WO2022143325A1 - Electric vehicle as well as electric heating equipment and electric heating device thereof - Google Patents

Electric vehicle as well as electric heating equipment and electric heating device thereof Download PDF

Info

Publication number
WO2022143325A1
WO2022143325A1 PCT/CN2021/140345 CN2021140345W WO2022143325A1 WO 2022143325 A1 WO2022143325 A1 WO 2022143325A1 CN 2021140345 W CN2021140345 W CN 2021140345W WO 2022143325 A1 WO2022143325 A1 WO 2022143325A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric heating
heating device
protruding claw
electric vehicle
electric
Prior art date
Application number
PCT/CN2021/140345
Other languages
French (fr)
Inventor
Huifang Wang
Jiandang ZHOU
Jian Xu
Xianyu WEI
Tao Chang
Yi Jiang
Original Assignee
Zhenjiang Helmholtz Heat Transfer Trans System Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhenjiang Helmholtz Heat Transfer Trans System Co., Ltd. filed Critical Zhenjiang Helmholtz Heat Transfer Trans System Co., Ltd.
Publication of WO2022143325A1 publication Critical patent/WO2022143325A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/004Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for vehicles having a combustion engine and electric drive means, e.g. hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2221Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters arrangements of electric heaters for heating an intermediate liquid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings

Definitions

  • the present application relates to the field of electric heating, in particular, an electric heating equipment and an electric heating device for an electric vehicle as well as an electric vehicle comprising the electric heating equipment.
  • an electric heating equipment In an electric vehicle, an electric heating equipment is generally arranged to achieve temperature control on an in-vehicle environment.
  • the electric heating equipment is electrically connected with the power battery of the electric vehicle, electric energy is converted into heat energy by the electric heating device of the electric heating equipment, and then, heat is transferred to the environment in the vehicle by a heat conducting medium by virtue of a heat dissipation system in the vehicle, so that the temperature control on the environment in the vehicle is achieved.
  • a traditional electric heating device achieves heating by adopting a PTC material, however, the resistance value of the PTC material may be increased with the rise of the temperature in the heating region, which may cause the failure of constant-power work; moreover, there is also an aging attenuation phenomenon of a PTC heater.
  • an electric heating device in a form of a thin film resistor has been proposed in the industry.
  • a thermal spraying process such as plasma spraying, flame spraying, high-velocity oxygen fuel spraying and arc spraying
  • resistive materials such as Ni-Cr alloy powder
  • the resistive materials are mostly arranged in a foldback manner, and the adjacent resistive materials are separated by an insulating part/insulating parts, so that switchback regions are inevitable; and due to the tendency that electrical current mostly flows on the path where the resistance is minimum, the situation that the electrical current density is distributed nonuniformly may occur in the switchback regions to result in heat accumulation caused by electrical current accumulation in the switchback regions, then result in overhigh temperature in the switchback regions and even seriously result in local damage.
  • the temperatures in the switchback regions can be uniformized by the design of widening the resistive material parts (heating conductors) arranged close to the insides and outsides of the switchback regions as well as the particular design for directions of extension tracks of the resistive material parts.
  • the present application provides an electric heating device for an electric vehicle.
  • the electric heating device comprises: a base member; and a heating conductor layer arranged on the first surface of the base member, the heating conductor layer comprises extended sections separated by an insulating part/insulating parts, the extended section extends back and forth on the first surface of the base member and forms at least one switchback region, the part of the extended section before passing through the switchback region and the part of the extended section after passing through the switchback region are arranged to be adjacent to each other and have opposite electrical current directions, at the inner side of the switchback region, the insulating part linearly extends in parallel to the extension direction of the extended section, and the tail end of the insulating part is provided with an electrical current guide structure protruding outwards.
  • the electrical current guide structure is continuous or discontinuous relative to the insulating part.
  • the electrical current guide structure is made of an insulating material or formed with a blank structure, and the electrical current guide structure is formed into a protruding structure extending outwards based on the tail end of the insulating part.
  • the protruding structure is a protruding region extending outwards from the tail end of the insulating part and having an arc-shaped outer contour .
  • the protruding structure comprises at least one protruding claw extending outwards from the tail end of the insulating part.
  • the protruding claw comprises a linear protruding claw extending outwards from the tail end of the insulating part along the extension direction of the extended section.
  • the protruding claw comprises: at least one first lateral protruding claw extending outwards based on the tail end of the insulating part and deviated to one side from the extension direction of the extended section; and/or at least one second lateral protruding claw extending outwards based on the tail end of the insulating part and deviated to the other side from the extension direction of the extended section.
  • the linear protruding claw, the first lateral protruding claw and the second lateral protruding claw respectively radially extends outwards from the tail end of the insulating part by taking the tail end as the center of a circle.
  • the length of the linear protruding claw is greater than or equal to the length of the first lateral protruding claw and is smaller than or equal to the length of the second lateral protruding claw.
  • the length of the linear protruding claw ranges from 2 mm to 14 mm
  • the length of the first lateral protruding claw ranges from 2 mm to 12 mm
  • the length of the second lateral protruding claw ranges from 2 mm to 18 mm.
  • the length of the first lateral protruding claw is 1/4 to 3/4 of the length of the linear protruding claw; and/or the length of the linear protruding claw is 1/4 to 3/4 of the length of the second lateral protruding claw.
  • the first lateral protruding claw deviates from the extension direction of the extended section by an included angle ⁇ of 30 DEG to 90 DEG; and/or the second lateral protruding claw deviates from the extension direction of the extended section by an included angle ⁇ of 30 DEG to 90 DEG.
  • the discontinuous electrical current guide structure comprises a plurality of guide parts discretely arranged.
  • the guide part is preferably shaped like segment and further preferably shaped like segment which extend linearly.
  • the guide part shaped like the segment have width ranging from 0.5 mm to 3 mm and length ranging from 1 mm to 9 mm.
  • the guide parts comprise a first guide part discontinuously extending outwards from the tail end O of the insulating part in the extension direction of the extended section.
  • the plurality of the first guide parts are arranged discontinuously or discretely.
  • the electrical current guide structure comprises at least one second guide part and/or at least one third guide part, wherein the second guide part deviates from the extension direction of the extended section to one side and can be arranged discontinuously or discretely; and the third guide part deviates from the extension direction of the extended section to the other side and can be arranged discontinuously or discretely.
  • the extension direction of the first guide part is consistent with the extension direction of the extended section and is aligned with the insulating part.
  • the second guide part and the third guide part are symmetrically arranged relative to the extension axis of the first guide part.
  • the length of the first guide part is smaller than the length of the second guide part or the third guide part, and the length of the second guide part is equal to the length of the third guide part.
  • the extension direction of the second guide part deviates from the extension direction of the extended section by an included angle ⁇ of 15 DEG to 30 DEG; and/or the extension direction of the third guide part deviates from the extension direction of the extended section by an included angle ⁇ of 15 DEG to 30 DEG.
  • the extension direction of the second guide part deviates from the extension direction of the extended section by an included angle ⁇ of 150 DEG to 165 DEG; and/or the extension direction of the third guide part deviates from the extension direction of the extended section by an included angle ⁇ of 150 DEG to 165 DEG.
  • two extended sections parallelly extending in parallel are provided; and/or two extended sections arranged in parallel are provided.
  • two switchback regions are provided.
  • the electric heating device has a transverse direction X and a longitudinal direction Y
  • the extended sections has a substantially uniform width when extended in the transverse direction
  • the extended sections has a substantially uniform width when extended in the longitudinal direction.
  • the electric heating device comprises an insulating layer covering the heating conductor layer.
  • the electric heating device comprises an electrode layer arranged on the insulating layer, the electrode layer penetrates through the insulating layer to be electrically connected with the heating conductor layer.
  • the temperature of the switchback region ranges from 200 DEG C to 250 DEG C; and/or in working state, the temperature of the switchback region does not exceed 250 DEG C.
  • the electric heating equipment comprises: a flow channel structure wherein heat conducting medium circulated in a sealing manner; and an electric heating device , the heat of the electric heating device is transferred to the heat conducting medium so as to transfer the heat to the environment in the vehicle through a heat dissipation system in the vehicle of the electric vehicle, wherein the electric heating device is the above-mentioned electric heating device according to the present application, and a second surface, opposite to the first surface, of the base member of the electric heating device is used for exchanging heat with the heat conducting medium contained in the flow channel structure.
  • the electric vehicle comprises the above-mentioned electric heating equipment, and the electric vehicle is a hybrid vehicle or a purely electric vehicle.
  • the insulating part by which the extended sections are separated linearly extends in parallel to the extension directions of the extended sections, and the tail end of the insulating part is provided with an electrical current guide structure. Therefore, relative convenience is brought for manufacture; moreover, redundant regions formed by arranging a resistive conductor material in a traditional manner are not required, so that local eddy electrical currents will not occur, the resistive conductor material will not be wasted, and then, good manufacturability is achieved.
  • Fig. 1 is a structural schematic diagram of the electric heating device according to a preferred implementation of the present application
  • Fig. 2 is a schematic top view of the heating conductor layer
  • Fig. 3 and Fig. 4 are respectively partial enlarged views of the switchback region according to different preferred implementations of the present application.
  • Fig. 5 is a schematic enlarged view of the electrical current guide structure in the switchback region in Fig. 4;
  • Fig. 6 is a partial enlarged view of the switchback region according to another preferred implementation of the present application.
  • Fig. 7 is a schematic enlarged view of the electrical current guide structure in the switchback region in Fig. 6.
  • the electric heating device for an electric vehicle comprises: a base member 10; and a heating conductor layer 11 arranged on the first surface 101 of the base member 10, the heating conductor layer 11 comprises an extended section/extended sections 13 separated by an insulating part/insulating parts 12, the extended section 13 extends back and forth on the first surface of the base member 10 and there is at least one switchback region 14, the part of the extended section 13 before passing through the switchback region 14 and the part of the extended section 13 after passing through the switchback region 14 are arranged to be adjacent to each other and have opposite electrical current directions, wherein at the inner side of the switchback region 14, the insulating part 12 linearly extends in parallel to the extension direction of the extended section 13, and the tail end O of the insulating part 12 is provided with an electrical current guide structure protruding outwards.
  • the base member 10 is used as an arrangement base of a thin film resistor (that is, the heating conductor layer 11) .
  • the base member 10 is made of a good conductor of heat.
  • the first surface 101 of the base member 10 is generally provided with an insulating layer (shown in Fig. 1, but not marked) , and the other surface, opposite to the first surface 101, of the base member 10 can be provided with a flow channel structure (not shown in the figure) .
  • the heating conductor layer 11 is arranged on the insulating layer.
  • an insulating layer 17 covers the heating conductor layer 11.
  • An electrode layer 18 can further be arranged on the insulating layer 17, and the electrode layer 18 penetrates through the insulating layer 17 to be electrically connected with the heating conductor layer 11 and serves as an electric connection port part of the heating conductor layer 11 so as to electrically connect with an external power source.
  • the insulating material can be a non-conductive material such as a ceramic material, and each layer can be arranged by using a thermal spraying process, such as plasma spraying, flame spraying, high-velocity oxygen fuel spraying and arc spraying.
  • the electric heating device in the form of the thin film resistor can be manufactured according to traditional manufacturing methods, and in the technical solution of the present application, the key lies in that the greatly improvement in regards to the heating conductor layer 11 by comparison with existing traditional solutions.
