WO2022143000A1 - 一种协同传输的方法和装置 - Google Patents

一种协同传输的方法和装置 Download PDF

Info

Publication number
WO2022143000A1
WO2022143000A1 PCT/CN2021/135232 CN2021135232W WO2022143000A1 WO 2022143000 A1 WO2022143000 A1 WO 2022143000A1 CN 2021135232 W CN2021135232 W CN 2021135232W WO 2022143000 A1 WO2022143000 A1 WO 2022143000A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
terminal
frequency
compensation value
information
Prior art date
Application number
PCT/CN2021/135232
Other languages
English (en)
French (fr)
Inventor
王晓鲁
罗禾佳
李榕
马江镭
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21913741.1A priority Critical patent/EP4240072A4/en
Publication of WO2022143000A1 publication Critical patent/WO2022143000A1/zh
Priority to US18/338,353 priority patent/US20230337163A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • H04B7/18508Communications with or from aircraft, i.e. aeronautical mobile service with satellite system used as relay, i.e. aeronautical mobile satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18521Systems of inter linked satellites, i.e. inter satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the embodiments of the present application relate to the field of communications, and more particularly, to a method and apparatus for satellite coordinated transmission.
  • NTN non-terrestrial networks
  • UE user equipment
  • the UE accesses the system, it can be "visible" with multiple communication satellites for a period of time, that is, the signals of multiple communication satellites can cover the same area.
  • multiple satellites can provide communication services for the UE, which provides basic conditions for multi-satellite coordinated transmission.
  • Multi-satellite cooperative transmission technology can provide UE with higher reliability and higher transmission rate data communication performance, and is a key technology to improve system throughput in future satellite communication.
  • the multi-satellite cooperative transmission scenario has obvious differences: 1) the height of the network equipment is different; 2) the moving speed of the network equipment is different.
  • the height of the satellite base station is generally 300km or more from the ground.
  • the path propagation loss between the center and the edge of the cell/beam covered by the satellite base station signal is not much different, generally within 3dB. Therefore, the multi-satellite coordinated transmission technology can cover the cell/beam.
  • the UE provides multi-satellite coordinated transmission to further improve the communication quality of the UE.
  • the high distance of the satellite equipment from the ground will bring a disadvantage: a large transmission delay is generated.
  • the signals sent by the satellite base stations may arrive at the UE at different times, which will cause a timing offset between the UE's received multi-satellite signals and affect the decoding performance of the UE.
  • the terrestrial base station is generally fixed, that is, stationary relative to the ground, and the UE will not generate a time/frequency offset or generate a small time/frequency offset when it receives a joint transmission signal of multiple base stations.
  • the satellite base station non-geostationary orbit satellite
  • the signal sent by the satellite to the UE will have a serious Doppler frequency offset
  • the multi-satellite coordinated signal received by the UE will also have a serious frequency offset or various frequency offsets.
  • the difference in frequency offset between satellite signals affects the decoding performance of the UE.
  • Multi-satellite cooperative transmission is different from the ground multi-base station joint transmission technology.
  • Multi-satellite cooperative transmission can bring benefits, such as improving the communication quality of UEs in beams/cells, but at the same time it will introduce new challenges, that is, there are relatively Large time/frequency offset.
  • the embodiments of the present application provide a communication method and device, so that the first satellite device configures the time/frequency pre-compensation value when sending data to the second satellite device, so as to solve the problem of large time/frequency offset caused by the channel in the process of multi-satellite coordinated transmission .
  • a communication method is provided, and the method may be performed by a second satellite device, or may also be performed by a component (eg, a chip or a system of chips) configured in the second satellite device. This application does not limit this.
  • the method includes: receiving first indication information from a first satellite device, and obtaining a first timing pre-compensation value and/or a first frequency pre-compensation value corresponding to at least one first terminal according to the first indication information. Communication with at least one first terminal is performed according to the first timing precompensation value and/or the first frequency precompensation value.
  • the second satellite device receives the first indication information from the first satellite device, and obtains the first timing pre-compensation value and/or the first frequency corresponding to at least one first terminal according to the first indication information pre-compensation value.
  • the second satellite device communicates with at least one first terminal based on the first timing precompensation value and/or the first frequency precompensation value.
  • the first satellite device configures a time/frequency pre-compensation value to the second satellite device, so that the second satellite device communicates with at least one first terminal according to the time/frequency pre-compensation value, thereby solving the multi-satellite coordinated transmission process The large time/frequency offset problem caused by the medium channel.
  • the method further includes: obtaining a second timing pre-compensation value and/or a second frequency pre-compensation value corresponding to at least one second terminal according to the first indication information and communicate with the at least one second terminal according to the second timing precompensation value and/or the second frequency precompensation value.
  • the first indication information includes second location information
  • at least one second terminal is obtained according to the first indication information
  • the corresponding second timing pre-compensation value and/or the second frequency pre-compensation value includes: obtaining the second timing pre-compensation value and/or the second frequency pre-compensation value corresponding to at least one second terminal according to the second location information value.
  • the first indication information includes first location information
  • at least one first terminal is obtained according to the first indication information
  • the corresponding first timing pre-compensation value and/or the first frequency pre-compensation value includes: obtaining the first timing pre-compensation value and/or the first frequency pre-compensation value corresponding to at least one first terminal according to the first location information value.
  • the method further includes: obtaining frame structure information from the first satellite device, and according to the second timing schedule Communication of the compensation value and/or the second frequency pre-compensation value with the at least one second terminal includes: communicating with the at least one second terminal according to the second timing pre-compensation value and/or the second frequency pre-compensation value and the frame structure information A second terminal communicates.
  • the second satellite device communicates with the at least one second terminal according to the second timing pre-compensation value and/or the second frequency pre-compensation value and the frame structure information, which can not only solve the problem in the multi-satellite cooperative transmission process.
  • the problem of large time/frequency offset caused by the channel can also reduce the problem of inter-user interference caused when the second satellite device transmits data to different timing pre-compensated users or different frequency pre-compensated users.
  • the method further includes: obtaining frame structure information from the first satellite device, Communicating the compensation value and/or the first frequency pre-compensation value with the at least one first terminal includes: according to the first timing pre-compensation value and/or the first frequency pre-compensation value and the frame structure information and the at least one first terminal A first terminal communicates.
  • the second satellite device communicates with at least one terminal according to the first timing pre-compensation value and/or the first frequency pre-compensation value and the frame structure information, which can not only solve the problem of channel generation in the multi-satellite cooperative transmission process.
  • the problem of large time/frequency offset can also reduce the problem of inter-user interference caused when the second satellite device transmits data to different timing pre-compensated users or different frequency pre-compensated users.
  • a communication method is provided, and the method may be performed by a first satellite device, or may also be performed by a component (eg, a chip or a system of chips) configured in the first satellite device. This application does not limit this.
  • the method includes: establishing a connection with a second satellite device, and sending first indication information to the second satellite device, where the first indication information is used for determining the first timing pre-compensation value and/or the first frequency pre-compensation value It is determined that the first timing pre-compensation value and/or the first frequency pre-compensation value corresponds to at least one first terminal.
  • the above technical solution enables the second satellite device to communicate with at least one first terminal according to the time/frequency pre-compensation value, thereby solving the problem of large time/frequency offset caused by the channel during the multi-satellite coordinated transmission process.
  • the method further includes: the first indication information is also used for determining a second timing pre-compensation value and/or a second frequency pre-compensation value, the second The timing pre-compensation value and/or the second frequency pre-compensation value corresponds to at least one second terminal.
  • the method further includes: the first indication information includes second location information, and the second location information is used for Determination of the second timing pre-compensation value and/or the second frequency pre-compensation value.
  • the method includes: the first indication information includes first location information, and the first location information is used for the Determination of the first timing precompensation value and/or the first frequency precompensation value.
  • the method includes: sending first configuration information to at least one first terminal, where the first configuration information is used for The configuration of the frame structure, and the communication with the at least one first terminal is performed according to the frame structure.
  • the method includes: sending second configuration information to at least one second terminal, where the second configuration information is used for The configuration of the frame structure communicates with the at least one second terminal according to the frame structure.
  • the second configuration information is specifically used for the configuration of blank resources in the frame structure, and the blank resources are not used for bearing data. In this way, the problem of inter-user interference caused by the second satellite device when transmitting data to different timing precompensated users or to different frequency precompensated users can be reduced.
  • the first configuration information is specifically used for the configuration of blank resources in the frame structure, and the blank resources are not used for bearing data. In this way, the problem of inter-user interference caused when the second satellite device transmits data to different timing precompensated users or different frequency precompensated users can be reduced.
  • the method further includes: sending third configuration information to the second satellite device, the third configuration information using Based on the configuration of the frame structure, communicate with the at least one first terminal according to the frame structure.
  • the first satellite device configures a frame structure for the second satellite device and the terminal, which can reduce the problem of inter-user interference caused by the second satellite device sending data to different timing precompensated users or different frequency precompensated users.
  • a communication method is provided, and the method can be executed by a terminal, or can also be executed by a component (eg, a chip or a chip system) configured in the terminal. This application does not limit this.
  • the method includes: receiving first configuration information from a first satellite device, where the first configuration information is used to configure a frame structure, and communicating with the first satellite device and the second satellite device according to the frame structure.
  • the terminal communicates with the first satellite device and the second satellite device according to the frame structure, which can reduce the interference between users introduced by the second satellite device when sending data to different timing pre-compensated users or different frequency pre-compensated users. question.
  • the first configuration information is specifically used to configure blank resources in the frame structure, and communicate with the first satellite device and the second satellite device according to the frame structure , including: not receiving data from the first satellite device and the second satellite device on the blank resource. In this way, the problem of inter-user interference caused when the second satellite device transmits data to different timing precompensated users or different frequency precompensated users can be reduced.
  • a communication device comprising at least one processor and a memory, the processor is coupled to the memory, the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor, cause the device to execute The above first aspect or the method in any possible implementation manner of the first aspect, or cause the apparatus to perform the method in the above second aspect or any possible implementation manner of the second aspect, or cause the apparatus to perform the above third aspect or the method in any possible implementation manner of the third aspect.
  • the memory may be located within the device or external to the device.
  • a communication device including a processor and an interface, where the processor is used to control the interface to communicate with other devices, and execute the method in the first aspect or any possible implementation manner of the first aspect, or execute The above second aspect or the method in any possible implementation manner of the second aspect, or perform the method in the above third aspect or any possible implementation manner of the third aspect.
  • the processor includes one or more.
  • a communication device including a method for performing the above-mentioned first aspect, each possible implementation method based on the first aspect, the method of the second aspect, and each possible implementation method based on the second aspect, The method of the third aspect or each possible unit or means of implementing each step of the method based on the third aspect.
  • a computer-readable storage medium is provided, and a computer program is stored in the computer-readable storage medium.
  • the computer program is executed, it is used to execute the first aspect or any possible implementation manner of the first aspect.
  • a computer program product comprising a computer program, when the computer program is executed by a processor, for executing the method in the first aspect or any possible implementation manner of the first aspect, Either perform the method in the second aspect or any possible implementation of the second aspect, or perform the method in the third aspect or any possible implementation of the third aspect.
  • a communication system including the aforementioned satellite and terminal.
  • FIG. 1 is a schematic diagram of an example of a communication system to which the communication method of the present application is applied.
  • FIG. 2 is a schematic diagram of another example of a communication system to which the communication method of the present application is applied.
  • FIG. 3 is a schematic diagram of another example of a communication system to which the communication method of the present application is applied.
  • FIG. 4 is a schematic flowchart of the communication method of the present application.
  • FIG. 5 is a schematic diagram of configuring time/frequency precompensation value information in the communication method of the present application.
  • FIG. 6 is a schematic diagram of a satellite group selection rule in the communication method of the present application.
  • FIG. 7 is a schematic interactive flowchart of an example of the communication method of the present application.
  • FIG. 8 is a schematic interaction flowchart of another example of the communication method of the present application.
  • FIG. 9 is a schematic interaction flow chart of another example of the communication method of the present application.
  • FIG. 10 is a schematic diagram of a configuration frame structure in another example of the communication method of the present application.
  • FIG. 11 is a schematic diagram of the generation of inter-user interference in another example of the communication method of the present application.
  • FIG. 12 is a schematic diagram of a configuration frame structure in another example of the communication method of the present application.
  • FIG. 13 is a schematic diagram of a configuration frame structure in another example of the communication method of the present application.
  • FIG. 14 is a schematic diagram of a configuration frame structure in another example of the communication method of the present application.
  • FIG. 15 is a schematic diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of still another communication apparatus provided by an embodiment of the present application.
  • FIG. 1 shows a schematic diagram of an architecture of a communication system applicable to an embodiment of the present application.
  • the communication system may include at least one communication device, such as the satellite device shown in FIG. 1 ; the communication system may also include at least one first terminal, for example, two first terminals are shown in FIG. 1 , Terminal Device #1 and Terminal Device #2.
  • the communication device (satellite) is in communication with the at least one first terminal over a wireless link.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal device in the embodiments of the present application may also be referred to as a terminal, a user equipment (user equipment, UE), a mobile station, a mobile terminal, and the like.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal.
  • the network device in this embodiment of the present application may be a base station (base station), an evolved NodeB (eNodeB), a transmission reception point (TRP), and a next generation NodeB (gNB) in a 5G system ), the base station in the 6G system, the base station in the future evolving communication system or the access node in the WiFi system, etc.; it can also be a module or unit that completes some functions of the base station, for example, it can be a centralized unit (central unit, CU). ), or a distributed unit (DU).
  • the network device may be a macro base station, a micro base station or an indoor station, or a relay node or a donor node.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • Network equipment and terminals can be fixed or mobile.
  • Base stations and terminals can be deployed on land, including indoor or outdoor, hand-held or vehicle-mounted; on water; and on aircraft, drones, balloons, or satellites in the air.
  • the present application takes a satellite communication system and a network device (ie, a communication device) as examples to introduce the technical solutions of the present application in detail, wherein the network device in the satellite communication system may include satellites or be deployed on satellites.
  • a network device ie, a communication device
  • FIG. 2 shows a schematic diagram of an architecture of a communication system applicable to an embodiment of the present application.
  • the network device includes a satellite device and a gateway (gateway).
  • the terminal includes an Internet of Things terminal, and may also be a terminal with other forms and performances, such as a mobile phone terminal, a high-altitude aircraft, etc., which are not limited here.
  • the link between the satellite and the user terminal is called the service link, and the link between the satellite and the gateway station is called the feeder link.
  • this application scenario can be extended to a multi-satellite communication scenario, which is not limited in this application.
  • the working mode shown in Figure 2 can be the transparent mode of the satellite.
  • the satellite forwards the signal from the user terminal to the gateway station by means of forwarding, and the communication link between the user terminal and the gateway station Includes service links and feeder links. Satellites can transparently transmit user signals to ground stations to achieve wide-area coverage. In the transparent transmission mode, the satellite has the function of relay and forwarding.
  • the working mode illustrated in FIG. 2 may also be a regenerative mode of the satellite.
  • the satellite works in the regeneration mode, the satellite has the data processing capability, the function of the base station or part of the function of the base station.
  • FIG. 3 shows a schematic diagram of another architecture of the communication system applicable to the embodiment of the present application.
  • the present application is also applicable to the air-to-ground communication scenario (air to ground, ATG) shown in FIG. 3 , wherein the network equipment includes ground base stations, and the user terminals include high-altitude aircraft, on-board handheld terminals, etc.
  • ATG air to ground
  • the network equipment includes ground base stations
  • the user terminals include high-altitude aircraft, on-board handheld terminals, etc.
  • the embodiment of the present application This is not limited.
  • FIG. 4 shows a schematic flowchart of the method for satellite coordinated transmission of the present application.
  • the terminal feeds back the channel quality of the multiple candidate cooperative transmission satellites.
  • the multiple candidate cooperative transmission satellites are at least one second satellite device, the second satellite device is a secondary satellite device, and the terminal feeds back the channel quality of the multiple secondary satellites to the primary satellite device or the base station.
  • the channel quality may be used to reflect the downlink channel quality of a physical downlink shared channel (PDSCH).
  • the terminal may send the information for indicating the channel quality to the network side on the physical uplink control channel (physical uplink control channel, PUCCH) or the physical uplink share channel (physical uplink share channel, PUSCH), and the network side according to the indicated channel quality to schedule PDSCH.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink share channel
  • the downlink channel quality can be obtained by referring to the signal to noise ratio (signal to noise ratio, SNR), the bit energy to noise power spectral density ratio (Eb/N0), the reference signal based on the downlink reference signal or the data signal of the shared channel.
  • Signal received power reference signal received power, RSRP
  • channel quality indicator channel quality indicator, CQI
  • signal to interference plus noise power ratio signal to interference plus noise power ratio
  • SINR reference signal received quality
  • RSRQ reference signal received quality
  • one or more characterizations of decoding performance eg, packet loss rate, etc.
  • the downlink reference signal may be a demodulation reference signal (DMRS), a phase tracking reference signal (PTRS), or a channel state information-reference signal (CSI-RS) , which is not limited in the embodiments of the present application.
  • DMRS demodulation reference signal
  • PTRS phase tracking reference signal
  • CSI-RS channel state information-reference signal
  • the network side selects an appropriate cooperative transmission satellite (auxiliary satellite) according to the satellite group selection rule.
  • the first satellite device configures a time/frequency precompensation value to the second satellite device.
  • the first satellite device configures frame structure information to the second satellite device.
  • the first satellite device is a primary satellite device
  • the second satellite device is a secondary satellite device. It should be understood that there may be one or more secondary satellite devices, and the embodiment of the present application does not limit the number of secondary satellite devices.
  • the terminal receives data according to the frame structure configuration and corresponding time-frequency resources.
  • the terminal receives the first configuration information sent by the first satellite device (primary satellite), the first configuration information is specifically used to configure blank resources in the frame structure, and the terminal does not receive the blank resources sent by the primary satellite and the secondary satellite. data.
  • the first satellite device primary satellite
  • the first configuration information is specifically used to configure blank resources in the frame structure
  • the terminal does not receive the blank resources sent by the primary satellite and the secondary satellite. data.
  • blank resource may also be referred to as an unavailable resource, a reserved resource, or an unschedulable resource, which is not limited in this embodiment of the present application.
  • the following describes in detail a method 200 for the network side to select a suitable cooperative transmission satellite according to a satellite group selection rule provided by the present application.
  • the first satellite Before the first satellite establishes a connection with the second satellite, the first satellite needs to select the second satellite for coordinated transmission according to the satellite group selection rule.
  • the first satellite is the main satellite
  • the second satellite is the auxiliary satellite
  • the auxiliary satellite may is one or more, which is not limited in this embodiment of the present application.
  • the main satellite selects suitable auxiliary satellites to perform multi-satellite cooperative data transmission according to the satellite group selection rules, which can not only provide multi-satellite cooperative transmission services for terminals in the signal coverage area, but also reduce the time-time/frequency pre-compensation for satellite signal transmission. the complexity.
  • Step 1 The network side sets the timing shift threshold timing shift thre and the frequency shift threshold frequency shift thre.
  • the network side here may be a main satellite, a base station, or a core network, which is not limited in this embodiment of the present application.
  • Step 2 The network side sets and determines the geographic location range of each group of terminals.
  • the network side divides the terminals within the coverage of the cell/beam into multiple terminal groups according to the geographic location of the cell or the beam. Since the geographic location range of each group of terminals is smaller, the implementation complexity on the network side is higher, and the time-frequency offset felt by the terminals is smaller. Therefore, the network side can select an appropriate geographic location range for each group of terminals according to a compromise between the complexity that the network device can bear and the decoding performance of the terminal.
  • Step 3 The network side determines a time/frequency precompensation reference point within the geographic location of each group of terminals.
  • time/frequency pre-compensation reference point may be one time/frequency pre-compensation reference point corresponding to one terminal within the geographic location range, or may be a location point within the geographic location range of each group of terminals, such as a network
