WO2022143463A1 - 基于结构超滑的肖特基微发电机及其制备方法 - Google Patents

基于结构超滑的肖特基微发电机及其制备方法 Download PDF

Info

Publication number
WO2022143463A1
WO2022143463A1 PCT/CN2021/141216 CN2021141216W WO2022143463A1 WO 2022143463 A1 WO2022143463 A1 WO 2022143463A1 CN 2021141216 W CN2021141216 W CN 2021141216W WO 2022143463 A1 WO2022143463 A1 WO 2022143463A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
layer
schottky
conductive layer
metal electrode
Prior art date
Application number
PCT/CN2021/141216
Other languages
English (en)
French (fr)
Inventor
郑泉水
黄轩宇
向小健
Original Assignee
深圳清华大学研究院
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳清华大学研究院, 清华大学 filed Critical 深圳清华大学研究院
Publication of WO2022143463A1 publication Critical patent/WO2022143463A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators

Definitions

  • the invention relates to the technical field of weak energy capture and power supply of micro-devices, in particular to a Schottky micro-generator based on structural ultra-sliding and a preparation method thereof.
  • Nanogenerator is a device that can convert excitation energy into electric energy under extremely weak external excitation. At the same time, it has the characteristics of small size and wide application range. Since it was proposed, it has a very wide range of application prospects in the fields of self-powered sensors, Internet of Things, sensor networks, big data, personal medical systems, artificial intelligence, etc., especially it can provide stable power for micro-nano devices used in the above fields. Realize self-powered, such as vascular robots, pacemakers, etc. Among them, the Schottky microgenerator has the advantages of simple structure, low DC output and low internal impedance compared with the traditional electrostatic induction nanogenerator, and it has an extremely wide application prospect.
  • Schottky micro-generators require relative sliding between the conductive layer and the semiconductor layer, and friction and wear during the sliding process will lead to device failure. Although reducing the effective contact area can reduce the impact of friction and wear to a certain extent, but This will result in a reduction in output density.
  • the Chinese patent application with publication number CN110752784A discloses a surface state-enhanced high current density dynamic Schottky generator and its preparation method.
  • the generator consists of a metal electrode, a semiconductor substrate, and a surface roughness layer in order from top to bottom. and metal, the metal and the semiconductor substrate are in Schottky contact, and the surface roughness layer is a surface layer with rough morphology formed by roughening the polished surface of the semiconductor substrate side, and the metal is directly pressed on the surface roughness layer.
  • the two are in contact and can move relative to each other, forming a high-current-density dynamic Schottky generator with enhanced surface states. It increases its current by increasing the friction force, but due to the increase in the friction force, the life of the device is shortened.
  • the object of the present invention is to provide a Schottky micro-generator based on structural super-slip and a preparation method thereof, so as to solve the problem that friction and wear of the Schottky micro-generator in the prior art and the small contact surface will lead to current density There are conflicting technical issues between reductions.
  • the technical solution adopted in the present invention is to provide a Schottky micro-generator based on structural ultra-sliding
  • the Schottky micro-generator based on structural ultra-sliding includes a conductive layer and a semiconductor layer, and also includes a device.
  • a first metal electrode layer on one side of the semiconductor layer, a super-slip contact and a Schottky contact are formed between the conductive layer and the semiconductor layer, and an ohmic contact is formed between the first metal electrode layer and the semiconductor layer , the conductive layer and the semiconductor layer move relatively and output electrical signals.
  • any one of the conductive layer or the semiconductor layer includes a two-dimensional interface of a single crystal
  • the other conductive layer or the semiconductor layer includes a two-dimensional interface of a single crystal, or has an atomically flat interface.
  • the conductive layer or semiconductor layer on the surface, preferably, the two-dimensional interface of the single crystal is an atomically flat surface.
  • the conductive layer includes a single crystal two-dimensional interface
  • the semiconductor layer is a semiconductor layer with an atomically flat surface.
  • the conductive layer includes graphite or graphene; or, the conductive layer is a metal material with an atomically flat surface.
  • the semiconductor layer is a semiconductor material with a single crystal two-dimensional interface, using molybdenum disulfide, tungsten diselenide, tungsten disulfide or black phosphorus; or, the semiconductor layer is a semiconductor material with an atomically flat surface , using any one of silicon, gallium arsenide, indium gallium arsenide, zinc oxide, germanium, gallium nitride or indium phosphide.
  • a second metal electrode layer is further provided on the conductive layer, and the second metal electrode layer is electrically connected to the conductive layer.
  • both the first metal electrode layer and the second metal electrode layer may be one of gold, silver, copper, iron, tin, platinum, mercury, aluminum, zinc, titanium, tungsten, lead, and nickel. one or more alloys.
  • the invention also provides a preparation method of the Schottky micro-generator based on the structural super-slip technology, comprising the following steps:
  • first metal electrode layer on a substrate, transferring the semiconductor layer to the first metal electrode layer, and forming an ohmic contact between the first metal electrode layer and the semiconductor layer;
  • the conductive layer and the semiconductor layer form a super-slip contact and a Schottky contact on the surface, and the conductive layer and the semiconductor layer slide relative to each other to generate an electrical signal .
  • the method for providing a semiconductor layer and/or a conductive layer with a structurally ultra-smooth surface is:
  • a second metal electrode layer is further included on the surface of the conductive layer, and the second metal electrode layer is electrically connected to the conductive layer.
  • the conductive layer and the semiconductor layer have extremely low friction and no wear when sliding relative to each other.
  • the dynamic Schottky junction will be unbalanced.
  • the movement of carriers produces a stable and high-density DC signal.
