WO2020054733A1 - Travel route creation system - Google Patents

Travel route creation system Download PDF

Info

Publication number
WO2020054733A1
WO2020054733A1 PCT/JP2019/035585 JP2019035585W WO2020054733A1 WO 2020054733 A1 WO2020054733 A1 WO 2020054733A1 JP 2019035585 W JP2019035585 W JP 2019035585W WO 2020054733 A1 WO2020054733 A1 WO 2020054733A1
Authority
WO
WIPO (PCT)
Prior art keywords
personal mobility
map data
control unit
front wheel
information
Prior art date
Application number
PCT/JP2019/035585
Other languages
French (fr)
Japanese (ja)
Inventor
宗明 福岡
勝又 俊介
Original Assignee
Whill株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Whill株式会社 filed Critical Whill株式会社
Priority to EP19860371.4A priority Critical patent/EP3851800A4/en
Priority to JP2020546042A priority patent/JPWO2020054733A1/ja
Priority to CN201980037664.6A priority patent/CN112236647A/en
Publication of WO2020054733A1 publication Critical patent/WO2020054733A1/en
Priority to US17/110,696 priority patent/US20210089037A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/04Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven
    • A61G5/041Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven having a specific drive-type
    • A61G5/045Rear wheel drive
    • G05D1/435
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/04Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • A61G5/1051Arrangements for steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • G05D1/639
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/10General characteristics of devices characterised by specific control means, e.g. for adjustment or steering
    • A61G2203/14Joysticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/10General characteristics of devices characterised by specific control means, e.g. for adjustment or steering
    • A61G2203/22General characteristics of devices characterised by specific control means, e.g. for adjustment or steering for automatically guiding movable devices, e.g. stretchers or wheelchairs in a hospital
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/30General characteristics of devices characterised by sensor means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/35Road bumpiness, e.g. pavement or potholes