  • the side can select the center point in the geographic location area as a time/frequency pre-compensation reference point, or select a location point in the geographic location area that is closest to the satellite as the time/frequency pre-compensation reference point, etc. This is not limited.
  • the terminals in a certain cell or beam can be divided into 7 groups according to the geographical relationship. For example, multiple terminals with similar distances can be grouped into one group, and the main satellite and the auxiliary satellite can send the data to each group of UEs.
  • the time/frequency pre-compensation value is determined according to the compensation reference point during data processing. It should be understood that the specific position of the time/frequency pre-compensation reference point corresponding to each group of terminals is as shown in the figure.
  • time/frequency pre-compensation reference point may be one or more, which is not limited in this embodiment of the present application.
  • Step 4 The network side selects an appropriate secondary satellite according to the set specific rules.
  • Rule 1 The network side selects the auxiliary satellite that can perform multi-satellite coordinated transmission with the main satellite to form a satellite combination with the longest communication time.
  • the network side can determine the length of time that can be communicated according to the length of time between the satellite and the UE that meets the communication angle requirements.
  • auxiliary satellites corresponding to different terminal groups should satisfy the following formula (1),
  • communication-duration ⁇ Coop-sat, group UE> indicates the time length during which a certain secondary satellite Coop-sat and group UE can transmit in coordination.
  • the maximization of the minimum value of the cooperative transmission time length provided by the cooperative satellite transmission group (auxiliary satellite/main satellite) composed of a certain group of satellites for each group of terminals in the coverage area can ensure that the satellite equipment It can provide the terminals in the coverage area with coordinated transmission services for as long as possible and avoid frequent handover of secondary satellites.
  • the main satellite and the auxiliary satellites are a group of 3 satellites in total, wherein the main satellite provides 3 minutes of communication time for the UE in the coverage area, and the other two auxiliary satellites can pass the communication time of 2 minutes and 1.5 minutes for the UE.
  • 1.5 minutes is the minimum value of the transmission time length of the group of coordinated satellite transmissions.
  • the network side can determine the minimum value of the transmission time length of each group according to the combination of the primary satellite and different secondary satellites. Then, the network side obtains the satellite group with the largest among the minimum values by comparing the minimum value of the transmission time of each group, that is, the maximization of the minimum value of the coordinated transmission time length among the coordinated transmission groups of each group.
  • the cooperative transmission time length may be determined according to the motion trajectories of the main satellite and the auxiliary satellite, for example, according to ephemeris information or orbit parameter information, to calculate the time length for the satellite group to communicate with the terminal.
  • Rule 2 The network side calculates the possible maximum time/frequency offset within the coverage area of each group of terminals. It can be understood that the time/frequency offset of the terminal farthest from the compensation reference point within the coverage area of each group does not exceed the threshold .
  • Constraint 1 indicates that the timing offset does not exceed the timing offset threshold timing-shift-thre, and limits the multi-satellite cooperative transmission signal received in each group of terminals.
  • the maximum timing offset cannot exceed the timing offset threshold, as shown in Equation (2) below.
  • timing-shift-thre is the timing offset threshold
  • Delay-coop-sat-UE is the delay between the secondary satellite and the UE
  • Delay-coop-sat-RP is the delay between the secondary satellite and the compensation reference point
  • Delay -main-sat-UE is the delay between the main satellite and the UE
  • Delay-main-sat-RP is the delay between the main satellite and the compensation reference point.
  • the main satellite device or other network devices can obtain the position of the auxiliary satellite through the ephemeris information of the auxiliary satellite, and the UE will Report your location to the network side. Therefore, the network side can calculate the delay between the auxiliary satellite and the UE according to the position of the auxiliary satellite and the position of the UE. For example, the network side obtains the delay information between the auxiliary satellite and the UE according to formula (3).
  • L is the distance between the secondary satellite and the terminal
  • V is the speed of light
  • Delay-coop-sat-UE is the delay between the secondary satellite and the terminal.
  • the network side may also obtain the positions of the secondary satellite and the UE in other ways, which are not limited in this embodiment of the present application.
  • Constraint 2 means that the frequency offset does not exceed the frequency offset threshold frequency-shift-thre, and the maximum frequency offset of the multi-satellite coordinated transmission signal received in each group of terminals cannot exceed the frequency offset threshold, as shown in the following formula (4 ) shown.
  • frequency-shift-thre is the frequency offset threshold
  • Doppler-coop-sat-UE is the Doppler frequency shift between the secondary satellite and the UE
  • Doppler-coop-sat-RP is the Doppler frequency shift between the secondary satellite and the compensation reference point
  • Doppler-main-sat-UE is the Doppler frequency shift between the main satellite and the UE
  • Doppler-main-sat-RP is the Doppler frequency shift between the main satellite and the reference point.
  • the network side can obtain the secondary satellite and the UE according to the position and velocity information of the secondary satellite and the position and velocity information of the UE.
  • the radial relative velocity between UEs V-sat-UE the network side calculates the Doppler frequency shift value between the satellite and the UE according to the radial relative velocity.
  • the Doppler frequency shift value between the satellite and the UE can be obtained according to the following formula .
  • the network side obtains the position of the auxiliary satellite according to the ephemeris information of the auxiliary satellite, the network side obtains the position of the UE by reporting the position of the UE itself, and the network side can also obtain the position of the auxiliary satellite and the UE through other methods.
  • This application implements The example does not limit this.
  • the speed information of the auxiliary satellite and the speed information of the UE may also be obtained in other ways, for example, the ephemeris information of the auxiliary satellite and/or the speed information obtained through the positioning function of the UE, which is not limited in this embodiment of the present application.
  • Constraint 3 is expressed as the fact that the communication angle between the secondary satellite and the UE group is not less than the minimum allowable communication angle, and it is defined that the possible minimum communication angle between the UE and the satellite in each group of UEs cannot be smaller than the allowable minimum communication angle Min-elevation, As shown in the following formula (6).
  • Elevation ⁇ Coop-sat, group UE> is the communication angle between the secondary satellite and the UE group
  • Min-elevation is the minimum communication angle allowed between the UE and the satellite.
  • CP cyclic prefix
  • Ts indicates the interval
  • SCS sub-carrier spacing
  • the network side sets the coverage of the UE group, for example, the coverage diameter of each group of UEs is 40km, as shown in FIG. 6 .
  • the network side calculates the worst case within the coverage of each group of UEs, that is, the time/frequency offset in the UE farthest from the compensation reference point does not exceed the threshold, and selects the satellite combination with the longest communication time.
  • the network side assumes that the allowed The minimum communication angle is 30 degrees, then the communication angle between the secondary satellite and the UE group is at least not less than 30 degrees.
  • Figure 6 takes the selection of two auxiliary satellites (LEO-600, staring mode) as an example, the network side can select the satellites with a distance of 40km, and the time length to meet the cooperative communication conditions is about 3 minutes (elevation angle ⁇ 30)
  • the composition of the auxiliary satellite and the main satellite Cooperative transmission of satellite groups.
  • FIG. 7 is a schematic interactive flowchart of a method 300 for configuring a time/frequency precompensation value for a primary satellite to a secondary satellite according to an embodiment of the present application.
  • the method 300 can be applied in the scenario shown in FIG. 2 or FIG. 3 , Of course, it can also be applied in other communication scenarios, which is not limited in this embodiment of the present application.
  • the first satellite establishes a connection with the second satellite.
  • the first satellite is the main satellite
  • the second satellite is the auxiliary satellite
  • the connection established between the main satellite and the auxiliary satellite may be a single-hop connection or a multi-hop connection, wherein the single-hop connection means that the end-to-end connection is only routed through satellites
  • the network topology is a star structure.
  • Multi-hop connection refers to amplifying the signals between communication terminals through the ground central station.
  • the network topology is a star structure centered on the ground central station.
  • the main satellite and the auxiliary satellite transmit data through the inter-satellite link.
  • the first satellite sends the first indication information to the second satellite.
  • the first indication information may indicate at least one of a timing pre-compensation value, a frequency pre-compensation value, or orientation information, and may also indicate time/frequency pre-compensation reference point information, which is not limited in this embodiment of the present application.
  • the second satellite obtains the first timing pre-compensation value and/or the first frequency pre-compensation value according to the first indication information.
  • the network side first calculates the time/frequency precompensation values corresponding to the first terminal, and then configures these time/frequency precompensation values to the corresponding secondary satellites.
  • the time/frequency precompensation information corresponding to the first terminal can be obtained according to the following formula:
  • timing-pre-compensation-value Delay-main-sat-RP-Delay-coop-sat-RP (7)
  • timing-pre-compensation-value is the timing pre-compensation value
  • Delay-main-sat-RP is the delay between the main satellite and the reference point
  • Delay-coop-sat-RP is the delay between the secondary satellite and the reference point
  • frequency-pre-compensation-value is the frequency pre-compensation value
  • Doppler-coop-sat-RP is the frequency shift between the secondary satellite and the reference point.
  • the reference point represents a compensation reference point or a time/frequency pre-compensation reference point corresponding to the first terminal.
  • first terminal may be one terminal, or a group of multiple terminals, for example, terminal 1, terminal 2, terminal 3, and terminal 4 form a first terminal, which is not limited in this embodiment of the present application.
  • the compensation reference point may be one compensation reference point corresponding to each first terminal, or may be one compensation reference point corresponding to multiple first terminals, which is not limited in this embodiment of the present application.
  • the data can be sent from the primary satellite to the secondary satellite.
  • the time-frequency pre-compensation information includes time delay information and Doppler frequency shift information between each satellite (primary satellite and/or secondary satellite) and the gateway station.
  • the primary satellite can also send the time delay information and Doppler frequency shift information between each satellite and the gateway station to the secondary satellites alone. This embodiment of the present application does not limit this.
  • the primary satellite may configure time/frequency precompensation information corresponding to the terminal to the secondary satellite.
  • the secondary satellite obtains the corresponding compensation value and the azimuth information of the terminal according to the time/frequency pre-compensation information corresponding to the terminal.
  • the azimuth information can be the transmission angle information or position information corresponding to the terminal, and the secondary satellite can determine the direction of sending signals to the terminal according to the azimuth information.
  • Timing pre-compensation value Frequency pre-compensation value Terminal location information Terminal 1 Timing pre-compensation value 1 Frequency pre-compensation value 1 Orientation information 1 Terminal 2 Timing pre-compensation value 2 Frequency pre-compensation value 2 Orientation information 2 Terminal 3 Timing pre-compensation value 3 Frequency pre-compensation value 3 Orientation information 3 Terminal 4 Timing pre-compensation value 4 Timing pre-compensation value 5 Orientation information 4
  • the primary satellite may configure a set of time/frequency precompensation information corresponding to the terminal to the secondary satellite.
  • the secondary satellite obtains the corresponding compensation value and the orientation information of the terminal group 1 according to the time/frequency pre-compensation information corresponding to the terminal group 1.
  • the orientation information may be transmission angle information or position information corresponding to the terminal group 1, or position information of a reference point, etc., which is not limited in this embodiment.
  • the secondary satellite can determine the direction of sending signals to the terminal group 1 according to the orientation information.
  • Timing pre-compensation value Frequency pre-compensation value Terminal location information Terminal group 1 Timing pre-compensation value 1 Frequency pre-compensation value 1 Orientation information 1
  • the primary satellite may send the time/frequency precompensation reference point information corresponding to each terminal to the secondary satellite.
  • the primary satellite sends the time/frequency pre-compensation reference point information corresponding to each terminal and the ephemeris information of the primary satellite to the secondary satellite through the inter-satellite link.
  • the time/frequency precompensation reference point information corresponding to each terminal may be the location information of each terminal.
  • Ephemeris information is an expression used to represent the position and velocity of satellites, and satellite motion trajectories and orbital information can be predicted through ephemeris information.
  • the secondary satellite After the secondary satellite obtains the time/frequency precompensation reference point information, for example, the time/frequency precompensation reference point information is coordinate information, the secondary satellite calculates according to its own position information and time/frequency precompensation reference point coordinates and the position information of the primary satellite The time/frequency precompensation value corresponding to each terminal.
  • the time/frequency precompensation reference point information is coordinate information
  • the secondary satellite calculates according to its own position information and time/frequency precompensation reference point coordinates and the position information of the primary satellite The time/frequency precompensation value corresponding to each terminal.
  • the primary satellite sends time-frequency compensation reference point information to the secondary satellite
  • Terminal Time/frequency pre-compensation value reference point information Terminal 1 Reference point information 1 Terminal 2 Reference point information 2 Terminal 3 Reference point information 3 Terminal 4 Reference point information 4
  • the primary satellite may send time/frequency precompensation reference point information corresponding to a group of terminals to the secondary satellite.
  • the primary satellite sends the time/frequency pre-compensation reference point information corresponding to a group of terminals and the ephemeris information of the primary satellite to the secondary satellite through the inter-satellite link.
  • the secondary satellite obtains the time/frequency precompensation reference point information, for example, the time/frequency precompensation reference point information is coordinate information
  • the secondary satellite calculates according to its own position information and time/frequency precompensation reference point coordinates and the position information of the primary satellite Time/frequency pre-compensation value corresponding to 1 group of terminals.
  • the primary satellite sends time-frequency compensation reference point information to the secondary satellite
  • time/frequency pre-compensation value can be obtained by formulas (7) and (8), and the calculation method and the obtaining manner of the time/frequency pre-compensation value are not limited herein in this embodiment of the present application.
  • the second satellite communicates with the first terminal according to the first timing pre-compensation value and/or the first frequency pre-compensation value.
  • the secondary satellite performs time/frequency pre-compensation on the transmitted data according to the first timing pre-compensation value and/or the first frequency pre-compensation value received from the primary satellite.
  • the following description takes a group of terminals as an example.
  • frequency pre-compensation can be performed according to the Doppler frequency shift between the main satellite and the reference point corresponding to the terminal group 1.
  • the main satellite sends multi-satellite coordinated transmission data to UEs in terminal group 1, and the Doppler frequency shift between the main satellite and the reference point corresponding to terminal group 1 is -80Hz, then add -80Hz to the agreed signal transmission frequency.
  • FIG. 8 shows a schematic interactive flowchart of a method 300 for configuring a time/frequency precompensation value for a primary satellite to a secondary satellite according to another embodiment of the present application.
  • the first satellite establishes a connection with the second satellite.
  • the first satellite sends first indication information to the second satellite.
  • the second satellite obtains a second timing pre-compensation value and/or a second frequency pre-compensation value according to the first indication information.
  • the network side first calculates the time/frequency precompensation values corresponding to the second terminal, and then configures these time/frequency precompensation values to the corresponding secondary satellites.
  • the time/frequency precompensation information corresponding to the second terminal may be obtained according to the above formulas (7) and (8).
  • the compensation reference point represents a compensation reference point or a time/frequency pre-compensation reference point corresponding to the second terminal.
  • the second terminal may be one terminal, or multiple terminals may form a group, for example, terminal 5, terminal 6, terminal 7, and terminal 8 form a second terminal, which is not limited in this embodiment of the present application.
  • the compensation reference point may be each second terminal, or may be a compensation reference point corresponding to a plurality of second terminals, which is not limited in this embodiment of the present application.
  • the data can be sent from the primary satellite to the secondary satellite.
  • the time-frequency pre-compensation information includes time delay information and Doppler frequency shift information between each satellite (primary satellite and/or secondary satellite) and the gateway station.
  • the primary satellite can also send the time delay information and Doppler frequency shift information between each satellite and the gateway station to the secondary satellites alone. This embodiment of the present application does not limit this.
  • the primary satellite may configure time/frequency precompensation information corresponding to the terminal to the secondary satellite.
  • the secondary satellite obtains the corresponding compensation value and the azimuth information of the terminal according to the time/frequency pre-compensation information corresponding to the terminal.
  • the azimuth information can be the transmission angle information or position information corresponding to each terminal in terminal group 1 and terminal group 2, and the secondary satellite can determine the direction of sending signals to each terminal in terminal group 1 and terminal group 2 according to the azimuth information.
  • the primary satellite may configure time/frequency precompensation information corresponding to the two sets of terminals to the secondary satellite.
  • the secondary satellite obtains the corresponding compensation value and the azimuth information corresponding to the terminal group 1 and the terminal group 2 according to the time/frequency pre-compensation information corresponding to the terminal group 1 and the terminal group 2 respectively.
  • the orientation information may be the transmission angle information or the position information or the position information of the reference point corresponding to the terminal group 1 and the terminal group 2 respectively, which is not limited in this embodiment.
  • the secondary satellite can determine the directions of sending signals to the two terminal groups respectively according to the orientation information.
  • Timing pre-compensation value Frequency pre-compensation value Terminal location information Terminal group 1 Timing pre-compensation value 1 Frequency pre-compensation value 1 Orientation information 1 Terminal group 2 Timing pre-compensation value 2 Frequency pre-compensation value 2 Orientation information 2
  • the primary satellite may send time/frequency precompensation reference point information corresponding to each terminal in terminal group 1 and terminal group 2 to the secondary satellite.
  • the primary satellite sends the time/frequency precompensation reference point information corresponding to each terminal in terminal group 1 and terminal group 2 to the secondary satellite through the inter-satellite link, and the ephemeris information of the primary satellite.
  • the secondary satellite obtains the time/frequency precompensation reference point information, for example, the time/frequency precompensation reference point information is coordinate information
  • the secondary satellite calculates according to its own position information and time/frequency precompensation reference point coordinates and the position information of the primary satellite Time/frequency precompensation value corresponding to each terminal in terminal group 1 and terminal group 2.
  • the primary satellite sends time-frequency compensation reference point information to the secondary satellite
  • the primary satellite may send the time/frequency precompensation reference point information corresponding to the two sets of terminals to the secondary satellite.
  • the primary satellite sends time/frequency precompensation reference point information corresponding to terminal group 1 and terminal group 2 to the secondary satellite through the inter-satellite link, and ephemeris information of the primary satellite.
  • the secondary satellite obtains the time/frequency precompensation reference point information, for example, the time/frequency precompensation reference point information is coordinate information
  • the secondary satellite calculates according to its own position information and time/frequency precompensation reference point coordinates and the position information of the primary satellite Time/frequency precompensation values corresponding to terminal group 1 and terminal group 2 respectively.
  • Terminal group Time/frequency pre-compensation value reference point information Terminal group 1 Reference point information 1 Terminal group 2 Reference point information 2
  • time/frequency pre-compensation value can be obtained by formulas (7) and (8), and the calculation method and the obtaining manner of the time/frequency pre-compensation value are not limited herein in this embodiment of the present application.
  • the second satellite communicates with the second terminal according to the second timing pre-compensation value and/or the second frequency pre-compensation value.
  • the secondary satellite performs time/frequency pre-compensation on the transmitted data according to the second timing pre-compensation value and/or the second frequency pre-compensation value received from the primary satellite.
  • the secondary satellite 1 sends data to the terminal group 1, it performs time/frequency precompensation on the transmitted data according to the timing precompensation value 1 and the frequency precompensation value 1 received from the primary satellite.
  • the secondary satellite 1 sends data to the terminal group 2, it performs time/frequency pre-compensation on the transmitted data according to the timing pre-compensation value 2 and the frequency pre-compensation value 2 received from the primary satellite.
  • the secondary satellite 1 sends the signal 55ms in advance when sending data to the terminal group 1, and the frequency offset is 106Hz, that is, the agreed signal transmission frequency is increased by 106Hz .
  • the secondary satellite 1 sends the data to the terminal group 2 and sends the signal after a delay of 55ms, and the frequency offset is 106Hz, that is, at the agreed signal transmission frequency 106Hz is added to the base.
  • frequency pre-compensation can be performed according to the Doppler frequency shift between the main satellite and the reference points corresponding to terminal group 1 and terminal group 2.
  • the main satellite sends multi-satellite coordinated transmission data to the UEs in terminal group 1 and terminal group 2, and the Doppler frequency shift between the reference point corresponding to the main satellite and terminal group 1 is -80Hz, then on the basis of the agreed signal transmission frequency, add on -80Hz.
  • the Doppler frequency shift between the main satellite and the reference point corresponding to terminal group 2 is 80 Hz, then 80 Hz is added to the agreed signal transmission frequency.
  • the above two groups of terminals are only examples, and the present application may also use a secondary satellite to perform time/frequency precompensation on more than two terminal groups, and the specific number of terminal groups is not limited in this embodiment of the present application.
  • FIG. 9 is a schematic interaction flowchart of a method 400 for configuring frame structure information from a primary satellite to a secondary satellite according to an embodiment of the present application.
  • the second satellite obtains the first timing pre-compensation value and/or the first frequency pre-compensation value corresponding to the first terminal according to the first indication information from the first satellite.
  • obtaining the first timing pre-compensation value and/or the first frequency pre-compensation value in S410 is as described in S330, and details are not repeated here.
  • the first terminal and the second satellite obtain frame structure information from the first satellite.
  • the network side needs to determine frame structure information according to information such as the timing pre-compensation value and frequency pre-compensation value of the terminal, and the network side sends configuration information to the terminal, where the configuration information is used to configure the frame structure, and the frame structure information includes the guard interval Start position, guard interval length and guard interval period and other parameters.
  • the configuration information may be different configuration information sent by the network side to different terminals or different terminal groups, for example, the first terminal corresponds to the first configuration information, the second terminal corresponds to the second configuration information, etc. limit.