  • the van der Waals interaction surface between the interfaces will have an effective contact area close to 100%, enabling stable and high-density output; at the same time, due to the ultra-slippery structure with extremely low friction and no wear characteristics , can also achieve almost infinite life; due to the small friction force, the energy loss is small, resulting in extremely low external force, which can be used in extremely weak environments, with a conversion efficiency approaching 100%, effective It solves the contradiction between the wear, service life and output density of the traditional Schottky micro-generator, and revolutionizes the technology of the traditional Schottky micro-generator.
  • the unbalanced carriers in the semiconductor layer are exported to the first metal electrode layer, resulting in relative sliding between the conductive layer and the semiconductor layer.
  • the movement of unbalanced carriers achieves the effect of outputting stable and high-density DC signals.
  • Disposing the second metal electrode layer on top of the conductive layer can not only enhance the conductive effect of the conductive layer, but also expand the thickness of the conductive layer, enhance its transferability, and protect the conductive layer.
  • the super-slip state In the super-slip state, it has a self-cleaning effect, that is, the impurity molecules or magazine atoms located on the conductive layer or semiconductor layer can be excluded during the sliding process, which can ensure the stability of the contact and avoid the oxidation of the surface. Ultra-slippery contact between semiconductor layers is always maintained for a longer lifetime.
  • FIG. 1 is a schematic structural diagram of a Schottky micro-generator based on structural super-slip technology provided by an embodiment of the present invention
  • FIG. 2 is a schematic top-view structural diagram of a Schottky micro-generator based on a structural super-slip technology provided by an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a conventional Schottky micro-generator of the present invention.
  • FIG. 4 is a comparison diagram of the current output of a Schottky micro-generator based on structural super-slip technology and a traditional Schottky micro-generator provided by an embodiment of the present invention
  • Fig. 5 is the surface oxidation characterization diagram of the working process of the traditional Schottky microgenerator
  • Fig. 6 is the topography characterization diagram of the traditional Schottky microgenerator after operation
  • FIG. 7 is a topographical characterization diagram of a Schottky microgenerator based on a structural super-slip technology provided by an embodiment of the present invention.
  • FIG. 8 is a self-cleaning effect diagram of the Schottky micro-generator based on the structural super-slip technology according to an embodiment of the present invention.
  • the described Schottky micro-generator based on structural ultra-smooth comprises a conductive layer 1, a semiconductor layer 2 and a first metal electrode layer 4, the conductive layer 1 is arranged on the semiconductor layer 2, and the first metal electrode layer 4 is arranged on the semiconductor layer 2 side, and the first metal electrode layer 4 can form ohmic contact with the semiconductor layer 2, and the unbalanced carriers in the semiconductor layer 2 can be exported to the first metal electrode layer 4, so that the conductive layer 1 and the semiconductor layer A super-slip contact and a Schottky contact are formed between the layers 2, and a relative movement can occur between the conductive layer 1 and the semiconductor layer 2, and the relative movement can be realized by driving one of the conductive layer or the semiconductor layer by the energy harvesting element, By directly or indirectly connecting the conductive layer 1 and the semiconductor layer 2 with the lead, a stable and high-dens
  • the conductive layer 1 and the semiconductor layer 2 there are both super-slip contact and Schottky contact between them.
  • the coefficient is less than one thousandth, and the wear is zero.
  • Schottky contact means that when the metal and the semiconductor material are in contact, the energy band of the semiconductor is bent at the interface, thereby forming a Schottky barrier. Due to the existence of a large number of interface charges in the barrier, electricity can be generated.
  • At least one of the conductive layer 1 and the semiconductor layer 2 is a single crystal two-dimensional interface material, and the other is a single crystal two-dimensional interface material or has an atomically flat surface.
  • the two-dimensional interface material of single crystal refers to a two-dimensional material with a single crystal phase, wherein the two-dimensional material refers to a material in which electrons can only move freely on the nanoscale in two dimensions.
  • the conductive layer 1 and the semiconductor When a single crystal two-dimensional interface material is selected as the material of layer 2, the single crystal two-dimensional interface material preferably also has an atomically flat surface.
  • Atomic-level flat surface refers to a surface with a surface roughness of less than 1 nm, in which not only Schottky contact but also super-slip contact should be formed in the conductive layer 1 and the semiconductor layer 2. Therefore, the materials for the conductive layer 1 and the semiconductor layer 2 should be selected. There are several ways:
  • the conductive layer 1 adopts a conductive material with a single-crystal two-dimensional material, such as graphite or graphene, etc.
  • the semiconductor layer 2 can select a semiconductor material with a single-crystal two-dimensional interface, such as tungsten diselenide, Tungsten disulfide or black phosphorus, etc; Any one or more of the alloys, and any surface of the semiconductor material can be processed to the atomic level.
  • the conductive layer 1 is made of a metal material with an atomically flat surface, such as any one or more of gold, silver, copper, iron, tin, platinum, mercury, aluminum, zinc, titanium, tungsten, lead or nickel. and process any surface of the metal material to atomic level flatness; at this time, the semiconductor layer 2 selects a semiconductor material with a single crystal two-dimensional interface, such as tungsten diselenide, tungsten disulfide or black phosphorus.
  • a second metal electrode layer 3 may be provided on top of the conductive layer 1, and a second metal electrode layer 3 may be provided on the top of the semiconductor layer 1.
  • the bottom or one side of the layer 2 is provided with a first metal electrode layer 4, and the first metal electrode layer 4 and the semiconductor layer 2.
  • the basic micro-generator which can be placed in an extremely weak environment, collects external energy to drive the conductive layer 1 and the semiconductor layer 2 to produce relative motion, and generates a DC signal to power small devices.
  • the purpose of the second metal electrode layer 3 is to facilitate the output of current, and the second metal electrode layer 3 may not be provided to output the current in other ways, which will not be specifically limited this time.
