WO2022143563A1 - 一种小区选择方法及装置 - Google Patents

一种小区选择方法及装置 Download PDF

Info

Publication number
WO2022143563A1
WO2022143563A1 PCT/CN2021/141779 CN2021141779W WO2022143563A1 WO 2022143563 A1 WO2022143563 A1 WO 2022143563A1 CN 2021141779 W CN2021141779 W CN 2021141779W WO 2022143563 A1 WO2022143563 A1 WO 2022143563A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
information
network
terminal device
candidate
Prior art date
Application number
PCT/CN2021/141779
Other languages
English (en)
French (fr)
Inventor
罗禾佳
王晓鲁
李榕
马江镭
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21914299.9A priority Critical patent/EP4250817A4/en
Publication of WO2022143563A1 publication Critical patent/WO2022143563A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • H04W36/008357Determination of target cell based on access point [AP] properties, e.g. AP service capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/083Reselecting an access point wherein at least one of the access points is a moving node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a cell selection method and device.
  • Non-terrestrial network includes the use of unmanned aerial vehicles, high-altitude platforms, satellites and other equipment to form a network to provide data transmission, voice communication and other services for user equipment (UE).
  • NTN communication has the characteristics of wide coverage and large delay. It is different from the general terrestrial base station signal. Such difference will have a great impact on user equipment (UE) services, which will further affect decisions such as cell reselection. .
  • UE user equipment
  • the priority of the cell in the current reselection mechanism is bound to the frequency point.
  • the service type of the UE is a delay-sensitive communication service
  • the UE selects the target cell according to the priority configuration of the cell, and may select the cell provided by satellite coverage. , which will result in poor communication quality and thus poor user experience.
  • the present application provides a cell selection method and device to solve the problem that UE may select an inappropriate cell when the target cell is selected based on the priority configuration of the frequency point of the cell, resulting in poor communication quality.
  • an embodiment of the present application provides a cell selection method, including: a terminal device performs measurements according to measurement configuration information of N cells, where N is an integer greater than 0, and determines M candidate cells according to the measurement results, where M is Integer greater than 0 and less than N.
  • the terminal device selects a target cell from among the M candidate cells according to the first information.
  • the first information includes information on the network type of at least one candidate cell among the M candidate cells, and the information on the network type of the first candidate cell among the M candidate cells is used. to indicate that the first candidate cell is a ground network or a geostationary orbit satellite network or a medium orbit satellite network or a low orbit satellite network or a high altitude platform network.
  • the communication quality of different types of networks is different.
  • the stability of the cellular network is relatively good, and the delay of the 300km low-orbit satellite network is relatively low.
  • Select the target cell so that the target cell can meet the service requirements of the terminal device.
  • the service type of the terminal device is a communication service that requires high stability
  • the terminal device can preferentially select a cellular network cell with better stability.
  • the terminal device can select a 300km low-orbit satellite network cell, etc., which can reduce the probability that the terminal device selects an inappropriate cell for reselection, which can improve the user experience.
  • the information of the network type of the first candidate cell may include track information of the network device corresponding to the first candidate cell. Satellites with different orbital altitudes may have different time delays and processing capabilities.
  • the network type is further divided according to the orbit information, so that the terminal equipment can select the cell that meets the needs for handover.
  • the information of the network type of the first candidate cell may include network architecture information of the network device corresponding to the first candidate cell.
  • different network architectures correspond to different delays and processing capabilities.
  • the regenerative architecture has lower delays.
  • the above design further divides the network types according to the network architecture, so that terminal equipment can choose Cells that meet the needs are handed over.
  • the information of the network type of the first candidate cell may include beam information of the first candidate cell, where the beam information is used to indicate a beam deployment manner. Staring at the beam means less handover frequency.
  • the above design further divides the network type according to the beam deployment method, so that the terminal device can select the cell that meets the requirements for handover.
  • the terminal device performs measurement according to the measurement configuration information of the N cells, including: for the nth cell of the N cells, if the priority corresponding to the network type of the nth cell is higher than that of the serving cell The priority corresponding to the network type, the terminal device measures the nth cell; if the priority corresponding to the network type of the nth cell is not higher than the priority corresponding to the network type of the serving cell, the terminal device in the serving cell satisfies the preset The nth cell is measured when conditions are met.
  • the terminal device selects the target cell from the M candidate cells according to the first information, including: the terminal device selects the target cell from the M candidate cells according to the first information and the first selection rule, and the first selection
  • the rule is used to select the target cell
  • the first selection rule includes at least one correspondence between network types and priorities.
  • the corresponding priority is set according to the network type of the cell, so that the terminal device can select the cell that meets the service requirements of the terminal device according to the network type of the cell.
  • the terminal device may receive the measurement configuration information and the first information from the N cells of the serving cell.
  • the network device corresponding to the serving cell of the terminal device can send the first information to the terminal device before performing cell measurement, so that the first information can be sent through a radio resource control (radio resource control, RRC) configuration at the terminal device level, There is less broadcast signaling, so the overhead of network equipment can be reduced.
  • RRC radio resource control
  • the terminal device may receive the first information from the first candidate cell among the M candidate cells.
  • the terminal device acquires the first information from the candidate cell only when deciding to camp on the cell. In this way, configuration information that needs to be stored by the terminal device can be reduced, thereby reducing the storage overhead of the terminal device. And, in this way, the real-time situation of the network can be more accurately reflected.
  • the terminal device receives second information from the serving cell, where the second information is used to indicate the first selection rule.
  • the network device can instruct the selection rule used by the terminal device, so that the overhead of the terminal device can be reduced.
  • the terminal device receives third information from the serving cell, where the third information is used to indicate the service type of the terminal device.
  • the service type of the terminal device recorded on the network device side can be kept consistent with the actual service type of the terminal device.
  • the terminal device may select at least one preconfigured cell according to the service type of the terminal device
  • the first selection rule is determined in the selection rule.
  • an embodiment of the present application provides a cell selection method, including: a terminal device performs measurements according to measurement configuration information of N cells, where N is an integer greater than 0, and determines M candidate cells according to the measurement results, where M is An integer greater than 0 and less than N; the terminal device selects a target cell among the M candidate cells according to the first information, and the first information includes information on the capability of at least one candidate cell among the M candidate cells.
  • the cell capability information is used to indicate at least one of the following information: the network round-trip delay of the first candidate cell, the total network capacity of the first candidate cell, the remaining network capacity of the first candidate cell, and the network handover of the first candidate cell frequency.
  • the terminal device may select a target cell according to the capability of the cell when performing cell reselection, so that the target cell can meet the service requirements of the terminal device. For example, when the service type of the terminal device requires a lower frequency of network switching, the terminal device The device can preferentially select a cell with a lower frequency of network handovers. When the service type of the terminal device requires a lower delay, the terminal device can select a cell with a lower delay as the target cell, which can reduce the need for the terminal device to select an inappropriate cell. The probability of reselection, which in turn can improve the user experience. In addition, by indicating key indicators such as the network round-trip delay, remaining network capacity, total network capacity, and network switching frequency of neighboring cells in the embodiments of the present application, it is possible to avoid exposing the network deployment of network devices, thereby ensuring network privacy.
  • the terminal device selects the target cell from the M candidate cells according to the first information, including: the terminal device selects the target cell from the M candidate cells according to the first information and the first selection rule, and the first selection
  • the rule is used to select a target cell
  • the first selection rule includes a condition corresponding to at least one parameter.
  • the corresponding priority is set according to the network type of the cell, so that the terminal device can select the cell that meets the service requirements of the terminal device according to the network type of the cell.
  • the terminal device may receive the measurement configuration information and the first information from the N cells of the serving cell.
  • the network device corresponding to the serving cell of the terminal device can send the first information to the terminal device before performing cell measurement, so that the first information can be sent through the RRC configuration at the terminal device level, and the broadcast signaling is relatively small, so it can be reduced. Overhead of network equipment.
  • the terminal device may receive the first information from the first candidate cell among the M candidate cells.
  • the terminal device acquires the first information from the candidate cell only when deciding to camp on the cell. In this way, configuration information that needs to be stored by the terminal device can be reduced, thereby reducing the storage overhead of the terminal device. And, in this way, the real-time situation of the network can be more accurately reflected.
  • the terminal device receives second information from the serving cell, where the second information is used to indicate the first selection rule.
  • the network device can instruct the selection rule used by the terminal device, so that the overhead of the terminal device can be reduced.
  • the terminal device receives third information from the serving cell, where the third information is used to indicate the service type of the terminal device.
  • the service type of the terminal device recorded on the network device side can be kept consistent with the actual service type of the terminal device.
  • the terminal device before the terminal device selects the target cell among the M candidate cells according to the first selection rule and the first information, the terminal device may select at least one preconfigured cell according to the service type of the terminal device The first selection rule is determined in the selection rule.
  • an embodiment of the present application provides a method for selecting a cell, including: a network device determines first information and sends the first information to a terminal device, where the first information includes network type information of at least one cell, and in at least one cell The information of the network type of the first cell is used to indicate that the first cell is a ground network or a geostationary orbit satellite network or a medium orbit satellite network or a low orbit satellite network or a high altitude platform network.
  • the communication quality of different types of networks is different.
  • the stability of the cellular network is relatively good, and the delay of the 300km low-orbit satellite network is relatively low.
  • Select the target cell so that the target cell can meet the service requirements of the terminal device.
  • the service type of the terminal device is a communication service that requires high stability
  • the terminal device can preferentially select a cellular network cell with better stability.
  • the terminal device can select a 300km low-orbit satellite network cell, etc., which can reduce the probability that the terminal device selects an inappropriate cell for reselection, which can improve the user experience.
  • the information of the network type of the first candidate cell may include track information of the network device corresponding to the first candidate cell. Satellites with different orbital heights may have different time delays and processing capabilities.
  • the terminal equipment can select a cell that meets the requirements for handover.
  • the information of the network type of the first candidate cell may include network architecture information of the network device corresponding to the first candidate cell.
  • different network architectures correspond to different delays and processing capabilities.
  • the regenerative architecture has lower delays.
  • the above design further divides the network types according to the network architecture, so that terminal equipment can choose Cells that meet the needs are handed over.
  • the information of the network type of the first candidate cell may include beam information of the first candidate cell, where the beam information is used to indicate a beam deployment manner. Staring at the beam means less handover frequency.
  • the above design further divides the network type according to the beam deployment method, so that the terminal device can select the cell that meets the requirements for handover.
  • the network device determines a selection rule according to the service type of the terminal device and sends the second information to the terminal device, where the selection rule is used to select a target cell, and the selection rule includes at least one correspondence between network types and priorities , and the second information is used to indicate the selection rule.
  • the network device can determine the selection rule used by the terminal device according to the service type of the terminal device, so that the target cell selected by the terminal device can be more in line with the service requirements of the terminal device, and the overhead of the terminal device can be reduced.
  • the network device may also send third information to the terminal device, where the third information is used to indicate the service type of the terminal device.
  • the service type of the terminal device recorded on the network device side can be kept consistent with the actual service type of the terminal device.
  • an embodiment of the present application provides a cell selection method, including: a network device determines first information and sends the first information to a terminal device, where the first information includes capability information of at least one cell, the first information in the at least one cell
  • the information of the capability of a cell is used to indicate at least one of the following information: the network round-trip delay of the first cell, the total network capacity of the first cell, the remaining network capacity of the first cell, and the network switching frequency of the first cell.
  • the terminal device may select a target cell according to the capability of the cell when performing cell reselection, so that the target cell can meet the service requirements of the terminal device. For example, when the service type of the terminal device requires a lower frequency of network switching, the terminal device The device can preferentially select a cell with a lower frequency of network handovers. When the service type of the terminal device requires a lower delay, the terminal device can select a cell with a lower delay as the target cell, which can reduce the need for the terminal device to select an inappropriate cell. The probability of reselection, which in turn can improve the user experience. In addition, by indicating key indicators such as the network round-trip delay, remaining network capacity, total network capacity, and network switching frequency of neighboring cells in the embodiments of the present application, it is possible to avoid exposing the network deployment of network devices, thereby ensuring network privacy.
  • the network device determines a selection rule according to the service type of the terminal device and sends the second information to the terminal device, where the selection rule is used to select a target cell, and the selection rule includes at least one correspondence between network types and priorities , and the second information is used to indicate the selection rule.
  • the network device can determine the selection rule used by the terminal device according to the service type of the terminal device, so that the target cell selected by the terminal device can be more in line with the service requirements of the terminal device, and the overhead of the terminal device can be reduced.
  • the network device may also send third information to the terminal device, where the third information is used to indicate the service type of the terminal device.
  • the service type of the terminal device recorded on the network device side can be kept consistent with the actual service type of the terminal device.
  • the present application provides a communication apparatus, which may be a terminal device, or a chip or a chipset in the terminal device.
  • the apparatus may include a processing unit and a storage unit.
  • the processing unit may be a processor, and the storage unit may be a memory.
  • the apparatus may further include a transceiver unit, and the transceiver unit is configured to communicate with the network device.
  • the transceiver unit may be a transceiver.
  • the storage unit is used for storing instructions, and the processing unit executes the instructions stored in the storage unit, so that the terminal device performs the corresponding function of the first aspect or the second aspect.
  • the processing unit may be a processor, and the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip or the chipset, or a storage unit located in the A storage unit (eg, read only memory, random access memory, etc.) external to a chip or chipset.
  • the apparatus may further include a transceiver unit, and the transceiver unit is configured to communicate with the network device.
  • the transceiver unit may be an input/output interface, a pin or a circuit, and the like.
  • the storage unit is used for storing instructions, and the processing unit executes the instructions stored in the storage unit, so that the terminal device performs the corresponding function in the first aspect or the second aspect.
  • the present application provides a communication apparatus, and the apparatus may be a network device, or a chip or a chipset in the network device.
  • the apparatus may include a processing unit and a transceiving unit.
  • the processing unit may be a processor, and the transceiver unit may be a transceiver; the apparatus may further include a storage unit, which may be a memory; the storage unit is used for storing instructions, and the processing unit The instructions stored in the storage unit are executed, so that the network device performs the corresponding function of the third aspect or the fourth aspect.
  • the processing unit may be a processor, the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the apparatus may also include a storage unit, and the storage module may It is a memory module (for example, a register, a cache, etc.) in the chip or the chipset, or it can be a memory module (for example, a read-only memory, a random access memory, etc.) located outside the chip or the chipset; the memory unit is used for For storing the instructions, the processing unit executes the instructions stored in the storage unit, so that the network device performs the corresponding functions in the third aspect or the fourth aspect.
  • the storage module may It is a memory module (for example, a register, a cache, etc.) in the chip or the chipset, or it can be a memory module (for example, a read-only memory, a random access memory, etc.) located outside the chip or the chipset; the memory unit is used for For storing the instructions, the processing unit executes
  • an embodiment of the present application provides a communication apparatus, the apparatus includes a communication interface and a processor, and the communication interface is used for the apparatus to communicate with other devices, such as data or signal transmission and reception.
  • the communication interface may be a transceiver, circuit, bus, module or other type of interface, and the other device may be a network device.
  • the processor is configured to invoke a set of programs, instructions or data to execute the method described in the first aspect or each possible design of the first aspect, or execute the method described in the second aspect or each possible design of the second aspect.
  • the apparatus may also include a memory for storing programs, instructions or data invoked by the processor.
  • the memory is coupled to the processor, and when the processor executes the instructions or data stored in the memory, the processor can implement the method described in the first aspect or each possible design of the first aspect, or execute the above-mentioned first aspect.
  • the second aspect or each possible design of the second aspect describes the method.
  • an embodiment of the present application provides a communication apparatus, the apparatus includes a communication interface and a processor, and the communication interface is used for the apparatus to communicate with other devices, such as data or signal transmission and reception.
  • the communication interface may be a transceiver, circuit, bus, module or other type of interface, and other devices may be terminal devices.
  • the processor is configured to invoke a set of programs, instructions or data to execute the method described in the third aspect or each possible design of the third aspect, or execute the method described in the fourth aspect or each possible design of the fourth aspect.
  • the apparatus may also include a memory for storing programs, instructions or data invoked by the processor.
  • the memory is coupled to the processor, and when the processor executes the instructions or data stored in the memory, the processor can implement the method described in the third aspect or each possible design of the third aspect, or execute the above-mentioned third aspect.
  • Four aspects or each possible design of the fourth aspect describes the method.
  • the embodiments of the present application further provide a computer-readable storage medium, where computer-readable instructions are stored in the computer-readable storage medium, and when the computer-readable instructions are run on a computer, the computer-readable instructions can be The methods described in any one of the first to fourth aspects and possible designs are performed.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor, and may also include a memory, for implementing any one of the first to fourth aspects and the various possible designs described above.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a communication system, where the system includes a network device and a terminal device, where the terminal device is configured to execute the method in the first aspect or each possible design of the first aspect, so The network device is used to execute the method in the third aspect or each possible design of the third aspect.
  • an embodiment of the present application provides a communication system, where the system includes a network device and a terminal device, where the terminal device is configured to execute the method in the second aspect or each possible design of the second aspect, so The network device is used to execute the method in the fourth aspect or each possible design of the fourth aspect.
  • a computer program product comprising instructions which, when run on a computer, cause the method as described in any of the above first to fourth aspects and possible designs to be performed .
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, a memory, and a transceiver, where the transceiver is used to receive a signal or send a signal; the memory is used to store a program code or instructions; the processor is configured to invoke the program code or instructions from the memory to execute the method according to the first aspect or the second aspect.
  • an embodiment of the present application provides a communication device, the communication device includes a processor, a memory, and a communication interface, where the communication interface is used for receiving a signal or sending a signal; the memory is used for storing a program code or instructions; the processor is configured to invoke the program code or instructions from the memory to execute the method according to the third aspect or the fourth aspect.
  • an embodiment of the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is configured to receive computer program codes or instructions and transmit them to the processor; the processing A computer executes the computer program code or instructions to perform the corresponding method as shown in the first aspect or the second aspect above.
  • an embodiment of the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is configured to receive computer program codes or instructions and transmit them to the processor; the processing The computer program code or instructions are executed by a computer to perform the corresponding method as shown in the third aspect or the fourth aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device may be a chip, and the communication device includes: a logic circuit and an input and output interface.
  • the input and output interface is used for the device to communicate with the network device, for example, to receive the first information.
  • the logic circuit is used to execute computer program code or instructions to perform the corresponding method as shown in the first aspect or the second aspect above.
  • an embodiment of the present application provides a communication device.
  • the communication device may be a chip, and the communication device includes: a logic circuit and an input and output interface.
  • the input and output interface is used for the device to communicate with the terminal device, such as sending the first information.
  • the logic circuit is used to execute computer program code or instructions to perform the corresponding method as shown in the third or fourth aspect above.
  • FIG. 1 is a schematic diagram of a static cell according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a mobile cell according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a transparent forwarding architecture provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a regeneration architecture provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a communication scenario provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another communication scenario provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an access network device according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a cell selection method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a method for obtaining first information by a network device according to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another cell selection method provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a cell handover apparatus provided by an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of another cell handover apparatus provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Cell reselection refers to a process in which a terminal device selects a best cell to provide a serving signal by monitoring the signal quality of neighboring cells and the current serving cell in idle mode.