  • configuration information can be specifically used to configure the blank resources in the configuration frame structure, wherein the network side does not carry data on the blank resources, and it can also be understood that the terminal does not receive data on the blank resources.
  • blank resources may also be referred to as unavailable resources, reserved resources, or unschedulable resources, etc., which are not limited in this embodiment of the present application.
  • the second satellite communicates with the first terminal according to the first timing precompensation value and/or the first frequency precompensation value and the frame structure.
  • the following describes an example of configuring a guard interval when a secondary satellite performs timing precompensation on different terminals.
  • Timing pre-compensation value 1 Timing pre-compensation value 3 ⁇ Timing pre-compensation value 2.
  • the main satellite allocates the data resources corresponding to each terminal in turn according to the size relationship of the timing pre-compensation value.
  • the data of terminal 1, data of terminal 3 and data of terminal 2 are sent in sequence. If the data of terminal 2 needs to be sent after the data of terminal 1 or terminal 3 data, then a guard interval needs to be added before the terminal 1 data is sent to avoid inter-user interference between the terminal 1 data and the terminal 2 data or the terminal 3 data.
  • the guard interval can be Configured to 0.
  • the primary satellite configures the frame structure and/or guard interval to the secondary satellite
  • the secondary satellite receives each terminal or each group of terminal signals sent by the primary satellite according to the frame structure and/or guard interval, and sends signals to the terminal, which can prevent the secondary satellite from protecting Receive data and send data at intervals to save power and avoid interference between users.
  • the terminal receives the signals sent by the primary satellite and the secondary satellite according to the frame structure and/or the guard interval, and can avoid receiving data within the guard interval, thereby saving power and avoiding interference between users.
  • the network side designs a mechanism for automatically updating the guard interval length value according to the predictable characteristics of satellite orbits. Specifically, taking the timing compensation difference of auxiliary satellite 1 as an example, the timing compensation difference of auxiliary satellite 1 changes linearly with time within a certain time interval. At this time, the network side can design an automatic update according to this law. Method for guard interval length.
  • the network side configures the terminal with the guard interval initial value L int , the guard interval length change value ⁇ L, and the time interval ⁇ T, and the terminal uses the guard interval to set the initial value L int after receiving the frame structure configuration parameter. , and then, every time interval ⁇ T, the terminal updates the guard interval according to the following formula (9):
  • L old represents the guard interval value being used by the UE
  • L new represents the updated guard interval value
  • the network side only needs to configure the parameters related to the guard length to the terminal once, and the terminal automatically updates the guard interval length within a period of time.
  • This method can save multiple updates of the guard interval length. At the same time, it can avoid using an excessively large guard interval and avoid wasting time domain resources.
  • a larger or smaller value may also be configured when configuring the initial value of the guard interval L int .
  • the network side can add the guard interval initial value L int to the terminal and send it to the terminal after adding it with an offset, so that the guard interval value has a certain error (for example, position error, ephemeris error, etc.) Fault tolerance rate, to avoid the guard interval used by the terminal is too large or too small.
  • the following is an example of configuring the guard interval when the secondary satellite performs frequency precompensation on different terminals.
  • the frequency pre-compensation values of a secondary satellite 1 to the data of terminal 1, terminal 2, terminal 3, and terminal 4 are frequency pre-compensation value 1, frequency pre-compensation value 2, frequency pre-compensation value 3 and frequency pre-compensation value 3 respectively.
  • Frequency pre-compensation value 4 the magnitude relationship is: frequency pre-compensation value 1 ⁇ frequency pre-compensation value 3 ⁇ frequency pre-compensation value 4 ⁇ frequency pre-compensation value 2. It can be seen from the figure that there is data overlap in the frequency domain between the data of terminal 2 after frequency precompensation and the data of terminal 3 after frequency precompensation, resulting in serious frequency domain interference of data between terminal groups.
  • the network side configures a frequency-domain guard interval between terminals that generate frequency-domain interference.
  • a frequency domain guard interval is set between the frequency domain resources occupied by the data of the terminal 2 and the frequency domain resources occupied by the data of the terminal 3 .
  • the network side can also design a mechanism for automatically updating the frequency domain guard interval length value according to the predictable characteristics of satellite orbit information.
  • the network side only needs to configure the parameters related to the guard length to the terminal once.
  • the terminal automatically updates the guard interval length within a certain period of time to avoid frequent update of the guard interval and save signaling overhead.
  • the second satellite obtains a second timing pre-compensation value and/or a second frequency pre-compensation value according to the first indication information from the first satellite.
  • the second terminal and the second satellite obtain frame structure information from the first satellite.
  • the network side needs to determine frame structure information according to information such as the second timing precompensation value of the terminal, where the frame structure information includes structure parameters such as guard interval starting position, guard interval length, and guard interval period.
  • the second satellite communicates with the second terminal according to the second timing precompensation value and/or the second frequency precompensation value and the frame structure.
  • first terminal and the second terminal may be one terminal or multiple terminals, or may be a terminal group 1 and a terminal group 2 composed of multiple terminals.
  • the above-mentioned first terminal and second terminal are only for illustration.
  • the specific number of terminal groups is not limited.
  • timing pre-compensation performed on three terminal groups by a secondary satellite will be described as an example with reference to FIG. 13 .
  • timing pre-compensation values of a secondary satellite 1 to terminal group 1, terminal group 2, and terminal group 3 are respectively timing pre-compensation value a, timing pre-compensation value b, and timing pre-compensation value c
  • the magnitude relationship is: timing pre-compensation value Value a ⁇ timing pre-compensation value c ⁇ timing pre-compensation value b.
  • the main satellite allocates the data resources corresponding to each terminal group in turn according to the size relationship of the timing pre-compensation value. As shown in Figure 13, the terminal 1 data, terminal 3 data, and terminal 2 data are sent in sequence. If the terminal group 2 data needs to be sent after the terminal For group 1 data or terminal group 3 data, a guard interval needs to be added before sending the terminal group 1 data to avoid inter-user interference between the terminal group 1 data and the terminal group 2 data or the terminal group 3 data.
  • the network side can also automatically update the guard interval lengths for multiple terminal groups within a period of time according to the mechanism of automatically updating the guard interval length value.
  • the following is an example of frequency precompensation performed on four terminal groups by an auxiliary satellite.
  • the frequency pre-compensation values of a secondary satellite 1 to the data of terminal group 1, terminal group 2, terminal group 3, and terminal group 4 are frequency pre-compensation value A, frequency pre-compensation value B, frequency pre-compensation value B, frequency pre-compensation value B, and The relationship between the compensation value C and the frequency pre-compensation value D is: frequency pre-compensation value A ⁇ frequency pre-compensation value C ⁇ frequency pre-compensation value D ⁇ frequency pre-compensation value B.
  • the network side configures a frequency domain guard interval between each terminal group.
  • a frequency domain guard interval is set between the frequency domain resources occupied by the data of the terminal group 2 and the frequency domain resources occupied by the data of the terminal group 3. In this way, when the secondary satellite performs frequency precompensation on the data of the terminal group 2 and the data of the terminal group 3 respectively, there will be no data overlap in the frequency domain, and frequency domain interference is avoided.
  • the network device may send/configure the frequency domain guard interval to the terminal, including the start position of the guard interval and the length of the guard interval.
  • the starting position of the guard interval can be indicated by an absolute frequency and the length of the guard interval can be expressed in units of Hz or KHz, for example, 2520MHz means the starting position of the guard interval, and 30KHz means the guard interval length.
  • a shift value can be added based on a frequency point to indicate the starting position of the guard interval, where the basic frequency point can be configured by protocol or by signaling.
  • the network side configures 20MHz for the UE, the UE After receiving, add 20MHz as the basis to determine the starting position of the guard interval as 2520MHz, in which the base frequency 2500MHz can be configured by agreement or by signaling.
  • the network side can also design an automatic update frequency domain guard interval length based on the predictable characteristics of the satellite orbit information and the approximate linear variation of the frequency pre-compensation value difference within a period of time.
  • the network side only needs to configure the parameters related to the protection length to the terminal once, and the terminal automatically updates the length of the guard interval within a period of time to avoid frequent update of the guard interval and save signaling overhead.
  • first indication information can be controlled by the system information block (system information block, SIB) 1, other system messages
  • system information block At least one of broadcast information such as (other system information, OSI), master system information block (mater information block, MIB) is carried, and is broadcast or multicast sent by network devices (such as satellite base stations or base stations, etc.) to terminals.
  • broadcast information such as (other system information, OSI), master system information block (mater information block, MIB) is carried, and is broadcast or multicast sent by network devices (such as satellite base stations or base stations, etc.) to terminals.
  • the network device may also perform radio resource control (RRC) signaling (for example, RRC setup (RRCsetup) message, RRC reconfiguration signaling (RRCReconfiguration), RRC recovery signaling (RRCResume), etc.), downlink control information (downlink) control information, DCI), group DCI, media access control (media access control, MAC) control element (control element, CE), timing advance command (timing advance command, TAC) at least one kind of information carries the above one or A variety of information is either unicast or multicast sent to the UE with data transmission or in a separately allocated PDSCH.
  • RRC radio resource control
  • the advantage of sending the above signaling to the terminal individually or in groups is that it can flexibly control the parameter value of each/each group of terminals, and configure different parameter values for the terminal according to the different locations or areas of the terminal to optimize system parameters and optimize UE communication performance/ The purpose of system communication performance.
  • the communication apparatus 600 includes a transceiver unit 610 and a processing unit 620 .
  • the communication device is used to implement the steps corresponding to the second satellite device in the above embodiments:
  • the transceiver unit 610 is configured to receive the first indication information from the first satellite device.
  • the processing unit 620 is configured to obtain a first timing pre-compensation value and/or a first frequency pre-compensation value corresponding to at least one first terminal according to the first indication information.
  • the processing unit 620 is further configured to communicate with the at least one first terminal according to the first timing precompensation value and/or the first frequency precompensation value.
  • the processing unit 620 is further configured to obtain a second timing pre-compensation value and/or a second frequency pre-compensation value corresponding to at least one second terminal according to the first indication information.
  • the timing pre-compensation value and/or the second frequency pre-compensation value are communicated with the at least one second terminal.
  • the first indication information includes second location information
  • the processing unit 620 is further configured to obtain the second timing pre-compensation value and the second timing pre-compensation value corresponding to at least one second terminal according to the second location information. /or the second frequency pre-compensation value.
  • the first indication information includes first location information
  • the processing unit 620 is further configured to obtain, according to the first location information, the first timing pre-compensation value and the first timing pre-compensation value corresponding to at least one first terminal. /or the first frequency pre-compensation value.
  • the processing unit 620 is further configured to obtain frame structure information from the first satellite device, according to the second timing pre-compensation value and/or the second frequency pre-compensation value and the frame structure Information is communicated with the at least one second terminal.
  • the processing unit 620 is further configured to obtain frame structure information from the first satellite device, according to the first timing pre-compensation value and/or the first frequency pre-compensation value and the frame structure Information is communicated with the at least one first terminal.
  • the communication device is used to implement the steps corresponding to the first satellite equipment in the above embodiments:
  • the transceiver unit 610 is configured to send the first indication information to the second satellite device.
  • the processing unit 620 is used for determining a first timing pre-compensation value and/or a first frequency pre-compensation value, where the first timing pre-compensation value and/or the first frequency pre-compensation value corresponds to at least one first terminal.
  • the processing unit 620 is further configured to determine a second timing pre-compensation value and/or a second frequency pre-compensation value, the second timing pre-compensation value and/or the second frequency pre-compensation value.
  • the compensation value corresponds to at least one second terminal.
  • the first indication information includes second position information
  • the second position information is further used for determining the second timing pre-compensation value and/or the second frequency pre-compensation value.
  • the first indication information includes first location information, and the first location information is further used for determining the first timing pre-compensation value and/or the first frequency pre-compensation value.
  • the transceiver unit 610 is further configured to send first configuration information to at least one first terminal, where the first configuration information is used for frame structure configuration.
  • the processing unit 620 is further configured to communicate with the at least one first terminal according to the frame structure.
  • the transceiver unit 610 is further configured to send second configuration information to at least one second terminal, where the second configuration information is used for configuring the frame structure.
  • the processing unit 620 is further configured to communicate with the at least one second terminal according to the frame structure.
  • the second configuration information is specifically used for the configuration of blank resources in the frame structure, and the blank resources are not used to carry data.
  • the first configuration information is specifically used for the configuration of blank resources in the frame structure, and the blank resources are not used to carry data.
  • the transceiver unit 610 is further configured to send third configuration information to the second satellite device, where the third configuration information is used for frame structure configuration.
  • the processing unit 620 is further configured to communicate with the at least one first terminal according to the frame structure.
  • the communication device is used to implement each step of the corresponding terminal in the foregoing embodiments:
  • the transceiver unit 610 is configured to receive first configuration information from the first satellite device, where the first configuration information is used to configure a frame structure.
  • the processing unit 620 is configured to communicate with the first satellite device and the second satellite device according to the frame structure.
  • the first configuration information is specifically used to configure a blank resource in the frame structure, and the processing unit 620 is further configured to not receive information from the first satellite device and the first satellite device on the blank resource. Two satellite equipment data.
  • the above-mentioned communication device may further include a storage unit, which is used to store data or instructions (also referred to as codes or programs), and each of the above-mentioned units may interact or be coupled with the storage unit to implement corresponding methods or functions.
  • the processing unit 620 may read data or instructions in the storage unit, so that the communication apparatus implements the methods in the above embodiments.
  • each unit in the communication apparatus can all be implemented in the form of software calling through the processing element; also all can be implemented in the form of hardware; some units can also be implemented in the form of software calling through the processing element, and some units can be implemented in the form of hardware.
  • each unit can be a separately established processing element, or can be integrated in a certain chip of the communication device to realize, in addition, it can also be stored in the memory in the form of a program, which can be called and executed by a certain processing element of the communication device. function of the unit.
  • each step of the above method or each of the above units can be implemented by an integrated logic circuit of hardware in the processor element or implemented in the form of software being invoked by the processing element.
  • a unit in any of the above communication devices may be one or more integrated circuits configured to implement the above method, such as: one or more application specific integrated circuits (ASICs), or, an or multiple microprocessors (digital singnal processors, DSP), or, one or more field programmable gate arrays (FPGA), or a combination of at least two of these integrated circuit forms.
  • ASICs application specific integrated circuits
  • DSP digital singnal processors
  • FPGA field programmable gate arrays
  • a unit in the communication device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can invoke programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the communication device includes: a processor 710 and an interface 730 , and the processor 710 is coupled with the interface 730 .
  • the interface 730 is used to enable communication with other devices.
  • Interface 730 may be a transceiver or an input-output interface.
  • the interface 730 may be, for example, an interface circuit.
  • the communication device further includes a memory 720 for storing instructions executed by the processor 710 or input data required by the processor 710 to execute the instructions or data generated after the processor 710 executes the instructions.
  • the method executed by the second satellite device, the first satellite device or the terminal in the above embodiment may call the memory through the processor 710 (it may be the memory 720 in the second satellite device, the first satellite device or the terminal, or it may be an external memory) program stored in it. That is, the second satellite device, the first satellite device or the terminal may include a processor 710, and the processor 710 executes the program executed by the second satellite device, the first satellite device or the terminal in the above method embodiments by invoking the program in the memory. method.
  • the processor here may be an integrated circuit with signal processing capability, such as a CPU.
  • the second satellite device, the first satellite device or the terminal may be implemented by one or more integrated circuits configured to implement the above method. For example: one or more ASICs, or, one or more microprocessor DSPs, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms. Alternatively, the above implementations may be combined.
  • the functions/implementation process of the transceiver unit 610 and the processing unit 620 in FIG. 15 can be implemented by the processor 710 in the communication apparatus 700 shown in FIG. 16 calling the computer executable instructions stored in the memory 720 .
  • the function/implementation process of the processing unit 620 in FIG. 15 may be implemented by the processor 710 in the communication device 700 shown in FIG. 16 calling the computer-executed instructions stored in the memory 720, and the function of the transceiver unit 610 in FIG. 15
  • the implementation process can be implemented through the interface 730 in the communication device 700 shown in FIG.
  • the terminal chip implements the functions of the terminal in the above method embodiments.
  • the terminal chip receives information from other modules (such as radio frequency modules or antennas) in the terminal device, and the information comes from other terminals or satellite devices; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas) information that the terminal sends to other terminals or satellite devices.
  • the satellite device chip implements the functions of the satellite device in the above method embodiments.
  • the satellite device chip receives information from other modules (such as radio frequency modules or antennas) in the satellite device, and the information comes from other satellite devices or terminals; or, the satellite device chip sends information to other modules in the satellite device (such as radio frequency modules or antenna) to transmit information that the satellite device sends to other satellite devices or terminals.
  • the processing unit in the above-mentioned apparatus includes a processor, and the processor is coupled to the memory, the memory is used for storing computer programs or instructions or/or data, and the processor is used for executing the computer programs or instructions and/or data stored in the memory, so that the above The methods in this method embodiment are performed.
  • each unit in the above apparatus can be realized in the form of software calling through the processing element; also can all be realized in the form of hardware; some units can also be realized in the form of software calling through the processing element, and some units can be realized in the form of hardware.
  • each unit can be a separately established processing element, or can be integrated in a certain chip of the device to be implemented, and can also be stored in the memory in the form of a program, which can be called by a certain processing element of the device and execute the unit's processing. Function.
  • the processing element may also be called a processor, which may be an integrated circuit with signal processing capability.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in the processor element or implemented in the form of software being invoked by the processing element.
  • An embodiment of the present application further provides a communication system, where the communication system includes: the above-mentioned first satellite device, the above-mentioned second satellite device, and a terminal device.
  • the embodiment of the present application also provides a computer-readable medium for storing computer program codes, where the computer program includes instructions for executing the communication method of the embodiment of the present application in the above method.
  • the readable medium may be a read-only memory (read-only memory, ROM) or a random access memory (random access memory, RAM), which is not limited in this embodiment of the present application.
  • the present application also provides a computer program product, the computer program product comprising instructions, when executed, to cause the terminal and the first satellite device and the second satellite device to execute the terminal and the first satellite device corresponding to the above method. Operation of a satellite device and a second satellite device.
  • Embodiments of the present application further provide a system chip, which includes: a processing unit and a communication unit, where the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit can execute computer instructions, so that the chip in the communication device executes any one of the feedback information transmission methods provided by the above embodiments of the present application.
  • the computer instructions are stored in a storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit can also be a storage unit located outside the chip in the terminal, such as a read-only memory (ROM). ) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • the processor mentioned in any one of the above may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits for controlling the program execution of the above-mentioned transmission method of feedback information.
  • the processing unit and the storage unit can be decoupled, respectively disposed on different physical devices, and connected in a wired or wireless manner to implement the respective functions of the processing unit and the storage unit, so as to support the system chip to implement the above embodiments various functions in .
  • the processing unit and the memory may also be coupled on the same device.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be ROM, programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM) , EEPROM) or flash memory.
  • Volatile memory can be RAM, which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate Synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous link dynamic random access memory direct memory bus random access memory Access memory
  • direct rambus RAM direct rambus RAM
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .
  • At least one of or “at least one of” herein mean all or any combination of the listed items, eg, "at least one of A, B, and C", It can be expressed as: A alone exists, B alone exists, C alone exists, A and B exist simultaneously, B and C exist simultaneously, and A, B and C exist simultaneously, where A can be singular or plural, and B can be Singular or plural, C can be singular or plural.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is only determined according to A, and B may also be determined according to A and/or other information.
  • the corresponding relationships shown in each table in this application may be configured or predefined.
  • the values of the information in each table are only examples, and can be configured with other values, which are not limited in this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the headings in the above tables may also adopt other names that can be understood by the communication device, and the values or representations of the parameters may also be other values or representations that the communication device can understand.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本申请实施例提供了一种通信方法和装置,该方法包括:第二卫星设备接收来自第一卫星设备的第一指示信息,根据该第一指示信息获得至少一个第一终端对应的第一定时预补偿值和/或第一频率预补偿值。第二卫星设备根据该第一定时预补偿值和/或该第一频率预补偿值与至少一个第一终端进行通信。上述技术方案能够解决多星协同传输过程中信道产生的大时/频偏问题。

