形態1に係るPMV装置30の構成図。The block diagram of the PMV apparatus 30 which concerns on Embodiment 1. FIG. 実施の形態1に係る移動制御システム100の動作の流れを示すフローチャート。The flowchart which shows the operation flow of the movement control system 100 which concerns on Embodiment 1. 実施の形態1に係る通行可否判定処理の具体例の説明図。An explanatory diagram of a specific example of the passability determination process according to the first embodiment. 実施の形態1に係る図5に対応する俯瞰画像を示す図。The figure which shows the bird's-eye view image corresponding to FIG. 5 which concerns on Embodiment 1. FIG. 実施の形態1に係る通行可否判定処理の具体例の説明図。An explanatory diagram of a specific example of the passability determination process according to the first embodiment. 実施の形態1に係る図7に対応する3次元模式図を示す図。The figure which shows the 3D schematic diagram corresponding to FIG. 7 which concerns on Embodiment 1. FIG.
 実施の形態1.
 ***構成の説明***
 図1を参照して、実施の形態1に係る移動制御システム100の構成を説明する。
 移動制御システム100は、経路生成装置10と、PMV装置30とを備える。経路生成装置10とPMV装置30とは、伝送路90を介して接続されている。伝送路90は、具体例としては、インターネットである。
 経路生成装置10は、移動体であるPMV50が目的地まで移動するための経路を生成するコンピュータである。PMV装置30は、PMV50に搭載され、PMV50を自立走行させるコンピュータである。
Embodiment 1.
*** Explanation of configuration ***
The configuration of the movement control system 100 according to the first embodiment will be described with reference to FIG.
The movement control system 100 includes a route generation device 10 and a PMV device 30. The route generation device 10 and the PMV device 30 are connected to each other via a transmission line 90. The transmission line 90 is, as a specific example, the Internet.
The route generation device 10 is a computer that generates a route for the moving body PMV50 to move to a destination. The PMV device 30 is a computer mounted on the PMV50 and allowing the PMV50 to run independently.
 図2を参照して、実施の形態1に係る経路生成装置10の構成を説明する。
 経路生成装置10は、プロセッサ11と、メモリ12と、ストレージ13と、通信インタフェース14と、カメラインタフェース15とのハードウェアを備える。プロセッサ11は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
The configuration of the route generation device 10 according to the first embodiment will be described with reference to FIG.
The route generation device 10 includes hardware including a processor 11, a memory 12, a storage 13, a communication interface 14, and a camera interface 15. The processor 11 is connected to other hardware via a signal line and controls these other hardware.
 経路生成装置10は、カメラインタフェース15を介して、1つ以上のカメラ16と接続されている。 The route generation device 10 is connected to one or more cameras 16 via the camera interface 15.
 経路生成装置10は、機能構成要素として、要求取得部21と、候補生成部22と、画像取得部23と、通行可否判定部24と、経路通知部25とを備える。経路生成装置10の各機能構成要素の機能はソフトウェアにより実現される。
 ストレージ13には、経路生成装置10の各機能構成要素の機能を実現するプログラムが格納されている。このプログラムは、プロセッサ11によりメモリ12に読み込まれ、プロセッサ11によって実行される。これにより、経路生成装置10の各機能構成要素の機能が実現される。
The route generation device 10 includes a request acquisition unit 21, a candidate generation unit 22, an image acquisition unit 23, a passability determination unit 24, and a route notification unit 25 as functional components. The functions of each functional component of the route generator 10 are realized by software.
The storage 13 stores a program that realizes the functions of each functional component of the route generation device 10. This program is read into the memory 12 by the processor 11 and executed by the processor 11. As a result, the functions of each functional component of the route generation device 10 are realized.
 図3を参照して、実施の形態1に係るPMV装置30の構成を説明する。
 PMV装置30は、プロセッサ31と、メモリ32と、ストレージ33と、通信インタフェース34とのハードウェアを備える。プロセッサ31は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
The configuration of the PMV device 30 according to the first embodiment will be described with reference to FIG.
The PMV device 30 includes hardware such as a processor 31, a memory 32, a storage 33, and a communication interface 34. The processor 31 is connected to other hardware via a signal line and controls these other hardware.
 PMV装置30は、機能構成要素として、目的地設定部41と、経路要求部42と、移動制御部43とを備える。PMV装置30の各機能構成要素の機能はソフトウェアにより実現される。
 ストレージ33には、PMV装置30の各機能構成要素の機能を実現するプログラムが格納されている。このプログラムは、プロセッサ31によりメモリ32に読み込まれ、プロセッサ31によって実行される。これにより、PMV装置30の各機能構成要素の機能が実現される。
The PMV device 30 includes a destination setting unit 41, a route request unit 42, and a movement control unit 43 as functional components. The functions of each functional component of the PMV device 30 are realized by software.
The storage 33 stores a program that realizes the functions of each functional component of the PMV device 30. This program is read into the memory 32 by the processor 31 and executed by the processor 31. As a result, the functions of each functional component of the PMV device 30 are realized.
 プロセッサ11,31は、プロセッシングを行うIC(Integrated Circuit)である。プロセッサ11,31は、具体例としては、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。 Processors 11 and 31 are ICs (Integrated Circuits) that perform processing. Specific examples of the processors 11 and 31 are a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
 メモリ12,32は、データを一時的に記憶する記憶装置である。メモリ12,32は、具体例としては、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)である。 The memories 12 and 32 are storage devices for temporarily storing data. Specific examples of the memories 12 and 32 are SRAM (Static Random Access Memory) and DRAM (Dynamic Random Access Memory).
