WO2022143512A1 - 一种紧耦合阵列天线及网络设备 - Google Patents

一种紧耦合阵列天线及网络设备 Download PDF

Info

Publication number
WO2022143512A1
WO2022143512A1 PCT/CN2021/141593 CN2021141593W WO2022143512A1 WO 2022143512 A1 WO2022143512 A1 WO 2022143512A1 CN 2021141593 W CN2021141593 W CN 2021141593W WO 2022143512 A1 WO2022143512 A1 WO 2022143512A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric plate
array antenna
tightly coupled
antenna
coupled array
Prior art date
Application number
PCT/CN2021/141593
Other languages
English (en)
French (fr)
Inventor
刘祥龙
张关喜
唐朝阳
邹艳林
陈栋
赵国栋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21914248.6A priority Critical patent/EP4250490A4/en
Publication of WO2022143512A1 publication Critical patent/WO2022143512A1/zh
Priority to US18/342,445 priority patent/US20230420848A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/48Combinations of two or more dipole type antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials

Definitions

  • the present application relates to the field of mobile communications, and in particular, to a tightly coupled array antenna and network equipment.
  • the antenna plays the role of mutual transformation between the guided wave on the transmission line and the electromagnetic wave in the free space, so as to realize the wireless transmission of electromagnetic signals between any two points.
  • An array antenna composed of multiple antenna units in a certain arrangement can use the superposition of electromagnetic waves to strengthen the radiation signal in a specific direction, and is widely used in various fields.
  • Array antennas are widely used because of their high gain. However, since the array antenna integrates multiple antenna monomers into one device, there will be a strong coupling effect between the antenna monomer and the antenna monomer, making the antenna Monolith is not working properly. Using a smaller number of antenna elements in the array antenna can achieve the purpose of reducing the coupling effect between the antenna elements. Using a smaller number of antenna elements in the array antenna requires the array antenna to have ultra-bandwidth to meet the needs of different frequency bands. .
  • the present application provides a tightly coupled array antenna, comprising:
  • a first dielectric plate, a plurality of antenna units are arranged on the lower surface of the first dielectric plate; the antenna unit includes at least two dipole antennas, and the dipole antenna includes two symmetrically arranged vibrator arms; the vibrator arms are partially hollowed out; A plurality of coupling structures are arranged on the upper surface, and each of the coupling structures is electrically connected to one of the antenna units.
  • the tightly coupled array antenna includes at least a first dielectric plate, a plurality of dipole antennas are arranged on the lower surface of the first dielectric plate, the dipole antenna is partially hollowed out, and the dipole antenna is partially hollowed out.
  • the capacitance formed between the vibrator arm and the first dielectric plate is reduced, and on the other hand, the cross-sectional area of the current path is reduced to increase the real part of the impedance, thereby achieving the purpose of reducing the active standing wave of the tightly coupled array antenna.
  • the tightly coupled array antenna further includes: a second dielectric plate, which is arranged in parallel above the first dielectric plate, and a plurality of Parasitic patches, the center of each parasitic patch coincides with the center of the coupling structure in the vertical direction.
  • a parasitic patch is loaded on the top of the coupling structure, which is equivalent to introducing an inductive component.
  • the inductive component can cancel the capacitive reactance of the antenna unit, so that the real part of the impedance of the tightly coupled array antenna is smoother, and the active stationary waves are reduced.
  • the tightly coupled array antenna further includes: a third dielectric plate, disposed on the lower surface of the first dielectric plate and perpendicular to the first dielectric plate, and a third dielectric plate.
  • the first surface of the dielectric plate is provided with a feeding microstrip line
  • the first surface is perpendicular to the first dielectric plate
  • the second surface of the third dielectric plate is provided with a microstrip line floor
  • the second surface is perpendicular to the
  • the first dielectric plate, the feeding microstrip line and the microstrip line floor form a balun structure, and each of the balun structures is electrically connected to one of the dipole antennas.
  • the feeding microstrip line and the microstrip line floor form a balun structure, and the balun structure can achieve the purpose of balanced feeding and impedance matching, so that the active standing wave of the tightly coupled array antenna can be reduced.
  • the microstrip floor is partially hollowed out.
  • the microstrip floor is partially hollowed out. On the one hand, it can increase the diversity of current flowing on the microstrip floor, and on the other hand, reduce the cross-sectional area of the current path to increase the real part of the impedance, thereby reducing tight coupling.
  • the tightly coupled array antenna further includes: a reflection floor, which is arranged in parallel below the first dielectric plate, and the reflection floor is electrically connected to the balun structure .
  • the reflective floor can reflect the signal received by the dipole antenna and concentrate it on the receiving point, which greatly enhances the receiving capability of the antenna and can achieve the purpose of unidirectional radiation of the dipole antenna signal.
  • the reflective floor can It can also have the effect of blocking and shielding other radio wave interference from the back of the reflective floor.
  • the coupling structure includes a first feeding sheet and a second feeding sheet, the first feeding sheet and the second feeding sheet Vertical setting.
  • the angle between the first feeding sheet and the second feeding sheet is 90 degrees, so that the antenna unit has good dual-polarization characteristics and reduces interference.
  • the upper surface of the first dielectric plate is spaced apart from the lower surface of the second dielectric plate by a preset distance.
  • the preset distance between the upper surface of the first dielectric plate and the lower surface of the second dielectric plate is equivalent to introducing a capacitive component, and the capacitive component can make the tightly coupled array antenna exhibit ultra-wideband characteristics.
  • the application provides a tightly coupled array antenna, comprising:
  • a first dielectric plate a plurality of antenna units are arranged on the lower surface of the first dielectric plate, the antenna units have at least two dipole antennas, and the dipole antennas include two symmetrically arranged vibrator arms; the first dielectric plate
  • a plurality of coupling structures are arranged on the upper surface of the board, and each of the coupling structures is electrically connected to one of the antenna units;
  • the second dielectric plate is arranged in parallel above the first dielectric plate, and a plurality of parasitic patches are arranged on the upper surface of the second dielectric plate, and the center of the parasitic patch and the center of the coupling structure coincide in the vertical direction.
  • a parasitic patch is loaded on the top of the coupling structure, which is equivalent to introducing an inductive component.
  • the inductive component can cancel the capacitive reactance of the antenna unit, so that the real part of the impedance of the tightly coupled array antenna is smoother, and the active stationary waves are reduced.
  • the tightly coupled array antenna further includes:
  • the third dielectric plate is arranged on the lower surface of the first dielectric plate and is perpendicular to the first dielectric plate, the first surface of the third dielectric plate is provided with a feeding microstrip line, and the first surface is perpendicular to the first dielectric plate,
  • the second surface of the third dielectric board is provided with a microstrip line floor, the second surface is perpendicular to the first dielectric board, and the bottom end of the feeding microstrip line is electrically connected to the bottom end of the microstrip line floor.
  • the feeding microstrip line and the microstrip line floor form a balun structure, and the balun structure can achieve the purpose of balanced feeding and impedance matching, so that the active standing wave of the tightly coupled array antenna can be reduced.
  • the microstrip floor is partially hollowed out.
  • the microstrip floor is partially hollowed out. On the one hand, it can increase the diversity of current flowing on the microstrip floor, and on the other hand, reduce the cross-sectional area of the current path to increase the real part of the impedance, thereby reducing tight coupling.
  • the present application provides a network device, where the network device includes the tightly coupled array antenna provided in the first aspect, or the tightly coupled array antenna provided in the second aspect.
  • the network device includes a tightly coupled array antenna.
  • the tightly coupled array antenna includes at least a first dielectric plate, and a plurality of dipole antennas are arranged on the lower surface of the first dielectric plate.
  • the capacitance formed between the first dielectric plates reduces the cross-sectional area of the current path to increase the real part of the impedance, thereby achieving the purpose of reducing the active standing wave of the tightly coupled array antenna.
  • the tightly coupled array antenna includes a first dielectric plate and a second dielectric plate, the lower surface of the first dielectric plate is provided with a plurality of antenna elements, the upper surface of the first dielectric plate is provided with a plurality of coupling structures, and each antenna element is associated with one of the The coupling structure is electrically connected; a plurality of parasitic patches are arranged on the upper surface of the second dielectric plate, the center of the parasitic patch and the center of the coupling structure are coincident in the vertical direction, and one parasitic patch is loaded above the coupling structure, which is equivalent to The inductive component is introduced, which can cancel the capacitive reactance of the antenna unit, make the real part of the impedance of the tightly coupled array antenna smoother, and reduce the active standing wave.
