WO2022143120A1 - 等离子密度可调的离子源装置 - Google Patents

等离子密度可调的离子源装置 Download PDF

Info

Publication number
WO2022143120A1
WO2022143120A1 PCT/CN2021/137434 CN2021137434W WO2022143120A1 WO 2022143120 A1 WO2022143120 A1 WO 2022143120A1 CN 2021137434 W CN2021137434 W CN 2021137434W WO 2022143120 A1 WO2022143120 A1 WO 2022143120A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
radio frequency
ion source
planar coil
grid
Prior art date
Application number
PCT/CN2021/137434
Other languages
English (en)
French (fr)
Inventor
张瑶瑶
刘小波
胡冬冬
张怀东
刘海洋
李娜
郭颂
李晓磊
许开东
Original Assignee
江苏鲁汶仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏鲁汶仪器有限公司 filed Critical 江苏鲁汶仪器有限公司
Priority to KR1020237026056A priority Critical patent/KR20230128516A/ko
Priority to EP21913861.7A priority patent/EP4266348A4/en
Publication of WO2022143120A1 publication Critical patent/WO2022143120A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32651Shields, e.g. dark space shields, Faraday shields

Definitions

  • the present application relates to the technical field of ion beam etching, and in particular, to an ion source device with adjustable plasma density.
  • the ion source is a key component of ion beam etching, and the quality of the ion source directly affects the etching performance.
  • RF inductively coupled ion sources are widely used in ion beam etching, material surface modification and thin film processing due to their advantages of high density, no pollution, easy maintenance and long life.
  • the inductively coupled ion source is relatively simple to design and process and can generate a uniform plasma without the constraint of an external magnetic field.
  • the radio frequency inductively coupled ion source is mainly a helical structure according to the shape of the antenna.
  • the whole ion source structure is mainly composed of radio frequency antenna, plasma discharge chamber and extraction system.
  • the working principle is: when a certain radio frequency current flows into the radio frequency coil placed on the dielectric window, an induced radio frequency electric field is induced in the discharge chamber.
  • the radio frequency energy in the induction coil is coupled into the ionized gas to sustain the plasma discharge.
  • Most of the ions generated by the radio frequency discharge are extracted by the grid system to form an ion beam, as shown in Figure 1.
  • helical coils are mostly used.
  • the plasma density is the highest in the skin layer, and the plasma density gradually decays in the area outside the skin layer.
  • the plasma density in the discharge chamber is mostly parabolic, as shown by the dotted line in Figure 2a.
  • the edge skin effect increases, and the plasma density distribution in the discharge chamber generally presents a saddle-shaped distribution, with uneven distribution of plasma density at the center and edge of the discharge chamber, as shown by the solid line in Figure 2b.
  • the existing method is to use apertures of different specifications on the screen grid to solve this problem. Generally, the intermediate aperture is smaller and the edge size is increased, but the edge uniformity can only be improved for low-energy working conditions, and multi-working conditions cannot be adjusted. Etch uniformity is affected when at high energies.
  • Exemplary embodiments of the present application provide an ion source device with adjustable plasma density
  • the ion source device with adjustable plasma density adopts both helical coils and planar coils, and distributes power to the two coils, and performs power distribution according to different working conditions. Adjustment can effectively solve the above problems and improve the etching uniformity.
  • Exemplary embodiments of the present application provide an ion source device with adjustable plasma density, including an ion source cavity, a discharge cavity, a helical coil, a planar coil, and a radio frequency power supply.
  • the ion source cavity and the discharge cavity are arranged coaxially from outside to inside in sequence.
  • the head of the discharge chamber is provided with an air inlet panel.
  • the helical coil is coaxially sleeved on the outer periphery of the barrel of the discharge cavity, and has a radial gap R with the outer wall of the barrel of the discharge cavity.
  • the planar coil is coaxially mounted on the outer upstream side of the intake panel with an axial gap L between the outer surface of the intake panel.
  • the power distributor can distribute the radio frequency power entering the helical coil and the planar coil.
  • the distribution rate r the plasma density distribution in the discharge cavity can be adjusted.
  • the distribution ratio r P1:P2, wherein, P1 is the radio frequency power entering the helical coil, and P2 is the radio frequency power entering the planar coil.
  • the planar coil is a single coil coil.
  • the planar coil is an alternating combination of two coil-shaped coils.
  • the radial gap R between the helical coil and the outer wall of the barrel of the discharge chamber ranges from 2 mm to 30 mm, and the axial gap L between the planar coil and the outer surface of the air intake panel is 2 mm to 30 mm.