  • the cell reselection process may include:
  • the terminal device measures the current serving cell and neighboring cells (including intra-frequency, inter-frequency, and inter-system cells) according to the measurement start standard.
  • Measurement start criterion whether a neighbor cell starts measurement can consider two parameters, namely, the cell priority of the neighbor cell and the signal quality of the current serving cell. If the cell priority of the neighbor cell is higher than the current serving cell, the terminal device unconditionally starts the measurement of the neighbor cell. If the cell priority of the neighboring cell is less than or equal to the current serving cell. The terminal device may measure the signal quality of the current serving cell, and compare the signal quality of the current serving cell with a quality threshold, and if the signal quality of the current serving cell is higher than the quality threshold, the neighbor cell may not be measured. If the signal quality of the current serving cell is not higher than the quality threshold, the neighbor cell is measured.
  • the terminal device determines whether the adjacent cell signal meets the reselection criteria.
  • the re-selection criteria between different frequencies and different systems with different priorities are:
  • inter-radio access technology (inter-RAT) neighboring cell If the cell priority of the inter-radio access technology (inter-RAT) neighboring cell is higher than the cell priority of the current serving cell, if the current serving cell carries threshServingLowQ in the system information (SIB2), where threshServingLowQ It is the reselection threshold value corresponding to the neighboring cell whose cell priority is smaller than the current serving cell.
  • SIB2 system information
  • the reselection is triggered when the following conditions are met: the terminal equipment resides in the current serving cell for more than a preset duration (for example, 1 second); within the time interval (T reselectionRAT ), the neighboring cell satisfies Squal>Thresh X,HighQ , where , Squal is the signal quality, Thresh X, HighQ is the threshold value of the signal quality.
  • the reselection is triggered when the following conditions are met: within the time interval (T reselectionRAT ), the neighboring cell satisfies Srxlev>Thresh X,HighP , where Srxlev is the signal energy , Thresh X, HighP is the threshold value of the signal energy; the terminal equipment resides in the current serving cell for more than a preset duration (for example, 1 second).
  • Thresh X, HighQ and Thresh X, HighP are reselection thresholds corresponding to neighboring cells whose cell priority is higher than that of the current serving cell, where X may represent a frequency, and each frequency has a corresponding threshold.
  • the Thresh X, HighQ and Thresh X, HighP of the neighboring cells of different frequencies can be obtained from SIB4, and the Thresh X, HighQ and Thresh X, HighP of neighboring cells of different systems can be obtained from SIB5.
  • Srxlev and Squal may conform to the following formula, or, Srxlev and Squal may be determined by the following formula:
  • Q rxlevmeas the received signal level value of the cell obtained by measurement, that is, reference signal received power (reference signal received power, RSRP).
  • Q rxlevmin the minimum reception level value of the cell broadcast in system information block 1 (system information block 1, SIB1), which can be configured through the parameter CellSel.QRxLevMin.
  • Q rxlevminoffset the cell minimum received signal level offset value broadcast in SIB1. It can be configured through the parameter CellSel.QRxLevMinOffset.
  • P compensation max(P Max -UE Maximum Output Power, 0).
  • P Max the maximum transmit power of the UE allowed by the cell broadcast in SIB1, which can be configured by the parameter CELL.UePowerMax.
  • UE Maximum Output Power The maximum RF output power capability of the UE itself.
  • Q qualmeas the measured received signal quality of the cell, that is, reference signal received quality (reference signal received quality, RSRQ).
  • Q qualmin the minimum received signal quality value of the cell broadcast in SIB1, which can be configured through the parameter CellSel.QQualMin. Whether the cell Qqualmin is delivered in SIB1 can depend on the settings of CellResel.ThrshServLowQCfgInd and CellSel.QQualMin: when the value of CellSel.QQualMin is not "0", CellResel.ThrshServLowQCfgInd can be configured as "CFG (configuration)" or "NOT_CFG” (Not configured)", the cell is delivered in SIB1. When the value of CellSel.QQualMin is "0", CellResel.ThrshServLowQCfgInd can only be configured as "NOT_CFG (not configured)", and this cell is not delivered in SIB1.
  • Q qualminoffset the minimum received signal quality offset value of the cell broadcast in SIB1, which can be configured by the parameter CellSel.QQualMinOffset.
  • Srxlev and Squal can refer to the relevant descriptions in Section 5.2.3.2 of TS38.304 of the 3GPP protocol, and will not be described here.
  • the terminal device can perform cell reselection according to the R criterion.
  • the R criterion is to calculate an R (Rank) value for each neighboring cell and the current serving cell according to the signal quality of the cell, and then sort according to the size of the R value. If the R value is greater than the current serving cell, the reselection criteria are met. , choose the best one.
  • the time interval (Treselection RAT )
  • the neighbor cell always satisfies the R criterion, and the terminal equipment camps on the current serving cell for more than a preset time period (for example, 1 second). Then the terminal device initiates reselection to the adjacent cell.
  • the R value R s of the serving cell may conform to the following formula, or the R value R s of the serving cell may be determined by the following formula:
  • R s Q meas,s +Q hyst -Qoffset temp ;
  • Q meas,s is the signal quality of the current serving cell, which can be obtained by measuring the terminal equipment.
  • Q hyst is the reselection hysteresis value of the current serving cell. The larger the value of Q hyst , the larger the boundary of the serving cell, and the lower the probability of reselection to the neighboring cell.
  • Qoffset is the R criterion calculation parameter.
  • Qoffset can be equal to Qoffsetcell, and Qoffsetcell can be obtained from SIB3; in the case of inter-frequency reselection, Qoffset can be equal to the sum of QoffsetCell and QoffsetFreq, and QoffsetCell and QoffsetFreq can be obtained from SIB4.
  • Qoffset temp is the R criterion calculation parameter, which can be obtained from SIB1.
  • the R value R n of the neighboring cell can conform to the following formula, or the R value R n of the neighboring cell can be determined by the following formula:
  • R n Q meas,n ⁇ Qoffset ⁇ Qoffset temp ;
  • Q meas,n is the signal quality of the adjacent cell, which can be obtained by measuring the terminal equipment.
  • the The reselection is triggered when the following conditions are met: the neighboring cells whose cell priority is higher than the current serving cell do not meet the corresponding reselection criteria; the neighboring cells whose cell priority is equal to the current serving cell do not meet the corresponding reselection criteria; the serving cell satisfies Squal ⁇ Thresh Serving, LowQ ; the neighbor cell satisfies Squal>Thresh X, LowQ during the time interval (Treselection RAT ); the terminal equipment camps on the current serving cell for more than a preset time period (for example, 1 second).
  • a preset time period for example, 1 second
  • the reselection is triggered when the following conditions are met: the neighboring cells whose cell priority is higher than the current serving cell do not meet the corresponding reselection criteria; the cell priority is equal to the current serving cell The neighboring cell of the cell does not meet the corresponding reselection criteria; the serving cell satisfies Squal ⁇ Thresh Serving, LowP ; the neighboring cell satisfies Squal>Thresh X, LowP during the time interval (Treselection RAT ); the terminal equipment resides in the current serving cell for more than for a preset duration (eg 1 second).
  • a preset duration eg 1 second
  • Thresh Serving, LowQ and Thresh X, LowQ are reselection thresholds corresponding to neighboring cells whose cell priority is lower than the current serving cell, where X may represent a frequency, and each frequency has a corresponding threshold.
  • the Thresh X and HighP of adjacent cells of different frequencies can be obtained from SIB4, and the Thresh X and HighP of adjacent cells of different systems can be obtained from SIB5.
  • the terminal device receives the system message of the neighboring cell, such as no access restriction (for example, the operator may have some reserved cells or cells with restricted access), etc. , then reside in the adjacent area. If the neighbor cell does not meet the reselection criteria, it still stays in the current serving cell.
  • NTN communication includes the use of unmanned aerial vehicle, high altitude platform station (HAPS), satellite and other equipment for networking, providing data transmission, voice communication and other services for terminal equipment.
  • HAPS high altitude platform station
  • the NTN system may also include other air network devices, and the network devices involved in the embodiments of the present application are not limited to the above examples.
  • the satellite system can be divided into highly elliptical orbit (HEO) satellites, geostationary earth orbit (GEO) satellites, and medium earth orbit (MEO) satellites. ) satellites and low-earth orbit (LEO) satellites.
  • HEO highly elliptical orbit
  • GEO geostationary earth orbit
  • MEO medium earth orbit
  • LEO low-earth orbit
  • GEO satellites and LEO satellites provide coverage cells are briefly described as follows.
  • GEO satellites Also known as stationary satellites, the satellites move at the same speed as the earth's rotation system, so the satellites remain stationary relative to the ground.
  • the cells of the GEO satellites are also stationary.
  • the coverage area of GEO satellite cells is relatively large, and the general cell diameter is 500km.
  • LEO satellites There are many kinds of non-stationary satellites, taking LEO satellites as an example.
  • the LEO satellite moves relatively fast relative to the ground, about 7Km/s, so the coverage area served by the LEO satellite also moves accordingly.
  • the mapping method of stationary cells means that the location of the cells does not move on the ground, and the moving satellites form these cells by adjusting their own beams.
  • the area shown in Figure 1 is covered by cell 1 and cell 2 of gNB1, and cell 3 and cell 4 of gNB2; at time T2: although both gNB1 and gNB2 move to the left, they can still adjust their own The beam, as shown in Figure 1, can still be covered by cell 1 and cell 2 of gNB1, cell 3 and cell 4 of gNB2; time T3: Compared with time T1, gNB1 and gNB2 have moved far enough distance, gNB1 It is not possible to provide services to the area through cell 1 by adjusting the beam, but gNB3 can provide services to the area through cell 5.
  • the area shown in Figure 1 can be composed of cell 2 of gNB1, cell 3 of gNB2 and cell 4, and cell 4 of gNB3.
  • Cell 5 is covered.
  • the satellite In this cell mode, the satellite can form a stationary cell by adjusting the beam, and the beam deployment method of the satellite can be called staring beam.
  • the moving cell that is, the cell projected to the ground moves with the LEO satellite, and the antenna direction of the LEO satellite does not change during the moving process.
  • the antenna of the LEO satellite is always perpendicular to the ground.
  • the mapping method of the ground mobile cell means that the moving satellite does not dynamically adjust its beam direction, and the beam generated by the moving satellite moves on the ground with the movement of the satellite.
  • Time T1 the area shown in Figure 2 is covered by cell 1 and cell 2 of gNB1, and cell 3 and cell 4 of gNB2
  • time T2 the area shown in Figure 2 is covered by a part of cell 1 and cell 1 of gNB1 and Cell 2, cell 3 of gNB2, and part of cell 4 and cell 5 of gNB3 are covered
  • this area is covered by cell 2 of gNB1, cell 3 of gNB2, cell 4, and cell 5 of gNB3.
  • the moving satellite does not dynamically adjust its beam direction, and the beam deployment method of the satellite can be called non-staring beam.
  • the architecture of NTN equipment is divided into two categories, one is the transparent forwarding (transparent) architecture, in which the NTN equipment can be a relay or an amplifier, and can do radio frequency filtering, amplification, etc.
  • the resulting, exemplary, transparent forwarding architecture may be as shown in FIG. 3 .
  • the NTN device can also serve as a relay device between the terminal device and the base station or as a remote radio unit (remote radio unit, RRU) of the base station.
  • RRU remote radio unit
  • the NTN device can be responsible for Layer 1 (L1) relaying for physical layer forwarding and is not visible to higher layers.
  • the second is the regenerative architecture.
  • NTN devices can be used as gNB, distributed unit (DU), and relay.
  • the relay here is different from the relay in the first category. It also has signal processing functions, similar to access.
  • IAB Integrated access and backhaul
  • the regeneration architecture may be as shown in FIG. 4 .
  • an NTN device can be used as a base station to establish an N2 interface or an Ng interface connection with an access and mobility management function (AMF) entity in the core network to provide wireless access for terminal devices Serve.
  • AMF access and mobility management function
  • the NTN communication system provides seamless coverage for terminal equipment by deploying all or part of the functions of the access network equipment on NTN equipment (such as high-altitude platforms or satellites). Reliability of communication systems.
  • the cell selection method provided by the embodiments of the present application may be applied to a communication system including NTN equipment (such as satellites, HAPS, drones, etc.) and access network equipment on the ground, where the NTN equipment may have access network equipment. All or part of the functions of the network equipment.
  • the network architecture of the NTN device may be a transparent transmission architecture or a regeneration architecture.
  • the network architecture may further include a gateway device, and the gateway device is used to forward the signal of the access network device on the ground to the NTN device.
  • FIG. 5 exemplarily shows a possible communication scenario.
  • the architecture of the NTN device may be a transparent transmission mode.
  • FIG. 6 exemplarily shows another possible communication scenario.
  • the architecture of the NTN device may be a regeneration mode.
  • the interconnection between the NTN equipment and the access network equipment on the ground can be realized through a common core network.
  • the NTN equipment and the access network equipment on the ground can also achieve more timely assistance and interconnection through the interface defined between the access network equipment.
  • the interface between the access network equipment can be called the Xn interface.
  • the interface between the network access device and the core network can be called an NG interface.
  • Intercommunication and coordination can be achieved between the NTN equipment and the access network equipment on the ground through the Xn interface or the NG interface.
  • the link between the NTN device and the terminal device may be called a service link, and the link between the NTN device and the gateway device may be called a feeder link.
  • the network elements involved in the embodiments of this application include network equipment and terminal equipment.
  • the network device may be an NTN device with all or part of the functions of the access network device, or may also be an access network device on the ground.
  • An access network device is an entity on the network side for transmitting or receiving signals, such as a new generation base station (generation Node B, gNodeB).
  • An access network device may be a device used to communicate with a mobile device.
  • the access network device may be an AP in wireless local area networks (WLAN), an evolved base station (evolved Node B, eNB or eNodeB) in long term evolution (LTE), or a relay station or an access network.
  • WLAN wireless local area networks
  • eNB evolved base station
  • LTE long term evolution
  • Access point or integrated access and backhaul IAB
  • in-vehicle devices wearable devices
  • access network devices in future 5G networks or future evolved public land mobile networks (PLMNs)
  • PLMNs public land mobile networks
  • gNB gNodeB
  • an access network device provides services for a cell, and a terminal device communicates with the access network device through transmission resources (eg, frequency domain resources, or spectrum resources) used by the cell.
  • the access network device in this embodiment of the present application may refer to a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the access network device may also be composed of CU and DU, for example, as shown in FIG. 7 .
  • the CU and the DU may be physically separated, or may be deployed together, which is not specifically limited in this embodiment of the present application.
  • One CU can be connected to one DU, or multiple DUs can share one CU, which can save costs and facilitate network expansion.
  • the segmentation of CU and DU can be divided according to the protocol stack.
  • One possible way is to combine RRC, service data adaptation protocol (SDAP) and packet data convergence protocol (PDCP)
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • the CU layer is deployed on the CU, and the rest of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical layer are deployed on the DU.
  • RLC radio link control
  • MAC media access control
  • the above-mentioned protocol stack segmentation manner is not completely limited in the embodiments of the present application, and other segmentation manners are also possible.
  • the CU and DU are connected through the F1 interface.
  • CU represents the gNB is connected to the core network through the Ng interface.
  • the access network device in this embodiment of the present application may also refer to a centralized unit control plane (CU-CP) node or a centralized unit user plane (CU-UP) node, or the access network device may also be a CU-CP and CU-UP.
  • the CU-CP is responsible for the control plane function, mainly including RRC and PDCP-C.
  • PDCP-C is mainly responsible for encryption and decryption of control plane data, integrity protection, and data transmission.
  • CU-UP is responsible for user plane functions, mainly including SDAP and PDCP-U.
  • SDAP is mainly responsible for processing the data of the core network and mapping the flow to the bearer.
  • PDCP-U is mainly responsible for data plane encryption and decryption, integrity protection, header compression, serial number maintenance, data transmission, etc.
  • the CU-CP and CU-UP are connected through the E1 interface.
  • CU-CP represents that the gNB is connected to the core network through the Ng interface. Connect via F1-C (control plane) and DU.
  • CU-UP is connected through F1-U (user plane) and DU.
  • F1-C user plane
  • the access network device mentioned in the embodiments of this application may be a device including a CU, or a DU, or a device including a CU and a DU, or a control plane CU node (CU-CP node) and a user plane CU node (CU-UP node) And the equipment of the DU node.
  • the access network equipment may be other apparatuses that provide wireless communication functions for the terminal equipment.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the access network device. For convenience of description, in this embodiment of the present application, a device that provides a wireless communication function for a terminal device is referred to as an access network device.
  • the terminal device may be a device capable of receiving scheduling and indication information of an access network device (or NTN device), the terminal device may be a device that provides voice and/or data connectivity to the user, or a handheld device with a wireless connection function, or Other processing equipment connected to the wireless modem.
  • Terminal equipment can communicate with one or more core networks or the Internet via a radio access network (eg, radio access network, RAN), and the terminal equipment can be a mobile terminal equipment, such as a mobile phone (or "cellular" phone, mobile phone (mobile phone), computer and data cards, for example, may be portable, pocket, hand-held, computer built-in or vehicle mounted mobile devices that exchange language and/or data with the radio access network.
  • a terminal device may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station (MS), a remote station, or an access point (access point).
  • the terminal device can also be a wearable device and a next-generation communication system, for example, a terminal device in a 5G network or a terminal device in a future evolved PLMN network, a terminal device in a new radio (NR) communication system, and the like.
  • a terminal device may also be a terminal that communicates with an NTN device.
  • the embodiments of the present application may also be applicable to other future-oriented communication technologies.
  • the network architecture and service scenarios described in this application are for the purpose of illustrating the technical solutions of this application more clearly, and do not constitute a limitation on the technical solutions provided in this application. appears, the technical solutions provided in this application are also applicable to similar technical problems.
  • the communication system may be: a fifth generation (The 5th Generation, 5G) communication system, a Long Term Evolution (Long Term Evolution, LTE) communication system, and the like.
  • 5G Fifth Generation
  • LTE Long Term Evolution
  • the embodiments of the present application may be applied to the fourth generation (4G) system, 5G system, NTN system, vehicle to everything (V2X), long term evolution-vehicle (LTE-vehicle, LTE) -V), Vehicle to Vehicle (V2V), Internet of Vehicles, Machine Type Communications (MTC), Internet of Things (IoT), Long Term Evolution-Machine to Machine (LTE-machine to) machine, LTE-M), machine to machine (M2M), Internet of Things, or future mobile communication systems.
  • 4G fourth generation
  • 5G system vehicle to everything
  • V2X vehicle to everything
  • LTE-vehicle LTE-vehicle, LTE) -V
  • V2V Vehicle to Vehicle
  • MTC Machine Type Communications
  • IoT Internet of Things
  • LTE-machine to Long Term Evolution-Machine to Machine
  • LTE-M Long Term Evolution-Machine to Machine
  • M2M machine to machine
  • Internet of Things or future mobile communication systems.
  • a ground base station connected to a satellite In satellite communication, a ground base station connected to a satellite, the signal of this base station is relayed by the satellite.
  • the ground base station connected to the satellite has the characteristics of wide coverage and large delay after its signal is forwarded by the satellite, which is different from the signal of the general ground base station. This difference will have a great impact on UE services, which will further affect the to cell reselection and other decisions. For example, in the current reselection mechanism, the priority of the cell is bound to the frequency point, the frequency point of the cell is given, and the priority of the cell is determined. Whether to start the measurement behavior and the criteria for selecting a target cell after measurement are strongly related to the priority of the frequency point.
  • the terminal device measures the current serving cell and neighboring cells according to the measurement start standard. Wherein, whether the neighbor cell starts the measurement needs to consider the cell priority of the neighbor cell. If the cell priority of the neighbor cell is higher than the current serving cell, the terminal device unconditionally starts the measurement of the neighbor cell. If the cell priority of the neighboring cell is less than or equal to the current serving cell.
  • the terminal equipment may start the measurement of the neighboring cell when the signal quality of the former serving cell is not higher than the quality threshold.
  • the reselection criteria of neighboring cells with different priorities are different. If the cell priority of the neighbor cell is higher than the cell priority of the current serving cell, the reselection criteria are: the terminal equipment camps on the current serving cell for more than a preset time period (for example, 1 second); within the TreselectionRAT , the neighbor cell satisfies the Squal>Thresh X,HighQ . Or, the reselection criterion is: within the TreselectionRAT , the neighboring cell satisfies Srxlev>Thresh X,HighP ; the terminal equipment camps on the current serving cell for more than a preset duration (eg, 1 second).
  • the reselection criteria can be: according to the signal quality of the cell, calculate an R (Rank) value for each neighboring cell and the current serving cell, and then sort according to the size of the R value , if the R value is greater than the current serving cell, it satisfies the reselection criteria, and if there are more than one, the best one is selected.
  • the time interval (Treselection RAT )
  • the neighbor cell always satisfies the R criterion, and the terminal equipment camps on the current serving cell for more than a preset time period (for example, 1 second). Then the terminal device initiates reselection to the adjacent cell.
  • the reselection criteria are: the neighboring cell whose cell priority is higher than the current serving cell does not meet the corresponding reselection criteria; the cell priority is equal to the neighboring cell of the current serving cell.
  • the area does not meet the corresponding reselection criteria; the serving cell satisfies Squal ⁇ Thresh Serving, LowQ ; the neighboring cell satisfies Squal>Thresh X, LowQ during the time interval (Treselection RAT ); the terminal equipment resides in the current serving cell beyond the preset duration (eg 1 second).
  • the reselection criterion is that the neighboring cells whose cell priority is higher than the current serving cell do not meet the corresponding reselection criteria; the neighboring cells whose cell priority is equal to the current serving cell do not meet the corresponding reselection criteria; the serving cell satisfies Squal ⁇ Thresh Serving , LowP ; the neighboring cell satisfies Squal>Thresh X, LowP during the time interval (Treselection RAT ); the terminal equipment resides in the current serving cell for more than a preset duration (for example, 1 second).
  • a preset duration for example, 1 second
  • cells at the same frequency may be provided by various forms of networks such as GEO satellites, LEO satellites, HAPS, and cellular. Even at the same frequency, the capabilities of different types of networks, such as delay, capacity density and The switching/reselection frequency etc. are different. For example, cellular networks have better stability than satellite networks. In satellite networks, GEO satellites are expected to have low throughput but stable connections. LEO satellites have high throughput, but connection stability may not be high.
  • the terminal device selects the target cell according to the priority configuration of the cell, and may select a cell covered by satellites, which will result in poor communication quality and poor user experience. .
  • the embodiments of the present application provide a cell selection method and apparatus to solve the problem that a terminal device may select an inappropriate cell when selecting a target cell based on the priority configuration of the cell's frequency points, resulting in poor communication quality.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • At least one refers to one or more, and "a plurality” refers to two or more.
  • And/or which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one (item) of the following or its similar expression refers to any combination of these items, including any combination of single item (item) or plural item (item).
  • At least one (a) of a, b or c may represent: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c Can be single or multiple.
  • Embodiment 1 As shown in FIG. 8 , a cell selection method is provided in this embodiment of the present application.
  • the cell selection method provided in the present application can be applied to a cell reselection scenario or a cell handover scenario.
  • the following takes the cell reselection scenario as an example for description. It should be understood that in the cell handover scenario, the information based on the network type of the cell
  • the manner of determining the target cell is similar to the manner of determining the target cell according to the information of the network type of the cell in the cell reselection scenario.
  • the cell selection method may specifically include:
  • the first network device sends first information to the terminal device, where the first information includes information about the network type of at least one cell, and the information about the network type of the first cell in the at least one cell is used to indicate that the first cell is a terrestrial network (for example, a terrestrial network). cellular network) or GEO satellite network or MEO satellite network or LEO satellite network or HAPS network.
  • the network device may be a network device corresponding to a serving cell of the terminal device.
  • the terminal device receives the first information from the network device corresponding to the serving cell.
  • the first network device may be a network device corresponding to a serving cell of the terminal device.
  • the terminal device may obtain the first information by receiving a radio resource control (radio resource control, RRC) signaling or a system information block (system information block, SIB) sent by the first network device in a connected state.
  • RRC radio resource control
  • SIB system information block
  • the terminal device may acquire the first information by receiving an RRC Release (RRC Release) message sent by the first network device when entering the disconnected state.
  • RRC Release RRC Release
  • the terminal device may also acquire the first information by reading the broadcast message of the newly camped cell.
  • the network of the cell in this embodiment of the present application may be, but is not limited to, a terrestrial network (for example, a cellular network), a GEO satellite network, a MEO satellite network, a LEO satellite network, a HAPS network, etc., and may also include other networks, such as future communications. developing networks, etc. It can be understood that the network is only illustrated here, and the type of the network is not specifically limited.
  • the information of the network type of the cell may indicate the network of the cell in an explicit manner.
  • the information of the network type may include network information, and the network information may indicate different networks through different values.
  • the information of the network type may be as shown in Table 2.
  • Internet Information network 011 GEO Satellite Network 010 LEO Satellite Network 001 HAPS network 000 cellular network ... ...
  • Table 2 is only an example, and the embodiment of the present application does not specifically limit the number of bits included in the network information, the corresponding relationship between the value of the network information and the network, and the like.
  • the information of the network type of the cell may include the cell identifier of the cell and the network information of the cell. Taking the network information shown in Table 2 as an example, the first information may be shown in Table 3.
  • Cell ID Internet Information network Cell ID #1 011 GEO Satellite Network Cell ID #2 010 LEO Satellite Network Cell ID #3 001 HAPS network Cell ID #4 000 cellular network Cell ID #5 010 LEO Satellite Network Cell ID #6 011 GEO Satellite Network ... ...
  • the information of the network type of the cell may include track information of the network device corresponding to the cell, such as track height and the like.
  • the network types of cells may be further divided according to the track information.
  • the network type of the cell can be further divided according to the orbit height of the network device.
  • the LEO satellite network can be further divided into 300km LEO satellite network, 600km LEO satellite network, 1500km LEO satellite network according to height
  • HAPS network can be further divided into 10km HAPS network and 20km HAPS network according to height.
  • the delay and processing capability of NTN equipment at different orbit heights may be different.
  • the terminal equipment can select a cell that meets the requirements for handover.
  • the track information may indicate the track height of the cell in an explicit manner.
  • the track information may indicate different track heights through different values.
  • the track information can be as shown in Table 4.
  • Table 4 is only an example, and the embodiment of the present application does not specifically limit the number of bits included in the track information, the corresponding relationship between the value of the track information and the track height, and the like.
  • the information of the network type of the cell may further include network architecture information of the network device corresponding to the cell.
  • the network architecture information may be used to indicate the network architecture of the network device.
  • the network architecture can be divided into the following types: regenerative architecture, transparent transmission architecture, and regenerative satellite architecture only including DUs. .
  • the network types of cells may be further divided according to the network architecture.
  • the LEO satellite network can be further divided into LEO satellite network with regenerative architecture, LEO satellite network with transparent transmission architecture, LEO satellite network with regenerative satellite architecture only including DU, etc. according to the network architecture.
  • different network architectures correspond to different delays and processing capabilities.
  • the regenerative architecture has lower delays.
  • the network architecture information may indicate the network architecture of the network device corresponding to the cell in an explicit manner.
  • the network architecture information may indicate different network architectures through different values.
  • the network architecture information may be as shown in Table 5.
  • Table 5 is only an example, and the embodiments of the present application do not specifically limit the number of bits included in the network architecture information, the corresponding relationship between the values of the network architecture information and the network architecture, and the like.
  • the information of the network type of the cell may further include beam information of the cell, where the beam information is used to indicate the beam deployment mode.
  • beam deployment methods can be classified into staring beams and non-staring beams.
  • the network types of cells may be further divided according to beam deployment methods.
  • the LEO satellite network can be further divided into LEO satellite networks with gazing beams and LEO satellite networks with non-gazing beams according to beam deployment methods. Staring at the beam means less handover frequency.
  • the terminal device can select the cell that meets the needs for handover.
  • the beam information may indicate the beam deployment manner of the network device corresponding to the cell in an explicit manner.
  • the beam information may indicate different beam deployment manners with different values.
  • the beam information may be as shown in Table 6.
  • Table 6 is only an example, and the embodiment of the present application does not specifically limit the number of bits included in the beam information, the corresponding relationship between the value of the beam information and the beam deployment mode, and the like.
  • the network type of the cell may be divided according to the foregoing network, orbit height, network architecture, and beam deployment method.
  • the information about the network type of the cell may include network information, orbit information, network architecture information, and beam information of at least one cell, for example, as shown in Table 7.
  • the information of the network type of the cell may include at least one of the above-mentioned network information, orbit information, network architecture information, and beam information, and the terminal device may obtain the above-mentioned network information, orbit information, network architecture information, and beam information in other ways.
  • Other information for example, the information of the network type of the cell may include network information, network architecture information, and beam information, and the terminal device may obtain orbit information of the network device of the cell through the ephemeris information.
  • the network type of the cell can be divided according to at least one of the above network, orbit height, network architecture, and beam deployment method.
  • the network type of the cell can be divided according to the above network, orbit height, and beam deployment method.
  • the network types of the cells may also be classified according to other network deployment situations, which will not be listed one by one here.
  • the first network device may acquire the first information from a core network device connected to the first network device.
  • different network devices may be connected to the same core network device, or may be connected to different core network devices.
  • the core network device connected to the first network device can obtain the cell of the second network device from the second network device.
  • Network type information For a cell of a third network device, where the third network device and the first network device are connected to different core network devices, the core network device connected to the first network device can obtain the third network device from the core network device connected to the third network device Information about the network type of the device's cell.
  • the first network device can request the core network device 1 for information about the network types of the cell of base station 2, the cell of satellite 2, and the cell of base station 3, and the core
  • the network device 1 can obtain the information of the network type of the cell of the base station 2 from the base station 2 , obtain the information of the network type of the cell of the satellite 2 from the core network device 2 , and obtain the information of the cell of the base station 3 from the core network device 3 .
  • the first network device may request the connected core network device for information on the network type of the cell covered by the first network device and surrounding cells, and may also request information on the service type of the terminal device served by the first network device.
  • the core network device connected to the first network device may also actively send to the first network device information about the cell covered by the first network device and the network types of surrounding cells, and may also send information about the terminal device served by the first network device. Information on the type of business.
  • the core network device connected to the first network device may determine a cell covered by the first network device and surrounding cells according to the deployment information of the first network device.
  • the deployment information of the first network device may be the geographic location of the first network device, and if the first network device is an NTN device, the deployment information of the first network device It may be the movement position and movement rule of the first network device.
  • the network type information of the cells covered by the first network device and surrounding cells may change with time.
  • the core network device of the network updates the information of the network type of the cell covered by the first network device and the surrounding cells at a higher frequency.
  • the information of the network type of the cell covered by the first network device and the information of the network type of the surrounding cells are strongly related to the deployment of the first network device, and the deployment of the first network device and the change rule of the deployment may be pre-stored in the In a core network device connected to a network device.
  • the deployment situation of the first network device and the change rule of the deployment situation may be based on a specific trigger condition (for example, every preset period of time), and when the trigger condition takes effect, the updated first network device covers the cell. and the information of the network type of the surrounding cells is sent to the first network device.
  • different core network devices may belong to different operators, so operators can design a shared authentication mechanism at the core network level.
  • a rule can be set, when the core network equipment of the satellite operator applies for the information of the network type of the cell from the core network equipment of the cellular network, the core network equipment of the cellular network can send the information to the core network equipment of the satellite operator. Information on the network type of the cell requested by the core network equipment of the satellite operator. In this way, the cellular network can smoothly undertake the business from the satellite network, thereby improving business stability.
  • the network device may send cell reselection related configuration information to the terminal device, where the cell reselection related configuration information may include measurement configuration information (eg, frequency, cell priority, etc.) of at least one cell.
  • measurement configuration information eg, frequency, cell priority, etc.
  • the terminal device performs measurement according to the measurement configuration information of N cells, where N is an integer greater than 0.
  • the terminal device may determine whether to start the measurement of the cell according to the cell priority of the cell, where the cell priority is bound to the frequency point. Exemplarily, if the cell priority of the cell is higher than the cell priority of the current serving cell, the terminal device unconditionally starts the measurement of the cell. If the cell priority of the cell is less than or equal to the cell priority of the current serving cell. The terminal device may measure the signal quality of the current serving cell, and compare the signal quality of the current serving cell with a quality threshold, and if the signal quality of the current serving cell is higher than the quality threshold, the cell may not be measured. If the signal quality of the current serving cell is not higher than the quality threshold, the cell is measured.
  • the network type of each cell may correspond to a priority
  • the terminal device may determine whether to start the measurement of the cell according to the priority of the network type of the cell. Exemplarily, if the priority of the network type of the cell is higher than the priority of the network type of the current serving cell, the terminal device may unconditionally start the measurement of the cell. If the priority of the network type of the cell is less than or equal to the priority of the network type of the current serving cell, the terminal device may start measuring the cell when the current serving cell satisfies the preset condition.
  • the preset condition may be that the signal quality of the current serving cell is less than the quality threshold. That is, if the priority of the network type of the cell is less than or equal to the priority of the network type of the current serving cell, if the signal quality of the current serving cell is less than the quality threshold, the terminal device can start the measurement of the cell, if the current serving cell If the signal quality of the cell is not less than the quality threshold value, the terminal equipment may not start the measurement of the cell.
  • the terminal device may determine whether to start the measurement of the cell according to the priority of the network type of the cell and the priority of the cell.
  • the terminal device can unconditionally start the service. For cell measurement, if the priority of the network type of the cell is less than or equal to the priority of the network type of the current serving cell, the terminal device can start measuring the cell when the signal quality of the current serving cell is lower than the quality threshold.
  • the terminal device can measure the signal quality of the current serving cell and compare the signal quality of the current serving cell with the quality threshold, if the signal quality of the current serving cell is high If the quality threshold is exceeded, the cell may not be measured. If the signal quality of the current serving cell is not higher than the quality threshold, the cell is measured.
  • the terminal device can unconditionally start the network type of the cell. Measurement, if the cell priority of the cell is less than or equal to the cell priority of the current serving cell, the terminal device can start measuring the cell when the signal quality of the current serving cell is less than the quality threshold.
  • the terminal device can measure the signal quality of the current serving cell and compare the signal quality of the current serving cell with the quality threshold, if the current serving cell If the signal quality is higher than the quality threshold, the cell may not be measured. If the signal quality of the current serving cell is not higher than the quality threshold, the cell is measured.
  • the terminal device determines M candidate cells according to the measurement result, where M is an integer greater than 0 and less than N.
  • the terminal The device may select the cell as a candidate cell.
  • the signal energy of the cell may conform to the following formula, or the signal energy of the cell may be determined by the following formula:
  • Srxlev is the signal energy of the cell.
  • Q rxlevmeas , Q rxlevmin , Q rxlevminoffset , P compensation , and Qoffset temp please refer to the relevant description in the above step A2, which will not be repeated here.
  • the signal quality of the cell may conform to the following formula, or the signal quality of the cell may be determined by the following formula:
  • Squal is the signal quality of the cell.
  • Q qualmeas , Q qualmin , Q qualminoffset , and Qoffset temp reference may be made to the relevant description in the foregoing step A2, and details are not repeated here.
  • the terminal device may perform cell reselection according to the R criterion.
  • R criterion reference may be made to the relevant description in the foregoing step A2, which will not be repeated here.
  • the terminal device can select the cell as a candidate cell.
  • the terminal device selects a target cell from among the M candidate cells according to the first information.
  • step S801 is not a step that must be performed.
  • the terminal device can also obtain the first information in other ways. For example, the terminal device can determine the movement information of the network device, such as the current position and the movement speed, according to the ephemeris information of the network device corresponding to the cell. The motion information of the corresponding network device can determine the network type of the cell.
  • the terminal device may acquire the network type of the currently camping cell (ie the serving cell) in this way. In this way, the network device may not additionally indicate the network type of the currently camping cell, thereby reducing the indication overhead.
  • the terminal device may also obtain the first information from a network device corresponding to a candidate cell.
  • the network device corresponding to a candidate cell may send the first information, and correspondingly, the terminal device may receive the first information , as shown in Figure 10.
  • the terminal device acquires the first information from the candidate cell only when it decides to camp on the cell.
  • configuration information that needs to be stored by the terminal device can be reduced, thereby reducing the storage overhead of the terminal device.
  • the real-time situation of the network can be more accurately reflected.
  • the manner in which the network device corresponding to the candidate cell acquires the first information is similar to the manner in which the network device corresponding to the serving cell acquires the first information. For details, please refer to the relevant description in step S801, which will not be repeated here.
  • the terminal device may also obtain part of the first information from the network device corresponding to the serving cell through step S801, and obtain another part of the first information from the network device corresponding to a candidate cell after step S803.
  • the communication quality of different types of networks is different.
  • the stability of the cellular network is relatively good, and the delay of the 300km LEO satellite network is relatively low.
  • the target cell so that the target cell can meet the service requirements of the terminal device.
  • the service type of the terminal device is a communication service that requires high stability
  • the terminal device can preferentially select a cellular network cell with better stability.
  • the terminal device can select a 300km LEO satellite network cell, etc., which can reduce the probability of the terminal device selecting an inappropriate cell for reselection, thereby improving user experience. .
  • the terminal device selects the target cell among the M candidate cells according to the first information, including: the terminal device selects the target cell among the M candidate cells according to the first information and the first selection rule, and the first selection rule uses for selecting a target cell, and the first selection rule includes at least one correspondence between network types and priorities.
  • the network device may determine the first selection rule corresponding to the service type according to the service type of the terminal device, and indicate the first selection rule to the terminal device. For example, the network device may send the second information to the terminal device, the second The information is used to indicate the first selection rule.
  • the second information may indicate the selection rule in an explicit manner.
  • the second information may indicate different selection rules through different values.
  • the second information may be as shown in Table 8.
  • the terminal device can also select the first selection rule corresponding to the service type in the preconfigured at least one selection rule according to its service type, wherein one selection rule includes at least one network type and priority. a corresponding relationship.
  • the at least one selection rule may be pre-configured by the network device to the terminal device, or may be specified by a protocol.
  • the above design can be applied to uplink-based services, such as some IoT services. Through the above design, the signaling overhead of the network device can be reduced.
  • the terminal device may use a preconfigured first selection rule.
  • the selection rules used can be pre-configured for terminal devices with stable service types, so that configuration signaling can be reduced.
  • the network types of cells in this embodiment of the present application may also be classified according to network information, orbit information, network architecture information, and beam information, and then uniformly prioritized.
  • the LEO satellite network with staring beam, the 600km transparent transmission architecture and the LEO satellite network with staring beam, GEO and other network types are uniformly prioritized.
  • the priority ordering can be as shown in Table 9.
  • Table 9 is only an example, and the embodiment of the present application does not specifically limit the correspondence between network types and priorities, and the like.
  • the network type of the cell may also be first classified and prioritized according to the network, for example, the cellular network, the LEO satellite network, the GEO satellite network, the MEO satellite network, etc. are prioritized. After that, each network can be further classified and prioritized according to the orbit height. For example, for the LEO satellite network, the 300km LEO satellite network, the 600km LEO satellite network, and the 1500km LEO satellite network are prioritized. After that, it can be further classified and prioritized according to the network architecture. For example, for the 300km LEO satellite network, the 300km LEO satellite network of the regenerative architecture, the 300km LEO satellite network of the transparent transmission architecture, and the 300km of the regenerative architecture including only DUs. The LEO satellite network, etc. are prioritized. Afterwards, the beams can be further classified and prioritized according to the beam deployment method. Exemplarily, the priority ordering can be as shown in Table 10.
  • Table 10 is only an example, and the embodiment of the present application does not specifically limit the correspondence between network types and priorities.
  • the network type with better stability in the first selection rule corresponds to the higher priority, for example, the priority of the cellular network>GEO satellite network Priority > LEO Satellite Network Priority > ....
  • the terminal device can preferentially select the candidate cell of the cellular network as the target cell.
  • the network type with higher throughput and smaller delay corresponds to a higher priority, for example, the priority of a cellular network > 300km LEO satellite network priority > 600km LEO satellite network priority > GEO satellite network priority > . . .
  • the service types of the terminal equipment may include, but are not limited to, IoT services, enhanced mobile broadband (eMBB) services, high reliability and low latency communications (ultra reliable and low latency communications, URLLC) services, massive Machine type communication (massive machine type communications, mMTC) and so on.
  • each type of service can be further divided.
  • IoT services can be further divided into IoT services that prioritize stability and IoT services that are monitoring. Among them, monitoring IoT services have higher requirements on throughput.
  • the eMBB service may include integrated access and backhaul (Integrated Access Backhaul, IAB) and non-IAB. Among them, the equipment carrying IAB services has high processing capacity and often has continuous power supply.
  • the service type of the terminal device may be pre-configured.
  • the service type of the terminal device may be pre-configured.
  • the network device may also indicate the service type to the terminal device. For example, for a terminal device whose usage scenario will change, the network device may indicate the service type of the terminal device through the third information.
  • the third information may indicate the service type in an explicit manner, for example, as shown in Table 11.
  • the terminal device may also determine the service type according to the service situation.
  • the terminal device may report the determined service type to the network device.
  • the network device may instruct the terminal device to adjust the service type, and the network device may indicate the service type corresponding to the actual service to the terminal device. If the service type reported by the terminal device is consistent with the actual service of the terminal device, the network device may not perform configuration, thereby reducing some configuration signaling.
  • the communication quality of different types of networks is different.
  • the stability of the cellular network is good, and the delay of the 300km LEO satellite network is low.
  • the service type of the terminal equipment selects the target cell so that the target cell can meet the service requirements of the terminal equipment.
  • the terminal equipment can preferentially select the one with better stability.
  • Cellular network cell when the service type of the terminal device is a communication service that requires low stability, the terminal device can choose a 300km LEO satellite network cell, etc., which can reduce the probability of the terminal device selecting an inappropriate cell for reselection. , which can improve the user experience.
  • Embodiment 2 Another cell selection method provided by this embodiment of the present application is similar to the cell selection method shown in FIG. 8 , except that the first information and selection rules are different. Another cell selection method provided by this embodiment of the present application For the selection method, reference may be made to the cell selection method shown in FIG. 8 , and repeated descriptions will not be repeated.