  • the first metal electrode layer 4 can be in conduction with the semiconductor layer 2, so that the unbalanced carriers in the semiconductor layer 2 can be exported to the first metal electrode layer 4, so that the conductive layer 1 and the semiconductor layer 2 can be connected between the conductive layer 1 and the semiconductor layer 2.
  • a Schottky contact can be achieved, and an electrical signal can be generated when the conductive layer 1 and the semiconductor layer 2 move relative to each other.
  • the conventional contact between the supersliding sheet and the substrate in the prior art cannot form a Schottky contact because the non-equilibrium carriers in the substrate cannot flow.
  • both the second metal electrode layer 3 and the first metal electrode layer 4 can be made of one or more of gold, silver, copper, iron, tin, platinum, mercury, aluminum, zinc, titanium, tungsten, lead, and nickel.
  • This kind of alloy has good electrical conductivity and can be connected with the lead to realize the output of current.
  • Figure 4(a) is the current measurement experiment of the Schottky micro-generator based on the structural super-slip technology for 2000 cycles ;
  • Figure 4(a) it can be seen that the current output in each sliding cycle is very stable, and with the increase of the number of sliding cycles, the current also increases gradually.
  • Fig. 4(b) it can be seen that about 5000 cycles of sliding cycling tests were carried out under constant normal force, and the corresponding speed was gradually increased from 4 ⁇ m/s to 24 ⁇ m/s.
  • the average current (the upper curve) does not decay and gradually increases with the number of sliding cycles at different sliding speeds.
  • the measured friction force (bottom curve) has a decreasing process in the first about 64 cycles, and in the subsequent thousands of sliding processes, the friction force is basically stable at different sliding speeds, and increases with the sliding speed. increasing and slowly increasing.
  • a traditional Schottky microgenerator is set as a comparative example.
  • a platinum-coated AFM probe is used to directly press and slide on the N-type silicon with the same structure.
  • the structure is shown in Figure 3. . 2000 cycles of current measurement experiments and 5000 sliding cycle tests were performed under constant normal force; it can be seen from Figure 4(b) that the output current is mainly in the form of pulses, and the current output is unstable. Although the peak current can reach 60pA, the average current is only 15pA; in the first 30 sliding cycles, the average current rapidly decays to 0, and the power generation process stops. Moreover, the frictional force of conventional Schottky microgenerators is twice that of Schottky microgenerators based on structural super-slip technology.
  • the Schottky micro-generator based on the structural super-slip technology has an almost infinite life, while the current of the traditional Schottky micro-generator decays very quickly, causing the power generation process to stop.
  • the output current of the Schottky microgenerator is more stable, which is two orders of magnitude higher than the current output of the traditional Schottky microgenerator.
  • the elemental composition and relative content of the no-slip region and the region with 66 slip periods on the silicon surface were characterized by energy spectrometer. Combined with the experimental results obtained in Fig. 5(c), the content of oxygen and carbon elements increased after 66 sliding cycles, in which the content of oxygen element increased from 0.45% to 0.7%; the content of carbon element increased from 1.6% to 2.8% %; while the content of silicon was reduced from 97.8% to 96.5%.
  • the in-situ topographic characterization shown in Fig. 6 revealed that a small raised region with a height of about 1 nm appeared in the sliding region.
  • the SEM characterization and AFM scanning morphology of the interface of the graphite island shown in Fig. 7(a) and (b), which has a very flat two-dimensional van der Waals surface can be A structural super-slip contact is formed with the atomically smooth N-type silicon surface, in which the AFM scanning morphology of the N-type silicon surface is shown in Fig. 7(d).
  • the conductive layer 1 and the semiconductor layer 2 In the structural super-slip contact state, it will have a larger effective contact area and a larger current density, and under the structural super-slip contact condition, the low energy dissipation inhibits the deposition and oxidation of carbon on the silicon surface, thereby Extended service life.
  • the semiconductor layer 2 has a self-cleaning effect during the repeated sliding process.
  • the semiconductor layer 2 can repeatedly clean the impurity molecules in the sliding area and maintain a stable structural super-slip contact. state, can achieve long service life, stable and high-efficiency DC output current.
  • the decrease in friction force can reflect this phenomenon.
  • the present invention also provides a method for preparing a Schottky micro-generator based on structural super-sliding technology, which comprises the following steps:
  • a semiconductor layer with a single crystal two-dimensional interface such as molybdenum disulfide, tungsten diselenide, tungsten disulfide or black phosphorus;
  • a conductive layer with a single crystal two-dimensional interface such as HOPG graphite island, graphene, etc., can also be directly selected;
  • the materials of the conductive layer 1 and the semiconductor layer 2 are selected, and a metal that can form a super-slip contact and a Schottky contact at the same time is required, and then the conductive layer 1 is transferred to the top surface of the semiconductor layer 2, and the conductive layer 1 and all the semiconductor layer 2 to form structural super-slip and Schottky contacts;
  • a second metal electrode layer 3 is formed on the surface of the conductive layer 1, the top metal layer is coated on the upper surface of the conductive layer 1, and can be disposed on the conductive layer 1 by electroplating or laying, and the second metal electrode layer 3 is formed on the surface of the conductive layer 1.
  • the metal electrode layer 3 and the first metal electrode layer 4 are connected by wires.
  • the conductive layer 1 and the semiconductor layer 2 fabricated by the above steps slide relative to each other, and the electrical signals of the semiconductor layer 2 and the conductive layer 1 are drawn out by wires.
  • the Schottky generator made by this method has an effective contact area of 100%, which can achieve stable and high-density output; at the same time, due to the ultra-slip structure, extremely low friction and no wear, it can also achieve almost unlimited life. The contradiction between wear, service life and output density of the traditional Schottky micro-generator is effectively solved.

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及一种基于结构超滑的肖特基微发电机及其制备方法,包括导电层(1)、半导体层(2)和第一金属电极层(3),所述导电层和所述半导体层之间形成超滑接触和肖特基接触,所述第一金属电极层与所述半导体层形成欧姆接触,所述导体层与所述半导体层相对运动并输出电信号。利用结构超滑的技术,在导电层和半导体层之间发生相对滑动时,能够产生非平衡载流子的移动,达到输出稳定和高密度的直流电信号的效果,有效地解决了传统的肖特基微发电机的磨损、使用寿命以及输出密度之间的矛盾。

Description

基于结构超滑的肖特基微发电机及其制备方法 技术领域
本发明涉及微弱能源俘获和微型器件供电的技术领域,具体涉及一种基于结构超滑的肖特基微发电机及其制备方法。
背景技术
电能是人类生活中不可或缺的二次能源,纳米发电机是一种能够在极其微弱的外界激励下,将激励能量转化为电能的器件,同时其具有结构尺寸小,适用范围广泛等特点,自从提出以来在自供电的传感器、物联网、传感器网络、大数据、个人医疗系统、人工智能等领域具有非常广泛的应用前景,尤其是能够为应用在上述领域的微纳器件提供稳定的电力,实现自供能,例如血管机器人、心脏起搏器等。其中肖特基微发电机相比于传统的静电感应型纳米发电机具有结构简单、直流输出和内部阻抗低等优势,其具有极其广泛的应用前景。但是,肖特基微发电机需要导电层和半导体层之间产生相对滑动,而滑动过程中的摩擦和磨损将导致器件失效,虽然减小有效接触面积可以一定程度上降低摩擦磨损的影响,但这将导致输出密度的降低。
公开号为CN110752784A的中国专利申请中公开了一种表面态增强的高电流密度动态肖特基发电机及其制备方法,该发电机自上而下依次为金属电极、半导体衬底、表面粗糙层和金属,金属与半导体衬底为肖特基接触,且表面粗糙层是对半导体衬底一侧抛光面采用粗糙处理所形成的具有粗糙形貌的表面层,金属直接压在表面粗糙层上,二者接触并可相对移动,形成表面态增强的高电流密度动态肖特基发电机。其通过增大摩擦力的方式,增大其电流,但是由于摩擦力增大会导致器件的寿命较短。
传统的肖特基微发电机均采用增大摩擦力的方式实现电流的增大,但是由于增大摩擦力会加快器件的损坏,或者,为了避免更多的磨损而减小了有效的接触面积而影响输出密度,二者之间存在较大的矛盾,但是现有技术中的肖特基微发电机难以调节该矛盾。
技术问题
本发明的目的在于提供一种基于结构超滑的肖特基微发电机及其制备方法,以解决现有技术中的肖特基微发电机的摩擦和磨损与接触面较小会导致电流密度降低之间存在矛盾的技术问题。
技术解决方案
为实现上述目的,本发明采用的技术方案是:提供一种基于结构超滑的肖特基微发电机,基于结构超滑的肖特基微发电机,包括导电层和半导体层,还包括设于所述半导体层一侧的第一金属电极层,所述导电层和所述半导体层之间形成超滑接触和肖特基接触,所述第一金属电极层与所述半导体层形成欧姆接触,所述导电层与所述半导体层相对运动并输出电信号。
进一步地,所述导电层或所述半导体层的任一个包括一个单晶的二维界面,另一所述导电层或所述半导体层包括一个单晶的二维界面,或者为具有原子级平整表面的导电层或半导体层,优选的,所述单晶的二维界面是原子级平整表面。
进一步地,所述导电层包括一个单晶的二维界面,所述半导体层为具有原子级平整表面半导体层。
进一步地,所述导电层包括石墨或石墨烯;或者,所述导电层为具有原子级平整表面的金属材料。
进一步地,所述半导体层为具有单晶二维界面的半导体材料,采用二硫化钼、二硒化钨、二硫化钨或者黑磷;或者,所述半导体层为具有原子级平整表面的半导体材料,采用硅、砷化镓、铟镓砷、氧化锌、锗、氮化镓或者磷化铟中的任一种。
进一步地,在所述导电层上还设有第二金属电极层,所述第二金属电极层与所述导电层电连接。
进一步地,所述的第一金属电极层和所述第二金属电极层均可以为金、银、铜、铁、锡、铂、汞、铝、锌、钛、钨、铅、镍中的一种或多种的合金。
本发明还提供了一种基于结构超滑技术的肖特基微发电机的制备方法,包括如下步骤:
提供具有结构超滑表面的半导体层和/或导电层;
在基底上形成第一金属电极层,并将所述半导体层转移至所述第一金属电极层上,所述第一金属电极层与所述半导体层形成欧姆接触;
将所述导电层转移至所述半导体层的表面,所述导电层和所述半导体层在该表面形成超滑接触和肖特基接触,所述导电层与所述半导体层相对滑动产生电信号。
进一步地,提供具有结构超滑表面的半导体层和/或导电层的方法为:
直接选取具有原子级平整表面的半导体层或导电层;或者,对半导体层的顶面或所述导电层的底面进行抛光,使得所述半导体层的表面具有原子级平整的表面;
选取具有单晶二维界面的半导体层或导电层。
进一步地,在所述导电层的表面还包括第二金属电极层,将所述第二金属电极层与所述导电层电连接。
有益效果
1、利用结构超滑技术,使得导电层和半导体层在相对滑动时具有极低摩擦和无磨损的状态,在导电层和半导体层之间发生相对滑动时,导致动态肖特基节产生非平衡载流子的移动,输出稳定和高密度的直流电信号。由于导电层和半导体层超滑接触,界面间的范德华相互作用面将具有接近100%的有效接触面积,从而能够实现稳定和高密度的输出;同时由于结构超滑极低摩擦和无磨损的特性,还能实现几乎无限的寿命;由于摩擦力较小,因此能量的损耗较小,导致其所需外力极低,可以应用在极其微弱的环境下,具有趋近于100%的转换效率,有效地解决了传统的肖特基微发电机的磨损、使用寿命以及输出密度之间的矛盾,革命性的改变了传统的肖特基微发电机的技术。