  • the range is between 2mm- ⁇ 30mm.
  • the helical coil is supported and mounted on the inner wall of the barrel of the ion source cavity by the helical coil
  • the planar coil is supported and mounted on the inner wall of the head panel of the ion source by the planar coil.
  • a grid assembly is installed at the rear end of the ion source cavity and the discharge cavity, and the grid assembly includes a screen grid and an acceleration grid, wherein the screen grid is used for focusing the plasma, and the acceleration grid is used for accelerating the ion beam.
  • the grid assembly further includes a deceleration grid disposed downstream of the acceleration grid, and the deceleration grid is used to reduce the divergence of the ion beam.
  • the present application has the following beneficial effects: simultaneous use of helical coils and planar coils, power distribution for the two coils, and adjustment for different working conditions can effectively improve the etching uniformity.
  • the specific adjustment method is as follows:
  • the helical coil in the case of low energy, can work alone to ensure that the plasma is evenly distributed in the discharge chamber. Then, no power distribution is performed on the planar coil, and the helical coil alone can ensure good uniformity.
  • the planar coil can generate uniform plasma in the discharge chamber, then the planar coil can work alone to ensure the uniformity of etching.
  • the application uses the spiral coil alone, and the plasma density distribution in the discharge chamber is low in the middle and high on both sides. At this time, the power is loaded on the plane coil to correct the plasma density in the discharge chamber, so that the The plasma density in the discharge chamber tends to be uniform, which is beneficial to the improvement of etching uniformity.
  • FIG. 1 shows a schematic diagram of a helical radio frequency inductively coupled helical ion source in the prior art.
  • Figures 2a and 2b show a schematic diagram of the plasma density distribution in the discharge chamber.
  • FIG. 3 shows a schematic structural diagram of an ion source device with adjustable plasma density according to an embodiment of the present application.
  • FIG. 4 shows a schematic structural diagram of a single coil-shaped coil used in the planar coil according to an embodiment of the present application.
  • FIG. 5 shows a schematic structural diagram of a planar coil using two coil-shaped coils combined in an embodiment of the present application.
  • Fig. 6 shows a schematic diagram of the working flow of the ion source in an embodiment of the present application
  • Fig. 6(a) shows the flow chart of the helical coil working alone
  • Fig. 6(b) shows the flow chart of the plane coil working alone
  • Fig. 6 (c) shows the flow chart when the helical coil and the planar coil work simultaneously.
  • FIG. 7 shows a schematic diagram of the plasma density distribution when the planar coil and the helical coil work alone in an embodiment.
  • FIG. 8 shows a schematic diagram of the correction of plasma density distribution when the helical coil and the planar coil work simultaneously in one embodiment.
  • Ion source cavity 1. Discharge cavity; 3. Spiral coil; 5. Spiral coil support; 6. Planar coil; 61. Planar coil support; 7. Planar coil support; 80-85. Radio frequency column; 9. Air intake Pipe; 10. Grid assembly; 11. Screen grid; 12. Acceleration grid; 13. Deceleration grid; 100. Power distributor; 110. Video matching device; 120. Video power supply; filter; 150. ion source main cavity.
  • various exemplary embodiments of the present application provide an ion source device with adjustable plasma density, including an ion source main cavity 150 and a radio frequency power supply 120 .
  • the ion source main cavity 150 includes an ion source cavity 1 , a discharge cavity 2 , a helical coil 3 , a planar coil 6 and a Grid assembly 10 .
  • the ion source cavity and the discharge cavity are arranged coaxially from outside to inside in sequence.
  • the head of the discharge chamber is provided with an air intake panel, and an air intake duct 9 is provided in the middle of the air intake panel.
  • the helical coil is coaxially sleeved on the outer periphery of the barrel of the discharge chamber, and preferably installed on the inner wall of the barrel of the ion source chamber through the helical coil support 5 .
  • R there is a radial gap R between the helical coil and the outer wall surface of the cylinder body of the discharge chamber, and R is preferably 2-30 mm.
  • the planar coil is coaxially mounted on the outer upstream side of the air inlet panel, and is preferably mounted on the inner wall surface of the head panel of the ion source via the planar coil support 7 .
  • L There is an axial gap L between the plane coil and the outer surface of the intake panel, and L is preferably 2-30 mm.
  • the arrangement of the radial gap R and the axial gap L can make the plasma more uniform in the discharge chamber.