Definitions

  • the present invention relates to a travel route creation system.
  • the vehicle includes map data of a road on which the vehicle can travel, and when the road on which the vehicle travels has a plurality of lanes, determines a lane on which the vehicle should travel, and partially controls the travel of the vehicle.
  • a method in which the processing is automatically performed for example, see Patent Document 1.
  • the roads on which cars run are made for running cars.
  • the roads on the map are basically suitable for driving a car.
  • steps, inclines, and the like that cause the passenger to be stressed when traveling in personal mobility. Even if the height of the step is 1 cm, the rider may feel uncomfortable, surprised, fearful, or the like when personal mobility runs on the step.
  • the present invention has been made in view of such circumstances.
  • One of the objects of the present invention is to provide a travel route creation system that can improve the comfort of a passenger.
  • a first aspect of the present invention is a travel route creation system for creating a travel route for personal mobility, comprising: first map data indicating an area where the personal mobility can travel; A control unit for creating a travel route of the personal mobility based on the second map data having information on safety at the time.
  • the first map data includes position and area data of a sidewalk, a building, a station yard, a square, a park, and the like
  • the second map data includes a sidewalk, a building, a station yard, a square. It has information on steps, slopes, and the like that exist in the park, in the park, and the like.
  • the second map data having information on the safety at the time of traveling or stopping of personal mobility is used, setting of the traveling route in consideration of the safety at the time of traveling or stopping of personal mobility is set. Is performed.
  • first map data having almost all positions and areas such as sidewalks, buildings, stations, squares, parks and the like. Further, since the position and area of the sidewalk, the building, the premises of the station, the plaza, the park and the like do not change so frequently, once the first map data is created, the update frequency is not so high.
  • second map data having almost all the information regarding the safety of the personal mobility at the time of traveling or stopping. For example, it is difficult to grasp all the steps, slopes, and the like existing on the sidewalk, in a building, in the yard of a station, in a plaza, in a park, and the like from the viewpoint of a passenger of personal mobility in a short period of time.
  • the first map data includes detailed shape information, position information, and the like of each element, and it often takes time to add data to the first map data.
  • the second map data having, for example, a simple data structure different from the first map data. For this reason, the second map data can be updated successively, and a travel route that matches the personal mobility passenger's request can be set.
  • a second aspect of the present invention is a travel route creation system for creating a travel route for personal mobility, comprising: map data indicating an area where the personal mobility can travel; information on a current position of the personal mobility; A server that sets a plurality of passing points at intervals between the current position and the destination based on at least the information of the ground, a sensor provided in the personal mobility, A control unit that receives information on the passing points and creates a traveling route between the plurality of passing points using data obtained by the sensor so as to sequentially pass through the passing points or the vicinity thereof.
  • the control unit creates a traveling route between a plurality of passing points. That is, if a traveling route to the next passing point has been created, the vehicle can arrive at the passing point or in the vicinity thereof. That is, even when it is necessary to change the traveling route of personal mobility according to the movement, presence, etc. of a person, a bicycle, another object, or the like, the control unit need only change the traveling route to the next passing point. . Therefore, it is possible to reduce the power consumption due to the successive change of the traveling route.
  • the control unit is operated by the personal mobility battery, the power consumption of the personal mobility battery is reduced, and when the control unit is a tablet computer or the like, the power consumption of the battery is also reduced. This leads to an increase in passenger comfort.
  • a third aspect of the present invention is a travel route creating system for creating a travel route for personal mobility, wherein the personal mobility is based on map data indicating a step or an inclination at which the personal mobility can travel, and When creating a travel route that passes through a slope, a control unit is provided that creates the travel route such that an approach angle with respect to the step or the slope is 45 ° or more.
  • the approach angle that is, when the acute angle between the vehicle longitudinal direction of the personal mobility and the extending direction such as a step is small, the omnidirectional wheels enter the step.
  • the control unit creates a traveling route in which the angle of entry to the step or the inclination is 45 ° or more. For this reason, unintended movement of personal mobility at the time of entering a step or a slope can be suppressed, which leads to an improvement in the comfort of the occupant.
  • the entry angle is more preferably 60 ° or more.
  • the control unit creates the traveling route in which the angle of approach to the step is 85 ° or less.
  • the impact applied to the personal mobility may be large when the angle of entry into the step is 90 °.
  • the angle of entry into the step becomes 85 ° or less, and the comfort of the occupant can be improved.
  • the personal mobility includes a sensor in which an area outside the width direction of the front wheel falls within a detection range, and the control unit uses the detection result of the sensor to perform the step or the step.
  • the personal mobility is controlled so that the angle of approach to the inclination is 45 ° or more.
  • the comfort of the passenger can be improved.
  • FIG. 3 is a plan view of the front wheels, suspensions, and the like of the personal mobility according to the embodiment. It is a block diagram of a control unit of personal mobility of this embodiment. It is a side view of personal mobility of this embodiment. It is a principal part top view of the personal mobility of this embodiment.
  • FIG. 2 is a block diagram of a terminal device used in the traveling route creation system according to the embodiment. It is an example of the 1st map data used for the driving route creation system of this embodiment. It is an example of the 1st and 2nd map data used for the driving route creation system of this embodiment. It is a figure showing the example of setting of the passage point of the run route creation system of this embodiment. It is a figure showing an example of setting of a passage point and a run route of a run route creation system of this embodiment. It is a figure showing an example of setting of a passage point and a run route of a run route creation system of this embodiment.
  • the travel route creation system includes a server 100 and a control device 80 provided in the control unit 60 of the personal mobility 1 and capable of communicating with the server 100.
  • the personal mobility 1 includes a pair of front wheels 10, a pair of rear wheels 20, and a mobility body supported by the front wheels (wheels) 10 and the rear wheels (wheels) 20. 30.
  • the mobility main body 30 is, for example, a body 31 supported by the front wheel 10 and the rear wheel 20, a seat unit 40 attached to the body 31, and a device for driving at least one of the pair of front wheels 10 and the pair of rear wheels 20.
  • a motor 50 is attached to the body 31, and the seat unit 40 can be removed from the body 31.
  • the motor 50 is attached to the body 31, and the seat unit 40 can be removed from the body 31.
  • the seat unit 40 can be removed from the body 31.
  • the vehicle longitudinal direction shown in FIGS. 3 and 4 may be described as the longitudinal direction in the following description, and the vehicle width direction shown in FIGS. 3 and 4 may be described as the width direction or the lateral direction in the following description.
  • the vehicle front-rear direction and the front-rear direction of the mobility main body 30 coincide, and the vehicle width direction coincides with the width direction of the mobility main body 30.
  • the radial centers of the pair of front wheels 10 are aligned in the vehicle width direction
  • the radial centers of the pair of rear wheels 20 are also aligned in the vehicle width direction
  • the vehicle longitudinal direction is defined as the vehicle width direction.
  • each of the pair of rear wheels 20 is connected to a motor 50, and each motor 50 drives the corresponding rear wheel 20.
  • the driving force of each motor 50 may be transmitted to the corresponding front wheel 10 by power transmission means.
  • the power transmission member is a belt, a gear, or the like.
  • Each front wheel 10 is supported by a body 31 using an axle 11 and a suspension 12, as shown in FIGS.
  • the ground contact surface of the front wheel 10 is formed by a plurality of rollers 13 arranged in the circumferential direction of the front wheel 10.
  • the suspension 12 has a support member 12a and a biasing member 12b such as a coil spring.
  • One end of the support member 12a is supported by the front end of the body 31, and the support member 12a can be tilted around a first axis A1 extending in the vehicle width direction.
  • the urging member 12b urges the other end of the support member 12a toward the front of the vehicle.
  • the axle 11 of the front wheel 10 is fixed to a support member 12a.
  • a second axis A2 which is a center axis of the axle 11, is inclined forward with respect to a horizontal line HL that is perpendicular to the front-rear direction.
  • the angle ⁇ between the second axis A2 and the horizontal line HL is preferably 2 ° to 15 ° in plan view, but may be another angle depending on the conditions.
  • the pair of front wheels 10 is in a toe-in state.
  • the pair of front wheels 10 in the toe-in state increases the component of the rearward force applied to the axle 11 when the personal mobility 1 runs. Can be.
  • the other end of the support member 12a can move rearward of the vehicle with respect to the body 31 against the urging force of the urging member 12b. Therefore, the vibration caused by the collision of the roller 13 with the ground contact surface is more effectively reduced.
  • the front wheel 10 does not necessarily need to be arranged in a toe-in state.
  • Each front wheel 10 includes a hub 14 attached to the axle 11 and a plurality of roller spindles (not shown) supported by the hub 14, and the plurality of rollers 13 are rotatably supported by the respective roller spindles.
  • the hub 14 may be attached to the axle 11 using a bearing or the like, and the hub 14 may be attached to the axle 11 using a buffer member, an intermediate member, or the like.
  • the axis of each roller support shaft extends in a direction intersecting the radial direction of the axle 11.
  • each roller 13 rotates around the axis of the corresponding roller support shaft. That is, each front wheel 10 is an omnidirectional wheel that moves in all directions with respect to the running surface.
  • the outer peripheral surface of each roller 13 is formed using a material having rubber-like elasticity, and the outer peripheral surface of each roller 13 is provided with a plurality of grooves extending in the circumferential direction (see FIGS. 5 and 6).
  • each rear wheel 20 includes an axle (not shown), a hub 21 attached to the axle, and an outer peripheral surface provided on the outer peripheral side of the hub 21 and having an outer peripheral surface formed of a material having rubber-like elasticity.
  • an omnidirectional wheel may be used similarly to the front wheel 10.
  • the axle of the rear wheel 20 may be common to the main shaft of the motor 50.
  • the base unit 32 includes a base 32 extending along the ground, and a seat support 33 extending upward from the rear end of the base 32.
  • the seat support 33 is inclined forward of the vehicle, and a seat unit 40 is attached to the upper end of the seat support 33.
  • the base portion 32 of the present embodiment includes a metal base frame 32a that supports the suspension 12 of the front wheel 10 and the motor 50 of the rear wheel 20, a plastic cover portion 32b that at least partially covers the base frame 32a, Having.
  • the cover 32b is used as a portion on which the feet of the driver sitting on the seat unit 40 are placed, a portion on which luggage is placed, and the like.
  • the cover portion 32b also includes a pair of fenders 32c that respectively cover the pair of front wheels 10 from above.
  • Each fender 32c has, for example, only a function of covering the front wheel 10.
  • Each fender 32c also has a function of enhancing the rigidity of the body 31 in another example. Further, each fender 32c may cover only a part of the front wheel 10.
  • the seat unit 40 has a shaft 40 a at its lower part, and the shaft 40 a is attached to the upper end side of the seat support 33.
  • a rechargeable battery BA is mounted on the back of the seat support 33, and a control unit 60 described later is arranged in the seat support 33.
  • the seat unit 40 has a seat surface portion 41 on which a driver sits, a backrest portion 42, a right control arm 43, and a left control arm 43.
  • An armrest 43a is fixed to the upper surface of each control arm 43.
  • the driver places both arms on the armrests 43a of the pair of control arms 43, respectively. Further, the driver places both hands on the upper ends of the pair of control arms 43, respectively.
  • both the control arm 43 and the armrest 43a are provided, but only the control arm 43 or the armrest 43a may be provided. In this case, the driver places at least one of the arm and the hand on the control arm 43, or places at least one of the arm and the hand on the armrest 43a.
  • An operation section 44 having an operation lever 44a is provided at the upper end of the right control arm 43.
  • the operation lever 44a is arranged at a neutral position by an urging member (not shown) arranged in the operation section 44.
  • the driver can use the right hand to displace the operation lever 44a to the right, left, front, and rear with respect to the neutral position.
  • a signal corresponding to the displacement direction and the displacement amount of the operation lever 44a is transmitted from the operation unit 44 to a control unit 60 described later, and the control unit 60 controls each motor 50 according to the received signal.
  • the control unit 60 controls each motor 50 according to the received signal.
  • the operation lever 44a is displaced forward with respect to the neutral position
  • a signal for rotating each motor 50 toward the front of the vehicle is transmitted.
  • the personal mobility 1 moves forward at a speed corresponding to the amount of displacement of the operation lever 44a.
  • the operation lever 44a is displaced diagonally forward left with respect to the neutral position
  • a signal for rotating the left motor 50 toward the front of the vehicle at a lower speed than the right motor 50 is transmitted.
  • the personal mobility 1 advances while turning left at a speed corresponding to the amount of displacement of the operation lever 44a.
  • a setting section 45 for performing various settings relating to the personal mobility 1 is provided at the upper end of the left control arm 43.
  • Examples of various settings include setting of a maximum speed, setting of an operation mode, and setting of locking of personal mobility 1.
  • the setting unit 45 is provided with a plurality of operation buttons, a display device, and the like.
  • Examples of the operation modes include an energy-saving operation mode in which power consumption is suppressed, a sports operation mode in which driving performance is emphasized without suppressing power consumption, and a normal operation mode between the energy-saving operation mode and the sports operation mode.
  • the lock setting of the personal mobility 1 includes setting of a password for locking, setting of lock release timing, and the like.
  • the setting signal of the setting unit 45 is transmitted to a control unit 60 described later, and the setting of the personal mobility 1 is registered or changed in the control unit 60.
  • a notification device 46 is provided on each of the left and right control arms 43.
  • Each notification device 46 is a sound generation device, a display device, a vibration generation device, or the like.
  • the vibration generator vibrates a part of the upper end side of the control arm 43, the operation unit 44, the setting unit 45, and the like at, for example, several tens of Hz.
  • the control unit 60 has a motor driver 70 for driving each motor 50 and a control device 80, as shown in FIG.
  • the motor driver 70 is connected to the battery BA. Further, the motor driver 70 is also connected to each motor 50, and the motor driver 70 supplies driving power to each motor 50.
  • the control device 80 includes a control unit 81 having a CPU, a RAM, and the like, a storage device 82 having a non-volatile memory, a ROM, and the like, and a transmission / reception unit 83, as shown in FIG.
  • the storage device 82 stores a traveling control program 82a for controlling the personal mobility 1.
  • the control unit 81 operates based on the travel control program 82a, and transmits a drive signal for driving each motor 50 to the motor driver 70 in accordance with signals from the operation unit 44 and the setting unit 45.
  • signals from the operation unit 44 and the setting unit 45 are sent to the control device 80 via the signal lines 80a and 80b.
  • the control signal from the control device 80 is sent to the notification device 46 via the signal line 80a and the signal line 80b.
  • Each signal line 80a is provided on the seat unit 40, and the signal line 80b is provided on the body 31.
  • Connectors 80d and 80e are provided between the signal line 80a and the signal line 80b.
  • a stereo camera (sensor) 90 which is two visual sensors, is attached to the upper end of the right control arm 43 and the upper end of the left control arm 43, respectively.
  • Each stereo camera 90 includes a pair of lens units 91 and a camera body 92 that supports the pair of lens units 91.
  • a pair of image sensors 93 (FIG. 7) are provided inside the camera body 92, and the pair of image sensors 93 correspond to the pair of lens units 91, respectively.
  • Each image sensor 93 is a known sensor such as a CMOS sensor.
  • Each image sensor 93 is connected to the control device 80.
  • the detection range DA of the stereo camera 90 includes an area outside the left front wheel 10 in the width direction.
  • the detection range DA includes an area outside the right front wheel 10 in the width direction. It is sufficient that the detection range DA includes an area outside the front wheel 10 in the width direction.
  • the detection range DA of the stereo camera 90 is a range where the imaging ranges of the pair of imaging elements 93 overlap.
  • the optical axis LA of each lens unit 91 of the stereo camera 90 extends obliquely outward in the width direction. Specifically, in a plan view shown in FIG. 9, the optical axis LA of each lens unit 91 extends in a direction forming an angle ⁇ with respect to the front-back direction. In one example, the angle ⁇ is between 5 ° and 30 °.
  • FIG. 9 shows a part of the detection range DA, and the detection range DA also exists in front of the range shown in FIG.
  • the detection range DA of the left stereo camera 90 includes a part of the left front wheel 10, a part of the fender 32c of the left front wheel 10, and the left front wheel 10.
  • the detection range DA of the right stereo camera 90 is the same as the detection range DA of the left stereo camera 90.
  • Each stereo camera 90 obtains two images having parallax by the pair of imaging elements 93.
  • the two images having parallax may be referred to as parallax images in the description below.
  • the control unit 81 of the control device 80 operates based on the avoidance control program 82b stored in the storage device 82. That is, the control unit 81 processes the parallax image to create a distance image. Then, the control unit 81 detects an avoidance target in which the front wheel 10 or the fender 32c may come into contact in the distance image.
  • the avoidance target is, for example, an obstacle, a person, an animal, or a plant.
  • the obstacle is, for example, a wall, a large stone, a step, or the like.
  • the control unit 81 detects an avoidance target such as a step, a hole, a groove, or the like in which the front wheel 10 may collide, fall, or fit in the distance image.
  • the control unit 81 controls each motor 50 by a control command for the avoidance operation, for example, when an avoidance target that may cause the front wheel 10 or the fender 32c to come into contact with a predetermined range AR1 in the detection range DA is detected. I do.
  • the control unit 81 controls each motor 50 according to a control command for the avoidance operation, for example, when an avoidance target in which the front wheel 10 may fall or fit in the predetermined range AR1 in the detection range DA is detected.
  • Examples of the avoidance operation include the reduction and stop of the rotation speed of each motor 50, the control of each motor 50 for restricting the movement of the personal mobility 1 to the avoidance target side, and the like.
  • the traveling surface on the outer side in the width direction of the front wheel 10 enters the detection range DA of the stereo camera 90. More preferably, at least a part of the front wheel 10 or a part of the fender 32c of the front wheel 10 is included in the detection range DA of the stereo camera 90.
  • This configuration is advantageous in grasping the relationship between the direction in which the mobility main body 30 is facing and the step or inclination when a step or inclination exists outside the front wheel 10 in the width direction.
  • the driver needs to change his / her posture in order for the driver to visually observe the vicinity of the front wheel 10 on the running surface on the outer side in the width direction of the front wheel 10.
  • the vicinity of the front wheel 10 on the running surface on the widthwise outer side of the front wheel 10 is within the detection range DA of the stereo camera 90, so that the burden of monitoring by the driver is reduced.
  • the detection range DA of the stereo camera 90 described above is an example, and the stereo camera 90 may detect another detection range.
  • the pair of lens units 91 of the stereo camera 90 are vertically arranged with respect to each other.
  • the detection range DA of the stereo camera 90 is a range where the imaging ranges of the pair of imaging elements 93 overlap.
  • the configuration of the present embodiment in which the pair of lens units 91 are arranged so as to be vertically aligned with each other is advantageous in reducing or eliminating the blind spot outside the front wheel 10 in the width direction as shown in FIG. is there.
  • each stereo camera 90 is attached to the corresponding control arm 43.
  • the control arm 43 is a portion on which the driver's hand and arm are placed.
  • Each control arm 43 is often arranged outward in the width direction with respect to the driver's torso sitting on the seat unit 40. Further, each control arm 43 is often arranged on the outer side in the width direction with respect to the thigh of the driver sitting on the seat unit 40. Therefore, the above configuration reduces the possibility that the detection range DA of each stereo camera 90 is obstructed by the driver's body.
  • the seat unit 40 may be provided with a pair of armrests 43a instead of the pair of control arms 43.
  • the stereo camera 90 can be provided at the front end of the armrest 43a. This configuration also has the same operation and effect as the present embodiment. Note that the stereo camera 90 can be attached to the seat unit 40 or a pole extending from the mobility body 30, the seat unit 40, or the like.
  • the driver can easily visually recognize the position of his / her hand and arm.
  • the driver can intuitively recognize the approximate position of his / her hand and the approximate position of his / her arm even when he / she does not look at the position of his / her hand and the position of his / her arm.
  • the configuration of the present embodiment in which the stereo camera 90 is provided on the control arm 43 or the armrest 43a is advantageous in preventing collision of the stereo camera 90 with a wall or the like. That is, the configuration of the present embodiment is advantageous in preventing the stereo camera 90 from being damaged, displaced, and the like.
  • each lens unit 91 of the stereo camera 90 extends obliquely outward in the width direction. Therefore, a wider area outside the front wheel 10 in the width direction falls within the detection range DA of the stereo camera 90. This configuration is extremely useful for reliably grasping the relationship between the front wheel 10 and an object existing outside the front wheel 10 in the width direction.
  • the three-dimensional area sensor has a known structure in which each of a plurality of image sensors arranged on a plane obtains distance information.
  • a known TOF method or the like can be used to obtain distance information of each pixel.
  • a laser sensor or an ultrasonic sensor can be used instead of the stereo camera 90.
  • a millimeter wave sensor using a radio wave having a wavelength of 1 mm or more and 1000 mm or less, and irradiate a pulsed laser and measure a distance to an object based on reflected light.
  • Light Detection and Ranging or Laser Imaging Detection and Ranging can also be used.
  • the stereo camera 90 may be arranged in the upper end of the control arm 43.
  • a stereo camera 90 is arranged in a hollow portion provided in the control arm 43.
  • a transparent cover is attached to the front surface of the upper end of the control arm 43, and a pair of lens units 91 are arranged inside the cover.
  • the area in front of the personal mobility 1 is included in the detection range DA of the stereo camera 90.
  • the area in front of the driver's head falls within the detection range DA of the stereo camera 90.
  • the front wheel 10 has a hub and an outer peripheral member 15 having rubber-like elasticity provided on the outer periphery of the hub.
  • the rear wheel 20 shown in FIG. 11 is an omnidirectional wheel having an axle, a plurality of rollers, and a hub similar to the axle 11, the plurality of rollers 13, and the hub 14, and via a suspension similar to the suspension 12. And is supported by the rear end of the body 31.
  • the motors 50 may be supported by the base frames 32a near the pair of front wheels 10, respectively, and the respective front wheels 10 may be driven by the motors 50.
  • the rear wheel 20 may be configured to be driven by the motor 50, and the wheels other than the front wheel 10 and the rear wheel 20 may be configured to be driven by the motor 50.
  • the antenna or substrate of the right millimeter wave sensor is directed obliquely downward and diagonally outward (right side), and the antenna of the left millimeter wave sensor or The substrate can be directed obliquely downward and diagonally outward (left side). This arrangement is useful for improving the detection accuracy of the area outside the front wheel 10 or the rear wheel 20 in the vehicle width direction.
  • the server 100 includes a control unit 110 having a CPU, a RAM, and the like, a storage device 120 having a nonvolatile memory, a ROM, and the like, and a transmission / reception unit 130.
  • the storage device 120 includes first map data 121 indicating an area in which the personal mobility 1 can travel, and second map data 122 having information on safety when the personal mobility 1 travels or stops. Is stored. Further, the storage device 120 stores a passing point setting program 123 for setting a plurality of passing points at intervals between the current position of personal mobility 1 and the destination.
  • a terminal device 200 such as a tablet computer or a smartphone exists on the personal mobility 1 side.
  • the terminal device 200 includes a control unit 210 having a CPU, a RAM, and the like, a storage device 220 having a nonvolatile memory, a ROM, and the like, a transmission / reception unit 230, a display device 240, a touch screen, And an input device 250 such as an input key.
  • the terminal device 200 and the control device 80 store the first map data 121 received from the server 100 or another computer.
  • the control device 80, the server 100, and the terminal device 200 can communicate with each other.
  • the terminal device 200 is owned by, for example, a passenger of the personal mobility 1 or a related person thereof.
  • the terminal device 200 may be supported by the personal mobility 1 using a predetermined support device.
  • the control device 80 stores the second map data 122 received from the server 100 or another computer.
  • the terminal device 200 may store the second map data 122 received from the server 100 or another computer.
  • the first map data 121 and the second map data 122 may be stored in the terminal device 200 and the control device 80 using a medium such as a DVD-ROM.
  • the first map data 121 has, for example, map information of a building, a campus, an outdoor area, and the like.
  • the map information in the building and the premises includes information on passages, rooms, doors, doorways, walls, columns, stairs, elevators, escalators, and the like.
  • the outdoor area map information includes information on roads, sidewalks, stairs, buildings, rivers, swamps, the sea, unpaved areas, and the like.
  • the non-paved area includes a bush area, a grassland area, a lawn area, a gravel area such as a gravel road, a sand area such as a sandy beach, and the like.
  • FIG. 14 shows an example of the first map data 121.
  • the personal mobility 1 cannot travel in the hatched area, and the personal mobility 1 can travel in the area other than the hatched area. Note that the grassland area, lawn area, gravel area, sandy beach, and the like can be included in the area where the personal mobility 1 can travel.
  • the second map data 122 is a map indicating a step 122a and a slope 122b at which the personal mobility 1 can safely travel.
  • FIG. 15 is a map in which the second map data 122 is superimposed on the first map data 121 in FIG. In each map data, an image element to be drawn is associated with its position data.
  • a map in which the second map data 122 is superimposed on the first map data 121 may be displayed on, for example, the display device 240 of the terminal device 200, a display device connected to the control device 80, or the like.
  • a traveling difficulty index 122c indicating the height of the step 122a, the difficulty of traveling, or the like may be shown near the step 122a where the personal mobility 1 can travel.
  • a traveling difficulty index 122d related to the inclination, height difference, traveling difficulty, and the like of the inclination 122b may be shown near the inclination 122b.
  • a tilt direction indicator 122e indicating the direction of the tilt 122b may be shown in or near the tilt 122b. That is, the second map data 122 includes the traveling difficulty indices 122c and 122d, and also includes the inclination direction indices 122e.
  • the traveling difficulty index 122d may be indicated by the size, length, color, or the like of the arrow.
  • the server 100 receives the information on the current position of the personal mobility 1 and the information on the destination from the terminal device 200.
  • the server 100 may receive the information on the current position and the information on the destination based on the input of the setting unit 45 from the control device 80.
  • the information on the current position may be based on information input to the terminal device 200 by the operator of the terminal device 200.
  • the operator inputs information, for example, a building name, a room number, a floor number, and the like, which can specify a position where the personal mobility 1 is arranged, to the terminal device 200.
  • the operator may input an arbitrary position on the first map data 121 displayed on the display device 240 using a pointer, a touch screen function, or the like.
  • Information based on the specified position is transmitted from terminal device 200 to server 100.
  • the control unit 81 of the control device 80 performs a known self-position estimation using a GNSS (Global Navigation Satellite System) receiver, an odometer, a stereo camera 90, or the like provided in the personal mobility 1, the estimated position is The information of the current position may be transmitted from the control device 80 to the server 100.
  • the information on the current position is based on the input of the operator, the setting of the information on the current position becomes easy, and the setting of the current position is often ensured. Further, the capacity of the battery BA of the personal mobility 1 is limited, and it is preferable that the information on the current position be based on the input of the operator in order to reduce the power consumption of the battery BA.
  • the current position is in a room with a building, and the destination is in a park.
  • the control unit 110 of the server 100 sets a plurality of passing points P between the current position and the destination based on the passing point setting program 123, and transmits information of the set passing points P to the control device 80.
  • Information on the set passing point P may be transmitted to the terminal device 200.
  • a series of passing points P shown in FIG. 16 is set on a map including the first map data 121 and the second map data.
  • the information on the passing points P is, for example, position information on the first map data 121 of each passing point P.
  • the control unit 81 of the control device 80 sequentially passes through the plurality of passing points P or its vicinity based on the traveling route creation program 82c stored in the storage device 82.
  • a travel route between a plurality of passing points P is created.
  • the control unit 81 uses the data obtained by the sensor such as the stereo camera 90, the first map data 121, and the second map data 122 to use A traveling route up to a passing point (P) to be passed is created.
  • the next passing point P is obtained using the data obtained by the sensor such as the stereo camera 90, the first map data 121, and the second map data 122. Create a driving route to.
  • the personal mobility 1 is set to the automatic driving mode based on the input to the input device 250 of the terminal device 200, the input to the setting unit 45, and the like. Note that information (arrangement information) of the direction to which the personal mobility 1 should be directed may be included in each passing point P. In this case, the created traveling route matches the direction of the personal mobility 1 at the next passing point P with the arrangement information included in the passing point P.
  • the control unit 81 of the control device 80 transmits a drive signal for driving each motor 50 to the motor driver 70, thereby moving along the travel route in which the personal mobility 1 has been created.
  • the traveling route may be displayed on the display device 240 of the terminal device 200, or the position of the personal mobility 1 sequentially obtained by using a known self-position estimation technique may be displayed on the display device 240.
  • the vicinity means, for example, that the distance from personal mobility 1 to the passing point P is equal to or less than a reference distance (several meters in one example).
  • the passing points P may be set every several meters, or may be set every ten and several meters. This example does not prevent the passing points P from being set at larger intervals.
  • the control unit 81 sets the angle at which the vehicle enters the step 122a in the traveling route to be 45 ° or more and 90 ° or less.
  • a traveling route is created between two passing points P.
  • a traveling route is created between the two passing points P.
  • the traveling route DL1 has an approach angle of 45 ° or more and 90 ° or less on the slope 122b.
  • the traveling route DL2 has an entry angle to the step 122a of 45 ° or more and 90 ° or less.
  • the front wheel 10 or the rear wheel 20 is an omnidirectional wheel.
  • the personal mobility 1 can change direction on the spot without moving forward or backward.
  • the position before the step 122a and the slope 122b of the traveling route created by the control unit 81 may include accompanying information on the direction to which the personal mobility 1 should be directed.
  • the accompanying information is a part of the created traveling route, and the personal mobility 1 changes its direction according to the accompanying information.
  • the control device 80 of the personal mobility 1 controls each motor 50 via the motor driver 70 using the detection result of the sensor such as the stereo camera 90 so that the penetration angle becomes the above-described angle.
  • control device 80 uses the detection result of a sensor such as stereo camera 90 to set the angle of intrusion.
  • a sensor such as stereo camera 90
  • Each motor 50 is controlled so as to have the above angle.
  • the passing point P is set before the step 122a and the slope 122b, but as shown in FIG. 18, the passing point P is set on the other side of the step 122a and the slope 122b. Is also good.
  • the control unit 210 sets the angle of entry to the step 122a and the inclination 122b to 45 ° or more and 90 ° or less.
  • the entry angle to the step 122a or the inclination 122b is 45 ° or more and 85 ° or less.
  • the approach angle is, as shown in FIG. 18, an acute angle ⁇ formed by the vehicle longitudinal direction of the personal mobility 1 and the extending direction of the step 122a, or an end line between the vehicle longitudinal direction of the personal mobility 1 and the slope 122b. Is the angle formed by the extension direction of
  • the control unit 81 creates information on the attitude of the personal mobility 1 (the direction in which the personal mobility 1 faces) when the personal mobility 1 stops in each of the slopes 122b as a part of the traveling route. For example, the posture information of the personal mobility 1 in which the angle between the direction of the arrow of the inclination direction index 122e and the vehicle longitudinal direction of the personal mobility 1 is 45 ° or less is created.
  • the control unit 81 of the control device 80 transmits a drive signal for driving each motor 50 to the motor driver 70, whereby the posture of the personal mobility 1 is changed to the traveling route. In accordance with the posture information included in the.
  • the front wheel 10 or the rear wheel 20 of the personal mobility 1 is an omnidirectional wheel or a caster
  • the front wheel 10 or the rear wheel 20 of the personal mobility 1 is an omnidirectional wheel or a caster
  • the front wheel 10 or the rear wheel 20 is an omnidirectional wheel. Therefore, when the center axis of the axle 11 of the omnidirectional wheels and the inclination direction of the inclination 122b match, the omnidirectional wheels unintentionally move toward the lower side of the inclination 122b.
  • the above-described configuration that can prevent such movement is advantageous in improving the safety of a passenger of the personal mobility 1 and surrounding people.
  • any one of the control device 80, the server 100, and the terminal device 200 receives the travel area reference information based on the input of the operator or the occupant, and in the first map data 121 according to the received travel area reference information.
  • the area in which the personal mobility 1 can travel may be changed.
  • the operator or the passenger inputs the set value of the travel area reference information to the setting unit 45 or the input device 250 of the terminal device 200.
  • a setting value with an emphasis on safety is input, a new unrunnable area is added to the first map data 121.
  • the width of a non-travelable area near a roadway increases.
  • Data of a newly added area that cannot be traveled may be included in the second map data 122.
  • automatic driving that is more suited to the requirements of the passenger is realized.
  • a running fatigue index may be associated with each partial area in the running area.
  • the running fatigue index for example, relates to the unevenness of the running surface, the slipperiness of the running surface, and the like.
  • any one of the control device 80, the server 100, and the terminal device 200 receives a request related to running fatigue based on an input by an operator or a passenger.
  • the control unit 110 of the server 100 refers to the running fatigue index of each partial area and sets a plurality of passing points according to the request.
  • the control unit 81 of the control device 80 may create a traveling route according to the request with reference to the traveling fatigue index of each partial area. Thereby, automatic driving according to the state of the occupant is realized.
  • At least one of the control device 80, the server 100, and the terminal device 200 may receive a request related to running fatigue for realizing an early arrival at a destination based on an input by an operator or a passenger.
  • the control unit 110 sets a passing point with an emphasis on shortening the arrival time
  • the control unit 81 also creates a traveling route with an emphasis on shortening the arrival time.
  • At least one of the control device 80, the server 100, and the terminal device 200 makes a request to avoid these weather obstruction conditions based on inputs from an operator, a passenger, and the like.
  • the control unit 110 sets a passing point to avoid the weather obstacle, and the control unit 81 also creates a traveling route to avoid the weather obstacle.
  • the terminal device 200 causes the display device 240 to display the selected step 122a or the slope 122b and options for the evaluation value.
  • the step 122a or the slope 122b disposed closest to the personal mobility 1 may be displayed on the display device 240 as the selected step 122a or the slope 122b, and the step 122a or the slope 122b may be displayed based on the input of the operator or the passenger. It may be selected.
  • the selected evaluation value is transmitted to the server 100 together with the information of the corresponding step 122a or the slope 122b.
  • the control unit 110 of the server 100 accumulates the received evaluation values in the storage device 120, determines the traveling difficulty indexes 122c and 122d of the steps 122a and the slopes 122b based on the accumulated evaluation values, and determines the determined traveling difficulty.
  • the degree indexes 122c and 122d are reflected on the second map data 122.
  • a known inclination sensor 95 may be provided in the personal mobility 1.
  • control device 80 receives the measurement value of inclination sensor 95. Further, the control device 80 transmits to the server 100 the measurement value received using the GNSS receiver, the odometer, the stereo camera 90, and the like, in association with the self-position estimated.
  • the control unit 110 of the server 100 accumulates the received measurement values in the storage device 120 as evaluation values, determines the traveling difficulty index 122d for each slope 122b based on the accumulated evaluation values, and determines the determined traveling difficulty index 122d. Is reflected in the second map data 122.
  • any one of the control device 80, the server 100, and the terminal device 200 calculates the evaluation value of the density (crowding degree) of the persons in the travelable area on the first map data 121 based on the input of the operator or the passenger. You may accept.
  • the terminal device 200 causes the display device 240 to display a selected partial area of the travelable area and options for the evaluation value.
  • the partial area located closest to the personal mobility 1 may be selected, or the partial area may be selected based on an input by an operator or a passenger.
  • the evaluation value is selected by the input of the operator or the passenger, the selected evaluation value is transmitted to the server 100 together with the information of the corresponding partial area.
  • the control unit 110 of the server 100 accumulates the received evaluation values in the storage device 120, determines the traveling difficulty index of each partial area based on the accumulated evaluation values, and maps the determined traveling difficulty index to the second map. This is reflected in the data 122.
  • any of the control device 80, the server 100, and the terminal device 200 may receive the evaluation value of the traveling difficulty in the building, facility, or store on the first map data 121 based on the input of the operator or the passenger.
  • the terminal device 200 causes the display device 240 to display the selected building, facility, or store, and options for the evaluation value.
  • the building, facility, or store located closest to the personal mobility 1 may be selected, and the building, facility, or store may be selected based on the input of the operator or the passenger.
  • the evaluation value is selected by the input of the operator or the passenger, the selected evaluation value is transmitted to the server 100 together with the information of the corresponding building, facility, or store.
  • the control unit 110 of the server 100 accumulates the received evaluation values in the storage device 120, determines the traveling difficulty index of each building, facility, or store based on the accumulated evaluation values, and determines the determined traveling difficulty index. This is reflected in the second map data 122.
  • the update of the second map data 122 based on the evaluation value input by the rider is based on the line of sight of the rider who actually uses the second map data 122, and the second map data 122 Can be trusted by the people.
  • the terminal device 200 may cause the display device 240 to display options of the attributes of the occupant.
  • the attributes are the age of the rider, the state of the rider, and the like.
  • the server 100 can accumulate the received evaluation values in the storage device 120 for each attribute, and can create a plurality of second map data 122 respectively corresponding to the plurality of attributes. That is, for example, the plurality of second map data 122 have different traveling difficulty indices 122c and 122d.
  • the rider selects the second map data 122 according to his / her own state, the passing points are set and the travel route is created according to the rider's state.
  • the terminal device 200 may perform some or all of the functions of the control device 80.
  • the control unit 210 of the terminal device 200 may set a traveling route between the passing points P.
  • the control unit of another computer device it is possible for the control unit of another computer device to execute some or all of the functions of the control device 80.
  • the present embodiment is based on first map data 121 indicating an area in which personal mobility 1 can travel and second map data 122 having information on safety of personal mobility 1 when traveling or when stopped. ,
  • the control unit 81 creates a traveling route of the personal mobility 1.
  • the first map data 121 includes data on the position and area of a sidewalk, a building, a station yard, a square, a park, and the like
  • the second map data 122 includes a sidewalk, a building, and a station premises. It has information on steps, slopes, etc. that exist in squares, squares, parks, and the like.
  • the traveling at the time of traveling or stopping the personal mobility 1 is considered. The route is set.
  • first map data 121 having almost all positions and areas such as sidewalks, buildings, stations, squares, parks and the like. Further, since the position and area of the sidewalk, the building, the premises of the station, the plaza, the park, and the like do not change so frequently, once the first map data 121 is created, the update frequency is not so high. On the other hand, it is difficult to create the second map data 122 having almost all the information regarding the safety of the personal mobility 1 when traveling or when stopping.
  • the first map data 121 has detailed shape information, position information, and the like of each element, and it often takes time to add data to the first map data.
  • the second map data 122 having a simple data structure different from the first map data 121 can be updated. Therefore, the second map data 122 can be updated successively, and a traveling route that matches the request of the passenger of the personal mobility 1 can be set.
  • the traveling route creation system is configured based on at least the first map data 121 indicating an area in which the personal mobility 1 can travel, the information on the current position of the personal mobility 1, and the information on the destination.
  • a server 100 that sets a plurality of passing points P at intervals between the current position and the destination; a sensor provided in the personal mobility 1; Control units 81 and 210 for creating a traveling route between a plurality of passing points P using data obtained by sensors so as to sequentially pass through P or its vicinity.
  • the control units 81 and 210 create a traveling route between the plurality of passing points P. That is, if a traveling route to the next passing point P has been created, the vehicle can arrive at the passing point P or in the vicinity thereof. That is, even when it is necessary to change the traveling route of the personal mobility 1 according to the movement, existence, etc. of a person, a bicycle, another object, or the like, the control units 81 and 210 determine the traveling route to the next passing point P. You just need to change it. Therefore, it is possible to reduce the power consumption due to the successive change of the traveling route.
  • the control units 81 and 210 operate with the battery BA of the personal mobility 1, the power consumption of the battery BA of the personal mobility 1 is reduced. Even when the control unit 210 is a tablet computer or the like, the power consumption of the battery BA is reduced. Reduced. This leads to improved comfort for the occupants.
  • the traveling route creation system based on the second map data 122 indicating the step 122a or the slope 122b on which the personal mobility 1 can travel, the control units 81 and 210 determine that the personal mobility 1 is the step 122a or the slope.
  • the control units 81 and 210 determine that the personal mobility 1 is the step 122a or the slope.
  • the approach angle that is, when the acute angle ⁇ formed by the vehicle longitudinal direction of the personal mobility and the extending direction such as a step is small, the omnidirectional wheel is It is easy to move in an unintended direction when entering a step.
  • a similar phenomenon may occur when the front wheel 10 or the rear wheel 20 of the personal mobility 1 is another wheel.
  • the control units 81 and 210 create a traveling route in which the angle of entry to the step 122a or the inclination 122b is 45 ° or more. For this reason, unintended movement of the personal mobility 1 at the time of entering the step 122a or the inclination 122b can be suppressed, which leads to improvement in comfort of the occupant.
  • the entry angle is more preferably 60 ° or more.
  • control units 81 and 210 create a travel route in which the angle of entry into the step 122a is equal to or less than 85 °.
  • the state of the step 122a, and the like when the angle of entry to the step 122a is 90 °, the impact applied to the personal mobility 1 may be large.
  • the angle of entry into the step 122a becomes 85 ° or less, and the comfort of the occupant can be improved.
  • the personal mobility 1 includes a sensor in which an area outside the width direction of the front wheel 10 falls within the detection range DA, and the control units 81 and 210 use the detection result of the sensor to generate the step 122a or the inclination.
  • the personal mobility 1 is controlled so that the angle of entry into the 122b is 45 ° or more.
  • the relationship between the step 122a or the inclination 122b and the front wheel 10 can be grasped based on the detection result of the sensor. For this reason, it is possible to ensure that the entry angle when the front wheel 10 enters the step 122a or the inclination 122b is 45 ° or more.
  • the front wheel 10 or the rear wheel 20 is an omnidirectional wheel. Since the omnidirectional wheels may move more than expected in the width direction unlike ordinary wheels, the object existing in the area outside the omnidirectional front wheels 10 or the rear wheels 20 in the width direction may be compared with the front wheels 10 or the rear wheels 20. It is advantageous to be able to reliably grasp the relationship between the front wheel 10 and the rear wheel 20 in controlling the approach angles of the front wheel 10 and the rear wheel 20 to the target.

Abstract

This travel route creation system creates a travel route for a personal mobility device, and is provided with a control unit for creating, on the basis of map data indicating a level difference 122a or an incline 122b that can be traveled by the personal mobility device, a travel route in which the angle of approach to the level difference 122a or the incline 122b is at least 45° when the control unit creates a travel route in which the personal mobility device passes through the level difference 122a or the incline 122b.

Description

走行ルート作成システムTravel route creation system
 本発明は走行ルート作成システムに関する。 The present invention relates to a travel route creation system.
 自動車の車両制御システムとして、自動車が走行可能な道路のマップデータを備え、自動車が走行している道路が複数レーンを有する時に、自動車が走行すべきレーンを決定し、自動車の走行制御を部分的に自動で行うものが知られている(例えば、特許文献1参照。)。 As a vehicle control system for a vehicle, the vehicle includes map data of a road on which the vehicle can travel, and when the road on which the vehicle travels has a plurality of lanes, determines a lane on which the vehicle should travel, and partially controls the travel of the vehicle. There is known a method in which the processing is automatically performed (for example, see Patent Document 1).
特開2018-91711号公報JP, 2018-91711, A
 近年、一人が座って乗る電動パーソナルモビリティに自動運転技術を導入する試みがなされている。しかし、一人乗りの電動パーソナルモビリティには、家屋内、建物内での使用に鑑みて小型であること、自動車への積載を考慮して軽量であること等の様々な要求がある。このため、パーソナルモビリティのバッテリの容量には限りがあり、バッテリの電力量の減りが早いと乗車者は安心して遠くまで行くことができない。 In recent years, attempts have been made to introduce automatic driving technology into electric personal mobility in which one person sits and rides. However, there are various demands for single-seater electric personal mobility, such as small size in view of use in a house or a building, and light weight in consideration of loading on a car. For this reason, the capacity of the battery of the personal mobility is limited, and if the amount of power of the battery decreases quickly, the rider cannot go far without anxiety.
 ここで、自動車は道路に沿って走行するので、自動車の自動運転時の走行ルートは道路に沿ったものとなる。これに対し、パーソナルモビリティは歩道、建物内、駅の構内、広場、公園等を走行するものであり、その走行ルートは何かに沿ったものではない。このため、自動車の自動運転時の走行ルートの選択肢は数個、多くても十数個程度であるが、パーソナルモビリティの自動運転時の走行ルートの選択肢は自動車のそれと比較し数倍、数十倍等となる。 自動 車 Here, the car travels along the road, so the driving route during automatic driving of the car is along the road. On the other hand, personal mobility travels on sidewalks, in buildings, on the premises of stations, in plazas, in parks, and the like, and the traveling route does not follow anything. For this reason, there are several, at most about a dozen or so, driving route choices during autonomous driving of a car. It is double.
 前述のように走行ルートの選択肢が無数にあると演算時間が長くなり、演算時間が長いと演算で消費される電力量が多くなる。これはパーソナルモビリティにとって好ましくない。また、自動車の走行ルートは一度設定されるとその後に変更される可能性は比較的少ない。しかし、パーソナルモビリティは、歩道、建物内、駅の構内、広場、公園等に存在する他の人、自転車、他の物体等の動き、存在等に応じて、その走行ルートを逐次変更する必要がある。走行ルートの逐次変更は演算による電力消費に繋がるので、乗車者はバッテリの電力量の低減が気になり、乗車者の心地良さが低減される。 (4) As described above, if there are innumerable choices of traveling routes, the calculation time will be long, and if the calculation time is long, the amount of power consumed in the calculation will be large. This is not desirable for personal mobility. Also, once the driving route of the vehicle is set, there is a relatively low possibility of being changed thereafter. However, in personal mobility, it is necessary to sequentially change the traveling route according to the movement and existence of other people, bicycles, other objects, etc. existing on sidewalks, buildings, station premises, open spaces, parks, etc. is there. Since the successive change of the traveling route leads to the power consumption by the calculation, the rider is worried about the reduction of the electric power of the battery, and the comfort of the rider is reduced.
 また、自動車が走行する道路は自動車の走行用に作られている。このため、マップ上の道路は基本的には自動車の走行に適している。一方、パーソナルモビリティが走行する歩道、建物内、駅の構内、広場、公園等は、パーソナルモビリティの走行用に作られている訳ではない。このため、パーソナルモビリティの走行時に乗車者のストレスになる段差、傾斜等が多く存在する。仮に、段差の高さが1cmであったとしても、当該段差をパーソナルモビリティが走行する時に乗車者が心地の悪さ、驚き、恐怖等を感じる場合がある。 道路 Also, the roads on which cars run are made for running cars. For this reason, the roads on the map are basically suitable for driving a car. On the other hand, sidewalks, buildings, station yards, open spaces, parks, and the like on which personal mobility travels are not made for personal mobility travel. For this reason, there are many steps, inclines, and the like that cause the passenger to be stressed when traveling in personal mobility. Even if the height of the step is 1 cm, the rider may feel uncomfortable, surprised, fearful, or the like when personal mobility runs on the step.
 本発明は、このような事情に鑑みてなされている。本発明の目的の一つは、乗車者の心地良さを向上できる走行ルート作成システムの提供である。 The present invention has been made in view of such circumstances. One of the objects of the present invention is to provide a travel route creation system that can improve the comfort of a passenger.
 本発明の第1の態様は、パーソナルモビリティの走行ルート作成を行う走行ルート作成システムであって、前記パーソナルモビリティが走行可能なエリアを示す第1のマップデータと、前記パーソナルモビリティの走行時又は停止時の安全性に関る情報を有する第2のマップデータとに基づき、前記パーソナルモビリティの走行ルートを作成する制御部を備える。 A first aspect of the present invention is a travel route creation system for creating a travel route for personal mobility, comprising: first map data indicating an area where the personal mobility can travel; A control unit for creating a travel route of the personal mobility based on the second map data having information on safety at the time.
 例えば、第1のマップデータが歩道、建物内、駅の構内、広場、公園等の位置およびエリアのデータを有しており、第2のマップデータが歩道上、建物内、駅の構内、広場内、公園内等に存在する段差、傾斜等に関する情報を有している。当該態様では、パーソナルモビリティの走行時又は停止時の安全性に関る情報を有する第2のマップデータが用いられるので、パーソナルモビリティの走行時又は停止時の安全性が考慮された走行ルートの設定が行われる。 For example, the first map data includes position and area data of a sidewalk, a building, a station yard, a square, a park, and the like, and the second map data includes a sidewalk, a building, a station yard, a square. It has information on steps, slopes, and the like that exist in the park, in the park, and the like. In this aspect, since the second map data having information on the safety at the time of traveling or stopping of personal mobility is used, setting of the traveling route in consideration of the safety at the time of traveling or stopping of personal mobility is set. Is performed.
 また、歩道、建物内、駅の構内、広場、公園等の位置およびエリアをほぼ全て有する第1のマップデータを作成することは可能である。また、歩道、建物内、駅の構内、広場、公園等の位置およびエリアはそれほど頻繁に変わらないので、一度第1のマップデータが作成されると、その更新の頻度はそれほど高くない。一方、パーソナルモビリティの走行時又は停止時の安全性に関する情報をほぼ全て有する第2のマップデータを作成することは難しい。例えば、歩道上、建物内、駅の構内、広場内、公園内等に存在する段差、傾斜等を全てパーソナルモビリティの乗車者の目線で全て短期間に把握することは難しい。また、第1のマップデータは各要素の詳細な形状情報、位置情報等を有するものであり、第1のマップデータへのデータ追加には時間がかかる場合が多い。これに対し、当該態様では、第1のマップデータとは別の例えば簡単なデータ構造を有する第2のマップデータを更新することができる。このため、第2のマップデータの逐次更新が可能となり、パーソナルモビリティの乗車者の要求により合致した走行ルートの設定が可能となる。 It is also possible to create first map data having almost all positions and areas such as sidewalks, buildings, stations, squares, parks and the like. Further, since the position and area of the sidewalk, the building, the premises of the station, the plaza, the park and the like do not change so frequently, once the first map data is created, the update frequency is not so high. On the other hand, it is difficult to create the second map data having almost all the information regarding the safety of the personal mobility at the time of traveling or stopping. For example, it is difficult to grasp all the steps, slopes, and the like existing on the sidewalk, in a building, in the yard of a station, in a plaza, in a park, and the like from the viewpoint of a passenger of personal mobility in a short period of time. Further, the first map data includes detailed shape information, position information, and the like of each element, and it often takes time to add data to the first map data. On the other hand, in this aspect, it is possible to update the second map data having, for example, a simple data structure different from the first map data. For this reason, the second map data can be updated successively, and a travel route that matches the personal mobility passenger's request can be set.
 本発明の第2の態様は、パーソナルモビリティの走行ルート作成を行う走行ルート作成システムであって、前記パーソナルモビリティが走行可能なエリアを示すマップデータと、前記パーソナルモビリティの現在位置の情報と、目的地の情報とに少なくとも基づいて、前記現在位置と前記目的地との間に間隔をおいて複数の通過ポイントを設定するサーバと、前記パーソナルモビリティに設けられたセンサと、前記サーバから前記複数の通過ポイントの情報を受取り、前記通過ポイント又はその近傍を順に通過するように、前記センサにより得られるデータを用いて前記複数の通過ポイントの間の走行ルートを作成する制御部と、を備える。 A second aspect of the present invention is a travel route creation system for creating a travel route for personal mobility, comprising: map data indicating an area where the personal mobility can travel; information on a current position of the personal mobility; A server that sets a plurality of passing points at intervals between the current position and the destination based on at least the information of the ground, a sensor provided in the personal mobility, A control unit that receives information on the passing points and creates a traveling route between the plurality of passing points using data obtained by the sensor so as to sequentially pass through the passing points or the vicinity thereof.
 制御部は、複数の通過ポイント間の走行ルートを作成する。つまり、次の通過ポイント迄の走行ルートが作成されていれば、当該通過ポイント又はその近傍に到着することができる。つまり、人、自転車、他の物体等の動き、存在等に応じてパーソナルモビリティの走行ルートを変更する必要が生じた場合でも、制御部は次の通過ポイント迄の走行ルートを変更するだけでよい。従って、走行ルートの逐次変更による電力消費を低減することができる。制御部がパーソナルモビリティのバッテリによって作動する場合は、パーソナルモビリティのバッテリの電力消費が低減され、制御部がタブレットコンピュータ等である場合も、そのバッテリの電力消費が低減される。これは乗車者の心地良さの向上に繋がる。 The control unit creates a traveling route between a plurality of passing points. That is, if a traveling route to the next passing point has been created, the vehicle can arrive at the passing point or in the vicinity thereof. That is, even when it is necessary to change the traveling route of personal mobility according to the movement, presence, etc. of a person, a bicycle, another object, or the like, the control unit need only change the traveling route to the next passing point. . Therefore, it is possible to reduce the power consumption due to the successive change of the traveling route. When the control unit is operated by the personal mobility battery, the power consumption of the personal mobility battery is reduced, and when the control unit is a tablet computer or the like, the power consumption of the battery is also reduced. This leads to an increase in passenger comfort.
 本発明の第3の態様は、パーソナルモビリティの走行ルート作成を行う走行ルート作成システムであって、前記パーソナルモビリティが走行可能な段差又は傾斜を示すマップデータに基づき、前記パーソナルモビリティが前記段差又は前記傾斜を通過する走行ルートを作成する際に、前記段差又は前記傾斜に対する進入角度が45°以上となる前記走行ルートを作成する制御部を備える。 A third aspect of the present invention is a travel route creating system for creating a travel route for personal mobility, wherein the personal mobility is based on map data indicating a step or an inclination at which the personal mobility can travel, and When creating a travel route that passes through a slope, a control unit is provided that creates the travel route such that an approach angle with respect to the step or the slope is 45 ° or more.
 パーソナルモビリティの前輪又は後輪が全方向車輪である場合は、進入角度、つまり、パーソナルモビリティの車両前後方向と段差等の延設方向とが成す鋭角が小さい場合、全方向車輪が段差への進入時に意図しない方向に動き易い。パーソナルモビリティの前輪又は後輪が他の車輪である場合も似たような現象が出る可能性がある。上記態様では、制御部は、段差又は傾斜への進入角度が45°以上となる走行ルートを作成する。このため、段差又は傾斜への進入時のパーソナルモビリティの意図しない動きを抑制することができ、これは乗車者の心地良さの向上に繋がる。
 なお、進入角度は60°以上であることがより好ましい。
When the front or rear wheels of the personal mobility are omnidirectional wheels, the approach angle, that is, when the acute angle between the vehicle longitudinal direction of the personal mobility and the extending direction such as a step is small, the omnidirectional wheels enter the step. Sometimes it is easy to move in unintended directions. A similar phenomenon may occur when the front or rear wheels of personal mobility are other wheels. In the above aspect, the control unit creates a traveling route in which the angle of entry to the step or the inclination is 45 ° or more. For this reason, unintended movement of personal mobility at the time of entering a step or a slope can be suppressed, which leads to an improvement in the comfort of the occupant.
The entry angle is more preferably 60 ° or more.
 前記態様において、好ましくは、前記制御部が、前記段差への進入角度が85°以下となる前記走行ルートを作成する。
 パーソナルモビリティの仕様、段差の状態等に応じて、段差への進入角度が90°である時に、パーソナルモビリティに加わる衝撃が大きくなる場合がある。当該構成を用いることにより、段差への進入角度が85°以下となり、乗車者の心地良さを向上することができる。
In the above aspect, preferably, the control unit creates the traveling route in which the angle of approach to the step is 85 ° or less.
Depending on the specifications of the personal mobility, the state of the step, etc., the impact applied to the personal mobility may be large when the angle of entry into the step is 90 °. By using this configuration, the angle of entry into the step becomes 85 ° or less, and the comfort of the occupant can be improved.
 前記態様において、好ましくは、前記パーソナルモビリティが、その前輪の幅方向外側のエリアが検出範囲に入るセンサを備えるものであり、前記制御部が、前記センサの検出結果を用いて、前記段差又は前記傾斜への進入角度が45°以上となるように前記パーソナルモビリティを制御する。
 当該構成を用いると、センサの検出結果に基づき、段差又は傾斜と前輪との関係を把握することができる。このため、前輪が段差又は傾斜に進入する際の進入角度を確実に45°以上とすることが可能となる。
In the above aspect, preferably, the personal mobility includes a sensor in which an area outside the width direction of the front wheel falls within a detection range, and the control unit uses the detection result of the sensor to perform the step or the step. The personal mobility is controlled so that the angle of approach to the inclination is 45 ° or more.
With this configuration, the relationship between the step or the inclination and the front wheel can be grasped based on the detection result of the sensor. For this reason, the approach angle when the front wheel enters the step or the inclination can be reliably set to 45 ° or more.
 本発明によれば、乗車者の心地良さを向上できる。 According to the present invention, the comfort of the passenger can be improved.
本発明の一実施形態の走行ルート作成システムに用いられるパーソナルモビリティの前方斜視図である。It is a front perspective view of personal mobility used for the run route creation system of one embodiment of the present invention. 本実施形態の前記パーソナルモビリティの後方斜視図である。It is a rear perspective view of the personal mobility of the present embodiment. 本実施形態の前記パーソナルモビリティの平面図である。It is a top view of the personal mobility of this embodiment. 本実施形態の前記パーソナルモビリティの一部の部品を取外した状態のモビリティ本体の底面図である。It is a bottom view of the mobility main body in the state where some parts of the personal mobility of this embodiment were removed. 本実施形態の前記パーソナルモビリティの前輪の幅方向内側から見た図である。It is the figure seen from the width direction inside of the front wheel of the personal mobility of the present embodiment. 本実施形態の前記パーソナルモビリティの前記前輪、サスペンション等の平面図である。FIG. 3 is a plan view of the front wheels, suspensions, and the like of the personal mobility according to the embodiment. 本実施形態のパーソナルモビリティの制御ユニットのブロック図である。It is a block diagram of a control unit of personal mobility of this embodiment. 本実施形態のパーソナルモビリティの側面図である。It is a side view of personal mobility of this embodiment. 本実施形態のパーソナルモビリティの要部平面図である。It is a principal part top view of the personal mobility of this embodiment. 本実施形態のパーソナルモビリティの要部正面図である。It is a principal part front view of the personal mobility of this embodiment. 本実施形態のパーソナルモビリティの変形例の一部の部品を取外した状態のモビリティ本体の底面図である。It is a bottom view of the mobility main body in the state where some parts of a modification of personal mobility of this embodiment were removed. 本実施形態の走行ルート作成システムに用いられるサーバのブロック図である。It is a block diagram of a server used for the traveling route creation system of the present embodiment. 本実施形態の走行ルート作成システムに用いられる端末装置のブロック図である。FIG. 2 is a block diagram of a terminal device used in the traveling route creation system according to the embodiment. 本実施形態の走行ルート作成システムに用いられる第1のマップデータの例である。It is an example of the 1st map data used for the driving route creation system of this embodiment. 本実施形態の走行ルート作成システムに用いられる第1および第2のマップデータの例である。It is an example of the 1st and 2nd map data used for the driving route creation system of this embodiment. 本実施形態の走行ルート作成システムの通過ポイントの設定例を示す図である。It is a figure showing the example of setting of the passage point of the run route creation system of this embodiment. 本実施形態の走行ルート作成システムの通過ポイントおよび走行ルートの設定例を示す図である。It is a figure showing an example of setting of a passage point and a run route of a run route creation system of this embodiment. 本実施形態の走行ルート作成システムの通過ポイントおよび走行ルートの設定例を示す図である。It is a figure showing an example of setting of a passage point and a run route of a run route creation system of this embodiment.
 本発明の一実施形態に係るパーソナルモビリティ(電動モビリティ)1の走行ルート作成システムが、図面を用いながら以下説明されている。
 本実施形態の走行ルート作成システムは、サーバ100と、パーソナルモビリティ1の制御ユニット60に設けられ、サーバ100と通信可能な制御装置80とを有する。
A travel route creation system for personal mobility (electric mobility) 1 according to an embodiment of the present invention will be described below with reference to the drawings.
The travel route creation system according to the present embodiment includes a server 100 and a control device 80 provided in the control unit 60 of the personal mobility 1 and capable of communicating with the server 100.
 パーソナルモビリティ1は、一例では、図1~図4に示されるように、一対の前輪10と、一対の後輪20と、前輪(車輪)10および後輪(車輪)20によって支持されたモビリティ本体30とを備える。モビリティ本体30は、例えば、前輪10および後輪20によって支持されたボディ31と、ボディ31に取付けられた座席ユニット40と、一対の前輪10および一対の後輪20の少なくとも一方を駆動するためのモータ50とを有する。本実施形態では、モータ50はボディ31に取付けられ、座席ユニット40はボディ31から取外せる。パーソナルモビリティ1は一人が座って乗るものである。 As shown in FIGS. 1 to 4, the personal mobility 1 includes a pair of front wheels 10, a pair of rear wheels 20, and a mobility body supported by the front wheels (wheels) 10 and the rear wheels (wheels) 20. 30. The mobility main body 30 is, for example, a body 31 supported by the front wheel 10 and the rear wheel 20, a seat unit 40 attached to the body 31, and a device for driving at least one of the pair of front wheels 10 and the pair of rear wheels 20. And a motor 50. In the present embodiment, the motor 50 is attached to the body 31, and the seat unit 40 can be removed from the body 31. In personal mobility 1, one person sits and rides.
 図3および図4に示す車両前後方向は以下の説明で前後方向として説明される場合があり、図3および図4に示す車両幅方向は以下の説明で幅方向又は左右方向として説明される場合がある。なお、車両前後方向とモビリティ本体30の前後方向は一致しており、車両幅方向とモビリティ本体30の幅方向は一致している。本実施形態では、一対の前輪10の径方向の中心は車両幅方向に並んでおり、一対の後輪20の径方向の中心も車両幅方向に並んでおり、車両前後方向は車両幅方向と直交している。 The vehicle longitudinal direction shown in FIGS. 3 and 4 may be described as the longitudinal direction in the following description, and the vehicle width direction shown in FIGS. 3 and 4 may be described as the width direction or the lateral direction in the following description. There is. Note that the vehicle front-rear direction and the front-rear direction of the mobility main body 30 coincide, and the vehicle width direction coincides with the width direction of the mobility main body 30. In the present embodiment, the radial centers of the pair of front wheels 10 are aligned in the vehicle width direction, the radial centers of the pair of rear wheels 20 are also aligned in the vehicle width direction, and the vehicle longitudinal direction is defined as the vehicle width direction. Are orthogonal.
 本実施形態では、一対の後輪20はそれぞれモータ50と接続され、各モータ50は対応する後輪20を駆動する。各モータ50の駆動力が対応する前輪10に動力伝達手段によって伝達されてもよい。動力伝達部材はベルト、ギヤ等である。
 各前輪10は、図4~図6に示すように、車軸11およびサスペンション12を用いてボディ31に支持されている。また、前輪10の接地面は、前輪10の周方向に並ぶ複数のローラ13によって形成されている。
In the present embodiment, each of the pair of rear wheels 20 is connected to a motor 50, and each motor 50 drives the corresponding rear wheel 20. The driving force of each motor 50 may be transmitted to the corresponding front wheel 10 by power transmission means. The power transmission member is a belt, a gear, or the like.
Each front wheel 10 is supported by a body 31 using an axle 11 and a suspension 12, as shown in FIGS. The ground contact surface of the front wheel 10 is formed by a plurality of rollers 13 arranged in the circumferential direction of the front wheel 10.
 サスペンション12は、支持部材12aと、コイルスプリング等の付勢部材12bとを有する。支持部材12aの一端側はボディ31の前端側に支持され、支持部材12aは車両幅方向に延びる第1の軸線A1周りに傾動可能である。付勢部材12bは支持部材12aの他端側を車両前方に向かって付勢している。前輪10の車軸11は支持部材12aに固定されている。また、図6に示すように、前後方向に直角である水平線HLに対して、車軸11の中心軸線である第2の軸線A2は前方に傾いている。平面視において第2の軸線A2と水平線HLとのなす角度αが2°~15°となっていることが好ましいが、条件によってはその他の角度であってもよい。 The suspension 12 has a support member 12a and a biasing member 12b such as a coil spring. One end of the support member 12a is supported by the front end of the body 31, and the support member 12a can be tilted around a first axis A1 extending in the vehicle width direction. The urging member 12b urges the other end of the support member 12a toward the front of the vehicle. The axle 11 of the front wheel 10 is fixed to a support member 12a. As shown in FIG. 6, a second axis A2, which is a center axis of the axle 11, is inclined forward with respect to a horizontal line HL that is perpendicular to the front-rear direction. The angle α between the second axis A2 and the horizontal line HL is preferably 2 ° to 15 ° in plan view, but may be another angle depending on the conditions.
 つまり、一対の前輪10はトーイン状態となっている。一対の前輪10が互いに対して平行に配置されている場合と比較して、トーイン状態の一対の前輪10は、パーソナルモビリティ1の走行時に、車軸11に加わる車両後方への力の成分を増やすことができる。加えて、本実施形態では、付勢部材12bの付勢力に抗して支持部材12aの他端はボディ31に対し車両後方に移動できる。このため、ローラ13の接地面との衝突によって生ずる振動がより効果的に低減される。なお、前輪10は必ずしもトーイン状態に配置されていなくてもよい。 That is, the pair of front wheels 10 is in a toe-in state. Compared to the case where the pair of front wheels 10 are arranged parallel to each other, the pair of front wheels 10 in the toe-in state increases the component of the rearward force applied to the axle 11 when the personal mobility 1 runs. Can be. In addition, in the present embodiment, the other end of the support member 12a can move rearward of the vehicle with respect to the body 31 against the urging force of the urging member 12b. Therefore, the vibration caused by the collision of the roller 13 with the ground contact surface is more effectively reduced. In addition, the front wheel 10 does not necessarily need to be arranged in a toe-in state.
 各前輪10は、車軸11に取付けられたハブ14と、ハブ14に支持された複数のローラ支軸(図示せず)とを備え、複数のローラ13はそれぞれローラ支軸に回転可能に支持されている。なお、ハブ14が車軸11にベアリング等を用いて取付けられていてもよく、ハブ14が車軸11に緩衝部材、中間部材等を用いて取付けられていてもよい。各ローラ支軸の軸線は、車軸11の径方向に交差する方向に延びている。 Each front wheel 10 includes a hub 14 attached to the axle 11 and a plurality of roller spindles (not shown) supported by the hub 14, and the plurality of rollers 13 are rotatably supported by the respective roller spindles. ing. Note that the hub 14 may be attached to the axle 11 using a bearing or the like, and the hub 14 may be attached to the axle 11 using a buffer member, an intermediate member, or the like. The axis of each roller support shaft extends in a direction intersecting the radial direction of the axle 11.
 各ローラ13は対応するローラ支軸の軸線周りに回転する。つまり、各前輪10は走行面に対して全方向に移動する全方向車輪である。
 各ローラ13の外周面はゴム状弾性を有する材料を用いて形成され、各ローラ13の外周面にはその周方向に延びる複数の溝が設けられている(図5および図6参照)。