  • Fig. 2 to Fig. 5 the greatly improvement in regards to the heating conductor layer 11 by comparison with existing traditional solutions.
  • the heating conductor layer 11 comprises extended sections 13 separated by an insulating part/insulating parts 12.
  • the insulating part 12 extends in a meandering manner, thereby dividing a resistive conductor material into the extended sections 13 extending back and forth along X direction and Y direction. Therefore, the materials and geometric parameters of the extended sections 13 can determine the resistance value of the resistive conductor, and further determine the heating power during work in combination with the voltage in working state.
  • the extended section 13 For each extended section 13, its initial position is located at one side of the base member 10, and the extended section 13 is ended on a position located at the side of the base member 10 and adjacent to the initial position after completing its extension. Therefore, the extended section 13 extends back and forth on the first surface of the base member 10 and there is at least one switchback region 14, and generally, there are two switchback regions 14.
  • An electric heating device in the form of the thin film resistor can be arranged on the first surface of the base member 10, and therefore, there can be only one extended section; or there can be two extended sections arranged in parallel, as shown in Fig. 2; or two extended sections parallelly extending can be arranged (in the upper half part or lower half part of Fig. 2, only one extended section is arranged; and on the basis, two extended sections parallelly extending can be arranged in the upper half part and/or lower half part) .
  • the switchback region 14 is actually located on a middle zone of the back-and-forth extending path of each extended section, which is due to the fact that the extended section is required to switch the extension direction to extend in the opposite direction herein. Therefore, the part of the extended section 13 before passing through the switchback region 14 and the part of the extended section 13 after passing through the switchback region 14 are arranged to be adjacent and parallel to each other, and has opposite electrical current directions (in a used state) .
  • the insulating part 12 linearly extends in parallel to the extension direction of the extended section 13 to separate the extended section upstream and downstream the switchback region in a manner of being parallel to each other, there are no changes in width, and thus, relative convenience is brought for manufacture; moreover, the tail end O of the insulating part 12 is provided with an electrical current guide structure which protrudes outwards, so that electrical current may not be excessively centralized at the inner side of the switchback region in the switchback region 14, but deviated outwards.
  • the electrical current guide structure is made of an insulating material, redundant regions formed by arranging a resistive conductor material in a traditional manner are not required, so that local eddy electrical currents will not occur, the resistive conductor material will not be wasted, and then, good manufacturability is achieved.
  • the inside and the outside of the switchback region mean that: seen from a top view, as shown in Fig. 2, based on the outer contour, the direction pointing to the inside refers to “inner” and the direction pointing to the outside refers to “outer” .
  • the improvement on the uniformity of electrical current distribution in the switchback region can be achieved due to the fact that electrical current is always conducted in the conductor material along a path with the minimum resistance.
  • the tail end O of the insulating part 12 is provided with the electrical current guide structure which protrudes and extends outwards, and the electrical current guide structure is made of an insulating material or formed with a blank structure, which is equivalent to that a small-resistance conducting path on which the electrical current is easily accumulated near the tail end O of the insulating part 12 is changed, and the conducting path is pushed outwards, so that the electrical current is prevented from being excessively centralized in a region near the tail end O.
  • the electrical current guide structure protrudes and extends outwards, which means that the electrical current guide structure protrudes and extends outwards in a plane on the first surface of the base member.
  • the uniformity of electrical current distribution in the switchback region is improved, and therefore, in industrial practice, in working state, the temperature of the switchback region 14 ranges from 200 DEG C to 250 DEG C, preferably ranges from 210 DEG C to 230 DEG C and does not exceed 250 DEG C generally.
  • the temperature may almost not be lower than 250 DEG C.
  • the temperature of the switchback region 14 can be often measured to be near 260 DEG C and even higher.
  • the temperature, particularly the highest temperature, of the switchback region in working state can be further reduced by only adopting the technical solutions of the present application under the condition that other working conditions are basically consistent, and therefore, higher safety and reliability are achieved.
  • the electrical current guide structure is made of the insulating material (preferably, an insulating material the same as that of the insulating part, and they may be manufactured together during manufacture process) or formed with a blank structure (air insulation) , and therefore, the waste of the resistive conductor material can be avoided; and compared with the traditional solution, the solutions not only reduce the cost, but also avoid negative problems brought by the redundant conductor region.
  • the electrical current guide structure is formed into a protruding structure extending outwards based on the tail end O of the insulating part 12.
  • the term “based on” means that the tail end O or a position near the tail end O of the insulating part 12 is taken as an initial point, but the tail end O can always be taken as a reference basis.
  • the electrical current guide structure can have various forms. As shown in Fig. 3, the protruding structure of the electrical current guide structure can be a protruding region 15 extending outwards from the tail end O of the insulating part 12 and having an arc-shaped outer contour.
  • the arc-shaped outer contour of the protruding region 15 can be selectively designed according to different application conditions of a product.
  • the extending degree of the arc-shaped outer contour at one side of the insulating part 12 is smaller than the extending degree of the arc-shaped outer contour at the other side of the insulating part 12, as shown in Fig. 3, so that the electrical current is relatively uniformly distributed when being switched into opposite directions in the switchback region.
  • the protruding structure of the electrical current guide structure comprises at least one protruding claw 16 extending outwards from the tail end O of the insulating part 12, and thus, the flow direction of the electrical current in the switchback region is guided by using the at least one protruding claw 16.
  • the protruding claw 16 comprises a linear protruding claw 160 extending outwards from the tail end O of the insulating part 12 in the extension direction of the extended section 13.
  • the linear protruding claw 160 is consistent with the extended section 13 in extension direction and extends outwards from the tail end O.
  • the contour of the tail end of the linear protruding claw 160 can be designed to be arc-shaped, or the width of the linear protruding claw 160 is different from the width of the insulating part 12, and thus, the linear protruding claw 160 plays a role in guiding the direction of electrical current together with the insulating part 12. Further preferably, as shown in Fig.
  • the protruding claws 16 comprises: at least one first lateral protruding claw 161 extending outwards based on the tail end O of the insulating part 12 and deviated to one side from the extension direction of the extended section 13 ; and/or at least one second lateral protruding claw 162 extending outwards based on the tail end O of the insulating part 12 and deviated to the other side from the extension direction of the extended section 13 .
  • first lateral and “second lateral” described herein are merely for the purpose of distinguishing, rather than for constituting limitation on the technical solutions.
  • first lateral protruding claw and second lateral protruding claw are displayed in the figure, the present application is not limited to the specific manners shown in the figures. For example, there may be a plurality of first lateral protruding claws and a plurality of second lateral protruding claws, and these different manners fall within scope claimed by the present application.
  • the linear protruding claw and the first lateral protruding claw are arranged at the same time, or it is possible that the linear protruding claw and the second lateral protruding claw are arranged at the same time, and most preferably, the linear protruding claw, the first lateral protruding claw and the second lateral protruding claw are arranged at the same time.
  • the linear protruding claw 160, the first lateral protruding claw 161 and the second lateral protruding claw 162 respectively radially extends outwards from the tail end O of the insulating part 12 by taking the tail end O as the center of a circle.
  • the linear protruding claw, the first lateral protruding claw and the second lateral protruding claw have the same foundation of geometry, and therefore, relative convenience is achieved during design, production and manufacture. Meanwhile, it should be pointed out that the present application is not limited to the specific manners as shown in Fig. 5, as mentioned above, “based on the tail end O” can be understood as taking the tail end O as an initial point or being adjacent to the tail end O.
  • the first lateral protruding claw and the second lateral protruding claw can also be designed to have no common extension intersection point with the linear protruding claw.
  • the first lateral protruding claw and the second lateral protruding claw are staggered in a horizontal direction as shown in Fig. 5.
  • the length of the linear protruding claw 160 is greater than or equal to the length of the first lateral protruding claw 161 and is smaller than or equal to the length of the second lateral protruding claw 162.
  • the reason for such a design lies in that the plurality of protruding claws with different lengths can respectively form a plurality of electrical current paths with different hierarchies to avoid relative centralization of electrical current.
  • each kind of protruding claw can be designed more than one; or preferably, more protruding claws such as four, five and six protruding claws can be designed.
  • the length of the first lateral protruding claw 161 is 1/4 to 3/4, preferably, 1/3 to 1/2 of the length of the linear protruding claw 160; and/or the length of the linear protruding claw 160 is 1/4 to 3/4, preferably, 1/3 to 1/2 of the length of the second lateral protruding claw 162.
  • the length of the linear protruding claw 160 ranges from 2 mm to 14 mm
  • the length of the first lateral protruding claw 161 ranges from 2 mm to 12 mm
  • the length of the second lateral protruding claw 162 ranges from 2 mm to 18 mm.
  • the length of each of the above-mentioned protruding claws can be each integer in the length range thereof, and the length of the linear protruding claw 160 can be 3 mm, 4 mm, 5 mm, 6 mm, 7 mm or the like.
  • the length of the protruding claw can be calculated by taking the tail end O as the initial point and the extreme end thereof as an end point.
  • the first lateral protruding claw 161 deviates from the extension direction of the extended section 13 by an included angle ⁇ of 30 DEG to 90 DEG, preferably 45 DEG to 60 DEG; and/or the second lateral protruding claw 162 deviates from the extension direction of the extended section 13 by an included angle ⁇ of 30 DEG to 90 DEG, preferably 45 DEG to 60 DEG.
  • Different effects of guiding a flow direction of a electrical current flowing through the switchback region can be achieved by designing and selecting pointing directions of the first lateral protruding claw 161 and the second lateral protruding claw 162, so as to adapt to different application conditions.
  • These non-conductive protruding claws can prevent increase of the electrical current density on the shortest electrical current path and then level off the electrical current distribution, and therefore excessive accumulation of heat can be avoided.
  • each protruding claw can also be selectively designed.
  • the width of each protruding claw can be consistent with the width of the insulating part 12, but they can also be designed to have inconsistent widths, which can be selected according to different application conditions.
  • the extended sections 13 has a substantially uniform width when extending in the transverse direction X, and the extended sections 13 has a substantially uniform width when extending in the longitudinal direction Y.
  • the area of the extended section is locally occupied only at the electrical current guide structure (as shown in Fig. 3 or Fig. 4) , so that the electrical current is prevented from being excessively centralized in the region adjacent to the tail end of the insulating part.
  • the above-mentioned transverse direction X and longitudinal direction Y are only intended to be used as orientation reference system, rather than to constitute substantial limitations on the technical solutions of the present application.
  • the direction X and the direction Y in Fig. 2 can also be interchanged.
  • all the protruding claws used as the electrical current guide structure are non-conductive, and their non-conductivity can be achieved by virtue of an insulating material, for example, the protruding claws can be integrally connected with the insulating part and used as extended parts of the insulating part; or the non-conductivity can be achieved by designing the electrical current guide structure to be of a blank structure, the blank structure means that there is no resistive conductor material in this part but which has reserved space, and thus, the electric insulation effect of air is achieved by virtue of the reserved space. Obviously, this manner is distinctly different from a traditional manner of changing the widths of the extended sections.
  • the insulating part In a traditional solution, in order to change the widths of the extended sections in the switchback region, the insulating part needs to be designed to nonlinearly extend, that is, it need to extend obliquely or in an arc shape, and thus, the above-mentioned various problems are brought.
  • the insulating part basically extends linearly in the direction X and the direction Y, so that the difficulty during production and manufacture is greatly lowered, and then the manufacturability of the electric heating device is achieved.
  • the tail end O of the insulating part 12 is provided with the electrical current guide structure continuously protruded outwards
  • the tail end O of the insulating part 12 is provided with an electrical current guide structure discontinuously protruded outwards.
  • continuous or “discontinuous” means whether the non- conductive electrical current guide structure is connected with the insulating part 12 or not; if the non-conductive electrical current guide structure is connected with the insulating part 12, the electrical current guide structure is continuous; and if the non-conductive electrical current guide structure is not connected with the insulating part 12, the electrical current guide structure is discontinuous.
  • the continuous electrical current guide structure is disconnected by a conductive material, and thus, the discontinuous electrical current guide structure can be formed.
  • the electrical current guide structure is made of an insulating material or formed with a blank structure, and the electrical current guide structure is formed into a protruding structure extending outwards based on the tail end O of the insulating part 12, but the electrical current guide structure is discontinuous relative to the insulating part 12.
  • linear protruding claw 160 (and each lateral protruding claw thereof) can also be designed to be discontinuous relative to the insulating part 12, however, the arrangement of the linear protruding claw can be consistent with that in Fig. 4 and Fig. 5.
  • the discontinuous electrical current guide structure has the prominent advantages: as shown in Fig. 6, in the switchback region, an inner side electrical current circulating region IN is formed between the electrical current guide structure and the insulating part 12 at the inner side, an outer side electrical current circulating region OUT is formed between the electrical current guide structure and the insulating part 12 at the outer side, and thus, more possibilities are provided for the guide of electrical current (for avoiding local eddy electrical current) , and more different working conditions can be adapted. Moreover, the relative convenience is also brought for production and manufacture.
  • the discontinuous electrical current guide structure can comprise a plurality of guide parts 20 which are discretely arranged, as shown in Fig. 6 and Fig. 7.
  • the “discretely arranged” have at least two meanings: firstly, the guide parts 20 serving as the electrical current guide structure are discontinuous relative to the insulating part 12; and secondly, the guide parts are discontinuous inter se under the condition that there are a plurality of guide parts 20. Therefore, a middle electrical current circulating region MID can also be formed between the different guide parts under some working conditions, so that a better electrical current guide effect is achieved.
  • the guide part 20 is preferably shaped like segment, however, the present application is not limited to this, and the guide part can be designed to be shaped like a round, an ellipse and the like.
  • the above-mentioned line segment can be line segment extending linearly and can also be segment extending in an arc shape.
  • the guide part shaped like the segment has width ranging from 0.5 mm to 3 mm and length ranging from 1 mm to 9 mm.
  • the specific geometric parameters of the guide part with other shapes can also be selectively designed.
  • the guide parts 20 can be properly discretely arranged in the switchback region to meet various different specific demands for electrical current guide while avoiding to produce eddy electrical currents.
  • the guide parts 20 comprise a first guide part 201 discontinuously extended outwards from the tail end O of the insulating part 12 in the extension direction of the extended section 13.
  • an inner side electrical current circulating region IN is formed between the first guide part 201 and the tail end O of the insulating part 12; and meanwhile, an outer side electrical current circulating region OUT is formed at the outer side of the first guide part 201, so that the effect of guiding electrical respectively electrical current is achieved.
  • there can be a plurality of first guide parts 201 the plurality of first guide parts 201 are arranged discontinuously or discretely, and thus, electrical current circulating regions are also formed between the first guide parts.
  • the electrical current guide structure comprises at least one second guide part 202 and/or at least one third guide part 203, wherein the second guide part 202 deviates from the extension direction of the extended section 13 to one side to be arranged discontinuously or discretely; and the third guide part 203 deviates from the extension direction of the extended section 13 to the other side to be arranged discontinuously or discretely.
  • an inner side electrical current circulating region IN can be provided, and at the inner side of the second guide part or the third guide part, an outer side electrical current circulating region OUT can be provided.
  • An electrical current circulating region can be formed between a plurality of second guide parts 202; an electrical current circulating region can be formed between a plurality of third guide parts 203; and an electrical current circulating region can also be formed between the first guide part 201 and the second guide part 202 and/or the third guide part 203 that are adjacent to each other. Therefore, all the guide parts are arranged in such a manner so that various flexible selection possibilities can be provided for the electrical current guide manner. Moreover, relative convenience is achieved when a product is produced and manufactured.
  • the extension direction of the first guide part 201 is consistent with the extension direction of the extended section 13and is aligned with the insulating part 12.
  • the second guide part 202 and the third guide part 203 are symmetrically arranged relative to the extension axis of the first guide part 201.
  • the first guide part 201, the second guide part 202 and the third guide part 203 are all shaped like a segment so as to be conveniently manufactured.
  • the length of the first guide part 201 is smaller than the length of the second guide part or the third guide part 203, and the length of the second guide part 202 is equal to the length of the third guide part 203.
  • the length of the first guide part 201 is 1/4 to 2/3, preferably, 1/4 to 1/2 of the length of the second guide part 202 or the third guide part 203.
  • the extension direction of the second guide part 202 deviates from the extension direction of the extended section 13 by an included angle ⁇ of 15 DEG to 30 DEG; and/or the extension direction of the third guide part 203 deviates from the extension direction of the extended section 13 by an included angle ⁇ of 15 DEG to 30 DEG.
  • the extension direction of the second guide part 202 deviates from the extension direction of the extended section 13 by an included angle ⁇ of 150 DEG to 165 DEG; and/or the extension direction of the third guide part 203 deviates from the extension direction of the extended section 13 by an included angle ⁇ of 150 DEG to 165 DEG.
  • the regional area of the middle electrical current circulating region MID can be adjusted, there is relatively small and even almost no electrical current in the region MID, and therefore relatively little heat and even no heat is generated, the distribution of heating region can be adjusted, and then the overall heat distribution is adjusted.
  • the adjusting manner of the angle can also be similarly applied to the implementations as shown in Fig. 4 and Fig. 5.
  • the inner side electrical current circulating regions IN and the outer side electrical current circulating regions OUT are respectively formed at the inner side and outer side of the guide parts (or the electrical current circulating regions can also be formed between the adjacent guide parts) , and thus a better electrical current shunt guide effect can be achieved.
  • the resistance values of the inner side electrical current circulating regions IN can be greater than the resistance values of the outer side electrical current circulating regions OUT, so that values of electrical currents flowing through the inner side electrical current circulating regions IN are relatively large, and values of electrical currents flowing through the outer side electrical current circulating regions OUT are relatively small, and then the technical effect of reducing heat accumulation by better electrical current shunt guide is further achieved.
  • the electric heating device provided by the present application has been described in detail as above, and the electric heating device is arranged to be used in an electric heating equipment. Therefore, the present application further provides an electric heating equipment for an electric vehicle.
  • the electric heating equipment comprises: a flow channel structure wherein heat conducting medium circulated in a sealing manner; and an electric heating device, the heat of the electric heating device is transferred to the heat conducting medium so as to transfer the heat to the environment in the vehicle through a heat dissipation system in the vehicle of the electric vehicle, wherein the electric heating device is the above-mentioned electric heating device provided by the present application, and the second surface opposite to the first surface of the base member 10 of the electric heating device is used for exchanging heat with the heat conducting medium in the flow channel structure.
  • one side of the first surface of the base member 10 is provided with the electric heating device for converting electric energy into heat energy; and the other side of the second surface, opposite to the first surface, of the base member 10 is designed with the flow channel structure to allow heat conducting medium to circulate in the heatdissipation system or an air conditioning system. Therefore, when the electric heating device is in heating operation, the heat can be transferred to the heat conducting medium in the flow channel structure by the base member and then transferred to the air conditioning system or heat dissipation system by the heat conducting medium, so that the heat in the in-vehicle environment is radiated, and then temperature control is achieved.
  • the structure and operation of the electric heating equipment can refer to existing electric heating equipments, however, the electric heating device of the electric heating equipment is the electric heating device provided by the present application, which is due to the fact that the main emphasis in the technical solutions of the present application is on the improvement of the electric heating device (particularly, the heating conductor layer 11) .
  • Such an electric heating equipment can be applied to various working conditions such as various carrying tools, particularly an electric vehicle.
  • the present application further provides an electric vehicle, wherein the electric vehicle comprises the above-mentioned electric heating equipment, and the electric vehicle is a purely electric vehicle or a hybrid vehicle.
  • a power battery in the above-mentioned electric vehicle can be a rechargeable secondary battery such as a lithium battery and a nickel-metal hydride battery, and can also be a fuel battery such as a hydrogen fuel battery.