  • the above-mentioned plane coil 6 is preferably a coil-shaped coil, and the plane coil 6 can be composed of a single coil-shaped coil as shown in FIG. Fragrant coils are composed together.
  • the cross-sectional shape of the coil incense coil is not limited, and it can be circular or square.
  • the materials of the spiral coil support and the planar coil support are preferably insulating materials such as ceramics, and the material of the discharge chamber is preferably ceramics or quartz.
  • the above-mentioned grid assembly is installed at the rear end of the ion source cavity and the discharge cavity.
  • the grid assembly 10 can choose two grids or three grids.
  • the two grids include a screen grid 12 and an acceleration grid 11.
  • the screen grid 12 can focus the plasma to form ions.
  • the acceleration grid 11 accelerates the ion beam, and the triple grid adds a deceleration grid 13 on the basis of the two grids.
  • the deceleration grid 13 is grounded, which can effectively reduce the divergence of the ion beam.
  • the DC power sources 130 and 131 are filtered by the filters 140 and 141, they are respectively connected to the screen grid 12 and the acceleration grid 11 of the grid assembly 10 through the radio frequency columns 84 and 85.
  • the screen grid 12 is negatively charged, and the acceleration grid 11 is positively charged. .
  • One ends of the helical coil and the planar coil are electrically connected to the power distributor 100, the radio frequency matching device 110 and the radio frequency power supply 120 in sequence, and the other ends of the helical coil and the planar coil are grounded respectively.
  • the specific electrical connection method is: in order to maximize the power transmission of the radio frequency power supply 100, a radio frequency matching device 110 needs to be connected after the radio frequency power supply 100 to match the load impedance with the impedance of the radio frequency power supply 100, thereby reducing the power consumption of the radio frequency power supply 100. Reflected power to ensure maximum transmission power.
  • the radio frequency matching device 110 is connected to the power divider 100.
  • the power divider 100 is equipped with a power distribution circuit composed of a number of capacitors and inductances.
  • the radio frequency column 80 is grounded, and at the same time, the other end of the power distribution circuit is connected to one end of the plane coil 6 through the radio frequency column 81 , and the other end of the plane coil 6 is grounded through the radio frequency column 82 .
  • the power distributor can distribute the radio frequency power entering the helical coil and the planar coil, and by adjusting the distribution rate r, the plasma density distribution in the discharge cavity can be adjusted.
  • P2 is the radio frequency power entering the planar coil.
  • the power distribution can be performed on the planar coil and the helical coil. The density is compensated to make the plasma density evenly distributed in the entire discharge chamber.
  • the DC power sources 130, 131 and the radio frequency power source 120 are activated, and the Ar, O 2 plasma gas enters the discharge chamber 2 through the air inlet pipe 9, and under the action of the helical coil 3 and the planar coil 6, the discharge chamber The gas in 4 is ionized to generate plasma. After the plasma in the discharge chamber 4 is drawn out by the grid assembly 10, the target material is bombarded in the form of an ion beam, and the wafer is etched.
  • the helical coil and the planar coil can work alone or in cooperation, and the work flow is shown in FIG. 6 .
  • the helical coils work alone
  • the use of the helical coil 3 can generate resonance in the megahertz range, and can effectively generate plasma under low gas pressure, and efficiently transfer energy to the plasma. Assuming that in the case of low energy (or under a certain working condition), the helical coil alone can ensure that the plasma is evenly distributed in the discharge chamber, as shown in Figure 7. Then, the power distribution is not performed on the planar coil, and the helical coil is used alone. The coil can guarantee good uniformity.
  • planar coils work alone
  • planar coil 6 can generate uniform plasma in the discharge chamber 4, then the planar coil can work alone to ensure that Etch uniformity.
  • the helical coil and the planar coil operate simultaneously
  • Two coils a helical coil and a planar coil, are used, and different power loads are applied to the two coils.
  • the helical coil is used alone, and the plasma density distribution in the discharge chamber is low in the middle and high at both sides.
  • the plasma density tends to be uniform, which is beneficial to the improvement of etching uniformity. That is, the graph of the plasma density on the left in FIG. 8 is corrected to the schematic diagram of the plasma density on the right.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本申请公开了一种等离子密度可调的离子源装置,包括离子源腔、放电腔、螺旋线圈、平面线圈和射频电源;离子源腔和放电腔从外至内依次同轴设置;放电腔的头部设置有进气面板;螺旋线圈同轴地套设在放电腔的筒身外周,两者间具有径向间隙R;平面线圈同轴地安装在进气面板的外侧上游,两者间具有轴向间隙L;螺旋线圈和平面线圈的一端均依次与功率分配器、射频匹配器和射频电源电连接,另一端均接地;功率分配器能对进入螺旋线圈和平面线圈的射频功率进行分配,通过对分配率r进行调节,从而实现放电腔内等离子密度分布的调节。