 ストレージ13,33は、データを保管する記憶装置である。ストレージ13,33は、具体例としては、HDD(Hard Disk Drive)である。また、ストレージ13,33は、SD(登録商標,Secure Digital)メモリカード、CF(CompactFlash,登録商標)、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD(Digital Versatile Disk)といった可搬記録媒体であってもよい。 The storages 13 and 33 are storage devices for storing data. The storages 13 and 33 are, as a specific example, an HDD (Hard Disk Drive). The storages 13 and 33 include SD (registered trademark, Secure Digital) memory card, CF (CompactFlash, registered trademark), NAND flash, flexible disk, optical disk, compact disk, Blu-ray (registered trademark) disk, and DVD (Digital Versaille Disk). ) May be a portable recording medium.
 通信インタフェース14,34は、外部の装置と通信するためのインタフェースである。通信インタフェース14,34は、具体例としては、Ethernet(登録商標)、USB(Universal Serial Bus)のポートである。 Communication interfaces 14 and 34 are interfaces for communicating with an external device. Specific examples of the communication interfaces 14 and 34 are Ethernet (registered trademark) and USB (Universal Serial Bus) ports.
 カメラインタフェース15は、カメラ16と通信するためのインタフェースである。カメラインタフェース15は、具体例としては、Ethernet(登録商標)、USB(Universal Serial Bus)のポートである。 The camera interface 15 is an interface for communicating with the camera 16. As a specific example, the camera interface 15 is a port of Ethernet (registered trademark) or USB (Universal Serial Bus).
 図2では、プロセッサ11は、1つだけ示されていた。しかし、プロセッサ11は、複数であってもよく、複数のプロセッサ11が、各機能を実現するプログラムを連携して実行してもよい。同様に、プロセッサ31は、複数であってもよく、複数のプロセッサ31が、各機能を実現するプログラムを連携して実行してもよい。 In FIG. 2, only one processor 11 was shown. However, the number of processors 11 may be plural, and the plurality of processors 11 may execute programs that realize each function in cooperation with each other. Similarly, the number of processors 31 may be plural, and the plurality of processors 31 may execute programs that realize each function in cooperation with each other.
 ***動作の説明***
 図4から図8を参照して、実施の形態1に係る移動制御システム100の動作を説明する。
 実施の形態1に係る移動制御システム100の動作手順は、実施の形態1に係る移動制御方法に相当する。また、実施の形態1に係る移動制御システム100の動作を実現するプログラムは、実施の形態1に係る移動制御プログラムに相当する。
 実施の形態1に係る移動制御システム100における経路生成装置10の動作手順は、実施の形態1に係る経路生成方法に相当する。また、実施の形態1に係る移動制御システム100における経路生成装置10の動作を実現するプログラムは、実施の形態1に係る経路生成プログラムに相当する。
*** Explanation of operation ***
The operation of the movement control system 100 according to the first embodiment will be described with reference to FIGS. 4 to 8.
The operation procedure of the movement control system 100 according to the first embodiment corresponds to the movement control method according to the first embodiment. Further, the program that realizes the operation of the movement control system 100 according to the first embodiment corresponds to the movement control program according to the first embodiment.
The operation procedure of the route generation device 10 in the movement control system 100 according to the first embodiment corresponds to the route generation method according to the first embodiment. Further, the program that realizes the operation of the route generation device 10 in the movement control system 100 according to the first embodiment corresponds to the route generation program according to the first embodiment.
 図4を参照して、実施の形態1に係る移動制御システム100の動作の流れを説明する。
 (ステップS11:目的地設定処理)
 PMV装置30の目的地設定部41は、PMV50の目的地を設定する。
 具体的には、PMV50の搭乗者等から目的地の入力を受け付けることにより、PMV50の目的地を設定する。目的地設定部41は、目的地を示す目的地情報をメモリ32に書き込む。
The operation flow of the movement control system 100 according to the first embodiment will be described with reference to FIG.
(Step S11: Destination setting process)
The destination setting unit 41 of the PMV device 30 sets the destination of the PMV 50.
Specifically, the destination of the PMV 50 is set by accepting the input of the destination from the passengers of the PMV 50 or the like. The destination setting unit 41 writes the destination information indicating the destination in the memory 32.
 (ステップS12:経路要求処理)
 PMV装置30の経路要求部42は、ステップS11で設定された目的地までの経路の生成を経路生成装置10に要求する。
 具体的には、経路要求部42は、メモリ32から目的地情報を読み出す。経路要求部42は、PMV50の現在の位置を示す位置情報と、目的地情報とを含む経路生成要求を、通信インタフェース34を介して経路生成装置10に送信する。
(Step S12: Route request processing)
The route requesting unit 42 of the PMV device 30 requests the route generation device 10 to generate a route to the destination set in step S11.
Specifically, the route request unit 42 reads the destination information from the memory 32. The route request unit 42 transmits a route generation request including the position information indicating the current position of the PMV 50 and the destination information to the route generation device 10 via the communication interface 34.
 (ステップS13:要求取得処理)
 経路生成装置10の要求取得部21は、通信インタフェース14を介して、ステップS12で送信された経路生成要求を取得する。要求取得部21は、経路生成要求に含まれる位置情報及び目的地情報をメモリ12に書き込む。
(Step S13: Request acquisition process)
The request acquisition unit 21 of the route generation device 10 acquires the route generation request transmitted in step S12 via the communication interface 14. The request acquisition unit 21 writes the position information and the destination information included in the route generation request to the memory 12.
 (ステップS14:候補生成処理)
 経路生成装置10の候補生成部22は、ステップS13で取得された経路生成要求に含まれる位置情報が示すPMV50が存在する位置から、経路生成要求に含まれる目的地情報が示す目的地までの1つ以上の経路を特定する。
 具体的には、候補生成部22は、位置情報及び目的地情報をメモリ12から読み出す。候補生成部22は、地図情報を用いて、既存の経路探索アルゴリズムによって、位置情報が示すPMV50が存在する位置から、目的地情報が示す目的地までの1つ以上の経路を特定する。候補生成部22は、特定された1つ以上の経路を示す経路候補情報をメモリ12に書き込む。
(Step S14: Candidate generation process)
The candidate generation unit 22 of the route generation device 10 is 1 from the position where the PMV50 indicated by the position information included in the route generation request acquired in step S13 exists to the destination indicated by the destination information included in the route generation request. Identify one or more routes.
Specifically, the candidate generation unit 22 reads the position information and the destination information from the memory 12. The candidate generation unit 22 identifies one or more routes from the position where the PMV 50 indicated by the location information exists to the destination indicated by the destination information by the existing route search algorithm using the map information. The candidate generation unit 22 writes the route candidate information indicating one or more specified routes to the memory 12.
 (ステップS15:画像取得処理)
 経路生成装置10の画像取得部23は、ステップS14で特定された経路を構成する道路の画像データを取得する。
 具体的には、画像取得部23は、経路候補情報をメモリ12から読み出す。画像取得部23は、経路候補情報が示す1つ以上の経路それぞれを対象の経路に設定する。画像取得部23は、カメラ16によって取得された、対象の経路を構成する道路の画像データを取得する。画像取得部23は、取得された画像データをメモリ12に書き込む。
 具体例としては、画像取得部23は、対象の経路を構成する道路に設置された監視カメラであるカメラ16によって得られた画像データを取得する。画像取得部23は、対象の経路を構成する道路付近を走行する車両に搭載された車載カメラであるカメラ16によって得られた画像データを取得してもよい。車載カメラとしては、例えば、ドライブレコーダ用のカメラがある。画像取得部23は、ドローン等に搭載されたカメラ16によって、対象の経路を構成する道路付近を撮像して得られた画像データを取得してもよい。画像データは、対象の経路を構成する道路の全ての地点について取得されることが望ましい。
(Step S15: Image acquisition process)
The image acquisition unit 23 of the route generation device 10 acquires image data of the road constituting the route specified in step S14.
Specifically, the image acquisition unit 23 reads the route candidate information from the memory 12. The image acquisition unit 23 sets each of one or more routes indicated by the route candidate information as the target route. The image acquisition unit 23 acquires image data of the road constituting the target route acquired by the camera 16. The image acquisition unit 23 writes the acquired image data to the memory 12.
As a specific example, the image acquisition unit 23 acquires image data obtained by a camera 16 which is a surveillance camera installed on a road constituting a target route. The image acquisition unit 23 may acquire image data acquired by a camera 16 which is an in-vehicle camera mounted on a vehicle traveling near a road constituting the target route. As the in-vehicle camera, for example, there is a camera for a drive recorder. The image acquisition unit 23 may acquire image data obtained by photographing the vicinity of the road constituting the target route with a camera 16 mounted on a drone or the like. It is desirable that the image data be acquired at all points of the road constituting the target route.
 (ステップS16:通行可否判定処理)
 経路生成装置10の通行可否判定部24は、ステップS15で取得された画像データに基づき、ステップS14で特定された経路を構成する道路を移動体が通行できるか否かを判定する。
 具体的には、通行可否判定部24は、経路候補情報及び画像データをメモリ12から読み出す。通行可否判定部24は、経路候補情報が示す1つ以上の経路それぞれを対象の経路に設定し、対象の経路を構成する各道路を対象の道路に設定する。通行可否判定部24は、対象の道路についての画像データからPMV50が通行可能な領域を特定する。通行可否判定部24は、道路においてPMV50が通行可能な領域の大きさと、PMV50の大きさとを比較することにより、道路をPMV50が通行できるか否かを判定する。
(Step S16: Passability determination process)
Based on the image data acquired in step S15, the passability determination unit 24 of the route generation device 10 determines whether or not the moving body can pass on the road constituting the route specified in step S14.
Specifically, the passability determination unit 24 reads the route candidate information and the image data from the memory 12. The passability determination unit 24 sets each of one or more routes indicated by the route candidate information as the target route, and sets each road constituting the target route as the target road. The passability determination unit 24 identifies an area through which the PMV 50 can pass from the image data of the target road. The passability determination unit 24 determines whether or not the PMV50 can pass on the road by comparing the size of the area where the PMV50 can pass on the road with the size of the PMV50.
 図5及び図6を参照して通行可否判定処理の具体例を説明する。
 図5に示すように、道路に障害物が存在するとする。図5では、障害物として倒れた2輪車が存在する。この場合には、通行可否判定部24は、道路付近に設置された監視カメラであるカメラ16から取得された画像データから、図6に示すように道路の俯瞰画像を生成する。通行可否判定部24は、俯瞰画像に基づき、道路においてPMV50が通行可能な領域の幅W_spcを特定する。この際、通行可否判定部24は、道路においてPMV50が通行可能な領域うち、最も狭い部分の幅を幅W_spcとして特定する。そのため、図6では、障害物が存在する部分の幅が幅W_spcとして特定されている。そして、通行可否判定部24は、特定された幅W_spcと、PMV50の幅W_pmvとを比較することにより、道路をPMV50が通行できるか否かを判定する。
 例えば、通行可否判定部24は、特定された幅W_spcがPMV50の幅W_pmvよりも広ければ、道路をPMV50が通行できると判定する。また、通行可否判定部24は、特定された幅W_spcがPMV50の幅W_pmvよりも基準値以上広ければ、道路をPMV50が通行できると判定してもよい。
A specific example of the passability determination process will be described with reference to FIGS. 5 and 6.