Each roller 13 rotates around the axis of the corresponding roller support shaft. That is, each front wheel 10 is an omnidirectional wheel that moves in all directions with respect to the running surface.
The outer peripheral surface of each roller 13 is formed using a material having rubber-like elasticity, and the outer peripheral surface of each roller 13 is provided with a plurality of grooves extending in the circumferential direction (see FIGS. 5 and 6).
 本実施形態では、各後輪20は、図示しない車軸と、車軸に取付けられたハブ21と、ハブ21の外周側に設けられ、外周面がゴム状弾性を有する材料を用いて形成された外周部材22とを有するが、前輪10と同様に全方向車輪を用いてもよい。後輪20の車軸はモータ50の主軸と共通でもよい。 In this embodiment, each rear wheel 20 includes an axle (not shown), a hub 21 attached to the axle, and an outer peripheral surface provided on the outer peripheral side of the hub 21 and having an outer peripheral surface formed of a material having rubber-like elasticity. Although it has the member 22, an omnidirectional wheel may be used similarly to the front wheel 10. The axle of the rear wheel 20 may be common to the main shaft of the motor 50.
 ボディ31の構造は適宜変更可能である。本実施形態では、地面に沿って延びるベース部32と、ベース部32の後端側から上方に延びている座席支持部33とを有する。座席支持部33は車両前方に傾斜しており、座席支持部33の上端側に座席ユニット40が取付けられている。 構造 The structure of the body 31 can be changed as appropriate. In the present embodiment, the base unit 32 includes a base 32 extending along the ground, and a seat support 33 extending upward from the rear end of the base 32. The seat support 33 is inclined forward of the vehicle, and a seat unit 40 is attached to the upper end of the seat support 33.
 本実施形態のベース部32は、前輪10のサスペンション12および後輪20のモータ50を支持している金属製のベースフレーム32aと、ベースフレーム32aを少なくとも部分的に覆うプラスチック製のカバー部32bとを有する。カバー部32bは、座席ユニット40に座る運転者の足を載せる部分、荷物を載置する部分等として使用される。カバー部32bは、一対の前輪10をそれぞれ上方から覆う一対のフェンダー32cも備えている。各フェンダー32cは、一例では、前輪10を覆う機能だけを有する。各フェンダー32cは、他の例では、ボディ31の剛性を強化する機能も有する。また、各フェンダー32cが前輪10の一部のみを覆う場合もある。 The base portion 32 of the present embodiment includes a metal base frame 32a that supports the suspension 12 of the front wheel 10 and the motor 50 of the rear wheel 20, a plastic cover portion 32b that at least partially covers the base frame 32a, Having. The cover 32b is used as a portion on which the feet of the driver sitting on the seat unit 40 are placed, a portion on which luggage is placed, and the like. The cover portion 32b also includes a pair of fenders 32c that respectively cover the pair of front wheels 10 from above. Each fender 32c has, for example, only a function of covering the front wheel 10. Each fender 32c also has a function of enhancing the rigidity of the body 31 in another example. Further, each fender 32c may cover only a part of the front wheel 10.
 本実施形態では、座席ユニット40はその下部にシャフト40aを有し、シャフト40aが座席支持部33の上端側に取付けられる。座席支持部33の背面には充電可能なバッテリBAが取付けられ、座席支持部33内には後述する制御ユニット60が配置されている。
 座席ユニット40は、運転者が座る座面部41と、背凭れ部42と、右のコントロールアーム43と、左のコントロールアーム43とを有する。
In the present embodiment, the seat unit 40 has a shaft 40 a at its lower part, and the shaft 40 a is attached to the upper end side of the seat support 33. A rechargeable battery BA is mounted on the back of the seat support 33, and a control unit 60 described later is arranged in the seat support 33.
The seat unit 40 has a seat surface portion 41 on which a driver sits, a backrest portion 42, a right control arm 43, and a left control arm 43.
 各コントロールアーム43の上面にはアームレスト43aが固定されている。例えば、運転者は一対のコントロールアーム43のアームレスト43aに両腕をそれぞれ置く。また、運転者は一対のコントロールアーム43の上端に両手をそれぞれ置く。本実施形態ではコントロールアーム43とアームレスト43aの両方が設けられているが、コントロールアーム43又はアームレスト43aのみが設けられていてもよい。この場合、運転者は、コントロールアーム43の上に腕および手の少なくとも一方を置き、又は、アームレスト43aの上に腕および手の少なくとも一方を置く。 ア ー ム An armrest 43a is fixed to the upper surface of each control arm 43. For example, the driver places both arms on the armrests 43a of the pair of control arms 43, respectively. Further, the driver places both hands on the upper ends of the pair of control arms 43, respectively. In this embodiment, both the control arm 43 and the armrest 43a are provided, but only the control arm 43 or the armrest 43a may be provided. In this case, the driver places at least one of the arm and the hand on the control arm 43, or places at least one of the arm and the hand on the armrest 43a.
 右側のコントロールアーム43の上端には操作レバー44aを有する操作部44が設けられている。力が加えられていない状態では、操作レバー44aは操作部44内に配置された付勢部材(図示せず)によって中立位置に配置される。運転者は、右手によって、操作レバー44aを中立位置に対して右方向、左方向、前方向、および後方向に変位させることができる。 操作 An operation section 44 having an operation lever 44a is provided at the upper end of the right control arm 43. When no force is applied, the operation lever 44a is arranged at a neutral position by an urging member (not shown) arranged in the operation section 44. The driver can use the right hand to displace the operation lever 44a to the right, left, front, and rear with respect to the neutral position.
 操作レバー44aの変位方向および変位量に応じた信号が操作部44から後述する制御ユニット60に送信され、受信する信号に応じて制御ユニット60が各モータ50を制御する。例えば、操作レバー44aが中立位置に対し前方向に変位すると、各モータ50を車両前方に向かって回転させる信号が送信される。これにより、パーソナルモビリティ1は操作レバー44aの変位量に応じた速度で前進する。また、操作レバー44aが中立位置に対し左斜め前方に変位すると、左側のモータ50を右側のモータ50よりも遅い速度で車両前方に向かって回転させる信号が送信される。これにより、パーソナルモビリティ1が操作レバー44aの変位量に応じた速度で左に曲がりながら前進する。 (4) A signal corresponding to the displacement direction and the displacement amount of the operation lever 44a is transmitted from the operation unit 44 to a control unit 60 described later, and the control unit 60 controls each motor 50 according to the received signal. For example, when the operation lever 44a is displaced forward with respect to the neutral position, a signal for rotating each motor 50 toward the front of the vehicle is transmitted. Thereby, the personal mobility 1 moves forward at a speed corresponding to the amount of displacement of the operation lever 44a. Further, when the operation lever 44a is displaced diagonally forward left with respect to the neutral position, a signal for rotating the left motor 50 toward the front of the vehicle at a lower speed than the right motor 50 is transmitted. As a result, the personal mobility 1 advances while turning left at a speed corresponding to the amount of displacement of the operation lever 44a.
 左側のコントロールアーム43の上端には、パーソナルモビリティ1に関する各種設定を行うための設定部45が設けられている。各種設定の例として、最高速度の設定、運転モードの設定、パーソナルモビリティ1のロックの設定がある。設定部45には複数の操作ボタン、表示装置等が設けられている。運転モードの例としては、電力の消費を抑えた省エネ運転モード、電力の消費を抑えずに走行性能を重視したスポーツ運転モード、省エネ運転モードとスポーツ運転モードとの間の通常運転モード等がある。パーソナルモビリティ1のロックの設定としては、ロックをかけるための暗証番号の設定、ロック解除のタイミングの設定等がある。設定部45の設定信号は後述する制御ユニット60に送信され、制御ユニット60においてパーソナルモビリティ1の設定が登録又は変更される。 A setting section 45 for performing various settings relating to the personal mobility 1 is provided at the upper end of the left control arm 43. Examples of various settings include setting of a maximum speed, setting of an operation mode, and setting of locking of personal mobility 1. The setting unit 45 is provided with a plurality of operation buttons, a display device, and the like. Examples of the operation modes include an energy-saving operation mode in which power consumption is suppressed, a sports operation mode in which driving performance is emphasized without suppressing power consumption, and a normal operation mode between the energy-saving operation mode and the sports operation mode. . The lock setting of the personal mobility 1 includes setting of a password for locking, setting of lock release timing, and the like. The setting signal of the setting unit 45 is transmitted to a control unit 60 described later, and the setting of the personal mobility 1 is registered or changed in the control unit 60.
 左右のコントロールアーム43の各々には報知装置46が設けられている。各報知装置46は音声発生装置、表示装置、振動発生装置等である。振動発生装置はコントロールアーム43の上端側の一部、操作部44、設定部45等を例えば数十Hzで振動させるものである。 報 A notification device 46 is provided on each of the left and right control arms 43. Each notification device 46 is a sound generation device, a display device, a vibration generation device, or the like. The vibration generator vibrates a part of the upper end side of the control arm 43, the operation unit 44, the setting unit 45, and the like at, for example, several tens of Hz.
 制御ユニット60は、図7に示すように、各モータ50を駆動するモータドライバ70と、制御装置80とを有する。
 モータドライバ70はバッテリBAに接続されている。また、モータドライバ70は各モータ50にも接続されており、モータドライバ70は各モータ50に駆動電力を供給する。
The control unit 60 has a motor driver 70 for driving each motor 50 and a control device 80, as shown in FIG.
The motor driver 70 is connected to the battery BA. Further, the motor driver 70 is also connected to each motor 50, and the motor driver 70 supplies driving power to each motor 50.
 制御装置80は、図7に示すように、CPU、RAM等を有する制御部81と、不揮発性メモリ、ROM等を有する記憶装置82と、送受信部83とを有する。記憶装置82にはパーソナルモビリティ1を制御するための走行制御プログラム82aが格納されている。制御部81は、走行制御プログラム82aに基づき作動し、操作部44および設定部45からの信号に従って、各モータ50を駆動するための駆動信号をモータドライバ70に送信する。 7, the control device 80 includes a control unit 81 having a CPU, a RAM, and the like, a storage device 82 having a non-volatile memory, a ROM, and the like, and a transmission / reception unit 83, as shown in FIG. The storage device 82 stores a traveling control program 82a for controlling the personal mobility 1. The control unit 81 operates based on the travel control program 82a, and transmits a drive signal for driving each motor 50 to the motor driver 70 in accordance with signals from the operation unit 44 and the setting unit 45.
 図7に示すように、操作部44および設定部45からの信号は信号線80aおよび信号線80bを経由して制御装置80に送られる。また、制御装置80からの制御信号は信号線80aおよび信号線80bを経由して報知装置46に送られる。各信号線80aは座席ユニット40に設けられ、信号線80bはボディ31に設けられている。信号線80aと信号線80bの間にはコネクタ80d,80eが設けられている。 (7) As shown in FIG. 7, signals from the operation unit 44 and the setting unit 45 are sent to the control device 80 via the signal lines 80a and 80b. The control signal from the control device 80 is sent to the notification device 46 via the signal line 80a and the signal line 80b. Each signal line 80a is provided on the seat unit 40, and the signal line 80b is provided on the body 31. Connectors 80d and 80e are provided between the signal line 80a and the signal line 80b.
 2つの視覚センサであるステレオカメラ(センサ)90が右のコントロールアーム43の上端側および左のコントロールアーム43の上端側にそれぞれ取付けられている。各ステレオカメラ90は、一対のレンズユニット91と、一対のレンズユニット91を支持するカメラ本体92とを備えている。カメラ本体92の内部には一対の撮像素子93(図7)が設けられ、一対の撮像素子93は一対のレンズユニット91にそれぞれ対応している。各撮像素子93はCMOSセンサ等の周知のセンサである。各撮像素子93は制御装置80に接続されている。 ス テ レ オ A stereo camera (sensor) 90, which is two visual sensors, is attached to the upper end of the right control arm 43 and the upper end of the left control arm 43, respectively. Each stereo camera 90 includes a pair of lens units 91 and a camera body 92 that supports the pair of lens units 91. A pair of image sensors 93 (FIG. 7) are provided inside the camera body 92, and the pair of image sensors 93 correspond to the pair of lens units 91, respectively. Each image sensor 93 is a known sensor such as a CMOS sensor. Each image sensor 93 is connected to the control device 80.
 図9に示すように、左側のコントロールアーム43に設けられたステレオカメラ90の検出範囲DAに、少なくとも左側の前輪10の一部又は左側の前輪10のフェンダー32cの一部が入る。また、当該検出範囲DAには、左側の前輪10に対して幅方向外側のエリアが入る。
 同様に、右側のコントロールアーム43に設けられたステレオカメラ90の検出範囲DAに、少なくとも、右側の前輪10の一部又は右側の前輪10のフェンダー32cの一部が入る。また、当該検出範囲DAには、右側の前輪10に対して幅方向外側のエリアが入る。なお、検出範囲DAに、前輪10に対して幅方向外側のエリアが入っていればよい。
 ここで、例えば図8に示すように、ステレオカメラ90の検出範囲DAは、一対の撮像素子93による撮像範囲が重複する範囲である。
As shown in FIG. 9, at least a part of the left front wheel 10 or a part of the fender 32c of the left front wheel 10 enters the detection range DA of the stereo camera 90 provided on the left control arm 43. The detection range DA includes an area outside the left front wheel 10 in the width direction.
Similarly, at least a part of the right front wheel 10 or a part of the fender 32c of the right front wheel 10 enters the detection range DA of the stereo camera 90 provided on the right control arm 43. The detection range DA includes an area outside the right front wheel 10 in the width direction. It is sufficient that the detection range DA includes an area outside the front wheel 10 in the width direction.
Here, as shown in FIG. 8, for example, the detection range DA of the stereo camera 90 is a range where the imaging ranges of the pair of imaging elements 93 overlap.
 また、図9に示すように、ステレオカメラ90の各レンズユニット91の光軸LAは、幅方向外側に向かって斜めに延びている。具体的には、図9に示す平面視において、各レンズユニット91の光軸LAは、前後方向に対して角度βをなす方向に延びている。一例では、角度βは5°~30°である。 As shown in FIG. 9, the optical axis LA of each lens unit 91 of the stereo camera 90 extends obliquely outward in the width direction. Specifically, in a plan view shown in FIG. 9, the optical axis LA of each lens unit 91 extends in a direction forming an angle β with respect to the front-back direction. In one example, the angle β is between 5 ° and 30 °.
 図9は検出範囲DAの一部を示しており、検出範囲DAは図9に示す範囲の前方にも存在する。図9に示すように、本実施形態では、左側のステレオカメラ90の検出範囲DAには、左側の前輪10の一部、左側の前輪10のフェンダー32cの一部、および左側の前輪10に対し幅方向外側の走行面が入っている。走行面に障害物、壁、溝等の回避対象が存在する場合、ステレオカメラ90の検出範囲DAにこれら回避対象が入る。右側のステレオカメラ90の検出範囲DAも左側のステレオカメラ90の検出範囲DAと同様である。 FIG. 9 shows a part of the detection range DA, and the detection range DA also exists in front of the range shown in FIG. As shown in FIG. 9, in the present embodiment, the detection range DA of the left stereo camera 90 includes a part of the left front wheel 10, a part of the fender 32c of the left front wheel 10, and the left front wheel 10. There is a running surface on the outside in the width direction. When obstacles such as obstacles, walls, and grooves are present on the running surface, these avoidance targets fall within the detection range DA of the stereo camera 90. The detection range DA of the right stereo camera 90 is the same as the detection range DA of the left stereo camera 90.
 各ステレオカメラ90は、一対の撮像素子93によって、視差を有する2つの画像を得る。視差を有する2つの画像は下の説明で視差画像と称される場合もある。制御装置80の制御部81は、記憶装置82に格納されている回避制御プログラム82bに基づき作動する。つまり、制御部81は視差画像を処理して距離画像を作成する。そして、制御部81は、距離画像中において、前輪10又はフェンダー32cが接触する可能性のある回避対象を検出する。回避対象は、例えば、障害物、人、動物、植物である。障害物は、例えば、壁、大きな石、段差等である。他の例では、制御部81は、距離画像中において、前輪10が衝突する、落下する、又は嵌る可能性のある段差、穴、溝等の回避対象を検出する。 Each stereo camera 90 obtains two images having parallax by the pair of imaging elements 93. The two images having parallax may be referred to as parallax images in the description below. The control unit 81 of the control device 80 operates based on the avoidance control program 82b stored in the storage device 82. That is, the control unit 81 processes the parallax image to create a distance image. Then, the control unit 81 detects an avoidance target in which the front wheel 10 or the fender 32c may come into contact in the distance image. The avoidance target is, for example, an obstacle, a person, an animal, or a plant. The obstacle is, for example, a wall, a large stone, a step, or the like. In another example, the control unit 81 detects an avoidance target such as a step, a hole, a groove, or the like in which the front wheel 10 may collide, fall, or fit in the distance image.
 そして、制御部81は、例えば検出範囲DAにおける所定の範囲AR1に前輪10又はフェンダー32cが接触する可能性のある回避対象が検出された時に、回避動作のための制御指令によって各モータ50を制御する。また、制御部81は、例えば検出範囲DAにおける所定の範囲AR1に前輪10が落下する又は嵌る可能性のある回避対象を検出した時に、回避動作のための制御指令によって各モータ50を制御する。回避動作の例は、各モータ50の回転速度の低下、停止、回避対象側へのパーソナルモビリティ1の移動を制限するための各モータ50の制御等である。 The control unit 81 controls each motor 50 by a control command for the avoidance operation, for example, when an avoidance target that may cause the front wheel 10 or the fender 32c to come into contact with a predetermined range AR1 in the detection range DA is detected. I do. In addition, the control unit 81 controls each motor 50 according to a control command for the avoidance operation, for example, when an avoidance target in which the front wheel 10 may fall or fit in the predetermined range AR1 in the detection range DA is detected. Examples of the avoidance operation include the reduction and stop of the rotation speed of each motor 50, the control of each motor 50 for restricting the movement of the personal mobility 1 to the avoidance target side, and the like.
 このように、本実施形態の構成を用いると、ステレオカメラ90の検出範囲DAには、前輪10の幅方向外側の走行面が入る。より好ましくは、ステレオカメラ90の検出範囲DAには、少なくとも、前輪10の一部又は前輪10のフェンダー32cの一部が入る。当該構成は、前輪10の幅方向外側に段差又は傾斜が存在する際に、モビリティ本体30が向いている方向と段差又は傾斜との関係を把握する上で有利である。 As described above, when the configuration of the present embodiment is used, the traveling surface on the outer side in the width direction of the front wheel 10 enters the detection range DA of the stereo camera 90. More preferably, at least a part of the front wheel 10 or a part of the fender 32c of the front wheel 10 is included in the detection range DA of the stereo camera 90. This configuration is advantageous in grasping the relationship between the direction in which the mobility main body 30 is facing and the step or inclination when a step or inclination exists outside the front wheel 10 in the width direction.
 また、前輪10の幅方向外側の走行面における前輪10の近傍を運転者が目視するためには、運転者は姿勢を変える必要がある。本実施形態では、前輪10の幅方向外側の走行面における前輪10の近傍がステレオカメラ90の検出範囲DAに入っているので、運転者による監視の負担が軽減される。 In addition, the driver needs to change his / her posture in order for the driver to visually observe the vicinity of the front wheel 10 on the running surface on the outer side in the width direction of the front wheel 10. In the present embodiment, the vicinity of the front wheel 10 on the running surface on the widthwise outer side of the front wheel 10 is within the detection range DA of the stereo camera 90, so that the burden of monitoring by the driver is reduced.
 特に、家屋内又はオフィス内においてパーソナルモビリティ1を運転する際に、運転者は、家具、壁等の回避対象との接触に気を付ける必要がある。また、運転者は、階段、傾斜等である対象への進入角度、速度等に気を付ける必要がある。家屋内又はオフィス内には様々な種類の対象が存在する。このため、運転者が目視確認によってこれら対象を全て確実に把握することは難しい。従って、本実施形態の構成は家屋内やオフィス内で極めて有用である。
 なお、前述のステレオカメラ90の検出範囲DAは一例であり、ステレオカメラ90が他の検出範囲の検出を行ってもよい。
In particular, when driving the personal mobility 1 indoors or in the office, the driver needs to be careful of contact with avoidable objects such as furniture and walls. Further, the driver needs to pay attention to the approach angle, speed, and the like to the target such as the stairs and the slope. There are various types of objects in a house or office. For this reason, it is difficult for a driver to grasp all these objects reliably by visual confirmation. Therefore, the configuration of the present embodiment is extremely useful indoors or in an office.
The detection range DA of the stereo camera 90 described above is an example, and the stereo camera 90 may detect another detection range.
 また、図8に示すように、ステレオカメラ90の一対のレンズユニット91は、互いに上下方向に並んでいる。前述のようにステレオカメラ90の検出範囲DAは一対の撮像素子93による撮像範囲が重複する範囲である。このため、一対のレンズユニット91が互いに上下方向に並ぶように配置されている本実施形態の構成は、図10に示すように前輪10の幅方向外側の死角を少なくする又は無くす上で有利である。 As shown in FIG. 8, the pair of lens units 91 of the stereo camera 90 are vertically arranged with respect to each other. As described above, the detection range DA of the stereo camera 90 is a range where the imaging ranges of the pair of imaging elements 93 overlap. For this reason, the configuration of the present embodiment in which the pair of lens units 91 are arranged so as to be vertically aligned with each other is advantageous in reducing or eliminating the blind spot outside the front wheel 10 in the width direction as shown in FIG. is there.
 また、本実施形態では、各ステレオカメラ90が、対応するコントロールアーム43に取付けられている。コントロールアーム43は運転者の手および腕が乗せられる部分である。各コントロールアーム43は、座席ユニット40に着座した運転者の胴に対して幅方向外側に配置されることが多い。また、各コントロールアーム43は、座席ユニット40に着座した運転者の大腿に対して幅方向外側に配置されることが多い。このため、上記構成は、運転者の身体によって各ステレオカメラ90の検出範囲DAが妨げられる可能性を低減する。 In addition, in this embodiment, each stereo camera 90 is attached to the corresponding control arm 43. The control arm 43 is a portion on which the driver's hand and arm are placed. Each control arm 43 is often arranged outward in the width direction with respect to the driver's torso sitting on the seat unit 40. Further, each control arm 43 is often arranged on the outer side in the width direction with respect to the thigh of the driver sitting on the seat unit 40. Therefore, the above configuration reduces the possibility that the detection range DA of each stereo camera 90 is obstructed by the driver's body.
 なお、座席ユニット40に、一対のコントロールアーム43の代わりに一対のアームレスト43aを設けることも可能である。例えば、ステレオカメラ90をアームレスト43aの前端部に設けることが可能である。当該構成も本実施形態と同様の作用効果を奏する。
 なお、座席ユニット40又はモビリティ本体30から延びるポール、座席ユニット40等にステレオカメラ90を取付けることも可能である。
The seat unit 40 may be provided with a pair of armrests 43a instead of the pair of control arms 43. For example, the stereo camera 90 can be provided at the front end of the armrest 43a. This configuration also has the same operation and effect as the present embodiment.
Note that the stereo camera 90 can be attached to the seat unit 40 or a pole extending from the mobility body 30, the seat unit 40, or the like.
 ここで、運転者は自らの手の位置および腕の位置を容易に視認することができる。また、運転者は、自らの手の位置および腕の位置を見ていない場合でも、自らの手の大凡の位置および腕の大凡の位置を直感的に認識することもできる。このため、コントロールアーム43やアームレスト43aにステレオカメラ90が設けられる本実施形態の構成は、ステレオカメラ90の壁等との衝突を防止する上で有利である。即ち、本実施形態の構成は、ステレオカメラ90の破損、位置ずれ等を防止する上で有利である。 Here, the driver can easily visually recognize the position of his / her hand and arm. In addition, the driver can intuitively recognize the approximate position of his / her hand and the approximate position of his / her arm even when he / she does not look at the position of his / her hand and the position of his / her arm. For this reason, the configuration of the present embodiment in which the stereo camera 90 is provided on the control arm 43 or the armrest 43a is advantageous in preventing collision of the stereo camera 90 with a wall or the like. That is, the configuration of the present embodiment is advantageous in preventing the stereo camera 90 from being damaged, displaced, and the like.
 また、ステレオカメラ90の各レンズユニット91の光軸LAが、幅方向外側に向かって斜めに延びている。このため、前輪10の幅方向外側のより広いエリアがステレオカメラ90の検出範囲DAに入る。当該構成は、前輪10の幅方向外側に存在する対象と前輪10との関係を確実に把握する上で極めて有用である。 The optical axis LA of each lens unit 91 of the stereo camera 90 extends obliquely outward in the width direction. Therefore, a wider area outside the front wheel 10 in the width direction falls within the detection range DA of the stereo camera 90. This configuration is extremely useful for reliably grasping the relationship between the front wheel 10 and an object existing outside the front wheel 10 in the width direction.
 なお、ステレオカメラ90の代わりに三次元エリアセンサ、三次元距離センサ等を用いることも可能である。三次元エリアセンサは、平面上に並べられた複数のイメージセンサの各々が距離情報を得る周知の構造を有する。各画素の距離情報を得るために周知のTOF方式等を用いることができる。近赤外線又は赤外線LEDからの光を面上に配置された複数のCMOSセンサ等の受光素子で受光することによって三次元点群を得る三次元距離センサを用いることも可能である。 Note that it is also possible to use a three-dimensional area sensor, a three-dimensional distance sensor, or the like instead of the stereo camera 90. The three-dimensional area sensor has a known structure in which each of a plurality of image sensors arranged on a plane obtains distance information. A known TOF method or the like can be used to obtain distance information of each pixel. It is also possible to use a three-dimensional distance sensor that obtains a three-dimensional point group by receiving light from near-infrared or infrared LEDs with a plurality of light-receiving elements such as CMOS sensors arranged on a surface.