2、通过在半导体层的底部设置第一金属电极层,从而将半导体层中的非平衡载流子导出至第一金属电极层,导致在导电层和半导体层之间发生相对滑动时,能够产生非平衡载流子的移动,达到输出稳定和高密度的直流电信号的效果。在导电层的顶部设置第二金属电极层,既可以增强导电层的导电效果,还可以扩大导电层的厚度,增强其可转移性,还可以对导电层进行保护。超滑状态下具有自清扫作用,即滑动过程中可以将位于导电层或半导体层上的杂质分子或杂志原子排除,此能够保证接触的稳定性和避免了表面的氧化作用,能够保证导电层和半导体层之间始终保持超滑接触,使用寿命更长。
附图说明
图1为本发明实施例提供的基于结构超滑技术的肖特基微发电机的结构示意图;
图2为本发明实施例提供的基于结构超滑技术的肖特基微发电机的俯视结构示意图;
图3为本发明传统的肖特基微发电机的结构示意图;
图4为本发明实施例提供的基于结构超滑技术的肖特基微发电机和传统的肖特基微发电机的电流输出对比图;
图5为传统的肖特基微发电机的工作过程的表面氧化表征图;
图6为传统的肖特基微发电机的工作后的形貌表征图;
图7为本发明实施例提供的基于结构超滑技术的肖特基微发电机的形貌表征图;
图8为本发明实施例提供的基于结构超滑技术的肖特基微发电机的自清洁效果图。
附图标记说明:
1、导电层; 2、半导体层;3、第二金属电极层;4、第一金属电极层;5、位移平台。
本发明的最佳实施方式
实施例1:
请一并参阅图1及图2,现对本发明提供的基于结构超滑的肖特基微发电机进行说明。所述基于结构超滑的肖特基微发电机,包括导电层1、半导体层 2和第一金属电极层4,导电层1设置在半导体层 2上,第一金属电极层4设置在半导体层2的一侧,且第一金属电极层4能够和半导体层2形成欧姆接触,能够将半导体层2中的非平衡载流子导出至第一金属电极层4中,从而使得导电层1和半导体层 2之间形成超滑接触和肖特基接触,且导电层1和半导体层 2之间可以发生相对运动,所述相对运动可以通过俘能元件带动导电层或半导体层的其中之一实现,通过引线直接或间接的与导电层1和半导体层 2相连接,可以输出稳定和高密度的电信号,从而形成结构超滑的肖特基发电机。
其中,对于导电层1和半导体层 2,二者之间同时存在超滑接触和肖特基接触,超滑接触是指导电层1和半导体层2在相对运动时,摩擦力几乎为零,摩擦系数小于千分之一,磨损为零。肖特基接触是指金属和半导体材料相接触的时候,在界面处半导体的能带弯曲,从而形成肖特基势垒,由于势垒存在大量的界面电荷,从而能够发电,在导电层1和半导体层2之间可以同时存在超滑接触和肖特基接触,能够有效的增大接触面积,且不会增大摩擦力,有效地解决了传统的肖特基微发电机的磨损、使用寿命以及输出密度之间的矛盾。
所述导电层1和所述半导体层 2中的至少一个为单晶的二维界面材料,另一个为单晶二维界面材料或具有原子级平整的表面。其中,单晶的二维界面材料是指具有单晶相的二维材料,其中二维材料是指电子仅可在两个维度的纳米尺度上自由运动的材料,优选的,导电层1和半导体层2的材料选用单晶的二维界面材料时,该单晶的二维界面材料优选的也具有原子级平整表面。原子级平整表面是指表面粗糙度小于1nm的表面,其中导电层1和半导体层 2中不仅要形成肖特基接触,还需要形成超滑接触,因此对于导电层1和半导体层 2的材料选取具有以下几种方式:
1、导电层1采用具有单晶的二维材料的导电材料,例如采用石墨或石墨烯等,此时半导体层 2可以选用具有单晶的二维界面的半导体材料,例如采用二硒化钨、二硫化钨或者黑磷等;或者,半导体层 2还可以选用具有原子级平整表面的半导体材料,例如采用硅、砷化镓、铟镓砷、氧化锌、锗、氮化镓或者磷化铟中的任一种或多种的合金,并将半导体材料的任一表面加工至原子级平整即可。
2、导电层1采用具有原子级平整表面的金属材料,例如采用金、银、铜、铁、锡、铂、汞、铝、锌、钛、钨、铅或镍中的任一种或多种的合金,并将该金属材料的任一表面加工至原子级平整;此时半导体层 2选用具有单晶的二维界面的半导体材料,例如采用二硒化钨、二硫化钨或者黑磷等。
进一步地,作为本发明提供的基于结构超滑技术的肖特基微发电机的一种具体实施方式,还可以在所述导电层1的顶部设有第二金属电极层3,在所述半导体层 2的底部或一侧设有第一金属电极层4,且所述第一金属电极层4与所述半导体层 2形成欧姆接触,利用引线分别连接第二金属电极层3和第一金属电极层4,并将导电层1和半导体层 2之间形成的电信号引出,即得到基于结构超滑技术的肖特基微发电机,其可以放置于极其微弱的环境中,收集外部的能量驱动导电层1与半导体层 2产生相对运动,产生直流信号为小型器件供电。第二金属电极层3的目的是便于输出电流,还可以不设置第二金属电极层3采用其他方式将电流输出,此次不做唯一具体限定。
其中,第一金属电极层4能够和半导体层2相导通,使得半导体层2中的非平衡载流子能够导出至第一金属电极层4,从而能够使得导电层1和半导体层2之间可以实现肖特基接触,并能够在导电层1和半导体层2相对运动时产生电信号。现有技术中常规的超滑片和基底之间的接触由于基底中的非平衡载流子无法发生流动,因此无法形成肖特基接触。
优选的,第二金属电极层3和第一金属电极层4均可以采用金、银、铜、铁、锡、铂、汞、铝、锌、钛、钨、铅、镍中的一种或多种的合金,其导电性能较好,能够与引线相连同实现电流的输出。
对于基于结构超滑技术的肖特基微发电机的输出效果,请参见图4,其中图4(a)为该基于结构超滑技术的肖特基微发电机的2000次循环的测量电流实验;结合图4(a)可以看出:每个滑动周期中的电流输出非常稳定,并且随着滑动周期数的增加,其电流也逐渐的增大。结合图4(b)可以看出:在恒定法向力下进行了约5000个循环的滑动循环测试,将相应的速度从 4μm/s 逐渐增加到 24μm/s。从图中可以看出,平均电流(上方的曲线)不会衰减,在不同的滑动速度下随滑动周期数逐渐增加。测得的摩擦力(下方的曲线)在最初的约64个循环中具有下降过程,并且在随后的数千次滑动过程中,在不同的滑动速度下摩擦力基本稳定,并随着滑动速度的增加而缓慢增加。