  • FIG. 1 is a schematic structural diagram of a tightly coupled array antenna provided according to a feasible embodiment
  • FIG. 2 is a schematic structural diagram of a first dielectric plate provided according to a feasible embodiment
  • 3A is a schematic diagram of a dipole antenna according to a feasible embodiment
  • 3B is a schematic diagram of a dipole antenna according to a feasible embodiment
  • FIG. 4 is a top view of an antenna unit according to a feasible embodiment
  • FIG. 5 is a top view of a first dielectric plate provided according to a feasible embodiment
  • FIG. 6 is a top view of a second dielectric plate provided according to a feasible embodiment
  • FIG. 7 is a schematic structural diagram of a third dielectric plate provided according to a feasible embodiment
  • Fig. 8 is the change curve of impedance real part and imaginary part with frequency of the tightly coupled array antenna before and after improvement
  • Fig. 9 is the change curve of active standing wave with frequency of the tight coupling array antenna before and after improvement
  • Fig. 10 is the variation curve of active standing wave with frequency when the tightly coupled array antenna adopts two balun structures respectively;
  • FIG. 11 is the active standing wave scanning characteristic in the D plane of the tightly coupled array antenna (without the balun structure) in the embodiment of the application;
  • FIG. 12 is an active standing wave scanning characteristic in the D-plane of a tightly coupled array antenna with a feeding balun in an embodiment of the present application.
  • the tightly coupled array antenna includes at least the first dielectric plate 1 .
  • a plurality of dipole antennas 111 are disposed on the lower surface of the first dielectric plate 1 , and the vibrator arms of the dipole antennas 111 are partially hollowed out.
  • the local hollow design of the vibrator arm of the dipole antenna 111 reduces the capacitance formed between the vibrator arm and the first dielectric plate 1 on the one hand, and on the other hand, reduces the cross-sectional area of the current path and increases the real part of the impedance, thereby reducing the tightly coupled array.
  • the purpose of the active standing wave of the antenna In order to make the objectives, technical solutions and advantages of the present application clearer, the present application will be further described in detail below by taking non-limiting examples as examples.
  • FIG. 2 is a schematic structural diagram of a first dielectric plate provided according to a feasible embodiment.
  • the first dielectric board 1 may be, but is not limited to, a ceramic circuit board, an alumina ceramic circuit board, an aluminum nitride ceramic circuit board, a circuit board, a PCB (Printed Circuit Board, printed circuit board), an aluminum substrate, High-frequency board, copper board, impedance board, ultra-thin circuit board, ultra-thin circuit board, printed circuit board, etc.; for example, in a feasible embodiment, the first dielectric board 1 can be Rogers RO4350.
  • the shape of the first medium plate 1 can be set according to requirements; for example, in a feasible embodiment, the first medium plate 1 can be a square plate with a side length of 24 mm.
  • the thickness of the first dielectric plate 1 can be set according to requirements; for example, in a feasible embodiment, the thickness of the first dielectric plate 1 can be 0.762 mm. This embodiment does not limit the number of dipole antennas 111 provided on the lower surface of the first dielectric plate 1. In the process of practical application, the data amount of the dipole antennas 111 can be set according to requirements. For example, in a feasible embodiment The data amount of the dipole antennas 111 may be four.
  • a plurality of dipole antennas 111 are disposed on the lower surface of the first dielectric plate 1 .
  • This embodiment does not limit the arrangement of the dipole antenna 111 on the lower surface of the first dielectric board 1 . Any arrangement that can achieve the purpose of signal transmission between the dipole antenna 111 and the first dielectric board 1 can be applied to In this embodiment; for example, in some feasible embodiments, the setting method may be printing, and in some feasible embodiments, the setting method may be printing.
  • the dipole antenna 111 is provided with two symmetrical vibrator arms to achieve 360-degree signal coverage in the horizontal direction.
  • the vibrator arm of the dipole antenna 111 is partially hollowed out.
  • the partial hollowing out of the vibrator arm can be understood as: at least one hollowing out is formed on the vibrating arm, the hollowing out penetrates the vibrating arm in the vertical direction, and the area of the hollowing out is smaller than that of the vibrating arm.
  • the hollow can be arranged in the vibrator arm, that is, the distance from the center of the hollow to the boundary of all hollows is smaller than the distance from the center of the hollow to the boundary of the vibrator arm in the same direction. For example, FIG.
  • 3A is a schematic diagram of a dipole antenna according to a feasible embodiment; in this embodiment, the hollow is arranged in the vibrator arm, and it can be seen from FIG. 3A that the hollow center point A to the hollow boundary point B The distance is less than the distance from the hollow center point A to the boundary point C of the vibrator arm.
  • This embodiment is only an example to introduce an application example in which the hollow can be arranged in the vibrator arm, and the implementation of the hollow arranged in the vibrator arm in the process of practical application may be but not limited to the above-mentioned implementation.
  • the hollow can be arranged on the boundary of the vibrator arm, that is, the distance from the center of the hollow to the boundary of the partial hollow is equal to the distance from the center of the hollow to the boundary of the vibrator arm in the same direction, and the distance from the center of the hollow to the boundary of the partial hollow is smaller than that of the same direction.
  • FIG. 3B is a schematic diagram of a dipole antenna according to a feasible embodiment; in this embodiment, the hollow is arranged on the boundary of the vibrator arm, and it can be seen from FIG.
  • the center point A of the hollow is separated from the hollow boundary point D
  • the distance is equal to the distance from the hollow center point A to the boundary point D of the oscillator arm; the distance from the hollow center point A to the hollow boundary point E is less than the distance from the hollow center point A to the boundary point F of the oscillator arm.
  • This embodiment is only an example to introduce an application example in which the hollow can be disposed on the boundary of the vibrator arm.
  • the implementation manner in which the hollow can be disposed in the vibrator arm can be but not limited to the above-mentioned implementation manner.
  • the hollow shape may be a regular polygon; in some feasible embodiments, the hollow shape may be a circle.
  • the capacitance formed between a dielectric plate 1 and the hollow shape that reduces the cross-sectional area of the current path to increase the effect of the real part of the impedance can be applied to the solution of this embodiment.
  • the dipole antennas 111 are spaced apart from each other, that is, the vibrator arms of the dipole antennas 111 are discontinuous.
  • a plurality of dipole antennas 111 spaced apart from each other can form one antenna unit 11 .
  • FIG. 4 is a top view of an antenna unit according to a feasible embodiment. It can be seen from the figure that dipole antennas ( 111 a , 111 b , 111 c , 111 d ) form one antenna unit 11 .
  • the dipole arms of the two dipole antennas can be arranged vertically inside the antenna unit, for example, the dipole arms of the dipole antenna 111a in FIG.
  • the dipole arms of the two dipole antennas may be disposed opposite to each other inside the antenna unit, for example, the dipole arms of the dipole antenna 111a in FIG. 4 are vertically disposed opposite to the dipole arms of the dipole antenna 111c.
  • a plurality of coupling structures 12 are disposed on the upper surface of the first dielectric board 1 , and the coupling structures 12 are electrically connected to the antenna unit 11 .
  • each coupling structure 12 is electrically connected to one antenna element 11 .
  • This embodiment does not limit the arrangement of the coupling structure 12 on the upper surface of the first dielectric board 1 , and any arrangement that can achieve the purpose of signal transmission between the coupling structure 12 and the first dielectric board 1 can be applied to this embodiment
  • the arrangement may be printing, and in some possible embodiments, the arrangement may be printing.
  • the coupling structure 12 involved in this embodiment refers to a structure that can receive the radiation signal radiated by the coupling antenna 111 inside the antenna unit 11 and generate an induced current.
  • the upper surface of the first dielectric plate 1 is provided with a coupling structure 12
  • the coupling structure 12 may include two feeding sheets, wherein , the two feeding sheets are the first feeding sheet 121 and the second feeding sheet 122 respectively.
  • the first feeding piece 121 and the second feeding piece 123 may be connected through a connecting part; one end of the first feeding piece 121 is connected to the vibrator arm of the dipole antenna 111b and the first feeding piece 121 The other end of the second feeding sheet 122 is electrically connected to the vibrator arm of the dipole antenna 111d; one end of the second feeding sheet 122 is electrically connected to the vibrating arm of the dipole antenna 111a, and the other end of the second feeding sheet 122 is electrically connected to the vibrating arm of the dipole antenna 111c
  • the electrical connection is made to realize the galvanic coupling between the dipole antennas (111a, 111b, 111c, 111d).
  • the included angle between the first feeding sheet 121 and the second feeding sheet 122 is 90 degrees, so that the antenna unit 11 has good dual polarization characteristics and reduces interference. It needs to be clear that the angle between the first feeding piece 121 and the second feeding piece 122 is 90 degrees is only a preferred example, in the process of practical application, the first feeding piece 121 and the second feeding piece 121 and the second The included angle between the feeding pieces 122 can be set according to requirements.