 さらに、ステレオカメラ90の代わりにレーザセンサ又は超音波センサを用いることも可能である。
 さらに、ステレオカメラ90の代わりに1mm以上1000mm以下の波長の電波を用いるミリ波センサを用いることも可能であり、パルス状にレーザを照射し、反射光に基づき物体までの距離を計測するLIDAR(Light Detection and Ranging又はLaser Imaging Detection and Ranging)を用いることも可能である。
Further, a laser sensor or an ultrasonic sensor can be used instead of the stereo camera 90.
Further, instead of the stereo camera 90, it is also possible to use a millimeter wave sensor using a radio wave having a wavelength of 1 mm or more and 1000 mm or less, and irradiate a pulsed laser and measure a distance to an object based on reflected light. Light Detection and Ranging or Laser Imaging Detection and Ranging) can also be used.
 なお、ステレオカメラ90がコントロールアーム43の上端部内に配置されていてもよい。例えば、コントロールアーム43に設けられた中空部内にステレオカメラ90が配置される。この場合、コントロールアーム43の上端部の前面に透明なカバーが取付けられ、カバーに対して内側に一対のレンズユニット91が配置される。 The stereo camera 90 may be arranged in the upper end of the control arm 43. For example, a stereo camera 90 is arranged in a hollow portion provided in the control arm 43. In this case, a transparent cover is attached to the front surface of the upper end of the control arm 43, and a pair of lens units 91 are arranged inside the cover.
 なお、図8に示すように、本実施形態では、ステレオカメラ90の検出範囲DAにパーソナルモビリティ1の前方のエリアが入る。例えば、ステレオカメラ90の検出範囲DAに運転者の頭部の前方のエリアが入る。これにより、運転者の頭部の前方に存在する回避対象と運転者の頭部との関係も把握することができる。 As shown in FIG. 8, in the present embodiment, the area in front of the personal mobility 1 is included in the detection range DA of the stereo camera 90. For example, the area in front of the driver's head falls within the detection range DA of the stereo camera 90. Thereby, the relationship between the avoidance target existing in front of the driver's head and the driver's head can also be grasped.
 他の例では、図11に示されるように、前輪10はハブとハブの外周に設けられたゴム状弾性を有する外周部材15とを有する。図11に示される後輪20は、前述の車軸11、複数のローラ13、およびハブ14と同様の車軸、複数のローラ、およびハブを有する全方向車輪であり、サスペンション12と同様のサスペンションを介してボディ31の後端側に支持されている。また、一対の前輪10の近傍のベースフレーム32aにそれぞれモータ50が支持され、各モータ50によって各前輪10が駆動されてもよい。後輪20がモータ50によって駆動されるように構成してもよく、前輪10および後輪20以外の車輪がモータ50によって駆動されるように構成してもよい。 In another example, as shown in FIG. 11, the front wheel 10 has a hub and an outer peripheral member 15 having rubber-like elasticity provided on the outer periphery of the hub. The rear wheel 20 shown in FIG. 11 is an omnidirectional wheel having an axle, a plurality of rollers, and a hub similar to the axle 11, the plurality of rollers 13, and the hub 14, and via a suspension similar to the suspension 12. And is supported by the rear end of the body 31. Further, the motors 50 may be supported by the base frames 32a near the pair of front wheels 10, respectively, and the respective front wheels 10 may be driven by the motors 50. The rear wheel 20 may be configured to be driven by the motor 50, and the wheels other than the front wheel 10 and the rear wheel 20 may be configured to be driven by the motor 50.
 なお、右側および左側のステレオカメラ90の代わりにそれぞれミリ波センサを用いる場合に、右側のミリ波センサのアンテナ又は基板を斜め下方および斜め外側(右側)に向け、左側のミリ波センサのアンテナ又は基板を斜め下方および斜め外側(左側)に向けることが可能である。当該配置は、前輪10又は後輪20の車両幅方向の外側のエリアの検出精度を向上する上で有用である。 When the millimeter wave sensor is used instead of the right and left stereo cameras 90, respectively, the antenna or substrate of the right millimeter wave sensor is directed obliquely downward and diagonally outward (right side), and the antenna of the left millimeter wave sensor or The substrate can be directed obliquely downward and diagonally outward (left side). This arrangement is useful for improving the detection accuracy of the area outside the front wheel 10 or the rear wheel 20 in the vehicle width direction.
 サーバ100は、図12に示されるように、CPU、RAM等を有する制御部110と、不揮発性メモリ、ROM等を有する記憶装置120と、送受信部130とを有する。記憶装置120には、パーソナルモビリティ1が走行可能であるエリアを示す第1のマップデータ121と、パーソナルモビリティ1の走行時又は停止時の安全性に関る情報を有する第2のマップデータ122とが格納されている。また、記憶装置120には、パーソナルモビリティ1の現在位置と目的地との間に間隔をおいて複数の通過ポイントを設定するための通過ポイント設定プログラム123が格納されている。 As shown in FIG. 12, the server 100 includes a control unit 110 having a CPU, a RAM, and the like, a storage device 120 having a nonvolatile memory, a ROM, and the like, and a transmission / reception unit 130. The storage device 120 includes first map data 121 indicating an area in which the personal mobility 1 can travel, and second map data 122 having information on safety when the personal mobility 1 travels or stops. Is stored. Further, the storage device 120 stores a passing point setting program 123 for setting a plurality of passing points at intervals between the current position of personal mobility 1 and the destination.
 一方、パーソナルモビリティ1側には、タブレットコンピュータ、スマートフォン等の端末装置200が存在する。端末装置200は、図13に示されるように、CPU、RAM等を有する制御部210と、不揮発性メモリ、ROM等を有する記憶装置220と、送受信部230と、表示装置240と、タッチスクリーン、入力キー等の入力装置250とを有する。一例では、端末装置200および制御装置80は、サーバ100又は他のコンピュータから受信した第1のマップデータ121を格納している。なお、制御装置80、サーバ100、および端末装置200は互いに通信可能である。端末装置200は、例えば、パーソナルモビリティ1の乗車者、その関係者等が所有している。端末装置200はパーソナルモビリティ1に所定の支持装置を用いて支持されていてもよい。 On the other hand, a terminal device 200 such as a tablet computer or a smartphone exists on the personal mobility 1 side. As illustrated in FIG. 13, the terminal device 200 includes a control unit 210 having a CPU, a RAM, and the like, a storage device 220 having a nonvolatile memory, a ROM, and the like, a transmission / reception unit 230, a display device 240, a touch screen, And an input device 250 such as an input key. In one example, the terminal device 200 and the control device 80 store the first map data 121 received from the server 100 or another computer. Note that the control device 80, the server 100, and the terminal device 200 can communicate with each other. The terminal device 200 is owned by, for example, a passenger of the personal mobility 1 or a related person thereof. The terminal device 200 may be supported by the personal mobility 1 using a predetermined support device.
 制御装置80は、サーバ100又は他のコンピュータから受信した第2のマップデータ122を格納している。端末装置200が、サーバ100又は他のコンピュータから受信した第2のマップデータ122を格納していてもよい。DVD-ROM等のメディアを用いて端末装置200および制御装置80に第1のマップデータ121および第2のマップデータ122が格納されてもよい。 The control device 80 stores the second map data 122 received from the server 100 or another computer. The terminal device 200 may store the second map data 122 received from the server 100 or another computer. The first map data 121 and the second map data 122 may be stored in the terminal device 200 and the control device 80 using a medium such as a DVD-ROM.
 第1のマップデータ121は、一例では、建物内、構内、屋外エリア等のマップ情報を有する。建物内および構内のマップ情報は、通路、部屋、扉、出入口、壁、柱、階段、エレベータ、エスカレータ等の情報を有する。屋外エリアのマップ情報は、道路、歩道、階段、建物、川、沼、海、非舗装エリア等の情報を有する。非舗装エリアには、ブッシュエリア、草原エリア、芝生エリア、砂利道等の砂利エリア、砂浜等の砂エリア等が含まれている。 The first map data 121 has, for example, map information of a building, a campus, an outdoor area, and the like. The map information in the building and the premises includes information on passages, rooms, doors, doorways, walls, columns, stairs, elevators, escalators, and the like. The outdoor area map information includes information on roads, sidewalks, stairs, buildings, rivers, swamps, the sea, unpaved areas, and the like. The non-paved area includes a bush area, a grassland area, a lawn area, a gravel area such as a gravel road, a sand area such as a sandy beach, and the like.
 図14に第1のマップデータ121の例を示す。図14において、ハッチングエリアはパーソナルモビリティ1が走行不可能であり、ハッチングエリア以外のエリアはパーソナルモビリティ1が走行可能である。なお、草原エリア、芝生エリア、砂利エリア、砂浜等は、パーソナルモビリティ1が走行可能なエリアに含まれ得る。 FIG. 14 shows an example of the first map data 121. In FIG. 14, the personal mobility 1 cannot travel in the hatched area, and the personal mobility 1 can travel in the area other than the hatched area. Note that the grassland area, lawn area, gravel area, sandy beach, and the like can be included in the area where the personal mobility 1 can travel.
 第2のマップデータ122は、パーソナルモビリティ1が安全に走行可能な段差122aおよび傾斜122bを示すマップである。図15は、図14の第1のマップデータ121に第2のマップデータ122が重ね合わせられたマップである。各マップデータでは、描画されるイメージ要素とその位置データとが関連付けられている。第1のマップデータ121に第2のマップデータ122が重ね合わせられたマップが例えば端末装置200の表示装置240、制御装置80に接続された表示装置等に表示されてもよい。この場合、図15に示されるように、パーソナルモビリティ1が走行可能な段差122aの近傍に段差122aの高さ、走行の難しさ等を示す走行難易度指標122cが示されてもよい。同様に、傾斜122bの近傍に傾斜122bの斜度、高低差、走行の難しさ等に関連する走行難易度指標122dが示されてもよい。また、傾斜122bの中又は近傍に傾斜122bの方向を示す傾斜方向指標122eが示されてもよい。つまり、第2のマップデータ122には、走行難易度指標122c,122dが含まれており、傾斜方向指標122eも含まれている。走行難易度指標122dは矢印の大きさ、長さ、色等で示されてもよい。 The second map data 122 is a map indicating a step 122a and a slope 122b at which the personal mobility 1 can safely travel. FIG. 15 is a map in which the second map data 122 is superimposed on the first map data 121 in FIG. In each map data, an image element to be drawn is associated with its position data. A map in which the second map data 122 is superimposed on the first map data 121 may be displayed on, for example, the display device 240 of the terminal device 200, a display device connected to the control device 80, or the like. In this case, as shown in FIG. 15, a traveling difficulty index 122c indicating the height of the step 122a, the difficulty of traveling, or the like may be shown near the step 122a where the personal mobility 1 can travel. Similarly, a traveling difficulty index 122d related to the inclination, height difference, traveling difficulty, and the like of the inclination 122b may be shown near the inclination 122b. In addition, a tilt direction indicator 122e indicating the direction of the tilt 122b may be shown in or near the tilt 122b. That is, the second map data 122 includes the traveling difficulty indices 122c and 122d, and also includes the inclination direction indices 122e. The traveling difficulty index 122d may be indicated by the size, length, color, or the like of the arrow.
 サーバ100は、端末装置200からパーソナルモビリティ1の現在位置の情報と目的地の情報とを受付ける。サーバ100が、設定部45の入力に基づく現在位置の情報および目的地の情報を制御装置80から受付けてもよい。現在位置の情報は、端末装置200の操作者が端末装置200に入力した情報に基づくものであってもよい。例えば、パーソナルモビリティ1が配置されている位置を特定できる情報、例えば、建物名、部屋番号、フロア番号等を操作者が端末装置200に入力する。表示装置240に表示される第1のマップデータ121上の任意の位置を操作者がポインタ、タッチスクリーン機能等を用いて入力してもよい。特定された位置に基づく情報が端末装置200からサーバ100に送信される。パーソナルモビリティ1に設けられているGNSS(Global Navigation Satellite System)受信機、オドメータ、ステレオカメラ90等を用いて、制御装置80の制御部81が公知の自己位置推定を行う場合、推定された位置が現在位置の情報として制御装置80からサーバ100に送信されてもよい。これに対し、現在位置の情報が操作者の入力に基づく場合、現在位置の情報の設定が容易となり、現在位置の設定が確実になる場合が多い。また、パーソナルモビリティ1のバッテリBAの容量は限られており、現在位置の情報が操作者の入力に基づく方がバッテリBAの消費電力を低減する上で好ましい。 The server 100 receives the information on the current position of the personal mobility 1 and the information on the destination from the terminal device 200. The server 100 may receive the information on the current position and the information on the destination based on the input of the setting unit 45 from the control device 80. The information on the current position may be based on information input to the terminal device 200 by the operator of the terminal device 200. For example, the operator inputs information, for example, a building name, a room number, a floor number, and the like, which can specify a position where the personal mobility 1 is arranged, to the terminal device 200. The operator may input an arbitrary position on the first map data 121 displayed on the display device 240 using a pointer, a touch screen function, or the like. Information based on the specified position is transmitted from terminal device 200 to server 100. When the control unit 81 of the control device 80 performs a known self-position estimation using a GNSS (Global Navigation Satellite System) receiver, an odometer, a stereo camera 90, or the like provided in the personal mobility 1, the estimated position is The information of the current position may be transmitted from the control device 80 to the server 100. On the other hand, when the information on the current position is based on the input of the operator, the setting of the information on the current position becomes easy, and the setting of the current position is often ensured. Further, the capacity of the battery BA of the personal mobility 1 is limited, and it is preferable that the information on the current position be based on the input of the operator in order to reduce the power consumption of the battery BA.
 図16に示される例では、現在位置は建物のある部屋の中であり、目的地は公園内である。サーバ100の制御部110は、通過ポイント設定プログラム123に基づき、現在位置と目的地との間に複数の通過ポイントPを設定し、設定された通過ポイントPの情報を制御装置80に送信する。設定された通過ポイントPの情報が端末装置200に送信されてもよい。例えば、制御装置80において、第1のマップデータ121および第2のマップデータから成るマップ上に図16に示される一連の通過ポイントPが設定される。通過ポイントPの情報は、例えば、各通過ポイントPの第1のマップデータ121上における位置情報である。 In the example shown in FIG. 16, the current position is in a room with a building, and the destination is in a park. The control unit 110 of the server 100 sets a plurality of passing points P between the current position and the destination based on the passing point setting program 123, and transmits information of the set passing points P to the control device 80. Information on the set passing point P may be transmitted to the terminal device 200. For example, in the control device 80, a series of passing points P shown in FIG. 16 is set on a map including the first map data 121 and the second map data. The information on the passing points P is, for example, position information on the first map data 121 of each passing point P.
 続いて、パーソナルモビリティ1が自動運転モードである場合、制御装置80の制御部81は、記憶装置82に格納されている走行ルート作成プログラム82cに基づき、複数の通過ポイントP又はその近傍を順に通過するように、複数の通過ポイントPの間の走行ルートを作成する。具体的には、制御部81は、ステレオカメラ90等のセンサにより得られるデータ、第1のマップデータ121、および第2のマップデータ122を用いて、次の通過ポイント(次にパーソナルモビリティ1が通過すべき通過ポイント)Pまでの走行ルートを作成する。そして、当該次の通過ポイントP又はその近傍に到達すると、ステレオカメラ90等のセンサにより得られるデータ、第1のマップデータ121、および第2のマップデータ122を用いて、さらに次の通過ポイントPまでの走行ルートを作成する。なお、端末装置200の入力装置250への入力、設定部45への入力等に基づき、パーソナルモビリティ1が自動運転モードとなる。なお、各通過ポイントPにパーソナルモビリティ1が向くべき方向の情報(配置情報)が含まれていてもよい。この場合、作成される走行ルートは、次の通過ポイントPにおいてパーソナルモビリティ1の方向を当該通過ポイントPに含まれる配置情報に合わせるものである。 Subsequently, when the personal mobility 1 is in the automatic driving mode, the control unit 81 of the control device 80 sequentially passes through the plurality of passing points P or its vicinity based on the traveling route creation program 82c stored in the storage device 82. A travel route between a plurality of passing points P is created. Specifically, the control unit 81 uses the data obtained by the sensor such as the stereo camera 90, the first map data 121, and the second map data 122 to use A traveling route up to a passing point (P) to be passed is created. Then, when reaching the next passing point P or its vicinity, the next passing point P is obtained using the data obtained by the sensor such as the stereo camera 90, the first map data 121, and the second map data 122. Create a driving route to. The personal mobility 1 is set to the automatic driving mode based on the input to the input device 250 of the terminal device 200, the input to the setting unit 45, and the like. Note that information (arrangement information) of the direction to which the personal mobility 1 should be directed may be included in each passing point P. In this case, the created traveling route matches the direction of the personal mobility 1 at the next passing point P with the arrangement information included in the passing point P.
 自動運転モードでは、制御装置80の制御部81は、各モータ50を駆動するための駆動信号をモータドライバ70に送信し、これにより、パーソナルモビリティ1が作成された走行ルートに沿って移動する。この時、走行ルートが端末装置200の表示装置240に表示されてもよく、公知の自己位置推定技術を用いて逐次求められるパーソナルモビリティ1の位置が表示装置240に表示されてもよい。 In the automatic operation mode, the control unit 81 of the control device 80 transmits a drive signal for driving each motor 50 to the motor driver 70, thereby moving along the travel route in which the personal mobility 1 has been created. At this time, the traveling route may be displayed on the display device 240 of the terminal device 200, or the position of the personal mobility 1 sequentially obtained by using a known self-position estimation technique may be displayed on the display device 240.
 ここで、近傍とは、例えばパーソナルモビリティ1から通過ポイントPまでが基準距離(一例では数m)以下であることを示す。また、通過ポイントPは数mおきに設定されてもよく、十数mおきに設定されてもよい。当該例示は、通過ポイントPがより大きな間隔をおいて設定されることを妨げるものではない。 近 傍 Here, the vicinity means, for example, that the distance from personal mobility 1 to the passing point P is equal to or less than a reference distance (several meters in one example). In addition, the passing points P may be set every several meters, or may be set every ten and several meters. This example does not prevent the passing points P from being set at larger intervals.
 段差122aを通過する走行ルートを作成する際、制御部81は、当該走行ルートにおいて、段差122aに進入する角度を45°以上90°以下とする。一例では、図17に破線DL1で示されるように、2つの通過ポイントPの間に走行ルートを作成する。また、図17に破線DL2で示されるように、2つの通過ポイントPの間に走行ルートを作成する。走行ルートDL1は、傾斜122bへの進入角度が45°以上90°以下となるものである。走行ルートDL2は、段差122aへの進入角度が45°以上90°以下となるものである。 作成 When creating a traveling route that passes through the step 122a, the control unit 81 sets the angle at which the vehicle enters the step 122a in the traveling route to be 45 ° or more and 90 ° or less. In one example, as shown by a broken line DL1 in FIG. 17, a traveling route is created between two passing points P. Further, as shown by a broken line DL2 in FIG. 17, a traveling route is created between the two passing points P. The traveling route DL1 has an approach angle of 45 ° or more and 90 ° or less on the slope 122b. The traveling route DL2 has an entry angle to the step 122a of 45 ° or more and 90 ° or less.
 なお、本実施形態のパーソナルモビリティ1は、前輪10又は後輪20が全方向車輪である。このため、パーソナルモビリティ1は前進又は後進をせずにその場で方向転換をすることができる。このため、制御部81によって作成される走行ルートの段差122aおよび傾斜122bの手前の位置に、パーソナルモビリティ1が向くべき方向に関する付随情報が含まれていてもよい。当該付随情報は作成された走行ルートの一部であり、パーソナルモビリティ1は付随情報に応じてその方向を変える。なお、パーソナルモビリティ1の制御装置80は、ステレオカメラ90等のセンサの検出結果を用いて、侵入角度が上記角度になるように、モータドライバ70を介して各モータ50を制御する。好ましくは、パーソナルモビリティ1が実際に段差122aおよび傾斜122bに侵入する際、又は、侵入している際にも、制御装置80は、ステレオカメラ90等のセンサの検出結果を用いて、侵入角度が上記角度になるように各モータ50を制御する。 In the personal mobility 1 of the present embodiment, the front wheel 10 or the rear wheel 20 is an omnidirectional wheel. For this reason, the personal mobility 1 can change direction on the spot without moving forward or backward. For this reason, the position before the step 122a and the slope 122b of the traveling route created by the control unit 81 may include accompanying information on the direction to which the personal mobility 1 should be directed. The accompanying information is a part of the created traveling route, and the personal mobility 1 changes its direction according to the accompanying information. Note that the control device 80 of the personal mobility 1 controls each motor 50 via the motor driver 70 using the detection result of the sensor such as the stereo camera 90 so that the penetration angle becomes the above-described angle. Preferably, when personal mobility 1 actually intrudes into step 122a and incline 122b, or even when personal mobility 1 intrudes, control device 80 uses the detection result of a sensor such as stereo camera 90 to set the angle of intrusion. Each motor 50 is controlled so as to have the above angle.
 図17に示される例では、段差122aおよび傾斜122bの手前に通過ポイントPが設定されているが、図18に示されるように、段差122aおよび傾斜122bの向こう側に通過ポイントPが設定されてもよい。この場合でも、制御部210は、段差122aおよび傾斜122bへの進入角度を45°以上90°以下とする。
 なお、段差122a又は傾斜122bに進入する際の衝撃を低減するために、段差122a又は傾斜122bへの進入角度が45°以上85°以下であることが好ましい場合もある。
In the example shown in FIG. 17, the passing point P is set before the step 122a and the slope 122b, but as shown in FIG. 18, the passing point P is set on the other side of the step 122a and the slope 122b. Is also good. Also in this case, the control unit 210 sets the angle of entry to the step 122a and the inclination 122b to 45 ° or more and 90 ° or less.
In addition, in order to reduce the impact when entering the step 122a or the inclination 122b, it may be preferable that the entry angle to the step 122a or the inclination 122b is 45 ° or more and 85 ° or less.
 ここで、進入角度は、図18に示されるように、パーソナルモビリティ1の車両前後方向と段差122aの延在方向とが成す鋭角γ、又は、パーソナルモビリティ1の車両前後方向と傾斜122bの端線の延在方向とが成す角度である。 Here, the approach angle is, as shown in FIG. 18, an acute angle γ formed by the vehicle longitudinal direction of the personal mobility 1 and the extending direction of the step 122a, or an end line between the vehicle longitudinal direction of the personal mobility 1 and the slope 122b. Is the angle formed by the extension direction of
 また、制御部81は、各傾斜122b内においてパーソナルモビリティ1が停止する時のパーソナルモビリティ1の姿勢(パーソナルモビリティ1が向く方向)の情報を走行ルートの一部として作成する。例えば、傾斜方向指標122eの矢印の向きとパーソナルモビリティ1の車両前後方向との成す角度が45°以下となるパーソナルモビリティ1の姿勢情報が作成される。傾斜122b内でパーソナルモビリティ1が停止する時、制御装置80の制御部81は、各モータ50を駆動するための駆動信号をモータドライバ70に送信し、これにより、パーソナルモビリティ1の姿勢が走行ルートに含まれる姿勢情報に応じたものとなる。 {Circle around (1)} The control unit 81 creates information on the attitude of the personal mobility 1 (the direction in which the personal mobility 1 faces) when the personal mobility 1 stops in each of the slopes 122b as a part of the traveling route. For example, the posture information of the personal mobility 1 in which the angle between the direction of the arrow of the inclination direction index 122e and the vehicle longitudinal direction of the personal mobility 1 is 45 ° or less is created. When the personal mobility 1 stops within the inclination 122b, the control unit 81 of the control device 80 transmits a drive signal for driving each motor 50 to the motor driver 70, whereby the posture of the personal mobility 1 is changed to the traveling route. In accordance with the posture information included in the.
 パーソナルモビリティ1の前輪10又は後輪20が全方向車輪又はキャスターである場合、前記角度が大きいと、パーソナルモビリティ1の前端側又は後端側が停止時に意図せずに車両幅方向に移動する場合がある。このため、前記角度はこのような意図しない移動を防止できるものであることが好ましい。例えば、本実施形態のパーソナルモビリティ1は、前輪10又は後輪20が全方向車輪である。このため、全方向車輪の車軸11の中心軸線と傾斜122bの傾斜方向とが一致していると、全方向車輪が傾斜122bの下側に向かって意図せず移動する。このような移動を防止できる上記構成はパーソナルモビリティ1の乗車者や周囲の人の安全性を向上する上で有利である。 When the front wheel 10 or the rear wheel 20 of the personal mobility 1 is an omnidirectional wheel or a caster, if the angle is large, the front end side or the rear end side of the personal mobility 1 may unintentionally move in the vehicle width direction when stopped. is there. For this reason, it is preferable that the angle can prevent such unintended movement. For example, in the personal mobility 1 of the present embodiment, the front wheel 10 or the rear wheel 20 is an omnidirectional wheel. Therefore, when the center axis of the axle 11 of the omnidirectional wheels and the inclination direction of the inclination 122b match, the omnidirectional wheels unintentionally move toward the lower side of the inclination 122b. The above-described configuration that can prevent such movement is advantageous in improving the safety of a passenger of the personal mobility 1 and surrounding people.