Description

等离子密度可调的离子源装置
相关申请
本申请要求于2021年1月4日提交中国专利局、申请号为2021100020819、申请名称为“一种等离子密度可调的离子源装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及离子束刻蚀技术领域,尤其涉及一种等离子密度可调的离子源装置。
背景技术
离子源是离子束刻蚀的关键部件,离子源的优劣直接影响刻蚀性能。射频感性耦合离子源由于具有高密度、无污染、易维护和长寿命等优点被广泛用于离子束刻蚀、材料表面改性和薄膜加工等领域。相对电子回旋振荡源和螺旋波源,电感耦合离子源设计加工相对简单并能在没有外来磁场的约束下,产生均匀的等离子体。射频感应耦合离子源根据天线的形状主要为螺旋形结构。整个离子源结构主要由射频天线、等离子体放电室和引出系统组成。工作原理为:当放置在介质窗上的射频线圈中流入一定的射频电流,在放电室中感应产生感应射频电场,感应电场会加速电子运动,使之不断与中性气体分子碰撞电离,从而将感应线圈中的射频能量耦合到电离的气体中维持等离子体放电。大部分由射频放电产生的离子经栅极系统引出形成离子束子经栅极系统引出形成离子束,见图1所示。
现有离子源在使用过程中,多采用螺旋形线圈,螺旋形线圈在通电时,在其趋肤层内,等离子密度最高,在趋肤层外的区域,等离子体密度逐渐衰减,在低压条件下,放电腔内等离子体密度多呈抛物线分布,如图2a中的虚线所示。随电流增加,边缘趋肤效应增强,放电腔内的等离子体密度分布一般呈现马鞍形分布,放电腔内等离子体密度中心和边缘分布不均,如图2b中的实线所示。现有方式是采用屏栅上开不同规格的孔径来解决这一问题,一般为中间孔径较小,边缘尺寸增加,但是只能针对低能工况进行改善边缘均匀性,无法进行多工况调节,当在高能情况下时,会影响刻蚀均匀性。
发明内容
本申请各示例性实施例提供一种等离子密度可调的离子源装置,该等离子密度可调的离子源装置同时采用螺旋形和平面线圈,并对两个线圈进行功率分配,针对不同工况进行调节,可有效上述问题,改善刻蚀均匀性。
本申请各示例性实施例提供一种等离子密度可调的离子源装置,包括离子源腔、放电腔、螺旋线圈、平面线圈和射频电源。离子源腔和放电腔从外至内依次同轴设置。放电腔的头部设置有进气面板。螺旋线圈同轴地套设在放电腔的筒身外周,且与放电腔的筒身外壁面之间具有径向间隙R。平面线圈同轴地安装在进气面板的外侧上游,且与进气面板的外表面之间具有轴向间隙L。螺旋线圈和平面线圈的一端均依次与功率分配器、射频匹配器和射频电源电连接,螺旋线圈和平面线圈的另一端分别接地。功率分配器能对进入螺旋线圈和平面线圈的射频功率进行分配,通过对分配率r的调节,从而实现放电腔内等离子密度分布的调节。其中,分配率r=P1:P2,其中,P1为进入螺旋线圈的射频功率,P2为进入平面线圈的射频功率。
在一实施例中,分配率r的范围在=1:20~20:1之间。
在一实施例中,平面线圈为单个盘香形线圈。
在一实施例中,平面线圈为两个盘香形线圈的交替组合。
在一实施例中,螺旋线圈与放电腔的筒身外壁面之间的径向间隙R的范围在2mm~30mm之间,平面线圈与与进气面板的外表面之间的轴向间隙L的范围在2mm-~30mm之间。
在一实施例中,螺旋线圈通过螺旋线圈支撑安装在离子源腔的筒身内壁面,平面线圈通过平面线圈支撑安装在离子源的头部面板内壁面。
在一实施例中,在离子源腔和放电腔的尾端安装有Grid组件,Grid组件包括屏栅和加速栅,其中,屏栅用于聚焦等离子体,加速栅用于加速离子束。