  • the electrical connection involved in this application is a collection of tightly coupled array antennas including electrical circuits of electrical products, and the electrical products may include antenna units, coupling structures, and the like involved in this embodiment.
  • electrical connection Through electrical connection, electrical signals or waves can be transmitted between electrical products.
  • the electrical connection between the coupling structure 12 and the antenna unit 11 can realize the purpose that the coupling structure 12 receives the radiation signal radiated by the coupling antenna of the antenna unit 11 , and the radiated signal generates an induced current on the coupling structure 12 , thereby realizing the purpose of realizing the interior of the antenna unit 11 . galvanic coupling between the dipole antennas 111.
  • the first dielectric board 1 provided in this embodiment will be further described below with reference to specific examples.
  • FIG. 5 is a top view of a first dielectric plate provided according to a feasible embodiment.
  • the first dielectric plate 1 may be a Rogers RO4350, with a thickness of 0.762 mm and a side length of 24 mm.
  • the dipole antenna 111 is a butterfly antenna.
  • the dipole antenna 111 is provided with two dipole arms, and the width of the dipole arms is equal to the width of the coupling structure 12 and equal to 4 mm.
  • the size of each part of the first dielectric board shown in this embodiment is only a preferred example. In the process of practical application, the size of each part of the first dielectric board can be set according to requirements. People don't limit themselves too much.
  • the tightly coupled array antenna includes at least a first dielectric plate 1, and a plurality of dipole antennas 111 are arranged on the lower surface of the first dielectric plate 1.
  • the partial hollow design of the vibrator arm of 111 reduces the capacitance formed between the vibrator arm and the first dielectric plate 1 on the one hand, and on the other hand, reduces the cross-sectional area of the current path and increases the real part of the impedance, thereby reducing the performance of the tightly coupled array antenna.
  • the purpose of active standing waves is used to reduce the capacitance formed between the vibrator arm and the first dielectric plate 1 on the one hand, and on the other hand, reduces the cross-sectional area of the current path and increases the real part of the impedance, thereby reducing the performance of the tightly coupled array antenna.
  • the tightly coupled array antenna may further include a second dielectric plate 2 .
  • the second dielectric plate 2 is arranged in parallel above the first dielectric plate 1 , and a plurality of parasitic patches 21 are disposed on the upper surface thereof.
  • the centers of the parasitic patches 21 and the center of the coupling structure 12 are vertically coincident.
  • one parasitic patch 21 is loaded on the top of the coupling structure 12, and loading one parasitic patch 21 is equivalent to introducing an inductive component, and the inductive component can cancel the capacitive reactance of the antenna unit 11, so that the tight
  • the real part of the impedance of the coupled array antenna is smoother, and the active standing wave is reduced.
  • the tightly coupled array antenna may include a first dielectric plate 1 and a second dielectric plate 2 .
  • the second dielectric plate 2 is arranged in parallel above the first dielectric plate 1 , and a plurality of parasitic patches 21 are disposed on the upper surface of the second dielectric plate 2 .
  • the second dielectric board 2 may be a ceramic circuit board, an alumina ceramic circuit board, an aluminum nitride ceramic circuit board, a circuit board, a PCB, an aluminum substrate, a high-frequency board, a thick copper board, an impedance board, and an ultra-thin circuit boards, ultra-thin circuit boards, printed circuit boards, etc.
  • the shape of the second medium plate 2 can be set according to requirements.
  • the shape of the second medium plate 2 is the same as that of the first medium plate 1 .
  • the type of the parasitic patch 21 is not limited, and any parasitic patch that can play an equivalent role of introducing an inductive component can be applied to this embodiment; for example, in some feasible embodiments, parasitic patches Patch 21 may be a metal patch.
  • This embodiment does not limit the shape of the parasitic patch 21; for example, the parasitic patch 21 may be a regular polygon in some feasible embodiments, and the parasitic patch 21 may be a circle in some feasible embodiments.
  • This embodiment does not limit the arrangement of the parasitic patch 21 on the upper surface of the second dielectric board 2 , and any arrangement that can achieve the purpose of signal transmission between the parasitic patch 21 and the second dielectric board 2 can be applied to in this example.
  • FIG. 6 is a top view of a second dielectric plate provided according to a feasible embodiment.
  • the second dielectric plate shown in FIG. 6 can be assembled with the first dielectric plate shown in FIG. 5 to form a tightly coupled array antenna.
  • the size of each part of the second dielectric board shown in this embodiment is only a preferred example. In the process of practical application, the size of each part of the second dielectric board can be set according to requirements. People don't limit themselves too much.
  • one parasitic patch 21 is loaded on the top of the coupling structure 12, which is equivalent to introducing an inductive component.
  • the inductive component can cancel the capacitive reactance of the antenna unit 11, so that the tight The real part of the impedance of the coupled array antenna is smoother, and the active standing wave is reduced.
  • the upper surface of the first dielectric plate 1 and the lower surface of the second dielectric plate 2 can be separated by a preset distance.
  • the preset distance between the upper surface of the first dielectric plate 1 and the lower surface of the second dielectric plate 2 is equivalent to introducing a capacitive component, which can make the tightly coupled array antenna exhibit ultra-wideband characteristics. This will be further described below in conjunction with the embodiments.
  • the upper surface of the first dielectric plate 1 and the lower surface of the second dielectric plate 2 are separated by a preset distance, wherein the preset distance is 6mm-10mm.
  • the preset distance between the second medium plate 2 shown in FIG. 6 and the first medium plate 1 shown in FIG. 5 may be 8 mm.
  • the space between the upper surface of the first dielectric plate 1 and the lower surface of the second dielectric plate 2 is 8 mm, which is equivalent to introducing a capacitive component inside the tightly coupled array antenna, and the capacitive component can make the tightly coupled array antenna exhibit ultra-wideband characteristics.
  • This embodiment does not limit the arrangement of the first medium plate 1 and the second medium plate 2 , any arrangement that can achieve the purpose of separating the upper surface of the first medium plate 1 and the lower surface of the second medium plate 2 by a preset distance All methods can be applied to this embodiment.
  • several bolts may be used between the first dielectric plate 1 and the second dielectric plate 2 for support.
  • the tightly coupled array antenna may further include a third dielectric plate 3 .
  • a feeding microstrip line 31 is provided on the first surface of the third dielectric board 3
  • a microstrip line floor 32 is provided on the second surface of the third dielectric board 3 .
  • the feeding microstrip line 31 and the microstrip line floor 32 form a balun structure.
  • the feeding microstrip line 31 and the microstrip line floor 32 form a balun structure.
  • the balun structure can achieve the purpose of balanced feeding and impedance matching, so that the active standing wave of the tightly coupled array antenna can be achieved. be reduced. This will be further described below in conjunction with the embodiments.
  • the tightly coupled array antenna may include a first dielectric plate 1 , a second dielectric plate 2 and a third dielectric plate 3 .
  • the third dielectric board 3 is perpendicular to and connected to the first dielectric board 1
  • the feeding microstrip line 31 is provided on the first surface of the third dielectric board 3
  • the first surface is perpendicular to the surface of the first dielectric board 1
  • the third dielectric board 3 is The second surface of a dielectric board is provided with a microstrip line floor 32 , wherein the second surface is a surface perpendicular to the first dielectric board 1
  • the bottom end of the feeding microstrip line 31 is electrically connected to the bottom end of the microstrip line floor 32 connect.
  • the first surface and the second surface are the same surface of the third dielectric plate.
  • the first surface and the second surface may be opposite surfaces of the third dielectric plate.
  • the feeding microstrip line 31 referred to in this application refers to a microstrip line that can provide power and transmit electrical signals; for example, in some feasible embodiments, the feeding microstrip line 31 may be a copper wire.
  • the microstrip floor 32 referred to in this application refers to a floor that can form a balun structure with the feeding microstrip 31; for example, in some feasible embodiments, the microstrip floor 32 can be a metal floor.
  • the third dielectric board 3 provided in this embodiment will be further described below with reference to specific examples.
  • FIG. 7 is a front view of a third dielectric plate provided according to a feasible embodiment.
  • the third dielectric board shown in FIG. 7 can be combined with the first dielectric board shown in FIG. 5 and the second dielectric board shown in FIG. 6 to form a tightly coupled array antenna.
  • the third dielectric plate 3 has a rectangular structure, and the width of the third dielectric plate 3 in the vertical direction is 17.5 mm. It is worth noting that the size of the third dielectric board introduced in this embodiment is only a preferred example. In the process of practical application, the size of each part of the third dielectric board can be set according to the requirements. Too many restrictions.