 なお、制御装置80、サーバ100、および端末装置200の何れかが、操作者又は乗車者の入力に基づく走行エリア基準情報を受付け、受付けた走行エリア基準情報に応じて第1のマップデータ121におけるパーソナルモビリティ1が走行可能なエリアを変更してもよい。例えば、操作者又は乗車者が設定部45又は端末装置200の入力装置250に走行エリア基準情報の設定値を入力する。安全性が重視された設定値が入力されると、第1のマップデータ121に新たな走行不可能なエリアが追加される。例えば、車道付近の走行不可能なエリアの幅が大きくなる。新たに追加される走行不可能なエリアのデータが第2のマップデータ122に含まれていてもよい。これにより、乗車者の要求により合致した自動運転が実現されることになる。 Note that any one of the control device 80, the server 100, and the terminal device 200 receives the travel area reference information based on the input of the operator or the occupant, and in the first map data 121 according to the received travel area reference information. The area in which the personal mobility 1 can travel may be changed. For example, the operator or the passenger inputs the set value of the travel area reference information to the setting unit 45 or the input device 250 of the terminal device 200. When a setting value with an emphasis on safety is input, a new unrunnable area is added to the first map data 121. For example, the width of a non-travelable area near a roadway increases. Data of a newly added area that cannot be traveled may be included in the second map data 122. As a result, automatic driving that is more suited to the requirements of the passenger is realized.
 また、第2のマップデータ122において、走行可能エリア内の各部分エリアに走行疲労指標が対応付けられていてもよい。走行疲労指標は、一例では、走行面の凹凸状態、走行面の滑り易さ等に関する。また、制御装置80、サーバ100、および端末装置200の何れかが、操作者又は乗車者の入力に基づく走行疲労に関する要求を受付ける。この場合、サーバ100の制御部110は、各部分エリアの走行疲労指標を参照し、前記要求に応じた複数の通過ポイントを設定する。制御装置80の制御部81が、各部分エリアの走行疲労指標を参照し、前記要求に応じた走行ルートを作成してもよい。これにより、乗車者の状態に応じた自動運転が実現されることになる。 In the second map data 122, a running fatigue index may be associated with each partial area in the running area. The running fatigue index, for example, relates to the unevenness of the running surface, the slipperiness of the running surface, and the like. In addition, any one of the control device 80, the server 100, and the terminal device 200 receives a request related to running fatigue based on an input by an operator or a passenger. In this case, the control unit 110 of the server 100 refers to the running fatigue index of each partial area and sets a plurality of passing points according to the request. The control unit 81 of the control device 80 may create a traveling route according to the request with reference to the traveling fatigue index of each partial area. Thereby, automatic driving according to the state of the occupant is realized.
 一方、目的地への早い到着を実現するための走行疲労に関する要求を制御装置80、サーバ100、および端末装置200の少なくとも何れかが操作者又は乗車者の入力に基づき受付けてもよい。この場合、制御部110は到着時間の短縮を重視した通過ポイントの設定を行い、制御部81も到着時間の短縮を重視した走行ルートの作成を行う。 On the other hand, at least one of the control device 80, the server 100, and the terminal device 200 may receive a request related to running fatigue for realizing an early arrival at a destination based on an input by an operator or a passenger. In this case, the control unit 110 sets a passing point with an emphasis on shortening the arrival time, and the control unit 81 also creates a traveling route with an emphasis on shortening the arrival time.
 また、例えば荒天時、雨天時、降雪時、灼熱晴天時に、制御装置80、サーバ100、および端末装置200の少なくとも何れかがこれら気象障害条件を避ける要求を操作者、乗車者等の入力に基づき受付ける場合、制御部110は気象障害を回避する通過ポイントの設定を行い、制御部81も気象障害を回避する走行ルートの作成を行う。 Further, for example, in stormy weather, rainy weather, snowfall, or scorching sunny weather, at least one of the control device 80, the server 100, and the terminal device 200 makes a request to avoid these weather obstruction conditions based on inputs from an operator, a passenger, and the like. When accepting, the control unit 110 sets a passing point to avoid the weather obstacle, and the control unit 81 also creates a traveling route to avoid the weather obstacle.
 制御装置80、サーバ100、および端末装置200の何れかが、第1のマップデータ121又は第2のマップデータ122の段差、傾斜等の評価値を操作者又は乗車者の入力に基づき受付けてもよい。例えば、端末装置200がその表示装置240に、選択された段差122a又は傾斜122bと、評価値の選択肢とを表示させる。パーソナルモビリティ1の最も近くに配置された段差122a又は傾斜122bが選択された段差122a又は傾斜122bとして表示装置240に表示されてもよく、操作者又は乗車者の入力に基づき段差122a又は傾斜122bが選択されてもよい。操作者又は乗車者の入力によって評価値が選択されると、選択された評価値が対応する段差122a又は傾斜122bの情報と共にサーバ100に送信される。サーバ100の制御部110は、受信した評価値を記憶装置120に蓄積し、蓄積した評価値に基づいて各段差122aおよび各傾斜122bの走行難易度指標122c,122dを決定し、決定した走行難易度指標122c,122dを第2のマップデータ122に反映させる。 Even if any one of the control device 80, the server 100, and the terminal device 200 receives an evaluation value such as a step or an inclination of the first map data 121 or the second map data 122 based on an input by an operator or a passenger. Good. For example, the terminal device 200 causes the display device 240 to display the selected step 122a or the slope 122b and options for the evaluation value. The step 122a or the slope 122b disposed closest to the personal mobility 1 may be displayed on the display device 240 as the selected step 122a or the slope 122b, and the step 122a or the slope 122b may be displayed based on the input of the operator or the passenger. It may be selected. When the evaluation value is selected by the input of the operator or the passenger, the selected evaluation value is transmitted to the server 100 together with the information of the corresponding step 122a or the slope 122b. The control unit 110 of the server 100 accumulates the received evaluation values in the storage device 120, determines the traveling difficulty indexes 122c and 122d of the steps 122a and the slopes 122b based on the accumulated evaluation values, and determines the determined traveling difficulty. The degree indexes 122c and 122d are reflected on the second map data 122.
 パーソナルモビリティ1に公知の傾斜センサ95(図7)が設けられていてもよい。この場合、制御装置80は傾斜センサ95の計測値を受付ける。また、制御装置80は、GNSS受信機、オドメータ、ステレオカメラ90等を用いて推定された自己位置と対応付けて受付けた計測値をサーバ100に送信する。サーバ100の制御部110は、受付けた計測値を評価値として記憶装置120に蓄積し、蓄積した評価値に基づいて各傾斜122bの走行難易度指標122dを決定し、決定した走行難易度指標122dを第2のマップデータ122に反映させる。 A known inclination sensor 95 (FIG. 7) may be provided in the personal mobility 1. In this case, control device 80 receives the measurement value of inclination sensor 95. Further, the control device 80 transmits to the server 100 the measurement value received using the GNSS receiver, the odometer, the stereo camera 90, and the like, in association with the self-position estimated. The control unit 110 of the server 100 accumulates the received measurement values in the storage device 120 as evaluation values, determines the traveling difficulty index 122d for each slope 122b based on the accumulated evaluation values, and determines the determined traveling difficulty index 122d. Is reflected in the second map data 122.
 制御装置80、サーバ100、および端末装置200の何れかが、第1のマップデータ121上の走行可能なエリアの人の密集度(混み具合)の評価値を操作者又は乗車者の入力に基づき受付けてもよい。例えば、端末装置200がその表示装置240に、走行可能エリアのうち選択された部分エリアと、評価値の選択肢とを表示させる。パーソナルモビリティ1の最も近くに配置された部分エリアが選択されてもよく、操作者又は乗車者の入力に基づき部分エリアが選択されてもよい。操作者又は乗車者の入力によって評価値が選択されると、選択された評価値が対応する部分エリアの情報と共にサーバ100に送信される。サーバ100の制御部110は、受信した評価値を記憶装置120に蓄積し、蓄積した評価値に基づいて各部分エリアの走行難易度指標を決定し、決定した走行難易度指標を第2のマップデータ122に反映させる。 Any one of the control device 80, the server 100, and the terminal device 200 calculates the evaluation value of the density (crowding degree) of the persons in the travelable area on the first map data 121 based on the input of the operator or the passenger. You may accept. For example, the terminal device 200 causes the display device 240 to display a selected partial area of the travelable area and options for the evaluation value. The partial area located closest to the personal mobility 1 may be selected, or the partial area may be selected based on an input by an operator or a passenger. When the evaluation value is selected by the input of the operator or the passenger, the selected evaluation value is transmitted to the server 100 together with the information of the corresponding partial area. The control unit 110 of the server 100 accumulates the received evaluation values in the storage device 120, determines the traveling difficulty index of each partial area based on the accumulated evaluation values, and maps the determined traveling difficulty index to the second map. This is reflected in the data 122.
 制御装置80、サーバ100、および端末装置200の何れかが、第1のマップデータ121上の建物、施設、店内の走行難易度の評価値を操作者又は乗車者の入力に基づき受付けてもよい。例えば、端末装置200がその表示装置240に、選択された建物、施設、又は店と、評価値の選択肢とを表示させる。パーソナルモビリティ1の最も近くに配置された建物、施設、又は店が選択されてもよく、操作者又は乗車者の入力に基づき建物、施設、又は店が選択されてもよい。操作者又は乗車者の入力によって評価値が選択されると、選択された評価値が対応する建物、施設、又は店の情報と共にサーバ100に送信される。サーバ100の制御部110は、受信した評価値を記憶装置120に蓄積し、蓄積した評価値に基づいて各建物、施設、又は店の走行難易度指標を決定し、決定した走行難易度指標を第2のマップデータ122に反映させる。 Any of the control device 80, the server 100, and the terminal device 200 may receive the evaluation value of the traveling difficulty in the building, facility, or store on the first map data 121 based on the input of the operator or the passenger. . For example, the terminal device 200 causes the display device 240 to display the selected building, facility, or store, and options for the evaluation value. The building, facility, or store located closest to the personal mobility 1 may be selected, and the building, facility, or store may be selected based on the input of the operator or the passenger. When the evaluation value is selected by the input of the operator or the passenger, the selected evaluation value is transmitted to the server 100 together with the information of the corresponding building, facility, or store. The control unit 110 of the server 100 accumulates the received evaluation values in the storage device 120, determines the traveling difficulty index of each building, facility, or store based on the accumulated evaluation values, and determines the determined traveling difficulty index. This is reflected in the second map data 122.
 これらの構成は、パーソナルモビリティ1の乗車者の要求に合致した第2のマップデータ122を効率的に作成する上で有利である。特に、乗車者が入力した評価値に基づく第2のマップデータ122の更新は、実際に第2のマップデータ122を利用する乗車者の視線に基づくものであり、第2のマップデータ122が乗車者にとって信頼できるものとなる。 These configurations are advantageous in efficiently creating the second map data 122 that meets the requirements of the passenger of the personal mobility 1. In particular, the update of the second map data 122 based on the evaluation value input by the rider is based on the line of sight of the rider who actually uses the second map data 122, and the second map data 122 Can be trusted by the people.
 なお、端末装置200がその表示装置240に乗車者の属性の選択肢を表示させてもよい。属性は、乗車者の年齢、乗車者の状態等である。この場合、サーバ100は、受信した評価値を属性ごとに記憶装置120に蓄積し、複数の属性にそれぞれ対応した複数の第2のマップデータ122を作成することができる。即ち、例えば複数の第2のマップデータ122が異なる走行難易度指標122c,122dを有することになる。乗車者が自己の状態等に応じた第2のマップデータ122を選択することによって、乗車者の状態に応じた通過ポイント設定および走行ルート作成が行われる。 Note that the terminal device 200 may cause the display device 240 to display options of the attributes of the occupant. The attributes are the age of the rider, the state of the rider, and the like. In this case, the server 100 can accumulate the received evaluation values in the storage device 120 for each attribute, and can create a plurality of second map data 122 respectively corresponding to the plurality of attributes. That is, for example, the plurality of second map data 122 have different traveling difficulty indices 122c and 122d. When the rider selects the second map data 122 according to his / her own state, the passing points are set and the travel route is created according to the rider's state.
 なお、端末装置200が制御装置80の上記機能の一部又は全部を担ってもよい。例えば、端末装置200の制御部210が通過ポイントP間の走行ルートの設定を行ってもよい。このように、他のコンピュータデバイスの制御部が制御装置80の上記機能の一部又は全部を実行することは可能である。 Note that the terminal device 200 may perform some or all of the functions of the control device 80. For example, the control unit 210 of the terminal device 200 may set a traveling route between the passing points P. As described above, it is possible for the control unit of another computer device to execute some or all of the functions of the control device 80.
 本実施形態は、パーソナルモビリティ1が走行可能なエリアを示す第1のマップデータ121と、パーソナルモビリティ1の走行時又は停止時の安全性に関る情報を有する第2のマップデータ122とに基づき、制御部81がパーソナルモビリティ1の走行ルートを作成する。 The present embodiment is based on first map data 121 indicating an area in which personal mobility 1 can travel and second map data 122 having information on safety of personal mobility 1 when traveling or when stopped. , The control unit 81 creates a traveling route of the personal mobility 1.
 例えば、第1のマップデータ121が歩道、建物内、駅の構内、広場、公園等の位置およびエリアのデータを有しており、第2のマップデータ122が歩道上、建物内、駅の構内、広場内、公園内等に存在する段差、傾斜等に関する情報を有している。当該態様では、パーソナルモビリティ1の走行時又は停止時の安全性に関る情報を有する第2のマップデータ122が用いられるので、パーソナルモビリティ1の走行時又は停止時の安全性が考慮された走行ルートの設定が行われる。 For example, the first map data 121 includes data on the position and area of a sidewalk, a building, a station yard, a square, a park, and the like, and the second map data 122 includes a sidewalk, a building, and a station premises. It has information on steps, slopes, etc. that exist in squares, squares, parks, and the like. In this mode, since the second map data 122 having information on the safety at the time of traveling or stopping of the personal mobility 1 is used, the traveling at the time of traveling or stopping the personal mobility 1 is considered. The route is set.
 また、歩道、建物内、駅の構内、広場、公園等の位置およびエリアをほぼ全て有する第1のマップデータ121を作成することは可能である。また、歩道、建物内、駅の構内、広場、公園等の位置およびエリアはそれほど頻繁に変わらないので、一度第1のマップデータ121が作成されると、その更新の頻度はそれほど高くない。一方、パーソナルモビリティ1の走行時又は停止時の安全性に関する情報をほぼ全て有する第2のマップデータ122を作成することは難しい。例えば、歩道上、建物内、駅の構内、広場内、公園内等に存在する段差、傾斜等を全てパーソナルモビリティ1の乗車者の目線で全て短期間に把握することは難しい。また、第1のマップデータ121は各要素の詳細な形状情報、位置情報等を有するものであり、第1のマップデータへ121のデータ追加には時間がかかる場合が多い。これに対し、当該態様では、第1のマップデータ121とは別の例えば簡単なデータ構造を有する第2のマップデータ122を更新することができる。このため、第2のマップデータ122の逐次更新が可能となり、パーソナルモビリティ1の乗車者の要求により合致した走行ルートの設定が可能となる。 It is also possible to create the first map data 121 having almost all positions and areas such as sidewalks, buildings, stations, squares, parks and the like. Further, since the position and area of the sidewalk, the building, the premises of the station, the plaza, the park, and the like do not change so frequently, once the first map data 121 is created, the update frequency is not so high. On the other hand, it is difficult to create the second map data 122 having almost all the information regarding the safety of the personal mobility 1 when traveling or when stopping. For example, it is difficult to grasp all steps, slopes, and the like existing on the sidewalk, in a building, in the yard of a station, in a plaza, in a park, and the like, all in a short period of time from the viewpoint of the passenger of the personal mobility 1. Further, the first map data 121 has detailed shape information, position information, and the like of each element, and it often takes time to add data to the first map data. On the other hand, in this aspect, the second map data 122 having a simple data structure different from the first map data 121 can be updated. Therefore, the second map data 122 can be updated successively, and a traveling route that matches the request of the passenger of the personal mobility 1 can be set.
 また、本実施形態の走行ルート作成システムは、パーソナルモビリティ1が走行可能なエリアを示す第1のマップデータ121と、パーソナルモビリティ1の現在位置の情報と、目的地の情報とに少なくとも基づいて、現在位置と目的地との間に間隔をおいて複数の通過ポイントPを設定するサーバ100と、パーソナルモビリティ1に設けられたセンサと、サーバ100から複数の通過ポイントPの情報を受取り、通過ポイントP又はその近傍を順に通過するように、センサにより得られるデータを用いて複数の通過ポイントPの間の走行ルートを作成する制御部81,210と、を備えている。 Further, the traveling route creation system according to the present embodiment is configured based on at least the first map data 121 indicating an area in which the personal mobility 1 can travel, the information on the current position of the personal mobility 1, and the information on the destination. A server 100 that sets a plurality of passing points P at intervals between the current position and the destination; a sensor provided in the personal mobility 1; Control units 81 and 210 for creating a traveling route between a plurality of passing points P using data obtained by sensors so as to sequentially pass through P or its vicinity.
 制御部81,210は、複数の通過ポイントP間の走行ルートを作成する。つまり、次の通過ポイントP迄の走行ルートが作成されていれば、当該通過ポイントP又はその近傍に到着することができる。つまり、人、自転車、他の物体等の動き、存在等に応じてパーソナルモビリティ1の走行ルートを変更する必要が生じた場合でも、制御部81,210は次の通過ポイントP迄の走行ルートを変更するだけでよい。従って、走行ルートの逐次変更による電力消費を低減することができる。制御部81,210がパーソナルモビリティ1のバッテリBAによって作動する場合は、パーソナルモビリティ1のバッテリBAの電力消費が低減され、制御部210がタブレットコンピュータ等である場合も、そのバッテリBAの電力消費が低減される。これは乗車者の心地良さの向上に繋がる。 The control units 81 and 210 create a traveling route between the plurality of passing points P. That is, if a traveling route to the next passing point P has been created, the vehicle can arrive at the passing point P or in the vicinity thereof. That is, even when it is necessary to change the traveling route of the personal mobility 1 according to the movement, existence, etc. of a person, a bicycle, another object, or the like, the control units 81 and 210 determine the traveling route to the next passing point P. You just need to change it. Therefore, it is possible to reduce the power consumption due to the successive change of the traveling route. When the control units 81 and 210 operate with the battery BA of the personal mobility 1, the power consumption of the battery BA of the personal mobility 1 is reduced. Even when the control unit 210 is a tablet computer or the like, the power consumption of the battery BA is reduced. Reduced. This leads to improved comfort for the occupants.
 また、本実施形態の走行ルート作成システムは、パーソナルモビリティ1が走行可能な段差122a又は傾斜122bを示す第2のマップデータ122に基づき、制御部81,210が、パーソナルモビリティ1が段差122a又は傾斜122bを通過する走行ルートを作成する際に、段差122a又は傾斜122bに対する進入角度が45°以上となる走行ルートを作成する。 Further, the traveling route creation system according to the present embodiment, based on the second map data 122 indicating the step 122a or the slope 122b on which the personal mobility 1 can travel, the control units 81 and 210 determine that the personal mobility 1 is the step 122a or the slope. When creating a traveling route that passes through 122b, a traveling route in which the approach angle with respect to the step 122a or the inclination 122b is 45 ° or more is created.
 パーソナルモビリティ1の前輪10又は後輪20が全方向車輪である場合は、進入角度、つまり、パーソナルモビリティの車両前後方向と段差等の延設方向とが成す鋭角γが小さい場合、全方向車輪が段差への進入時に意図しない方向に動き易い。パーソナルモビリティ1の前輪10又は後輪20が他の車輪である場合も似たような現象が出る可能性がある。上記構成では、制御部81,210は、段差122a又は傾斜122bへの進入角度が45°以上となる走行ルートを作成する。このため、段差122a又は傾斜122bへの進入時のパーソナルモビリティ1の意図しない動きを抑制することができ、これは乗車者の心地良さの向上に繋がる。
 なお、進入角度は60°以上であることがより好ましい。
When the front wheel 10 or the rear wheel 20 of the personal mobility 1 is an omnidirectional wheel, the approach angle, that is, when the acute angle γ formed by the vehicle longitudinal direction of the personal mobility and the extending direction such as a step is small, the omnidirectional wheel is It is easy to move in an unintended direction when entering a step. A similar phenomenon may occur when the front wheel 10 or the rear wheel 20 of the personal mobility 1 is another wheel. In the above configuration, the control units 81 and 210 create a traveling route in which the angle of entry to the step 122a or the inclination 122b is 45 ° or more. For this reason, unintended movement of the personal mobility 1 at the time of entering the step 122a or the inclination 122b can be suppressed, which leads to improvement in comfort of the occupant.
The entry angle is more preferably 60 ° or more.
 本実施形態では、制御部81,210が、段差122aへの進入角度が85°以下となる走行ルートを作成する。
 パーソナルモビリティ1の仕様、段差122aの状態等に応じて、段差122aへの進入角度が90°である時に、パーソナルモビリティ1に加わる衝撃が大きくなる場合がある。当該構成を用いることにより、段差122aへの進入角度が85°以下となり、乗車者の心地良さを向上することができる。
In the present embodiment, the control units 81 and 210 create a travel route in which the angle of entry into the step 122a is equal to or less than 85 °.
Depending on the specifications of the personal mobility 1, the state of the step 122a, and the like, when the angle of entry to the step 122a is 90 °, the impact applied to the personal mobility 1 may be large. By using this configuration, the angle of entry into the step 122a becomes 85 ° or less, and the comfort of the occupant can be improved.
 本実施形態では、パーソナルモビリティ1が、その前輪10の幅方向外側のエリアが検出範囲DAに入るセンサを備えており、制御部81,210が、センサの検出結果を用いて、段差122a又は傾斜122bへの進入角度が45°以上となるようにパーソナルモビリティ1を制御する。
 当該構成を用いると、センサの検出結果に基づき、段差122a又は傾斜122bと前輪10との関係を把握することができる。このため、前輪10が段差122a又は傾斜122bに進入する際の進入角度を確実に45°以上とすることが可能となる。
In the present embodiment, the personal mobility 1 includes a sensor in which an area outside the width direction of the front wheel 10 falls within the detection range DA, and the control units 81 and 210 use the detection result of the sensor to generate the step 122a or the inclination. The personal mobility 1 is controlled so that the angle of entry into the 122b is 45 ° or more.
With this configuration, the relationship between the step 122a or the inclination 122b and the front wheel 10 can be grasped based on the detection result of the sensor. For this reason, it is possible to ensure that the entry angle when the front wheel 10 enters the step 122a or the inclination 122b is 45 ° or more.
 本実施形態では、前輪10又は後輪20が全方向車輪である。
 全方向車輪は通常の車輪と異なり幅方向に予想以上に移動する場合があるので、全方向車輪である前輪10又は後輪20の幅方向外側のエリアに存在する対象と前輪10又は後輪20との関係を確実に把握できることは、前輪10および後輪20の対象への進入角度を制御する上で有利である。
In the present embodiment, the front wheel 10 or the rear wheel 20 is an omnidirectional wheel.
Since the omnidirectional wheels may move more than expected in the width direction unlike ordinary wheels, the object existing in the area outside the omnidirectional front wheels 10 or the rear wheels 20 in the width direction may be compared with the front wheels 10 or the rear wheels 20. It is advantageous to be able to reliably grasp the relationship between the front wheel 10 and the rear wheel 20 in controlling the approach angles of the front wheel 10 and the rear wheel 20 to the target.
1 パーソナルモビリティ
10 前輪(車輪)
11 車軸(車輪)
12 サスペンション
13 ローラ
14 ハブ
20 後輪
30 モビリティ本体
31 ボディ
32 ベース部
33 座席支持部
40 座席ユニット
43 コントロールアーム
43a アームレスト
44 操作部
44a 操作レバー
45 設定部
46 報知装置
47 ポール
50 モータ
60 制御ユニット
70 モータドライバ
80 制御装置
81 制御部
82 記憶装置
82a 走行制御プログラム
82b 回避制御プログラム
82c 走行ルート作成プログラム
90 ステレオカメラ(センサ)
91 レンズユニット
92 カメラ本体
93 撮像素子
95 傾斜センサ
100 サーバ
110 制御部
120 記憶装置
121 第1のマップデータ
122 第2のマップデータ
123 通過ポイント設定プログラム
130 送受信部
200 端末装置
210 制御部
220 記憶装置
230 送受信部
240 表示装置
250 入力装置
DA 検出範囲
1 Personal mobility 10 Front wheel (wheel)
11 axle (wheel)
DESCRIPTION OF SYMBOLS 12 Suspension 13 Roller 14 Hub 20 Rear wheel 30 Mobility main body 31 Body 32 Base part 33 Seat support part 40 Seat unit 43 Control arm 43a Armrest 44 Operation part 44a Operation lever 45 Setting part 46 Notification device 47 Pole 50 Motor 60 Control unit 70 Motor Driver 80 Control device 81 Control unit 82 Storage device 82a Travel control program 82b Avoidance control program 82c Travel route creation program 90 Stereo camera (sensor)
91 lens unit 92 camera body 93 image sensor 95 tilt sensor 100 server 110 control unit 120 storage device 121 first map data 122 second map data 123 passing point setting program 130 transmission / reception unit 200 terminal device 210 control unit 220 storage device 230 Transmitter / receiver 240 Display device 250 Input device DA Detection range

