WO2022143129A1 - 车辆电池热管理控制方法、装置及车辆 - Google Patents

车辆电池热管理控制方法、装置及车辆 Download PDF

Info

Publication number
WO2022143129A1
WO2022143129A1 PCT/CN2021/137536 CN2021137536W WO2022143129A1 WO 2022143129 A1 WO2022143129 A1 WO 2022143129A1 CN 2021137536 W CN2021137536 W CN 2021137536W WO 2022143129 A1 WO2022143129 A1 WO 2022143129A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
vehicle
state
thermal management
controller
Prior art date
Application number
PCT/CN2021/137536
Other languages
English (en)
French (fr)
Inventor
王银磊
张峻
孙策
刘秀
李岩
单红艳
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2022143129A1 publication Critical patent/WO2022143129A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller

Definitions

  • the present disclosure relates to the field of vehicle battery thermal management, and in particular, to a vehicle battery thermal management control method, device, and vehicle.
  • the fuel cell thermal management system in the vehicle has a decisive impact on the efficiency, performance, safety and life of the fuel cell system.
  • the thermal management system is mainly used to maintain the proton exchange membrane in the fuel cell system in the optimal working temperature range. How to minimize the temperature difference between the inlet and outlet water of the fuel cell system, control the temperature fluctuation range of the inlet and outlet water of the system, and ensure that the fuel cell can work under suitable conditions is the focus and difficulty of the fuel cell thermal management system.
  • the purpose of the present disclosure is to provide a vehicle battery thermal management control method, device, and vehicle, which can refine the operation of each battery thermal management controller through different working modes according to the working state of the battery in the vehicle where the vehicle battery is located. Therefore, it is possible to truly ensure that the vehicle battery can work under a stable ambient temperature according to the needs of the vehicle or the vehicle battery, thereby ensuring the driving safety of the vehicle.
  • the present disclosure provides a vehicle battery thermal management control method, the method comprising:
  • the working modes of a plurality of battery thermal management controllers are respectively controlled according to the working state of the battery
  • the plurality of battery thermal management controllers include: a fan controller, a water pump controller and a valve controller, and the fan controller is used to control the vehicle the cooling fan in the vehicle, the water pump controller is used to control the battery coolant water pump in the vehicle, the valve controller is used to control the valve in the battery coolant pipeline circuit in the vehicle, the valve is used to control the The degree of heat dissipation of the battery coolant;
  • the plurality of battery thermal management controllers are respectively controlled according to their respective operating modes and/or operating states of the batteries, so as to realize heat dissipation of the vehicle battery.
  • the battery working state includes an initialization state
  • the controlling of the plurality of battery thermal management controllers according to the respective operating modes and/or battery operating states of the plurality of battery thermal management controllers includes: when the battery operating state is the initialization state.
  • the valve is controlled according to the conductivity concentration of the battery cooling liquid
  • the rotation speed of the battery cooling liquid water pump is controlled to be the first rotation speed
  • the duty ratio of the cooling fan is controlled to be the first duty ratio.
  • controlling the valve according to the conductivity concentration of the battery cooling liquid includes:
  • the valve opening degree is controlled to be a first opening degree, so that the battery cooling liquid does not flow through the radiator in the battery cooling liquid pipeline circuit. heat dissipation;
  • the valve opening is controlled to be a second opening, so that a part of the battery cooling liquid flows through the radiator in the battery cooling liquid pipeline circuit For heat dissipation, another part of the battery cooling liquid does not flow through the radiator in the battery cooling liquid pipeline circuit for heat dissipation.
  • the battery working state includes a preheating state
  • the controlling of the working modes of the plurality of battery thermal management controllers according to the working state of the battery includes: when the working state of the battery is the preheating state, controlling the fan controller and the water pump controller in automatic mode;
  • the controlling of the plurality of battery thermal management controllers according to the respective operating modes and/or battery operating states of the plurality of battery thermal management controllers includes: when the battery operating state is the preheating state In the case of , the opening degree of the valve is controlled to be the first opening degree, so that the battery cooling liquid does not flow through the radiator in the battery cooling liquid pipeline circuit to dissipate heat.
  • the battery working state includes a vehicle running state
  • the working modes of respectively controlling the plurality of battery thermal management controllers according to the working states of the batteries include:
  • controlling the plurality of battery thermal management controllers according to the respective operating modes and/or battery operating states of the plurality of battery thermal management controllers includes:
  • valve opening degree is controlled to be a third opening degree, so that the battery coolant is fully Dissipating heat through the radiator in the battery coolant pipeline circuit;
  • the rotational speed of the cooling fan is controlled according to the first rotational speed requirement.
  • the battery working state includes a hot standby state
  • the controlling of the plurality of battery thermal management controllers according to respective operating modes and/or battery operating states of the plurality of battery thermal management controllers includes:
  • the opening degree of the valve is controlled to be a third opening degree, so that the battery cooling liquid all flows through the radiator in the battery cooling liquid pipeline circuit to dissipate heat;
  • the duty cycle of the cooling fan is controlled to be the second duty cycle
  • the rotational speed of the battery coolant water pump is controlled to be the second rotational speed until the vehicle battery
  • the coolant inlet temperature is lower than the first preset temperature.
  • the battery working state includes a normal parking state
  • the controlling the operation modes of the plurality of battery thermal management controllers respectively according to the battery working state includes: when the battery working state is the normal parking state, controlling the fan controller to be in an automatic mode;
  • the controlling of the plurality of battery thermal management controllers according to respective operating modes and/or battery operating states of the plurality of battery thermal management controllers includes:
  • the opening degree of the valve is controlled to be a third opening degree, so that all the battery cooling liquid flows through the heat dissipation in the battery cooling liquid pipeline circuit to dissipate heat;
  • the rotational speed of the battery coolant water pump is controlled to be a third rotational speed until the coolant inlet temperature of the vehicle battery is lower than a second preset temperature.
  • the battery working state includes an emergency parking state
  • the controlling of the plurality of battery thermal management controllers according to respective operating modes and/or battery operating states of the plurality of battery thermal management controllers includes:
  • the opening degree of the valve is controlled to be a third opening degree, so that all the battery cooling liquid flows through the heat dissipation in the battery cooling liquid pipeline circuit to dissipate heat;
  • the duty cycle of the cooling fan is controlled to be the third duty cycle
  • the rotational speed of the battery coolant water pump is controlled to be the fourth rotational speed until the vehicle The coolant inlet temperature of the battery is lower than the third preset temperature.
  • the fan controller When the fan controller is in the automatic mode, the fan controller is based on the difference between the vehicle battery coolant inlet temperature set value and the vehicle battery coolant inlet temperature actual value to control the cooling fan;
  • valve controller When the valve controller is in the automatic mode, the valve controller is based on the combination of the coolant inlet temperature set value of the vehicle battery and the actual coolant inlet temperature value of the vehicle battery. to control the valve;
  • the water pump controller When the water pump controller is in the automatic mode, the water pump controller is based on the difference between the actual value of the coolant inlet temperature of the vehicle battery and the actual value of the coolant outlet temperature of the vehicle battery value to control the water pump.
  • the present disclosure also provides a vehicle battery thermal management control device, the device comprising:
  • a first acquisition module used for acquiring the battery working state of the vehicle battery
  • the first determination module is configured to respectively control the working modes of a plurality of battery thermal management controllers according to the working state of the battery, and the plurality of battery thermal management controllers include: a fan controller, a water pump controller and a valve controller, and the The fan controller is used to control the cooling fan in the vehicle, the water pump controller is used to control the battery coolant water pump in the vehicle, the valve controller is used to control the valve in the battery coolant pipeline circuit in the vehicle, The valve is used to control the degree of heat dissipation to the battery coolant;
  • a first control module configured to control the plurality of battery thermal management controllers according to their respective operating modes and/or operating states of the plurality of battery thermal management controllers, so as to realize the control of the vehicle battery of heat dissipation.
  • the present disclosure also provides a vehicle, including the vehicle battery thermal management control device described above.
  • the present disclosure also provides a computing processing device, including:
  • One or more processors when the computer readable code is executed by the one or more processors, the computing processing device executes the vehicle battery thermal management control method proposed by the embodiment of the first aspect of the present disclosure.
  • the present disclosure further provides a computer program, including computer-readable codes, which, when the computer-readable codes are executed on a computing and processing device, cause the computing and processing device to execute the proposed embodiments of the first aspect of the present disclosure.
  • a computer program including computer-readable codes, which, when the computer-readable codes are executed on a computing and processing device, cause the computing and processing device to execute the proposed embodiments of the first aspect of the present disclosure.
  • the present disclosure further provides a computer-readable storage medium, in which the computer program provided by the embodiments of the fifth aspect of the present disclosure is stored.
  • each battery thermal management controller through different working modes according to the working state of the battery in the vehicle where the vehicle battery is located, so that it can be truly achieved according to the vehicle or the vehicle.
  • the battery needs to ensure that the vehicle battery can work under a stable ambient temperature, thereby ensuring the driving safety of the vehicle.
  • FIG. 1 is a flow chart of a vehicle battery thermal management control method according to an exemplary embodiment of the present disclosure.
  • FIG. 2 is a flow chart of a vehicle battery thermal management control method according to another exemplary embodiment of the present disclosure.
  • FIG. 3 is a structural block diagram of a vehicle battery thermal management control device according to an exemplary embodiment of the present disclosure.
  • FIG. 4 provides a schematic structural diagram of a computing processing device according to an embodiment of the present disclosure.
  • FIG. 5 provides a schematic diagram of a storage unit for portable or fixed program code implementing the method according to the present disclosure according to an embodiment of the present disclosure.
  • FIG. 1 is a flow chart of a vehicle battery thermal management control method according to an exemplary embodiment of the present disclosure. As shown in FIG. 1 , the method includes steps 101 to 103 .
  • step 101 the battery working state of the vehicle battery is obtained.
  • the vehicle battery may be, for example, a fuel cell.
  • the battery working state may be obtained directly through the vehicle controller, or the battery working state may be judged by obtaining the vehicle state.
  • the vehicle state corresponding to the battery working state can be preset, and the vehicle controller can determine the battery working state of the vehicle battery according to the vehicle state, or it can also be obtained through the vehicle controller.
  • the vehicle state is used to actively judge the battery working state of the vehicle battery.
  • the battery operating state may include, for example, an initialization state, a warm-up state, a vehicle running state, a hot standby state, a normal parking state, an emergency parking state, and the like.
  • the initialization state is also the state of the battery of the vehicle when the vehicle is powered on
  • the warm-up state may be the state of the battery of the vehicle when the engine of the vehicle is started but the vehicle does not start to move
  • the running state of the vehicle may be
  • the hot standby state can be the state of the battery of the vehicle when the vehicle is parked and not powered off after a period of driving
  • the normal parking state and the emergency parking state can be determined according to When the vehicle braking force is greater than the set value, it can be judged that the vehicle battery is in an emergency parking state, and when the vehicle braking force is less than the set value, it can be judged that the vehicle battery is in a normal parking state.
  • the working modes of a plurality of battery thermal management controllers are respectively controlled according to the working state of the battery
  • the plurality of battery thermal management controllers include: a fan controller, a water pump controller and a valve controller.
  • the controller is used to control the cooling fan in the vehicle
  • the water pump controller is used to control the battery coolant water pump in the vehicle
  • the valve controller is used to control the valve in the battery coolant pipeline circuit in the vehicle
  • the Valves are used to control how much heat is removed from the battery coolant.
  • the cooling fan can be used to dissipate heat for the battery of the vehicle, and can also dissipate heat for other devices in the vehicle.
  • the battery cooling liquid water pump and the valve can control the water pressure, flow rate, flow rate, etc. in the battery cooling liquid pipeline circuit, so as to achieve heat dissipation to the vehicle battery through the battery cooling liquid.
  • step 103 the plurality of battery thermal management controllers are respectively controlled according to the respective working modes and/or the working states of the plurality of battery thermal management controllers, so as to realize heat dissipation of the vehicle battery .
  • the respective working modes of the plurality of battery thermal management controllers can be determined, and then the working modes under the corresponding battery working state can be determined, and/ Or the battery working state of the vehicle battery to determine the control strategy corresponding to each battery thermal management controller.
  • each battery thermal management controller through different working modes according to the working state of the battery in the vehicle where the vehicle battery is located, so that it can be truly achieved according to the vehicle or the vehicle.
  • the battery needs to ensure that the vehicle battery can work under a stable ambient temperature, thereby ensuring the driving safety of the vehicle.
  • determining the operating modes of the plurality of battery thermal management controllers according to the battery operating state may be performed as shown in Table 1 below.
  • “ ⁇ ” in Table 1 can indicate that the battery thermal management controller is in the automatic mode, wherein the automatic mode can indicate that the battery thermal management controller can automatically control the cooling fan, water pump and valve according to the collected state data,
  • the cooling fan, the water pump, and the valve are respectively controlled according to other control strategies, for example, according to the battery working state of the vehicle battery.
  • the first rotational speed requirement is the rotational speed requirement of the cooling fan in the vehicle excluding the vehicle battery
  • the second rotational speed requirement is the rotational speed requirement of the vehicle battery for the cooling fan.
  • FIG. 2 is a flow chart of a vehicle battery thermal management control method according to another exemplary embodiment of the present disclosure. As shown in FIG. 2 , the method includes steps 201 to 219 .
  • step 201 it is judged whether the working state of the battery is the initialization state, if so, go to step 202 , if not, go to step 206 .
  • step 202 that is, when the working state of the battery is the initialization state, it is determined whether the conductivity concentration of the battery coolant is lower than the preset concentration threshold, if so, go to step 203, if not , then go to step 204 .
  • step 203 that is, when the conductivity concentration is lower than a preset concentration threshold, the valve opening degree is controlled to be a first opening degree, so that the battery cooling liquid does not flow through the battery cooling liquid
  • the radiator in the pipeline loop conducts heat dissipation; and, controlling the rotational speed of the battery cooling liquid water pump to be the first rotational speed, and controlling the duty ratio of the cooling fan to be the first duty cycle.
  • step 204 that is, under the condition that the conductivity concentration is not lower than the concentration threshold, the valve opening degree is controlled to be a second opening degree, so that a part of the battery cooling liquid flows through the battery for cooling
  • the radiator in the liquid pipeline loop conducts heat dissipation, and another part of the battery coolant does not flow through the radiator in the battery coolant pipeline loop for heat dissipation; and, controlling the rotation speed of the battery coolant water pump to be the first rotation speed, and The duty cycle of the cooling fan is controlled to be the first duty cycle.
  • the preset concentration threshold may be, for example, 5us/cm.
  • the valve may be, for example, a three-way valve, which is used to respectively connect the battery cooling liquid pipeline circuit that directly flows back to the stack without heat dissipation, and the battery cooling liquid pipeline circuit that dissipates heat from the battery cooling liquid.
  • a three-way valve which is used to respectively connect the battery cooling liquid pipeline circuit that directly flows back to the stack without heat dissipation, and the battery cooling liquid pipeline circuit that dissipates heat from the battery cooling liquid.
  • the first rotational speed and the first duty cycle may be determined by other controllers, such as the battery control unit FCU of the vehicle battery, or the power system control unit PCU in the vehicle, etc., according to the actual state of the vehicle battery. is used to control the plurality of battery thermal management controllers.
  • step 205 it is judged whether the working state of the battery is a preheating state, if yes, go to step 206 , if not, go to step 208 .
  • step 206 that is, when the battery operating state is the preheating state, it is determined that the fan controller and the water pump controller are in an automatic mode.
  • step 207 that is, when the working state of the battery is the preheating state, the opening degree of the valve is controlled to be the first opening degree, so that the battery cooling liquid does not flow through the battery for cooling Radiators in the liquid piping circuit dissipate heat.
  • the automatic mode may be a mode in which each battery thermal management controller automatically controls the cooling fan, the battery coolant water pump, and the valve according to the collected state data. For example, when the fan controller is in the automatic mode, the fan controller is based on the difference between the vehicle battery coolant inlet temperature setpoint and the vehicle battery coolant inlet temperature actual value.
  • the cooling fan is controlled by the difference value; when the valve controller is in the automatic mode, the valve controller is based on the coolant inlet temperature setpoint of the vehicle battery and the vehicle The valve is controlled by the difference between the actual value of the coolant inlet temperature of the battery; when the water pump controller is in the automatic mode, the water pump controller The water pump is controlled based on the difference between the actual value of the coolant inlet temperature and the actual value of the coolant outlet temperature of the vehicle battery.
  • the appropriate temperature of the battery can be ensured.
  • step 208 it is determined whether the battery operating state is the vehicle running state, if so, go to step 209, if not, go to step 214.
  • step 209 that is, when the operating state of the battery is the driving state of the vehicle, it is determined whether the first rotational speed requirement of the cooling fan in the vehicle other than the vehicle battery is smaller than that of the vehicle battery For the second rotational speed requirement of the cooling fan, if yes, go to step 210 , if not, go to step 212 .
  • step 210 that is, when the first rotational speed requirement is smaller than the second rotational speed requirement, the fan controller and the water pump controller are controlled to be in an automatic mode.
  • step 211 that is, when the operating state of the battery is the driving state of the vehicle and the valve controller is not in the automatic mode, the valve opening degree is controlled to be a third opening degree, so that All the battery cooling liquid flows through the radiator in the battery cooling liquid pipeline circuit to dissipate heat.
  • step 212 that is, under the condition that the first rotational speed requirement is not less than the second rotational speed requirement, both the water pump controller and the valve controller are controlled to be in the automatic mode.
  • step 213 that is, when the operating state of the battery is the driving state of the vehicle and the fan controller is not in the automatic mode, control the rotational speed of the cooling fan according to the first rotational speed requirement .
  • the first opening, the second opening and the third opening of the valve opening can be set according to the actual situation, as long as the corresponding battery coolant can be realized under the condition of different opening degrees respectively. cycle can be.
  • the first opening degree, the second opening degree, and the third opening degree may all be a preset opening degree range.
  • the first rotational speed requirement may be a rotational speed requirement of the cooling fan based on other cooling circuits in the vehicle, air conditioning pressure, and the like, in addition to the vehicle battery.
  • step 214 it is determined whether the battery operating state is the hot standby state, if yes, go to step 215, if not, go to step 216.
  • step 215 that is, when the working state of the battery is the hot standby state, the opening degree of the valve is controlled to be a third opening degree, so that all the battery cooling liquid flows through the battery for cooling control the duty cycle of the cooling fan to a second duty cycle, and control the rotational speed of the battery coolant water pump to a second rotational speed until the cooling fluid inlet temperature of the vehicle battery is low at the first preset temperature.
  • the cooling fan and the battery cooling liquid water pump may be controlled to stop.
  • step 216 it is determined whether the battery operating state is the normal parking state, if yes, go to step 217 , if not, go to step 219 .
  • step 217 that is, when the working state of the battery is the normal parking state, the fan controller is controlled to be in an automatic mode.
  • step 218 that is, when the working state of the battery is the normal parking state, the opening degree of the valve is controlled to be a third opening degree, so that the battery cooling liquid all flows through the battery
  • the radiator in the cooling liquid pipeline circuit dissipates heat; and the rotation speed of the battery cooling liquid water pump is controlled to be a third rotation speed until the cooling liquid inlet temperature of the vehicle battery is lower than the second preset temperature.
  • the cooling fan and the battery cooling liquid water pump may be controlled to stop.
  • the cooling liquid inlet temperature is lower than the second preset temperature
  • the battery cooling liquid water pump may be controlled to stop.
  • the fan controller when the working state of the battery is the normal parking state, and the fan controller is in the automatic mode to control the cooling fan, it may also be determined that the temperature of the coolant inlet is lower than the second preset temperature. After the temperature, the cooling fan is controlled to stop.
  • step 219 that is, when the working state of the battery is the emergency parking state, the opening degree of the valve is controlled to be a third opening degree, so that the battery coolant flows completely through the battery
  • the radiator in the cooling liquid pipeline loop conducts heat dissipation; the duty cycle of the cooling fan is controlled to be the third duty cycle, and the rotational speed of the battery coolant water pump is controlled to be the fourth rotational speed until the temperature of the coolant inlet of the vehicle battery is reached lower than the third preset temperature. After the cooling liquid inlet temperature is lower than the third preset temperature, the cooling fan and the battery cooling liquid water pump may be controlled to stop.
  • the above-mentioned first preset temperature may be, for example, 70 degrees
  • the second preset temperature may be, for example, 65 degrees
  • the third preset temperature may also be, for example, 65 degrees.
  • the second preset temperature and the third preset temperature may or may not be equal, and the calibration value thereof may be modified according to the actual situation.
  • the first rotational speed, the second rotational speed, the third rotational speed, and the fourth rotational speed, and the first duty cycle and the second duty cycle may or may not be equal in practical applications.
  • the plurality of rotational speed values or duty ratio values may be selected from a preset calibration value table by the battery control unit FCU and the power system control unit PCU according to the actual vehicle state.
  • FIG. 3 is a structural block diagram of a vehicle battery thermal management control device according to an exemplary embodiment of the present disclosure.
  • the device includes: an acquisition module 10 for acquiring the battery working state of the vehicle battery; a first control module 20 for respectively controlling the operation of a plurality of battery thermal management controllers according to the battery working state mode, the plurality of battery thermal management controllers include: a fan controller, a water pump controller and a valve controller, the fan controller is used to control the cooling fan in the vehicle, and the water pump controller is used to control the cooling fan in the vehicle a battery coolant water pump, the valve controller is used to control the valve in the battery coolant pipeline circuit in the vehicle, and the valve is used to control the degree of heat dissipation to the battery coolant; the second control module 30 is used to The respective working modes and/or the working states of the plurality of battery thermal management controllers respectively control the plurality of battery thermal management controllers, so as to realize heat dissipation of the vehicle battery.
  • each battery thermal management controller through different working modes according to the working state of the battery in the vehicle where the vehicle battery is located, so that it can be truly achieved according to the vehicle or the vehicle.
  • the battery needs to ensure that the vehicle battery can work under a stable ambient temperature, thereby ensuring the driving safety of the vehicle.
  • the battery working state includes an initialization state
  • the second control module 30 is further configured to: in the case that the battery working state is the initialization state, according to the battery cooling liquid
  • the electrical conductivity concentration of the control valve is controlled, the rotational speed of the battery coolant water pump is controlled to be the first rotational speed, and the duty cycle of the cooling fan is controlled to be the first duty cycle.
  • the second control module 30 is further configured to: control the valve opening to be the first opening when the conductivity concentration is lower than a preset concentration threshold, so that The battery cooling liquid does not flow through the radiator in the battery cooling liquid pipeline circuit for heat dissipation; when the conductivity concentration is not lower than the concentration threshold, the valve opening degree is controlled to be the second opening degree , so that a part of the battery cooling liquid flows through the radiator in the battery cooling liquid pipeline circuit for heat dissipation, and the other part of the battery cooling liquid does not flow through the radiator in the battery cooling liquid pipeline circuit for heat dissipation.
  • the working state of the battery includes a preheating state
  • the first control module 20 is further configured to: control the fan when the working state of the battery is the preheating state
  • the controller and the water pump controller are in the automatic mode
  • the second control module 30 is further configured to: control the opening of the valve to be the first opening when the working state of the battery is the preheating state degrees, so that the battery cooling liquid does not flow through the radiator in the battery cooling liquid piping circuit for heat dissipation.
  • the working state of the battery includes a running state of the vehicle
  • the first control module 20 is further configured to: obtain the running state of the vehicle when the working state of the battery is the running state of the vehicle
  • the first rotational speed requirement for the cooling fan and the vehicle battery's second rotational speed requirement for the cooling fan
  • the fan controller and the water pump controller when the first rotational speed requirement is less than the second rotational speed requirement control the fan controller and the water pump controller to be in the automatic mode
  • control the fan controller to be in the first mode
  • the second control module 30 is further configured to: control the operating state of the battery under the condition that the working state of the battery is the driving state of the vehicle and the valve controller is not in the automatic mode
  • the opening degree of the valve is the third opening degree, so that all the battery cooling liquid flows through the radiator in the battery cooling liquid pipeline circuit to dissipate heat; when the battery working state is the vehicle running state, and all the When the fan controller is not in the automatic mode, the rotation speed of the cooling fan is controlled according to the first rotation speed requirement.
  • the battery working state includes a hot standby state
  • the second control module 30 is further configured to: control the valve when the battery working state is the hot standby state
  • the opening degree of the battery is the third opening degree, so that all the battery cooling liquid flows through the radiator in the battery cooling liquid pipeline circuit to dissipate heat; when the battery working state is the hot standby state, control the The duty ratio of the cooling fan is the second duty ratio, and the rotational speed of the battery coolant water pump is controlled to be the second rotational speed until the coolant inlet temperature of the vehicle battery is lower than the first preset temperature.
  • the working state of the battery includes a normal parking state
  • the first control module 20 is further configured to: when the working state of the battery is the normal parking state, control the The fan controller is in the automatic mode
  • the second control module 30 is further configured to: control the opening degree of the valve to be a third opening degree when the battery operating state is the normal parking state, so as to Make the battery coolant all flow through the radiator in the battery coolant pipeline circuit to dissipate heat
  • the battery working state is the hot standby state, control the battery coolant pump speed to be the third rotational speed until the coolant inlet temperature of the vehicle battery is lower than the second preset temperature.
  • the working state of the battery includes an emergency parking state
  • the second control module 30 is further configured to: when the working state of the battery is the emergency parking state, control all The opening degree of the valve is the third opening degree, so that all the battery coolant flows through the radiator in the battery coolant pipeline circuit for heat dissipation; when the battery working state is the emergency parking state
  • the duty ratio of the cooling fan is controlled to be a third duty ratio
  • the rotational speed of the battery coolant water pump is controlled to be a fourth rotational speed until the coolant inlet temperature of the vehicle battery is lower than a third preset temperature.
  • the fan controller when the fan controller is in the automatic mode, the fan controller is based on the set value of the coolant inlet temperature of the vehicle battery and the temperature of the vehicle battery.
  • the cooling fan is controlled by the difference between the actual values of the coolant inlet temperature of the battery; when the valve controller is in the automatic mode, the valve controller is based on the The valve is controlled by the difference between the coolant inlet temperature setpoint value and the coolant inlet temperature actual value of the vehicle battery; when the water pump controller is in the automatic mode, the The water pump controller controls the water pump based on the difference between the actual value of the coolant inlet temperature of the vehicle battery and the actual value of the coolant outlet temperature of the vehicle battery.
  • the present disclosure also provides a vehicle, which is characterized by comprising the above-mentioned vehicle battery thermal management control device.
  • the present disclosure also proposes a computing processing device, including:
  • One or more processors when the computer readable code is executed by the one or more processors, the computing processing device executes the aforementioned vehicle battery thermal management control method.
  • the present disclosure also proposes a computer program comprising computer readable code, which when executed on a computing processing device, causes the computing processing device to execute the aforementioned vehicle battery thermal management control method.
  • the present disclosure also proposes a computer-readable storage medium in which the aforementioned computer program is stored.
  • FIG. 4 provides a schematic structural diagram of a computing processing device according to an embodiment of the present disclosure.
  • the computing processing device typically includes a processor 410 and a computer program product or computer readable medium in the form of a memory 430 .
  • the memory 430 may be electronic memory such as flash memory, EEPROM (electrically erasable programmable read only memory), EPROM, hard disk, or ROM.
  • the memory 430 has storage space 450 for program code 451 for performing any of the method steps in the above-described methods.
  • storage space 450 for program code may include various program codes 451 for implementing various steps in the above methods, respectively. These program codes can be read from or written to one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks. Such computer program products are typically portable or fixed storage units as shown in FIG. 5 .
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the storage 430 in the server of FIG. 4 .
  • the program code may, for example, be compressed in a suitable form.
  • the storage unit includes computer readable code 451', i.e. code readable by a processor such as 410, for example, which when executed by a server, causes the server to perform the various steps of the methods described above.

Abstract

本公开涉及一种车辆电池热管理控制方法、装置及车辆,包括获取车辆电池的电池工作状态;根据电池工作状态分别控制多个电池热管理控制器的工作模式;根据多个电池热管理控制器各自的工作模式和/或电池工作状态分别对多个电池热管理控制器进行控制,以实现对车辆电池的散热。能够根据对车辆电池所处的车辆中的电池工作状态来分别通过不同的工作模式来细化各个电池热管理控制器的工作策略,从而能够真正做到根据该车辆或该车辆电池的需求来保证车辆电池能够在稳定的环境温度下工作,进而保障车辆的行车安全。

Description

车辆电池热管理控制方法、装置及车辆
相关申请的交叉引用
本公开要求在2020年12月29日提交中国专利局、申请号为202011595409.4、名称为“车辆电池热管理控制方法、装置及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆电池热管理领域,具体地,涉及一种车辆电池热管理控制方法、装置及车辆。
背景技术
车辆中的燃料电池热管理系统对于燃料电池系统的效率、性能、安全、寿命均有决定性影响。热管理系统主要用于维持燃料电池系统内质子交换膜处于最佳工作温度区间。如何尽量缩小燃料电池系统进出水温差、控制系统进出水温度波动范围,保障燃料电池能够在适宜的条件下工作,是燃料电池热管理系统的重点与难点。
发明内容
本公开的目的是提供一种车辆电池热管理控制方法、装置及车辆,能够根据对车辆电池所处的车辆中的电池工作状态来分别通过不同的工作模式来细化各个电池热管理控制器的工作策略,从而能够真正做到根据该车辆或该车辆电池的需求来保证车辆电池能够在稳定的环境温度下工作,进而保障车辆的行车安全。
为了实现上述目的,第一方面,本公开提供一种车辆电池热管理控制方法,所述方法包括:
获取车辆电池的电池工作状态;
根据所述电池工作状态分别控制多个电池热管理控制器的工作模式,所述多个电池热管理控制器包括:风扇控制器、水泵控制器和阀门控制器,所述风扇控制器用于控制车辆中的散热风扇,所述水泵控制器用于控制所述车辆中的电池冷却液水泵,所述阀门控制器用于控制所述车辆中的电池冷却液管道回路中的阀门,所述阀门用于控制对电池冷却液的散热程度;
根据所述多个电池热管理控制器各自的工作模式和/或所述电池工作状态分别对所述多个电池热管理控制器进行控制,以实现对所述车辆电池的散热。
可选地,所述电池工作状态包括初始化状态;
所述根据所述多个电池热管理控制器各自的工作模式以及和/或电池工作状态分别对所述多个电池热管理控制器进行控制包括:在所述电池工作状态为所述初始化状态的情况下,根据所述电池冷却液的电导率浓度控制所述阀门,控制所述电池冷却液水泵转速为第一转速,并控制所述散热风扇占空比为第一占空比。
可选地,所述根据所述电池冷却液的电导率浓度控制所述阀门包括:
在所述电导率浓度低于预设浓度阈值的情况下,控制所述阀门开度为第一开度,以使所述电池冷却液不流经所述电池冷却液管道回路中的散热器进行散热;
在所述电导率浓度不低于所述浓度阈值的情况下,控制所述阀门开度为第二开度,以使一部分所述电池冷却液流经所述电池冷却液管道回路中的散热器进行散热,另一部分所述电池冷却液不流经所述电池冷却液管道回路中的散热器进行散热。
可选地,所述电池工作状态包括预热状态,
所述根据所述电池工作状态分别控制多个电池热管理控制器的工作模式包括:在所述电池工作状态为所述预热状态的情况下,控制所述风扇控制器和所述水泵控制器处于自动模式;
所述根据所述多个电池热管理控制器各自的工作模式以及和/或电池工作状态分别对所述多个电池热管理控制器进行控制包括:在所述电池工作状态为所述预热状态的情况下,控制所述阀门的开度为第一开度,以使所述电池冷却液不流经所述电池冷却液管道回路中的散热器进行散热。
可选地,所述电池工作状态包括车辆行驶状态,
所述根据所述电池工作状态分别控制多个电池热管理控制器的工作模式包括:
在所述电池工作状态为所述车辆行驶状态的情况下,获取所述车辆中除所述车辆电池外对所述散热风扇的第一转速需求,以及所述车辆电池对所述散热风扇的第二转速需求;
在所述第一转速需求小于所述第二转速需求的情况下,控制所述风扇控制器和所述水泵控制器处于自动模式,并确定所述阀门控制器处于第一模式;
在所述第一转速需求不小于所述第二转速需求的情况下,控制所述风扇控制器处于 所述第一模式,并确定所述水泵控制器和所述阀门控制器都处于所述自动模式。
可选地,所述根据所述多个电池热管理控制器各自的工作模式以及和/或电池工作状态分别对所述多个电池热管理控制器进行控制包括:
在所述电池工作状态为所述车辆行驶状态、且所述阀门控制器未处于所所述自动模式的情况下,控制所述阀门开度为第三开度,以使所述电池冷却液全部流经所述电池冷却液管道回路中的散热器进行散热;
在所述电池工作状态为所述车辆行驶状态、且所述风扇控制器未处于所所述自动模式的情况下,根据所述第一转速需求控制所述散热风扇的转速。
可选地,所述电池工作状态包括热待机状态,
所述根据所述多个电池热管理控制器各自的工作模式以及和/或电池工作状态分别对所述多个电池热管理控制器进行控制包括:
在所述电池工作状态为所述热待机状态的情况下,控制所述阀门的开度为第三开度,以使所述电池冷却液全部流经所述电池冷却液管道回路中的散热器进行散热;以及
在所述电池工作状态为所述热待机状态的情况下,控制所述散热风扇占空比为第二占空比,以及控制所述电池冷却液水泵转速为第二转速,直至所述车辆电池的冷却液入口温度低于第一预设温度。
可选地,所述电池工作状态包括正常驻车状态,
所述根据所述电池工作状态分别控制多个电池热管理控制器的工作模式包括:在所述电池工作状态为所述正常驻车状态的情况下,控制所述风扇控制器处于自动模式;
所述根据所述多个电池热管理控制器各自的工作模式以及和/或电池工作状态分别对所述多个电池热管理控制器进行控制包括:
在所述电池工作状态为所述正常驻车状态的情况下,控制所述阀门的开度为第三开度,以使所述电池冷却液全部流经所述电池冷却液管道回路中的散热器进行散热;以及
在所述电池工作状态为所述热待机状态的情况下,控制所述电池冷却液水泵转速为第三转速,直至所述车辆电池的冷却液入口温度低于第二预设温度。
可选地,所述电池工作状态包括紧急驻车状态,
所述根据所述多个电池热管理控制器各自的工作模式以及和/或电池工作状态分别对所述多个电池热管理控制器进行控制包括:
在所述电池工作状态为所述紧急驻车状态的情况下,控制所述阀门的开度为第三开 度,以使所述电池冷却液全部流经所述电池冷却液管道回路中的散热器进行散热;以及
在所述电池工作状态为所述紧急驻车状态的情况下,控制所述散热风扇占空比为第三占空比,并控制所述电池冷却液水泵转速为第四转速,直至所述车辆电池的冷却液入口温度低于第三预设温度。
可选地,其特征在于,
在所述风扇控制器处于所述自动模式的情况下,所述风扇控制器根据所述车辆电池的冷却液入口温度设定值和所述车辆电池的冷却液入口温度实际值之间的差值来对所述散热风扇进行控制;
在所述阀门控制器处于所述自动模式的情况下,所述阀门控制器根据所述车辆电池的所述冷却液入口温度设定值和所述车辆电池的所述冷却液入口温度实际值之间的差值来对所述阀门进行控制;以及
在所述水泵控制器处于所述自动模式的情况下,所述水泵控制器根据所述车辆电池的所述冷却液入口温度实际值和所述车辆电池的冷却液出口温度实际值之间的差值来对所述水泵进行控制。
第二方面,本公开还提供一种车辆电池热管理控制装置,所述装置包括:
第一获取模块,用于获取车辆电池的电池工作状态;
第一确定模块,用于根据所述电池工作状态分别控制多个电池热管理控制器的工作模式,所述多个电池热管理控制器包括:风扇控制器、水泵控制器和阀门控制器,所述风扇控制器用于控制车辆中的散热风扇,所述水泵控制器用于控制所述车辆中的电池冷却液水泵,所述阀门控制器用于控制所述车辆中的电池冷却液管道回路中的阀门,所述阀门用于控制对电池冷却液的散热程度;
第一控制模块,用于根据所述多个电池热管理控制器各自的工作模式和/或所述电池工作状态分别对所述多个电池热管理控制器进行控制,以实现对所述车辆电池的散热。
第三方面,本公开还提供一种车辆,包括以上所述的车辆电池热管理控制装置。
第四方面,本公开还提供一种计算处理设备,包括:
存储器,其中存储有计算机可读代码;以及
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行本公开第一方面实施例所提出的车辆电池热管理控制方法。
第五方面,本公开还提供一种计算机程序,包括计算机可读代码,当所述计算机可 读代码在计算处理设备上运行时,导致所述计算处理设备执行本公开第一方面实施例所提出的车辆电池热管理控制方法。
第六方面,本公开还提供一种计算机可读存储介质,其中存储了本公开第五方面实施例所提出的计算机程序。
通过上述技术方案,能够根据对车辆电池所处的车辆中的电池工作状态来分别通过不同的工作模式来细化各个电池热管理控制器的工作策略,从而能够真正做到根据该车辆或该车辆电池的需求来保证车辆电池能够在稳定的环境温度下工作,进而保障车辆的行车安全。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据本公开一示例性实施例示出的一种车辆电池热管理控制方法的流程图。
图2是根据本公开又一示例性实施例示出的一种车辆电池热管理控制方法的流程图。
图3是根据本公开一示例性实施例示出的一种车辆电池热管理控制装置的结构框图。
图4为本公开实施例提供了一种计算处理设备的结构示意图。
图5为本公开实施例提供了一种用于便携式或者固定实现根据本公开的方法的程序代码的存储单元的示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
图1是根据本公开一示例性实施例示出的一种车辆电池热管理控制方法的流程图。如图1所示,所述方法包括步骤101至步骤103。
在步骤101中,获取车辆电池的电池工作状态。
该车辆电池可以为例如燃料电池。
该电池工作状态的获取方式可以是直接通过整车控制器来进行获取,也可以通过获取车辆状态来对该电池工作状态进行判断。该电池工作状态所对应的车辆状态可以是预先设定好的,整车控制器能够根据车辆状态来确定该车辆电池的电池工作状态,或者也 可以通过在该整车控制器中所获取到的车辆状态来主动判断该车辆电池的电池工作状态。
该电池工作状态可以包括例如初始化状态、预热状态、车辆行驶状态、热待机状态、正常驻车状态、紧急驻车状态等。该初始化状态也即为车辆上电启动时该车辆电池所处的状态,该预热状态则可以为车辆发动机启动但车辆并未开始移动时该车辆电池所处的状态,车辆行驶状态则可以为车辆在行驶过程中时车辆电池所处的状态,热待机状态则可以为车辆经过一段行驶之后停车未下电时该车辆电池所处的状态,正常驻车状态和该紧急驻车状态则可以根据制动力的大小来进行区分,在车辆制动力大于设定值的情况下可以判断车辆电池处于紧急驻车状态,在车辆制动力小于设定值的情况下可以判断车辆电池处于正常驻车状态。
在步骤102中,根据所述电池工作状态分别控制多个电池热管理控制器的工作模式,所述多个电池热管理控制器包括:风扇控制器、水泵控制器和阀门控制器,所述风扇控制器用于控制车辆中的散热风扇,所述水泵控制器用于控制所述车辆中的电池冷却液水泵,所述阀门控制器用于控制所述车辆中的电池冷却液管道回路中的阀门,所述阀门用于控制对电池冷却液的散热程度。
该散热风扇可以用于为该车辆电池进行散热,也可以为车辆中其他设备进行散热。该电池冷却液水泵和该阀门能够控制该电池冷却液管道回路中的水压、流速、流量等,从而来通过该电池冷却液来实现对车辆电池的散热。
在步骤103中,根据所述多个电池热管理控制器各自的工作模式和/或所述电池工作状态分别对所述多个电池热管理控制器进行控制,以实现对所述车辆电池的散热。
在确定了该车辆电池所处的电池工作状态的情况下,即可以确定上述多个电池热管理控制器分别所处的工作模式,进而便可以根据该对应电池工作状态下的工作模式,和/或该车辆电池所处的电池工作状态来确定各个电池热管理控制器分别对应的控制策略。
通过上述技术方案,能够根据对车辆电池所处的车辆中的电池工作状态来分别通过不同的工作模式来细化各个电池热管理控制器的工作策略,从而能够真正做到根据该车辆或该车辆电池的需求来保证车辆电池能够在稳定的环境温度下工作,进而保障车辆的行车安全。
在一种可能的实施方式中,根据该电池工作状态确定该多个电池热管理控制器的工作模式可以是按照如下表1中所示来进行。
表1
Figure PCTCN2021137536-appb-000001
表1中的“√”可表示该电池热管理控制器处于自动模式,其中,该自动模式可以表示该电池热管理控制器可以自动根据采集到的状态数据对散热风扇、水泵、阀门进行控制,在该电池热管理控制器不处于该自动模式的情况下,则会根据其他控制策略,例如根据车辆电池所处的电池工作状态来分别对该散热风扇、水泵、阀门进行控制。
该第一转速需求即为车辆中除所述车辆电池外对所述散热风扇的转速需求,该第二转速需求即为所述车辆电池对所述散热风扇的转速需求。
图2是根据本公开又一示例性实施例示出的一种车辆电池热管理控制方法的流程图。如图2所示,所述方法包括步骤201至步骤219。
在步骤201中,判断电池工作状态是否为初始化状态,若是则转至步骤202,若否,则转至步骤206。
在步骤202中,也即在所述电池工作状态为所述初始化状态的情况下,判断该电池冷却液的电导率浓度是否低于该预设浓度阈值,若是,则转至步骤203,若否,则转至步骤204。
在步骤203中,也即在所述电导率浓度低于预设浓度阈值的情况下,控制所述阀门 开度为第一开度,以使所述电池冷却液不流经所述电池冷却液管道回路中的散热器进行散热;以及,控制所述电池冷却液水泵转速为第一转速,并控制所述散热风扇占空比为第一占空比。
在步骤204中,也即在所述电导率浓度不低于所述浓度阈值的情况下,控制所述阀门开度为第二开度,以使一部分所述电池冷却液流经所述电池冷却液管道回路中的散热器进行散热,另一部分所述电池冷却液不流经所述电池冷却液管道回路中的散热器进行散热;以及,控制所述电池冷却液水泵转速为第一转速,并控制所述散热风扇占空比为第一占空比。
该预设浓度阈值可以为例如5us/cm。
其中,该阀门可以为例如三通阀,用于分别连通不经过散热直接流回电堆的电池冷却液管道回路,以及对该电池冷却液进行散热的电池冷却液管道回路。这样就可以通过对该阀门开度的控制,来控制该电池冷却液在流回该电堆之前是否经过散热,以及是部分经过散热还是全部经过散热,以及经过散热的流量等等。
该第一转速和该第一占空比可以是由其他控制器可以为例如该车辆电池的电池控制单元FCU,或者车辆中的动力系统控制单元PCU等,根据该车辆电池的实际状态所确定得到的,用于对该多个电池热管理控制器进行控制。
在步骤205中,判断该电池工作状态是否为预热状态,若是,则转至步骤206,若否,则转至步骤208。
在步骤206中,也即在所述电池工作状态为所述预热状态的情况下,确定所述风扇控制器和所述水泵控制器处于自动模式。
在步骤207中,也即在所述电池工作状态为所述预热状态的情况下,控制所述阀门的开度为第一开度,以使所述电池冷却液不流经所述电池冷却液管道回路中的散热器进行散热。
该自动模式可以为由各个电池热管理控制器分别根据采集到的状态数据自动对散热风扇、电池冷却液水泵、阀门进行控制的模式。例如,在所述风扇控制器处于所述自动模式的情况下,所述风扇控制器根据所述车辆电池的冷却液入口温度设定值和所述车辆电池的冷却液入口温度实际值之间的差值来对所述散热风扇进行控制;在所述阀门控制器处于所述自动模式的情况下,所述阀门控制器根据所述车辆电池的所述冷却液入口温度设定值和所述车辆电池的所述冷却液入口温度实际值之间的差值来对所述阀门进行控 制;在所述水泵控制器处于所述自动模式的情况下,所述水泵控制器根据所述车辆电池的所述冷却液入口温度实际值和所述车辆电池的冷却液出口温度实际值之间的差值来对所述水泵进行控制。
通过该风扇控制器和该电池冷却液水泵控制器的自动控制,以及该电池控制单元FCU和该动力系统控制单元PCU等对该阀门控制器的控制,则可以实现保证该电池温度的适宜。
在步骤208中,判断该电池工作状态是否为该车辆行驶状态,若是,则转至步骤209,若否,则转至步骤214。
在步骤209中,也即在所述电池工作状态为所述车辆行驶状态的情况下,判断所述车辆中除所述车辆电池外对所述散热风扇的第一转速需求是否小于所述车辆电池对所述散热风扇的第二转速需求,若是,则转至步骤210,若否,则转至步骤212。
在步骤210中,也即在所述第一转速需求小于所述第二转速需求的情况下,控制所述风扇控制器和所述水泵控制器处于自动模式。
在步骤211中,也即在所述电池工作状态为所述车辆行驶状态、且所述阀门控制器未处于所述自动模式的情况下,控制所述阀门开度为第三开度,以使所述电池冷却液全部流经所述电池冷却液管道回路中的散热器进行散热。
在步骤212中,也即在所述第一转速需求不小于所述第二转速需求的情况下,控制所述水泵控制器和所述阀门控制器都处于所述自动模式。
在步骤213中,也即在所述电池工作状态为所述车辆行驶状态、且所述风扇控制器未处于所述自动模式的情况下,根据所述第一转速需求控制所述散热风扇的转速。
上述阀门开度的第一开度、第二开度、第三开度都可以根据实际情况来进行设定,只要能够实现分别在不同开度设定的情况下,能够实现对应的电池冷却液的循环即可。其中该第一开度、第二开度、第三开度都可以为预设的开度范围。
该第一转速需求可以为根据除所述车辆电池外,车辆中的其他冷却回路以及空调压力等对所述散热风扇的转速需求。
在步骤214中,判断电池工作状态是否为热待机状态,若是,则转至步骤215,若否,则转至步骤216。
在步骤215中,也即在所述电池工作状态为所述热待机状态的情况下,控制所述阀门的开度为第三开度,以使所述电池冷却液全部流经所述电池冷却液管道回路中的散热器进行散热;控制所述散热风扇占空比为第二占空比,以及控制所述电池冷却液水泵转速为第二转速,直至所述车辆电池的冷却液入口温度低于第一预设温度。在该冷却液入口温度低于该第一预设温度之后,可以控制该散热风扇和该电池冷却液水泵停机。
在步骤216中,判断电池工作状态是否为正常驻车状态,若是,则转至步骤217,若否,则转至步骤219。
在步骤217中,也即在所述电池工作状态为所述正常驻车状态的情况下,控制所述风扇控制器处于自动模式。
在步骤218中,也即在所述电池工作状态为所述正常驻车状态的情况下,控制所述阀门的开度为第三开度,以使所述电池冷却液全部流经所述电池冷却液管道回路中的散热器进行散热;以及控制所述电池冷却液水泵转速为第三转速,直至所述车辆电池的冷却液入口温度低于第二预设温度。在该入口温度低于该第一预设温度的情况下,可以控制该散热风扇和该电池冷却液水泵停机。在该冷却液入口温度低于该第二预设温度的情况下,可以控制该电池冷却液水泵停机。
其中,在所述电池工作状态为所述正常驻车状态,且该风扇控制器处于自动模式下对该散热风扇进行控制时,也可以在判定在该冷却液入口温度低于该第二预设温度之后,控制该散热风扇停机。
在步骤219中,也即在所述电池工作状态为所述紧急驻车状态的情况下,控制所述阀门的开度为第三开度,以使所述电池冷却液全部流经所述电池冷却液管道回路中的散热器进行散热;控制所述散热风扇占空比为第三占空比,并控制所述电池冷却液水泵转速为第四转速,直至所述车辆电池的冷却液入口温度低于第三预设温度。在该冷却液入口温度低于该第三预设温度之后,可以控制该散热风扇和该电池冷却液水泵停机。
上述第一预设温度可以为例如70度,该第二预设温度可以为例如65度,该第三预设温度也可以为例如65度,在实际应用中,该第一预设温度、第二预设温度和该第三预设温度也可以相等也可以不相等,其标定值可以根据实际情况进行修改。
上述第一转速、第二转速、第三转速、第四转速,以及该第一占空比、第二占空比 在实际应用中可以相等也可能不相等。该多个转速值或占空比的值可以是从预设的标定值表中,由该电池控制单元FCU和该动力系统控制单元PCU等根据实际车辆的状态来选择得到的。
图3是根据本公开一示例性实施例示出的一种车辆电池热管理控制装置的结构框图。如图3所示,所述装置包括:获取模块10,用于获取车辆电池的电池工作状态;第一控制模块20,用于根据所述电池工作状态分别控制多个电池热管理控制器的工作模式,所述多个电池热管理控制器包括:风扇控制器、水泵控制器和阀门控制器,所述风扇控制器用于控制车辆中的散热风扇,所述水泵控制器用于控制所述车辆中的电池冷却液水泵,所述阀门控制器用于控制所述车辆中的电池冷却液管道回路中的阀门,所述阀门用于控制对电池冷却液的散热程度;第二控制模块30,用于根据所述多个电池热管理控制器各自的工作模式和/或所述电池工作状态分别对所述多个电池热管理控制器进行控制,以实现对所述车辆电池的散热。
通过上述技术方案,能够根据对车辆电池所处的车辆中的电池工作状态来分别通过不同的工作模式来细化各个电池热管理控制器的工作策略,从而能够真正做到根据该车辆或该车辆电池的需求来保证车辆电池能够在稳定的环境温度下工作,进而保障车辆的行车安全。
在一种可能的实施方式中,所述电池工作状态包括初始化状态,所述第二控制模块30还用于:在所述电池工作状态为所述初始化状态的情况下,根据所述电池冷却液的电导率浓度控制所述阀门,控制所述电池冷却液水泵转速为第一转速,并控制所述散热风扇占空比为第一占空比。
在一种可能的实施方式中,所述第二控制模块30还用于:在所述电导率浓度低于预设浓度阈值的情况下,控制所述阀门开度为第一开度,以使所述电池冷却液不流经所述电池冷却液管道回路中的散热器进行散热;在所述电导率浓度不低于所述浓度阈值的情况下,控制所述阀门开度为第二开度,以使一部分所述电池冷却液流经所述电池冷却液管道回路中的散热器进行散热,另一部分所述电池冷却液不流经所述电池冷却液管道回路中的散热器进行散热。
在一种可能的实施方式中,所述电池工作状态包括预热状态,所述第一控制模块20还用于:在所述电池工作状态为所述预热状态的情况下,控制所述风扇控制器和所述水 泵控制器处于自动模式;所述第二控制模块30还用于:在所述电池工作状态为所述预热状态的情况下,控制所述阀门的开度为第一开度,以使所述电池冷却液不流经所述电池冷却液管道回路中的散热器进行散热。
在一种可能的实施方式中,所述电池工作状态包括车辆行驶状态,所述第一控制模块20还用于:在所述电池工作状态为所述车辆行驶状态的情况下,获取所述车辆中除所述车辆电池外对所述散热风扇的第一转速需求,以及所述车辆电池对所述散热风扇的第二转速需求;在所述第一转速需求小于所述第二转速需求的情况下,控制所述风扇控制器和所述水泵控制器处于自动模式;在所述第一转速需求不小于所述第二转速需求的情况下,控制所述风扇控制器处于所述第一模式,并确定所述水泵控制器和所述阀门控制器都处于所述自动模式。
在一种可能的实施方式中,所述第二控制模块30还用于:在所述电池工作状态为所述车辆行驶状态、且所述阀门控制器未处于所述自动模式的情况下,控制所述阀门开度为第三开度,以使所述电池冷却液全部流经所述电池冷却液管道回路中的散热器进行散热;在所述电池工作状态为所述车辆行驶状态、且所述风扇控制器未处于所述自动模式的情况下,根据所述第一转速需求控制所述散热风扇的转速。
在一种可能的实施方式中,所述电池工作状态包括热待机状态,所述第二控制模块30还用于:在所述电池工作状态为所述热待机状态的情况下,控制所述阀门的开度为第三开度,以使所述电池冷却液全部流经所述电池冷却液管道回路中的散热器进行散热;在所述电池工作状态为所述热待机状态的情况下,控制所述散热风扇占空比为第二占空比,以及控制所述电池冷却液水泵转速为第二转速,直至所述车辆电池的冷却液入口温度低于第一预设温度。
在一种可能的实施方式中,所述电池工作状态包括正常驻车状态,所述第一控制模块20还用于:在所述电池工作状态为所述正常驻车状态的情况下,控制所述风扇控制器处于自动模式;所述第二控制模块30还用于:在所述电池工作状态为所述正常驻车状态的情况下,控制所述阀门的开度为第三开度,以使所述电池冷却液全部流经所述电池冷却液管道回路中的散热器进行散热;在所述电池工作状态为所述热待机状态的情况下,控制所述电池冷却液水泵转速为第三转速,直至所述车辆电池的冷却液入口温度低于第二预设温度。
在一种可能的实施方式中,所述电池工作状态包括紧急驻车状态,所述第二控制模 块30还用于:在所述电池工作状态为所述紧急驻车状态的情况下,控制所述阀门的开度为第三开度,以使所述电池冷却液全部流经所述电池冷却液管道回路中的散热器进行散热;在所述电池工作状态为所述紧急驻车状态的情况下,控制所述散热风扇占空比为第三占空比,并控制所述电池冷却液水泵转速为第四转速,直至所述车辆电池的冷却液入口温度低于第三预设温度。
在一种可能的实施方式中,其特征在于,在所述风扇控制器处于所述自动模式的情况下,所述风扇控制器根据所述车辆电池的冷却液入口温度设定值和所述车辆电池的冷却液入口温度实际值之间的差值来对所述散热风扇进行控制;在所述阀门控制器处于所述自动模式的情况下,所述阀门控制器根据所述车辆电池的所述冷却液入口温度设定值和所述车辆电池的所述冷却液入口温度实际值之间的差值来对所述阀门进行控制;在所述水泵控制器处于所述自动模式的情况下,所述水泵控制器根据所述车辆电池的所述冷却液入口温度实际值和所述车辆电池的冷却液出口温度实际值之间的差值来对所述水泵进行控制。
本公开还提供一种车辆,其特征在于,包括以上所述的车辆电池热管理控制装置。
本公开还提出了一种计算处理设备,包括:
存储器,其中存储有计算机可读代码;以及
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行前述的车辆电池热管理控制方法。
本公开还提出了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行前述的车辆电池热管理控制方法。
为了实现上述实施例,本公开还提出了一种计算机可读存储介质,其中存储了前述的计算机程序。
图4为本公开实施例提供了一种计算处理设备的结构示意图。该计算处理设备通常包括处理器410和以存储器430形式的计算机程序产品或者计算机可读介质。存储器430可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器430具有用于执行上述方法中的任何方法步骤的程序代码451的存储空间450。例如,用于程序代码的存储空间450可以包括分别用于实现上面的方法中的各种步骤的各个程序代码451。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘, 紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如图5所示的便携式或者固定存储单元。该存储单元可以具有与图4的服务器中的存储器430类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码451’,即可以由例如诸如410之类的处理器读取的代码,这些代码当由服务器运行时,导致该服务器执行上面所描述的方法中的各个步骤。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (15)

  1. 一种车辆电池热管理控制方法,其特征在于,所述方法包括:
    获取车辆电池的电池工作状态;
    根据所述电池工作状态分别控制多个电池热管理控制器的工作模式,所述多个电池热管理控制器包括:风扇控制器、水泵控制器和阀门控制器,所述风扇控制器用于控制车辆中的散热风扇,所述水泵控制器用于控制所述车辆中的电池冷却液水泵,所述阀门控制器用于控制所述车辆中的电池冷却液管道回路中的阀门,所述阀门用于控制对电池冷却液的散热程度;
    根据所述多个电池热管理控制器各自的工作模式和/或所述电池工作状态分别对所述多个电池热管理控制器进行控制,以实现对所述车辆电池的散热。
  2. 根据权利要求1所述的方法,其特征在于,所述电池工作状态包括初始化状态;
    所述根据所述多个电池热管理控制器各自的工作模式和/或所述电池工作状态分别对所述多个电池热管理控制器进行控制包括:
    在所述电池工作状态为所述初始化状态的情况下,根据所述电池冷却液的电导率浓度控制所述阀门,控制所述电池冷却液水泵转速为第一转速,并控制所述散热风扇占空比为第一占空比。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述电池冷却液的电导率浓度控制所述阀门包括:
    在所述电导率浓度低于预设浓度阈值的情况下,控制所述阀门开度为第一开度,以使所述电池冷却液不流经所述电池冷却液管道回路中的散热器进行散热;
    在所述电导率浓度不低于所述浓度阈值的情况下,控制所述阀门开度为第二开度,以使一部分所述电池冷却液流经所述电池冷却液管道回路中的散热器进行散热,另一部分所述电池冷却液不流经所述电池冷却液管道回路中的散热器进行散热。
  4. 根据权利要求1所述的方法,其特征在于,所述电池工作状态包括预热状态;
    所述根据所述电池工作状态分别控制多个电池热管理控制器的工作模式包括:在所述电池工作状态为所述预热状态的情况下,控制所述风扇控制器和所述水泵控制器处于自动模式;
    所述根据所述多个电池热管理控制器各自的工作模式和/或所述电池工作状态分别对所述多个电池热管理控制器进行控制包括:在所述电池工作状态为所述预热状态的情 况下,控制所述阀门的开度为第一开度,以使所述电池冷却液不流经所述电池冷却液管道回路中的散热器进行散热。
  5. 根据权利要求1所述的方法,其特征在于,所述电池工作状态包括车辆行驶状态;
    所述根据所述电池工作状态分别控制多个电池热管理控制器的工作模式包括:
    在所述电池工作状态为所述车辆行驶状态的情况下,获取所述车辆中除所述车辆电池外对所述散热风扇的第一转速需求,以及所述车辆电池对所述散热风扇的第二转速需求;
    在所述第一转速需求小于所述第二转速需求的情况下,控制所述风扇控制器和所述水泵控制器处于自动模式;
    在所述第一转速需求不小于所述第二转速需求的情况下,控制所述水泵控制器和所述阀门控制器处于所述自动模式。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述多个电池热管理控制器各自的工作模式和/或所述电池工作状态分别对所述多个电池热管理控制器进行控制包括:
    在所述电池工作状态为所述车辆行驶状态、且所述阀门控制器未处于所述自动模式的情况下,控制所述阀门开度为第三开度,以使所述电池冷却液全部流经所述电池冷却液管道回路中的散热器进行散热;
    在所述电池工作状态为所述车辆行驶状态、且所述风扇控制器未处于所述自动模式的情况下,根据所述第一转速需求控制所述散热风扇的转速。
  7. 根据权利要求1所述的方法,其特征在于,所述电池工作状态包括热待机状态;
    所述根据所述多个电池热管理控制器各自的工作模式和/或所述电池工作状态分别对所述多个电池热管理控制器进行控制包括:
    在所述电池工作状态为所述热待机状态的情况下,控制所述阀门的开度为第三开度,以使所述电池冷却液全部流经所述电池冷却液管道回路中的散热器进行散热;以及
    在所述电池工作状态为所述热待机状态的情况下,控制所述散热风扇占空比为第二占空比,以及控制所述电池冷却液水泵转速为第二转速,直至所述车辆电池的冷却液入口温度低于第一预设温度。
  8. 根据权利要求1所述的方法,其特征在于,所述电池工作状态包括正常驻车状态,
    所述根据所述电池工作状态分别控制多个电池热管理控制器的工作模式包括:在所 述电池工作状态为所述正常驻车状态的情况下,控制所述风扇控制器处于自动模式;
    所述根据所述多个电池热管理控制器各自的工作模式和/或所述电池工作状态分别对所述多个电池热管理控制器进行控制包括:
    在所述电池工作状态为所述正常驻车状态的情况下,控制所述阀门的开度为第三开度,以使所述电池冷却液全部流经所述电池冷却液管道回路中的散热器进行散热;以及
    在所述电池工作状态为所述正常驻车状态的情况下,控制所述电池冷却液水泵转速为第三转速,直至所述车辆电池的冷却液入口温度低于第二预设温度。
  9. 根据权利要求1所述的方法,其特征在于,所述电池工作状态包括紧急驻车状态,
    所述根据所述多个电池热管理控制器各自的工作模式和/或所述电池工作状态分别对所述多个电池热管理控制器进行控制包括:
    在所述电池工作状态为所述紧急驻车状态的情况下,控制所述阀门的开度为第三开度,以使所述电池冷却液全部流经所述电池冷却液管道回路中的散热器进行散热;以及
    在所述电池工作状态为所述紧急驻车状态的情况下,控制所述散热风扇占空比为第三占空比,并控制所述电池冷却液水泵转速为第四转速,直至所述车辆电池的冷却液入口温度低于第三预设温度。
  10. 根据权利要求4-6和权利要求8中任一权利要求所述的方法,其特征在于,
    在所述风扇控制器处于所述自动模式的情况下,所述风扇控制器根据所述车辆电池的冷却液入口温度设定值和所述车辆电池的冷却液入口温度实际值之间的差值来对所述散热风扇进行控制;
    在所述阀门控制器处于所述自动模式的情况下,所述阀门控制器根据所述车辆电池的所述冷却液入口温度设定值和所述车辆电池的所述冷却液入口温度实际值之间的差值来对所述阀门进行控制;以及
    在所述水泵控制器处于所述自动模式的情况下,所述水泵控制器根据所述车辆电池的所述冷却液入口温度实际值和所述车辆电池的冷却液出口温度实际值之间的差值来对所述水泵进行控制。
  11. 一种车辆电池热管理控制装置,其特征在于,所述装置包括:
    第一获取模块,用于获取车辆电池的电池工作状态;
    第一控制模块,用于根据所述电池工作状态分别控制多个电池热管理控制器的工作模式,所述多个电池热管理控制器包括:风扇控制器、水泵控制器和阀门控制器,所述 风扇控制器用于控制车辆中的散热风扇,所述水泵控制器用于控制所述车辆中的电池冷却液水泵,所述阀门控制器用于控制所述车辆中的电池冷却液管道回路中的阀门,所述阀门用于控制对电池冷却液的散热程度;
    第二控制模块,用于根据所述多个电池热管理控制器各自的工作模式和/或所述电池工作状态分别对所述多个电池热管理控制器进行控制,以实现对所述车辆电池的散热。
  12. 一种车辆,其特征在于,包括权利要求11所述的车辆电池热管理控制装置。
  13. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;以及
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求1-10中任一项所述的电池包加热的控制方法。
  14. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-10中任一项所述的电池包加热的控制方法。
  15. 一种计算机可读存储介质,其中存储了如权利要求14所述的计算机程序。
PCT/CN2021/137536 2020-12-29 2021-12-13 车辆电池热管理控制方法、装置及车辆 WO2022143129A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011595409.4A CN114695981A (zh) 2020-12-29 2020-12-29 车辆电池热管理控制方法、装置及车辆
CN202011595409.4 2020-12-29

Publications (1)

Publication Number Publication Date
WO2022143129A1 true WO2022143129A1 (zh) 2022-07-07

Family

ID=82131486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137536 WO2022143129A1 (zh) 2020-12-29 2021-12-13 车辆电池热管理控制方法、装置及车辆

Country Status (2)

Country Link
CN (1) CN114695981A (zh)
WO (1) WO2022143129A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225061A (ja) * 2015-05-28 2016-12-28 トヨタ自動車株式会社 燃料電池システム
CN208352485U (zh) * 2018-05-17 2019-01-08 吉林大学 电动汽车电池复合冷却系统
CN109572486A (zh) * 2018-11-27 2019-04-05 安徽江淮汽车集团股份有限公司 一种混合动力汽车动力电池热管理系统及控制方法
CN109585973A (zh) * 2018-11-23 2019-04-05 福建省汽车工业集团云度新能源汽车股份有限公司 一种动力电池热管理方法及系统
CN111055727A (zh) * 2019-12-31 2020-04-24 奇瑞新能源汽车股份有限公司 车辆的热管理系统的控制方法、装置及车辆
KR20200071164A (ko) * 2018-12-10 2020-06-19 쌍용자동차 주식회사 전기 자동차의 고전압배터리 냉각시스템 및 그 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225061A (ja) * 2015-05-28 2016-12-28 トヨタ自動車株式会社 燃料電池システム
CN208352485U (zh) * 2018-05-17 2019-01-08 吉林大学 电动汽车电池复合冷却系统
CN109585973A (zh) * 2018-11-23 2019-04-05 福建省汽车工业集团云度新能源汽车股份有限公司 一种动力电池热管理方法及系统
CN109572486A (zh) * 2018-11-27 2019-04-05 安徽江淮汽车集团股份有限公司 一种混合动力汽车动力电池热管理系统及控制方法
KR20200071164A (ko) * 2018-12-10 2020-06-19 쌍용자동차 주식회사 전기 자동차의 고전압배터리 냉각시스템 및 그 방법
CN111055727A (zh) * 2019-12-31 2020-04-24 奇瑞新能源汽车股份有限公司 车辆的热管理系统的控制方法、装置及车辆

Also Published As

Publication number Publication date
CN114695981A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2021143125A1 (zh) 一种热管理系统及电动汽车
CN106299411B (zh) 燃料电池热管理系统和具有其的车辆
WO2022262428A1 (zh) 燃料电池混合动力汽车热管理系统、方法、车辆及介质
CN109980246A (zh) 燃料电池汽车热管理系统
CN212230530U (zh) 热管理控制系统及燃料电池车辆
KR20170092982A (ko) 배터리 열관리 장치 및 방법
KR20110134213A (ko) 친환경차량의 통합 열관리 시스템
CN201637595U (zh) 换热器性能测试装置
EP2881559A1 (en) Cooling system for vehicle
WO2021120815A1 (zh) 车辆的热管理系统和车辆
CN109962268A (zh) 燃料电池汽车热管理方法
CN113978274A (zh) 插电式燃料电池混合动力汽车热管理系统及其控制方法
WO2023001097A1 (zh) 变速器油用冷却液循环系统、控制方法、车辆及存储介质
CN108263233A (zh) 一种车辆冷却系统及车辆
CN111129663A (zh) 车载热管理系统和车辆
CN105070974A (zh) 一种电池组温度调节系统
JP2004332744A (ja) ハイブリッド電気自動車の冷却システム
CN112909383A (zh) 一种用于冷却动力电池的热管理控制方法及系统
WO2022222102A1 (zh) 一种热管理系统、采暖方法、装置、车辆及存储介质
WO2022143129A1 (zh) 车辆电池热管理控制方法、装置及车辆
CN109306896B (zh) 组合流量请求以控制内燃机冷却系统中的冷却剂流体
US20230008243A1 (en) Fuel cell cooling system
CN115320321A (zh) 热管理系统的控制方法、热管理系统、车辆及相关设备
JP2006501612A (ja) 熱管理システム
CN214396339U (zh) 一种带温差发电的车辆热泵系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913870

Country of ref document: EP

Kind code of ref document: A1