  • the dipole antennas 111 in the first dielectric plate 1 shown in FIG. 2 are arranged perpendicular to each other.
  • each dipole antenna 111 is configured with a balun structure. Since the dipole antennas 111 are arranged perpendicular to each other, the corresponding balun structures also need to be perpendicular to each other. Therefore, in some feasible embodiments, the third dielectric board 3 may be provided with a gap structure 33, and the two third dielectric boards 3 can be inlaid together through the matching and corresponding gap structures 33 to ensure that printing on the third dielectric board 3
  • the balun structures on the surface of the dielectric plate 3 are perpendicular to each other, thereby realizing the correspondence between the balun structures and the dipole antenna 111 .
  • a limiting protrusion 34 may be provided at the top of the third dielectric plate 3 , and correspondingly provided on the surface of the first dielectric plate 1 There is an accommodating part (not shown in the figure), during installation, the limiting protrusion 34 can be inserted into the accommodating part to realize the locking of the third dielectric plate 3 and the first dielectric plate 1, so as to ensure the stability of the obtained tightly coupled array antenna structure .
  • the microstrip floor 32 is partially hollowed out.
  • the microstrip floor 32 is partially hollowed out.
  • the diversity of current flowing on the microstrip floor 32 can be increased, and on the other hand, the cross-sectional area of the current path can be reduced to increase the real part of the impedance.
  • the purpose of reducing the active standing wave of the tightly coupled array antenna is achieved.
  • This embodiment does not limit the shape of the hollow.
  • the hollow shape may be a regular polygon, which can increase the diversity of the current flowing on the microstrip floor 32, and reduce the current on the other hand.
  • the hollow shape of the cross-sectional area of the path to increase the real part of the impedance can be applied to the solution of this embodiment.
  • the tightly coupled array antenna further includes: a reflection floor 4 .
  • the reflection floor 4 is arranged in parallel below the first dielectric plate 1 .
  • the reflective floor 4 can reflect the signal received by the dipole antenna 111 and concentrate it on the receiving point, which greatly enhances the receiving ability of the antenna and can achieve the purpose of unidirectional radiation of the signal of the dipole antenna 111.
  • the reflective floor 4 also It can also have the effect of blocking and shielding other radiation signals from the back of the reflective floor 4 and preventing interference.
  • the tightly coupled array antenna may include a first dielectric plate 1 , a second dielectric plate 2 , a third dielectric plate 3 and a reflection floor 4 .
  • the reflection floor 4 is arranged in parallel below the first dielectric plate 1 , and the reflection floor 4 is electrically connected to the balun structure.
  • the reflective floor 4 involved in this embodiment refers to a floor that can reflect the signals received by the dipole antenna 111 and concentrate on the receiving point and block and shield other radiated signals from the back of the reflective floor 4 .
  • the reflective floor 4 may be a metal plate.
  • the tightly coupled array antenna at least includes a first dielectric plate 1 and a second dielectric plate 2 .
  • a plurality of dipole antennas 111 are arranged on the lower surface of the first dielectric plate 1, the dipole antennas 111 are arranged at intervals, and the plurality of dipole antennas 111 form an antenna unit 11, and a plurality of coupling structures 12 are arranged on the upper surface of the first dielectric plate 1
  • the second dielectric plate 2 is arranged in parallel above the first dielectric plate 1, and a plurality of parasitic patches 21 are arranged on the upper surface of the second dielectric plate 2, and the center of the parasitic patch 21 and the center of the coupling structure 12 are in the vertical direction coincide.
  • a parasitic patch 21 is loaded on the top of the coupling structure 12, which is equivalent to introducing an inductive component.
  • the inductive component can cancel the capacitive reactance of the antenna unit 11, so that the real part of the impedance of the tightly coupled array antenna is reduced. For smoothing, the active standing wave is reduced.
  • the tightly coupled array antenna further includes: a third dielectric plate 3 , which is arranged on the lower surface of the first dielectric plate 1 and is perpendicular to the first dielectric plate 1 , A feeding microstrip line 31 is provided on the first surface of the third dielectric board 3, the first surface is perpendicular to the first dielectric board 1, and a microstrip line floor 32 is provided on the second surface of the third dielectric board 3, so The second surface is perpendicular to the first dielectric plate, and the feeding microstrip line 31 and the microstrip line floor 32 form a balun structure.
  • the feeding microstrip line 31 and the microstrip line floor 32 form a balun structure, and the balun structure can achieve the purpose of balanced feeding and impedance matching, so that the active standing wave of the tightly coupled array antenna can be reduced .
  • the microstrip floor 32 can be set to be partially hollowed out.
  • the microstrip floor 32 is partially hollowed out.
  • the diversity of current flowing on the microstrip floor 32 can be increased, and on the other hand, the cross-sectional area of the current path can be reduced to increase the real part of the impedance, thereby realizing The purpose of reducing active standing waves of tightly coupled array antennas.
  • Fig. 8 is the curve of the real part and imaginary part of the impedance of the tightly coupled array antenna before and after improvement obtained based on commercial electromagnetic simulation software as a function of frequency.
  • the tightly coupled array antenna before the improvement is a tightly coupled array antenna that is not provided with parasitic patches and dipole antennas, and the dipole arms are not designed with hollow design; the improved tightly coupled array antenna is provided with parasitic patches and/or dipoles.
  • the dipole arm of the pole antenna is a tightly coupled array antenna with hollow design.
  • the real part of the impedance of the tight-coupled array antenna before the improvement varies between 100 ohms and 250 ohms, and the imaginary part of the impedance varies between -120 ohms and 30 ohms.
  • the design of the parasitic patch makes the real part of the impedance in the working frequency band of the tightly coupled array antenna more gentle, which is kept at about 200 ohms.
  • the tightly coupled array antenna before the improvement is the vibrator arm without the parasitic patch and the dipole antenna
  • the improved tightly coupled array antenna is a tightly coupled array antenna with a hollow design for the dipole arms provided with parasitic patches and/or dipole antennas.
  • the active standing wave in the working frequency band of the tight-coupled array antenna is kept below 2.0 before the improvement; the active standing wave at the high frequency end is slightly improved by the design of partially hollowing out the vibrator arm;
  • the design of loading parasitic patches reduces the active standing wave in the working frequency band to below 1.5; by using the design of partial hollowing out of the vibrator arm and loading parasitic patches at the same time, the active standing wave in the working frequency band is reduced to below 1.35.
  • balun 10 is the variation curve of the active standing wave with frequency when the tightly coupled array antenna obtained based on the commercial electromagnetic simulation software according to the embodiment of the application adopts two balun structures respectively, and the two balun structures are respectively the microstrip line floor without
  • the hollow design of the balun structure and the microstrip floor are made of the hollow design of the balun structure.
  • the close-coupled array antenna with the microstrip line floor in the balun structure without hollow design keeps the active standing wave below 2.0 in the working frequency band.
  • the close-coupled array antenna of the microstrip floor hollow design in the balun structure keeps the active standing wave below 1.5 in the working frequency band.
  • FIG. 11 is the active standing wave scanning characteristic in the D plane of the ideally fed periodic tightly coupled array antenna in the embodiment of the application.
  • the D plane is the main plane of the tightly coupled array antenna, that is, the scanning direction is 45 degrees from the dipole arm. Angled plane. It can be seen that when the application is ideally fed, the octave of the active standing wave below 1.5 reaches 3.94:1; the scanning angle is within 20 degrees, and the octave of the active standing wave below 1.5 reaches 4:1; When the angle is within 40 degrees, the octave of the active standing wave below 2.0 reaches 3.77:1; the scanning angle is within 60 degrees, the octave of the active standing wave below 2.25 reaches 3.5:1.
  • FIG. 12 is an active standing wave scanning characteristic in the D-plane of the tightly coupled array antenna with a feeding balun according to an embodiment of the present application. It can be seen that after adding the balun structure, in the plane at an angle of 45 degrees with the vibrator, when the scanning angle is within 0, 20, 40, and 60 degrees, the octave of the active standing wave below 1.5 reaches 3.5:1, Moreover, the active standing wave at most frequency points in this frequency band is kept below 1.5.
  • the embodiments of the present application also provide a network device.
  • the network device may comprise the tightly coupled array antenna of the previous embodiments.
  • the network device may implement the functions of the network device in the foregoing embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请实施例提供了一种紧耦合阵列天线及网络设备,紧耦合阵列天线包括:第一介质板,其下表面印制有多个天线单元,天线单元包括多个偶极天线,偶极天线间隔设置,偶极天线的振子臂局部镂空;第一介质板的上表面印制有多个耦合结构,每个天线单元与一个耦合结构电气连接。本实施例提供的紧耦合阵列天线至少包括第一介质板,第一介质板的下表面印制有多个偶极天线,偶极天线的振子臂局部镂空,偶极天线的振子臂局部镂空设计一方面减小振子臂与第一介质板之间形成的电容,另一方面减小电流路径的截面积以增大阻抗实部,进而实现降低紧耦合阵列天线的有源驻波的目的。