在一实施例中,Grid组件还包括设置在加速栅下游的减速栅,减速栅用于减小离子束的发散。
本申请具有如下有益效果:同时采用螺旋形和平面线圈,并对两个线圈进行功率分配,针对不同工况进行调节,可有效改善刻蚀均匀性。具体调节使用方法为:
1、本申请在低能情况下,螺旋线圈单独工作可保证等离子体在放电腔内均匀分布,那么,平面线圈上不进行功率分配,单独利用螺旋线圈即可保证良好的均匀性。
2、本申请在中能情况下,平面线圈可以使在放电腔内产生均匀的等离子体,那么,平面线圈可单独进行工作,保证刻蚀均匀性。
3、本申请在高能情况下,单独利用螺旋线圈,放电腔内等离子体密度分布为中间低,两边高,此时,在平面线圈上加载功率,对放电腔内的等离子体密度进行修正,使放电腔内的等离子体密度趋于均匀,有利于刻蚀均匀性改善。
附图说明
图1显示了现有技术中螺旋形射频感应耦合螺旋形离子源的示意图。
图2a、2b显示了放电腔内等离子密度分布示意图。
图3显示了本申请一实施例的一种等离子密度可调的离子源装置的结构示意图。
图4显示了本申请一实施例中平面线圈采用单个盘香形线圈的结构示意图。
图5显示了本申请一实施例中平面线圈采用两个盘香形线圈组合的结构示意图。
图6显示了本申请一实施例中离子源的工作流程示意图;图6(a)显示了螺旋线圈单独工作的流程图;图6(b)显示了平面线圈单独工作时的流程图;图6(c)显示了螺旋线圈和平面线圈同时工作时的流程图。
图7显示了一实施例中平面线圈和螺旋线圈单独工作时的等离子体密度分布示意图。
图8显示了一实施例中螺旋线圈和平面线圈同时工作时的等离子体密度分布修正示意图。
附图标记:
1.离子源腔;2.放电腔;3.螺旋线圈;5.螺旋线圈支撑;6.平面线圈;61.平面线圈支撑;7.平面线圈支撑;80~85.射频柱;9.进气管道;10.Grid组件;11.屏栅;12.加速栅;13.减速栅;100.功率分配器;110.视频匹配器;120.视频电源;130~131.DC电源;140~141.滤波器;150.离子源主腔。
具体实施方式
下面结合附图和具体较佳实施方式对本申请作进一步详细的说明。
本申请的描述中,需要理解的是,术语“左侧”、“右侧”、“上部”、“下部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,“第一”、“第二”等并不表示零部件的重要程度,因此不能理解为对本申请的限制。本实施例中采用的具体尺寸只是为了举例说明技术方案,并不限制本申请的保护范围。
如图3所示,本申请各示例性实施例提出一种等离子密度可调的离子源装置,包括离子源主腔150和射频电源120。
离子源主腔150包括离子源腔1、放电腔2、螺旋线圈3、平面线圈6和Grid组件10。
离子源腔和放电腔从外至内依次同轴设置。
放电腔的头部设置有进气面板,进气面板的中部设置进气管道9。
螺旋线圈同轴套设在放电腔的筒身外周,且优选通过螺旋线圈支撑5安装在离子源腔的筒身内壁面。
螺旋线圈与放电腔的筒身外壁面之间具有径向间隙R,R优选为2~30mm。
平面线圈同轴安装在进气面板的外侧上游,且优选通过平面线圈支撑7安装在离子源的头部面板内壁面。
平面线圈与进气面板外表面之间具有轴向间隙L,L优选为2~30mm。
上述径向间隙R和轴向间隙L的设置,能使得放电腔内产生较为均匀的等离子体。
上述平面线圈6优选为盘香形线圈,平面线圈6可以由如图4所示的单个盘香形线圈组成,为使等离子体密度分布更为均匀,也可由如图5所示的两个盘香形线圈共同组成。盘香形线圈的截面形状不限,可以为圆形,也可以为方形。