Description

一种协同传输的方法和装置
本申请要求于2020年12月28日提交中国专利局、申请号为202011606600.4、申请名称为“一种协同传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种卫星协同传输的方法和装置。
背景技术
目前,5G新空口(new radio,NR)标准是针对于陆地通信特点进行研究设计,具有为用户终端提供高速率、高可靠、低时延通信的特点。相比于陆地通信,非陆地网络(non-terrestrial networks,NTN)通信具有覆盖区域大、组网灵活等特点。NTN通信包括利用无人机、高空平台、卫星等设备进行组网,为用户设备(user equipment,UE)提供数据传输、语音通信等服务。
在未来NTN通信系统中,UE接入系统后在一段时间可以与多颗通信卫星“可见”,即多颗通信卫星的信号可以覆盖同一区域。此时,多颗卫星都可以为UE提供通信服务,这为多星协同传输提供了基础条件。多星协同传输技术能够为UE提供更高可靠性、更大传输速率的数据通信性能,是未来卫星通信中提高系统吞吐量的一项关键技术。
与陆地多基站联合传输场景相比,多星协同传输场景有着明显的不同:1)网络设备高度不同;2)网络设备移动速度不同。卫星基站高度一般距离地面300km及以上,卫星基站发射信号覆盖的小区/波束的中心与边缘的路径传播损耗相差不大,一般在3dB范围以内,因此多星协同传输技术能够为覆盖小区/波束内UE提供多星协同传输,进一步提高UE通信质量。但是,卫星设备距离地面较高,会带来一个缺点:产生较大的传输时延。当多个卫星基站向同一个区域UE提供协同传输服务时,卫星基站发送的信号到达UE的时刻可能不同,这会造成UE接收到多星信号之间存在定时偏移,影响UE的解码性能。
陆地基站一般是固定的,即相对于地面是静止不动的,UE在接收到多个基站的联合传输信号时不会产生时/频偏移,或者产生较小的时/频偏移。相反,卫星基站(非地球同步轨道卫星)会一直移动,因此,卫星发送给UE的信号会产生严重的Doppler频率偏移,UE接收到的多星协同信号也会产生严重的频率偏移或各卫星信号间的频率偏移差,影响UE的解码性能。
因此,多星协同传输不同于地面多基站联合传输技术,多星协同传输既能带来好处,比如提升波束/小区中UE的通信质量,但与此同时又会引入新的挑战,即存在较大的时/频偏移。
发明内容
本申请实施例提供一种通信方法及装置,使得第一卫星设备向第二卫星设备配置发送数据时的时/频预补偿值,解决多星协同传输过程中信道产生的大时/频偏问题。
第一方面,提供了一种通信方法,该方法可以由第二卫星设备执行,或者,也可以由配置在第二卫星设备中的部件(如,芯片或芯片系统)执行。本申请对此不作限定。
具体地,该方法包括:接收来自第一卫星设备的第一指示信息,根据该第一指示信息获得至少一个第一终端对应的第一定时预补偿值和/或第一频率预补偿值。根据该第一定时预补偿值和/或该第一频率预补偿值与至少一个第一终端进行通信。
根据本申请提供的技术方案,第二卫星设备接收来自第一卫星设备的第一指示信息,根据该第一指示信息获得至少一个第一终端对应的第一定时预补偿值和/或第一频率预补偿值。第二卫星设备根据该第一定时预补偿值和/或该第一频率预补偿值与至少一个第一终端进行通信。本申请中第一卫星设备向第二卫星设备配置时/频预补偿值,从而使得第二卫星设备根据该时/频预补偿值与至少一个第一终端进行通信,从而解决多星协同传输过程中信道产生的大时/频偏问题。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:根据该第一指示信息获得至少一个第二终端对应的第二定时预补偿值和/或第二频率预补偿值,根据该第二定时预补偿值和/或该第二频率预补偿值与该至少一个第二终端进行通信。上述技术方案可以使得第二卫星设备根据该时/频预补偿值与至少一个第二终端进行通信,从而解决多星协同传输过程中信道产生的大时/频偏问题。
结合第一方面或第一方面的某些实现方式,在第一方面的另一些可能的实现方式中,该第一指示信息包括第二位置信息,根据该第一指示信息获得至少一个第二终端对应的第二定时预补偿值和/或第二频率预补偿值,包括:根据该第二位置信息获得至少一个第二终端对应的该第二定时预补偿值和/或该第二频率预补偿值。上述技术方案可以使得第二卫星设备根据该时/频预补偿值与至少一个第二终端进行通信,从而解决多星协同传输过程中信道产生的大时/频偏问题。
结合第一方面或第一方面的某些实现方式,在第一方面的另一些可能的实现方式中,该第一指示信息包括第一位置信息,根据该第一指示信息获得至少一个第一终端对应的第一定时预补偿值和/或第一频率预补偿值,包括:根据该第一位置信息获得至少一个第一终端对应的该第一定时预补偿值和/或该第一频率预补偿值。上述技术方案可以使得第二卫星设备根据该时/频预补偿值与至少一个第一终端进行通信,从而解决多星协同传输过程中信道产生的大时/频偏问题。
结合第一方面或第一方面的某些实现方式,在第一方面的另一些可能的实现方式中,该方法还包括:获得来自该第一卫星设备的帧结构信息,根据该第二定时预补偿值和/或该第二频率预补偿值与该至少一个第二终端进行通信,包括:根据该第二定时预补偿值和/或该第二频率预补偿值以及该帧结构信息与该至少一个第二终端进行通信。上述技术方案中第二卫星设备根据该第二定时预补偿值和/或该第二频率预补偿值以及该帧结构信息与该至少一个第二终端进行通信,不仅能够解决多星协同传输过程中信道产生的大时/频偏问题,还能够减少第二卫星设备在向不同定时预补偿用户或不同频率预补偿用户发送数据时引入的用户间干扰问题。
结合第一方面或第一方面的某些实现方式,在第一方面的另一些可能的实现方式中, 该方法还包括:获得来自该第一卫星设备的帧结构信息,根据该第一定时预补偿值和/或该第一频率预补偿值与该至少一个第一终端进行通信,包括:根据该第一定时预补偿值和/或该第一频率预补偿值以及该帧结构信息与该至少一个第一终端进行通信。上述技术方案中第二卫星设备根据该第一定时预补偿值和/或该第一频率预补偿值以及该帧结构信息与至少一个终端进行通信,不仅能够解决多星协同传输过程中信道产生的大时/频偏问题,还能够减少第二卫星设备在向不同定时预补偿用户或不同频率预补偿用户发送数据时引入的用户间干扰问题。
第二方面,提供了一种通信方法,该方法可以由第一卫星设备执行,或者,也可以由配置在第一卫星设备中的部件(如,芯片或芯片系统)执行。本申请对此不作限定。
具体地,该方法包括:与第二卫星设备建立连接,向该第二卫星设备发送第一指示信息,该第一指示信息用于第一定时预补偿值和/或第一频率预补偿值的确定,该第一定时预补偿值和/或该第一频率预补偿值对应于至少一个第一终端。上述技术方案可以使得第二卫星设备根据该时/频预补偿值与至少一个第一终端进行通信,从而解决多星协同传输过程中信道产生的大时/频偏问题。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该第一指示信息还用于第二定时预补偿值和/或第二频率预补偿值的确定,该第二定时预补偿值和/或该第二频率预补偿值对应于至少一个第二终端。上述技术方案可以使得第二卫星设备根据该时/频预补偿值与至少一个第二终端进行通信,从而解决多星协同传输过程中信道产生的大时/频偏问题。
结合第二方面或第二方面的某些实现方式,在第二方面的另一些可能的实现方式中,该方法还包括:该第一指示信息包括第二位置信息,该第二位置信息用于该第二定时预补偿值和/或该第二频率预补偿值的确定。上述技术方案可以使得第二卫星设备根据该时/频预补偿值与至少一个第二终端进行通信,从而解决多星协同传输过程中信道产生的大时/频偏问题。
结合第二方面或第二方面的某些实现方式,在第二方面的另一些可能的实现方式中,该方法包括:该第一指示信息包括第一位置信息,该第一位置信息用于该第一定时预补偿值和/或该第一频率预补偿值的确定。上述技术方案可以使得第二卫星设备根据该时/频预补偿值与至少一个第一终端进行通信,从而解决多星协同传输过程中信道产生的大时/频偏问题。
结合第二方面或第二方面的某些实现方式,在第二方面的另一些可能的实现方式中,该方法包括:向至少一个第一终端发送第一配置信息,该第一配置信息用于帧结构的配置,根据该帧结构与该至少一个第一终端进行通信。这样可以减少第二卫星设备在向不同定时预补偿用户或不同频率预补偿用户发送数据时引入的用户间干扰问题。
结合第二方面或第二方面的某些实现方式,在第二方面的另一些可能的实现方式中,该方法包括:向至少一个第二终端发送第二配置信息,该第二配置信息用于该帧结构的配置,根据该帧结构与该至少一个第二终端进行通信。这样可以减少第二卫星设备在向不同定时预补偿用户或不同频率预补偿用户发送数据时引入的用户间干扰问题。
结合第二方面或第二方面的某些实现方式,在第二方面的另一些可能的实现方式中,该第二配置信息具体用于该帧结构中空白资源的配置,该空白资源不用于承载数据。这样 可以减少第二卫星设备在向不同定时预补偿用户或不同频率预补偿用户发送数据时引入的用户间干扰问题。
结合第二方面或第二方面的某些实现方式,在第二方面的另一些可能的实现方式中,该第一配置信息具体用于该帧结构中空白资源的配置,该空白资源不用于承载数据。这样可以减少第二卫星设备在向不同定时预补偿用户或不同频率预补偿用户发送数据时引入的用户间干扰问题。
结合第二方面或第二方面的某些实现方式,在第二方面的另一些可能的实现方式中,该方法还包括:向该第二卫星设备发送第三配置信息,该第三配置信息用于帧结构的配置,根据该帧结构与该至少一个第一终端进行通信。上述技术方案中,第一卫星设备向第二卫星设备和终端配置帧结构,这样可以减少第二卫星设备在向不同定时预补偿用户或不同频率预补偿用户发送数据时引入的用户间干扰问题。
第三方面,提供了一种通信方法,该方法可以由终端执行,或者,也可以由配置在终端中的部件(如,芯片或芯片系统)执行。本申请对此不作限定。
具体地,该方法包括:接收来自第一卫星设备的第一配置信息,该第一配置信息用于配置帧结构,根据该帧结构与该第一卫星设备和第二卫星设备进行通信。上述技术方案中终端根据帧结构与该第一卫星设备和第二卫星设备进行通信,能够减少第二卫星设备在向不同定时预补偿用户或不同频率预补偿用户发送数据时引入的用户间的干扰问题。
结合第三方面,在第三方面的某些实现方式中,该第一配置信息具体用于配置该帧结构中的空白资源,根据该帧结构与该第一卫星设备和第二卫星设备进行通信,包括:在该空白资源上不接收来自该第一卫星设备和该第二卫星设备的数据。这样可以减少第二卫星设备在向不同定时预补偿用户或不同频率预补偿用户发送数据时引入的用户间干扰问题。
第四方面,提供了一种通信装置,该装置包括至少一个处理器和存储器,该处理器与存储器耦合,存储器用于存储程序或指令,当程序或指令被处理器执行时,使得该装置执行以上第一方面或第一方面的任意可能的实现方式中的方法,或者使得该装置执行以上第二方面或第二方面的任意可能的实现方式中的方法,或者使得该装置执行以上第三方面或第三方面的任意可能的实现方式中的方法。该存储器可以位于该装置之内,也可以位于该装置之外。
第五方面,提供了一种通信装置,包括处理器和接口,该处理器用于控制接口与其它装置通信,并执行上述第一方面或第一方面的任意可能的实现方式中的方法,或者执行上述第二方面或第二方面的任意可能的实现方式中的方法,或者执行上述第三方面或第三方面的任意可能的实现方式中的方法。该处理器包括一个或多个。
第六方面,提供了一种通信装置,包括用于执行上述第一方面的方法、基于第一方面的各可能的实现方法、第二方面的方法、基于第二方面的各可能的实现方法、第三方面的方法或基于第三方面的各可能的实现方法的各个步骤的单元或手段(means)。
第七方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当该计算机程序被执行时,用于执行第一方面或第一方面的任意可能的实现方式中的方法,或者执行第二方面或第二方面的任意可能的实现方式中的方法,或者执行第三方面或第三方面的任意可能的实现方式中的方法。
第八方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序,该计算 机程序在被处理器执行时,用于执行第一方面或第一方面的任意可能的实现方式中的方法,或者执行第二方面或第二方面的任意可能的实现方式中的方法,或者执行第三方面或第三方面的任意可能的实现方式中的方法。
第九方面,提供了一种通信系统,包括前述的卫星和终端。
附图说明
图1是适用本申请的通信方法的通信系统的一例的示意图。
图2是适用本申请的通信方法的通信系统的另一例的示意图。
图3是适用本申请的通信方法的通信系统的另一例的示意图。
图4是本申请的通信方法的示意性流程图。
图5是本申请的通信方法中配置时/频预补偿值信息的示意图。
图6是本申请的通信方法中卫星选组规则的示意图。
图7是本申请的通信方法的一例的示意性交互流程图。
图8是本申请的通信方法的另一例的示意性交互流程图。
图9是本申请的通信方法的另一例的示意性交互流程图。
图10是本申请的通信方法的另一例中配置帧结构的示意图。
图11是本申请的通信方法的另一例中产生用户间干扰的示意图。
图12是本申请的通信方法的另一例中配置帧结构的示意图。
图13是本申请的通信方法的另一例中配置帧结构的示意图。
图14是本申请的通信方法的另一例中配置帧结构的示意图。
图15是本申请实施例提供的一种通信装置的示意图。
图16是本申请实施例提供的又一种通信装置的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1示出了适用于本申请实施例的通信系统的一种架构的示意图。如图1所示,该通信系统可以包括至少一个通信装置,例如图1所示的卫星设备;该通信系统还可以包括至少一个第一终端,例如图1中示出了两个第一终端,终端设备#1和终端设备#2。通信装置(卫星)与至少一个第一终端可通过无线链路通信。
本申请实施例的技术方案可以应用于各种通信系统,例如:卫星通信系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统、新无线(new radio,NR)、第六代(6th generation,6G)系统或未来演进的通信系统等。
本申请实施例中的终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、 远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
本申请实施例中的网络设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G系统中的下一代基站(next generation NodeB,gNB)、6G系统中的基站、未来演进的通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。网络设备可以是宏基站,也可以是微基站或室内站,还可以是中继节点或施主节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
网络设备和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、无人机、气球或卫星上。
为便于描述,本申请以卫星通信系统以及以网络设备(即通信装置)为例,详细介绍本申请的技术方案,其中,卫星通信系统中网络设备可以包括卫星或部署在卫星上。
图2示出了适用于本申请实施例的通信系统的一种架构的示意图,该场景中网络设备包括卫星设备和关口站(gateway)。终端包括物联网终端,也可以是其它形态和性能的终端,例如,手机移动终端、高空飞机等,此处不作限定。卫星与用户终端间的链路称作服务链路(service link),卫星与关口站间的链路称作馈电链路(feeder link)。应理解,该应用场景可以扩展为多卫星通信场景,本申请对此不作限定。
图2示意的工作模式可以为卫星的透传(transparent)模式,如图2所示,卫星通过转发的方式将来自用户终端的信号转发给关口站,用户终端与关口站之间的通信链路包括服务链路和馈电链路。卫星将用户信号透传到地面站能够实现广域覆盖。在透传模式下,卫星具有中继转发的功能。
图2示意的工作模式还可以为卫星的再生(regenerative)模式。当卫星工作在再生模式时,卫星具有数据处理能力、具有基站的功能或部分基站功能。
图3示出了适用于本申请实施例的通信系统的另一种架构的示意图。如图3所示,本申请也适用于图3所示的空地通信场景(air to ground,ATG),其中,网络设备包括地面基站,用户终端包括高空飞机、机上手持终端等,本申请实施例对此不作限定。
图4示出了本申请卫星协同传输的方法示意性流程图。
100,终端反馈多颗候选协同传输卫星的信道质量。
具体地,多颗候选协同传输卫星是至少一个第二卫星设备,该第二卫星设备是辅卫星设备,终端向主卫星设备或基站反馈多颗辅卫星的信道质量。例如,该信道质量可以是用来反映物理下行共享信道(physical downlink share channel,PDSCH)的下行信道质量。例如,终端可以在物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink share channel,PUSCH)上向网络侧发送用于指示信道质量的信息,网络侧根据指示的信道质量来调度PDSCH。