As shown in FIG. 5, it is assumed that there is an obstacle on the road. In FIG. 5, there is a two-wheeled vehicle that has fallen as an obstacle. In this case, the passability determination unit 24 generates a bird's-eye view image of the road as shown in FIG. 6 from the image data acquired from the camera 16 which is a surveillance camera installed near the road. The passability determination unit 24 specifies the width W_spc of the area where the PMV50 can pass on the road based on the bird's-eye view image. At this time, the passability determination unit 24 specifies the width of the narrowest portion of the area where the PMV50 can pass on the road as the width W_spc. Therefore, in FIG. 6, the width of the portion where the obstacle exists is specified as the width W_spc. Then, the passability determination unit 24 determines whether or not the PMV50 can pass on the road by comparing the specified width W_spc with the width W_pmv of the PMV50.
For example, the passability determination unit 24 determines that the PMV50 can pass on the road if the specified width W_spc is wider than the width W_pmv of the PMV50. Further, the passability determination unit 24 may determine that the PMV50 can pass on the road if the specified width W_spc is wider than the reference value W_pmv of the PMV50.
 図7及び図8を参照して通行可否判定処理の他の具体例を説明する。
 図5及び図6の具体例では、2次元の俯瞰画像に基づき、道路をPMV50が通行できるか否かが判定された。しかし、通行可否判定部24は、3次元空間の領域に基づき、道路をPMV50が通行できるか否かを判定してもよい。
 図7に示すように、道路に障害物が存在するとする。図7では、障害物としてポスト及び樹木が存在する。この場合には、通行可否判定部24は、道路付近に設置された監視カメラであるカメラ16から取得された画像データから、図8に示すように、道路の3次元模式図を生成する。通行可否判定部24は、3次元模式図に基づき、道路においてPMV50が通行可能な領域の幅W_spc及び高さH_spcを特定する。この際、通行可否判定部24は、道路においてPMV50が通行可能な領域うち、最も狭い部分の幅を幅W_spcとし、最も低い部分の高さを高さH_spcとして特定する。そのため、図6では、ポストが存在する部分の幅が幅W_spcとして特定され、樹木が存在する部分の高さが高さH_spcとして特定されている。そして、通行可否判定部24は、特定された幅W_spcと、PMV50の幅W_pmvとを比較するとともに、特定された高さH_spcと、PMV50の高さH_pmvとを比較することにより、道路をPMV50が通行できるか否かを判定する。
 例えば、通行可否判定部24は、特定された幅W_spcがPMV50の幅W_pmvよりも広く、かつ、特定された高さH_spcがPMV50の高さH_pmvよりも高ければ、道路をPMV50が通行できると判定する。また、通行可否判定部24は、特定された幅W_spcがPMV50の幅W_pmvよりも第1基準値以上広く、かつ、特定された高さH_spcがPMV50の高さH_pmvよりも第2基準値以上高ければ、道路をPMV50が通行できると判定してもよい。
Another specific example of the passability determination process will be described with reference to FIGS. 7 and 8.
In the specific examples of FIGS. 5 and 6, it was determined whether or not the PMV50 can pass on the road based on the two-dimensional bird's-eye view image. However, the passability determination unit 24 may determine whether or not the PMV50 can pass through the road based on the area of the three-dimensional space.
As shown in FIG. 7, it is assumed that there is an obstacle on the road. In FIG. 7, there are posts and trees as obstacles. In this case, the passability determination unit 24 generates a three-dimensional schematic diagram of the road as shown in FIG. 8 from the image data acquired from the camera 16 which is a surveillance camera installed near the road. The passability determination unit 24 specifies the width W_spc and the height H_spc of the area where the PMV50 can pass on the road based on the three-dimensional schematic diagram. At this time, the passability determination unit 24 specifies the width of the narrowest portion of the area where the PMV50 can pass on the road as the width W_spc and the height of the lowest portion as the height H_spc. Therefore, in FIG. 6, the width of the portion where the post is present is specified as the width W_spc, and the height of the portion where the tree is present is specified as the height H_spc. Then, the passability determination unit 24 compares the specified width W_spc with the width W_pmv of the PMV50, and compares the specified height H_spc with the height H_pmv of the PMV50 so that the PMV50 can drive the road. Determine if it can pass.
For example, the passability determination unit 24 determines that the PMV50 can pass on the road if the specified width W_spc is wider than the width W_pmv of the PMV50 and the specified height H_spc is higher than the height H_pmv of the PMV50. do. Further, in the passability determination unit 24, the specified width W_spc is wider than the width W_pmv of the PMV50 by the first reference value or more, and the specified height H_spc is higher than the height H_pmv of the PMV50 by the second reference value or more. For example, it may be determined that the PMV 50 can pass on the road.
 (ステップS17:経路通知処理)
 経路生成装置10の経路通知部25は、ステップS16で通行できると判定された道路によって構成された経路をPMV50に通知する。
 具体的には、経路通知部25は、ステップS14で特定された1つ以上の経路のうち、ステップS16で通行できると判定された道路によって構成された経路を特定する。経路通知部25は、特定された経路を構成する道路において、PMV50が通行可能な領域を接続して、通行経路を生成する。そして、経路通知部25は、通信インタフェース14を介して、通行経路を示す通行経路情報をPMV50に搭載されたPMV装置30に送信する。
 なお、経路通知部25は、複数の経路が特定された場合には、優先度の最も高い経路についての通行経路だけを通知してもよいし、全ての経路についての通行経路を通知してもよい。優先度は、例えば、移動距離が短いほど高くなるように設定される、あるいは、移動時間が短いほど高くなるように設定される。また、経路通知部25は、1つの経路も特定されなかった場合には、経路がないことを通知する。
(Step S17: Route notification processing)
The route notification unit 25 of the route generation device 10 notifies the PMV 50 of the route composed of the roads determined to be passable in step S16.