Claims (3)

  1.  パーソナルモビリティの走行ルート作成を行う走行ルート作成システムであって、
     前記パーソナルモビリティが走行可能な段差又は傾斜を示すマップデータに基づき、前記パーソナルモビリティが前記段差又は前記傾斜を通過する走行ルートを作成する際に、前記段差又は前記傾斜への進入角度が45°以上となる前記走行ルートを作成する制御部を備える、走行ルート作成システム。
    A travel route creation system for creating travel routes for personal mobility,
    Based on the map data indicating the step or inclination at which the personal mobility can travel, when the personal mobility creates a traveling route that passes through the step or the inclination, the entry angle to the step or the inclination is 45 ° or more. A travel route creation system, comprising: a control unit that creates the travel route.
  2.  前記制御部が、前記段差への進入角度が85°以下となる前記走行ルートを作成する、請求項1に記載の走行ルート作成システム。 2. The travel route creation system according to claim 1, wherein the control unit creates the travel route such that the angle of approach to the step is equal to or less than 85 °. 3.
  3.  前輪の幅方向外側のエリアが検出範囲に入るセンサを備えるパーソナルモビリティであって、
     前記センサの検出結果を用いて、段差又は傾斜への進入角度が45°以上となるように前記パーソナルモビリティを制御する制御部を備える、パーソナルモビリティ。
    Personal mobility including a sensor in which an area outside the width direction of the front wheel falls within a detection range,
    A personal mobility, comprising: a control unit that controls the personal mobility so that an angle of entry to a step or an inclination is 45 ° or more using a detection result of the sensor.
PCT/JP2019/035585 2018-09-11 2019-09-10 Travel route creation system WO2020054733A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19860371.4A EP3851800A4 (en) 2018-09-11 2019-09-10 Travel route creation system
JP2020546042A JPWO2020054733A1 (en) 2018-09-11 2019-09-10
CN201980037664.6A CN112236647A (en) 2018-09-11 2019-09-10 Travel route creation system
US17/110,696 US20210089037A1 (en) 2018-09-11 2020-12-03 Travel route creation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-169678 2018-09-11
JP2018169678 2018-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/110,696 Continuation US20210089037A1 (en) 2018-09-11 2020-12-03 Travel route creation system