Description

一种紧耦合阵列天线及网络设备
本申请要求于2020年12月31日提交中国国家知识产权局、申请号为202011636498.2、发明名称为“一种紧耦合阵列天线及网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信领域,尤其涉及一种紧耦合阵列天线及网络设备。
背景技术
天线作为现代无线通信系统的重要组成部分,起到了传输线上的导行波与自由空间中电磁波相互转化的作用,从而实现任意两点之间电磁信号的无线传输。将多个天线单体按照一定排列方式组成的阵列天线,能够利用电磁波的叠加使得特定方向上的辐射信号加强,而广泛应用在各个领域,其中,天线单体可以理解为能够实现导行波和电磁波相互转化功能的单体设备。
阵列天线因为其具有高增益性而被广泛的应用,但是,由于阵列天线将多个天线单体集成在一个设备上,天线单体与天线单体之间会产生较强的耦合效应,使得天线单体无法正常工作。在阵列天线中采用较少数量的天线单体可以达到降低天线单体之间耦合效应的目的,在阵列天线中采用较少数量的天线单体就需要阵列天线具有超带宽以满足不同频段的需求。
一些学者将天线单体的偶极子紧密排列制备出的紧耦合阵列天线具有较宽带宽。然而,目前已发表的紧耦合阵列天线方面的工作大多集中在如何获得更宽的带宽上,对于有源驻波这一重要参数,常以小于3.0作为标准。对于特定的应用场景,比如将紧耦合阵列天线应用于5G移动通信基站天线系统中时,不仅希望紧耦合阵列天线仍具有较宽的带宽,而且对有源驻波这一参数的要求会更高,如何降低紧耦合阵列天线的有源驻波成为亟待解决的技术问题。
发明内容
第一方面,本申请提供一种紧耦合阵列天线,包括:
第一介质板,第一介质板的下表面设置多个天线单元;天线单元包括至少2个偶极天线,偶极天线包括两个对称设置的振子臂;振子臂局部镂空;第一介质板的上表面设置多个耦合结构,每个所述耦合结构与一个所述天线单元电气连接。
本实现方式中,紧耦合阵列天线至少包括第一介质板,第一介质板的下表面设置多个偶极天线,偶极天线的振子臂局部镂空,偶极天线的振子臂局部镂空设计一方面减小振子臂与第一介质板之间形成的电容,另一方面减小电流路径的截面积以增大阻抗实部,进而实现降低紧耦合阵列天线的有源驻波的目的。
结合第一方面,在第一方面第一种可能的实现方式中,紧耦合阵列天线还包括:第二介质板,平行设置于第一介质板的上方,第二介质板的上表面设置多个寄生贴片,每个寄 生贴片的中心与耦合结构的中心在垂直方向上重合。
本实现方式中,在耦合结构的上方各加载一个寄生贴片,等效为引入电感分量,电感分量可以抵消天线单元的容性电抗,使紧耦合阵列天线阻抗实部更为平缓,有源驻波得以降低。
结合第一方面,在第一方面第二种可能的实现方式中,紧耦合阵列天线还包括:第三介质板,设置于第一介质板的下表面,与第一介质板相互垂直,第三介质板的第一表面设置馈电微带线,所述第一表面垂直于所述第一介质板,第三介质板的第二表面设置微带线地板,所述第二表面垂直于所述第一介质板,馈电微带线和所述微带线地板组成巴伦结构,每个所述巴伦结构与一个所述偶极天线电气连接。
本实现方式中,馈电微带线与微带线地板组成巴伦结构,巴伦结构可以达到平衡馈电和阻抗匹配的目的,使紧耦合阵列天线的有源驻波得以降低。
结合第一方面,在第一方面第三种可能的实现方式中,微带线地板局部镂空。
本实现方式中,微带线地板局部镂空,一方面可以增加电流在微带线地板上流通的多样性,另一方面减小电流路径的截面积以增大阻抗实部,进而实现降低紧耦合阵列天线的有源驻波的目的。
结合第一方面,在第一方面第四种可能的实现方式中,紧耦合阵列天线还包括:反射地板,平行设置于第一介质板的下方,所述反射地板与所述巴伦结构电气连接。
本实现方式中,反射地板一方面可以把偶极天线接收到的信号反射聚集在接收点上,大大增强了天线的接收能力并且可以实现偶极天线信号单向辐射的目的,反射地板另一方面还可以还起到阻挡、屏蔽来自反射地板后背的其它电波干扰的效果。
结合第一方面,在第一方面第五种可能的实现方式中,所述耦合结构包括第一馈电片和第二馈电片,所述第一馈电片和所述第二馈电片垂直设置。
本实现方式中,第一馈电片和第二馈电片之间的夹角为90度,使得天线单元具有良好的双极化特性,减少干扰。
结合第一方面,在第一方面第六种可能的实现方式中,第一介质板的上表面与第二介质板的下表面间隔预置距离。
本实现方式中,第一介质板的上表面与第二介质板的下表面间隔预置距离等效为引入电容分量,电容分量能够使得紧耦合阵列天线表现出超宽带特性。
第二方面,本申请提供一种紧耦合阵列天线,包括:
第一介质板,所述第一介质板的下表面设置多个天线单元,所述天线单元至少2个偶极天线,所述偶极天线包括两个对称设置的振子臂;所述第一介质板的上表面设置多个耦合结构,每个所述耦合结构与一个所述天线单元电气连接;
第二介质板,平行设置于第一介质板的上方,第二介质板的上表面设置多个寄生贴片,寄生贴片的中心与耦合结构的中心在垂直方向上重合。
本实现方式中,在耦合结构的上方各加载一个寄生贴片,等效为引入电感分量,电感分量可以抵消天线单元的容性电抗,使紧耦合阵列天线阻抗实部更为平缓,有源驻波得以降低。
结合第二方面,在第二方面第一种可能的实现方式中,紧耦合阵列天线还包括:
第三介质板,设置于第一介质板的下表面,与第一介质板相互垂直,第三介质板的第 一表面设置馈电微带线,第一表面垂直于所述第一介质板,第三介质板的第二表面设置微带线地板,第二表面垂直于第一介质板,馈电微带线的底端与微带线地板的底端电气连接。
本实现方式中,馈电微带线与微带线地板组成巴伦结构,巴伦结构可以达到平衡馈电和阻抗匹配的目的,使紧耦合阵列天线的有源驻波得以降低。
结合第二方面,在第二方面第二种可能的实现方式中,微带线地板局部镂空。
本实现方式中,微带线地板局部镂空,一方面可以增加电流在微带线地板上流通的多样性,另一方面减小电流路径的截面积以增大阻抗实部,进而实现降低紧耦合阵列天线的有源驻波的目的。
第三方面,本申请提供一种网络设备,网络设备包括第一方面提供的紧耦合阵列天线,或第二方面提供的紧耦合阵列天线。
本实现方式中,网络设备包括紧耦合阵列天线。紧耦合阵列天线至少包括第一介质板,第一介质板的下表面设置多个偶极天线,偶极天线的振子臂局部镂空,偶极天线的振子臂局部镂空设计一方面减小振子臂与第一介质板之间形成的电容,另一方面减小电流路径的截面积以增大阻抗实部,进而实现降低紧耦合阵列天线的有源驻波的目的。或紧耦合阵列天线包括第一介质板和第二介质板,第一介质板的下表面设置多个天线单元,第一介质板的上表面设置多个耦合结构,每个天线单元与一个所述耦合结构电气连接;第二介质板的上表面设置多个寄生贴片,寄生贴片的中心与耦合结构的中心在垂直方向上重合,在耦合结构的上方各加载一个寄生贴片,等效为引入电感分量,电感分量可以抵消天线单元的容性电抗,使紧耦合阵列天线阻抗实部更为平缓,有源驻波得以降低。
附图说明
图1为根据一可行性实施例提供的一种紧耦合阵列天线的结构示意图;
图2为根据一可行性实施例提供的一种第一介质板的结构示意图;
图3A为根据一可行性实施例示出的偶极天线的示意图;
图3B为根据一可行性实施例示出的偶极天线的示意图;
图4为根据一可行性实施例示出的天线单元的俯视图;
图5为根据一可行性实施例提供的第一介质板的俯视图;
图6为根据一可行性实施例提供的第二介质板的俯视图;
图7为根据一可行性实施例提供的第三介质板的结构示意图;
图8为改进前后紧耦合阵列天线的阻抗实部和虚部随频率的变化曲线;
图9为改进前后紧耦合阵列天线的有源驻波随频率的变化曲线;
图10为紧耦合阵列天线分别采用两种巴伦结构时的有源驻波随频率的变化曲线;
图11为本申请实施例中紧耦合阵列天线(不带巴伦结构)在D面内的有源驻波扫描特性;
图12是本申请实施例中带馈电巴伦的紧耦合阵列天线在D面内的有源驻波扫描特性。
附图标记:1-第一介质板;11-天线单元,111-偶极天线,12-耦合结构,121-第一馈电片,122-第二馈电片;2-第二介质板,21-寄生贴片;3-第三介质板;31-馈电微带线,32-微带线地板,33-缝隙结构,34-限位凸起;4-反射地板。
具体实施方式
为了降低紧耦合阵列天线的有源驻波本申请实施例第一方面提供一种新型结构的紧耦合阵列天线。具体的可以参阅图1,图1为根据一可行性实施例提供的一种紧耦合阵列天线的结构示意图。在本实施例提供的技术方案中,紧耦合阵列天线至少包括第一介质板1。第一介质板1的下表面设置多个偶极天线111,偶极天线111的振子臂局部镂空。偶极天线111的振子臂局部镂空设计一方面减小振子臂与第一介质板1之间形成的电容,另一方面减小电流路径的截面积增大阻抗实部,进而达到降低紧耦合阵列天线的有源驻波的目的。为使本申请的目的、技术方案和优点更加清楚,以下以非限制性的实施例为例对本申请作进一步详细说明。
图2为根据一可行性实施例提供的第一介质板的结构示意图。本实施例中,第一介质板1可以是但不限于陶瓷电路板、氧化铝陶瓷电路板、氮化铝陶瓷电路板、线路板、PCB(Printed Circuit Board,印制电路板)、铝基板、高频板、铜板、阻抗板、超薄线路板、超薄电路板、印刷电路板等;例如在一可行性实施例中第一介质板1可以为Rogers RO4350。第一介质板1的形状可以根据需求设定;例如在一可行性实施例中第一介质板1可以为正方形板材,边长24mm。第一介质板1的厚度可以根据需求设定;例如在一可行性实施例中第一介质板1的厚度可以为0.762mm。本实施例并不对第一介质板1下表面设置偶极天线111的数量作以限定,在实际应用的过程中可以根据需求设定偶极天线111的数据量,例如在一可行性实施例中偶极天线111的数据量可以为4个。