Specifically, the route notification unit 25 identifies a route configured by a road determined to be passable in step S16 among one or more routes specified in step S14. The route notification unit 25 connects the areas through which the PMV 50 can pass on the road constituting the specified route to generate a passage route. Then, the route notification unit 25 transmits the passage route information indicating the passage route to the PMV device 30 mounted on the PMV 50 via the communication interface 14.
When a plurality of routes are specified, the route notification unit 25 may notify only the passage route for the route having the highest priority, or may notify the passage route for all the routes. good. The priority is set, for example, to be higher as the travel distance is shorter, or to be higher as the travel time is shorter. Further, when no route is specified, the route notification unit 25 notifies that there is no route.
 (ステップS18:移動制御処理)
 PMV装置30の移動制御部43は、ステップS17で通知された経路を走行するようにPMV50を制御する。
 具体的には、移動制御部43は、通信インタフェース34を介して通行経路情報を取得する。移動制御部43は、通行経路情報が示す通行経路を走行するように、PMV50のステアリングといった機器を制御する。なお、通行経路情報が示す通行経路が複数存在する場合には、移動制御部43はいずれか1つの通行経路を選択して、選択した通行経路を走行するように制御する。この際、移動制御部43は、PMV50に搭載されたセンサを用いて、PMV50の周辺に存在する物体を検知し、周辺に存在する物体との衝突を避けながら走行するように制御する。
(Step S18: Movement control process)
The movement control unit 43 of the PMV device 30 controls the PMV 50 so as to travel on the route notified in step S17.
Specifically, the movement control unit 43 acquires the passage route information via the communication interface 34. The movement control unit 43 controls a device such as the steering of the PMV 50 so as to travel on the passage route indicated by the passage route information. When there are a plurality of traffic routes indicated by the traffic route information, the movement control unit 43 selects one of the traffic routes and controls the vehicle to travel on the selected traffic route. At this time, the movement control unit 43 detects an object existing in the vicinity of the PMV 50 by using a sensor mounted on the PMV 50, and controls the vehicle so as to travel while avoiding a collision with the object existing in the vicinity.
 PMV50が一定時間又は一定距離走行すると、処理がステップS12に戻される。そして、再び経路要求部42によって目的地までの経路の生成が要求される。 When the PMV50 travels for a certain period of time or a certain distance, the process is returned to step S12. Then, the route requesting unit 42 again requests the generation of the route to the destination.
 ***実施の形態1の効果***
 以上のように、実施の形態1に係る移動制御システム100は、経路生成装置10によって経路を構成する道路の画像データに基づき移動体が道路を通行できるか否かを判定し、通行できると判定された道路によって構成された経路がPMV装置30に通知される。そのため、PMV50は、センサの検知範囲にない障害物等が要因で移動体が通過できない箇所を回避した経路を得ることが可能である。
*** Effect of Embodiment 1 ***
As described above, the movement control system 100 according to the first embodiment determines whether or not the moving body can pass through the road based on the image data of the road constituting the route by the route generation device 10, and determines that the moving body can pass through the road. The PMV device 30 is notified of the route composed of the roads. Therefore, the PMV 50 can obtain a route that avoids a place where a moving object cannot pass due to an obstacle or the like that is not within the detection range of the sensor.
 ***他の構成***
 <変形例1>
 実施の形態1では、図4のステップS16で通行可否判定部24は、道路の画像データに基づき、道路をPMV50が通行可能か否かを判定した。通行可否判定部24は、画像データに加えて、道路の図面データに基づき、道路を移動体が通行できるか否かを判定してもよい。図面データは、道路の幅、傾斜、段差の有無、段差の高さといった情報を含むデータである。
 この場合には、通行可否判定部24は、道路の幅とPMV50の幅とを比較するだけでなく、道路の傾斜を考慮してPMV50が通行可能か否かを判定してもよい。また、道路の段差がPMV50が超えられる高さであるか否かにより、PMV50が通行可能か否かを判定してもよい。
*** Other configurations ***
<Modification 1>
In the first embodiment, in step S16 of FIG. 4, the passability determination unit 24 determines whether or not the PMV50 can pass through the road based on the image data of the road. The passability determination unit 24 may determine whether or not a moving object can pass on the road based on the drawing data of the road in addition to the image data. The drawing data is data including information such as the width of the road, the slope, the presence or absence of a step, and the height of the step.
In this case, the passability determination unit 24 may not only compare the width of the road and the width of the PMV50, but may also determine whether or not the PMV50 is passable in consideration of the slope of the road. Further, it may be determined whether or not the PMV 50 is passable depending on whether or not the step on the road is at a height that exceeds the PMV 50.
 <変形例2>
 通行可否判定部24は、PMV装置30から通行した道路を示す道路情報を取得し、ストレージ13に蓄積しておいてもよい。そして、図4のステップS16で通行可否判定部24は、ストレージ13に蓄積された道路情報を参照して、過去基準期間内に道路を他のPMV50が通行したか否かを判定し、判定結果に基づき、道路をPMV50が通行できるか否かを判定してもよい。
 具体的には、通行可否判定部24は、過去基準期間内に道路を他のPMV50が通行した場合には、画像データに基づく判定を行うことなく、道路をPMV50が通行できると判定してもよい。これにより、多数のPMV50が走行しているような場合には、処理負荷の高い画像データに基づく判定処理を省略できる可能性が高くなり、経路生成装置10の処理負荷を低くすることが可能になる。
<Modification 2>
The passability determination unit 24 may acquire road information indicating the road that has passed from the PMV device 30 and store it in the storage 13. Then, in step S16 of FIG. 4, the passability determination unit 24 refers to the road information stored in the storage 13 and determines whether or not another PMV50 has passed through the road within the past reference period, and the determination result is obtained. Based on the above, it may be determined whether or not the PMV50 can pass on the road.
Specifically, if the passability determination unit 24 determines that the PMV50 can pass through the road without making a determination based on the image data when another PMV50 has passed through the road within the past reference period. good. As a result, when a large number of PMVs 50 are traveling, there is a high possibility that the determination process based on the image data having a high processing load can be omitted, and the processing load of the route generation device 10 can be reduced. Become.
 <変形例3>
 実施の形態1では、各機能構成要素がソフトウェアで実現された。しかし、変形例3として、各機能構成要素はハードウェアで実現されてもよい。この変形例3について、実施の形態1と異なる点を説明する。
<Modification 3>
In the first embodiment, each functional component is realized by software. However, as a modification 3, each functional component may be realized by hardware. The difference between the third modification and the first embodiment will be described.
 各機能構成要素がハードウェアで実現される場合には、経路生成装置10は、プロセッサ11とメモリ12とストレージ13とに代えて、電子回路を備える。電子回路は、各機能構成要素と、メモリ12と、ストレージ13との機能とを実現する専用の回路である。 When each functional component is realized by hardware, the route generation device 10 includes an electronic circuit instead of the processor 11, the memory 12, and the storage 13. The electronic circuit is a dedicated circuit that realizes the functions of each functional component, the memory 12, and the storage 13.
 各機能構成要素がハードウェアで実現される場合には、PMV装置30は、プロセッサ31とメモリ32とストレージ33とに代えて、電子回路を備える。電子回路は、各機能構成要素と、メモリ32と、ストレージ33との機能とを実現する専用の回路である。 When each functional component is realized by hardware, the PMV device 30 includes an electronic circuit instead of the processor 31, the memory 32, and the storage 33. The electronic circuit is a dedicated circuit that realizes the functions of each functional component, the memory 32, and the storage 33.
 電子回路としては、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA(Gate Array)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)が想定される。
 各機能構成要素を1つの電子回路で実現してもよいし、各機能構成要素を複数の電子回路に分散させて実現してもよい。
As the electronic circuit, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA (Gate Array), an ASIC (Application Specific Integrated Circuit), and an FPGA (Field-Programmable Gate Array) are assumed. Will be done.
Each functional component may be realized by one electronic circuit, or each functional component may be distributed and realized by a plurality of electronic circuits.
 <変形例4>
 変形例4として、一部の各機能構成要素がハードウェアで実現され、他の各機能構成要素がソフトウェアで実現されてもよい。
<Modification example 4>
As a modification 4, some functional components may be realized by hardware, and other functional components may be realized by software.
 プロセッサ11,31とメモリ12,32とストレージ13,33と電子回路とを処理回路という。つまり、各機能構成要素の機能は、処理回路により実現される。 Processors 11, 31, memories 12, 32, storages 13, 33, and electronic circuits are called processing circuits. That is, the function of each functional component is realized by the processing circuit.
 また、以上の説明における「部」を、「回路」、「工程」、「手順」、「処理」又は「処理回路」に読み替えてもよい。 Further, the "part" in the above description may be read as "circuit", "process", "procedure", "processing" or "processing circuit".
 以上、本開示の実施の形態及び変形例について説明した。これらの実施の形態及び変形例のうち、いくつかを組み合わせて実施してもよい。また、いずれか1つ又はいくつかを部分的に実施してもよい。なお、本開示は、以上の実施の形態及び変形例に限定されるものではなく、必要に応じて種々の変更が可能である。 The embodiments and modifications of the present disclosure have been described above. Some of these embodiments and modifications may be combined and carried out. In addition, any one or several may be partially carried out. The present disclosure is not limited to the above embodiments and modifications, and various modifications can be made as necessary.
 100 移動制御システム、10 経路生成装置、11 プロセッサ、12 メモリ、13 ストレージ、14 通信インタフェース、15 カメラインタフェース、16 カメラ、21 要求取得部、22 候補生成部、23 画像取得部、24 通行可否判定部、25 経路通知部、30 PMV装置、31 プロセッサ、32 メモリ、33 ストレージ、34 通信インタフェース、41 目的地設定部、42 経路要求部、43 移動制御部、50 PMV、90 伝送路。 100 mobile control system, 10 route generator, 11 processor, 12 memory, 13 storage, 14 communication interface, 15 camera interface, 16 camera, 21 request acquisition unit, 22 candidate generation unit, 23 image acquisition unit, 24 passability judgment unit. , 25 route notification unit, 30 PMV device, 31 processor, 32 memory, 33 storage, 34 communication interface, 41 destination setting unit, 42 route request unit, 43 mobile control unit, 50 PMV, 90 transmission path.

Claims (8)

  1.  移動体が存在する位置から目的地までの経路を構成する道路の画像データを取得する画像取得部と、
     前記画像取得部によって取得された前記画像データに基づき、前記道路を前記移動体が通行できるか否かを判定する通行可否判定部と、
     前記通行可否判定部によって通行できると判定された道路によって構成された経路を前記移動体に通知する経路通知部と
    を備える経路生成装置。
    An image acquisition unit that acquires image data of the road that constitutes the route from the position where the moving object exists to the destination,
    Based on the image data acquired by the image acquisition unit, a passability determination unit for determining whether or not the moving body can pass on the road, and a passability determination unit.