为了清楚的进行比较,设置传统的肖特基微发电机作为对比例,对比例中采用镀有铂的AFM探针直接压在具有相同结构的N型硅上滑动,其结构如图3所示。对其进行2000次循环的测量电流实验和在恒定法向力下进行5000次滑动循环测试;结合图4(b)可以看出:其输出的电流主要呈现脉冲的形式,电流的输出不稳定,其峰值电流虽然可以达到60pA,但平均电流仅为15pA;在前30个滑动周期中,平均电流迅速衰减至0,发电过程停止。并且,传统的肖特基微发电机的摩擦力是基于结构超滑技术的肖特基微发电机的两倍。
结合上述的实验结果可知:基于结构超滑技术的肖特基微发电机具有几乎无限的寿命,而传统肖特基微发电机电流很快衰减,导致发电过程停止,同时基于结构超滑技术的肖特基微发电机的输出电流更加稳定,相比传统肖特基微发电机的电流输出提高了两个数量级。
其中,传统的肖特基微发电机电流消失的主要原因是局部摩擦的高热量导致半导体表面氧化形成绝缘层;结合图5(a)和(b)的表征结果可以看出在未滑动的区域明显存在约25pA的电流,但是在中间的 10×10μm 的滑动区域中,在经过66个滑动周期后,产生的直流电流衰减为零。
通过能谱仪表征了硅表面上无滑动区域和66个滑动周期区域的元素组成和相对含量。结合图5(c)中得出的实验结果,氧和碳元素的含量在66个滑动周期之后增加,其中氧元素的含量从0.45%增加到0.7%; 碳元素的含量从1.6%增加到2.8%;而硅元素的含量从97.8%减少到96.5%。如图6所示的原位形貌表征显示,在滑动区域出现了一个小凸起区域,高度约为1 nm。根据测试结果,推测在AFM探针和硅表面滑动期间的界面摩擦和较大的局部压力会引起局部高温,从而导致碳、氧元素的表面积累从而导致在硅表面上的迅速氧化,并形成一个薄的绝缘层。
如图5(d)-(g)所示,通过C-AFM的I–V曲线表征功能,选取图5(a)中标识的1#和2#点处,分别对1#和2#点处进行测量,在经过66个滑动循环后,在1#和2#点处的I-V曲线在4V幅值电压下呈现电容特性,但是在滑动之前相同位置在4V幅值电压下可以获得肖特基二极管的I-V曲线,这表明在经过66个滑动周期后表面产生了绝缘。
对于基于结构超滑技术的肖特基微发电机,如图7(a)和(b)所示的石墨岛的界面的SEM表征和AFM扫描形态,其具有非常平坦的二维范德华表面,可以与原子级光滑的N型硅表面形成结构超滑接触,其中N型硅表面的AFM扫描形态如图7(d)所示。因此,导电层1和半导体层 2在结构超滑接触状态下将具有较大的有效接触面积,具有较大的电流密度,且在结构超滑接触条件下,低能量耗散抑制了碳在硅表面上的沉积和氧化,从而延长了使用寿命。
结合图8(a)所示在结构超滑接触下,在半导体层 2的反复滑动过程中具有自清洁作用,半导体层 2可以反复清洁滑动区域中的杂质分子,并保持稳定的结构超滑接触状态,可以实现超长的使用寿命,稳定的高效直流输出电流。并且在图8(b)所示的初始滑动循环过程中,摩擦力的减小可以反映出这种现象。
结合上述的实验可以明显得知:对于基于结构超滑技术的肖特基微发电机,导电层1和半导体层 2之间保持结构超滑接触,完全基于非平衡电场导致的载流子迁移的机制来发电,其具有非常大的有效接触面积,超低摩擦系数和无磨损特性,既可以实现很高的电流密度,还可以实现超长寿命,极稳定的输出和高转换效率,且输出电流密度高出传统的肖特基微发电机500-1000倍,并且在至少5000次滑动循环中极其稳定,克服了传统的肖特基发电机的寿命短和电流密度不足的问题。
本发明的实施方式
下面将通过具体实施例对本发明进行详细说明。
实施例2:
本发明还提供一种基于结构超滑技术的肖特基微发电机的制备方法,其包括如下步骤:
S1,在平整的基底或位移平台5上生成第一金属电极层4,例如在抛光的硅基底上电镀或铺设第一金属电极层4,并将半导体层 2转移至所述第一金属电极层4上,且所述第一金属电极层4与所述半导体层 2形成欧姆接触;
S2,对半导体层 2的顶面进行抛光,使得其表面的粗糙度小于1nm,使得所述半导体层 2的表面具有原子级平整的表面;或者,直接选取表面具有原子级平整表面的半导体层2;对于半导体层2的材质,其可以直接选用单晶二维界面的半导体层,例如二硫化钼、二硒化钨、二硫化钨或者黑磷;
S3,对导电层1的底面进行抛光,使得其表面的粗糙度小于1nm,使得所述导电层1的表面具有原子级平整的表面;或者,直接选取表面具有原子级平整表面的导电层1;对于导电层1的材质,还可以直接选用具有单晶二维界面的导电层,如HOPG石墨岛、石墨烯等;
其中,导电层1和半导体层2的材料选取,需要可以同时形成超滑接触和肖特基接触的金属,然后将导电层1转移所述半导体层 2的顶面,所述导电层1和所述半导体层 2形成结构超滑和肖特基接触;
S4,在所述导电层1的表面生成第二金属电极层3,顶部金属层包覆于导电层1的上表面,可以通过电镀或铺设等方式设置在导电层1上,将所述第二金属电极层3与所述第一金属电极层4通过引线相连接。
采用上述步骤制作完成的所述导电层1与所述半导体层 2相对滑动,采用引线将所述半导体层 2和所述导电层1的电信号引出。采用该方法制作的肖特基发电机具有100%的有效接触面积,从而能够实现稳定和高密度的输出;同时由于结构超滑极低摩擦和无磨损的特性,还能实现几乎无限的寿命,有效地解决了传统的肖特基微发电机的磨损、使用寿命以及输出密度之间的矛盾。
工业实用性
以上所述仅为本发明的较佳实施例,凡依本发明权利要求范围所做的均等变化与修饰,皆应属本发明权利要求的涵盖范围。