本实施例中,第一介质板1的下表面设置多个偶极天线111。本实施例并不对偶极天线111在第一介质板1的下表面的设置方式作以限定,凡是可以实现偶极天线111与第一介质板1之间信号传输目的的设置方式均可应用到本实施例中;例如在一些可行性实施例中设置方式可以是印制,在一些可行性实施例中设置方式可以是印刷。
本实施例中,偶极天线111设置有两个对称的振子臂,以实现水平方向上360度信号覆盖。偶极天线111的振子臂局部镂空。其中,振子臂局部镂空可以理解为:在振子臂上开设至少一个镂空,所述镂空在垂直方向上贯穿振子臂,镂空的面积小于振子臂的面积。在一些可行性实施例中,镂空可以设置于振子臂内,即镂空的中心到全部镂空边界的距离小于同方向上镂空中心到振子臂边界的距离。举例说明,图3A为根据一可行性实施例示出的偶极天线的示意图;本实施例中,镂空设置于振子臂内,从图3A可以看出镂空的中心A点到镂空的边界B点的距离小于镂空的中心A点到振子臂的边界C点的距离。本实施例仅是实例性的介绍一种镂空可以设置于振子臂内的应用实例,在实际应用的过程中镂空设置于振子臂内的实现方式可以是但不限于上述实现方式。在一些可行性实施例中,镂空可以设置于振子臂的边界,即镂空的中心到部分镂空边界的距离等于同方向上镂空中心到振子臂边界的距离,镂空的中心到部分镂空边界的距离小于同方向上镂空中心到振子臂边界的距离。举例说明,图3B为根据一可行性实施例示出的偶极天线的示意图;本实施例中镂空设置于振子臂的边界,从图3B可以看出镂空的中心A点距离镂空的边界D点的距离等于镂空的中心A点到振子臂的边界D点的距离;镂空的中心A点到镂空的边界E点的距离小于镂空的中心A点到振子臂的边界F点的距离。本实施例仅是实例性的介绍一种镂空可以设置于振子臂边界的应用实例,在实际应用的过程中镂空可以设置于振子臂内的实现方式可以是但不限于上述实现方式。
本实施例并不对镂空的形状作以限定,例如在一些可行性实施例中镂空形状可以是正 多边形;在一些可行性实施例中镂空形状可以是圆形,凡是可以起到减小振子臂与第一介质板1之间形成的电容和减小电流路径的截面积以增大阻抗实部作用的镂空形状均可应用到本实施例的方案中。
本实施例中,偶极天线111彼此之间间隔设置,即偶极天线111振子臂之间不连续。多个彼此间隔设置的偶极天线111可以组成一个天线单元11。举例说明,图4为根据一可行性实施例示出的天线单元的俯视图,从图中可以看出,偶极天线(111a、111b、111c、111d)组成一个天线单元11。在一些可行性实施例中,在天线单元内部两个偶极天线的振子臂可以垂直设置,例如图4中的偶极天线111a的振子臂垂直于偶极天线111b的振子臂;在一些可行性实施例中,在天线单元内部两个偶极天线的振子臂可以相对设置,例如图4中的偶极天线111a的振子臂垂与偶极天线111c的振子臂相对设置。
本实施例中,第一介质板1的上表面设置多个耦合结构12,耦合结构12与天线单元11电气连接。在一些可行性实施例中,每个耦合结构12与一个天线单元11电气连接。
本实施例并不对耦合结构12在第一介质板1的上表面的设置方式作以限定,凡是可以实现耦合结构12与第一介质板1之间信号传输目的的设置方式均可应用到本实施例中,例如在一些可行性实施例中设置方式可以是印制,在一些可行性实施例中设置方式可以是印刷。
本实施例中涉及的耦合结构12指的是可以接收天线单元11内部的耦合天线111辐射的辐射信号,并产生感应电流的结构。举例说明,以图2示出的第一介质板为例(天线单元的标号可以参阅图4),第一介质板1上表面设置耦合结构12,耦合结构12可以包括两个馈电片,其中,两个馈电片分别为第一馈电片121和第二馈电片122。在一些可行性实施例中第一馈电片121和第二馈电片123可以通过一个连接部连接;第一馈电片121的一端与偶极天线111b的振子臂和第一馈电片121的另一端与偶极天线111d的振子臂电气连接;第二馈电片122的一端与偶极天线111a的振子臂电气连接,第二馈电片122的另一端与偶极天线111c的振子臂电气连接,进而实现偶极天线(111a、111b、111c、111d)之间的电流耦合。可选择的,在一些可行性实施例中,第一馈电片121和第二馈电片122之间的夹角为90度,使得天线单元11具有良好的双极化特性,减少干扰。需要明确的是,第一馈电片121和第二馈电片122之间的夹角为90度仅是一种较佳的示例,在实际应用的过程中第一馈电片121和第二馈电片122之间的夹角可以根据需求设定。
本申请中涉及的电气连接为紧耦合阵列天线包含电气产品电气回路的集合,电气产品可以包括本实施例涉及的天线单元、耦合结构等。通过电气连接可以实现各电气产品之间电信号或电波相互传递。例如,耦合结构12与天线单元11之间的电气连接可以实现耦合结构12接收天线单元11的耦合天线辐射的辐射信号,辐射信号在耦合结构12上产生感应电流的目的,进而实现天线单元11内部的偶极天线111之间的电流耦合。
下面结合具体的实例对本实施例提供的第一介质板1进行进一步说明。请参阅图5,图5为根据一可行性实施例提供的第一介质板的俯视图。本实施例中第一介质板1可以为Rogers RO4350,厚度为0.762mm,边长24mm。第一介质板1的上表面设置多个耦合结构12,每个耦合结构12包括第一馈电片121和第二馈电片122,第一馈电片121和第二馈电片122垂直交叉且共用耦合结构12中部的正方形连接片,正方形连接片的边长c2=2mm。第一介质板1的下表面设置多个天线单元11,每个天线单元11与一个耦合结构12电气连 接,耦合结构12与天线单元11耦合部分长度c1=2mm,耦合结构12的宽度为w1=4mm。本实施例中偶极天线111为蝶形天线,偶极天线111设置有两个振子臂,振子臂的宽度等于耦合结构12的宽度等于4mm。振子臂包括矩形部分和V形部分,振子臂的总长为9mm,其中,其中矩形部分l1=6mm,V形部分l2=3mm,振子臂镂空部分为正方形,边长a1=b1=3.5mm。值得注意的是,本实施例示出的第一介质板各部分的尺寸仅是一种较佳的实例,在实际应用的过程中第一介质板各部分的尺寸可以根据需求设定,在此申请人不做过多的限定。
在本申请提供的技术方案中,紧耦合阵列天线至少包括第一介质板1,第一介质板1的下表面设置多个偶极天线111,偶极天线111的振子臂局部镂空,偶极天线111的振子臂局部镂空设计一方面减小振子臂与第一介质板1之间形成的电容,另一方面减小电流路径的截面积,增大阻抗实部,进而达到降低紧耦合阵列天线的有源驻波的目的。
在上述示出的技术方案的基础上,紧耦合阵列天线还可以包括第二介质板2。第二介质板2平行设置于第一介质板1的上方,其上表面设置多个寄生贴片21,寄生贴片21的中心与耦合结构12的中心在垂直方向上重合。本实施例示出的技术方案中,在耦合结构12的上方各加载一个寄生贴片21,加载一个寄生贴片21等效为引入电感分量,电感分量可以抵消天线单元11的容性电抗,使紧耦合阵列天线阻抗实部更为平缓,有源驻波得以降低。下面结合实施例对此进行进一步说明。
请继续参阅图1,在一些可行性实施例中紧耦合阵列天线可以包括第一介质板1和第二介质板2。第二介质板2平行设置于第一介质板1的上方,第二介质板2的上表面设置多个寄生贴片21,寄生贴片21的中心与耦合结构12的中心在垂直方向上重合。
本实施例中,第二介质板2可以是陶瓷电路板、氧化铝陶瓷电路板、氮化铝陶瓷电路板、线路板、PCB、铝基板、高频板、厚铜板、阻抗板、超薄线路板、超薄电路板、印刷电路板等。第二介质板2的形状可以根据需求设定,可选择的为了达到节省空间的目的,第二介质板2的形状与第一介质板1的形状相同。
本实施例中,并不对寄生贴片21的种类作以限定,凡是可以起到等效为引入电感分量作用的寄生贴片均可以应用到本实施例中;例如在一些可行性实施例中寄生贴片21可以是金属贴片。本实施例并不对寄生贴片21的形状作以限定;例如,在一些可行性实施例中寄生贴片21可以是正多边形,在一些可行性实施例中寄生贴片21可以是圆形。本实施例并不对寄生贴片21在第二介质板2的上表面的设置方式作以限定,凡是可以实现寄生贴片21与第二介质板2之间信号传输目的的设置方式均可应用到本实施例中。
下面结合具体的实例对本实施例提供的第二介质板进行进一步说明。请参阅图6,图6为根据一可行性实施例提供的第二介质板的俯视图。图6示出的第二介质板可以与图5示出的第一介质板组装成紧耦合阵列天线。本实施例中第二介质板2可以为Rogers RO4350,厚度为0.254mm,第二介质板2的上表面设置多个正方形寄生贴片21,正方形寄生贴片21的边长a=7.6mm。值得注意的是,本实施例示出的第二介质板各部分的尺寸仅是一种较佳的实例,在实际应用的过程中第二介质板各部分的尺寸可以根据需求设定,在此申请人不做过多的限定。
在本申请提供的技术方案中,本申请的技术方案中在耦合结构12的上方各加载一个寄生贴片21,等效为引入电感分量,电感分量可以抵消天线单元11的容性电抗,使紧耦合阵列天线阻抗实部更为平缓,有源驻波得以降低。
在上述示出的技术方案的基础上,可以将第一介质板1的上表面与第二介质板2的下表面间隔预置距离。本实施例提供的技术方案中第一介质板1的上表面与第二介质板2的下表面间隔预置距离等效为引入电容分量,电容分量能够使得紧耦合阵列天线表现出超宽带特性。下面结合实施例对此进行进一步说明。
请继续参阅图1,在一些可行性实施例中,第一介质板1的上表面与第二介质板2的下表面间隔预置距离,其中,预置距离在6mm-10mm。具体应用到图6示出的第二介质板2可以与图5示出的第一介质板1之间的预置距离为8mm。第一介质板1的上表面与第二介质板2的下表面间隔8mm等效为在紧耦合阵列天线内部引入电容分量,电容分量能够使得紧耦合阵列天线表现出超宽带特性。
本实施例并不对第一介质板1与第二介质板2的设置方式作以限定,凡是可以达到第一介质板1的上表面与第二介质板2的下表面间隔预置距离目的的设置方式均可应用到本实施例中。可选择的,为了降低紧耦合阵列天线的质量及生产成本,在一些可行性实施例中,第一介质板1和第二介质板2之间可以采用若干螺栓支撑。
在上述示出的技术方案的基础上,紧耦合阵列天线还可以包括第三介质板3。第三介质板3的第一表面设置馈电微带线31,第三介质板3的第二表面设置微带线地板32,馈电微带线31和微带线地板32组成巴伦结构。在本实施例提供的技术方案中馈电微带线31与微带线地板32组成巴伦结构,巴伦结构可以达到平衡馈电和阻抗匹配的目的,使紧耦合阵列天线的有源驻波得以降低。下面结合实施例对此进行进一步说明。
请继续参阅图1,在一些可行性实施例中,紧耦合阵列天线可以包括第一介质板1、第二介质板2和第三介质板3。第三介质板3与第一介质板1垂直且连接在一起,第三介质板3的第一表面设置有馈电微带线31,第一表面为垂直于第一介质板1的表面,第一介质板的第二表面设置有微带线地板32,其中,第二表面为垂直于第一介质板1的表面,馈电微带线31的底端与微带线地板32的底端电气连接。本实施例示出方案,第一表面和第二表面为第三介质板的同一表面,在一些可行性实施例中,为了达到易于加工,且设计出的巴伦结构的结构简单的目的,在一些可行性实施例中第一表面和第二表面可以为第三介质板相对的两个表面。
本申请中涉及的馈电微带线31指的是可以提供电能及传送电信号的微带线;例如在一些可行性实施例中馈电微带线31可以是铜线。本申请中涉及的微带线地板32指的是可以与馈电微带线31形成巴伦结构的地板;例如在一些可行性实施例中微带线地板32可以是金属地板。
下面结合具体的实例对本实施例提供的第三介质板3进行进一步说明。请参阅图7,图7为根据一可行性实施例提供的第三介质板的主视图。图7示出的第三介质板可以与图5示出的第一介质板、图6示出的第二介质板合成紧耦合阵列天线。其中,第三介质板3为矩形结构,第三介质板3在垂直方向上的宽为17.5mm。值得注意的是,本实施例介绍的第三介质板尺寸仅是一种较佳的实例,在实际应用的过程中第三介质板各部分的尺寸可以根据需求设定,在此申请人不做过多的限定。
图2示出的第一介质板1中偶极天线111彼此垂直设置,本实施例中每个偶极天线111配置一个巴伦结构。由于偶极天线111彼此垂直设置相应的巴伦结构也需要彼此垂直。因此,在一些可行性实施例中,第三介质板3可以设置有缝隙结构33,两块第三介质板3能 够通过相互匹配且相互对应的缝隙结构33镶嵌在一起,保证印制在第三介质板3表面的巴伦结构彼此垂直,进而实现巴伦结构与偶极天线111的对应。
可选择的,为了保证紧耦合阵列天线结构的稳定性,在一些可行性实施例中,可以在第三介质板3的顶端设置有限位凸起34,相应的在第一介质板1的表面设置有容纳部(图中未示出),安装时,可以在限位凸起34插入容纳部以实现第三介质板3与第一介质板1的锁紧,保证得到的紧耦合阵列天线结构稳定。
在上述示出的技术方案的基础上,微带线地板32局部镂空。本实施例提供的技术方案中微带线地板32局部镂空,一方面可以增加电流在微带线地板32上流通的多样性,另一方面减小电流路径的截面积以增大阻抗实部,进而实现降低紧耦合阵列天线的有源驻波的目的。本实施例并不对镂空的形状作以限定,例如在一些可行性实施例中镂空形状可以是正多边形,凡是可以起到增加电流在微带线地板32上流通的多样性,另一方面减小电流路径的截面积以增大阻抗实部作用的镂空形状均可应用到本实施例的方案中。
在上述示出的技术方案的基础上,紧耦合阵列天线还包括:反射地板4。反射地板4平行设置于第一介质板1的下方。反射地板4一方面可以把偶极天线111接收到的信号反射聚集在接收点上,大大增强了天线的接收能力并且可以实现偶极天线111信号单向辐射的目的,反射地板4另一方面还可以还起到阻挡、屏蔽来自反射地板4后背的其它辐射信号,防干扰的效果。
请继续参阅图1,在一些可行性实施例中,紧耦合阵列天线可以包括第一介质板1、第二介质板2、第三介质板3和反射地板4。反射地板4平行设置于第一介质板1的下方,反射地板4与巴伦结构电气连接。本实施例中涉及的反射地板4指的是可以把偶极天线111接收到的信号反射聚集在接收点上和阻挡、屏蔽来自反射地板4后背的其它辐射信号的地板。在一些可行性实施例中反射地板4可以是金属板。
为了降低紧耦合阵列天线的有源驻波本申请实施例第二方面提供一种新型结构的紧耦合阵列天线。具体的可以继续参阅图1,在本实施例提供的技术方案中,紧耦合阵列天线至少包括第一介质板1和第二介质板2。第一介质板1,其下表面设置多个偶极天线111,偶极天线111间隔设置,多个偶极天线111形成一个天线单元11,第一介质板1的上表面设置多个耦合结构12;第二介质板2,平行设置于第一介质板1的上方,第二介质板2的上表面设置多个寄生贴片21,寄生贴片21的中心与耦合结构12的中心在垂直方向上重合。在实施例提供的技术方案中在耦合结构12的上方各加载一个寄生贴片21,等效为引入电感分量,电感分量可以抵消天线单元11的容性电抗,使紧耦合阵列天线阻抗实部更为平缓,有源驻波得以降低。为使本申请的目的、技术方案和优点更加清楚,以下以非限制性的实施例为例对本申请作进一步详细说明。
请继续参阅图1,在上述示出的技术方案的基础上,紧耦合阵列天线还包括:第三介质板3,设置于第一介质板1的下表面,与第一介质板1相互垂直,第三介质板3第一表面设置馈电微带线31,所述第一表面垂直于所述第一介质板1,所述第三介质板3的第二表面设置微带线地板32,所述第二表面垂直于所述第一介质板,馈电微带线31和微带线地板32组成巴伦结构。在本申请的技术方案中馈电微带线31与微带线地板32组成巴伦结构,巴伦结构可以达到平衡馈电和阻抗匹配的目的,使紧耦合阵列天线的有源驻波得以降低。
请继续参阅图1,在上述示出的技术方案的基础上,微带线地板32可以设置成局部镂空。本申请的技术方案中微带线地板32局部镂空,一方面可以增加电流在微带线地板32上流通的多样性,另一方面减小电流路径的截面积以增大阻抗实部,进而实现降低紧耦合阵列天线的有源驻波的目的。
下面结合具体实验数据对本实施例示出的紧耦合阵列天线的有益效果做进一步的说明:
图8为基于商业电磁仿真软件得到的改进前后紧耦合阵列天线的阻抗实部和虚部随频率的变化曲线。其中,改进前的紧耦合阵列天线为未设置有寄生贴片和偶极天线的振子臂未采用镂空设计的紧耦合阵列天线;改进后的紧耦合阵列天线为设置有寄生贴片和/或偶极天线的振子臂采用镂空设计的紧耦合阵列天线。可以看出,改进前紧耦合阵列天线的阻抗的实部在100欧~250欧之间变化,阻抗的虚部在-120欧~30欧之间变化;通过把振子臂局部镂空设计,可以略微增大紧耦合阵列天线的阻抗实部;通过在振子臂上方加载寄生贴片的设计,明显使频带内的阻抗实部和虚部的变化更为平缓;通过同时采用振子臂局部镂空和上方加载寄生贴片的设计,使紧耦合阵列天线工作频带内的阻抗实部更为平缓,均保持在200欧左右。
图9为本申请实施例基于商业电磁仿真软件得到的改进前后的有源驻波随频率的变化曲线,其中,改进前的紧耦合阵列天线为未设置有寄生贴片和偶极天线的振子臂未采用镂空设计的紧耦合阵列天线;改进后的紧耦合阵列天线为设置有寄生贴片和/或偶极天线的振子臂采用镂空设计的紧耦合阵列天线。可以看出,改进前紧耦合阵列天线在工作频带内的有源驻波保持在2.0以下;通过把振子臂局部镂空的设计,对高频端的有源驻波略有改善;通过在振子臂上方加载寄生贴片的设计,使工作频带内的有源驻波降至1.5以下;通过同时使用振子臂局部镂空和加载寄生贴片的设计,使工作频带内的有源驻波降至1.35以下。
图10为本申请实施例基于商业电磁仿真软件得到的紧耦合阵列天线分别采用两种巴伦结构时的有源驻波随频率的变化曲线,两种巴伦结构分别为微带线地板未做镂空设计的巴伦结构和微带线地板做镂空设计的巴伦结构。巴伦结构中的微带线地板未做镂空设计的紧耦合阵列天线在工作频带内有源驻波保持在2.0以下。巴伦结构中的微带线地板镂空设计的紧耦合阵列天线在工作频带内有源驻波保持在1.5以下。
图11为本申请实施例中理想馈电的周期性紧耦合阵列天线在D面内的有源驻波扫描特性,D面为紧耦合阵列天线的主平面,即扫描方向与振子臂成45度角的平面。可见,本申请在理想馈电时,有源驻波在1.5以下的倍频程达到3.94:1;扫描角在20度以内,有源驻波在1.5以下的倍频程达到4:1;扫描角在40度以内,有源驻波在2.0以下的倍频程达到3.77:1;扫描角在60度以内,有源驻波在2.25以下的倍频程达到3.5:1。
图12为本申请实施例中带馈电巴伦的紧耦合阵列天线在D面内的有源驻波扫描特性。可见,加上巴伦结构后,在与振子成45度角的平面内,扫描角在0、20、40、60度以内时,有源驻波在1.5以下的倍频程达到3.5:1,而且此频带内绝大部分频点上的有源驻波保持在1.5以下。
本申请实施例还提供一种网络设备。该网络设备可以包括前述实施例中的紧耦合阵列天线。该网络设备可以实现前述实施例中的网络设备的功能。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,例如上述装置或设备的描述可以参照对应的方法实施例。以上的本申请实施方式,并不构成对本申请保护范围的限定。

Claims (11)

  1. 一种紧耦合阵列天线,其特征在于,包括:
    第一介质板,所述第一介质板的下表面设置多个天线单元,所述天线单元包括至少2个偶极天线,所述偶极天线包括振子臂,所述振子臂局部镂空;所述第一介质板的上表面设置多个耦合结构,所述耦合结构与所述天线单元电气连接。
  2. 根据权利要求1所述的紧耦合阵列天线,其特征在于,还包括:
    第二介质板,平行设置于所述第一介质板的上方,所述第二介质板的上表面设置多个寄生贴片,所述寄生贴片的中心与所述耦合结构的中心在垂直方向上重合。
  3. 根据权利要求1或2所述的紧耦合阵列天线,其特征在于,还包括:
    第三介质板,设置于所述第一介质板的下表面,与所述第一介质板相互垂直,所述第三介质板的第一表面设置馈电微带线,所述第一表面垂直于所述第一介质板,所述第三介质板的第二表面设置微带线地板,所述第二表面垂直于所述第一介质板,所述馈电微带线和所述微带线地板组成巴伦结构,所述巴伦结构与所述偶极天线电气连接。
  4. 根据权利要求3所述的紧耦合阵列天线,其特征在于,所述微带线地板局部镂空。
  5. 根据权利要求3所述的紧耦合阵列天线,其特征在于,还包括:
    反射地板,平行设置于所述第一介质板的下方,所述反射地板与所述巴伦结构电气连接。
  6. 根据权利要求3所述的紧耦合阵列天线,其特征在于,所述耦合结构包括第一馈电片和第二馈电片,所述第一馈电片和所述第二馈电片通过连接部电气连接,所述第一馈电片和所述第二馈电片垂直设置。
  7. 根据权利要求3所述的紧耦合阵列天线,其特征在于,所述第一介质板的上表面与所述第二介质板的下表面间隔预置距离。
  8. 一种紧耦合阵列天线,其特征在于,包括:
    第一介质板,所述第一介质板的下表面设置多个天线单元;所述第一介质板的上表面设置多个耦合结构,所述耦合结构与所述天线单元电气连接;
    第二介质板,平行设置于所述第一介质板的上方,所述第二介质板的上表面设置多个寄生贴片,所述寄生贴片的中心与所述耦合结构的中心在垂直方向上重合。
  9. 根据权利要求8所述的紧耦合阵列天线,其特征在于,还包括:
    第三介质板,设置于所述第一介质板的下表面,与所述第一介质板相互垂直,所述第三介质板的第一表面设置馈电微带线,所述第一表面垂直于所述第一介质板,所述第三介质板的第二表面设置微带线地板,所述第二表面垂直于所述第一介质板,所述馈电微带线和所述微带线地板组成巴伦结构,所述巴伦结构与所述天线单元电气连接。
  10. 根据权利要求9所述的紧耦合阵列天线,其特征在于,所述微带线地板局部镂空。
  11. 一种网络设备,其特征在于,包括如权利要求1至7,或如权利要求8至10任一项所述的紧耦合阵列天线。
PCT/CN2021/141593 2020-12-31 2021-12-27 一种紧耦合阵列天线及网络设备 WO2022143512A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21914248.6A EP4250490A4 (en) 2020-12-31 2021-12-27 CLOSE-COUPLED ARRAY ANTENNA AND ARRAY DEVICE
US18/342,445 US20230420848A1 (en) 2020-12-31 2023-06-27 Tightly coupled array antenna and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011636498.2A CN114696072B (zh) 2020-12-31 2020-12-31 一种紧耦合阵列天线及网络设备
CN202011636498.2 2020-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/342,445 Continuation US20230420848A1 (en) 2020-12-31 2023-06-27 Tightly coupled array antenna and network device

Publications (1)

Publication Number Publication Date
WO2022143512A1 true WO2022143512A1 (zh) 2022-07-07

Family

ID=82134035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141593 WO2022143512A1 (zh) 2020-12-31 2021-12-27 一种紧耦合阵列天线及网络设备

Country Status (4)

Country Link
US (1) US20230420848A1 (zh)
EP (1) EP4250490A4 (zh)
CN (1) CN114696072B (zh)
WO (1) WO2022143512A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115603034A (zh) * 2022-11-29 2023-01-13 中国电子科技集团公司第三十八研究所(Cn) 作为无人机机翼的石墨烯薄膜共形天线结构及其制造方法
CN116666973A (zh) * 2023-06-29 2023-08-29 电子科技大学 一种铁氧体ebg加载埋腔型紧耦合超宽带阵列天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120086838A (ko) * 2011-01-27 2012-08-06 엘에스전선 주식회사 Pcb 기판형 광대역 이중 편파 다이폴 안테나
CN203300808U (zh) * 2013-04-23 2013-11-20 罗森伯格(上海)通信技术有限公司 宽频双极化天线及其宽频双极化天线辐射单元
WO2018107931A1 (zh) * 2016-12-16 2018-06-21 罗森伯格技术(昆山)有限公司 基站天线辐射单元及基站天线
CN109216940A (zh) * 2018-08-17 2019-01-15 西安电子科技大学 超宽带紧耦合阵列天线
CN111370860A (zh) * 2020-03-10 2020-07-03 电子科技大学 基于交指形阻性表面加载的强耦合超宽带相控阵天线
CN111697331A (zh) * 2020-06-22 2020-09-22 东南大学 一种超宽带紧耦合天线阵列及天线设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691015B1 (fr) * 1992-05-05 1994-10-07 Aerospatiale Antenne-réseau de type micro-ruban à faible épaisseur mais à large bande passante.
CN106785427A (zh) * 2016-12-07 2017-05-31 中国电子科技集团公司第二十七研究所 一种超宽带强耦合阵列天线
CN109273836B (zh) * 2018-08-30 2020-03-27 电子科技大学 基于紧耦合偶极子及各向异性匹配层的宽带宽角扫描天线
CN109904593A (zh) * 2019-02-27 2019-06-18 东南大学 一种频带增强双极化基站天线
CN110707421A (zh) * 2019-09-06 2020-01-17 南京理工大学 基于末端重叠的双极化紧耦合相控阵天线
CN112038758A (zh) * 2020-09-23 2020-12-04 广东曼克维通信科技有限公司 超宽频双极化辐射单元、天线及天线阵列

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120086838A (ko) * 2011-01-27 2012-08-06 엘에스전선 주식회사 Pcb 기판형 광대역 이중 편파 다이폴 안테나
CN203300808U (zh) * 2013-04-23 2013-11-20 罗森伯格(上海)通信技术有限公司 宽频双极化天线及其宽频双极化天线辐射单元
WO2018107931A1 (zh) * 2016-12-16 2018-06-21 罗森伯格技术(昆山)有限公司 基站天线辐射单元及基站天线
CN109216940A (zh) * 2018-08-17 2019-01-15 西安电子科技大学 超宽带紧耦合阵列天线
CN111370860A (zh) * 2020-03-10 2020-07-03 电子科技大学 基于交指形阻性表面加载的强耦合超宽带相控阵天线
CN111697331A (zh) * 2020-06-22 2020-09-22 东南大学 一种超宽带紧耦合天线阵列及天线设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115603034A (zh) * 2022-11-29 2023-01-13 中国电子科技集团公司第三十八研究所(Cn) 作为无人机机翼的石墨烯薄膜共形天线结构及其制造方法
CN116666973A (zh) * 2023-06-29 2023-08-29 电子科技大学 一种铁氧体ebg加载埋腔型紧耦合超宽带阵列天线
CN116666973B (zh) * 2023-06-29 2024-05-03 电子科技大学 一种铁氧体ebg加载埋腔型紧耦合超宽带阵列天线

Also Published As

Publication number Publication date
EP4250490A1 (en) 2023-09-27
EP4250490A4 (en) 2024-06-05
CN114696072B (zh) 2023-09-01
CN114696072A (zh) 2022-07-01
US20230420848A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
WO2020233477A1 (zh) 天线单元及终端设备
WO2022143512A1 (zh) 一种紧耦合阵列天线及网络设备
US8564484B2 (en) Planar dual polarization antenna
WO2018107931A1 (zh) 基站天线辐射单元及基站天线
US20210328365A1 (en) High-Frequency Radiator, Multi-Frequency Array Antenna, and Base Station
CN105449361A (zh) 宽带双极化基站天线单元
CN102868017A (zh) 辐射装置及基于辐射装置的阵列天线
CN104966899A (zh) 一种全向天线和全向天线阵列
KR20160094897A (ko) 이중 편파 안테나
CN109687124A (zh) 一种用于移动终端的毫米波相控阵天线装置及其实现方法
CN210430092U (zh) 一种移动通信天线的单元结构及阵列结构
WO2023138324A1 (zh) 一种天线结构、电子设备及无线网络系统
CN209056615U (zh) 用于移动终端的毫米波无源多波束阵列装置
CN217134687U (zh) 一种双极化辐射单元、一种天线以及一种天线系统
CN206864632U (zh) 一种基于bst基板的频率可调的毫米波天线
CN114122700B (zh) 振子及基站天线
CN104953296B (zh) 相控阵腔式微带天线单元
CN114597639B (zh) 一种宽带低频滤波振子及多频基站天线
CN107134647A (zh) 一种基于bst基板的频率可调的毫米波天线
CN212676473U (zh) 一种新型共辐射面的单阵子交叉极化天线
CN210326149U (zh) 一种双极化板型天线
CN216773495U (zh) 一种内置于摄像头的双频段天线
WO2022095981A1 (zh) 多频段融合天线组件
CN217691646U (zh) 高隔离度双极化天线
CN218242246U (zh) 一种高增益垂直极化水平全向终端天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021914248

Country of ref document: EP

Effective date: 20230620

NENP Non-entry into the national phase

Ref country code: DE