具体地,下行信道质量可以由参考基于下行参考信号或共享信道的数据信号得到的信 号与噪声功率比(signal to noise ratio,SNR)、比特能量与噪声功率谱密度比(Eb/N0)、参考信号接收功率(reference signal received power,RSRP)、信道质量指示(channel quality indicator,CQI)、信号与干扰噪声功率比(signal to interference plus noise power ratio,SINR)、参考信号接收质量(reference signal received quality,RSRQ)或解码性能(例如丢包率等)中的一种或多种表征。
其中,下行参考信号可以为解调参考信号(demodulation reference signal,DMRS)、相位追踪参考信号(phase tracking reference signal,PTRS)、或信道状态信息参考信号(channel state information-reference signal,CSI-RS),本申请实施例对此不作限定。
200,网络侧根据卫星选组规则选择合适的协同传输卫星(辅卫星)。
300,第一卫星设备向第二卫星设备配置时/频预补偿值。
400,第一卫星设备向第二卫星设备配置帧结构信息。
该第一卫星设备是主卫星设备,该第二卫星设备是辅卫星设备,应理解,辅卫星设备可以是1个或多个,本申请实施例对辅卫星设备的数量不作限制。
500,终端根据帧结构配置和相应的时频资源接收数据。
具体地,终端接收第一卫星设备(主卫星)发送的第一配置信息,该第一配置信息具体用于配置帧结构中的空白资源,终端在空白资源上不接收主卫星和辅卫星发送的数据。
应理解,该空白资源还可以被称为不可用资源或保留资源或不可调度资源,本申请实施例对此不作限制。
还应理解,方法200和方法400为可选的,并且方法的步骤顺序只是举例说明,并不限制方案的实现顺序,本申请实施例对此不作限定。
下面详细说明本申请提供的一种网络侧根据卫星选组规则选择合适的协同传输卫星的方法200。
在第一卫星与第二卫星建立连接之前,第一卫星需要根据卫星选组规则选择协同传输的第二卫星,应理解,该第一卫星为主卫星,第二卫星为辅卫星,辅卫星可以是一个或多个,本申请实施例对此不作限定。
具体地,主卫星根据卫星选组规则选择合适的辅卫星进行多星协同传输数据,既能满足为信号覆盖区域的终端提供多星协同传输服务,又能降低卫星发送信号时时/频预补偿的复杂度。
步骤1:网络侧设定定时偏移阈值timing shift thre和频率偏移阈值frequency shift thre。
应理解,这里的网络侧可以是主卫星,或者是基站,或者是核心网,本申请实施例对此不作限制。
步骤2:网络侧设定并确定每组终端的地理位置范围。
具体地,网络侧依据小区或波束内的地理位置对小区/波束覆盖范围内的终端划分为多个终端组。由于每组终端的地理位置范围越小,对网络侧实现复杂度越高,终端感受到的时频偏移越小。因此网络侧可以根据网络设备可承受的复杂度和终端的解码性能取折中,为每组终端选择一个合适的地理位置范围。
步骤3:网络侧在每组终端的地理位置范围内确定时/频预补偿参考点。
应理解,该时/频预补偿参考点可以是地理位置范围内的1个终端对应1个时/频预补偿参考点,也可以是每组终端的地理位置范围内的一个位置点,比如网络侧可以选择地理 位置区域中的中心点为1个时/频预补偿参考点,或者选择地理位置区域中距离卫星最近的1个位置点为时/频预补偿参考点等,本申请实施例对此不作限定。
例如,如图5所示,可以将某个小区或波束中的终端根据地理位置关系分成7组,比如可以将距离彼此相近的多个终端分成一组,主卫星和辅卫星向各组UE发送数据时根据补偿参考点确定时/频预补偿值,应理解,每组终端对应的时/频预补偿参考点的具体位置如图所示。
应理解,该时/频预补偿参考点可以是1个或多个,本申请实施例对此不作限定。
步骤4:网络侧根据设定的具体规则选择合适的辅卫星。
规则一:网络侧选择可以与主卫星进行多星协同传输通信时间最长的辅卫星组成卫星组合,网络侧可以根据卫星与UE间符合通信仰角要求的时间长度确定可通信的时间长度。
具体地,不同终端组对应的辅卫星应该满足如下公式(1),
Max{Min{communication-duration<Coop-sat,组UE>}}   (1)
其中,communication-duration<Coop-sat,组UE>表示某个辅卫星Coop-sat与组UE可以协同传输的时间长度。
根据公式(1)可以求得在某组卫星组成的协同卫星传输组(辅卫星/主卫星)为覆盖区域中各组终端提供的协同传输时间长度的最小值的最大化,这样可以保证卫星设备能够为覆盖区域中的终端提供尽可能长时间的协同传输服务,避免辅卫星的频繁切换。
例如,主卫星和辅卫星总共3颗卫星为一组,其中主卫星为覆盖区域中UE提供3分钟的通信时长,另两颗辅卫星可为UE通过2分钟和1.5分钟的通信时长。可知1.5分钟是该组协同卫星传输的传输时间长度的最小值。网络侧可以根据主卫星和不同辅卫星的组合,确定每组的传输时间长度的最小值。然后,网络侧通过比较各组传输时间的最小值,得到最小值中最大的那个卫星组,即各组协同传输组间的协同传输时间长度的最小值的最大化。
应理解,该协同传输时间长度可以根据主卫星和辅卫星的运动轨迹,例如根据星历信息或轨道参数信息确定来计算得到卫星组与终端进行通信的时间长度。
规则二:网络侧计算每组终端覆盖范围内的可能出现的最大时/频偏移,可以理解为,每组覆盖范围内距离补偿参考点最远的终端的时/频偏移量不超过阈值。
具体地,辅卫星应该同时满足以下3个限制条件,其中,限制条件1表示定时偏移不超过定时偏移阈值timing-shift-thre,并且限定每组终端中接收到的多星协同传输信号的最大的定时偏移不能超过定时偏移阈值,如下公式(2)所示。
timing-shift-thre≥(Delay-coop-sat-UE-Delay-coop-sat-RP)-(Delay-coop-sat-UE-Delay-coop-sat-RP)≥0    (2)
其中,timing-shift-thre为定时偏移阈值,Delay-coop-sat-UE为辅卫星与UE间的时延,Delay-coop-sat-RP为辅卫星与补偿参考点间的时延,Delay-main-sat-UE为主卫星与UE间的时延,Delay-main-sat-RP为主卫星与补偿参考点间的时延。
下面对上述变量中涉及的时延获取方法进行举例,以辅卫星与UE间的时延为例,主卫星设备或者其它网络设备可以通过辅卫星的星历信息获得辅卫星的位置,UE会向网络侧上报自己的位置。因此,网络侧可以根据辅卫星的位置与UE的位置计算该辅卫星与UE间的时延,例如网络侧根据公式(3)得到辅卫星与UE间的时延信息。
L/V=Delay-coop-sat-UE   (3)
其中,L为辅卫星和终端之间的距离,V为光速,Delay-coop-sat-UE为辅卫星与终端间的时延。
应理解,网络侧还可以通过其他方式获得辅卫星和UE的位置,本申请实施例对此不作限制。
限制条件2表示频率偏移不超过频率偏移阈值frequency-shift-thre,并且限定每组终端中接收到的多星协同传输信号的最大的频率偏移不能超过频率偏移阈值,如下公式(4)所示。
frequency-shift-thre≥(Doppler-coop-sat-UE-Doppler-coop-sat-RP)-(Doppler-main-sat-UE-Doppler-main-sat-RP)   (4)
其中,frequency-shift-thre为频率偏移阈值,Doppler-coop-sat-UE为辅卫星与UE间的Doppler频移,Doppler-coop-sat-RP为辅卫星与补偿参考点间的Doppler频移,Doppler-main-sat-UE为主卫星与UE间的Doppler频移,Doppler-main-sat-RP为主卫星与参考点间的Doppler频移。
下面对上述变量中涉及的频移获取方法进行举例,以辅卫星与UE间的Doppler频移为例,网络侧可以根据辅卫星的位置、速度信息与UE的位置、速度信息得到辅卫星与UE间的径向相对速度V-sat-UE,网络侧根据该径向相对速度计算得到卫星与UE间的Doppler频移值,例如,可以根据如下式子得到卫星与UE间的Doppler频移值。
V_sat_UE/光速*载波频率   (5)
应理解,网络侧根据辅卫星的星历信息获得辅卫星的位置,网络侧通过UE自己上报位置的方式获得UE的位置,网络侧也可以通过其他方式获得辅卫星和UE的位置,本申请实施例对此不作限制。
还应理解,辅卫星的速度信息和UE的速度信息也可以通过其他方式获得,例如通过辅卫星的星历信息和/或通过UE的定位功能获取速度信息,本申请实施例对此不作限定。
限制条件3表示为辅卫星与UE组之间的通信仰角不小于允许的最小通信仰角,并且限定每组UE中UE与卫星间的可能的最小通信仰角不能小于允许的最小通信仰角Min-elevation,如下公式(6)所示。
Elevation<Coop-sat,组UE>≥Min-elevation  (6)
其中,Elevation<Coop-sat,组UE>为辅卫星与UE组之间地通信仰角,Min-elevation为允许的UE与卫星间的最小通信仰角。
下面结合图6对协同卫星选组规则的使用进行举例说明。
1)网络侧设定时频移阈值timing-shift-thre=循环前缀(Cyclic Prefix,CP)长度,例如CP长度为144*Ts,Ts表示采用间隔,网络侧设定频率偏移阈值frequency-shift-thre=0.01*SCS,SCS表示子载波间隔(sub-carrier spacing,SCS)。
2)网络侧设定UE组的覆盖范围,例如每组UE的覆盖直径为40km,如图6所示。
3)网络侧计算每组UE覆盖范围内的worst case,即距离补偿参考点最远的UE中的时/频偏不超过阈值,且选择可以通信时间最长的卫星组合,网络侧假设允许的最小通信仰角为30度,则辅卫星和UE组之间的通信仰角至少不小于30度。
图6以选择两颗辅卫星(LEO-600,凝视模式)为例,网络侧可以选择卫星间距40km, 满足协同通信条件的时间长度约等于3分钟(仰角≥30)的辅卫星与主卫星组成协同传输卫星组。
下面结合图7详细说明本申请提供的一种主卫星向辅卫星配置时/频预补偿值的方法300。图7是本申请一个实施例的一种主卫星向辅卫星配置时/频预补偿值的方法300的示意性交互流程图,该方法300可以应用在图2或图3所示的场景中,当然也可以应用在其他通信场景中,本申请实施例对此不作限制。
在S310中,第一卫星与第二卫星建立连接。
该第一卫星是主卫星,第二卫星是辅卫星,主卫星与辅卫星之间建立的连接可以是单跳连接或多跳连接,其中,单跳连接是指端到端的连接仅通过卫星路由一次,网络拓扑为星型结构。多跳连接是指通过地面中心站放大通信终端间的信号,网络拓扑是以地面中心站为中心的星型结构,主卫星与辅卫星通过星间链路进行数据的传输。
在S320中,第一卫星向第二卫星发送第一指示信息。
应理解,该第一指示信息可以指示定时预补偿值、频率预补偿值或方位信息中的至少一项,也可以指示时/频预补偿参考点信息,本申请实施例对此不作限定。
在S330中,第二卫星根据第一指示信息获得第一定时预补偿值和/或第一频率预补偿值。
具体地,网络侧先计算第一终端对应的时/频预补偿值,然后将这些时/频预补偿值配置给对应的辅卫星。第一终端对应的时/频预补偿信息可以根据下式得到:
timing-pre-compensation-value=Delay-main-sat-RP-Delay-coop-sat-RP   (7)
frequency-pre-compensation-value=-Doppler-coop-sat-RP   (8)
其中,timing-pre-compensation-value为定时预补偿值,Delay-main-sat-RP为主卫星与参考点间的时延,Delay-coop-sat-RP为辅卫星与参考点间的时延,frequency-pre-compensation-value为频率预补偿值,Doppler-coop-sat-RP为辅卫星与参考点间的频移。
应理解,参考点表示与第一终端对应的补偿参考点或时/频预补偿参考点。
应理解,该第一终端可以是一个终端,也可以是多个终端组成一组,比如终端1、终端2、终端3、终端4组成一个第一终端,本申请实施例对此不作限定。
还应理解,该补偿参考点可以是每一个第一终端对应1个补偿参考点,也可以是多个第一终端对应一个补偿参考点,本申请实施例对此不作限定。
在另一种可能的实现方式中,如果考虑各卫星与关口站间的时延和Doppler频移的影响,例如馈电链路的时/频偏移影响,可以在主卫星向辅卫星发送的时频预补偿信息中包含各卫星(主卫星和/或辅卫星)与关口站间的时延信息和Doppler频移信息。或者,主卫星也可以单独向辅卫星发送各卫星与关口站间的时延信息和Doppler频移信息。本申请实施例对此不作限定。
在另一种可能的实现方式中,主卫星可以向辅卫星配置终端对应的时/频预补偿信息。例如表1所示,辅卫星获得该信息后,根据终端对应的时/频预补偿信息获得相应的补偿值以及终端的方位信息。方位信息可以是终端对应的发射角度信息或位置信息等,辅卫星可以根据方位信息确定向终端发送信号的方向。
表1 主卫星向辅卫星发送时频补偿信息
终端 定时预补偿值 频率预补偿值 终端方位信息
终端1 定时预补偿值1 频率预补偿值1 方位信息1
终端2 定时预补偿值2 频率预补偿值2 方位信息2
终端3 定时预补偿值3 频率预补偿值3 方位信息3
终端4 定时预补偿值4 定时预补偿值5 方位信息4
在另一种可能的实现方式中,主卫星可以向辅卫星配置一组终端对应的时/频预补偿信息。例如表2所示,辅卫星获得该信息后,根据终端组1对应的时/频预补偿信息获得相应的补偿值以及终端组1的方位信息。应理解,方位信息可以是终端组1对应的发射角度信息或位置信息或参考点的位置信息等,本实施例对此不作限定。辅卫星可以根据方位信息确定向终端组1发送信号的方向。
表2 主卫星向辅卫星发送时频补偿信息
终端组 定时预补偿值 频率预补偿值 终端方位信息
终端组1 定时预补偿值1 频率预补偿值1 方位信息1
在另一种可能的实现方式中,主卫星可以向辅卫星发送每个终端对应的时/频预补偿参考点信息。例如表3所示,主卫星通过星间链路向辅卫星发送与每个终端对应的时/频预补偿参考点信息,以及主卫星的星历信息。例如,每个终端对应的时/频预补偿参考点信息可以是每个终端的位置信息。星历信息是用来表示卫星的位置和速度的表达式,可以通过星历信息预测卫星运动轨迹以及轨道信息。辅卫星获得该时/频预补偿参考点信息后,例如时/频预补偿参考点信息是坐标信息,辅卫星根据自己的位置信息和时/频预补偿参考点坐标以及主卫星的位置信息计算每个终端对应的时/频预补偿值。
表3 主卫星向辅卫星发送时频补偿参考点信息
终端 时/频预补偿值参考点信息
终端1 参考点信息1
终端2 参考点信息2
终端3 参考点信息3
终端4 参考点信息4
在另一种可能的实现方式中,主卫星可以向辅卫星发送一组终端对应的时/频预补偿参考点信息。例如表4所示,主卫星通过星间链路向辅卫星发送与1组终端对应的时/频预补偿参考点信息,以及主卫星的星历信息。辅卫星获得该时/频预补偿参考点信息后,例如时/频预补偿参考点信息是坐标信息,辅卫星根据自己的位置信息和时/频预补偿参考点坐标以及主卫星的位置信息计算1组终端对应的时/频预补偿值。
表4 主卫星向辅卫星发送时频补偿参考点信息
终端组 时/频预补偿值参考点信息
终端组1 参考点信息1
应理解,时/频预补偿值可由公式(7)和(8)得到,本申请实施例对于时/频预补偿 值的计算方法和获得方式在此不作限定。
在S340中,第二卫星根据第一定时预补偿值和/或第一频率预补偿值与第一终端进行通信。
具体地,辅卫星根据从主卫星接收到的第一定时预补偿值和/或第一频率预补偿值对发送的数据做时/频预补偿。
下面以1组终端举例进行说明。当辅卫星1向终端组1发送数据时,根据从主卫星接收到的定时预补偿值1和频率预补偿值1对发送的数据做时/频预补偿。假设定时预补偿值1=-55ms和频率预补偿值1=106Hz,辅卫星1向终端组1发送数据时提前发送信号55ms,并且频率偏移106Hz,即在约定的信号发射频率基础上增加106Hz。
当主卫星向终端组1发送多星协同传输数据时,可以根据主卫星与该终端组1对应的参考点间的Doppler频移做频率预补偿。例如,主卫星向终端组1中UE发送多星协同传输数据,主卫星与终端组1对应的参考点间的Doppler频移为-80Hz,那么在约定的信号发射频率基础上加上-80Hz。
图8示出了本申请另一个实施例的一种主卫星向辅卫星配置时/频预补偿值的方法300的示意性交互流程图。
在S311中,第一卫星与第二卫星建立连接。
在S321中,第一卫星向第二卫星发送第一指示信息。
在S331中,根据第一指示信息获得第一定时预补偿值和/或第一频率预补偿值。
在S341中,根据第一定时预补偿值和/或第一频率预补偿值与第一终端进行通信。
需要说明的是,S311至S341中相应的步骤如S310至S340中所述,在此不再赘述。
在S350中,第二卫星根据第一指示信息获得第二定时预补偿值和/或第二频率预补偿值。
具体地,网络侧先计算第二终端对应的时/频预补偿值,然后将这些时/频预补偿值配置给对应的辅卫星。第二终端对应的时/频预补偿信息可以根据上述公式(7)和(8)得到。
其中,补偿参考点表示与第二终端对应的补偿参考点或时/频预补偿参考点。
应理解,该第二终端可以是一个终端,也可以是多个终端组成一组,比如终端5、终端6、终端7、终端8组成一个第二终端,本申请实施例对此不作限定。
还应理解,该补偿参考点可以是每一个第二终端,也可以是多个第二终端对应的一个补偿参考点,本申请实施例对此不作限定。
在另一种可能的实现方式中,如果考虑各卫星与关口站间的时延和Doppler频移的影响,例如馈电链路的时/频偏移影响,可以在主卫星向辅卫星发送的时频预补偿信息中包含各卫星(主卫星和/或辅卫星)与关口站间的时延信息和Doppler频移信息。或者,主卫星也可以单独向辅卫星发送各卫星与关口站间的时延信息和Doppler频移信息。本申请实施例对此不作限定。
在另一种可能的实现方式中,主卫星可以向辅卫星配置终端对应的时/频预补偿信息。例如表5所示,辅卫星获得该信息后,根据终端对应的时/频预补偿信息获得相应的补偿值以及终端的方位信息。方位信息可以是终端组1和终端组2中每个终端对应的发射角度信息或位置信息等,辅卫星可以根据方位信息确定分别向终端组1和终端组2中每个终端 发送信号的方向。
表5 主卫星向辅卫星发送时频补偿信息
Figure PCTCN2021135232-appb-000001
在另一种可能的实现方式中,主卫星可以向辅卫星配置两组终端对应的时/频预补偿信息。例如表6所示,辅卫星获得该信息后,根据终端组1、终端组2分别对应的时/频预补偿信息获得相应的补偿值以及终端组1、终端组2分别对应的方位信息。应理解,方位信息可以是终端组1、终端组2分别对应的发射角度信息或位置信息或参考点的位置信息等,本实施例对此不作限定。辅卫星可以根据方位信息确定分别向两个终端组发送信号的方向。
表6 主卫星向辅卫星发送时频补偿信息
终端组 定时预补偿值 频率预补偿值 终端方位信息
终端组1 定时预补偿值1 频率预补偿值1 方位信息1
终端组2 定时预补偿值2 频率预补偿值2 方位信息2
在另一种可能的实现方式中,主卫星可以向辅卫星发送终端组1和终端组2中每个终端对应的时/频预补偿参考点信息。例如表7所示,主卫星通过星间链路向辅卫星发送与终端组1和终端组2中每个终端对应的时/频预补偿参考点信息,以及主卫星的星历信息。辅卫星获得该时/频预补偿参考点信息后,例如时/频预补偿参考点信息是坐标信息,辅卫星根据自己的位置信息和时/频预补偿参考点坐标以及主卫星的位置信息计算终端组1和终端组2中每个终端对应的时/频预补偿值。
表7 主卫星向辅卫星发送时频补偿参考点信息
Figure PCTCN2021135232-appb-000002
在另一种可能的实现方式中,主卫星可以向辅卫星发送两组终端对应的时/频预补偿参考点信息。例如表8所示,主卫星通过星间链路向辅卫星发送与终端组1、终端组2分别对应的时/频预补偿参考点信息,以及主卫星的星历信息。辅卫星获得该时/频预补偿参考点信息后,例如时/频预补偿参考点信息是坐标信息,辅卫星根据自己的位置信息和时/频预补偿参考点坐标以及主卫星的位置信息计算终端组1、终端组2分别对应的时/频预补偿值。
表8 主卫星向辅卫星发送时频补偿参考点信息
终端组 时/频预补偿值参考点信息
终端组1 参考点信息1
终端组2 参考点信息2
应理解,时/频预补偿值可由公式(7)和(8)得到,本申请实施例对于时/频预补偿值的计算方法和获得方式在此不作限定。
在S360中,第二卫星根据第二定时预补偿值和/或第二频率预补偿值与第二终端进行通信。
具体地,辅卫星根据从主卫星接收到的第二定时预补偿值和/或第二频率预补偿值对发送的数据做时/频预补偿。
下面以两组终端举例进行说明。当辅卫星1向终端组1发送数据时,根据从主卫星接收到的定时预补偿值1和频率预补偿值1对发送的数据做时/频预补偿。当辅卫星1向终端组2发送数据时,根据从主卫星接收到的定时预补偿值2和频率预补偿值2对发送的数据做时/频预补偿。
假设定时预补偿值1=-55ms和频率预补偿值1=106Hz,辅卫星1向终端组1发送数据时提前发送信号55ms,并且频率偏移106Hz,即在约定的信号发射频率基础上增加106Hz。与此同时,假设定时预补偿值2=55ms和频率预补偿值1=106Hz,辅卫星1向终端组2发送数据时延后发送信号55ms,并且频率偏移106Hz,即在约定的信号发射频率基础上增加106Hz。
当主卫星向终端组1、终端组2发送多星协同传输数据时,可以根据主卫星与该终端组1、终端组2对应的参考点间的Doppler频移做频率预补偿。例如,主卫星向终端组1、终端组2中UE发送多星协同传输数据,主卫星与终端组1对应的参考点间的Doppler频移为-80Hz,那么在约定的信号发射频率基础上加上-80Hz。主卫星与终端组2对应的参考点间的Doppler频移为80Hz,那么在约定的信号发射频率基础上增加80Hz。
应理解,上述两组终端仅是举例说明,本申请也可以是辅卫星对两个以上的终端组进行时/频预补偿,本申请实施例对于终端组的具体数量在此不作限定。
下面结合图9详细说明本申请提供的一种主卫星向辅卫星配置帧结构信息的方法400。图9是本申请一个实施例的一种主卫星向辅卫星配置帧结构信息的方法400的示意性交互流程图。
在S410中,第二卫星根据来自第一卫星的第一指示信息获得第一终端对应的第一定时预补偿值和/或第一频率预补偿值。
需要说明的是,S410获得第一定时预补偿值和/或第一频率预补偿值如S330中所述, 在此不再赘述。
在S420中,第一终端和第二卫星获得来自第一卫星的帧结构信息。
具体地,网络侧需要根据终端的定时预补偿值和频率预补偿值等信息确定帧结构信息,网络侧向终端发送配置信息,该配置信息用于配置帧结构,该帧结构信息包括保护间隔起始位置、保护间隔长度和保护间隔周期等参数。
应理解,该配置信息可以是网络侧向不同终端或不同终端组发送的不同配置信息,比如第一终端对应第一配置信息,第二终端对应第二配置信息等,本申请实施例在此不作限制。
还应理解,该配置信息具体可以用于配置帧结构中的空白资源的配置,其中,网络侧在空白资源上不承载数据,也可以理解为终端在空白资源上不接收数据。
还应理解,空白资源还可以被称为不可用资源或保留资源或不可调度资源等,本申请实施例在此不作限制。
在S430中,第二卫星根据第一定时预补偿值和/或第一频率预补偿值以及该帧结构与第一终端进行通信。
下面以辅卫星对不同终端进行定时预补偿时配置保护间隔举例进行说明。
假设一颗辅卫星假设一颗辅卫星1对终端1、终端2、终端3的第一定时预补偿值分别为定时预补偿值1、定时预补偿值2、定时预补偿值3,大小关系为:定时预补偿值1<定时预补偿值3<定时预补偿值2。
主卫星根据定时预补偿值的大小关系依次分配每个终端对应的数据资源,如图10所示,依次发送终端1数据、终端3数据、终端2数据,如果终端2数据后面需要发送终端1数据或终端3数据,那么需要在发送终端1数据前加入一段保护间隔,避免出现终端1数据与终端2数据或终端3数据间的用户间干扰。
应理解,在一种可能的场景中,辅卫星1只为一个终端1提供通信服务或服务区域的终端都使用同一个补偿参考点时,主卫星和辅卫星向终端发送数据时,保护间隔可以配置为0。
主卫星向辅卫星配置帧结构和/或保护间隔,辅卫星根据该帧结构和/或保护间隔接收主卫星发送的各终端或各组终端信号,以及向终端发送信号,能够避免辅卫星在保护间隔内接收数据和发送数据,以此可以节省电量和避免用户间干扰。类似的,终端根据帧结构和/或保护间隔接收主卫星和辅卫星发送的信号,能够避免在保护间隔内接收数据,以此可以节省电量和避免用户间干扰。
在另一种可能的实现方式中,网络侧根据卫星轨道可预测特点设计一种自动更新保护间隔长度值机制。具体地,以辅卫星1的定时补偿差值为例,辅卫星1的定时补偿差值在一定时间区间内随时间变化呈线性变化规律,此时,网络侧可以根据该规律设计一种自动更新保护间隔长度的方法。
具体地,网络侧(基站)向终端配置保护间隔起始值L int,保护间隔长度变化值△L,时间间隔△T,终端接收到帧结构配置参数后使用保护间隔设置为起始值L int,然后,每间隔△T时间,终端根据如下约定的公式(9)更新保护间隔:
L new=L old+ΔL   (9)
其中,L old表示UE正在使用的保护间隔值,L new表示更新的保护间隔值。
应理解,根据上述自动更新保护间隔长度的方法,网络侧只需要向终端配置一次与保护长度相关的参数,终端在一段时间内自动更新保护间隔长度,通过该方法能够节省多次更新保护间隔长度的信令开销,同时,能够避免使用过大的保护间隔,避免浪费时域资源。
在另一种可能的实现方式中,为了避免终端使用过小或过大的保护间隔,还可以在配置保护间隔起始值L int时,配置一个较大或较小的值。或者,网络侧在向终端配置保护间隔起始值L int时可以将其与一个偏移量相加后发送给终端,以使该保护间隔值具有一定误差(例如位置误差、星历误差等)容错率,避免终端使用的保护间隔过大或过小。
下面以辅卫星对不同终端进行频率预补偿时配置保护间隔进行举例说明。
以图11为例,假设一颗辅卫星1对终端1、终端2、终端3、终端4数据的频率预补偿值分别为频率预补偿值1、频率预补偿值2、频率预补偿值3与频率预补偿值4,大小关系为:频率预补偿值1<频率预补偿值3<频率预补偿值4<频率预补偿值2。由图中可以看出看出频率预补偿后的终端2数据与频率预补偿后的终端3数据间的频域存在数据重叠,产生了较为严重的终端组间数据的频域干扰。
因此,为了解决上述终端间的频域干扰,网络侧为产生频域干扰的终端间配置一个频域保护间隔。例如,如图12所示,在终端2数据所占频域资源和终端3数据所占频域资源之间设置一个频域保护间隔。这样的话,当辅卫星分别对终端2数据和终端3数据分别做频率预补偿时,不会出现频域的数据重叠,避免了频域干扰。
在另一种可能的实现方式中,网络侧同样可以根据卫星轨道信息可预测特点设计一种自动更新频域保护间隔长度值的机制,网络侧只需要向终端配置一次与保护长度相关的参数,终端在一段时间内自动更新保护间隔长度,以避免频繁更新保护间隔,节省信令开销。
在S440中,第二卫星根据来自第一卫星的第一指示信息获得第二定时预补偿值和/或第二频率预补偿值。
需要说明的是,S440获得第二定时预补偿值和/或第二频率预补偿值如S350中所述,在此不再赘述。
在S450中,第二终端和第二卫星获得来自第一卫星的帧结构信息。
具体地,网络侧需要根据终端的第二定时预补偿值等信息确定帧结构信息,该帧结构信息包括保护间隔起始位置、保护间隔长度和保护间隔周期等结构参数。
在S460中,第二卫星根据第二定时预补偿值和/或第二频率预补偿值以及该帧结构与第二终端进行通信。
应理解,第一终端和第二终端可以是一个终端或多个终端,也可以是多个终端构成的终端组1和终端组2,上述第一终端、第二终端仅为举例说明,本申请对终端组的具体数量不作限制。
下面结合图13以辅卫星对3个终端组进行定时预补偿进行举例说明。
假设一颗辅卫星1对终端组1、终端组2、终端组3的定时预补偿值分别为定时预补偿值a、定时预补偿值b、定时预补偿值c,大小关系为:定时预补偿值a<定时预补偿值c<定时预补偿值b。
主卫星根据定时预补偿值的大小关系依次分配每个终端组对应的数据资源,如图13所示,依次发送终端1数据、终端3数据、终端2数据,如果终端组2数据后面需要发送终端组1数据或终端组3数据,那么需要在发送终端组1数据前加入一段保护间隔,避免 出现终端组1数据与终端组2数据或终端组3数据间的用户间干扰。
应理解,辅卫星对多个终端组进行时/频预补偿时,网络侧也可根据自动更新保护间隔长度值机制,一段时间内多个终端组自动更新保护间隔长度。
下面以辅卫星对4个终端组进行频率预补偿进行举例说明。
以图14为例,假设一颗辅卫星1对终端组1、终端组2、终端组3、终端组4数据的频率预补偿值分别为频率预补偿值A、频率预补偿值B、频率预补偿值C与频率预补偿值D,大小关系为:频率预补偿值A<频率预补偿值C<频率预补偿值D<频率预补偿值B。
为了解决上述各组终端间的频域干扰,网络侧为各终端组间配置一个频域保护间隔。例如,如图14所示,在终端组2数据所占频域资源和终端组3数据所占频域资源之间设置一个频域保护间隔。这样的话,当辅卫星分别对终端组2数据和终端组3数据分别做频率预补偿时,不会出现频域的数据重叠,避免了频域干扰。
具体地,网络设备可以向终端发送/配置该频域保护间隔,包括保护间隔的起始位置和保护间隔的长度。例如,可以以子载波宽度或子载波间隔为单位向终端配置该频域保护间隔参数,该频域保护间隔参数包括频域保护间隔的起始位置:第M个子载波(例如一个子载波宽度为15KHz),例如M可以为64,或可以是相对于一个频点的平移位置为起始位置,如距离频点2500MHz偏移L个子载波,其中L可以为正值或负值,例如L=5.5,表示以频点2500MHz为基础加上5.5*子载波间隔,又例如L=-3,表示以频点2500MHz为基础加上-3*子载波间隔;保护间隔的长度为2个子载波宽度,即2*15KHz=30KHz。
在另一种可能的实现方式中,可以以绝对频率来指示保护间隔的起始位置和以Hz或KHz为单位来表示保护间隔长度,例如,2520MHz表示保护间隔的起始位置,30KHz表示保护间隔长度。与上面的例子类似,可以以一个频点为基础加上一个平移值表示保护间隔的起始位置,其中基础的频点可以通过协议约定或通过信令配置,例如网络侧向UE配置20MHz,UE接收到后以2500MHz为基础加上20MHz确定保护间隔的起始位置为2520MHz,其中基础频点2500MHz可以通过协议约定或通过信令配置。
在另一种可能的实现方式中,网络侧同样可以根据卫星轨道信息可预测特点,利用在一段时间内频率预补偿值差值呈近似线性的变化规律,设计一种自动更新频域保护间隔长度值的机制,网络侧只需要向终端配置一次与保护长度相关的参数,终端在一段时间内自动更新保护间隔长度,以避免频繁更新保护间隔,节省信令开销。
还应理解,上述第一指示信息、帧结构信息(包括保护间隔起始位置、保护间隔长度和保护间隔周期等)、自动更新保护间隔长度信息(包括保护间隔起始值、保护间隔长度变化值、时间间隔等)、频域保护间隔信息(包括保护间隔的起始位置和保护间隔的长度)、自动更新频域保护间隔信息可以由系统信息块(system information block,SIB)1、其他系统消息(other system information,OSI)、主系统信息块(mater information block,MIB)等的广播信息中的至少一种携带,由网络设备(例如卫星基站或基站等)向终端广播或组播发送。向终端广播或组播发送以上信息可以避免为了发送上述信令而对不同UE调度不同资源,节省调度资源的信令开销和降低系统调度复杂度。网络设备也可以在无线资源控制(radio resource control,RRC)信令(例如,RRC建立(RRCsetup)消息、RRC重配信令(RRCReconfiguration)、RRC恢复信令(RRCResume)等)、下行控制信息(downlink  control information,DCI)、组DCI、介质访问控制(media access control,MAC)控制元素(control element,CE)、定时提前命令(timing advance command,TAC)中的至少一种信息中携带上述一种或多种信息,或者随数据传输或在单独分配的PDSCH中向UE单播或组播发送。向终端单独或成组发送以上信令的好处是可以灵活控制每个/每组终端的参数值,根据终端所在不同位置或不同区域向终端配置不同参数值达到优化系统参数、优化UE通信性能/系统通信性能的目的。
以上结合图4至图14对本申请实施例的通信方法做了详细说明。以下,结合图15和图16对本申请实施例通信装置进行详细说明。
参考图15,为本申请实施例提供的一种通信装置示意图。该通信装置用于实现上述各实施例中对应第二卫星设备、第一卫星设备或终端的各个步骤,如图15所示,该通信装置600包括收发单元610和处理单元620。
在第一个实施例中,该通信装置用于实现上述各实施例中对应第二卫星设备的各个步骤:
该收发单元610用于接收来自第一卫星设备的第一指示信息。
该处理单元620用于根据该第一指示信息获得至少一个第一终端对应的第一定时预补偿值和/或第一频率预补偿值。
该处理单元620还用于根据第一定时预补偿值和/或第一频率预补偿值与至少一个第一终端进行通信。
可选的,在一些实施例中,该处理单元620还用于根据第一指示信息获得至少一个第二终端对应的第二定时预补偿值和/或第二频率预补偿值,根据该第二定时预补偿值和/或该第二频率预补偿值与该至少一个第二终端进行通信。