    A route generation device including a route notification unit for notifying the moving body of a route configured by a road determined to be passable by the passability determination unit.
  2.  前記通行可否判定部は、前記画像データから特定される前記道路において通行可能な領域の大きさと、前記移動体の大きさとを比較することにより、前記道路を前記移動体が通行できるか否かを判定する
    請求項1に記載の経路生成装置。
    The passability determination unit determines whether or not the moving body can pass on the road by comparing the size of the passable area on the road specified from the image data with the size of the moving body. The route generation device according to claim 1.
  3.  前記通行可否判定部は、前記画像データから前記道路の俯瞰画像を生成し、前記俯瞰画像に基づき前記道路において通行可能な領域の幅を特定し、特定された前記幅と、前記移動体の幅とを比較することにより、前記道路を前記移動体が通行できるか否かを判定する
    請求項2に記載の経路生成装置。
    The passability determination unit generates a bird's-eye view image of the road from the image data, specifies the width of a passable area on the road based on the bird's-eye view image, and the specified width and the width of the moving body. The route generation device according to claim 2, wherein it is determined whether or not the moving body can pass through the road by comparing with and.
  4.  前記通行可否判定部は、前記画像データに加えて、前記道路の図面データに基づき、前記道路を前記移動体が通行できるか否かを判定する
    請求項1から3までのいずれか1項に記載の経路生成装置。
    The passage passability determination unit is described in any one of claims 1 to 3 for determining whether or not the moving body can pass through the road based on the drawing data of the road in addition to the image data. Route generator.
  5.  前記通行可否判定部は、過去基準期間内に前記道路を他の移動体が通行したか否かに基づき、前記道路を前記移動体が通行できるか否かを判定する
    請求項1から4までのいずれか1項に記載の経路生成装置。
    The passability determination unit according to claims 1 to 4 determines whether or not the moving object can pass on the road based on whether or not another moving object has passed on the road within the past reference period. The route generator according to any one of the following items.
  6.  前記経路生成装置は、さらに、
     前記位置から前記目的地までの1つ以上の経路を特定する経路特定部
    を備え、
     前記画像取得部は、前記経路特定部によって特定された各経路を対象の経路として、前記対象の経路を構成する道路の画像データを取得する
    請求項1から4までのいずれか1項に記載の経路生成装置。
    The route generator further
    A route identification unit for specifying one or more routes from the position to the destination is provided.
    The item according to any one of claims 1 to 4, wherein the image acquisition unit acquires image data of a road constituting the target route by using each route specified by the route identification unit as a target route. Route generator.
  7.  画像取得部が、移動体が存在する位置から目的地までの経路を構成する道路の画像データを取得し、
     通行可否判定部が、前記画像データに基づき、前記道路を前記移動体が通行できるか否かを判定し、
     経路通知部が、通行できると判定された道路によって構成された経路を前記移動体に通知する経路生成方法。
    The image acquisition unit acquires image data of the road that constitutes the route from the position where the moving object exists to the destination.
    The passability determination unit determines whether or not the moving body can pass on the road based on the image data.
    A route generation method in which a route notification unit notifies the moving body of a route composed of roads determined to be passable.
  8.  移動体が存在する位置から目的地までの経路を構成する道路の画像データを取得する画像取得処理と、
     前記画像取得処理によって取得された前記画像データに基づき、前記道路を前記移動体が通行できるか否かを判定する通行可否判定処理と、
     前記通行可否判定処理によって通行できると判定された道路によって構成された経路を前記移動体に通知する経路通知処理と
    を行う経路生成装置としてコンピュータを機能させる経路生成プログラム。
    Image acquisition processing to acquire image data of roads that make up the route from the position where the moving object exists to the destination, and
    Based on the image data acquired by the image acquisition process, a passability determination process for determining whether or not the moving body can pass on the road, and a passability determination process.
    A route generation program that causes a computer to function as a route generation device that performs a route notification process for notifying the moving body of a route configured by a road determined to be passable by the passability determination process.
PCT/JP2020/049288 2020-12-29 2020-12-29 Route generation device, route generation method, and route generation program WO2022145036A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021525730A JP7158581B1 (en) 2020-12-29 2020-12-29 Route generation device, route generation method and route generation program
PCT/JP2020/049288 WO2022145036A1 (en) 2020-12-29 2020-12-29 Route generation device, route generation method, and route generation program
JP2021182828A JP7270017B2 (en) 2020-12-29 2021-11-09 Route generation device and mobile object control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/049288 WO2022145036A1 (en) 2020-12-29 2020-12-29 Route generation device, route generation method, and route generation program

Publications (1)

Publication Number Publication Date
WO2022145036A1 true WO2022145036A1 (en) 2022-07-07

Family

ID=82259222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049288 WO2022145036A1 (en) 2020-12-29 2020-12-29 Route generation device, route generation method, and route generation program

Country Status (2)

Country Link
JP (1) JP7158581B1 (en)
WO (1) WO2022145036A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091611A1 (en) * 2012-12-13 2014-06-19 株式会社日立製作所 Autonomous travelling apparatus
WO2016024318A1 (en) * 2014-08-11 2016-02-18 日産自動車株式会社 Travel control device and method for vehicle
US20170192423A1 (en) * 2016-01-04 2017-07-06 Cruise Automation, Inc. System and method for remotely assisting autonomous vehicle operation
US20170300059A1 (en) * 2017-05-03 2017-10-19 GM Global Technology Operations LLC Methods and systems for lidar point cloud anomalies
US20190049977A1 (en) * 2017-08-10 2019-02-14 Patroness, LLC System and methods for sensor integration in support of situational awareness for a motorized mobile system
WO2019064490A1 (en) * 2017-09-29 2019-04-04 本田技研工業株式会社 Vehicle control device, vehicle control method, and program
US20190376805A1 (en) * 2018-06-06 2019-12-12 Lyft, Inc. Systems and methods for routing personal mobility vehicles based on road conditions
WO2020054733A1 (en) * 2018-09-11 2020-03-19 Whill株式会社 Travel route creation system
JP2020131897A (en) * 2019-02-19 2020-08-31 日産自動車株式会社 Vehicular travel route display method and vehicular travel route display device
JP2020197770A (en) * 2019-05-30 2020-12-10 アルパイン株式会社 Road surface detection system, personal mobility and obstacle detection method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05265547A (en) * 1992-03-23 1993-10-15 Fuji Heavy Ind Ltd On-vehicle outside monitoring device
JPH1062162A (en) * 1996-08-13 1998-03-06 Nissan Motor Co Ltd Detector for obstacle
JP2015184804A (en) * 2014-03-20 2015-10-22 カルソニックカンセイ株式会社 Image display device, image display method, and image display program
WO2017072878A1 (en) * 2015-10-28 2017-05-04 三菱電機株式会社 Vehicle entry determination device and vehicle entry determination system
JP2018200267A (en) * 2017-05-29 2018-12-20 トヨタ自動車株式会社 Upper structure determination device and driving support system
JP7046359B2 (en) * 2018-04-24 2022-04-04 シャロン株式会社 Operation control device and automatic driving device
CN113874268A (en) * 2019-05-22 2021-12-31 日立安斯泰莫株式会社 Vehicle control device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091611A1 (en) * 2012-12-13 2014-06-19 株式会社日立製作所 Autonomous travelling apparatus
WO2016024318A1 (en) * 2014-08-11 2016-02-18 日産自動車株式会社 Travel control device and method for vehicle
US20170192423A1 (en) * 2016-01-04 2017-07-06 Cruise Automation, Inc. System and method for remotely assisting autonomous vehicle operation
US20170300059A1 (en) * 2017-05-03 2017-10-19 GM Global Technology Operations LLC Methods and systems for lidar point cloud anomalies
US20190049977A1 (en) * 2017-08-10 2019-02-14 Patroness, LLC System and methods for sensor integration in support of situational awareness for a motorized mobile system
WO2019064490A1 (en) * 2017-09-29 2019-04-04 本田技研工業株式会社 Vehicle control device, vehicle control method, and program
US20190376805A1 (en) * 2018-06-06 2019-12-12 Lyft, Inc. Systems and methods for routing personal mobility vehicles based on road conditions
WO2020054733A1 (en) * 2018-09-11 2020-03-19 Whill株式会社 Travel route creation system
JP2020131897A (en) * 2019-02-19 2020-08-31 日産自動車株式会社 Vehicular travel route display method and vehicular travel route display device
JP2020197770A (en) * 2019-05-30 2020-12-10 アルパイン株式会社 Road surface detection system, personal mobility and obstacle detection method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJII, AKINOBU ET AL.: "Development of Autonomous Mobile Robot for Moving through Narrow Spaces?", JOURNAL OF THE ROBOTICS SOCIETY OF JAPAN, vol. 32, no. 1, 2014, pages 74 - 83 *

Also Published As

Publication number Publication date
JP7158581B1 (en) 2022-10-21
JPWO2022145036A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
US11285970B2 (en) Vehicle track prediction method and device, storage medium and terminal device
JP6830936B2 (en) 3D-LIDAR system for autonomous vehicles using dichroic mirrors
KR101912664B1 (en) System and method for providing inter-vehicle communications amongst autonomous vehicles
CN111076732B (en) Track marking based on vehicle driving and marking scheme for generating high-definition map
KR101960141B1 (en) System and method for providing content in autonomous vehicles based on real-time traffic information
JP6602352B2 (en) Decision improvement system based on planning feedback for autonomous vehicles
JP6498246B2 (en) Method and system for operating an autonomous vehicle using a graph-based lane change guide
CN111061261B (en) Automatic driving method using standard navigation map and lane configuration determined based on previous track of vehicle
JP6684345B2 (en) Method and system for constructing a surrounding environment for determining traveling of an autonomous vehicle
WO2020062031A1 (en) A pedestrian interaction system for low speed scenes for autonomous vehicles
JP2019167091A (en) Real-time sensing adjustment and operation adjustment based on behavior of peripheral vehicle of automatic operation vehicle
KR20190039915A (en) System and method for presenting media contents in autonomous vehicles
KR102223346B1 (en) Pedestrian probability prediction system for autonomous vehicles
CN110727276B (en) Multi-modal motion planning framework for autonomous vehicles
KR20170127342A (en) System and method for providing augmented virtual reality content in autonomous vehicles
WO2022104774A1 (en) Target detection method and apparatus
JP2016197314A (en) Driving support system, driving support apparatus and driving support method
US11035933B2 (en) Transition map between lidar and high-definition map
JP6792160B2 (en) Movement support system, movement support device, movement support terminal, movement support method, map creation system, map creation device, and information acquisition terminal
WO2020132959A1 (en) Spiral curve based vertical parking planner system for autonomous driving vehicles
US20220050452A1 (en) Navigating an autonomous vehicle based upon an image from a mobile computing device
US11107227B1 (en) Object detection based on three-dimensional distance measurement sensor point cloud data
WO2022145036A1 (en) Route generation device, route generation method, and route generation program
US20210407114A1 (en) Systems and methods for transferring map data between different maps
JP7466739B2 (en) Route generation device, route generation method, route generation program, and mobile object control system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021525730

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20968039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20968039

Country of ref document: EP

Kind code of ref document: A1