Publications (1)

Publication Number Publication Date
WO2020054733A1 true WO2020054733A1 (en) 2020-03-19

Family

ID=69778108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035585 WO2020054733A1 (en) 2018-09-11 2019-09-10 Travel route creation system

Country Status (5)

Country Link
US (1) US20210089037A1 (en)
EP (1) EP3851800A4 (en)
JP (1) JPWO2020054733A1 (en)
CN (1) CN112236647A (en)
WO (1) WO2020054733A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145036A1 (en) * 2020-12-29 2022-07-07 三菱電機株式会社 Route generation device, route generation method, and route generation program
JP7409278B2 (en) 2020-10-06 2024-01-09 トヨタ自動車株式会社 Vehicles with omnidirectional wheels

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019003430B3 (en) * 2019-05-15 2020-06-04 Daimler Ag Method for performing automated or autonomous driving of a vehicle
JP2021030953A (en) * 2019-08-27 2021-03-01 スズキ株式会社 Electric vehicle
US11863007B1 (en) * 2019-12-11 2024-01-02 Amazon Technologies, Inc. Wheel-based charger for wireless smart controllers and carts
US11191597B1 (en) * 2020-04-28 2021-12-07 Arya Sasikumar Robotic medical assistant vehicle and interface
JP2023177051A (en) * 2022-06-01 2023-12-13 スズキ株式会社 Operation system for small electric vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155504A (en) * 2005-12-05 2007-06-21 Aisin Aw Co Ltd Driving support method and driving support device
JP2017052299A (en) * 2015-09-07 2017-03-16 トヨタ自動車株式会社 Vehicular control apparatus
JP2018091711A (en) 2016-12-02 2018-06-14 本田技研工業株式会社 Vehicle control system, server device, method for vehicle control, and vehicle control program
JP2018112579A (en) * 2017-01-06 2018-07-19 アルパイン株式会社 Display system, server, electronic device, and map providing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1066428A (en) * 1966-03-01 1967-04-26 Rodvinon Ivanovitch Zamotin Wheel chair
GB2156287B (en) * 1984-03-29 1987-11-04 Everaids Limited Wheeled vehicle able to climb obstacles
JP2003010257A (en) * 2001-07-04 2003-01-14 Matsushita Electric Ind Co Ltd Route information capturing wheelchair
WO2003049664A2 (en) * 2001-12-11 2003-06-19 Quigg Robert T Stair-climbing wheelchair
WO2007079346A2 (en) * 2005-12-30 2007-07-12 Olsen Christopher J Articulated wheel assemblies and vehicles therewith
WO2014011992A2 (en) * 2012-07-13 2014-01-16 Love Park Robotics, Llc Drive-control systems for vehicles such as personal-transportation vehicles
US9374939B2 (en) * 2014-08-29 2016-06-28 Deere & Company System and method for steering of an implement on sloped ground
JP5871219B1 (en) * 2015-06-25 2016-03-01 徳三 高橋 Electric wheelchair for sports competition
IL241403A0 (en) * 2015-09-09 2016-05-31 Elbit Systems Land & C4I Ltd Open terrain navigation system and methods
US10908045B2 (en) * 2016-02-23 2021-02-02 Deka Products Limited Partnership Mobility device
JP7128746B2 (en) * 2016-05-20 2022-08-31 デカ・プロダクツ・リミテッド・パートナーシップ Mobility support device
JP6680810B2 (en) * 2018-01-17 2020-04-15 本田技研工業株式会社 Wheelchair user support map system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155504A (en) * 2005-12-05 2007-06-21 Aisin Aw Co Ltd Driving support method and driving support device
JP2017052299A (en) * 2015-09-07 2017-03-16 トヨタ自動車株式会社 Vehicular control apparatus
JP2018091711A (en) 2016-12-02 2018-06-14 本田技研工業株式会社 Vehicle control system, server device, method for vehicle control, and vehicle control program
JP2018112579A (en) * 2017-01-06 2018-07-19 アルパイン株式会社 Display system, server, electronic device, and map providing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3851800A4
TAKESHI IKEDA, SHINGO IWASA, MOTOJI YAMAMOTO: "2Pl− Fl2 Wheel Model Considering Ability of Climbing Step by Approach Angle", LECTURE PROCEEDINGS OF 2010 JSME ANNUAL CONFERENCE ON ROBOTICS AND MECHATRONICS; ASAHIKAWA, JAPAN; JUNE 13-16, 2010, vol. 2010, 2010, pages 2Pl− Fl2-1 - 4, XP009524475, DOI: 10.1299/jsmermd.2010._2P1-F12_1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409278B2 (en) 2020-10-06 2024-01-09 トヨタ自動車株式会社 Vehicles with omnidirectional wheels
WO2022145036A1 (en) * 2020-12-29 2022-07-07 三菱電機株式会社 Route generation device, route generation method, and route generation program

Also Published As

Publication number Publication date
US20210089037A1 (en) 2021-03-25
CN112236647A (en) 2021-01-15
EP3851800A1 (en) 2021-07-21
EP3851800A4 (en) 2022-06-08
JPWO2020054733A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
WO2020054733A1 (en) Travel route creation system
JP7314218B2 (en) Early boarding of passengers in autonomous vehicles
KR102365050B1 (en) Method and system for determining and dynamically updating a route and driving style for passenger comfort
JP6893140B2 (en) Control devices, control methods, control programs and control systems
US11281223B2 (en) Virtual gearing in an autonomous electronic bicycle
US10534363B2 (en) Autonomous driving device and autonomous driving method
WO2019158261A1 (en) Vehicle control system and control method
JP2018190217A (en) Driver monitoring device and driver monitoring method
JP2017100490A (en) Speed control device
JPWO2016199312A1 (en) Autonomous mobile system
JP2018116606A (en) Travel route generating device
US20200409381A1 (en) Autonomous electronic bicycle navigation
JP7189008B2 (en) Electric mobility, displays and programs
CN110654388A (en) Control device for autonomous vehicle
US11654988B2 (en) Balancing system in an autonomous electronic bicycle
US20200407013A1 (en) Autonomous electronic bicycle
Nakajima Evaluation of the mobility performance of a personal mobility vehicle for steps
WO2018072908A1 (en) Controlling a vehicle for human transport with a surround view camera system
KR20220019263A (en) Method and apparatus for generating a trajectory shape for an autonomous vehicle
JP7221332B2 (en) Vehicle running control device
KR20200112063A (en) Golf cart system capable of changing traveling mode according to whether golf course field can enter or not and golf cart control method using the system
WO2017164911A1 (en) Transportation device
KR102194911B1 (en) Smart-operated vehicle and its monitoring system
JP7295654B2 (en) self-propelled robot
KR20130074144A (en) Automatic traveling rider robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019860371

Country of ref document: EP

Effective date: 20210412

ENP Entry into the national phase

Ref document number: 2020546042

Country of ref document: JP

Kind code of ref document: A