可选的,在一些实施例中,该第一指示信息包括第二位置信息,该处理单元620还用于根据该第二位置信息获得至少一个第二终端对应的该第二定时预补偿值和/或该第二频率预补偿值。
可选的,在一些实施例中,该第一指示信息包括第一位置信息,该处理单元620还用于根据该第一位置信息获得至少一个第一终端对应的该第一定时预补偿值和/或该第一频率预补偿值。
可选的,在一些实施例中,该处理单元620还用于获得来自第一卫星设备的帧结构信息,根据该第二定时预补偿值和/或该第二频率预补偿值以及该帧结构信息与该至少一个第二终端进行通信。
可选的,在一些实施例中,该处理单元620还用于获得来自第一卫星设备的帧结构信息,根据该第一定时预补偿值和/或该第一频率预补偿值以及该帧结构信息与该至少一个第一终端进行通信。
在第二个实施例中,该通信装置用于实现上述各实施例中对应第一卫星设备的各个步骤:
该收发单元610用于向第二卫星设备发送第一指示信息。
该处理单元620用于第一定时预补偿值和/或第一频率预补偿值的确定,该第一定时预补偿值和/或该第一频率预补偿值对应于至少一个第一终端。
可选的,在一些实施例中,该处理单元620还用于第二定时预补偿值和/或第二频率 预补偿值的确定,该第二定时预补偿值和/或该第二频率预补偿值对应于至少一个第二终端。
可选的,在一些实施例中,该第一指示信息包括第二位置信息,该第二位置信息还用于该第二定时预补偿值和/或该第二频率预补偿值的确定。
可选的,在一些实施例中,该第一指示信息包括第一位置信息,该第一位置信息还用于该第一定时预补偿值和/或该第一频率预补偿值的确定。
可选的,在一些实施例中,该收发单元610还用于向至少一个第一终端发送第一配置信息,该第一配置信息用于帧结构的配置。该处理单元620还用于根据该帧结构与该至少一个第一终端进行通信。
可选的,在一些实施例中,该收发单元610还用于向至少一个第二终端发送第二配置信息,该第二配置信息用于该帧结构的配置。
该处理单元620还用于根据该帧结构与该至少一个第二终端进行通信。
可选的,在一些实施例中,该第二配置信息具体用于该帧结构中空白资源的配置,该空白资源不用于承载数据。
可选的,在一些实施例中,该第一配置信息具体用于该帧结构中空白资源的配置,该空白资源不用于承载数据。
可选的,在另一些实施例中,该收发单元610还用于向该第二卫星设备发送第三配置信息,该第三配置信息用于帧结构的配置。
该处理单元620还用于根据该帧结构与该至少一个第一终端进行通信。
在第三个实施例中,该通信装置用于实现上述各实施例中对应终端的各个步骤:
该收发单元610用于接收来自第一卫星设备的第一配置信息,该第一配置信息用于配置帧结构。
该处理单元620用于根据该帧结构与该第一卫星设备和第二卫星设备进行通信。
可选的,在一些实施例中,该第一配置信息具体用于配置该帧结构中的空白资源,该处理单元620还用于在该空白资源上不接收来自该第一卫星设备和该第二卫星设备的数据。
可选的,上述通信装置还可以包括存储单元,该存储单元用于存储数据或者指令(也可以称为代码或者程序),上述各个单元可以和存储单元交互或者耦合,以实现对应的方法或者功能。例如,处理单元620可以读取存储单元中的数据或者指令,使得通信装置实现上述实施例中的方法。
应理解以上通信装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且通信装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在通信装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由通信装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用 的形式实现。
在一个例子中,以上任一通信装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当通信装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
参考图16,为本申请实施例提供的一种通信装置示意图,用于实现以上实施例中第二卫星设备、第一卫星设备或终端的操作。如图16所示,该通信装置包括:处理器710和接口730,处理器710与接口730耦合。接口730用于实现与其他设备进行通信。接口730可以为收发器或输入输出接口。接口730例如可以是接口电路。可选地,该通信装置还包括存储器720,用于存储处理器710执行的指令或存储处理器710运行指令所需要的输入数据或存储处理器710运行指令后产生的数据。
以上实施例中第二卫星设备、第一卫星设备或终端执行的方法可以通过处理器710调用存储器(可以是第二卫星设备、第一卫星设备或终端中的存储器720,也可以是外部存储器)中存储的程序来实现。即,第二卫星设备、第一卫星设备或终端可以包括处理器710,该处理器710通过调用存储器中的程序,以执行以上方法实施例中第二卫星设备、第一卫星设备或终端执行的方法。这里的处理器可以是一种具有信号的处理能力的集成电路,例如CPU。第二卫星设备、第一卫星设备或终端可以通过配置成实施以上方法的一个或多个集成电路来实现。例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。或者,可以结合以上实现方式。
具体的,图15中的收发单元610和处理单元620的功能/实现过程可以通过图16所示的通信装置700中的处理器710调用存储器720中存储的计算机可执行指令来实现。或者,图15中的处理单元620的功能/实现过程可以通过图16所示的通信装置700中的处理器710调用存储器720中存储的计算机执行指令来实现,图15中的收发单元610的功能/实现过程可以通过图16中所示的通信装置700中的接口730来实现,示例性的,收发单元610的功能/实现过程可以通过处理器调用存储器中的程序指令以驱动接口730来实现。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是来自其他终端或卫星设备的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给其他终端或卫星设备的。
当上述通信装置为应用于卫星设备的芯片时,该卫星设备芯片实现上述方法实施例中卫星设备的功能。该卫星设备芯片从卫星设备中的其它模块(如射频模块或天线)接收信息,该信息是来自其他卫星设备或终端的;或者,该卫星设备芯片向卫星设备中的其它模块(如射频模块或天线)发送信息,该信息是卫星设备发送给其他卫星设备或终端的。
应理解,上述装置中处理单元包括处理器,处理器与存储器耦合,存储器用于存储计算机程序或指令或者和/或数据,处理器用于执行存储器存储的计算机程序或指令和/或者数据,使得上文方法实施例中的方法被执行。
还应理解,以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。这里该处理元件又可以称为处理器,可以是一种具有信号处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
本申请实施例还提供了一种通信系统,该通信系统包括:上述第一卫星设备和上述第二卫星设备和终端设备。
本申请实施例还提供了一种计算机可读介质,用于存储计算机程序代码,该计算机程序包括用于执行上述方法中本申请实施例的通信方法的指令。该可读介质可以是只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM),本申请实施例对此不做限制。
本申请还提供了一种计算机程序产品,该计算机程序产品包括指令,当该指令被执行时,以使得该终端和该第一卫星设备和该第二卫星设备执行对应于上述方法的终端和第一卫星设备和第二卫星设备的操作。
本申请实施例还提供了一种系统芯片,该系统芯片包括:处理单元和通信单元,该处理单元,例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使该通信装置内的芯片执行上述本申请实施例提供的任一种反馈信息的传输方法。
可选地,该计算机指令被存储在存储单元中。
可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该终端内的位于该芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述的反馈信息的传输方法的程序执行的集成电路。该处理单元和该存储单元可以解耦,分别设置在不同的物理设备上,通过有线或者无线的方式连接来实现该处理单元和该存储单元的各自的功能,以支持该系统芯片实现上述实施例中的各种功能。或者,该处理单元和该存储器也可以耦合在同一个设备上。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是RAM,其用作外部高速缓存。RAM有多种不同的类型,例如静态随机存取存储器(static  RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A可以是单数或者复数,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本文中术语“……中的至少一个”或“……中的至少一种”,表示所列出的各项的全部或任意组合,例如,“A、B和C中的至少一种”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况,其中A可以是单数或者复数,B可以是单数或者复数,C可以是单数或者复数。
可以理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种通信方法,其特征在于,包括:
    接收来自第一卫星设备的第一指示信息,根据所述第一指示信息获得至少一个第一终端对应的第一定时预补偿值和/或第一频率预补偿值;
    根据所述第一定时预补偿值和/或所述第一频率预补偿值与所述至少一个第一终端进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述第一指示信息获得至少一个第二终端对应的第二定时预补偿值和/或第二频率预补偿值;
    根据所述第二定时预补偿值和/或所述第二频率预补偿值与所述至少一个第二终端进行通信。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一指示信息包括第二位置信息;
    所述根据所述第一指示信息获得至少一个第二终端对应的第二定时预补偿值和/或第二频率预补偿值,包括:
    根据所述第二位置信息获得至少一个第二终端对应的所述第二定时预补偿值和/或所述第二频率预补偿值。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,
    所述第一指示信息包括第一位置信息;
    所述根据所述第一指示信息获得至少一个第一终端对应的第一定时预补偿值和/或第一频率预补偿值,包括:
    根据所述第一位置信息获得至少一个第一终端对应的所述第一定时预补偿值和/或所述第一频率预补偿值。
  5. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    获得来自所述第一卫星设备的帧结构信息;
    所述根据所述第二定时预补偿值和/或所述第二频率预补偿值与所述至少一个第二终端进行通信,包括:
    根据所述第二定时预补偿值和/或所述第二频率预补偿值以及所述帧结构信息与所述至少一个第二终端进行通信。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    获得来自所述第一卫星设备的帧结构信息;
    所述根据所述第一定时预补偿值和/或所述第一频率预补偿值与所述至少一个第一终端进行通信,包括:
    根据所述第一定时预补偿值和/或所述第一频率预补偿值以及所述帧结构信息与所述至少一个第一终端进行通信。
  7. 一种通信方法,其特征在于,包括:
    与第二卫星设备建立连接;
    向所述第二卫星设备发送第一指示信息,所述第一指示信息用于第一定时预补偿值和/或第一频率预补偿值的确定,所述第一定时预补偿值和/或所述第一频率预补偿值对应于至少一个第一终端。
  8. 根据权利要求7所述的方法,其特征在于,
    所述第一指示信息还用于第二定时预补偿值和/或第二频率预补偿值的确定,所述第二定时预补偿值和/或所述第二频率预补偿值对应于至少一个第二终端。
  9. 根据权利要求8所述的方法,其特征在于,
    所述第一指示信息包括第二位置信息;
    所述第二位置信息用于所述第二定时预补偿值和/或所述第二频率预补偿值的确定。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,
    所述第一指示信息包括第一位置信息;
    所述第一位置信息用于所述第一定时预补偿值和/或所述第一频率预补偿值的确定。
  11. 根据权利要求7至10中任一项所述的方法,其特征在于,所述方法还包括:
    向至少一个第一终端发送第一配置信息,所述第一配置信息用于帧结构的配置;
    根据所述帧结构与所述至少一个第一终端进行通信。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    向至少一个第二终端发送第二配置信息,所述第二配置信息用于所述帧结构的配置;
    根据所述帧结构与所述至少一个第二终端进行通信。
  13. 根据权利要求12所述的方法,其特征在于:
    所述第二配置信息具体用于所述帧结构中空白资源的配置,所述空白资源不用于承载数据。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于:
    所述第一配置信息具体用于所述帧结构中空白资源的配置,所述空白资源不用于承载数据。
  15. 根据权利要求7至10中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第二卫星设备发送第三配置信息,所述第三配置信息用于帧结构的配置;
    根据所述帧结构与所述至少一个第一终端进行通信。
  16. 一种通信方法,其特征在于,包括:
    接收来自第一卫星设备的第一配置信息,所述第一配置信息用于配置帧结构;
    根据所述帧结构与所述第一卫星设备和第二卫星设备进行通信。
  17. 根据权利要求16所述的方法,其特征在于,所述第一配置信息具体用于配置所述帧结构中的空白资源;
    所述根据所述帧结构与所述第一卫星设备和第二卫星设备进行通信,包括:
    在所述空白资源上不接收来自所述第一卫星设备和所述第二卫星设备的数据。
  18. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述通信装置执行如权利要求7至15中任一项所述的方法。
  19. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序 或指令,以使得所述通信装置执行如权利要求1至6中任一项所述的方法。
  20. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述通信装置执行如权利要求16至17中任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1至17中任一项所述的通信方法。
PCT/CN2021/135232 2020-12-28 2021-12-03 一种协同传输的方法和装置 WO2022143000A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21913741.1A EP4240072A4 (en) 2020-12-28 2021-12-03 METHOD AND APPARATUS FOR COORDINATED TRANSMISSION
US18/338,353 US20230337163A1 (en) 2020-12-28 2023-06-21 Coordinated transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011606600.4A CN114696883A (zh) 2020-12-28 2020-12-28 一种协同传输的方法和装置
CN202011606600.4 2020-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/338,353 Continuation US20230337163A1 (en) 2020-12-28 2023-06-21 Coordinated transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2022143000A1 true WO2022143000A1 (zh) 2022-07-07