Abstract

The present application discloses an electric vehicle as well as an electric heating equipment and an electric heating device thereof. The electric heating device comprises: a base member (10); and a heating conductor layer (11) arranged on the first surface (101) of the base member (10), the heating conductor layer (11) comprises extended sections (13) separated by an insulating part/insulating parts (12), the extended section (13) extends back and forth on the first surface of the base member (10) and there is at least one switchback region (14), the part of the extended section (13) before passing through the switchback region (14) and the part of the extended section (13) after passing through the switchback region (14) are arranged to be adjacent to each other and have opposite electrical current directions, at the inner side of the switchback region (14), the insulating part (12) linearly extends in parallel to the extension direction of the extended section (13), and the tail end (O) of the insulating part (12) is provided with an electrical current guide structure. According to the technical solution of the present application, good manufacturability can be achieved.

Description

Electric Vehicle as well as Electric heating equipment and Electric heating device Thereof TECHNICAL FIELD
The present application relates to the field of electric heating, in particular, an electric heating equipment and an electric heating device for an electric vehicle as well as an electric vehicle comprising the electric heating equipment.
BACKGROUND
In an electric vehicle, an electric heating equipment is generally arranged to achieve temperature control on an in-vehicle environment. The electric heating equipment is electrically connected with the power battery of the electric vehicle, electric energy is converted into heat energy by the electric heating device of the electric heating equipment, and then, heat is transferred to the environment in the vehicle by a heat conducting medium by virtue of a heat dissipation system in the vehicle, so that the temperature control on the environment in the vehicle is achieved.
A traditional electric heating device achieves heating by adopting a PTC material, however, the resistance value of the PTC material may be increased with the rise of the temperature in the heating region, which may cause the failure of constant-power work; moreover, there is also an aging attenuation phenomenon of a PTC heater.
For overcoming the defects of the PTC material, at present, an electric heating device in a form of a thin film resistor has been proposed in the industry. When such a thin  film resistor is manufactured, a thermal spraying process (such as plasma spraying, flame spraying, high-velocity oxygen fuel spraying and arc spraying) is generally utilized to spray resistive materials (such as Ni-Cr alloy powder) on a substrate, thereby forming the electric heating device in the form of the thin film resistor. However, when the thin film resistor is manufactured by using the thermal spraying process, in order to obtain a predetermined resistance value, the resistive materials are mostly arranged in a foldback manner, and the adjacent resistive materials are separated by an insulating part/insulating parts, so that switchback regions are inevitable; and due to the tendency that electrical current mostly flows on the path where the resistance is minimum, the situation that the electrical current density is distributed nonuniformly may occur in the switchback regions to result in heat accumulation caused by electrical current accumulation in the switchback regions, then result in overhigh temperature in the switchback regions and even seriously result in local damage.
For this purpose, in the industry, it has been proposed that the temperatures in the switchback regions can be uniformized by the design of widening the resistive material parts (heating conductors) arranged close to the insides and outsides of the switchback regions as well as the particular design for directions of extension tracks of the resistive material parts. However, such a traditional solution has the defects that: firstly, there are relatively strict requirements on the widths and extension tracks of the heating conductors in the traditional solution, so that there are higher requirements on production and manufacture, the difficulty is relatively high during manufacture, and the rate of finished products is limited; secondly, for such a traditional manner, a defined region shaped like a water drop or match end is required to be formed in the switchback region, and if an electric connection relationship is formed between the region and the heating conductors (that is, the region is not completely separated by  an insulating material) , eddy electrical currents very easily occur in the region to result in local overheat in the region; and if a non-electric connection relationship is formed between the region and the heating conductors, the space in the region is wasted, the region may not take part in the heating work of the heating conductors, and the implementation of the volume compactness of the electric heating equipment is also affected.
Therefore, how to provide a technical solution with higher manufacturability for the electric heating device becomes a technical problem to be solved in the art.
SUMMARY
To this end, the present application provides an electric heating device for an electric vehicle. The electric heating device comprises: a base member; and a heating conductor layer arranged on the first surface of the base member, the heating conductor layer comprises extended sections separated by an insulating part/insulating parts, the extended section extends back and forth on the first surface of the base member and forms at least one switchback region, the part of the extended section before passing through the switchback region and the part of the extended section after passing through the switchback region are arranged to be adjacent to each other and have opposite electrical current directions, at the inner side of the switchback region, the insulating part linearly extends in parallel to the extension direction of the extended section, and the tail end of the insulating part is provided with an electrical current guide structure protruding outwards. Preferably, the electrical current guide structure is continuous or discontinuous relative to the insulating part.
Preferably, the electrical current guide structure is made of an insulating material or formed with a blank structure, and the electrical current guide structure is formed into  a protruding structure extending outwards based on the tail end of the insulating part.
Preferably, the protruding structure is a protruding region extending outwards from the tail end of the insulating part and having an arc-shaped outer contour .
Preferably, the protruding structure comprises at least one protruding claw extending outwards from the tail end of the insulating part.
Preferably, the protruding claw comprises a linear protruding claw extending outwards from the tail end of the insulating part along the extension direction of the extended section.
Preferably, the protruding claw comprises: at least one first lateral protruding claw extending outwards based on the tail end of the insulating part and deviated to one side from the extension direction of the extended section; and/or at least one second lateral protruding claw extending outwards based on the tail end of the insulating part and deviated to the other side from the extension direction of the extended section.
Preferably, the linear protruding claw, the first lateral protruding claw and the second lateral protruding claw respectively radially extends outwards from the tail end of the insulating part by taking the tail end as the center of a circle.
Preferably, the length of the linear protruding claw is greater than or equal to the length of the first lateral protruding claw and is smaller than or equal to the length of the second lateral protruding claw.
Preferably, the length of the linear protruding claw ranges from 2 mm to 14 mm, the  length of the first lateral protruding claw ranges from 2 mm to 12 mm, and the length of the second lateral protruding claw ranges from 2 mm to 18 mm.
Preferably, the length of the first lateral protruding claw is 1/4 to 3/4 of the length of the linear protruding claw; and/or the length of the linear protruding claw is 1/4 to 3/4 of the length of the second lateral protruding claw.
Preferably, the first lateral protruding claw deviates from the extension direction of the extended section by an included angle α of 30 DEG to 90 DEG; and/or the second lateral protruding claw deviates from the extension direction of the extended section by an included angle β of 30 DEG to 90 DEG.
Preferably, the discontinuous electrical current guide structure comprises a plurality of guide parts discretely arranged. The guide part is preferably shaped like segment and further preferably shaped like segment which extend linearly.
Preferably, the guide part shaped like the segment have width ranging from 0.5 mm to 3 mm and length ranging from 1 mm to 9 mm.
Preferably, the guide parts comprise a first guide part discontinuously extending outwards from the tail end O of the insulating part in the extension direction of the extended section. There can be a plurality of the first guide parts. The plurality of the first guide parts are arranged discontinuously or discretely.
Preferably, the electrical current guide structure comprises at least one second guide part and/or at least one third guide part, wherein the second guide part deviates from the extension direction of the extended section to one side and can be arranged  discontinuously or discretely; and the third guide part deviates from the extension direction of the extended section to the other side and can be arranged discontinuously or discretely.
Preferably, the extension direction of the first guide part is consistent with the extension direction of the extended section and is aligned with the insulating part. Meanwhile, the second guide part and the third guide part are symmetrically arranged relative to the extension axis of the first guide part.
Preferably, the length of the first guide part is smaller than the length of the second guide part or the third guide part, and the length of the second guide part is equal to the length of the third guide part.
Preferably, the extension direction of the second guide part deviates from the extension direction of the extended section by an included angle γ of 15 DEG to 30 DEG; and/or the extension direction of the third guide part deviates from the extension direction of the extended section by an included angle θ of 15 DEG to 30 DEG. As another preferable implementation, the extension direction of the second guide part deviates from the extension direction of the extended section by an included angle γ of 150 DEG to 165 DEG; and/or the extension direction of the third guide part deviates from the extension direction of the extended section by an included angle θ of 150 DEG to 165 DEG.
Preferably, two extended sections parallelly extending in parallel are provided; and/or two extended sections arranged in parallel are provided.
Preferably, two switchback regions are provided.
Preferably, the electric heating device has a transverse direction X and a longitudinal direction Y, the extended sections has a substantially uniform width when extended in the transverse direction, and the extended sections has a substantially uniform width when extended in the longitudinal direction.
Preferably, the electric heating device comprises an insulating layer covering the heating conductor layer.
Preferably, the electric heating device comprises an electrode layer arranged on the insulating layer, the electrode layer penetrates through the insulating layer to be electrically connected with the heating conductor layer.
Preferably, in working state, the temperature of the switchback region ranges from 200 DEG C to 250 DEG C; and/or in working state, the temperature of the switchback region does not exceed 250 DEG C.
According to another aspect of the present application, further provides an electric heating equipment for an electric vehicle. The electric heating equipment comprises: a flow channel structure wherein heat conducting medium circulated in a sealing manner; and an electric heating device , the heat of the electric heating device is transferred to the heat conducting medium so as to transfer the heat to the environment in the vehicle through a heat dissipation system in the vehicle of the electric vehicle, wherein the electric heating device is the above-mentioned electric heating device according to the present application, and a second surface, opposite to the first surface, of the base member of the electric heating device is used for exchanging heat with the heat conducting medium contained in the flow channel  structure.
According to further aspect of the present application, provides an electric vehicle. The electric vehicle comprises the above-mentioned electric heating equipment, and the electric vehicle is a hybrid vehicle or a purely electric vehicle.
According to the technical solutions of the present application, at the inner side of the switchback region, the insulating part by which the extended sections are separated linearly extends in parallel to the extension directions of the extended sections, and the tail end of the insulating part is provided with an electrical current guide structure. Therefore, relative convenience is brought for manufacture; moreover, redundant regions formed by arranging a resistive conductor material in a traditional manner are not required, so that local eddy electrical currents will not occur, the resistive conductor material will not be wasted, and then, good manufacturability is achieved.
Other features and advantages of the present application will be described in detail in the subsequent “DETAILED DESCRIPTION OF THE EMBODIMENTS” part.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings constituting one part of the present application are provided for further understanding of the present application, and schematic implementations and descriptions thereof in the present application serve to explain the present application. In the accompanying drawings:
Fig. 1 is a structural schematic diagram of the electric heating device according to a preferred implementation of the present application;
Fig. 2 is a schematic top view of the heating conductor layer;
Fig. 3 and Fig. 4 are respectively partial enlarged views of the switchback region  according to different preferred implementations of the present application;
Fig. 5 is a schematic enlarged view of the electrical current guide structure in the switchback region in Fig. 4;
Fig. 6 is a partial enlarged view of the switchback region according to another preferred implementation of the present application; and
Fig. 7 is a schematic enlarged view of the electrical current guide structure in the switchback region in Fig. 6.
DETAILED DESCRIPTION OF THE EMBODIMENTS
Hereunder the technical solutions of the present invention will be specified in details with reference to the accompanying drawings and in conjunction with implementations.
As shown in Fig. 1 to Fig. 5, the electric heating device for an electric vehicle according to the present application comprises: a base member 10; and a heating conductor layer 11 arranged on the first surface 101 of the base member 10, the heating conductor layer 11 comprises an extended section/extended sections 13 separated by an insulating part/insulating parts 12, the extended section 13 extends back and forth on the first surface of the base member 10 and there is at least one switchback region 14, the part of the extended section 13 before passing through the switchback region 14 and the part of the extended section 13 after passing through the switchback region 14 are arranged to be adjacent to each other and have opposite electrical current directions, wherein at the inner side of the switchback region 14, the insulating part 12 linearly extends in parallel to the extension direction of the extended section 13, and the tail end O of the insulating part 12 is provided with an electrical current guide structure protruding outwards.
As shown in Fig. 1, the base member 10 is used as an arrangement base of a thin film resistor (that is, the heating conductor layer 11) . Generally, the base member 10 is made of a good conductor of heat. The first surface 101 of the base member 10 is generally provided with an insulating layer (shown in Fig. 1, but not marked) , and the other surface, opposite to the first surface 101, of the base member 10 can be provided with a flow channel structure (not shown in the figure) . Then, the heating conductor layer 11 is arranged on the insulating layer. Generally, an insulating layer 17 covers the heating conductor layer 11. An electrode layer 18 can further be arranged on the insulating layer 17, and the electrode layer 18 penetrates through the insulating layer 17 to be electrically connected with the heating conductor layer 11 and serves as an electric connection port part of the heating conductor layer 11 so as to electrically connect with an external power source. The insulating material can be a non-conductive material such as a ceramic material, and each layer can be arranged by using a thermal spraying process, such as plasma spraying, flame spraying, high-velocity oxygen fuel spraying and arc spraying. The electric heating device in the form of the thin film resistor can be manufactured according to traditional manufacturing methods, and in the technical solution of the present application, the key lies in that the greatly improvement in regards to the heating conductor layer 11 by comparison with existing traditional solutions. Hereunder detailed description will be shown with reference to Fig. 2 to Fig. 5.
As shown in Fig. 2, the heating conductor layer 11 comprises extended sections 13 separated by an insulating part/insulating parts 12. The insulating part 12 extends in a meandering manner, thereby dividing a resistive conductor material into the extended sections 13 extending back and forth along X direction and Y direction. Therefore, the materials and geometric parameters of the extended sections 13 can determine the resistance value of the resistive conductor, and further determine the heating power  during work in combination with the voltage in working state. For each extended section 13, its initial position is located at one side of the base member 10, and the extended section 13 is ended on a position located at the side of the base member 10 and adjacent to the initial position after completing its extension. Therefore, the extended section 13 extends back and forth on the first surface of the base member 10 and there is at least one switchback region 14, and generally, there are two switchback regions 14.
An electric heating device in the form of the thin film resistor can be arranged on the first surface of the base member 10, and therefore, there can be only one extended section; or there can be two extended sections arranged in parallel, as shown in Fig. 2; or two extended sections parallelly extending can be arranged (in the upper half part or lower half part of Fig. 2, only one extended section is arranged; and on the basis, two extended sections parallelly extending can be arranged in the upper half part and/or lower half part) .
As shown in Fig. 2, Fig. 3 and Fig. 4, the switchback region 14 is actually located on a middle zone of the back-and-forth extending path of each extended section, which is due to the fact that the extended section is required to switch the extension direction to extend in the opposite direction herein. Therefore, the part of the extended section 13 before passing through the switchback region 14 and the part of the extended section 13 after passing through the switchback region 14 are arranged to be adjacent and parallel to each other, and has opposite electrical current directions (in a used state) . In the technical solutions of the present application, as shown in Fig. 3 and Fig. 4, at the inner side of the switchback region 14, the insulating part 12 linearly extends in parallel to the extension direction of the extended section 13 to separate the extended section upstream and downstream the switchback region in a manner of being parallel  to each other, there are no changes in width, and thus, relative convenience is brought for manufacture; moreover, the tail end O of the insulating part 12 is provided with an electrical current guide structure which protrudes outwards, so that electrical current may not be excessively centralized at the inner side of the switchback region in the switchback region 14, but deviated outwards. The electrical current guide structure is made of an insulating material, redundant regions formed by arranging a resistive conductor material in a traditional manner are not required, so that local eddy electrical currents will not occur, the resistive conductor material will not be wasted, and then, good manufacturability is achieved.
In the present application, the inside and the outside of the switchback region mean that: seen from a top view, as shown in Fig. 2, based on the outer contour, the direction pointing to the inside refers to “inner” and the direction pointing to the outside refers to “outer” .
In the technical solutions of the present application, the improvement on the uniformity of electrical current distribution in the switchback region can be achieved due to the fact that electrical current is always conducted in the conductor material along a path with the minimum resistance. Specifically speaking, the tail end O of the insulating part 12 is provided with the electrical current guide structure which protrudes and extends outwards, and the electrical current guide structure is made of an insulating material or formed with a blank structure, which is equivalent to that a small-resistance conducting path on which the electrical current is easily accumulated near the tail end O of the insulating part 12 is changed, and the conducting path is pushed outwards, so that the electrical current is prevented from being excessively centralized in a region near the tail end O. Herein, the electrical current guide structure protrudes and extends outwards, which means that the electrical current  guide structure protrudes and extends outwards in a plane on the first surface of the base member.
According to the technical solutions of the present application, the uniformity of electrical current distribution in the switchback region is improved, and therefore, in industrial practice, in working state, the temperature of the switchback region 14 ranges from 200 DEG C to 250 DEG C, preferably ranges from 210 DEG C to 230 DEG C and does not exceed 250 DEG C generally. According to an electric heating device in a traditional solution, the temperature may almost not be lower than 250 DEG C. For example, the temperature of the switchback region 14 can be often measured to be near 260 DEG C and even higher. The achievement of the temperature range is also an important innovation point claimed by the present application, the temperature, particularly the highest temperature, of the switchback region in working state can be further reduced by only adopting the technical solutions of the present application under the condition that other working conditions are basically consistent, and therefore, higher safety and reliability are achieved.
As mentioned above, the electrical current guide structure is made of the insulating material (preferably, an insulating material the same as that of the insulating part, and they may be manufactured together during manufacture process) or formed with a blank structure (air insulation) , and therefore, the waste of the resistive conductor material can be avoided; and compared with the traditional solution, the solutions not only reduce the cost, but also avoid negative problems brought by the redundant conductor region. In the technical solutions of the present application, preferably, the electrical current guide structure is formed into a protruding structure extending outwards based on the tail end O of the insulating part 12. The term “based on” means that the tail end O or a position near the tail end O of the insulating part 12 is taken as  an initial point, but the tail end O can always be taken as a reference basis.
The electrical current guide structure can have various forms. As shown in Fig. 3, the protruding structure of the electrical current guide structure can be a protruding region 15 extending outwards from the tail end O of the insulating part 12 and having an arc-shaped outer contour. The arc-shaped outer contour of the protruding region 15 can be selectively designed according to different application conditions of a product. Preferably, the extending degree of the arc-shaped outer contour at one side of the insulating part 12 is smaller than the extending degree of the arc-shaped outer contour at the other side of the insulating part 12, as shown in Fig. 3, so that the electrical current is relatively uniformly distributed when being switched into opposite directions in the switchback region.
According to a preferred implementation of the present application, as shown in Fig. 4, the protruding structure of the electrical current guide structure comprises at least one protruding claw 16 extending outwards from the tail end O of the insulating part 12, and thus, the flow direction of the electrical current in the switchback region is guided by using the at least one protruding claw 16. There can be one, preferably two, and most preferably three protruding claws 16. If there are more protruding claws, the work efficiency in production and manufacture processes may be affected. Therefore, from the view of balance, it is best to arrange two or three protruding claws.
Preferably, as shown in Fig. 4 and Fig. 5, the protruding claw 16 comprises a linear protruding claw 160 extending outwards from the tail end O of the insulating part 12 in the extension direction of the extended section 13. The linear protruding claw 160 is consistent with the extended section 13 in extension direction and extends outwards from the tail end O. The contour of the tail end of the linear protruding claw 160 can  be designed to be arc-shaped, or the width of the linear protruding claw 160 is different from the width of the insulating part 12, and thus, the linear protruding claw 160 plays a role in guiding the direction of electrical current together with the insulating part 12. Further preferably, as shown in Fig. 5, the protruding claws 16 comprises: at least one first lateral protruding claw 161 extending outwards based on the tail end O of the insulating part 12 and deviated to one side from the extension direction of the extended section 13 ; and/or at least one second lateral protruding claw 162 extending outwards based on the tail end O of the insulating part 12 and deviated to the other side from the extension direction of the extended section 13 . It should be pointed out that “first lateral” and “second lateral” described herein are merely for the purpose of distinguishing, rather than for constituting limitation on the technical solutions. For example, although the protruding claw located at the lower side in Fig. 5 is explained as the first lateral protruding claw, and the protruding claw located at the upper side in Fig. 5 is explained as the second lateral protruding claw, their names can also be interchanged, which does not affect the technical solutions of the present application. In addition, although one first lateral protruding claw and one second lateral protruding claw are displayed in the figure, the present application is not limited to the specific manners shown in the figures. For example, there may be a plurality of first lateral protruding claws and a plurality of second lateral protruding claws, and these different manners fall within scope claimed by the present application. In addition, according to different implementations, it is possible that only the first lateral protruding claw or only the second lateral protruding claw is arranged, or it is possible that the linear protruding claw and the first lateral protruding claw are arranged at the same time, or it is possible that the linear protruding claw and the second lateral protruding claw are arranged at the same time, and most preferably, the linear protruding claw, the first lateral protruding claw and the second lateral protruding claw are arranged at the same time.
Preferably, as shown in Fig. 5, the linear protruding claw 160, the first lateral protruding claw 161 and the second lateral protruding claw 162 respectively radially extends outwards from the tail end O of the insulating part 12 by taking the tail end O as the center of a circle. The linear protruding claw, the first lateral protruding claw and the second lateral protruding claw have the same foundation of geometry, and therefore, relative convenience is achieved during design, production and manufacture. Meanwhile, it should be pointed out that the present application is not limited to the specific manners as shown in Fig. 5, as mentioned above, “based on the tail end O” can be understood as taking the tail end O as an initial point or being adjacent to the tail end O. Therefore, in other optional implementations, the first lateral protruding claw and the second lateral protruding claw can also be designed to have no common extension intersection point with the linear protruding claw. For example, the first lateral protruding claw and the second lateral protruding claw are staggered in a horizontal direction as shown in Fig. 5.
Preferably, the length of the linear protruding claw 160 is greater than or equal to the length of the first lateral protruding claw 161 and is smaller than or equal to the length of the second lateral protruding claw 162. The reason for such a design lies in that the plurality of protruding claws with different lengths can respectively form a plurality of electrical current paths with different hierarchies to avoid relative centralization of electrical current. In the drawings of the description of the present application, only three protruding claws are shown in the figure, but the present application is not limited to this. For example, as mentioned above, each kind of protruding claw can be designed more than one; or preferably, more protruding claws such as four, five and six protruding claws can be designed. These modification manners all fall within the scope claimed by the present application.
Therefore, as shown in Fig. 5, the length of the first lateral protruding claw 161 is 1/4 to 3/4, preferably, 1/3 to 1/2 of the length of the linear protruding claw 160; and/or the length of the linear protruding claw 160 is 1/4 to 3/4, preferably, 1/3 to 1/2 of the length of the second lateral protruding claw 162. The length of the linear protruding claw 160 ranges from 2 mm to 14 mm, the length of the first lateral protruding claw 161 ranges from 2 mm to 12 mm, and the length of the second lateral protruding claw 162 ranges from 2 mm to 18 mm. The length of each of the above-mentioned protruding claws can be each integer in the length range thereof, and the length of the linear protruding claw 160 can be 3 mm, 4 mm, 5 mm, 6 mm, 7 mm or the like. The length of the protruding claw can be calculated by taking the tail end O as the initial point and the extreme end thereof as an end point.
In addition, there can be different choices for deviation angles of the first lateral protruding claw and the second lateral protruding claw relative to the extension direction of the extended section, in other words, there can be different design choices for included angles of the first lateral protruding claw and the second lateral protruding claw relative to the linear protruding claw. Specifically, as shown in Fig. 5, the first lateral protruding claw 161 deviates from the extension direction of the extended section 13 by an included angle α of 30 DEG to 90 DEG, preferably 45 DEG to 60 DEG; and/or the second lateral protruding claw 162 deviates from the extension direction of the extended section 13 by an included angle β of 30 DEG to 90 DEG, preferably 45 DEG to 60 DEG. Different effects of guiding a flow direction of a electrical current flowing through the switchback region can be achieved by designing and selecting pointing directions of the first lateral protruding claw 161 and the second lateral protruding claw 162, so as to adapt to different application conditions. These non-conductive protruding claws can prevent increase of the electrical current  density on the shortest electrical current path and then level off the electrical current distribution, and therefore excessive accumulation of heat can be avoided.
In addition, the width of each protruding claw can also be selectively designed. Generally, in view of facilitating manufacture, the width of each protruding claw can be consistent with the width of the insulating part 12, but they can also be designed to have inconsistent widths, which can be selected according to different application conditions.
As shown in Fig. 2, all layers of the structure of the electric heating device are arranged on the first surface of the base member 10, therefore, seen from the view shown in Fig. 2, two directions, that is, a transverse direction X and a longitudinal direction Y, can be set based on the plane. It can be seen from Fig. 2 that the extended sections extend back and forth in extension process whether in the direction X or in the direction Y. According to the technical solutions of the present application, since the tail end of the insulating part in the switchback region is provided with the electrical current guide structure, the linear extension of the insulating part whether in the direction X or in the direction Y can be obtained without specifically designing the widths of the extended section basically. Therefore, according to a preferred implementation of the present application, the extended sections 13 has a substantially uniform width when extending in the transverse direction X, and the extended sections 13 has a substantially uniform width when extending in the longitudinal direction Y. The area of the extended section is locally occupied only at the electrical current guide structure (as shown in Fig. 3 or Fig. 4) , so that the electrical current is prevented from being excessively centralized in the region adjacent to the tail end of the insulating part. It should be pointed out that the above-mentioned transverse direction X and longitudinal direction Y are only intended to be used as orientation  reference system, rather than to constitute substantial limitations on the technical solutions of the present application. For example, the direction X and the direction Y in Fig. 2 can also be interchanged.
As mentioned above, all the protruding claws used as the electrical current guide structure are non-conductive, and their non-conductivity can be achieved by virtue of an insulating material, for example, the protruding claws can be integrally connected with the insulating part and used as extended parts of the insulating part; or the non-conductivity can be achieved by designing the electrical current guide structure to be of a blank structure, the blank structure means that there is no resistive conductor material in this part but which has reserved space, and thus, the electric insulation effect of air is achieved by virtue of the reserved space. Obviously, this manner is distinctly different from a traditional manner of changing the widths of the extended sections. In a traditional solution, in order to change the widths of the extended sections in the switchback region, the insulating part needs to be designed to nonlinearly extend, that is, it need to extend obliquely or in an arc shape, and thus, the above-mentioned various problems are brought. In the technical solutions of the present application, the insulating part basically extends linearly in the direction X and the direction Y, so that the difficulty during production and manufacture is greatly lowered, and then the manufacturability of the electric heating device is achieved.
As another optional preferred implementation, different from the implementations, as shown in Fig. 3 to Fig. 5, in which the tail end O of the insulating part 12 is provided with the electrical current guide structure continuously protruded outwards, in the implementations as shown in Fig. 6 and Fig. 7, the tail end O of the insulating part 12 is provided with an electrical current guide structure discontinuously protruded outwards. The terms “continuous” or “discontinuous” means whether the  non- conductive electrical current guide structure is connected with the insulating part 12 or not; if the non-conductive electrical current guide structure is connected with the insulating part 12, the electrical current guide structure is continuous; and if the non-conductive electrical current guide structure is not connected with the insulating part 12, the electrical current guide structure is discontinuous.
It should be pointed out that the above description is mainly about the continuous electrical current guide structure, but of course also applies to the discontinuous electrical current guide structure, the descriptions thereof are omitted herein. For example, in the implementations as shown in Fig. 3 and Fig. 4, the continuous relationship between the electrical current guide structure and the insulating part is disconnected by a conductive material, and thus, the discontinuous electrical current guide structure can be formed. For example, the electrical current guide structure is made of an insulating material or formed with a blank structure, and the electrical current guide structure is formed into a protruding structure extending outwards based on the tail end O of the insulating part 12, but the electrical current guide structure is discontinuous relative to the insulating part 12. For another example, the linear protruding claw 160 (and each lateral protruding claw thereof) can also be designed to be discontinuous relative to the insulating part 12, however, the arrangement of the linear protruding claw can be consistent with that in Fig. 4 and Fig. 5.
The discontinuous electrical current guide structure has the prominent advantages: as shown in Fig. 6, in the switchback region, an inner side electrical current circulating region IN is formed between the electrical current guide structure and the insulating part 12 at the inner side, an outer side electrical current circulating region OUT is formed between the electrical current guide structure and the insulating part 12 at the outer side, and thus, more possibilities are provided for the guide of electrical current  (for avoiding local eddy electrical current) , and more different working conditions can be adapted. Moreover, the relative convenience is also brought for production and manufacture.
Preferably, the discontinuous electrical current guide structure can comprise a plurality of guide parts 20 which are discretely arranged, as shown in Fig. 6 and Fig. 7. The “discretely arranged” have at least two meanings: firstly, the guide parts 20 serving as the electrical current guide structure are discontinuous relative to the insulating part 12; and secondly, the guide parts are discontinuous inter se under the condition that there are a plurality of guide parts 20. Therefore, a middle electrical current circulating region MID can also be formed between the different guide parts under some working conditions, so that a better electrical current guide effect is achieved.
The guide part 20 is preferably shaped like segment, however, the present application is not limited to this, and the guide part can be designed to be shaped like a round, an ellipse and the like. The above-mentioned line segment can be line segment extending linearly and can also be segment extending in an arc shape. The guide part shaped like the segment has width ranging from 0.5 mm to 3 mm and length ranging from 1 mm to 9 mm. Similarly, the specific geometric parameters of the guide part with other shapes can also be selectively designed.
The guide parts 20 can be properly discretely arranged in the switchback region to meet various different specific demands for electrical current guide while avoiding to produce eddy electrical currents.
For example, according to a preferred implementation, the guide parts 20 comprise a  first guide part 201 discontinuously extended outwards from the tail end O of the insulating part 12 in the extension direction of the extended section 13. In the implementation, an inner side electrical current circulating region IN is formed between the first guide part 201 and the tail end O of the insulating part 12; and meanwhile, an outer side electrical current circulating region OUT is formed at the outer side of the first guide part 201, so that the effect of guiding electrical respectively electrical current is achieved. In addition, according to a modified manner of the implementation, there can be a plurality of first guide parts 201, the plurality of first guide parts 201 are arranged discontinuously or discretely, and thus, electrical current circulating regions are also formed between the first guide parts.
Refer to Fig. 6 and Fig. 7, according to a preferred implementation, the electrical current guide structure comprises at least one second guide part 202 and/or at least one third guide part 203, wherein the second guide part 202 deviates from the extension direction of the extended section 13 to one side to be arranged discontinuously or discretely; and the third guide part 203 deviates from the extension direction of the extended section 13 to the other side to be arranged discontinuously or discretely. Similar to the first guide part, at the inner side of the second guide part or the third guide part, an inner side electrical current circulating region IN can be provided, and at the inner side of the second guide part or the third guide part, an outer side electrical current circulating region OUT can be provided. An electrical current circulating region can be formed between a plurality of second guide parts 202; an electrical current circulating region can be formed between a plurality of third guide parts 203; and an electrical current circulating region can also be formed between the first guide part 201 and the second guide part 202 and/or the third guide part 203 that are adjacent to each other. Therefore, all the guide parts are arranged in such a manner so that various flexible selection possibilities can be provided for the  electrical current guide manner. Moreover, relative convenience is achieved when a product is produced and manufactured.
As shown in Fig. 6 and Fig. 7, according to a preferred implementation of the present application, the extension direction of the first guide part 201 is consistent with the extension direction of the extended section 13and is aligned with the insulating part 12. Meanwhile, the second guide part 202 and the third guide part 203 are symmetrically arranged relative to the extension axis of the first guide part 201. Preferably, the first guide part 201, the second guide part 202 and the third guide part 203 are all shaped like a segment so as to be conveniently manufactured.
Preferably, the length of the first guide part 201 is smaller than the length of the second guide part or the third guide part 203, and the length of the second guide part 202 is equal to the length of the third guide part 203. For example, the length of the first guide part 201 is 1/4 to 2/3, preferably, 1/4 to 1/2 of the length of the second guide part 202 or the third guide part 203. By selectively designing all the guide parts to have different lengths, the inner side electrical current circulating region and/or outer side electrical current circulating region forms in an arc-shaped extension manner; and meanwhile, the overall layout of each guide part is designed to tend to be shaped like a round or a water drop, which is beneficial to electrical current guide and takes manufacturability into account.
Preferably, the extension direction of the second guide part 202 deviates from the extension direction of the extended section 13 by an included angle γ of 15 DEG to 30 DEG; and/or the extension direction of the third guide part 203 deviates from the extension direction of the extended section 13 by an included angle θ of 15 DEG to 30 DEG.
As another choice, the extension direction of the second guide part 202 deviates from the extension direction of the extended section 13 by an included angle γ of 150 DEG to 165 DEG; and/or the extension direction of the third guide part 203 deviates from the extension direction of the extended section 13 by an included angle θ of 150 DEG to 165 DEG. By selecting different deviation included angles, the regional area of the middle electrical current circulating region MID can be adjusted, there is relatively small and even almost no electrical current in the region MID, and therefore relatively little heat and even no heat is generated, the distribution of heating region can be adjusted, and then the overall heat distribution is adjusted. The adjusting manner of the angle can also be similarly applied to the implementations as shown in Fig. 4 and Fig. 5.
As mentioned above, according to the solution of the discontinuous guide parts, the inner side electrical current circulating regions IN and the outer side electrical current circulating regions OUT are respectively formed at the inner side and outer side of the guide parts (or the electrical current circulating regions can also be formed between the adjacent guide parts) , and thus a better electrical current shunt guide effect can be achieved. Preferably, due to different design choices for the guide parts, the resistance values of the inner side electrical current circulating regions IN can be greater than the resistance values of the outer side electrical current circulating regions OUT, so that values of electrical currents flowing through the inner side electrical current circulating regions IN are relatively large, and values of electrical currents flowing through the outer side electrical current circulating regions OUT are relatively small, and then the technical effect of reducing heat accumulation by better electrical current shunt guide is further achieved.
The electric heating device provided by the present application has been described in detail as above, and the electric heating device is arranged to be used in an electric heating equipment. Therefore, the present application further provides an electric heating equipment for an electric vehicle. The electric heating equipment comprises: a flow channel structure wherein heat conducting medium circulated in a sealing manner; and an electric heating device, the heat of the electric heating device is transferred to the heat conducting medium so as to transfer the heat to the environment in the vehicle through a heat dissipation system in the vehicle of the electric vehicle, wherein the electric heating device is the above-mentioned electric heating device provided by the present application, and the second surface opposite to the first surface of the base member 10 of the electric heating device is used for exchanging heat with the heat conducting medium in the flow channel structure.
Therefore, as a whole, one side of the first surface of the base member 10 is provided with the electric heating device for converting electric energy into heat energy; and the other side of the second surface, opposite to the first surface, of the base member 10 is designed with the flow channel structure to allow heat conducting medium to circulate in the heatdissipation system or an air conditioning system. Therefore, when the electric heating device is in heating operation, the heat can be transferred to the heat conducting medium in the flow channel structure by the base member and then transferred to the air conditioning system or heat dissipation system by the heat conducting medium, so that the heat in the in-vehicle environment is radiated, and then temperature control is achieved.
The structure and operation of the electric heating equipment can refer to existing electric heating equipments, however, the electric heating device of the electric heating equipment is the electric heating device provided by the present application,  which is due to the fact that the main emphasis in the technical solutions of the present application is on the improvement of the electric heating device (particularly, the heating conductor layer 11) .
Such an electric heating equipment can be applied to various working conditions such as various carrying tools, particularly an electric vehicle. The present application further provides an electric vehicle, wherein the electric vehicle comprises the above-mentioned electric heating equipment, and the electric vehicle is a purely electric vehicle or a hybrid vehicle. A power battery in the above-mentioned electric vehicle can be a rechargeable secondary battery such as a lithium battery and a nickel-metal hydride battery, and can also be a fuel battery such as a hydrogen fuel battery.
The preferred implementations of the present application have been described in detail as above, however, the present application is not limited to concrete details in the above-mentioned implementations. Various simple variations can be made to the technical solutions of the present application within the scope of the technical conception of the present application, and these simple variations fall within the protection scope of the present application.
Moreover, it should be noted that all the specific technical features described in the above-mentioned specific implementations can be combined in any proper manner without conflicts. In order to avoid unnecessary repetition, various possible combination manners are no longer described additionally in the present application.
In addition, various different implementations of the present application can also be combined arbitrarily, and the combinations should also be regarded as contents disclosed by the present invention as long as they do not depart from the thought of  the present application.

Claims (19)

  1. An electric heating device for an electric vehicle, comprising:
    a base member (10) ; and
    a heating conductor layer (11) arranged on a first surface (101) of the base member (10) , the heating conductor layer (11) comprises extended sections (13) separated by an insulating part/insulating parts (12) , the extended section (13) extends back and forth on the first surface of the base member (10) and forms at least one switchback region (14) , the part of the extended section (13) before passing through the switchback region (14) and the part of the extended section (13) after passing through the switchback region (14) are arranged to be adjacent to each other and have opposite electrical current directions, characterized in that
    at the inner side of the switchback region (14) , the insulating part (12) linearly extends in parallel to the extension direction of the extended section (13) , and the tail end (O) of the insulating part (12) is provided with an electrical current guide structure protruding outwards.
  2. The electric heating device for an electric vehicle according to claim 1, wherein the electrical current guide structure is made of an insulating material or formed with a blank structure, and the electrical current guide structure is formed into a protruding structure extending outwards based on the tail end (O) of the insulating part (12) .
  3. The electric heating device for an electric vehicle according to claim 2, wherein the protruding structure is a protruding region (15) extending outwards from the tail end (O) of the insulating part (12) and having an arc-shaped outer contour.
  4. The electric heating device for an electric vehicle according to claim 2, wherein the  protruding structure comprises at least one protruding claw (16) extending outwards from the tail end (O) of the insulating part (12) .
  5. The electric heating device for an electric vehicle according to claim 4, wherein the protruding claw (16) comprises a linear protruding claw (160) extending outwards from the tail end (O) of the insulating part (12) along the extension direction of the extended section (13) .
  6. The electric heating device for an electric vehicle according to claim 4 or 5, wherein the protruding claw (16) comprises:
    at least one first lateral protruding claw (161) extending outwards based on the tail end (O) of the insulating part (12) and deviated to one side from the extension direction of the extended section (13) ; and/or
    at least one second lateral protruding claw (162) extending outwards based on the tail end (O) of the insulating part (12) and deviated to the other side from the extension direction of the extended section (13) .
  7. The electric heating device for an electric vehicle according to claim 6, wherein the linear protruding claw (160) , the first lateral protruding claw (161) and the second lateral protruding claw (162) respectively radially extends outwards from the tail end (O) of the insulating part (12) by taking the tail end (O) as the center of a circle.
  8. The electric heating device for an electric vehicle according to claim 6 or 7, wherein the length of the linear protruding claw (160) is greater than or equal to the length of the first lateral protruding claw (161) and is smaller than or equal to the length of the second lateral protruding claw (162) .
  9. The electric heating device for an electric vehicle according to claim 8, wherein:
    the length of the first lateral protruding claw (161) is 1/4 to 3/4 of the length of the linear protruding claw (160) ; and/or
    the length of the linear protruding claw (160) is 1/4 to 3/4 of the length of the second lateral protruding claw (162) .
  10. The electric heating device for an electric vehicle according to claim 8, wherein the length of the linear protruding claw (160) ranges from 2 mm to 14 mm, the length of the first lateral protruding claw (161) ranges from 2 mm to 12 mm, and the length of the second lateral protruding claw (162) ranges from 2 mm to 18 mm.
  11. The electric heating device for an electric vehicle according to claim 6 or 7, wherein
    the first lateral protruding claw (161) deviates from the extension direction of the extended section (13) by an included angle α of 30 DEG to 90 DEG; and/or
    the second lateral protruding claw (162) deviates from the extension direction of the extended section (13) by an included angle β of 30 DEG to 90 DEG .
  12. The electric heating device for an electric vehicle according to any one of claims 1 to 11, wherein two extended sections (13) parallelly extending are provided; and/or
    two extended sections (13) arranged in parallel are provided.
  13. The electric heating device for an electric vehicle according to any one of claims 1 to 11, wherein two switchback regions (14) are provided.
  14. The electric heating device for an electric vehicle according to any one of claims 1 to 11, wherein the electric heating device has a transverse direction (X) and a  longitudinal direction (Y) , the extended sections (13) has a substantially uniform width when extended in the transverse direction (X) , and the extended sections (13) has a substantially uniform width when extended in the longitudinal direction (Y) .
  15. The electric heating device for an electric vehicle according to any one of claims 1 to 11, wherein the electric heating device comprises an insulating layer (17) covering the heating conductor layer (11) .
  16. The electric heating device for an electric vehicle according to claim 15, wherein the electric heating device comprises an electrode layer (18) arranged on the insulating layer (17) , the electrode layer (18) penetrates through the insulating layer (17) to be electrically connected with the heating conductor layer (11) .
  17. The electric heating device for an electric vehicle according to any one of claims 1 to 11, wherein
    in working state, the temperature of the switchback region (14) ranges from 200 DEG C to 250 DEG C; and/or
    in working state, the temperature of the switchback region (14) does not exceed 250 DEG C.
  18. An electric heating equipment for an electric vehicle, comprising:
    a flow channel structure wherein heat conducting medium circulated in a sealing manner; and
    an electric heating device, the heat of the electric heating device is transferred to the heat conducting medium so as to transfer the heat to the environment in the vehicle through a heat dissipation system in the vehicle of the electric vehicle,
    wherein the electric heating device is the electric heating device according to  any one of claims 1 to 17, and a second surface, opposite to the first surface, of the base member (10) of the electric heating device is used for exchanging heat with the heat conducting medium contained in the flow channel structure.
  19. An electric vehicle comprising the electric heating equipment according to claim 18, wherein the electric vehicle is a hybrid vehicle or a purely electric vehicle.
PCT/CN2021/140345 2020-12-31 2021-12-22 Electric vehicle as well as electric heating equipment and electric heating device thereof WO2022143325A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011621080.4 2020-12-31
CN202011621080.4A CN112721573B (en) 2020-12-31 2020-12-31 Electric vehicle, electric heating equipment and electric heating device thereof

Publications (1)

Publication Number Publication Date
WO2022143325A1 true WO2022143325A1 (en) 2022-07-07

Family

ID=75608232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140345 WO2022143325A1 (en) 2020-12-31 2021-12-22 Electric vehicle as well as electric heating equipment and electric heating device thereof

Country Status (2)

Country Link
CN (1) CN112721573B (en)
WO (1) WO2022143325A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1478291B1 (en) * 2002-02-27 2006-12-27 Saint-Gobain Glass France Panel element with a heating layer
US8859939B2 (en) * 2011-04-12 2014-10-14 Saint-Gobain Glass France Electrically heatable carrier and panel radiator, and method for the production thereof
CN102655694B (en) * 2012-04-28 2015-04-01 法国圣戈班玻璃公司 Electrical heating layer as well as current path arrangement method and electrical heating method thereof
US10314114B2 (en) * 2015-05-30 2019-06-04 Webasto SE Electric heating device for mobile applications
US20190289674A1 (en) * 2016-10-05 2019-09-19 Webasto SE Electric heating device for mobile applications

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2940631B1 (en) * 2008-12-30 2011-08-19 Renault Sas DEVICE FOR COOLING THE BATTERIES OF A PARTICULARLY ELECTRIC VEHICLE AND VEHICLE EQUIPPED WITH SUCH A DEVICE
US20100300140A1 (en) * 2009-05-28 2010-12-02 Delphi Technologies, Inc. Air Conditioning System for Cooling the Cabin of a Hybrid-Electric Vehicle
JP2012056351A (en) * 2010-09-06 2012-03-22 Mitsubishi Heavy Ind Ltd Heat medium heating device and air conditioning apparatus for vehicle provided with same
JP6070525B2 (en) * 2013-12-06 2017-02-01 株式会社デンソー Heat transport equipment
CN106985633B (en) * 2017-03-03 2023-12-12 镇江海姆霍兹传热传动系统有限公司 New energy automobile electric heater unit
JP6870570B2 (en) * 2017-10-26 2021-05-12 株式会社デンソー Vehicle heat management system
CN107985019A (en) * 2017-12-21 2018-05-04 苏州新业电子股份有限公司 A kind of water-warming heater with ground structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1478291B1 (en) * 2002-02-27 2006-12-27 Saint-Gobain Glass France Panel element with a heating layer
US8859939B2 (en) * 2011-04-12 2014-10-14 Saint-Gobain Glass France Electrically heatable carrier and panel radiator, and method for the production thereof
CN102655694B (en) * 2012-04-28 2015-04-01 法国圣戈班玻璃公司 Electrical heating layer as well as current path arrangement method and electrical heating method thereof
US10314114B2 (en) * 2015-05-30 2019-06-04 Webasto SE Electric heating device for mobile applications
US20190289674A1 (en) * 2016-10-05 2019-09-19 Webasto SE Electric heating device for mobile applications

Also Published As

Publication number Publication date
CN112721573B (en) 2022-05-31
CN112721573A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
US8901464B2 (en) Variable watt density layered heater
JP4412875B2 (en) Nozzle for injection mold and nozzle structure
CN205846180U (en) A kind of heat management device and supply unit
JPH0340482B2 (en)
CN101680340B (en) Electrically heatable honey-comb structure having zones of increased resistance
CN103580001A (en) Current breaking device and battery pack having the same
US20160111760A1 (en) Power storage module
WO2022143325A1 (en) Electric vehicle as well as electric heating equipment and electric heating device thereof
EP3562263B1 (en) Temperature control device with ptc module
CN214706054U (en) Heating device, battery module and vehicle
CN216705207U (en) Thick film heater and steam generating equipment
CN109563752B (en) Electrically heatable honeycomb body with multiple heating elements for exhaust gas treatment
KR20210062045A (en) Devices for treating exhaust gases
KR102014114B1 (en) A plate type heater suitable for multiple plain zone
US10790518B2 (en) Electrical contact device for a fuel cell stack
JP2019175596A (en) Solid oxide fuel cell and flow rate adjusting member
KR102544527B1 (en) Heater core, heater and heating system including thereof
US20230173888A1 (en) Electric vehicle, electric heater, and electric heating cavity assembly of electric heater
US10974568B2 (en) Coolant heating apparatus for vehicle
CN217844072U (en) Heating assembly and electric heating device
CN112333861A (en) Battery heating film with variable heating power and lithium ion battery
JP4807681B2 (en) Thermal spray heating element for low temperature, method for manufacturing the same, and heating apparatus using the same
CN220852582U (en) Integrated heater and thermal management system
US11396835B2 (en) Electrically heated catalytic device
CN219068400U (en) Special-shaped flexible electric heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21851789

Country of ref document: EP

Kind code of ref document: A1