Claims (11)

  1. 基于结构超滑的肖特基微发电机,包括导电层和半导体层,其特征在于:还包括设于所述半导体层一侧的第一金属电极层,所述导电层和所述半导体层之间形成超滑接触和肖特基接触,所述第一金属电极层与所述半导体层形成欧姆接触,所述导电层与所述半导体层相对运动并输出电信号。
  2. 如权利要求1所述的基于结构超滑的肖特基微发电机,其特征在于:所述导电层或所述半导体层的任一个包括一个单晶的二维界面,另一所述导电层或所述半导体层包括一个单晶的二维界面,或者为具有原子级平整表面的导电层或半导体层。
  3. 如权利要求2所述的基于结构超滑的肖特基微发电机,其特征在于:所述单晶的二维界面是原子级平整表面。
  4. 如权利要求2所述的基于结构超滑的肖特基微发电机,其特征在于:所述导电层包括一个单晶的二维界面,所述半导体层为具有原子级平整表面半导体层。
  5. 如权利要求2所述的基于结构超滑的肖特基微发电机,其特征在于:所述导电层包括石墨或石墨烯;或者,所述导电层为具有原子级平整表面的金属材料。
  6. 如权利要求2所述的基于结构超滑的肖特基微发电机,其特征在于:所述半导体层为具有单晶二维界面的半导体材料,采用二硫化钼、二硒化钨、二硫化钨或者黑磷;或者,所述半导体层为具有原子级平整表面的半导体材料,采用硅、砷化镓、铟镓砷、氧化锌、锗、氮化镓或者磷化铟中的任一种。
  7. 如权利要求1至6任一项所述的基于结构超滑的肖特基微发电机,其特征在于:在所述导电层上还设有第二金属电极层,所述第二金属电极层与所述导电层电连接。
  8. 如权利要求7所述的基于结构超滑的肖特基微发电机,其特征在于:所述的第一金属电极层和所述第二金属电极层均可以为金、银、铜、铁、锡、铂、汞、铝、锌、钛、钨、铅、镍中的一种或多种的合金。
  9. 基于结构超滑的肖特基微发电机的制备方法,其特征在于:包括如下步骤:
    提供具有结构超滑表面的半导体层和/或导电层;
    在基底上形成第一金属电极层,并将所述半导体层转移至所述第一金属电极层上,所述第一金属电极层与所述半导体层形成欧姆接触;
    将所述导电层转移至所述半导体层的表面,所述导电层和所述半导体层在该表面形成超滑接触和肖特基接触,所述导电层与所述半导体层相对滑动产生电信号。
  10. 如权利要求9所述的基于结构超滑的肖特基微发电机的制备方法,其特征在于,提供具有结构超滑表面的半导体层和/或导电层的方法为:
    选取具有原子级平整表面的半导体层或导电层;或者,对半导体层的顶面或所述导电层的底面进行抛光,使得所述半导体层的表面具有原子级平整的表面;
    选取具有单晶二维界面的半导体层或导电层。
  11. 如权利要求9所述的基于结构超滑的肖特基微发电机的制备方法,其特征在于:在所述导电层的表面还包括第二金属电极层,将所述第二金属电极层与所述导电层电连接。
PCT/CN2021/141216 2020-12-30 2021-12-24 基于结构超滑的肖特基微发电机及其制备方法 WO2022143463A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011611712.9A CN112636629A (zh) 2020-12-30 2020-12-30 基于结构超滑的肖特基微发电机及其制备方法
CN202011611712.9 2020-12-30