Family

ID=82131830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135232 WO2022143000A1 (zh) 2020-12-28 2021-12-03 一种协同传输的方法和装置

Country Status (4)

Country Link
US (1) US20230337163A1 (zh)
EP (1) EP4240072A4 (zh)
CN (1) CN114696883A (zh)
WO (1) WO2022143000A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240063027A (ko) * 2022-10-31 2024-05-09 현대자동차주식회사 비-지상 네트워크에서 데이터 전송 방법 및 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1091506A2 (en) * 1999-10-01 2001-04-11 Ascom Systec AG A hybrid CDMA and TDMA radio access scheme for personal satellite communication systems
US20150270890A1 (en) * 2014-03-19 2015-09-24 Hughes Network Systems, Llc Apparatus and method for network level synchronization in multiple low earth orbit (leo) satellite communications systems
CN109831821A (zh) * 2019-03-18 2019-05-31 中国电子科技集团公司第五十四研究所 一种卫星移动通信终端及其定时和频率跟踪补偿方法
US20200028541A1 (en) * 2018-07-18 2020-01-23 Totum Labs, Inc. System and method for compensating the effects of doppler
WO2020200396A1 (en) * 2019-03-29 2020-10-08 Nokia Technologies Oy Apparatus for doppler shift compensation, corresponding method and computer program
CN111800852A (zh) * 2019-04-08 2020-10-20 电信科学技术研究院有限公司 一种时延补偿及其控制方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1021002A1 (en) * 1999-01-12 2000-07-19 ICO Services Ltd. Link control for diversity operation
EP1041741A1 (en) * 1999-04-01 2000-10-04 ICO Services Ltd. Radio link timeout
CN101924587A (zh) * 2010-08-10 2010-12-22 北京大学 时分双工通信方法中上下行时隙的动态调整方法
EP3934127B1 (en) * 2018-10-12 2024-05-29 OQ Technology S.à r.l. Method and system for non-terrestrial cellular wireless communication networks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1091506A2 (en) * 1999-10-01 2001-04-11 Ascom Systec AG A hybrid CDMA and TDMA radio access scheme for personal satellite communication systems
US20150270890A1 (en) * 2014-03-19 2015-09-24 Hughes Network Systems, Llc Apparatus and method for network level synchronization in multiple low earth orbit (leo) satellite communications systems
US20200028541A1 (en) * 2018-07-18 2020-01-23 Totum Labs, Inc. System and method for compensating the effects of doppler
CN109831821A (zh) * 2019-03-18 2019-05-31 中国电子科技集团公司第五十四研究所 一种卫星移动通信终端及其定时和频率跟踪补偿方法
WO2020200396A1 (en) * 2019-03-29 2020-10-08 Nokia Technologies Oy Apparatus for doppler shift compensation, corresponding method and computer program
CN111800852A (zh) * 2019-04-08 2020-10-20 电信科学技术研究院有限公司 一种时延补偿及其控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4240072A4

Also Published As

Publication number Publication date
CN114696883A (zh) 2022-07-01
EP4240072A1 (en) 2023-09-06
EP4240072A4 (en) 2024-05-08
US20230337163A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
CN114286347A (zh) 用于无线通信网络的网络架构、方法和设备
US20180288823A1 (en) Autonomous formation for backhaul networks
CN108282198A (zh) 一种信号传输方法和装置
CN114615699A (zh) 用于无线通信网络的网络架构、方法和设备
WO2022152000A1 (zh) 应用于非地面通信网络中的定位的方法和通信装置
CN104662817A (zh) 无线网络中基于终端的分组虚拟发送和接收
EP3780671B1 (en) Method and device for routing
WO2022228003A1 (zh) 波束切换的方法和装置
CN111587553B (zh) Rrc和mac中用于周期性和半持续参考信号假设的pdsch资源映射的信令
CN115812288A (zh) 通过激活和信令进行带宽部分切换
US20230379684A1 (en) Sensing-based device detection
US20230337163A1 (en) Coordinated transmission method and apparatus
Liu et al. Cooperative interference cancellation for multi-beam UAV uplink communication: A DoF analysis
US11979820B2 (en) Method and apparatus for efficient neighboring cell search in a wireless communication network
Verma et al. A survey on Multi-AP coordination approaches over emerging WLANs: Future directions and open challenges
WO2021249530A1 (zh) 一种用于非地面通信网络的信息指示方法及装置
WO2022052562A1 (zh) 定时偏移参数更新方法、设备及系统
US20230283350A1 (en) Channel matrix determining method, apparatus, and system
Morais 5G NR overview and physical layer
US20230269685A1 (en) Gradual timing adjustment for communication in ntn
US11812498B2 (en) Sidelink discovery message forwarding
CN113810095B (zh) 确定数字处理操作切分点的方法及装置
US11848745B2 (en) Method and apparatus for accessing base station in satellite communication system
US20230247571A1 (en) Handling of collision with ssb for ntn
US20230336212A1 (en) Gradual frequency adjustment for dual-loop frequency control in ntn based on user equipment requirements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021913741

Country of ref document: EP

Effective date: 20230530

NENP Non-entry into the national phase

Ref country code: DE