此外,上述螺旋线圈支撑和平面线圈支撑的材质均优选为陶瓷等绝缘材质,放电腔的材质优选为陶瓷或石英。
上述Grid组件安装在离子源腔和放电腔的尾端,Grid组件10可以选择两栅极或者三栅极,两栅包括屏栅12和加速栅11,屏栅12可以对等离子体聚焦,形成离子束,加速栅11对离子束进行加速,三栅是在两栅的基础上加入一减速栅13,减速栅13接地,可以有效减小离子束发散。DC电源130和131经滤波器140和141滤波后,分别经射频柱84和85接至Grid组件10的屏栅12与加速栅11,其中,屏栅12上加负电,加速栅11加正电。
螺旋线圈和平面线圈的一端均依次与功率分配器100、射频匹配器110和射频电源120电连接,螺旋线圈和平面线圈的另一端分别接地。
在一实施例中,具体电连接方式为:为使射频电源100的功率传输最大化,射频电源100后需接一射频匹配器110,用来使负载阻抗与射频电源100的阻抗匹配,从而减少反射功率,保证传输功率达到最大。射频匹配器110接至功率分配器100,功率分配器100内装有若干电容电感构成的功率分配电路,功率分配电路一路经射频柱83连接到螺旋线圈3的一端,螺旋线圈3的另外一端则经射频柱80接地,同时,功率分配电路另一路经射频柱81连接到平面线圈6的一端,平面线圈6的另外一端经射频柱82接地。
也就是说,功率分配器能对进入螺旋线圈和平面线圈的射频功率进行分配,通过对分配率r的调节,从而实现放电腔内等离子密度分布的调节。其中,分配率r=P1:P2,P1为进入螺旋线圈的射频功率,P2为进入平面线圈的射频功率。本申请中,优选分配率r=1:20~20:1。假设在某一工况下,单独使用螺旋线圈时,等离子体密度在放电腔内呈现边缘高,中间低的趋势,可以在平面线圈上和螺旋线圈上进行功率分配,平面线圈对中间的等离子体密度进行补偿,使整个放电腔内等离子体密度均匀分布。
当需要刻蚀时,启动DC电源130、131和射频电源120,Ar、O 2等离子化气体经进气管道9进入放电腔2内,在螺旋线圈3和平面线圈6的作用下,对放电腔4内的气体进行电离,生成等离子体。放电腔4内的等离子体经Grid组件10引出后,以离子束的形式轰击靶材,对晶圆进行刻蚀。
本申请中,螺旋线圈和平面线圈可以单独工作,也可以协同工作,工作流程如图6所示。
在一实施例中,螺旋线圈单独工作
如图6(a)所示,采用螺旋线圈3可以在兆赫兹范围内产生共振,并且在低气压下可以有效地产生等离子体,并将能量高效的传递给等离子体。假设,在低能情况下(或某一工况下),螺旋线圈单独工作可保证等离子体在放电腔内均匀分布,具体如图7所示,那么,平面线圈上不进行功率分配,单独利用螺旋线圈即可保证良好的均匀性。
在一实施例中,平面线圈单独工作
如图6(b)所示,假设在中能情况下(或某一工况下),平面线圈6可以使在放电腔4内产生均匀的等离子体,那么,平面线圈可单独进行工作,保证刻蚀均匀性。
在一实施例中,螺旋线圈和平面线圈同时工作
采用螺旋线圈和平面线圈两个线圈,并在两个线圈上进行不同的功率加载。如在高能情况下,单独利用螺旋线圈,放电腔内等离子体密度分布为中间低,两边高,此时,在平面线圈上加载功率,对放电腔内的等离子体密度进行修正,使放电腔内的等离子体密度趋于均匀,有利于刻蚀均匀性改善。也即将图8中左侧的等离子体密度图形修正为右侧的等离子体密度示意图。
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种等同变换,这些等同变换均属于本申请的保护范围。