Publications (1)

Publication Number Publication Date
WO2022143463A1 true WO2022143463A1 (zh) 2022-07-07

Family

ID=75286783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141216 WO2022143463A1 (zh) 2020-12-30 2021-12-24 基于结构超滑的肖特基微发电机及其制备方法

Country Status (2)

Country Link
CN (1) CN112636629A (zh)
WO (1) WO2022143463A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112636629A (zh) * 2020-12-30 2021-04-09 深圳清华大学研究院 基于结构超滑的肖特基微发电机及其制备方法
CN112985472B (zh) * 2021-05-21 2021-09-21 深圳清华大学研究院 接触式超滑编码器
CN113746365B (zh) * 2021-09-01 2023-08-29 深圳清华大学研究院 结构超滑的集成微发电机、电容式电路及微型分布式器件
CN117224078A (zh) * 2022-06-08 2023-12-15 深圳清华大学研究院 一种基于血管脉动的微型发电装置及植入式微型器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011015503A (ja) * 2009-06-30 2011-01-20 Toyota Boshoku Corp 発電マット
CN103368453A (zh) * 2013-03-12 2013-10-23 国家纳米科学中心 一种滑动摩擦纳米发电机及发电方法
CN110350819A (zh) * 2019-06-22 2019-10-18 深圳清华大学研究院 一种基于超滑材料的静电发电机
CN112636629A (zh) * 2020-12-30 2021-04-09 深圳清华大学研究院 基于结构超滑的肖特基微发电机及其制备方法
CN215072193U (zh) * 2020-12-30 2021-12-07 深圳清华大学研究院 基于结构超滑的肖特基微发电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011015503A (ja) * 2009-06-30 2011-01-20 Toyota Boshoku Corp 発電マット
CN103368453A (zh) * 2013-03-12 2013-10-23 国家纳米科学中心 一种滑动摩擦纳米发电机及发电方法
CN110350819A (zh) * 2019-06-22 2019-10-18 深圳清华大学研究院 一种基于超滑材料的静电发电机
CN112636629A (zh) * 2020-12-30 2021-04-09 深圳清华大学研究院 基于结构超滑的肖特基微发电机及其制备方法
CN215072193U (zh) * 2020-12-30 2021-12-07 深圳清华大学研究院 基于结构超滑的肖特基微发电机

Also Published As

Publication number Publication date
CN112636629A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2022143463A1 (zh) 基于结构超滑的肖特基微发电机及其制备方法
Lu et al. Direct-current generator based on dynamic PN junctions with the designed voltage output
Wang et al. Achieving an ultrahigh direct-current voltage of 130 V by semiconductor heterojunction power generation based on the tribovoltaic effect
CN109672367B (zh) 一种基于动态pn结的直流发电机及其制备方法
Zhang et al. Semiconductor contact‐electrification‐dominated tribovoltaic effect for ultrahigh power generation
Kumar et al. Recent advances in power generation through piezoelectric nanogenerators
WO2013155924A1 (zh) 纳米发电机及其制造方法
CN109921687B (zh) 一种层状半导体-半导体动态pn结直流发电机及其制备方法
KR20110095659A (ko) 전기 에너지 발생 장치
KR20210118789A (ko) 빗면 구조를 가진 고전력 슬라이딩 모드 마찰전기 발전기 및 그 제조 방법
CN109037352A (zh) 一种基于移动肖特基结的直流发电机及其制备方法
CN215072193U (zh) 基于结构超滑的肖特基微发电机
CN108963003B (zh) 太阳能电池
Li et al. Performance improvement of PEDOT: PSS/N-Si heterojunction solar cells by alkaline etching
Shao et al. AFM analysis of piezoelectric nanogenerator based on n+-diamond/n-ZnO heterojunction
CN110752784B (zh) 表面态增强的高电流密度动态肖特基发电机及其制备方法
WO2023029305A1 (zh) 一种基于结构超滑的微发电机和发电机组
CN111431433B (zh) 一种基于动态半导体同质结的直流发电机及其制备方法
CN112165275B (zh) 可在极端低温下工作的动态二极管发电机及其制备方法
US11522468B2 (en) Direct-current generator based on dynamic semiconductor heterojunction, and method for preparing same
CN114551497A (zh) 一种垂直结构石墨烯-半导体动态二极管高性能发电机及其制备方法
CN113783471A (zh) 一种薄膜动态半导体-聚合物半导体异质结直流发电机及其制备方法
Pan et al. Tribovoltaic effect promotes highly efficient direct current generator
KR101629690B1 (ko) 터널링 금속­금속산화물­금속 핫전자 에너지 소자
CN116190436B (zh) 一种二维同质结型逻辑反相器及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914200

Country of ref document: EP

Kind code of ref document: A1