  • the first information may indicate the network deployment situation of the cell, while in another cell selection method provided by this embodiment of the present application, the first information may indicate the capability of the cell.
  • the first information may include Information about the capability of at least one cell, where the information about the capability of the first cell in the at least one cell is used to indicate at least one of the following information: the network round-trip delay of the first cell, the total network capacity of the first cell, the first The remaining network capacity of the cell and the network handover frequency of the first cell.
  • the network round-trip delay of the first cell includes one or more of the following parameters: the round-trip delay of the air interface from the terminal device accessing the first cell to the network device, and the air interface from the terminal device accessing the first cell to the network device.
  • the round-trip delay can indicate the air interface performance of the first cell; the round-trip delay from the terminal device accessing the first cell to the routing device or core network device, and the round-trip time from the terminal device accessing the first cell to the routing module or core network device
  • the delay may indicate the end-to-end delay experience of the first cell.
  • the total network capacity of the first cell may include one or more of the following parameters: the maximum data throughput supported by the first cell, wherein, if the network device corresponding to the first cell covers one cell, the total network capacity of the first cell
  • the capacity may refer to the maximum data throughput supported by the network device corresponding to the first cell; the maximum data throughput supported by the unit area/space of the first cell, wherein, if the network device corresponding to the first cell covers one cell, the first cell
  • the total network capacity of the cell may refer to the maximum data throughput supported by the unit area/space covered by the network equipment corresponding to the first cell; the maximum data throughput of a single user supported by the first cell, where if the network corresponding to the first cell If the device covers one cell, the total network capacity of the first cell may refer to the maximum data throughput of a single user supported by the network device corresponding to the first cell.
  • the remaining network capacity of the first cell may include one or more of the following parameters: the remaining data throughput of the first cell, where, if the network device corresponding to the first cell covers one cell, the remaining network capacity of the first cell may be Refers to the remaining data throughput of the network device corresponding to the first cell; the remaining data throughput per unit area/space of the first cell, wherein, if the network device corresponding to the first cell covers one cell, the remaining network capacity of the first cell can be Refers to the residual data throughput per unit area/space covered by the network equipment corresponding to the first cell; the single-user residual data throughput of the first cell, where, if the network equipment corresponding to the first cell covers one cell, the The remaining network capacity may refer to the single-user remaining data throughput of the network device corresponding to the first cell.
  • the network handover frequency of the first cell may include one or more of the following parameters: the probability of cell handover and/or cell reselection in the first cell may be characterized by a quantitative index; The number of cell handovers and/or cell reselections in the segment; the probability of beam switching for terminal equipment accessing the first cell; the number of beam switching times for terminal equipment accessing the first cell in a time period.
  • the information of the capability of the cell may include network round-trip delay information.
  • the network round-trip delay information can indicate different network round-trip delays through different values.
  • the network round-trip delay information may be as shown in Table 12.
  • Network round-trip delay information network round-trip delay network deployment 000 ⁇ 1ms honeycomb 001 1 ⁇ 3ms VLEO, HAPS 010 3 ⁇ 10ms LEO600km 011 10 ⁇ 40ms LEO1200km 100 40ms ⁇ 200m MEO20000 101 200 ⁇ 540ms GEO ... ... ...
  • Table 12 is only an example, and the embodiments of the present application do not specifically limit the number of bits included in the network round-trip delay information, the corresponding relationship between the value of the network round-trip delay information and the network round-trip delay.
  • the information on the capabilities of the cells may include total network capacity information.
  • the total network capacity information may indicate different total network capacities through different values. Exemplarily, the total network capacity information may be as shown in Table 13.
  • Total network capacity information total network capacity network deployment 00 High capacity density honeycomb 01 Medium capacity density LEO, HAPS 10 low capacity density GEO ... ... ...
  • Table 13 is only an example, and the embodiment of the present application does not specifically limit the number of bits included in the total network capacity information, the corresponding relationship between the value of the total network capacity information and the total network capacity, and the like.
  • the cell capability information may include remaining network capacity information.
  • the remaining network capacity information may indicate different remaining network capacities through different values. Exemplarily, the remaining network capacity information may be as shown in Table 14.
  • Remaining network capacity information Remaining network capacity network deployment 00
  • High capacity density honeycomb 01 Medium capacity density LEO, HAPS 10 low capacity density GEO ... ... ...
  • Table 14 is only an example, and the embodiments of the present application do not specifically limit the number of bits included in the remaining network capacity information, the corresponding relationship between the value of the remaining network capacity information and the remaining network capacity, and the like.
  • the cell capability information may include network handover frequency information.
  • the network switching frequency information may indicate different network switching frequencies through different values. Exemplarily, the network switching frequency information may be as shown in Table 15.
  • Table 15 is only an example, and the embodiments of the present application do not specifically limit the number of bits included in the network switching frequency information, the corresponding relationship between the value of the network switching frequency information and the network switching frequency, and the like.
  • the capability of the cell may also be indicated according to other parameters, which will not be listed one by one here.
  • the selection rule includes at least one correspondence between service types and priorities, while the selection rule in another cell selection method provided by this embodiment of the present application includes at least one condition corresponding to a parameter.
  • the terminal device may use a selection rule corresponding to the service type according to the service type, and the selection rule includes a condition corresponding to at least one parameter.
  • the first selection rule may include the condition corresponding to the frequency of network switching.
  • the condition It may be that the network switching frequency of the cell is less than the network switching frequency threshold, so that the terminal device can select the cell whose network switching frequency is lower than the network switching frequency threshold as the target cell.
  • the service type of the terminal equipment is monitoring service, the monitoring service requires relatively high remaining network capacity. Therefore, the first selection rule may include a condition corresponding to the remaining network capacity, and the condition may be that the remaining network capacity of the cell is greater than the remaining network capacity. The terminal device can select a cell whose remaining network capacity is higher than the remaining network capacity threshold as the target cell.
  • Table 16 is only an example, and the embodiment of the present application does not specifically limit the selection rules.
  • the terminal device when the terminal device determines the target cell, if there are multiple candidate cells that satisfy the first selection rule, the terminal device may preferentially select the candidate cell with the highest degree of satisfaction as the target cell. For example, assuming that the service type of the terminal device is IoT service with priority on stability, if there are multiple candidate cells that satisfy the selection rule 1 shown in Table 16, the terminal device can select the candidate cell with the lowest network handover frequency as the target cell.
  • the terminal device when the terminal device determines the target cell, if there are multiple candidate cells that satisfy the first selection rule, the terminal device can also arbitrarily select one candidate cell from the multiple candidate cells as the target cell.
  • the terminal device may select a target cell according to the capability of the cell when performing cell reselection, so that the target cell can meet the service requirements of the terminal device. For example, when the service type of the terminal device requires a lower frequency of network switching, the terminal device The device can preferentially select a cell with a lower network switching frequency. When the service type of the terminal device requires a lower delay, the terminal device can select a cell with a lower delay as the target cell, which can reduce the need for the terminal device to select an inappropriate cell. The probability of reselection, which in turn can improve the user experience. Moreover, in the embodiments of the present application, key indicators such as network round-trip delay, remaining network capacity, total network capacity, and network switching frequency of neighboring cells can be indicated, so as to avoid exposing the network deployment of network devices, thereby ensuring network privacy.
  • key indicators such as network round-trip delay, remaining network capacity, total network capacity, and network switching frequency of neighboring cells can be indicated, so as to avoid exposing the network deployment of network devices,
  • the embodiments of the present application provide a cell handover apparatus.
  • the structure of the cell switching apparatus may be as shown in FIG. 11 , including a processing unit 1101 and a storage unit 1102 .
  • the cell switching apparatus may be specifically used to implement the method executed by the terminal device in the above-mentioned first embodiment. Part of the related method functionality.
  • the storage unit 1102 is used for storing code instructions.
  • the processing unit 1101 is configured to call the code instructions stored in the storage unit 1102 to execute: perform measurement according to the measurement configuration information of N cells, where N is an integer greater than 0; determine M candidate cells according to the measurement results, where M is greater than 0 and less than N Integer; a target cell is selected among the M candidate cells according to the first information, the first information includes the information of the network type of at least one candidate cell among the M candidate cells, and the information of the network type of the first candidate cell among the M candidate cells is used to indicate that the first candidate cell is a ground network or a geostationary orbit satellite network or a medium orbit satellite network or a low orbit satellite network or a high altitude platform network.
  • the information of the network type of the first candidate cell may include orbit information of the network device corresponding to the first candidate cell.
  • the information of the network type of the first candidate cell may include network architecture information of the network device corresponding to the first candidate cell.
  • the information of the network type of the first candidate cell may include beam information of the first candidate cell, where the beam information is used to indicate a beam deployment manner.
  • the processing unit 1101 when performing measurement according to the measurement configuration information of the N cells, is specifically configured to: for the nth cell of the N cells, if the priority corresponding to the network type of the nth cell is higher than the service priority The priority corresponding to the network type of the cell is measured for the nth cell; if the priority corresponding to the network type of the nth cell is not higher than the priority corresponding to the network type of the serving cell, when the serving cell meets the preset conditions The nth cell is measured.
  • the processing unit 1101 when selecting the target cell among the M candidate cells according to the first information, is specifically configured to: select the target cell among the M candidate cells according to the first information and the first selection rule, and the first selection
  • the rule is used to select the target cell, and the first selection rule includes at least one correspondence between network types and priorities.
  • the apparatus may further include a transceiver unit 1103 .
  • the transceiver unit 1103 may be configured to receive, before the processing unit 1101 performs measurement according to the measurement configuration information of the N cells, the measurement configuration information and the first information from the N cells of the serving cell.
  • the transceiver unit 1103 may also be configured to receive the first information from the first candidate cell among the M candidate cells after the processing unit 1101 determines the M candidate cells according to the measurement result.
  • the transceiver unit 1103 may be further configured to receive second information from the serving cell, where the second information is used to indicate the first selection rule.
  • the transceiver unit 1103 may also be configured to receive third information from the serving cell, where the third information is used to indicate the service type of the terminal device.
  • the cell switching apparatus may be specifically used to implement the method executed by the terminal device in the second embodiment.
  • the apparatus may be the terminal device itself, or a chip or a chipset in the terminal device or a Execute part of the function of the associated method.
  • the storage unit 1102 is used for storing code instructions.
  • the processing unit 1101 is configured to invoke the code instructions stored in the storage unit 1102 to execute: perform measurement according to the measurement configuration information of N cells, where N is an integer greater than 0; determine M candidate cells according to the measurement results, where M is greater than 0 and less than N Integer; a target cell is selected from the M candidate cells according to the first information, the first information includes information on the capability of at least one candidate cell in the M candidate cells, and the information on the capability of the first candidate cell in the M candidate cells includes the first At least one of the following parameters of the candidate cell: the network round-trip delay of the first candidate cell, the total network capacity of the first candidate cell, the remaining network capacity of the first candidate cell, and the network handover frequency of the first candidate cell.
  • the processing unit 1101 selects the target cell among the M candidate cells according to the first information
  • it may be specifically configured to: select the target cell among the M candidate cells according to the first information and the first selection rule, and the first The selection rule is used to select a target cell, and the first selection rule includes a condition corresponding to at least one parameter.
  • the apparatus may further include a transceiver unit 1103 .
  • the transceiver unit 1103 may be configured to receive, before the processing unit 1101 performs measurement according to the measurement configuration information of the N cells, the measurement configuration information and the first information from the N cells of the serving cell.
  • the transceiver unit 1103 may also be configured to receive the first information from the first candidate cell among the M candidate cells after the processing unit 1101 determines the M candidate cells according to the measurement result.
  • the transceiver unit 1103 may also be configured to receive second information from the serving cell, where the second information is used to indicate the first selection rule.
  • the transceiver unit 1103 may also be configured to receive third information from the serving cell, where the third information is used to indicate the service type of the terminal device.
  • Embodiments of the present application provide another communication device.
  • the structure of the cell switching apparatus may be as shown in FIG. 12 , including a processing unit 1201 and a transceiver unit 1202 .
  • the cell switching apparatus may be specifically used to implement the method executed by the network device in the above-mentioned first embodiment. Part of the related method functionality.
  • the processing unit 1201 is configured to determine first information, where the first information includes information about the network type of at least one cell, and the information about the network type of the first cell in the at least one cell is used to indicate that the first cell is a terrestrial network or a geostationary orbit A satellite network, a medium-orbit satellite network, a low-orbit satellite network, or a high-altitude platform network; the transceiver unit 1202 is configured to send the first information to the terminal device.
  • the information of the network type of the first cell may include track information of the network device corresponding to the first cell.
  • the information of the network type of the first cell may include network architecture information of the network device corresponding to the first cell.
  • the information of the network type of the first cell may include beam information of the first cell, where the beam information is used to indicate a beam deployment manner.
  • the processing unit 1201 may be further configured to: determine a selection rule according to the service type of the terminal device, the selection rule is used to select a target cell, and the selection rule includes at least one correspondence between network types and priorities;
  • the transceiver unit 1202 may also be configured to send second information to the terminal device, where the second information is used to indicate a selection rule.
  • the transceiver unit 1202 may also be configured to: send third information to the terminal device, where the third information is used to indicate the service type of the terminal device.
  • the cell switching apparatus may be specifically used to implement the method performed by the network device in the above-mentioned second embodiment, and the apparatus may be the network device itself, or a chip or a chipset in the network device or a chip used in the chip for Execute part of the function of the associated method.
  • the processing unit 1201 is configured to determine first information, where the first information includes capability information of at least one cell, and the capability information of the first cell in the at least one cell includes at least one of the following information of the first cell: the first The network round-trip delay of the cell, the total network capacity of the first cell, the remaining network capacity of the first cell, and the network switching frequency of the first cell; the transceiver unit 1202 is configured to send the first information to the terminal device.
  • the processing unit 1201 may be further configured to: determine a selection rule according to the service type of the terminal device, the selection rule is used to select a target cell, and the selection rule includes at least one condition corresponding to a capability.
  • the transceiver unit 1202 may also be configured to: send second information to the terminal device, where the second information is used to indicate a selection rule.
  • the transceiver unit 1202 may also be configured to: send third information to the terminal device, where the third information is used to indicate the service type of the terminal device.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one processing unit. In the device, it can also exist physically alone, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It can be understood that, for the functions or implementations of each module in the embodiments of the present application, further reference may be made to the related descriptions of the method embodiments.
  • the terminal device may be as shown in FIG. 13 .
  • the terminal device may include a processor 1301 , a memory 1302 , and optionally, a communication interface 1303 .
  • the processing unit 1101 may be the processor 1301 .
  • the storage unit 1102 may be the memory 1302 .
  • the transceiver unit 1103 may be the communication interface 1303 .
  • the processor 1301 may be a central processing unit (central processing unit, CPU), or a digital processing unit or the like.
  • the communication interface 1303 may be a transceiver, an interface circuit such as a transceiver circuit, or a transceiver chip or the like.
  • the memory 1302 is used to store programs executed by the processor 1301 .
  • the memory 1302 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or may be a volatile memory (volatile memory), such as random access memory (random access memory) -access memory, RAM).
  • Memory 1302 is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the processor 1301 is configured to execute the program code stored in the memory 1302, and is specifically configured to execute the actions of the above-mentioned processing unit 1101, which will not be repeated in this application.
  • the communication interface 1303 is specifically configured to perform the actions of the above-mentioned transceiver unit 1103, and details are not described herein again in this application.
  • the specific connection medium between the communication interface 1303 , the processor 1301 , and the memory 1302 is not limited in the embodiments of the present application.
  • the memory 1302, the processor 1301, and the communication interface 1303 are connected by a bus 1304 in FIG. 13.
  • the bus is represented by a thick line in FIG. 13, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the network device may be as shown in FIG. 14 .
  • the apparatus may include a processor 1401 , a communication interface 1402 , and may also include a memory 1403 .
  • the processing unit 1201 may be the processor 1401 .
  • the transceiver unit 1202 may be the communication interface 1402 .
  • the processor 1401 may be a CPU, or a digital processing unit or the like.
  • the communication interface 1402 may be a transceiver, an interface circuit such as a transceiver circuit, or a transceiver chip or the like.
  • the apparatus further includes: a memory 1403 for storing programs executed by the processor 1401 .
  • the memory 1403 may be a non-volatile memory, such as HDD or SSD, etc., or a volatile memory, such as RAM.
  • Memory 1403 is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the processor 1401 is configured to execute the program code stored in the memory 1403, and is specifically configured to execute the actions of the above-mentioned processing unit 1201, which will not be repeated in this application.
  • the communication interface 1402 is specifically configured to perform the actions of the above-mentioned transceiver unit 1202, and details are not described herein again in this application.
  • the specific connection medium between the communication interface 1402 , the processor 1401 , and the memory 1403 is not limited in the embodiments of the present application.
  • the memory 1403, the processor 1401, and the communication interface 1402 are connected through a bus 1404 in FIG. 14.
  • the bus is represented by a thick line in FIG. 14, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is shown in FIG. 14, but it does not mean that there is only one bus or one type of bus.
  • Embodiments of the present application also provide a communication device, including a processor and an interface.
  • the processor may be used to execute the methods in the above method embodiments.
  • the above communication device may be a chip.
  • the communication device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a It can be a CPU, a network processor (NP), a digital signal processing circuit (DSP), a microcontroller (MCU), or a programmable Controller (programmable logic device, PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • It can be a CPU, a network processor (NP), a digital signal processing circuit (DSP), a microcontroller (MCU), or a programmable Controller (programmable logic device, PLD) or other integrated chips.
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller
  • PLD
  • the interface may be an interface circuit.
  • the interface circuit may be a code/data read and write interface circuit.
  • the interface circuit can be used to receive code instructions (the code instructions are stored in the memory, and can be directly read from the memory, or can also be read from the memory through other devices) and transmitted to the processor; the processor,
  • the code instructions can be used to execute the methods in the above method embodiments.
  • the interface circuit may also be a signal transmission interface circuit between the communication processor and the transceiver.
  • the processor is used to execute XX to obtain Y data (XX is a non-air interface operation, including but not limited to operations such as determining, judging, processing, calculating, searching, comparing, etc.); the interface circuit can use It is used to send Y data to the transmitter (the transmitter is used to perform the transmit operation on the air interface).
  • the interface circuit can be used to receive Z data from a receiver (the receiver is used to perform a receiving operation on the air interface), and send the Z data to the processor; the processing The device is used to perform XX processing on the Z data (XX is a non-air interface operation, including but not limited to operations such as determining, judging, processing, calculating, searching, and comparing).
  • FIG. 15 shows a possible chip structure.
  • the chip includes a logic circuit and an input and output interface, and may also include a memory.
  • the input and output interface can be used to receive code instructions (the code instructions are stored in the memory, can be directly read from the memory, or can also be read from the memory through other devices) and transmitted to the logic circuit; the logic circuit,
  • the code instructions can be used to execute the methods in the above method embodiments.
  • the input and output interface may also be a signal transmission interface circuit between the logic circuit and the transceiver.
  • the logic circuit is used to execute XX to obtain Y data (XX is a non-air interface operation, including but not limited to operations such as determining, judging, processing, calculating, searching, comparing, etc.); the input and output interface Can be used to send Y data to the transmitter (the transmitter is used to perform the transmit operation on the air interface).
  • the input and output interface can be used to receive Z data from a receiver (the receiver is used to perform a receiving operation on the air interface), and send the Z data to the logic circuit; the The logic circuit is used to perform XX processing on the Z data (XX is a non-air interface operation, including but not limited to operations such as determining, judging, processing, calculating, searching, and comparing).
  • An embodiment of the present invention further provides a computer-readable storage medium for storing computer software instructions to be executed for executing the above-mentioned processor, which includes a program to be executed for executing the above-mentioned processor.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种小区选择方法及装置,用以解决终端设备基于小区的频点的优先级配置可能选择不合适的小区,导致通信质量差的问题。该方法包括:终端设备根据N个小区的测量配置信息进行测量,并根据测量结果确定M个候选小区,N、M为大于0的整数,M小于N。终端设备根据第一信息在M个候选小区中选择目标小区,第一信息包括M个候选小区中至少一个候选小区的网络类型的信息,M个候选小区中第一候选小区的网络类型的信息用于指示第一候选小区为地面网络或者静止轨道卫星网络或者中轨道卫星网络或者低轨道卫星网络或者高空平台网络。不同类型的网络的通信质量不同,终端设备根据小区网络类型可以选择满足终端设备的业务需求的目标小区。

Description

一种小区选择方法及装置
相关申请的交叉引用
本申请要求在2020年12月30日提交中国专利局、申请号为202011644666.2、申请名称为“一种小区选择方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种小区选择方法及装置。
背景技术
非地面网络(non-terrestrial network,NTN)包括利用无人机、高空平台、卫星等设备进行组网,为用户终端(user equipment,UE)提供数据传输、语音通信等服务。NTN通信具有覆盖广,时延大等特点,与一般的地面基站信号不一样,这样的差别会对用户设备(user equipment,UE)服务造成很大的影响,进一步会影响到小区重选等决策。例如,当前重选机制中小区的优先级和频点绑定,当UE的业务类型为对时延敏感的通信业务时,UE根据小区的优先级配置选择目标小区,可能选择卫星提供覆盖的小区,会导致通信质量较差,从而导致用户体验差。
发明内容
本申请提供一种小区选择方法及装置,用以解决UE基于小区的频点的优先级配置选择,目标小区时可能选择不合适的小区,导致通信质量差的问题。
第一方面,本申请实施例提供了一种小区选择方法,包括:终端设备根据N个小区的测量配置信息进行测量,N为大于0的整数,并根据测量结果确定M个候选小区,M为大于0且小于N的整数。终端设备根据第一信息在M个候选小区中选择目标小区,第一信息包括M个候选小区中至少一个候选小区的网络类型的信息,M个候选小区中第一候选小区的网络类型的信息用于指示第一候选小区为地面网络或者静止轨道卫星网络或者中轨道卫星网络或者低轨道卫星网络或者高空平台网络。
不同类型的网络的通信质量不同,例如,蜂窝网的稳定性较好,300km的低轨道卫星网络的时延较低等等,本申请实施例中终端设备在进行小区重选时可以根据网络类型选择目标小区,使得目标小区可以满足终端设备的业务需求,例如,当终端设备的业务类型为对稳定性要求较高的通信业务时,终端设备可以优先选择稳定性较好的蜂窝网小区,当终端设备的业务类型为对稳定性要求较低的通信业务时,终端设备可以选择300km的低轨道卫星网络小区等等,从而可以降低终端设备选择不合适的小区进行重选的概率,进而可以提升用户体验。
在一种可能的设计中,第一候选小区的网络类型的信息可以包括第一候选小区对应的网络设备的轨道信息。不同轨道高度的卫星的时延、处理能力等可能不同,上述设计中通过根据轨道信息对网络类型进行进一步划分,可以使得终端设备选择符合需求的小区进行 切换。
在一种可能的设计中,第一候选小区的网络类型的信息可以包括第一候选小区对应的网络设备的网络架构信息。对于同一个轨道高度上的卫星,不同网络架构对应于不同的时延和处理能力,例如再生架构的时延更低等,上述设计通过根据网络架构对网络类型进行进一步划分,可以使得终端设备选择符合需求的小区进行切换。
在一种可能的设计中,第一候选小区的网络类型的信息可以包括第一候选小区的波束信息,波束信息用于指示波束部署方式。凝视波束意味着较少的切换频率,上述设计通过根据波束部署方式对网络类型进行进一步划分,可以使得终端设备选择符合需求的小区进行切换。
在一种可能的设计中,终端设备根据N个小区的测量配置信息进行测量,包括:针对N个小区的第n个小区,若第n个小区的网络类型对应的优先级高于服务小区的网络类型对应的优先级,终端设备对第n个小区进行测量;若第n个小区的网络类型对应的优先级不高于服务小区的网络类型对应的优先级,终端设备在服务小区满足预设条件时对第n个小区进行测量。通过上述设计,可以减少终端设备进行不必要的测量,使得终端设备可以重点测量更适合业务特点的小区。
在一种可能的设计中,终端设备根据第一信息在M个候选小区中选择目标小区,包括:终端设备根据第一信息以及第一选择规则在M个候选小区中选择目标小区,第一选择规则用于选择目标小区,且第一选择规则包括至少一个网络类型与优先级的对应关系。上述设计中,根据小区的网络类型设置对应的优先级,使得终端设备可以根据小区的网络类型选择满足终端设备的业务需求的小区。
在一种可能的设计中,在终端设备根据N个小区的测量配置信息进行测量之前,终端设备可以接收来自服务小区的N个小区的测量配置信息以及第一信息。上述设计中,终端设备的服务小区对应的网络设备可以在进行小区测量之前向终端设备发送第一信息,从而第一信息可以通过终端设备级别的无线资源控制(radio resource control,RRC)配置发送,广播信令比较少,因而可以降低网络设备的开销。
在一种可能的设计中,在终端设备根据测量结果确定M个候选小区之后,终端设备可以接收来自M个候选小区中第一候选小区的第一信息。上述设计中,终端设备在决定驻留小区时,才从候选小区中获取第一信息。通过这种方式,可以减少终端设备需要存储的配置信息,从而可以降低终端设备的存储开销。并且,通过这种方式,可以更准确的反应网络的实时情况。
在一种可能的设计中,终端设备接收来自服务小区的第二信息,第二信息用于指示第一选择规则。上述设计中,网络设备可以指示终端设备使用的选择规则,从而可以降低终端设备的开销。
在一种可能的设计中,终端设备接收来自服务小区的第三信息,第三信息用于指示终端设备的业务类型。通过上述设计,可以使得网络设备侧记录的该终端设备的业务类型与终端设备实际的业务类型保持一致。
在一种可能的设计中,在所述终端设备根据第一选择规则以及第一信息在所述M个候选小区中选择目标小区之前,终端设备可以根据终端设备的业务类型在预配置的至少一个选择规则中确定第一选择规则。通过上述设计,使得终端设备选择的目标小区更符合终端设备的业务需求,并可以降低网络设备的信令开销。
第二方面,本申请实施例提供了一种小区选择方法,包括:终端设备根据N个小区的测量配置信息进行测量,N为大于0的整数,并根据测量结果确定M个候选小区,M为大于0且小于N的整数;终端设备根据第一信息在M个候选小区中选择目标小区,第一信息包括M个候选小区中至少一个候选小区的能力的信息,M个候选小区中第一候选小区的能力的信息用于指示如下信息中至少一项:第一候选小区的网络往返时延、第一候选小区的总网络容量、第一候选小区的剩余网络容量、第一候选小区的网络切换频率。
本申请实施例中终端设备在进行小区重选时可以根据小区的能力选择目标小区,使得目标小区可以满足终端设备的业务需求,例如,当终端设备的业务类型要求网络切换频率较低时,终端设备可以优先选择网络切换频率较低的小区,当终端设备的业务类型要求时延较低时,终端设备可以选择时延较低的小区作为目标小区,从而可以降低终端设备选择不合适的小区进行重选的概率,进而可以提升用户体验。并且,本申请实施例中通过指示邻区的网络往返时延、剩余网络容量、总网络容量、网络切换频率等关键指标,可以避免暴露网络设备的网络部署情况,从而可以保障网络的私密性。
在一种可能的设计中,终端设备根据第一信息在M个候选小区中选择目标小区,包括:终端设备根据第一信息以及第一选择规则在M个候选小区中选择目标小区,第一选择规则用于选择目标小区,且第一选择规则包括至少一个参数对应的条件。上述设计中,根据小区的网络类型设置对应的优先级,使得终端设备可以根据小区的网络类型选择满足终端设备的业务需求的小区。
在一种可能的设计中,在终端设备根据N个小区的测量配置信息进行测量之前,终端设备可以接收来自服务小区的N个小区的测量配置信息以及第一信息。上述设计中,终端设备的服务小区对应的网络设备可以在进行小区测量之前向终端设备发送第一信息,从而第一信息可以通过终端设备级别的RRC配置发送,广播信令比较少,因而可以降低网络设备的开销。
在一种可能的设计中,在终端设备根据测量结果确定M个候选小区之后,终端设备可以接收来自M个候选小区中第一候选小区的第一信息。上述设计中,终端设备在决定驻留小区时,才从候选小区中获取第一信息。通过这种方式,可以减少终端设备需要存储的配置信息,从而可以降低终端设备的存储开销。并且,通过这种方式,可以更准确的反应网络的实时情况。
在一种可能的设计中,终端设备接收来自服务小区的第二信息,第二信息用于指示第一选择规则。上述设计中,网络设备可以指示终端设备使用的选择规则,从而可以降低终端设备的开销。
在一种可能的设计中,终端设备接收来自服务小区的第三信息,第三信息用于指示终端设备的业务类型。通过上述设计,可以使得网络设备侧记录的该终端设备的业务类型与终端设备实际的业务类型保持一致。
在一种可能的设计中,在所述终端设备根据第一选择规则以及第一信息在所述M个候选小区中选择目标小区之前,终端设备可以根据终端设备的业务类型在预配置的至少一个选择规则中确定第一选择规则。通过上述设计,可以降低网络设备的信令开销。
第三方面,本申请实施例提供了一种小区选择方法,包括:网络设备确定第一信息并向终端设备发送第一信息,第一信息包括至少一个小区的网络类型的信息,至少一个小区中第一小区的网络类型的信息用于指示第一小区为地面网络或者静止轨道卫星网络或者 中轨道卫星网络或者低轨道卫星网络或者高空平台网络。
不同类型的网络的通信质量不同,例如,蜂窝网的稳定性较好,300km的低轨道卫星网络的时延较低等等,本申请实施例中终端设备在进行小区重选时可以根据网络类型选择目标小区,使得目标小区可以满足终端设备的业务需求,例如,当终端设备的业务类型为对稳定性要求较高的通信业务时,终端设备可以优先选择稳定性较好的蜂窝网小区,当终端设备的业务类型为对稳定性要求较低的通信业务时,终端设备可以选择300km的低轨道卫星网络小区等等,从而可以降低终端设备选择不合适的小区进行重选的概率,进而可以提升用户体验。
在一种可能的设计中,第一候选小区的网络类型的信息可以包括第一候选小区对应的网络设备的轨道信息。不同轨道高度的卫星的时延、处理能力等可能不同,上述设计中通过根据轨道信息对网络类型进行进一步划分,可以使得终端设备选择符合需求的小区进行切换。
在一种可能的设计中,第一候选小区的网络类型的信息可以包括第一候选小区对应的网络设备的网络架构信息。对于同一个轨道高度上的卫星,不同网络架构对应于不同的时延和处理能力,例如再生架构的时延更低等,上述设计通过根据网络架构对网络类型进行进一步划分,可以使得终端设备选择符合需求的小区进行切换。
在一种可能的设计中,第一候选小区的网络类型的信息可以包括第一候选小区的波束信息,波束信息用于指示波束部署方式。凝视波束意味着较少的切换频率,上述设计通过根据波束部署方式对网络类型进行进一步划分,可以使得终端设备选择符合需求的小区进行切换。
在一种可能的设计中,网络设备根据终端设备的业务类型确定选择规则并向终端设备发送第二信息,选择规则用于选择目标小区,且选择规则包括至少一个网络类型与优先级的对应关系,第二信息用于指示选择规则。上述设计中,网络设备可以根据终端设备的业务类型确定终端设备使用的选择规则,从而可以使得终端设备选择的目标小区更符合终端设备的业务需求,并且可以降低终端设备的开销。
在一种可能的设计中,网络设备还可以向终端设备发送第三信息,第三信息用于指示终端设备的业务类型。通过上述设计,可以使得网络设备侧记录的该终端设备的业务类型与终端设备实际的业务类型保持一致。
第四方面,本申请实施例提供了一种小区选择方法,包括:网络设备确定第一信息并向终端设备发送第一信息,第一信息包括至少一个小区的能力的信息,至少一个小区中第一小区的能力的信息用于指示如下信息中至少一项:第一小区的网络往返时延、第一小区的总网络容量、第一小区的剩余网络容量、第一小区的网络切换频率。
本申请实施例中终端设备在进行小区重选时可以根据小区的能力选择目标小区,使得目标小区可以满足终端设备的业务需求,例如,当终端设备的业务类型要求网络切换频率较低时,终端设备可以优先选择网络切换频率较低的小区,当终端设备的业务类型要求时延较低时,终端设备可以选择时延较低的小区作为目标小区,从而可以降低终端设备选择不合适的小区进行重选的概率,进而可以提升用户体验。并且,本申请实施例中通过指示邻区的网络往返时延、剩余网络容量、总网络容量、网络切换频率等关键指标,可以避免暴露网络设备的网络部署情况,从而可以保障网络的私密性。
在一种可能的设计中,网络设备根据终端设备的业务类型确定选择规则并向终端设备 发送第二信息,选择规则用于选择目标小区,且选择规则包括至少一个网络类型与优先级的对应关系,第二信息用于指示选择规则。上述设计中,网络设备可以根据终端设备的业务类型确定终端设备使用的选择规则,从而可以使得终端设备选择的目标小区更符合终端设备的业务需求,并且可以降低终端设备的开销。
在一种可能的设计中,网络设备还可以向终端设备发送第三信息,第三信息用于指示终端设备的业务类型。通过上述设计,可以使得网络设备侧记录的该终端设备的业务类型与终端设备实际的业务类型保持一致。
第五方面,本申请提供一种通信装置,该装置可以是终端设备,也可以是终端设备内的芯片或芯片组。该装置可以包括处理单元和存储单元。
当该装置是终端设备时,该处理单元可以是处理器,该存储单元可以是存储器。该装置还可以包括收发单元,该收发单元用于与网络设备之间进行通信。该收发单元可以为收发器。该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使终端设备执行上述第一方面或第二方面相应的功能。
当该装置是终端设备内的芯片或芯片组时,该处理单元可以是处理器,该存储单元可以是该芯片或芯片组内的存储单元(例如,寄存器、缓存等),也可以是位于该芯片或芯片组外部的存储单元(例如,只读存储器、随机存取存储器等)。该装置还可以包括收发单元,该收发单元用于与网络设备之间进行通信。该收发单元可以是输入/输出接口、管脚或电路等。该存储单元用于存储指令,该处理单元执行存储单元所存储的指令,以使终端设备执行上述第一方面或第二方面中相应的功能。
第六方面,本申请提供一种通信装置,该装置可以是网络设备,也可以是网络设备内的芯片或芯片组。该装置可以包括处理单元和收发单元。
当该装置是网络设备时,该处理单元可以是处理器,该收发单元可以是收发器;该装置还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使网络设备执行上述第三方面或第四方面相应的功能。
当该装置是网络设备内的芯片或芯片组时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该装置还可以包括存储单元,该存储模块可以是该芯片或芯片组内的存储模块(例如,寄存器、缓存等),也可以是位于该芯片或芯片组外部的存储模块(例如,只读存储器、随机存取存储器等);该存储单元用于存储指令,该处理单元执行存储单元所存储的指令,以使网络设备执行上述第三方面或第四方面中相应的功能。
第七方面,本申请实施例提供一种通信装置,该装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的接口,其它设备可以为网络设备。处理器用于调用一组程序、指令或数据,执行上述第一方面或第一方面各个可能的设计描述的方法,或者,执行上述第二方面或第二方面各个可能的设计描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上述第一方面或第一方面各个可能的设计描述的方法,或者,执行上述第二方面或第二方面各个可能的设计描述的方法。
第八方面,本申请实施例提供一种通信装置,该装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可 以是收发器、电路、总线、模块或其它类型的接口,其它设备可以为终端设备。处理器用于调用一组程序、指令或数据,执行上述第三方面或第三方面各个可能的设计描述的方法,或者,执行上述第四方面或第四方面各个可能的设计描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上述第三方面或第三方面各个可能的设计描述的方法,或者,执行上述第四方面或第四方面各个可能的设计描述的方法。
第九方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可读指令,当所述计算机可读指令在计算机上运行时,使得如第一方面至第四方面中任一方面以及各个可能的设计中所述的方法被执行。
第十方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面至第四方面中任一方面以及各个可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,本申请实施例提供了一种通信系统,所述系统包括网络设备和终端设备,所述终端设备用于执行上述第一方面或第一方面各个可能的设计中的方法,所述网络设备用于执行上述第三方面或第三方面各个可能的设计中的方法。
第十二方面,本申请实施例提供了一种通信系统,所述系统包括网络设备和终端设备,所述终端设备用于执行上述第二方面或第二方面各个可能的设计中的方法,所述网络设备用于执行上述第四方面或第四方面各个可能的设计中的方法。
第十三方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得如上述第一方面至第四方面中任一方面以及各个可能的设计中所述的方法被执行。
第十四方面,本申请实施例提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码或指令;所述处理器,用于从所述存储器调用所述程序代码或指令执行如上述第一方面或第二方面所述的方法。
第十五方面,本申请实施例提供一种通信装置,所述通信装置包括处理器、存储器和通信接口,所述通信接口,用于接收信号或者发送信号;所述存储器,用于存储程序代码或指令;所述处理器,用于从所述存储器调用所述程序代码或指令执行如第三方面或第四方面所述的方法。
第十六方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收计算机程序代码或指令并传输至所述处理器;所述处理器运行所述计算机程序代码或指令以执行如上述第一方面或第二方面所示的相应的方法。
第十七方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收计算机程序代码或指令并传输至所述处理器;所述处理器运行所述计算机程序代码或指令以执行如第三方面或第四方面所示的相应的方法。
第十八方面,本申请实施例提供一种通信装置,示例性的,该通信装置可以是芯片,该通信装置包括:逻辑电路和输入输出接口。所述输入输出接口,用于该装置与网络设备进行通信,例如接收第一信息。所述逻辑电路用于运行计算机程序代码或指令以执行如上述第一方面或第二方面所示的相应的方法。
第十九方面,本申请实施例提供一种通信装置,示例性的,该通信装置可以是芯片,该通信装置包括:逻辑电路和输入输出接口。所述输入输出接口,用于该装置与终端设备 进行通信,例如发送第一信息。所述逻辑电路用于运行计算机程序代码或指令以执行如上述第三方面或第四方面所示的相应的方法。
其中,第五方面至第十九方面中任一种实现方式所带来的技术效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种静止小区的示意图;
图2为本申请实施例提供的一种移动小区的示意图;
图3为本申请实施例提供的一种透明转发架构的示意图;
图4为本申请实施例提供的一种再生架构的示意图;
图5为本申请实施例提供的一种通信场景示意图;
图6为本申请实施例提供的另一种通信场景示意图;
图7为本申请实施例提供的一种接入网设备的结构示意图;
图8为本申请实施例提供的一种小区选择方法的流程示意图;
图9为本申请实施例提供的一种网络设备获取第一信息的方法示意图;
图10为本申请实施例提供的另一种小区选择方法的流程示意图;
图11为本申请实施例提供的一种小区切换装置的结构示意图;
图12为本申请实施例提供的另一种小区切换装置的结构示意图;
图13为本申请实施例提供的一种终端设备的结构示意图;
图14为本申请实施例提供的一种网络设备的结构示意图;
图15为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
一、小区重选(cell reselection)
小区重选指终端设备在空闲模式下通过监测邻区和当前服务小区的信号质量以选择一个最好的小区提供服务信号的过程。
小区重选过程可以包括:
A1,终端设备根据测量启动标准,测量当前服务小区和邻区(包括同频,异频,异系统的小区)。
测量启动准则:邻区是否启动测量可以考虑两个参数,即该邻区的小区优先级和当前服务小区信号质量。若邻区的小区优先级比当前服务小区高,则终端设备无条件启动对该邻区的测量。若邻区的小区优先级小于或等于当前服务小区。终端设备可以测量当前服务小区的信号质量,并将当前服务小区的信号质量与质量阈值进行比较,如果当前服务小区的信号质量高于质量阈值,则可以不对该邻区进行测量。如果当前服务小区的信号质量不高于质量阈值,则对该邻区进行测量。
A2,终端设备判别邻区信号是否符合重选标准。
可选的,不同优先级的异频及异系统之间的重选准则:
如果异频/系统间(inter radio access technology,inter-RAT)的邻区的小区优先级高于当前服务小区的小区优先级,若当前服务小区在系统信息(SIB2)中携带threshServingLowQ,其中,threshServingLowQ为小区优先级小于当前服务小区的邻区对应的重选门限值。则当满足下列条件时触发重选:终端设备在当前服务小区的驻留超过了预设时长(例如1秒);在时间间隔(T reselectionRAT)内该邻区满足Squal>Thresh X,HighQ,其中,Squal为信号质量,Thresh X,HighQ为信号质量的门限值。
若当前服务小区在系统信息(SIB2)中未携带threshServingLowQ,则当满足下列条件时触发重选:在时间间隔(T reselectionRAT)内该邻区满足Srxlev>Thresh X,HighP,其中,Srxlev为信号能量,Thresh X,HighP为信号能量的门限值;终端设备在当前服务小区的驻留超过了预设时长(例如1秒)。
其中,Thresh X,HighQ和Thresh X,HighP为小区优先级高于当前服务小区的邻区对应的重选门限值,其中,X可以代表频率,每个频率有一个对应的门限。异频的邻区的Thresh X,HighQ和Thresh X,HighP可以从SIB4中获取,异系统的邻区的Thresh X,HighQ和Thresh X,HighP可以从SIB5中获取。
可选的,Srxlev和Squal可以符合如下公式,或者,Srxlev和Squal可以通过如下公式确定:
Srxlev=Q rxlevmeas–(Q rxlevmin+Q rxlevminoffset)–P compensation-Qoffset temp
Squal=Q qualmeas–(Q qualmin+Q qualminoffset)-Qoffset temp
其中,Q rxlevmeas:测量得到的小区接收信号电平值,即参考信号接收功率(reference signal received power,RSRP)。
Q rxlevmin:在系统消息块1(system information block 1,SIB1)中广播的小区最低接收电平值,可以通过参数CellSel.QRxLevMin配置。
Q rxlevminoffset:在SIB1中广播的小区最低接收信号电平偏置值。可以通过参数CellSel.QRxLevMinOffset配置。
P compensation=max(P Max-UE Maximum Output Power,0)。其中,P Max:在SIB1中广播的小区允许的UE最大发射功率,可以通过参数CELL.UePowerMax配置。UE Maximum Output Power:UE本身的最大射频输出功率能力。
Q qualmeas:测量得到的小区接收信号质量,即参考信号接收质量(reference signal received quality,RSRQ)。
Q qualmin:在SIB1中广播的小区最低接收信号质量值,可以通过参数CellSel.QQualMin配置。信元Qqualmin是否在SIB1中下发可以取决于CellResel.ThrshServLowQCfgInd和CellSel.QQualMin的设置:当CellSel.QQualMin取值为非“0”时,CellResel.ThrshServLowQCfgInd可以配置为“CFG(配置)”或“NOT_CFG(不配置)”,SIB1中下发该信元。当CellSel.QQualMin取值为“0”时,CellResel.ThrshServLowQCfgInd仅能配置为“NOT_CFG(不配置)”,SIB1中不下发该信元。
Q qualminoffset:在SIB1中广播的小区最低接收信号质量偏置值,可以通过参数CellSel.QQualMinOffset配置。
Srxlev和Squal可以参阅3GPP协议的TS38.304章节5.2.3.2中的相关描述,这里不再展开说明。
如果异频/系统间(inter radio access technology,inter-RAT)的邻区的小区优先级等于当前服务小区的小区优先级,终端设备可以根据R准则进行小区重选。R准则为根据小区信号质量,给每一个邻区和当前服务小区算出一个R(Rank)值,然后根据R值大小排序,R值大于当前服务小区的,满足重选标准,有多个满足的话,就选最好的。在时间间隔(Treselection RAT)内邻区一直满足R准则,且终端设备在当前服务小区的驻留超过了预设时长(例如1秒)。则终端设备启动向该邻区的重选。
可选的,服务小区的R值R s可以符合如下公式,或者,服务小区的R值R s可以通过如下公式确定:
R s=Q meas,s+Q hyst-Qoffset temp
其中,Q meas,s为当前服务小区信号质量,可以由终端设备测量获得。
Q hyst为当前服务小区的重选迟滞值。Q hyst值越大,服务小区的边界越大,则重选到邻区的概率越低。
Qoffset为R准则计算参数。同频重选的场景下,Qoffset可以等于Qoffsetcell,Qoffsetcell可以从SIB3中获取;异频重选的情况下,Qoffset可以等于QoffsetCell和QoffsetFreq的和,QoffsetCell和QoffsetFreq可以从SIB4中获取。
Qoffset temp为R准则计算参数,可以从SIB1中获取。
邻区的R值R n可以符合如下公式,或者,邻区的R值R n可以通过如下公式确定:
R n=Q meas,n–Qoffset-Qoffset temp
其中,Q meas,n为邻区信号质量,可以由终端设备测量获得。
服务小区的R值R s和邻区的R值R n可以参阅3GPP协议的TS38.304中的相关描述,这里不再展开说明。
如果异频/系统间(inter radio access technology,inter-RAT)的邻区的小区优先级低于当前服务小区的小区优先级,若当前服务小区在系统信息(SIB2)中携带threshServingLowQ,则当满足下列条件时触发重选:小区优先级高于当前服务小区的邻区不符合对应的重选准则;小区优先级等于当前服务小区的邻区不符合对应的重选准则;服务小区满足Squal<Thresh Serving,LowQ;邻区在时间间隔(Treselection RAT)期间满足Squal>Thresh X,LowQ;终端设备在当前服务小区的驻留超过了预设时长(例如1秒)。
若当前服务小区在系统信息(SIB2)中未携带threshServingLowQ,则当满足下列条件时触发重选:小区优先级高于当前服务小区的邻区不符合对应的重选准则;小区优先级等于当前服务小区的邻区不符合对应的重选准则;服务小区满足Squal<Thresh Serving,LowP;邻区在时间间隔(Treselection RAT)期间满足Squal>Thresh X,LowP;终端设备在当前服务小区的驻留超过了预设时长(例如1秒)。
其中,Thresh Serving,LowQ和Thresh X,LowQ为小区优先级低于当前服务小区的邻区对应的重选门限值,其中,X可以代表频率,每个频率有一个对应的门限。异频的邻区的Thresh X, HighP可以从SIB4中获取,异系统的邻区的Thresh X,HighP可以从SIB5中获取。
A3,若邻区符合重选标准则启动重选,终端设备接收该邻区的系统消息,如无接入受限(比如运营商可能有一些预留小区或者对接入有限制的小区)等,则驻留该邻区。若邻区不符合重选标准则仍然停留在当前服务小区。
二、NTN通信
NTN通信包括利用无人机、高空平台(high altitude platform station,HAPS)、卫星等 设备进行组网,为终端设备提供数据传输、语音通信等服务。此外,NTN系统还可以包括其他空中网络设备,本申请实施例涉及的网络设备不限于以上举例。
按照卫星高度,即卫星轨位高度,可以将卫星系统分为高椭圆轨道(highly elliptical orbit,HEO)卫星、对地静止轨道(geostationary earth orbit,GEO)卫星、中地球轨(medium earth orbit,MEO)卫星和低地球轨(low-earth orbit,LEO)卫星。
作为一种示例,简单描述GEO卫星和LEO卫星提供覆盖小区的机制如下。
1、GEO卫星:又称为静止卫星,卫星运动速度与地球自转系统相同,因此卫星相对地面保持静止状态,对应的,GEO卫星的小区也是静止的。GEO卫星小区的覆盖范围较大,一般小区直径为500km。
2、LEO卫星:非静止的卫星有很多种,以LEO卫星为例。LEO卫星相对地面移动较快,大约7Km/s,因此LEO卫星提供服务的覆盖区域也随之移动。LEO卫星投射到地面的小区有两种模式,分别为静止小区(fixed cell)和移动小区(moving cell)。
fixed cell,即投射到地面的小区相对于地面静止,上空的LEO卫星通过调整天线角度完成地面同一位置的覆盖,等这个LEO卫星无法覆盖到地面的时候,由另一个LEO卫星接替。如图1所示,静止小区的映射方式是指小区的位置在地面上是不动的,移动的卫星通过调整自己的波束形成这些小区。举例说明,T1时刻:如图1所示的区域由gNB1的小区1和小区2、gNB2的小区3和小区4进行覆盖;T2时刻:虽然gNB1和gNB2都向左移动,但是依然可以调整自己的波束,如图1所示的区域依然可以由gNB1的小区1和小区2、gNB2的小区3和小区4进行覆盖;T3时刻:相比T1时刻,gNB1和gNB2已经移动了足够远的距离,gNB1无法通过调整波束再通过小区1为该地区提供服务,而gNB3可以通过小区5为该地区提供服务,如图1所示的区域可以由gNB1的小区2、gNB2的小区3和小区4、gNB3的小区5进行覆盖。在该小区模式中,卫星可以通过调整波束形成静止小区,卫星的波束部署方式可以称为凝视波束。
moving cell,即投射到地面的小区跟着LEO卫星一起移动,移动过程中LEO卫星的天线方向不变,例如,LEO卫星的天线总是与地面垂直。如图2所示,地面移动小区的映射方式是指移动的卫星并不动态调整它的波束方向,移动的卫星生成的波束随着卫星的移动在地面上移动。举例说明:T1时刻:如图2所示的区域由gNB1的小区1和小区2、gNB2的小区3和小区4进行覆盖;T2时刻:如图2所示的区域由gNB1的小区1的一部分和小区2、gNB2的小区3和小区4、gNB3的小区5的一部分进行覆盖;而在T3时刻,该区域由gNB1的小区2、gNB2的小区3和小区4、gNB3的小区5进行覆盖。在该小区模式中,移动的卫星并不动态调整它的波束方向,卫星的波束部署方式可以称为非凝视波束。
在NTN系统中,NTN设备的架构分为两大类,一是透明转发(transparent)架构,在架构中NTN设备可以为中继(relay)或者放大器,可以做射频过滤、放大等,将信号重新生成,示例性的,透明转发架构可以如图3所示。在图3所示架构中,NTN设备还可以作为终端设备和基站之间的中继设备或者作为基站的射频拉远单元(remote radio unit,RRU)。在该场景中,NTN设备可以负责层1(L1)中继,用于进行物理层转发,且高层不可见。
二是再生(regenerative)架构,在架构中NTN设备可以做gNB、分布式单元(distributed unit,DU)、relay,这里的relay和第一类中的relay不同,还具有信号处理功能,类似接入回传一体化(integrated access and backhaul,IAB)节点或者其它的中继节点。其中,当 NTN设备做gNB、DU、IAB或者其它的中继节点时,它的功能类似于普通的gNB、DU、IAB或者其它的中继节点。示例性的,再生架构可以如图4所示。在图4所示架构中,NTN设备可以作为基站与核心网中的接入和移动性管理功能(access and mobility management function,AMF)实体建立N2接口或者Ng接口连接,为终端设备提供无线接入服务。
NTN通信系统通过将接入网设备的全部功能或者部分功能部署在NTN设备(例如高空平台或者卫星等)上为终端设备提供无缝覆盖,由于非地面设备受自然灾害的影响较小,能提升通信系统的可靠性。
本申请中所有节点、消息的名称仅仅是为了描述方便而设定的名称,在实际网络中的名称可能不同,不应该理解本申请限定各种节点、消息的名称。相反,任何具有和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内,以下不再赘述。
示例性,本申请实施例提供的小区选择方法可以应用于包括NTN设备(例如卫星、HAPS、无人机等)和地面上的接入网设备的通信系统中,其中,NTN设备可以具有接入网设备的全部功能或部分功能。其中,NTN设备的网络架构可以为透明传输架构,也可以为再生架构。可选的,网络架构中还可以包括网关设备,网关设备用于把地面上的接入网设备的信号转发到NTN设备上。
示例性的,图5示例性的示出一种可能的通信场景,在图5所示通信场景中NTN设备的架构可以为透明传输模式。图6示例性的示出另一种可能的通信场景,在图6所示通信场景中NTN设备的架构可以为再生模式。
一个示例中,NTN设备和地面上的接入网设备之间可以通过共同的核心网实现互联。或者,NTN设备和地面上的接入网设备也可以通过接入网设备间定义的接口实现更高时效性的协助和互联,在NR中,接入网设备间接口可以称为Xn接口,接入网设备和核心网的接口可以称为NG接口。NTN设备和地面上的接入网设备之间可以通过Xn接口或者NG接口实现互通和协同。
可选的,NTN设备与终端设备间的链路可以称作服务链路(service link),NTN设备与网关设备间的链路可以称作馈电链路(feeder link)。
本申请实施例中涉及的网元包括网络设备和终端设备。
网络设备,可以为具有接入网设备全部功能或者部分功能的NTN设备,或者也可以为地面上的接入网设备。接入网设备是网络侧中一种用于发射或接收信号的实体,如新一代基站(generation Node B,gNodeB)。接入网设备可以是用于与移动设备通信的设备。接入网设备可以是无线局域网(wireless local area networks,WLAN)中的AP,可以是长期演进(long term evolution,LTE)中的演进型基站(evolved Node B,eNB或eNodeB),或者中继站或接入点或接入回传一体化(integrated access and backhaul,IAB),或者车载设备、可穿戴设备以及未来5G网络中的接入网设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的接入网设备,或NR系统中的gNodeB(gNB)等。另外,在本申请实施例中,接入网设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与接入网设备进行通信。本申请实施例中的接入网设备可以是指集中单元(central unit,CU)或者分布式单元(distributed unit,DU)。或者,接入网设备也可以是CU和DU组成的,例如,如图7所示。其中,CU和DU在物理上可以是分离的,也可以部署在一起,本申请实施例对此不做具体限定。一个CU可以 连接一个DU,或者也可以多个DU共用一个CU,可以节省成本,以及易于网络扩展。CU和DU的切分可以按照协议栈切分,其中一种可能的方式是将RRC、业务数据适配协议栈(service data adaptation protocol,SDAP)以及分组数据汇聚协议(packet data convergence protocol,PDCP)层部署在CU,其余的无线链路控制(radio link control,RLC)层、介质访问控制(media access control,MAC)层以及物理层部署在DU。本申请实施例中并不完全限定上述协议栈切分方式,还可以有其它的切分方式。CU和DU之间通过F1接口连接。CU代表gNB通过Ng接口和核心网连接。本申请实施例中的接入网设备也可以是指集中式单元控制面(CU-CP)节点或者集中式单元用户面(CU-UP)节点,或者,接入网设备也可以是CU-CP和CU-UP。其中CU-CP负责控制面功能,主要包含RRC和PDCP-C。PDCP-C主要负责控制面数据的加解密,完整性保护,数据传输等。CU-UP负责用户面功能,主要包含SDAP和PDCP-U。其中SDAP主要负责将核心网的数据进行处理并将flow映射到承载。PDCP-U主要负责数据面的加解密,完整性保护,头压缩,序列号维护,数据传输等。其中CU-CP和CU-UP通过E1接口连接。CU-CP代表gNB通过Ng接口和核心网连接。通过F1-C(控制面)和DU连接。CU-UP通过F1-U(用户面)和DU连接。当然还有一种可能的实现是PDCP-C也在CU-UP。本申请实施例所提及的接入网设备可以为包括CU、或DU、或包括CU和DU的设备、或者控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的设备。此外,在其它可能的情况下,接入网设备可以是其它为终端设备提供无线通信功能的装置。本申请的实施例对接入网设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请实施例中,为终端设备提供无线通信功能的装置称为接入网设备。
终端设备可以是能够接收接入网设备(或NTN设备)调度和指示信息的设备,终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。终端设备可以经无线接入网(如,radio access network,RAN)与一个或多个核心网或者互联网进行通信,终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话,手机(mobile phone))、计算机和数据卡,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communications service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、平板电脑(Pad)、带无线收发功能的电脑等设备。终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile station,MS)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户站(subscriber station,SS)、用户端设备(customer premises equipment,CPE)、终端(terminal)、用户设备(user equipment,UE)、移动终端(mobile terminal,MT)等。终端设备也可以是可穿戴设备以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的PLMN网络中的终端设备,新无线电(new radio,NR)通信系统中的终端设备等。终端设备还可以是与NTN设备通信的终端。
此外,本申请实施例还可以适用于面向未来的其他通信技术。本申请描述的网络架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请 提供的技术方案对于类似的技术问题,同样适用。
需要说明的是,本申请实施例不限定以上通信系统的类型和制式。例如:所述通信系统可以为:第五代(The 5th Generation,5G)通信系统、长期演进(Long Term Evolution,LTE)通信系统等。
本申请实施例可以应用于第四代移动通信系统(the fourth generation,4G)系统,5G系统,NTN系统,车到万物(vehicle to everything,V2X),长期演进-车联网(LTE-vehicle,LTE-V),车到车(vehicle to vehicle,V2V),车联网,机器类通信(Machine Type Communications,MTC),物联网(internet of things,IoT),长期演进-机器到机器(LTE-machine to machine,LTE-M),机器到机器(machine to machine,M2M),物联网,或者将来的移动通信系统。
在卫星通信中,一个与卫星相连的地面基站,这个基站的信号是被卫星转发的。与卫星相连的地面基站,它的信号被卫星转发后,具有覆盖广,时延大等特点,与一般的地面基站信号不一样,这样的差别会对UE服务造成很大的影响,进一步会影响到小区重选等决策。例如,当前重选机制中小区优先级和频点绑定,小区的频点给定,小区优先级即确定。是否启动测量行为、测量后选择目标小区的标准和频点的优先级强相关。例如,小区重选过程中,终端设备根据测量启动标准,测量当前服务小区和邻区。其中,邻区是否启动测量需要考虑邻区的小区优先级。若邻区的小区优先级比当前服务小区高,则终端设备无条件启动对该邻区的测量。若邻区的小区优先级小于等于当前服务小区。终端设备可以在前服务小区的信号质量不高于质量阈值时启动对该邻区的测量。
又例如,终端设备在进行小区重选时,不同优先级的邻区的重选标准不同。如果邻区的小区优先级高于当前服务小区的小区优先级,重选标准为:终端设备在当前服务小区的驻留超过了预设时长(例如1秒);在T reselectionRAT内该邻区满足Squal>Thresh X,HighQ。或者,重选标准为:在T reselectionRAT内该邻区满足Srxlev>Thresh X,HighP;终端设备在当前服务小区的驻留超过了预设时长(例如1秒)。
如果邻区的小区优先级等于当前服务小区的小区优先级,重选标准可以为:根据小区信号质量,给每一个邻区和当前服务小区算出一个R(Rank)值,然后根据R值大小排序,R值大于当前服务小区的,满足重选标准,有多个满足的话,就选最好的。在时间间隔(Treselection RAT)内邻区一直满足R准则,且终端设备在当前服务小区的驻留超过了预设时长(例如1秒)。则终端设备启动向该邻区的重选。
如果邻区的小区优先级低于当前服务小区的小区优先级,重选标准为:小区优先级高于当前服务小区的邻区不符合对应的重选准则;小区优先级等于当前服务小区的邻区不符合对应的重选准则;服务小区满足Squal<Thresh Serving,LowQ;邻区在时间间隔(Treselection RAT)期间满足Squal>Thresh X,LowQ;终端设备在当前服务小区的驻留超过了预设时长(例如1秒)。或者,重选标准为小区优先级高于当前服务小区的邻区不符合对应的重选准则;小区优先级等于当前服务小区的邻区不符合对应的重选准则;服务小区满足Squal<Thresh Serving,LowP;邻区在时间间隔(Treselection RAT)期间满足Squal>Thresh X,LowP;终端设备在当前服务小区的驻留超过了预设时长(例如1秒)。
在未来通信发展中,同一频点的小区可能由GEO卫星、LEO卫星、HAPS、蜂窝等多种形态的网络提供,即使处于同一频点,不同类型的网络的能力,如时延、容量密度和切换/重选频率等不同。例如,蜂窝网相比于卫星网络,稳定性较好。在卫星网络中,GEO 卫星预期吞吐较低、但是连接稳定。LEO卫星吞吐高,但连接稳定性可能不高。
示例性的,不同网络类型和网络架构的网络的时延、容量密度和切换/重选频率特点可以如表1所示。
表1
Figure PCTCN2021141779-appb-000001
不同业务特点有不同网络需求,因此基于频点的优先级规则难以支持卫星网络的测量和驻留优先级管理。例如,当终端设备的业务类型为对时延敏感的通信业务时,终端设备根据小区的优先级配置选择目标小区,可能选择卫星提供覆盖的小区,会导致通信质量较差,从而导致用户体验差。
基于此,本申请实施例提供一种小区选择方法及装置,用以解决终端设备基于小区的频点的优先级配置选择目标小区时可能选择不合适的小区,导致通信质量差的问题。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
应理解,本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一(项)个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a、b、c可以是单个,也可以是多个。
需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面结合附图对本申请提供的小区选择方法进行具体说明。
实施例一:如图8所示,为本申请实施例提供的一种小区选择方法。本申请提供的小区选择方法可以应用于小区重选场景中,也可以应用于小区切换场景中,下面以小区重选场景为例进行说明,应理解,小区切换场景中根据小区的网络类型的信息确定目标小区的方式与小区重选场景中根据小区的网络类型的信息确定目标小区的方式类似。小区选择方法具体可以包括:
S801,第一网络设备向终端设备发送第一信息,第一信息包括至少一个小区的网络类型的信息,至少一个小区中第一小区的网络类型的信息用于指示第一小区为地面网络(例 如蜂窝网)或者GEO卫星网络或者MEO卫星网络或者LEO卫星网络或者HAPS网络。其中,该网络设备可以是终端设备的服务小区对应的网络设备。相应的,终端设备接收来自服务小区对应的网络设备的第一信息。
可选的,第一网络设备可以为终端设备的服务小区对应的网络设备。
一种实现方式中,终端设备可以在连接态时接收第一网络设备发送的无线资源控制(radio resource control,RRC)信令或者系统消息块(system information block,SIB)获取第一信息。
另一种实现方式中,终端设备可以在进入到非连接态时,通过接收第一网络设备发送的RRC释放(RRC Release)消息获取第一信息。
又一种实现方式中,终端设备也可以通过读取新驻留小区的广播消息获取第一信息。
可选的,本申请实施例小区的网络可以但不限于分为地面网络(例如蜂窝网)、GEO卫星网络、MEO卫星网络、LEO卫星网络、HAPS网络等,还可以包括其他网络,如未来通信发展中出现的网络等。可以理解的,这里仅是对网络进行举例说明,并不对网络的种类进行具体限定。
示例性的,小区的网络类型的信息可以通过显式的方式进行指示小区的网络,例如,网络类型的信息可以包括网络信息,网络信息可以通过不同取值指示不同的网络。示例性的,网络类型的信息可以如表2所示。
表2
网络信息 网络
011 GEO卫星网络
010 LEO卫星网络
001 HAPS网络
000 蜂窝网
…… ……
应理解,表2仅是一种举例说明,本申请实施例并不对网络信息包括的比特数、网络信息的取值与网络的对应关系等进行具体限定。
一种示例性说明中,小区的网络类型的信息可以包括所述小区的小区标识以及所述小区的网络信息。以表2所示的网络信息为例,第一信息可以如表3所示。
表3
小区标识 网络信息 网络
Cell ID #1 011 GEO卫星网络
Cell ID #2 010 LEO卫星网络
Cell ID #3 001 HAPS网络
Cell ID #4 000 蜂窝网
Cell ID #5 010 LEO卫星网络
Cell ID #6 011 GEO卫星网络
  …… ……
可选的,小区的网络类型的信息可以包括所述小区对应的网络设备的轨道信息,例如轨道高度等。一种示例性说明中,小区的网络类型可以根据轨道信息进行进一步的划分。例如,可以根据网络设备的轨道高度对小区的网络类型进行进一步的划分。举例说明,LEO 卫星网络可以根据高度进一步划分为300km的LEO卫星网络、600km的LEO卫星网络、1500km的LEO卫星网络,HAPS网络可以根据高度进一步划分为10km的HAPS网络、20km的HAPS网络等。不同轨道高度的NTN设备的时延、处理能力等可能不同,通过根据轨道信息对网络类型进行进一步划分,可以使得终端设备选择符合需求的小区进行切换。
示例性的,以轨道高度为例,轨道信息可以通过显式的方式指示小区的轨道高度,例如,轨道信息可以通过不同取值指示不同的轨道高度。示例性的,轨道信息可以如表4所示。
表4
轨道信息 轨道高度
000 300km
001 600km
010 1500km
011 10km
100 20km
…… ……
应理解,表4仅是一种举例说明,本申请实施例并不对轨道信息包括的比特数、轨道信息的取值与轨道高度的对应关系等进行具体限定。
小区的网络类型的信息还可以包括所述小区对应的网络设备的网络架构信息。示例性的,网络架构信息可以用于指示网络设备的网络架构。网络架构可以分为如下几种:再生架构、透明传输架构、仅包含DU的再生卫星架构等,可以理解的,这里仅是对网络架构的类型进行举例说明,并不对网络架构的类型进行具体限定。一种示例性说明中,小区的网络类型可以根据网络架构进行进一步的划分。举例说明,LEO卫星网络可以根据网络架构进一步划分为再生架构的LEO卫星网络、透明传输架构的LEO卫星网络、仅包含DU的再生卫星架构的LEO卫星网络等。对于同一个轨道高度上的卫星,不同网络架构对应于不同的时延和处理能力,例如再生架构的时延更低等,通过根据网络架构对网络类型进行进一步划分,可以使得终端设备选择符合需求的小区进行切换。
示例性的,网络架构信息可以通过显式的方式指示小区对应的网络设备的网络架构,例如,网络架构信息可以通过不同取值指示不同的网络架构。示例性的,网络架构信息可以如表5所示。
表5
网络架构信息的取值 网络架构
00 再生架构
01 透明传输架构
10 仅包含DU的再生卫星架构
…… ……
应理解,表5仅是一种举例说明,本申请实施例并不对网络架构信息包括的比特数、网络架构信息的取值与网络架构的对应关系等进行具体限定。
小区的网络类型的信息还可以包括所述小区的波束信息,波束信息用于指示波束部署方式。示例性的,波束部署方式可以分为凝视波束和非凝视波束。一种示例性说明中,小区的网络类型可以根据波束部署方式进行进一步的划分。举例说明,LEO卫星网络可以根 据波束部署方式进一步划分为凝视波束的LEO卫星网络、非凝视波束的LEO卫星网络。凝视波束意味着较少的切换频率,通过根据波束部署方式对网络类型进行进一步划分,可以使得终端设备选择符合需求的小区进行切换。
示例性的,波束信息可以通过显式的方式指示小区对应的网络设备的波束部署方式,例如,波束信息可以通过不同取值指示不同的波束部署方式。示例性的,波束信息可以如表6所示。
表6
波束信息的取值 波束部署方式
0 凝视波束
1 非凝视波束
应理解,表6仅是一种举例说明,本申请实施例并不对波束信息包括的比特数、波束信息的取值与波束部署方式的对应关系等进行具体限定。
可选的,小区的网络类型可以根据上述网络、轨道高度、网络架构、波束部署方式进行划分。示例性的,小区的网络类型的信息可以包括至少一个小区的网络信息、轨道信息、网络架构信息以及波束信息,例如,如表7所示。
表7
Figure PCTCN2021141779-appb-000002
或者。小区的网络类型的信息可以包括上述网络信息、轨道信息、网络架构信息、波束信息中的至少一种信息,终端设备可以通过其他方式获取上述网络信息、轨道信息、网络架构信息、波束信息中的其他信息,例如,小区的网络类型的信息可以包括网络信息、网络架构信息、波束信息,终端设备可以通过星历信息获取小区的网络设备的轨道信息。
小区的网络类型可以根据上述网络、轨道高度、网络架构、波束部署方式中至少一种信息进行划分,例如小区的网络类型可以根据上述网络、轨道高度以及波束部署方式进行划分。
小区的网络类型还可以根据其他网络部署情况进行划分,这里不再一一列举。
一种可能的实施方式中,第一网络设备可以从第一网络设备连接的核心网设备获取第一信息。
其中,不同网络设备可以连接到同一个核心网设备,也可以连接到不同的核心网设备。针对第二网络设备的小区,其中,第二网络设备与第一网络设备连接到同一个核心网设备,第一网络设备连接的核心网设备可以从第二网络设备获取第二网络设备的小区的网络类 型的信息。针对第三网络设备的小区,其中,第三网络设备与第一网络设备连接到不同核心网设备,第一网络设备连接的核心网设备可以从第三网络设备连接的核心网设备获取第三网络设备的小区的网络类型的信息。
例如,如图9所示,假设第一网络设备为卫星1,第一网络设备可以通过向核心网设备1请求基站2的小区、卫星2的小区、基站3的小区的网络类型的信息,核心网设备1可以从基站2获取基站2的小区的网络类型的信息,从核心网设备2获取卫星2的小区的网络类型的信息,从核心网设备3获取基站3的小区的信息。
示例性的,第一网络设备可以向连接的核心网设备请求该第一网络设备覆盖的小区以及周围小区的网络类型的信息,还可以请求该第一网络设备服务的终端设备的业务类型的信息。或者,第一网络设备连接的核心网设备也可以主动向第一网络设备发送该第一网络设备覆盖的小区以及周围小区的网络类型的信息,还可以发送该第一网络设备服务的终端设备的业务类型的信息。
可选的,第一网络设备连接的核心网设备可以根据该第一网络设备的部署信息确定该第一网络设备覆盖的小区以及周围小区。例如,如果第一网络设备为蜂窝网接入网设备,则第一网络设备的部署信息可以为第一网络设备的地理位置,若第一网络设备为NTN设备,则第一网络设备的部署信息可以为第一网络设备的运动位置以及运动规律等。
若第一网络设备为高速移动的非同步轨卫星,该第一网络设备覆盖的小区以及周围小区的网络类型的信息可能随时间变化,因此该第一网络设备连接的核心网设备可以采用比蜂窝网的核心网设备更高的频率去更新该第一网络设备覆盖的小区以及周围小区的网络类型的信息。
第一网络设备覆盖的小区的网络类型的信息以及周围小区的网络类型的信息和第一网络设备的部署情况强相关,第一网络设备的部署情况和部署情况的变化规律可以是预先存储在第一网络设备连接的核心网设备中。可选的,第一网络设备的部署情况和部署情况的变化规律可以按照特定触发条件(例如每隔一段预设的时间),并在触发条件生效时将更新后的第一网络设备覆盖的小区以及周围小区的网络类型的信息发送给该第一网络设备。
可选的,不同的核心网设备可能属于不同的运营商,因此运行商之间可以在核心网层面设计一种共享鉴权机制。例如,可以设定一种规则,当卫星运行商的核心网设备向蜂窝网的核心网设备申请小区的网络类型的信息时,蜂窝网的核心网设备可以向卫星运行商的核心网设备发送该卫星运行商的核心网设备请求的小区的网络类型的信息。通过这种方式,蜂窝网络可以顺利承接来自卫星网络的业务,从而可以提高业务稳定性。
一种实现方式中,网络设备可以向终端设备发送小区重选相关配置信息,该小区重选相关配置信息可以包括至少一个小区的测量配置信息(例如频点、小区优先级等)。
S802,终端设备根据N个小区的测量配置信息进行测量,N为大于0的整数。
一种实现方式中,终端设备可以根据小区的小区优先级确定是否启动对该小区的测量,其中,小区优先级与频点绑定。示例性的,若小区的小区优先级比当前服务小区的小区优先级高,则终端设备无条件启动对该小区的测量。若小区的小区优先级小于或等于当前服务小区的小区优先级。终端设备可以测量当前服务小区的信号质量,并将当前服务小区的信号质量与质量阈值进行比较,如果当前服务小区的信号质量高于质量阈值,则可以不对该小区进行测量。如果当前服务小区的信号质量不高于质量阈值,则对该小区进行测量。
另一种实现方式中,每个小区的网络类型可以对应一个优先级,终端设备可以根据小区的网络类型的优先级确定是否启动对该小区的测量。示例性的,若该小区的网络类型的优先级比当前服务小区的网络类型的优先级高,则终端设备可以无条件启动对该小区的测量。若小区的网络类型的优先级小于或等于当前服务小区的网络类型的优先级,终端设备可以在当前服务小区满足预设条件时启动对该小区的测量。
一种示例性说明中,预设条件可以为当前服务小区的信号质量小于质量门限值。即,如果小区的网络类型的优先级小于或等于当前服务小区的网络类型的优先级,若当前服务小区的信号质量小于质量门限值,则终端设备可以启动对该小区的测量,若当前服务小区的信号质量不小于质量门限值,则终端设备可以不启动对该小区的测量。
再一种实现方式中,终端设备可以根据小区的网络类型的优先级以及小区优先级确定是否启动对该小区的测量。
示例性的,如果该小区的小区优先级比当前服务小区的小区优先级高,若该小区的网络类型的优先级比当前服务小区的网络类型的优先级高,则终端设备可以无条件启动对该小区的测量,若小区的网络类型的优先级小于或等于当前服务小区的网络类型的优先级,则终端设备可以在当前服务小区的信号质量小于质量门限值时启动对该小区的测量。
如果小区的小区优先级小于或等于当前服务小区的小区优先级,终端设备可以测量当前服务小区的信号质量,并将当前服务小区的信号质量与质量阈值进行比较,如果当前服务小区的信号质量高于质量阈值,则可以不对该小区进行测量。如果当前服务小区的信号质量不高于质量阈值,则对该小区进行测量。
或者,如果该小区的网络类型的优先级比当前服务小区的网络类型的优先级高,若该小区的小区优先级比当前服务小区的小区优先级高,则终端设备可以无条件启动对该小区的测量,若小区的小区优先级小于或等于当前服务小区的小区优先级,则终端设备可以在当前服务小区的信号质量小于质量门限值时启动对该小区的测量。
如果小区的网络类型的优先级小于或等于当前服务小区的网络类型的优先级,终端设备可以测量当前服务小区的信号质量,并将当前服务小区的信号质量与质量阈值进行比较,如果当前服务小区的信号质量高于质量阈值,则可以不对该小区进行测量。如果当前服务小区的信号质量不高于质量阈值,则对该小区进行测量。
S803,终端设备根据测量结果确定M个候选小区,M为大于0且小于N的整数。
示例性的,针对小区优先级比当前服务小区高的小区,若该小区的信号能量大于信号能量的第一门限值,或者,该小区的信号质量大于信号质量的第二门限值,终端设备可以选择该小区作为候选小区。
可选的,小区的信号能量可以符合如下公式,或者,可以通过如下公式确定小区的信号能量:
Srxlev=Q rxlevmeas–(Q rxlevmin+Q rxlevminoffset)–P compensation-Qoffset temp
其中,Srxlev为小区的信号能量。Q rxlevmeas、Q rxlevmin、Q rxlevminoffset、P compensation、Qoffset temp可以参阅上述步骤A2中的相关描述,这里不再重复赘述。
小区的信号质量可以符合如下公式,或者,可以通过如下公式确定小区的信号质量:
Squal=Q qualmeas–(Q qualmin+Q qualminoffset)-Qoffset temp
其中,Squal为小区的信号质量。Q qualmeas、Q qualmin、Q qualminoffset、Qoffset temp可以参阅上述步骤A2中的相关描述,这里不再重复赘述。
针对小区优先级与当前服务小区的小区优先级相同的小区,终端设备可以根据R准则 进行小区重选。其中,R准则可以参阅上述步骤A2中的相关描述,这里不再重复赘述。
针对小区优先级比当前服务小区低的小区,若该小区的信号能量大于信号能量的第三门限值,或者,该小区的信号质量大于信号质量的第四门限值,终端设备可以选择该小区作为候选小区。
S804,终端设备根据第一信息在M个候选小区中选择目标小区。
需要说明的是,步骤S801不是必须执行的步骤。在具体实施中,终端设备也可以通过其他方式获取第一信息,例如,终端设备可以通过小区对应的网络设备的星历信息确定该网络设备的运动信息,如当前位置和运动速度等,根据小区对应的网络设备的运动信息可以确定小区的网络类型。可选的,终端设备可以通过这种方式获取当前驻留小区(即服务小区)的网络类型。通过这种方式,网络设备可以不用额外指示当前驻留小区的网络类型,从而可以减少指示开销。
或者,终端设备也可以从一个候选小区对应的网络设备获取第一信息,例如,在步骤S803之后,一个候选小区对应的网络设备可以发送第一信息,相应的,终端设备可以接收该第一信息,如图10所示。在本方式中,终端设备在决定驻留小区时,才从候选小区中获取第一信息。通过这种方式,可以减少终端设备需要存储的配置信息,从而可以降低终端设备的存储开销。并且,通过这种方式,可以更准确的反应网络的实时情况。其中,候选小区对应的网络设备获取第一信息的方式与服务小区对应的网络设备获取第一信息的方式类似,具体可以参阅步骤S801中的相关描述,这里不再重复赘述。
或者,终端设备也可以通过步骤S801在服务小区对应的网络设备获取第一信息的部分信息,在步骤S803之后从一个候选小区对应的网络设备获取第一信息的另一部分信息。
不同类型的网络的通信质量不同,例如,蜂窝网的稳定性较好,300km的LEO卫星网络的时延较低等等,本申请实施例中终端设备在进行小区重选时可以根据网络类型选择目标小区,使得目标小区可以满足终端设备的业务需求,例如,当终端设备的业务类型为对稳定性要求较高的通信业务时,终端设备可以优先选择稳定性较好的蜂窝网小区,当终端设备的业务类型为对稳定性要求较低的通信业务时,终端设备可以选择300km的LEO卫星网络小区等等,从而可以降低终端设备选择不合适的小区进行重选的概率,进而可以提升用户体验。
一种实现方式中,终端设备根据第一信息在M个候选小区中选择目标小区,包括:终端设备根据第一信息以及第一选择规则在M个候选小区中选择目标小区,第一选择规则用于选择目标小区,且第一选择规则包括至少一个网络类型与优先级的对应关系。
一个实施例中,网络设备可以根据终端设备的业务类型确定该业务类型对应的第一选择规则,并向终端设备指示第一选择规则,例如,网络设备可以向终端设备发送第二信息,第二信息用于指示第一选择规则。通过上述设计,可以降低终端设备的开销。
可选的,第二信息可以通过显式的方式进行指示选择规则,例如,第二信息可以通过不同取值指示不同的选择规则。示例性的,第二信息可以如表8所示。
表8
第二信息 选择规则 适用的业务类型
00 选择规则1 业务类型1
01 选择规则2 业务类型2
10 选择规则3 业务类型3
11 选择规则4 业务类型4
…… …… ……
另一个实施例中,终端设备也可以根据自身的业务类型在预配置的该至少一个选择规则选择该业务类型对应的第一选择规则,其中,一个选择规则包括至少一个网络类型与优先级的一种对应关系。示例性的,该至少一个选择规则可以是网络设备预先配置给终端设备的,也可以是协议规定的。可选的,上述设计可以应用于上行为主的业务,例如一些IoT业务。通过上述设计,可以降低网络设备的信令开销。
又一个实施例中,终端设备可以使用预配置的第一选择规则。通过上述设计,针对业务类型稳定的终端设备可以预先配置使用的选择规则,从而可以降低配置信令。
示例性的,本申请实施例中小区的网络类型也可以按照网络信息、轨道信息、网络架构信息以及波束信息进行分类,然后统一进行优先级排序,例如,将蜂窝网、300km的再生架构且波束为凝视波束的LEO卫星网络、600km的透明传输架构且波束为凝视波束的LEO卫星网络、GEO等网络类型统一进行优先级排序。示例性的,优先级排序可以如表9所示。
表9
Figure PCTCN2021141779-appb-000003
应理解,表9仅是一种举例说明,本申请实施例并不对网络类型与优先级的对应关系等进行具体限定。
或者,小区的网络类型也可以按照网络进行第一次分类并进行优先级排序,例如将蜂窝网、LEO卫星网络、GEO卫星网络、MEO卫星网络等进行优先级排序。之后可以针对每种网络按照轨道高度进行进一步分类并进行优先级排序,例如针对LEO卫星网络,将300km的LEO卫星网络、600km的LEO卫星网络、1500km的LEO卫星网络等进行优先级排序。之后还可以进一步根据网络架构进行分类并优先级排序,例如针对300km的LEO卫星网络,将再生架构的300km的LEO卫星网络、透明传输架构的300km的LEO卫星网络、仅包括DU的再生架构的300km的LEO卫星网络等进行优先级排序。之后还可以进一步根据波束部署方式进行分类并进行优先级排序。示例性的,优先级排序可以如表10所示。
表10
Figure PCTCN2021141779-appb-000004
应理解,表10仅是一种举例说明,本申请实施例并不对网络类型与优先级的对应关系等进行具体限定。
举例说明,若终端设备的业务类型对应的业务对稳定性要求较高,则第一选择规则中稳定性越好的网络类型对应的优先级越高,例如,蜂窝网的优先级>GEO卫星网络的优先级>LEO卫星网络的优先级>……。根据上述设计,若终端设备的业务类型对应的业务对稳定性要求较高,终端设备可以优先选择蜂窝网的候选小区作为目标小区。
若终端设备的业务类型对应的业务对吞吐和时延要求较高,则第一选择规则中吞吐量越大且时延越小的网络类型对应的优先级越高,例如,蜂窝网的优先级>300km的LEO卫星网络的优先级>600km的LEO卫星网络的优先级>GEO卫星网络的优先级>……。又例如,蜂窝网的优先级>HAPS网络的优先级>300km的LEO卫星网络的优先级>GEO卫星网络的优先级>……。根据上述设计,若终端设备的业务类型对应的业务对吞吐和时延要求较高,终端设备可以优先选择蜂窝网的候选小区作为目标小区。
示例性的,终端设备的业务类型可以但不限于包括:IoT业务、增强型移动宽带(enhanced mobile broadband,eMBB)业务、高可靠低时延通信(ultra reliable and low latency communications,URLLC)业务、海量机器类通信(massive machine type communications,mMTC)等等。可选的,每种业务类型还可以进行进一步的划分,例如,IoT业务还可以分为稳定性优先的IoT业务、监控类的IoT业务等。其中监控类IoT业务对吞吐要求较高。eMBB业务中又可以包括集成接入和回传(Integrated Access Backhaul,IAB)类和非IAB。其中承载IAB类业务的设备处理能力较高,往往有持续电力供应。
可选的,终端设备的业务类型可以是预配置的,例如,对于有固定应用场景的终端设备,可以预先配置该终端设备的业务类型。
或者,网络设备也可以向终端设备指示业务类型,例如,对于使用场景会发生变化的 终端设备,网络设备可以通过第三信息指示该终端设备的业务类型。
示例性的,第三信息可以显式的方式进行指示业务类型,例如,可以如表11所示。
表11
第三信息 业务类型
00 IoT业务
01 eMBB业务
…… ……
或者,终端设备也可以根据业务情况确定业务类型。可选的,终端设备在确定业务类型后可以向网络设备上报确定的业务类型。
进一步的,若终端设备上报的业务类型与该终端设备的实际业务不一致,网络设备可以指示终端设备调整业务类型,网络设备可以向终端设备指示该实际业务对应的业务类型。若终端设备上报的业务类型与该终端设备的实际业务一致,网络设备可以不作配置,从而可以减少一些配置信令。
不同类型的网络的通信质量不同,例如,蜂窝网的稳定性较好,300km的LEO卫星网络的时延较低等等,本申请实施例中终端设备在进行小区重选时可以根据网络类型和终端设备的业务类型选择目标小区,使得目标小区可以满足终端设备的业务需求,例如,当终端设备的业务类型为对稳定性要求较高的通信业务时,终端设备可以优先选择稳定性较好的蜂窝网小区,当终端设备的业务类型为对稳定性要求较低的通信业务时,终端设备可以选择300km的LEO卫星网络小区等等,从而可以降低终端设备选择不合适的小区进行重选的概率,进而可以提升用户体验。
实施例二:本申请实施例提供的另一种小区选择方法,该方法与图8所示的小区选择方法类似,区别在于第一信息和选择规则不同,本申请实施例提供的另一种小区选择方法具体可以参阅图8所示的小区选择方法,重复之处不再赘述。
在图8所示小区选择方法中第一信息可以指示小区的网络部署情况,而本申请实施例提供的另一种小区选择方法中第一信息可以指示小区的能力,例如,第一信息可以包括至少一个小区的能力的信息,所述至少一个小区中第一小区的能力的信息用于指示如下信息中至少一项:第一小区的网络往返时延、第一小区的总网络容量、第一小区的剩余网络容量、第一小区的网络切换频率。其中,第一小区的网络往返时延,包括如下一项或多项参数:接入第一小区的终端设备到网络设备的空口往返时延,接入第一小区的终端设备到网络设备的空口往返时延可以指示第一小区的空口性能;接入第一小区的终端设备到路由设备或者核心网设备的往返时延,接入第一小区的终端设备到路由模块或者核心网设备的往返时延可以指示第一小区的端到端时延体验。
第一小区的总网络容量,可以包括如下一项或多项参数:第一小区所支持的最大数据吞吐量,其中,若第一小区对应的网络设备覆盖一个小区,则第一小区的总网络容量可以指第一小区对应的网络设备所支持的最大数据吞吐量;第一小区单位面积/空间所支持的最大数据吞吐量,其中,若第一小区对应的网络设备覆盖一个小区,则第一小区的总网络容量可以指第一小区对应的网络设备覆盖下单位面积/空间所支持的最大数据吞吐量;第一小区所支持的单用户最大数据吞吐量,其中,若第一小区对应的网络设备覆盖一个小区,则第一小区的总网络容量可以指第一小区对应的网络设备所支持的单用户最大数据吞吐量。
第一小区的剩余网络容量,可以包括如下一项或多项参数:第一小区的剩余数据吞吐 量,其中,若第一小区对应的网络设备覆盖一个小区,则第一小区的剩余网络容量可以指第一小区对应的网络设备的剩余数据吞吐量;第一小区单位面积/空间的剩余数据吞吐量,其中,若第一小区对应的网络设备覆盖一个小区,则第一小区的剩余网络容量可以指第一小区对应的网络设备覆盖下单位面积/空间的剩余数据吞吐量;第一小区的单用户剩余数据吞吐量,其中,若第一小区对应的网络设备覆盖一个小区,则第一小区的剩余网络容量可以指第一小区对应的网络设备的单用户剩余数据吞吐量。
第一小区的网络切换频率,可以包括如下一项或多项参数:第一小区发生小区切换和/或小区重选的概率,可以用一个量化指标来表征;第一小区的终端设备在一个时间段发生小区切换和/或小区重选的次数;接入第一小区的终端设备发生波束切换的概率;接入第一小区的终端设备在一个时间段发生波束切换的次数。
本申请实施例提供的另一种小区选择方法中,小区的能力的信息中可以包括网络往返时延信息。网络往返时延信息可以通过不同取值指示不同的网络往返时延。示例性的,网络往返时延信息可以如表12所示。
表12
网络往返时延信息 网络往返时延 网络部署
000 <1ms 蜂窝
001 1~3ms VLEO,HAPS
010 3~10ms LEO600km
011 10~40ms LEO1200km
100 40ms~200m MEO20000
101 200~540ms GEO
…… …… ……
应理解,表12仅是一种举例说明,本申请实施例并不对网络往返时延信息包括的比特数、网络往返时延信息的取值与网络往返时延的对应关系等进行具体限定。
小区的能力的信息中可以包括总网络容量信息。总网络容量信息可以通过不同取值指示不同的总网络容量。示例性的,总网络容量信息可以如表13所示。
表13
总网络容量信息 总网络容量 网络部署
00 高容量密度 蜂窝
01 中容量密度 LEO,HAPS
10 低容量密度 GEO
…… …… ……
应理解,表13仅是一种举例说明,本申请实施例并不对总网络容量信息包括的比特数、总网络容量信息的取值与总网络容量的对应关系等进行具体限定。
小区的能力的信息中可以包括剩余网络容量信息。剩余网络容量信息可以通过不同取值指示不同的剩余网络容量。示例性的,剩余网络容量信息可以如表14所示。
表14
剩余网络容量信息 剩余网络容量 网络部署
00 高容量密度 蜂窝
01 中容量密度 LEO,HAPS
10 低容量密度 GEO
…… …… ……
应理解,表14仅是一种举例说明,本申请实施例并不对剩余网络容量信息包括的比特数、剩余网络容量信息的取值与剩余网络容量的对应关系等进行具体限定。
小区的能力的信息中可以包括网络切换频率信息。网络切换频率信息可以通过不同取值指示不同的网络切换频率。示例性的,网络切换频率信息可以如表15所示。
表15
Figure PCTCN2021141779-appb-000005
应理解,表15仅是一种举例说明,本申请实施例并不对网络切换频率信息包括的比特数、网络切换频率信息的取值与网络切换频率的对应关系等进行具体限定。
小区的能力还可以根据其他参数进行指示,这里不再一一列举。
在图8所示小区选择方法中选择规则包括至少一个业务类型与优先级的对应关系,而本申请实施例提供的另一种小区选择方法中选择规则包括至少一个参数对应的条件。
本申请实施例提供的另一种小区选择方法中,终端设备根据业务类型可以使用该业务类型对应的选择规则,选择规则包括至少一个参数对应的条件。
举例说明,若终端设备的业务类型为IoT类业务,IoT类业务要求网络切换频率较低,但对容量、时延无要求,因此,第一选择规则可以包括网络切换频率对应的条件,该条件可以为小区的网络切换频率小于网络切换频率阈值,从而终端设备可以选择网络切换频率低于该网络切换频率阈值的小区作为目标小区。若终端设备的业务类型为监控类业务,监控类业务要求较高的剩余网络容量,因此,第一选择规则可以包括剩余网络容量对应的条件,该条件可以为小区的剩余网络容量大于剩余网络容量阈值,终端设备可以选择剩余网络容量高于该剩余网络容量阈值的小区作为目标小区。
示例性的,业务类型与选择规则的对应关系可以如表16所示。
表16
Figure PCTCN2021141779-appb-000006
应理解,表16仅是一种举例说明,本申请实施例并不对选择规则进行具体限定。
在一些实施例中,终端设备在确定目标小区时,若有多个候选小区满足第一选择规则,终端设备可以优先选择满足程度最高的候选小区作为目标小区。例如,假设终端设备的业务类型为稳定性优先的IoT类业务,若有多个候选小区满足表16所示的选择规则1,终端设备可以选择网络切换频率最低的候选小区作为目标小区。
或者,终端设备在确定目标小区时,若有多个候选小区满足第一选择规则,终端设备也可以在该多个候选小区中任意选择一个候选小区作为目标小区。
本申请实施例中终端设备在进行小区重选时可以根据小区的能力选择目标小区,使得目标小区可以满足终端设备的业务需求,例如,当终端设备的业务类型要求网络切换频率较低时,终端设备可以优先选择网络切换频率较低的小区,当终端设备的业务类型要求时延较低时,终端设备可以选择时延较低的小区作为目标小区,从而可以降低终端设备选择不合适的小区进行重选的概率,进而可以提升用户体验。并且,本申请实施例中通过指示邻区的网络往返时延、剩余网络容量、总网络容量、网络切换频率等关键指标,可以避免暴露网络设备的网络部署情况,从而可以保障网络的私密性。
基于与方法实施例的同一发明构思,本申请实施例提供一种小区切换装置。该小区切换装置的结构可以如图11所示,包括处理单元1101以及存储单元1102。
一种实现方式中,小区切换装置具体可以用于实现上述实施例一中终端设备执行的方法,该装置可以是终端设备本身,也可以是终端设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,存储单元1102,用于存储代码指令。处理单元1101用于调用存储单元1102存储的代码指令执行:根据N个小区的测量配置信息进行测量,N为大于0的整数;根据测量结果确定M个候选小区,M为大于0且小于N的整数;根据第一信息在M个候选小区中选择目标小区,第一信息包括M个候选小区中至少一个候选小区的网络类型的信息,M个候选小区中第一候选小区的网络类型的信息用于指示第一候选小区为地面网络或者静止轨道卫星网络或者中轨道卫星网络或者低轨道卫星网络或者高空平台网络。
示例性的,第一候选小区的网络类型的信息可以包括第一候选小区对应的网络设备的 轨道信息。
示例性的,第一候选小区的网络类型的信息可以包括第一候选小区对应的网络设备的网络架构信息。
示例性的,第一候选小区的网络类型的信息可以包括第一候选小区的波束信息,波束信息用于指示波束部署方式。
可选的,处理单元1101,在根据N个小区的测量配置信息进行测量时,具体用于:针对N个小区的第n个小区,若第n个小区的网络类型对应的优先级高于服务小区的网络类型对应的优先级,对第n个小区进行测量;若第n个小区的网络类型对应的优先级不高于服务小区的网络类型对应的优先级,在服务小区满足预设条件时对第n个小区进行测量。
可选的,处理单元1101,在根据第一信息在M个候选小区中选择目标小区时,具体用于:根据第一信息以及第一选择规则在M个候选小区中选择目标小区,第一选择规则用于选择目标小区,且第一选择规则包括至少一个网络类型与优先级的对应关系。
可选的,装置还可以包括收发单元1103。收发单元1103,可以用于在处理单元1101根据N个小区的测量配置信息进行测量之前,接收来自服务小区的N个小区的测量配置信息以及第一信息。或者,收发单元1103,也可以用于在处理单元1101根据测量结果确定M个候选小区之后,接收来自M个候选小区中第一候选小区的第一信息。
可选的,收发单元1103,还可以用于接收来自服务小区的第二信息,第二信息用于指示第一选择规则。
收发单元1103,还可以用于接收来自服务小区的第三信息,第三信息用于指示终端设备的业务类型。
另一种实现方式中,小区切换装置具体可以用于实现上述实施例二中终端设备执行的方法,该装置可以是终端设备本身,也可以是终端设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,存储单元1102,用于存储代码指令。处理单元1101用于调用存储单元1102存储的代码指令执行:根据N个小区的测量配置信息进行测量,N为大于0的整数;根据测量结果确定M个候选小区,M为大于0且小于N的整数;根据第一信息在M个候选小区中选择目标小区,第一信息包括M个候选小区中至少一个候选小区的能力的信息,M个候选小区中第一候选小区的能力的信息包括第一候选小区的如下参数中至少一项:第一候选小区的网络往返时延、第一候选小区的总网络容量、第一候选小区的剩余网络容量、第一候选小区的网络切换频率。
可选的,处理单元1101,在根据第一信息在M个候选小区中选择目标小区时,可以具体用于:根据第一信息以及第一选择规则在M个候选小区中选择目标小区,第一选择规则用于选择目标小区,且第一选择规则包括至少一个参数对应的条件。
可选的,装置还可以包括收发单元1103。收发单元1103,可以用于在处理单元1101根据N个小区的测量配置信息进行测量之前,接收来自服务小区的N个小区的测量配置信息以及第一信息。或者,收发单元1103,也可以用于在处理单元1101根据测量结果确定M个候选小区之后,接收来自M个候选小区中第一候选小区的第一信息。
可选的,收发单元1103,还可以用于接收来自服务小区的第二信息,第二信息用于指示第一选择规则。
收发单元1103,还可以用于接收来自服务小区的第三信息,第三信息用于指示终端设备的业务类型。
本申请实施例提供另一种通信装置。该小区切换装置的结构可以如图12所示,包括处理单元1201以及收发单元1202。
一种实现方式中,小区切换装置具体可以用于实现上述实施例一中网络设备执行的方法,该装置可以是网络设备本身,也可以是网络设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,处理单元1201,用于确定第一信息,第一信息包括至少一个小区的网络类型的信息,至少一个小区中第一小区的网络类型的信息用于指示第一小区为地面网络或者静止轨道卫星网络或者中轨道卫星网络或者低轨道卫星网络或者高空平台网络;收发单元1202,用于向终端设备发送第一信息。
示例性的,第一小区的网络类型的信息可以包括第一小区对应的网络设备的轨道信息。
示例性的,第一小区的网络类型的信息可以包括第一小区对应的网络设备的网络架构信息。
示例性的,第一小区的网络类型的信息可以包括第一小区的波束信息,波束信息用于指示波束部署方式。
可选的,处理单元1201,还可以用于:根据终端设备的业务类型确定选择规则,选择规则用于选择目标小区,且选择规则包括至少一个网络类型与优先级的对应关系;
收发单元1202,还可以用于向终端设备发送第二信息,第二信息用于指示选择规则。
收发单元1202,还可以用于:向终端设备发送第三信息,第三信息用于指示终端设备的业务类型。
另一种实现方式中,小区切换装置具体可以用于实现上述实施例二中网络设备执行的方法,该装置可以是网络设备本身,也可以是网络设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,处理单元1201,用于确定第一信息,第一信息包括至少一个小区的能力的信息,至少一个小区中第一小区的能力的信息包括第一小区的如下信息中至少一项:第一小区的网络往返时延、第一小区的总网络容量、第一小区的剩余网络容量、第一小区的网络切换频率;收发单元1202,用于向终端设备发送第一信息。
可选的,处理单元1201,还可以用于:根据终端设备的业务类型确定选择规则,选择规则用于选择目标小区,且选择规则包括至少一个能力对应的条件。
收发单元1202,还可以用于:向终端设备发送第二信息,第二信息用于指示选择规则。
收发单元1202,还可以用于:向终端设备发送第三信息,第三信息用于指示终端设备的业务类型。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。可以理解的是,本申请实施例中各个模块的功能或者实现可以进一步参考方法实施例的相关描述。
一种可能的方式中,终端设备可以如图13所示。该终端设备可以包括处理器1301,存储器1302,可选的,还可以包括通信接口1303。其中,处理单元1101可以为处理器1301。存储单元1102可以为存储器1302。收发单元1103可以为通信接口1303。
处理器1301,可以是一个中央处理单元(central processing unit,CPU),或者为数字处理单元等等。通信接口1303可以是收发器、也可以为接口电路如收发电路等、也可以为收发芯片等等。存储器1302,用于存储处理器1301执行的程序。存储器1302可以是非 易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器1302是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
处理器1301用于执行存储器1302存储的程序代码,具体用于执行上述处理单元1101的动作,本申请在此不再赘述。通信接口1303具体用于执行上述收发单元1103的动作,本申请在此不再赘述。
本申请实施例中不限定上述通信接口1303、处理器1301以及存储器1302之间的具体连接介质。本申请实施例在图13中以存储器1302、处理器1301以及通信接口1303之间通过总线1304连接,总线在图13中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
一种可能的方式中,网络设备可以如图14所示。该装置可以包括处理器1401,通信接口1402,还可以包括存储器1403。其中,处理单元1201可以为处理器1401。收发单元1202可以为通信接口1402。
处理器1401,可以是一个CPU,或者为数字处理单元等等。通信接口1402可以是收发器、也可以为接口电路如收发电路等、也可以为收发芯片等等。该装置还包括:存储器1403,用于存储处理器1401执行的程序。存储器1403可以是非易失性存储器,比如HDD或SSD等,还可以是易失性存储器,例如RAM。存储器1403是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
处理器1401用于执行存储器1403存储的程序代码,具体用于执行上述处理单元1201的动作,本申请在此不再赘述。通信接口1402具体用于执行上述收发单元1202的动作,本申请在此不再赘述。
本申请实施例中不限定上述通信接口1402、处理器1401以及存储器1403之间的具体连接介质。本申请实施例在图14中以存储器1403、处理器1401以及通信接口1402之间通过总线1404连接,总线在图14中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例还提供了一种通信装置,包括处理器和接口。所述处理器可用于执行上述方法实施例中的方法。应理解,上述通信装置可以是一个芯片。例如,该通信装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是CPU,还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
示例性的,接口可以是接口电路。例如,接口电路可以为代码/数据读写接口电路。所述接口电路,可以用于接收代码指令(代码指令存储在存储器中,可以直接从存储器读取,或也可以经过其他器件从存储器读取)并传输至所述处理器;所述处理器,可以用于运行所述代码指令以执行上述方法实施例中的方法。
又例如,接口电路也可以为通信处理器与收发机之间的信号传输接口电路。例如,在 发送场景中,所述处理器用于执行XX以得到Y数据(XX为非空口操作,包括但不限于确定,判断、处理、计算、查找、比较等操作);所述接口电路可以用于将Y数据发送至发射机(发射机用于执行空口上的发送操作)。又例如,在接收场景中,所述接口电路可以用于从接收机接收Z数据(接收机用于执行空口上的接收操作),并将所述Z数据发送至所述处理器;所述处理器用于对所述Z数据做XX处理(XX为非空口操作,包括但不限于确定,判断、处理、计算、查找、比较等操作)。
示例性的,图15示出一种可能的芯片结构,芯片包括逻辑电路和输入输出接口,还可以包括存储器。其中,输入输出接口可以用于接收代码指令(代码指令存储在存储器中,可以直接从存储器读取,或也可以经过其他器件从存储器读取)并传输至所述逻辑电路;所述逻辑电路,可以用于运行所述代码指令以执行上述方法实施例中的方法。
或者,输入输出接口也可以为逻辑电路与收发机之间的信号传输接口电路。例如,在发送场景中,所述逻辑电路用于执行XX以得到Y数据(XX为非空口操作,包括但不限于确定,判断、处理、计算、查找、比较等操作);所述输入输出接口可以用于将Y数据发送至发射机(发射机用于执行空口上的发送操作)。又例如,在接收场景中,所述输入输出接口可以用于从接收机接收Z数据(接收机用于执行空口上的接收操作),并将所述Z数据发送至所述逻辑电路;所述逻辑电路用于对所述Z数据做XX处理(XX为非空口操作,包括但不限于确定,判断、处理、计算、查找、比较等操作)。
本发明实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内, 则本申请也意图包含这些改动和变型在内。

Claims (37)

  1. 一种小区选择方法,其特征在于,包括:
    终端设备根据N个小区的测量配置信息进行测量,所述N为大于0的整数;
    所述终端设备根据测量结果确定M个候选小区,所述M为大于0且小于所述N的整数;
    所述终端设备根据第一信息在所述M个候选小区中选择目标小区,所述第一信息包括所述M个候选小区中至少一个候选小区的网络类型的信息,所述M个候选小区中第一候选小区的所述网络类型的信息用于指示所述第一候选小区为地面网络或者静止轨道卫星网络或者中轨道卫星网络或者低轨道卫星网络或者高空平台网络。
  2. 如权利要求1所述的方法,其特征在于,所述第一候选小区的所述网络类型的信息包括所述第一候选小区对应的网络设备的轨道信息。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一候选小区的所述网络类型的信息包括所述第一候选小区对应的网络设备的网络架构信息。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述第一候选小区的所述网络类型的信息包括所述第一候选小区的波束信息,所述波束信息用于指示波束部署方式。
  5. 如权利要求1-4任一项所述的方法,其特征在于,终端设备根据N个小区的测量配置信息进行测量,包括:
    针对所述N个小区的第n个小区,若所述第n个小区的网络类型对应的优先级高于所述服务小区的网络类型对应的优先级,所述终端设备对所述第n个小区进行测量;
    若所述第n个小区的网络类型对应的优先级不高于所述服务小区的网络类型对应的优先级,所述终端设备在所述服务小区满足预设条件时对所述第n个小区进行测量。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述终端设备根据第一信息在所述M个候选小区中选择目标小区,包括:
    所述终端设备根据所述第一信息以及第一选择规则在所述M个候选小区中选择所述目标小区,所述第一选择规则用于选择所述目标小区,且所述第一选择规则包括至少一个网络类型与优先级的对应关系。
  7. 如权利要求6所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自服务小区的第二信息,所述第二信息用于指示所述第一选择规则。
  8. 如权利要求1-7任一项所述的方法,其特征在于,在终端设备根据N个小区的测量配置信息进行测量之前,所述方法还包括:
    所述终端设备接收来自服务小区的所述N个小区的测量配置信息以及所述第一信息。
  9. 如权利要求1-7任一项所述的方法,其特征在于,在所述终端设备根据测量结果确定M个候选小区之后,所述方法还包括:
    所述终端设备接收来自所述M个候选小区中第一候选小区的所述第一信息。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自服务小区的第三信息,所述第三信息用于指示所述终端设备的业务类型。
  11. 一种小区选择方法,其特征在于,包括:
    网络设备确定第一信息,所述第一信息包括至少一个小区的网络类型的信息,所述至少一个小区中第一小区的所述网络类型的信息用于指示所述第一小区为地面网络或者静止轨道卫星网络或者中轨道卫星网络或者低轨道卫星网络或者高空平台网络;
    所述网络设备向终端设备发送所述第一信息。
  12. 如权利要求11所述的方法,其特征在于,所述第一小区的所述网络类型的信息包括所述第一小区对应的网络设备的轨道信息。
  13. 如权利要求11或12所述的方法,其特征在于,所述第一小区的所述网络类型的信息包括所述第一小区对应的网络设备的网络架构信息。
  14. 如权利要求11-13任一项所述的方法,其特征在于,所述第一小区的所述网络类型的信息包括所述第一小区的波束信息,所述波束信息用于指示波束部署方式。
  15. 如权利要求11-14任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述终端设备的业务类型确定选择规则,所述选择规则用于选择目标小区,且所述选择规则包括至少一个网络类型与优先级的对应关系;
    所述网络设备向所述终端设备发送第二信息,所述第二信息用于指示所述选择规则。
  16. 如权利要求11-15任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第三信息,所述第三信息用于指示所述终端设备的业务类型。
  17. 一种小区选择装置,其特征在于,包括:
    存储单元,用于存储代码指令;
    处理单元,用于调用所述存储单元存储的代码指令执行:
    根据N个小区的测量配置信息进行测量,所述N为大于0的整数;
    根据测量结果确定M个候选小区,所述M为大于0且小于所述N的整数;
    根据第一信息在所述M个候选小区中选择目标小区,所述第一信息包括所述M个候选小区中至少一个候选小区的网络类型的信息,所述M个候选小区中第一候选小区的所述网络类型的信息用于指示所述第一候选小区为地面网络或者静止轨道卫星网络或者中轨道卫星网络或者低轨道卫星网络或者高空平台网络。
  18. 如权利要求17所述的装置,其特征在于,所述第一候选小区的所述网络类型的信息包括所述第一候选小区对应的网络设备的轨道信息。
  19. 如权利要求17或18所述的装置,其特征在于,所述第一候选小区的所述网络类型的信息包括所述第一候选小区对应的网络设备的网络架构信息。
  20. 如权利要求17-19任一项所述的装置,其特征在于,所述第一候选小区的所述网络类型的信息包括所述第一候选小区的波束信息,所述波束信息用于指示波束部署方式。
  21. 如权利要求17-20任一项所述的装置,其特征在于,所述处理单元,在根据N个小区的测量配置信息进行测量时,具体用于:
    针对所述N个小区的第n个小区,若所述第n个小区的网络类型对应的优先级高于所述服务小区的网络类型对应的优先级,对所述第n个小区进行测量;
    若所述第n个小区的网络类型对应的优先级不高于所述服务小区的网络类型对应的优先级,在所述服务小区满足预设条件时对所述第n个小区进行测量。
  22. 如权利要求17-21任一项所述的装置,其特征在于,所述处理单元,在根据第一信息在所述M个候选小区中选择目标小区时,具体用于:
    根据所述第一信息以及第一选择规则在所述M个候选小区中选择所述目标小区,所述第一选择规则用于选择所述目标小区,且所述第一选择规则包括至少一个网络类型与优先级的对应关系。
  23. 如权利要求22所述的装置,其特征在于,所述装置还包括收发单元;
    所述收发单元,用于接收来自服务小区的第二信息,所述第二信息用于指示所述第一选择规则。
  24. 如权利要求17-23任一项所述的装置,其特征在于,所述装置还包括收发单元;
    所述收发单元,用于在所述处理单元根据N个小区的测量配置信息进行测量之前,接收来自服务小区的所述N个小区的测量配置信息以及所述第一信息。
  25. 如权利要求17-24任一项所述的装置,其特征在于,所述装置还包括收发单元;
    所述收发单元,用于在所述处理单元根据测量结果确定M个候选小区之后,接收来自所述M个候选小区中第一候选小区的所述第一信息。
  26. 如权利要求17-25任一项所述的装置,其特征在于,所述装置还包括收发单元;
    所述收发单元,用于接收来自服务小区的第三信息,所述第三信息用于指示所述终端设备的业务类型。
  27. 一种小区选择装置,其特征在于,包括:
    处理单元,用于确定第一信息,所述第一信息包括至少一个小区的网络类型的信息,所述至少一个小区中第一小区的所述网络类型的信息用于指示所述第一小区为地面网络或者静止轨道卫星网络或者中轨道卫星网络或者低轨道卫星网络或者高空平台网络;
    收发单元,用于向终端设备发送所述第一信息。
  28. 如权利要求27所述的装置,其特征在于,所述第一小区的所述网络类型的信息包括所述第一小区对应的网络设备的轨道信息。
  29. 如权利要求27或28所述的装置,其特征在于,所述第一小区的所述网络类型的信息包括所述第一小区对应的网络设备的网络架构信息。
  30. 如权利要求27-29任一项所述的装置,其特征在于,所述第一小区的所述网络类型的信息包括所述第一小区的波束信息,所述波束信息用于指示波束部署方式。
  31. 如权利要求27-30任一项所述的装置,其特征在于,所述处理单元,还用于:根据所述终端设备的业务类型确定选择规则,所述选择规则用于选择目标小区,且所述选择规则包括至少一个网络类型与优先级的对应关系;
    所述收发单元,还用于向所述终端设备发送第二信息,所述第二信息用于指示所述选择规则。
  32. 如权利要求27-31任一项所述的装置,其特征在于,所述收发单元,还用于:向所述终端设备发送第三信息,所述第三信息用于指示所述终端设备的业务类型。
  33. 一种通信设备,其特征在于,所述通信设备包括收发器、处理器和存储器;所述存储器中存储有程序指令;当所述程序指令被执行时,使得所述通信设备执行如权利要求1至10任一所述的方法。
  34. 一种通信设备,其特征在于,所述通信设备包括收发器、处理器和存储器;所述存储器中存储有程序指令;当所述程序指令被执行时,使得所述通信设备执行如权利要求11至16任一所述的方法。
  35. 一种芯片,其特征在于,所述芯片与电子设备中的存储器耦合,使得所述芯片在运 行时调用所述存储器中存储的程序指令,实现如权利要求1至10任一所述的方法,或者,实现如权利要求11至16任一所述的方法。
  36. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括程序指令,当所述程序指令在设备上运行时,使得所述设备执行如权利要求1至16任一项所述的方法。
  37. 一种通信系统,其特征在于,包括如权利要求17-26任一项所述的小区切换装置以及如权利要求27-32任一项所述的小区切换装置。
PCT/CN2021/141779 2020-12-30 2021-12-27 一种小区选择方法及装置 WO2022143563A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21914299.9A EP4250817A4 (en) 2020-12-30 2021-12-27 METHOD AND DEVICE FOR CELL SELECTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011644666.2A CN114698044A (zh) 2020-12-30 2020-12-30 一种小区选择方法及装置
CN202011644666.2 2020-12-30

Publications (1)

Publication Number Publication Date
WO2022143563A1 true WO2022143563A1 (zh) 2022-07-07

Family

ID=82135894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141779 WO2022143563A1 (zh) 2020-12-30 2021-12-27 一种小区选择方法及装置

Country Status (3)

Country Link
EP (1) EP4250817A4 (zh)
CN (1) CN114698044A (zh)
WO (1) WO2022143563A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024120176A1 (zh) * 2022-12-09 2024-06-13 华为技术有限公司 一种通信方法、装置及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065309A1 (zh) * 2022-09-28 2024-04-04 北京小米移动软件有限公司 一种小区选择的方法及其装置
CN118042533A (zh) * 2022-11-03 2024-05-14 华为技术有限公司 一种通信方法、通信设备、计算机可读存储介质及程序产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024299A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种小区重选方法及装置
WO2020092561A1 (en) * 2018-10-30 2020-05-07 Idac Holdings, Inc. Methods and apparatus for mobility in moving networks
WO2020164069A1 (en) * 2019-02-14 2020-08-20 Zte Corporation Mobility enhancement in a connected state
US20200314914A1 (en) * 2019-03-27 2020-10-01 Mediatek Singapore Pte. Ltd. Broadcast and Group-based Handover in NR-based LEO-NTN

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021106301A (ja) * 2018-04-04 2021-07-26 ソニーグループ株式会社 通信装置、基地局装置、通信方法、通信プログラム及び通信システム
WO2020145558A2 (ko) * 2019-01-07 2020-07-16 주식회사 케이티 비지상 네트워크를 이용하여 통신을 수행하는 방법 및 그 장치
US11985565B2 (en) * 2019-01-16 2024-05-14 Lg Electronics Inc. Method and apparatus for mobility management in wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024299A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种小区重选方法及装置
WO2020092561A1 (en) * 2018-10-30 2020-05-07 Idac Holdings, Inc. Methods and apparatus for mobility in moving networks
WO2020164069A1 (en) * 2019-02-14 2020-08-20 Zte Corporation Mobility enhancement in a connected state
US20200314914A1 (en) * 2019-03-27 2020-10-01 Mediatek Singapore Pte. Ltd. Broadcast and Group-based Handover in NR-based LEO-NTN

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP TS38.304
See also references of EP4250817A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024120176A1 (zh) * 2022-12-09 2024-06-13 华为技术有限公司 一种通信方法、装置及系统

Also Published As

Publication number Publication date
EP4250817A1 (en) 2023-09-27
EP4250817A4 (en) 2024-05-01
CN114698044A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2022143564A1 (zh) 一种小区选择方法及装置
US20200187033A1 (en) Measurement reporting method and apparatus
WO2022143563A1 (zh) 一种小区选择方法及装置
CN111565428B (zh) 小区重选方法以及装置
WO2020088283A1 (zh) 通信方法、装置及存储介质
WO2021062729A1 (zh) 一种切换处理方法、通信设备、终端设备
WO2021218672A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2022199430A1 (zh) 测量及上报方法、装置及系统
US20230135073A1 (en) Signaling efficiency improvements in non-terrestrial networks
US20220225150A1 (en) Cell Measurement Method and Communications Apparatus
WO2021062599A1 (zh) 通信方法、小区测量的方法与通信装置
US20230125129A1 (en) Method and apparatus for cell selection, terminal, network device and storage medium
WO2022082539A1 (zh) 一种无线通信方法及装置
US20230164685A1 (en) Access Control Method and Apparatus for Terminal Device
CN114342469B (zh) 小区选择的方法与通信装置
US20220322176A1 (en) Cell Reselection Method and System, and Apparatus
WO2022027187A1 (zh) 一种公共陆地移动网络选择方法及装置
WO2022000310A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022001764A1 (zh) 一种小区选择方法及装置
WO2023272490A1 (zh) 小区重选方法、终端设备、ntn设备、芯片和存储介质
WO2021161926A1 (ja) 通信制御方法及びユーザ装置
WO2020164430A1 (zh) 小区重选方法以及装置
WO2022206557A1 (zh) 一种通信方法及装置
WO2024032669A1 (zh) 一种用于非地面网络的通信的方法及装置
WO2023082191A1 (zh) 一种无线通信方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021914299

Country of ref document: EP

Effective date: 20230619

NENP Non-entry into the national phase

Ref country code: DE