Claims (8)

  1. 一种等离子密度可调的离子源装置,其中:包括离子源腔、放电腔、螺旋线圈、平面线圈和射频电源;
    所述离子源腔和所述放电腔从外至内依次同轴设置;所述放电腔的头部设置有进气面板;
    所述螺旋线圈同轴地套设在所述放电腔的筒身外周,且与所述放电腔的筒身外壁面之间具有径向间隙R;
    所述平面线圈同轴地安装在所述进气面板的外侧上游,且与所述进气面板的外表面之间具有轴向间隙L;
    所述螺旋线圈和所述平面线圈的一端均依次与功率分配器、射频匹配器和射频电源电连接,所述螺旋线圈和所述平面线圈的另一端分别接地;
    所述功率分配器能对进入所述螺旋线圈和所述平面线圈的射频功率进行分配,通过对分配率r的调节,从而实现所述放电腔内等离子密度分布的调节;其中,分配率r=P1:P2,其中,P1为进入所述螺旋线圈的所述射频功率,P2为进入所述平面线圈的所述射频功率。
  2. 根据权利要求1所述的装置,其中,所述分配率r的范围在1:20~20:1之间。
  3. 根据权利要求1所述的装置,其中,所述平面线圈为单个盘香形线圈。
  4. 根据权利要求1所述的装置,其中,所述平面线圈为两个盘香形线圈的交替组合。
  5. 根据权利要求1所述的装置,其中,所述螺旋线圈与所述放电腔的所述筒身外壁面之间的所述径向间隙R的范围在2mm~30mm之间,所述平面线圈与与所述进气面板的所述外表面之间的所述轴向间隙L的范围在2mm~30mm之间。
  6. 根据权利要求1所述的装置,其中,所述螺旋线圈通过所述螺旋线圈支撑安装在所述离子源腔的筒身内壁面,所述平面线圈通过所述平面线圈支撑安装在所述离子源的头部面板内壁面。
  7. 根据权利要求1所述的装置,其中,在所述离子源腔和所述放电腔的尾端安装有Grid组件,所述Grid组件包括屏栅和加速栅,其中,所述屏栅用于聚焦等离子体,所述加速栅用于加速离子束。
  8. 根据权利要求7所述的装置,其中,所述Grid组件还包括设置在所述加速栅下游的减速栅,所述减速栅用于减小所述离子束的发散。
PCT/CN2021/137434 2021-01-04 2021-12-13 等离子密度可调的离子源装置 WO2022143120A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237026056A KR20230128516A (ko) 2021-01-04 2021-12-13 플라즈마 밀도를 조절할 수 있는 이온 소스 장치
EP21913861.7A EP4266348A4 (en) 2021-01-04 2021-12-13 ION SOURCE DEVICE WITH ADJUSTABLE PLASMA DENSITY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110002081.9 2021-01-04
CN202110002081.9A CN114724911A (zh) 2021-01-04 2021-01-04 一种等离子密度可调的离子源装置

Publications (1)

Publication Number Publication Date
WO2022143120A1 true WO2022143120A1 (zh) 2022-07-07

Family

ID=82233558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137434 WO2022143120A1 (zh) 2021-01-04 2021-12-13 等离子密度可调的离子源装置

Country Status (4)

Country Link
EP (1) EP4266348A4 (zh)
KR (1) KR20230128516A (zh)
CN (1) CN114724911A (zh)
WO (1) WO2022143120A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571366A (en) * 1993-10-20 1996-11-05 Tokyo Electron Limited Plasma processing apparatus
US6192829B1 (en) * 1999-05-05 2001-02-27 Applied Materials, Inc. Antenna coil assemblies for substrate processing chambers
US6409933B1 (en) * 2000-07-06 2002-06-25 Applied Materials, Inc. Plasma reactor having a symmetric parallel conductor coil antenna
WO2002084698A1 (en) * 2001-04-13 2002-10-24 Applied Materials, Inc. Inductively coupled plasma source with controllable power distribution
CN108573846A (zh) * 2017-03-09 2018-09-25 北京北方华创微电子装备有限公司 等离子体腔室及等离子体加工设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036878A (en) * 1996-02-02 2000-03-14 Applied Materials, Inc. Low density high frequency process for a parallel-plate electrode plasma reactor having an inductive antenna
TWI391518B (zh) * 2005-09-09 2013-04-01 愛發科股份有限公司 離子源及電漿處理裝置
CN111385956B (zh) * 2020-03-09 2021-12-03 电子科技大学 一种射频粒子源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571366A (en) * 1993-10-20 1996-11-05 Tokyo Electron Limited Plasma processing apparatus
US6192829B1 (en) * 1999-05-05 2001-02-27 Applied Materials, Inc. Antenna coil assemblies for substrate processing chambers
US6409933B1 (en) * 2000-07-06 2002-06-25 Applied Materials, Inc. Plasma reactor having a symmetric parallel conductor coil antenna
WO2002084698A1 (en) * 2001-04-13 2002-10-24 Applied Materials, Inc. Inductively coupled plasma source with controllable power distribution
CN108573846A (zh) * 2017-03-09 2018-09-25 北京北方华创微电子装备有限公司 等离子体腔室及等离子体加工设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4266348A4 *

Also Published As

Publication number Publication date
EP4266348A1 (en) 2023-10-25
TW202228182A (zh) 2022-07-16
EP4266348A4 (en) 2024-06-05
KR20230128516A (ko) 2023-09-05
CN114724911A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
US4713585A (en) Ion source
EP0621979B1 (en) Radio-frequency ion source
EP0710056B1 (en) Radio-frequency plasma source
US20100101727A1 (en) Capacitively coupled remote plasma source with large operating pressure range
US5032205A (en) Plasma etching apparatus with surface magnetic fields
US6531031B1 (en) Plasma etching installation
US5413663A (en) Plasma processing apparatus
JPH10270430A (ja) プラズマ処理装置
US6936144B2 (en) High frequency plasma source
US5543688A (en) Plasma generation apparatus with interleaved electrodes and corresponding method
JPS63155728A (ja) プラズマ処理装置
WO2022143120A1 (zh) 等离子密度可调的离子源装置
TWI803098B (zh) 離子源裝置
CN113764252A (zh) 等离子体源及其启动方法
CN109192641A (zh) 一种潘宁冷阴极离子源
TWI845878B (zh) 電漿密度可調的離子源裝置
CN218596493U (zh) 一种靶阴极磁钢布置结构及采用该结构的磁控溅射装置
WO2022143144A1 (zh) 线圈结构能随放电腔结构进行变化的离子源
TWI786993B (zh) 電漿密度可調的離子源裝置
CN108566717B (zh) 采用微波垂直注入激励等离子体发生装置
JPH0644138U (ja) プラズマcvd装置
CN115665962B (zh) 引出带状离子束的离子源
JPH0221296B2 (zh)
JPH0637052A (ja) 半導体加工装置
CN116546715A (zh) 一种低压等离子体源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021913861

Country of ref document: EP

Effective date: 20230719

ENP Entry into the national phase

Ref document number: 20237026056

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE