WO2022142578A1 - 一种医疗机器人、故障检测方法及存储介质 - Google Patents

一种医疗机器人、故障检测方法及存储介质 Download PDF

Info

Publication number
WO2022142578A1
WO2022142578A1 PCT/CN2021/123229 CN2021123229W WO2022142578A1 WO 2022142578 A1 WO2022142578 A1 WO 2022142578A1 CN 2021123229 W CN2021123229 W CN 2021123229W WO 2022142578 A1 WO2022142578 A1 WO 2022142578A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
component
fault
failure
medical robot
Prior art date
Application number
PCT/CN2021/123229
Other languages
English (en)
French (fr)
Inventor
李自汉
何超
王家寅
苏明轩
廖志祥
Original Assignee
上海微创医疗机器人(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创医疗机器人(集团)股份有限公司 filed Critical 上海微创医疗机器人(集团)股份有限公司
Publication of WO2022142578A1 publication Critical patent/WO2022142578A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/302Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0266Operational features for monitoring or limiting apparatus function
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0266Operational features for monitoring or limiting apparatus function
    • A61B2560/0276Determining malfunction

Definitions

  • the present application relates to the technical field of medical devices, and in particular, to a medical robot, a fault detection method and a storage medium.
  • the design concept of the surgical robot is to use a minimally invasive method to precisely perform complex surgical operations.
  • surgical robots have been developed to replace traditional surgery.
  • Surgical robots break through the limitations of the human eye and use three-dimensional imaging technology to present internal organs to the operator more clearly.
  • the robot hand can complete 360-degree rotation, movement, swing, and clamping, and avoid shaking. Small wounds, less bleeding, and quick recovery, greatly shortening the postoperative hospital stay of patients, and significantly improving postoperative survival and recovery rates. in clinical surgery.
  • the endoscopic surgery robot system is a multi-arm collaborative control system.
  • the existing robot safety software system generally adopts a unified control scheme. When a single arm or a single joint of the robot fails, the entire robot system will enter the failure mode, especially when In the event of an unrecoverable failure of a single arm or a single joint, the operation will even be forced to be interrupted, which will seriously affect the consistency of robotic surgical operations and the user experience.
  • the purpose of the present application is to provide a medical robot, a fault detection method and a storage medium, which effectively improve the safety of the operation process.
  • the medical robot of the present application includes:
  • At least two-level components wherein the levels of the at least two-level components are set according to the influence of the parts failure of the medical robot on the working of the medical robot;
  • a controller assembly including a fault detection unit and at least one level of fault judgment unit;
  • the fault detection unit is used to detect whether the components at all levels are faulty
  • the fault judging unit of each level is connected in communication with the fault detecting unit; the fault judging unit is used for judging that the fault is related to the corresponding component when any component of the at least two levels of components fails.
  • the fault detection unit is used to detect whether the components at all levels are faulty, and each level of fault judgment unit is communicatively connected to the fault detection unit for judging that the first level component is faulty.
  • a first-level fault or a second-level fault, the second-level fault judging unit is connected in communication with the fault detection unit, and is used for judging that the fault corresponds to the corresponding component when any one of the at least two-level components fails.
  • the application also provides a fault detection method for a medical robot, comprising the following steps:
  • the failure is a failure of a level corresponding to the corresponding component, or a failure of a higher level than the corresponding component.
  • the beneficial effect of the detection method is that: the above method detects whether each level of components in the at least two-level components is faulty, and when detecting that any level of components is faulty, it is judged that the fault is a fault of the corresponding level of the corresponding component, or higher than the corresponding component level, so as to quickly determine the type of failure, respond to the failure in time, and improve the safety of the medical robot during the operation.
  • the present application also provides a storage medium storing a computer program, and when the computer program is executed by a processor, the above-mentioned method for detecting a failure of a medical robot is implemented.
  • 1 is a schematic diagram of the composition of a medical robot in an embodiment of the application
  • FIG. 2 is a schematic diagram of a bedside end of a medical robot in an embodiment of the application
  • FIG. 3 is a schematic diagram of a control end of a medical robot in an embodiment of the application.
  • FIG. 4 is a block diagram of a fault detection structure of a medical robot in an embodiment of the application.
  • FIG. 5 is a component level classification diagram of a medical robot in an embodiment of the application.
  • FIG. 6 is a schematic diagram of a master-slave control of a medical robot in an embodiment of the application
  • FIG. 7 is a schematic diagram of fault detection of a robotic arm system of a medical robot in an embodiment of the application.
  • FIG. 8 is a schematic diagram of fault type judgment processing of a medical robot in an embodiment of the application.
  • FIG. 9 is a schematic diagram of a fault processing flow of a medical robot when a first-level recoverable fault or a second-level recoverable fault occurs in an embodiment of the present application;
  • FIG. 10 is a schematic diagram of a fault processing flow diagram of a medical robot when a third-level recoverable fault occurs in an embodiment of the application;
  • FIG. 11 is a schematic diagram of a fault processing flow diagram of a medical robot when a first-level unrecoverable fault occurs in an embodiment of the application;
  • FIG. 12 is a schematic diagram of a fault handling process flow of a medical robot when a second-level unrecoverable fault occurs in an embodiment of the application;
  • FIG. 13 is a schematic diagram of a fault processing flow diagram of a medical robot when a third-level unrecoverable fault occurs in an embodiment of the application;
  • FIG. 14 is an overall flowchart of a fault detection method in an embodiment of the present application.
  • 300-controller assembly 301-fault detection unit; 3011-first-level fault detection unit; 3012-second-level fault detection unit; 3013-third-level fault detection unit; 302-first-level fault judgment unit; 303- The second-level fault judgment unit;
  • the present application provides a medical robot including at least two-level components, a controller assembly and a fault detection unit, wherein the level of the at least two-level components is based on the failure of the medical robot parts to the medical robot.
  • the controller assembly includes a fault detection unit and at least one level of fault judgment unit; the fault detection unit is used to detect whether components at all levels are faulty.
  • Each level of fault judging unit is connected in communication with the fault detection unit; the fault judging unit is used to judge that the fault is a fault of the corresponding level of the corresponding component when any component of the at least two levels of components fails, or A fault higher than the corresponding component level.
  • the at least one-level fault judging unit includes a first-level fault judging unit and a second-level fault judging unit.
  • the second-level fault judging unit is connected in communication with the first-level fault judging unit, and is configured to judge the first-level fault when the first-level component in the at least two-level components is judged to be The failure of the first-level component is the second-level failure or the third-level failure.
  • the at least two-stage components include: a first-level component and a second-level component.
  • the at least one-level fault judging unit includes: a first-level fault judging unit and a second-level fault judging unit.
  • the failure detection unit includes a first-level failure detection unit and a second-level failure detection unit.
  • the first-level fault detection unit is connected in communication with the first-level component and the first-level fault judgment unit, and is used for detecting whether the first-level component is faulty, and when the first-level component is detected to be faulty, the first-level component is detected.
  • the fault information is transmitted to the first-level fault judging unit.
  • the second-level failure detection unit is connected in communication with the second-level component and the second-level failure judgment unit, and is used for detecting whether the second-level component is faulty, and when it is detected that the second-level component fails, the second-level component is detected.
  • the fault information is transmitted to the second-level fault judging unit.
  • the at least two-stage component further includes: a tertiary-level component.
  • the fault detection unit also includes a third-level fault detection unit.
  • the third-level fault detection unit is connected in communication with the third-level component and the second-level fault judgment unit, and is used to detect whether the third-level component is faulty, and when it is detected that the third-level component fails, the third-level component is detected.
  • the fault information is transmitted to the second-level fault judging unit.
  • the controller assembly controls the corresponding level component in failure to be shielded.
  • the failure judgment unit therein determines that the failure of the highest-level component among the at least two-level components is an unrecoverable failure, the medical robot is controlled to be powered off and restarted.
  • the medical robot includes a main operating arm and a plurality of actuator arms; the at least two-level components include: a first-level component and a second-level component.
  • the controller assembly is used to control the main operating arm and the execution arm Disconnect the master-slave mapping relationship and establish a master-slave mapping relationship with other executive arms.
  • a first of the at least two levels of components includes a first robotic arm joint attachment at a joint used to control the end position of the robotic arm.
  • the fault corresponding to the joint attachment of the first manipulator is the first-level fault.
  • the first-level component of the at least two-level components also includes a second robotic arm joint attachment located at a joint used to control the attitude of the robotic arm end.
  • the fault corresponding to the joint attachment of the second manipulator is the second-level fault.
  • the controller assembly controls the failed first-level component to clear the operating parameters of the first-level component and restore the backup operating parameters.
  • the controller assembly controls the failed first-level component or the second-level component to clear the operating parameters and restore the backup operating parameters.
  • At least two-level components also include third-level components; when a third-level recoverable fault occurs, the controller assembly controls the faulty first-level component, second-level component, or third-level component to clear operating parameters and restore backup. Operating parameters.
  • the at least two-level components include at least two of: first-level components, second-level components, and third-level components.
  • the first-level component includes one or more of a joint encoder, a joint driver, a joint motor, and a joint holding brake.
  • the second-level component of the at least two-level components includes one or more of a robotic arm circuit, a robotic arm communication member, and a pose set at the end of the robotic arm.
  • a third of the at least two levels of components includes one or more of a system power supply and a system communications component that provides power to the medical robot.
  • the medical robot further includes a warning component.
  • the alarm component is in communication with the controller component.
  • the controller component is used for controlling the warning component to send out warning information according to the judged fault type.
  • the component level corresponding to at least two-level components is determined according to at least two of the following fault levels: faults affecting the normal operation of the part itself; faults affecting the normal operation of the component or subsystem where the part is located; and affecting the overall normal operation of the medical robot failure.
  • the medical robot 10 includes,
  • the controller assembly 300 includes a fault detection unit 301, a first-level fault judging unit 302 and a second-level fault judging unit 303;
  • the fault detection unit 301 is used to detect whether the first-level component 501, the second-level component 502 and the third-level component 503 are faulty;
  • the first-level fault judging unit 302 is connected in communication with the fault detection unit 301, and is configured to determine whether the first-level fault is a first-level fault or a second-level fault when the first-level component 501 fails;
  • the second-level fault judging unit 303 is connected in communication with the fault detecting unit 301, and is configured to judge whether the second-level fault or the third-level fault is the second-level fault when the second-level component 502 fails.
  • the following takes a teleoperated surgical robot as an example for explanatory description.
  • the medical robot of the present application is not limited to a teleoperated surgical robot, but can also be an orthopedic robot, a catheter robot and other medical robots.
  • the medical robot 10 includes a robotic arm system, an endoscope system, a surgical assistance system, and a controller assembly 300 .
  • the robotic arm system includes a plurality of robotic arms for surgical operations.
  • the robotic arm includes a robotic arm body.
  • the manipulator body includes a plurality of joints and connecting pieces, and the connecting pieces are connected to each other through the joints.
  • the connecting pieces are connected in series through joints.
  • the robotic arm body includes seven joints, namely a first joint, a second joint, a third joint, a fourth joint, a fifth joint, a sixth joint and a seventh joint.
  • the first joint, the second joint, and the third joint are used to control the position of the end of the robot arm
  • the fourth joint, the fifth joint, the sixth joint and the seventh joint are used to control the posture of the end of the robot arm.
  • the manipulator bodies may be connected in parallel or mixed (ie, partly in parallel and partly in series).
  • the robotic arm also includes joint encoders.
  • the joint encoder is used to obtain the rotation angle of the joint. Since the body of the manipulator includes multiple joints, and each joint is equipped with a joint encoder, which is used to obtain the state of each joint.
  • the robotic arm further includes a joint driver and a joint motor.
  • the joint driver is used to drive the joint motor to rotate according to the driving instruction of the controller assembly 300 .
  • the joint motor is used to drive the joint to rotate.
  • the robotic arm further includes a joint brake, which is used to prevent the joint from rotating under the control of the controller assembly 300.
  • each robotic arm includes seven joints, and each joint corresponds to a joint driver, a joint motor and a joint encoder.
  • the joints of some robotic arms also have joint brakes. These parts corresponding to the joints are collectively referred to as joint attachments of the manipulator in this embodiment.
  • the manipulator further includes a manipulator communication member for communicatively connecting each manipulator joint attachment on the same manipulator to the controller assembly 300 .
  • the manipulator communication member is used to transmit the information of the joint encoders corresponding to the seven joints to the controller assembly 300 .
  • the controller component 300 acquires the pose of the robotic arm body in the Cartesian space according to the angle fed back by the joint encoder.
  • the manipulator communication member is also used to connect the controller assembly 300 in communication with the joint drivers corresponding to the seven joints.
  • the network layout of the communication piece of the manipulator for example, a daisy-chain linear network, a star network, and a mesh network are used.
  • the manipulator further includes a manipulator circuit, and the manipulator circuit is used to provide external power to the joint encoder, the joint driver, the joint motor, the joint holding brake, and the like.
  • the medical robot 10 is a teleoperated surgical robot, and includes a control terminal 100 and a bedside terminal 200 . Therefore, the robotic arm system includes a main operation arm located at the control end 100 and an execution arm located at the bedside end 200, and a master-slave control relationship is formed between the main operation arm and the execution arm.
  • the main operating arm is used for receiving the operating instructions of the operator.
  • the end of the actuator arm is connected to the surgical instrument or the endoscope 401, and the actuator arm is used to drive the surgical instrument or the endoscope 401 to rotate around a fixed point.
  • the controller assembly 300 includes an actuator arm control unit.
  • the executive arm control unit includes a preset master-slave mapping relationship, and obtains the desired posture of the executive arm and the surgical instrument/endoscope 401 according to the posture of the main operating arm, and controls the joint driver to drive the joint
  • the motor turns to move the actuator arm and surgical instrument/endoscope 401 to the desired posture.
  • the robotic arm system includes three execution arms, namely a first execution arm 201 , a second execution arm 202 and a third execution arm 203 .
  • the robotic arm system includes two main operating arms, namely, a first main operating arm 101 and a second main operating arm 102 .
  • the endoscope system is used to obtain surgical information (such as the shape of the lesion, and the morphology of blood vessels and tissues near the lesion, and the posture of surgical instruments, etc.) from the inside of the human body and display it in the form of a video stream.
  • the endoscope system includes an endoscope 401, an image processor 402 and a stereoscopic display.
  • the endoscope 401 is mounted on the second execution arm 202, and the distal end enters the inside of the human body through a wound on the surface of the human body to obtain a video stream of surgical information.
  • the image processor 402 is used to perform processing such as denoising and image enhancement on the video stream.
  • the stereoscopic display is used for displaying the processed video stream.
  • the stereoscopic display may be one or more. As shown in FIG. 1 , there are two stereoscopic displays, that is, the first stereoscopic display 403 is located at the control end 100 for the operator to watch; the second stereoscopic display 404 is located at the bedside end 200 for the auxiliary personnel to watch.
  • the auxiliary system is used to assist surgical operations.
  • the auxiliary system includes a doctor's console cart 103 located at the control end 100 and an operating trolley 204 located at the side bed end 200 .
  • the doctor's console cart 103 is used to support the main operating arms (eg, the first main operating arm 101 and the second main operating arm 102 ) in the robotic arm system, and the first stereoscopic display 403 in the endoscope system.
  • the operating trolley 204 is used to support the actuator arms (eg, the first actuator arm 201 , the second actuator arm 202 and the third actuator arm 203 ) in the robotic arm system, and adjust the position of the actuator arms relative to the patient.
  • the assistance system may also include input and output components for controlling the operating parameters of the medical robot 10 .
  • the input and output components include an operating table touch screen 205 for controlling the movement of the operating trolley 204 .
  • the auxiliary system may further include a system power supply, and the system power supply is used to provide power for the medical robot 10 .
  • the system power supply may include one or more of a filter circuit, a booster, a stepdown circuit, and an AC-DC conversion circuit, so as to provide the required power for each system.
  • the medical robot 10 adopts a distributed power source, and the system power source is used to provide power for the core system of the medical robot 10, while other systems are provided with power from other power sources.
  • the endoscope system, the surgical assistance system and the controller assembly 300 are connected through communication between the system communication members.
  • the controller assembly 300 further includes a fault detection unit 301 , a first-level fault judging unit 302 and a second-level fault judging unit 303 .
  • the fault detection unit 301 is used to detect whether the first-level component 501 , the second-level component 502 and the third-level component 503 are faulty.
  • the first-level fault judging unit 302 is connected in communication with the fault detecting unit 301, and is configured to determine whether the first-level fault or the second-level fault is the first-level fault when the first-level component 501 fails.
  • the second-level fault judging unit 303 is connected in communication with the fault detecting unit 301, and is configured to judge whether the second-level fault or the third-level fault is the second-level fault when the second-level component 502 fails. Further, the controller component 300 executes corresponding instructions or controls the medical robot to change the operating state according to the fault type judged by the first-level fault judging unit 302 and the second-level fault judging unit 303 .
  • the second-level fault judging unit 303 is also connected in communication with the first-level fault judging unit 302, for when the first-level component 501 has a fault that is judged as a second-level fault by the first-level fault judging unit 302 , it is judged whether the failure of the first-level component 501 is a third-level failure.
  • the classification of the first-level components 501, second-level components 502, and third-level components 503 is determined according to the principle of minimal damage in the event of a part/assembly failure. For example, when a part fails, it may lead to a first-level failure as well as a second-level failure, then the part is set to belong to the first-level component 501; if the part failure can only lead to a second-level failure, then the part It is set to belong to the second-level component 502 .
  • the first-level fault refers to a fault that only affects the normal operation of the part itself;
  • the second-level fault refers to a fault that affects the normal operation of the component or subsystem where the part is located;
  • the third-level fault refers to the overall normal operation of the surgical robot. work failure.
  • the first-level component 501 , the second-level component 502 and the third-level component 503 may be physical objects or virtual objects.
  • the robotic arm circuit is provided on the robotic arm
  • the manipulator communication device and the system power supply that provides power for the medical robot 10 as the third-level component 503, and the system communication device installed between the systems are all real objects.
  • the pose of the end of the robotic arm as the second-level component 502 is a virtual object, which is essentially a verification result.
  • the pose of the end of the manipulator can be obtained by using the kinematics equation.
  • a pose sensor is set at the end of the device, and the manipulator is obtained based on the joints.
  • the posture of the end is compared with the posture of the end obtained by the posture sensor, and it is judged whether it is within the allowable error range.
  • the first stage component 501 includes a first manipulator joint attachment located at a joint used to control the end position of the manipulator, when the first manipulator joint attachment fails, the first stage The fault judgment unit 302 judges that it is a first-level fault.
  • the first-level component 501 includes a second manipulator joint attachment located at the joint used to control the posture of the end of the manipulator. When the second manipulator joint attachment fails, the first-level fault judging unit 302 judges that: Level 2 failure. "Located" here is not limited to contact in the physical sense, but also includes coupling, connection, and logical connection or cooperation relationship.
  • the failure detection unit 301 detects that one or more of the joint drivers for driving the fourth joint, fifth joint, sixth joint and seventh joint in the actuator arm fail, the failure The detection unit 301 sends the fault information to the first-level fault judgment unit 302 .
  • the fault information includes the type of the faulty component, the location of the faulty component, and the like. Since the failure of the joint driver for driving the fourth joint, fifth joint, sixth joint and seventh joint in the executive arm only affects the posture adjustment of the executive arm, not the position adjustment of the executive arm, only the fourth joint
  • the joint drivers of the joint, fifth joint, sixth joint and seventh joint are shielded. Preferably, the fourth joint, the fifth joint, the sixth joint and the seventh joint are also shielded.
  • the joints used to control the posture of the end of the actuator arm are locked by their corresponding joint brakes, while the joints used to control the position of the end of the actuator arm are locked.
  • the joints of the joints do not need to be locked by the joint brake, so that the actuator arm can be adjusted out of the working space. Therefore, the first-level failure determination unit 302 determines the failure of the joint drivers for driving the fourth joint, fifth joint, sixth joint and seventh joint in the actuator arm as a first-level failure.
  • the joint drivers for driving the first joint, the second joint and the third joint in the actuator arm fail, since the three joints are used to determine the actuator arm
  • the position of the end affects the position of the surgical instrument on the human body.
  • the first-level failure determination unit 302 determines the failure of the joint drivers of the first joint, the second joint and the third joint in the actuator arm as a second-level failure. Therefore, the joint drivers corresponding to all joints of the entire executive arm are shielded. Preferably, all joints of the entire actuator arm are shielded, for example, all joints on the actuator arm are locked by corresponding joint brakes.
  • the joint motor that cooperates with the joint driver to realize the joint motion the same is true for the joint encoder used to measure the physical quantity of the joint motion and the joint brake used to release or prevent the joint motion.
  • the failure detection unit 301 detects a failure of the robotic arm circuit used to provide electric power for the movement of the execution arm
  • the failure information is sent to the second-level failure judgment unit 303 . Due to the failure of the robotic arm circuit, the robotic arm where the power supply of the robotic arm is located will not work properly.
  • a master-slave mapping can be established between other actuator arms and the main operator arm, so as not to affect the operation. The operation is performed, so the second-level fault judging unit 303 judges the failure of the robotic arm circuit as the second-level fault.
  • the second-level fault judging unit 303 receives the failure of multiple second-level components 502 related to the actuator arms at the same time, for example, when the robotic arm circuits of the two actuator arms fail at the same time, the normal operation cannot be performed because operation, so the second-level fault judgment unit 303 judges the fault as a third-level fault. The same is true for the failure of the communication piece of the manipulator, the posture of the end of the manipulator, etc.
  • the fault detection unit 301 sends the fault information to the second-level fault judgment unit 303 when it detects that the system power supply used to provide the medical robot 10 with electrical energy is faulty. Since the failure of the system power supply will cause the entire medical robot 10 to fail to work normally, the second-level fault judging unit 303 determines the failure of the system power supply as a third-level failure. It is also judged in the same way when a system communication device or the like provided between the systems fails, which will not be repeated here.
  • the fault detection unit 301 includes a first-level fault detection unit 3011 , a second-level fault detection unit 3012 and a third-level fault detection unit 3013 .
  • the first-level failure detection unit 3011 is connected in communication with the first-level component 501 and the first-level failure judgment unit 302, and is used to detect whether the first-level component 501 is faulty, and when the first-level component is detected When the 501 fails, the information of the failure of the first-level component 501 is transmitted to the first-level failure judgment unit 302; the second-level failure detection unit 3012 communicates with the second-level component 502 and the second-level
  • the fault judging unit 303 is communicatively connected to detect whether the second-level component 502 is faulty, and when detecting that the second-level component 502 is faulty, transmit information that the second-level component 502 is faulty to the second-level fault Judging unit 303; the third-level fault detection unit 3013 is connected in communication with the third-level component 503 and
  • each main operating arm has seven joints, and the joint driver, joint motor and joint encoder (collectively referred to as “main operating arm joint accessories”) corresponding to each joint have corresponding first-level fault detection Unit 3011.
  • each actuator arm also has seven joints, and the joint driver, joint motor, joint encoder and joint holding brake (collectively referred to as “executive arm joint accessories”) corresponding to each joint have corresponding first-level fault detection units 3011.
  • the main operating arm joint attachments of the seven joints of each main operating arm correspond to a first-level fault detection unit 3011
  • the actuator arm joint attachments of the seven joints of each actuator arm correspond to a first-level failure detection unit 3011 Failure detection unit 3011. This design achieves a better balance between structural simplification and safety.
  • faults at all levels can also be classified into recoverable faults and non-recoverable faults according to whether they can be repaired by soft (eg restart, drive, reset of application software, or restoration of initialization, etc.) or physical repair.
  • the controller assembly 300 has different handling measures for recoverable faults and non-recoverable faults.
  • the first-level fault includes a first-level recoverable fault and a first-level non-recoverable fault.
  • the second-level faults include second-level recoverable faults and second-level non-recoverable faults.
  • the third-level fault includes a third-level recoverable fault and a third-level non-recoverable fault.
  • the controller assembly 300 is configured to control the first-level component 501 in failure to clear the first-level component 501 and restore the backup operating parameters.
  • the controller assembly 300 is used to control the failed component (eg, the failed first-level component).
  • Component 501/second-level component 502) clears the operating parameters of the failed component and restores the backup operating parameters.
  • the controller assembly 300 is used to control the failed component (eg, first-level component 501, second-level component 502, or third-level component 503) clears the operating parameters of the failed component and restores backed-up operating parameters.
  • the failed component eg, first-level component 501, second-level component 502, or third-level component 503
  • the controller assembly 300 When the failure of the first-level component 501 is determined to be a first-level unrecoverable failure, the controller assembly 300 is used to shield the first-level component 501 that has failed. When the failure of the first-level component 501 or the failure of the second-level component 502 is judged to be a second-level unrecoverable failure, the controller assembly 300 is used to shield the failed component (eg, the first-level failure part 501/second level part 502) and the assembly in which it is located. When the failure of the first-level component 501 , the failure of the second-level component 502 , or the failure of the third-level component 503 is determined as a third-level unrecoverable failure, the medical robot 10 is powered off and restarted.
  • the medical robot 10 further includes a warning component, and the warning component is connected in communication with the controller component 300 .
  • the warning component includes a signal light, a buzzer and an interaction processing module.
  • the controller assembly 300 controls the signal lights, the buzzer and the interactive processing module according to the determined failure category Issue a warning message.
  • the buzzer is used to send out sound signals of different beeping sound intensities and beeping frequencies to display different fault types.
  • the sound intensity of the tweet it may include three levels of loud sound, medium sound, and weak sound; according to the frequency of the tweet, it may include three levels of high frequency, medium frequency, and low frequency.
  • the signal lights are used to emit light signals of different color temperatures, frequencies and/or light intensities to indicate different fault categories.
  • the signal light is arranged on the actuator arm.
  • the actuator arm there are four actuator arms.
  • the interaction processing module is configured to display one or more combinations of text information, image information, graphic information, animation information, and video information, etc., to display different fault categories.
  • the interaction processing module is a display screen, which is respectively disposed on the doctor console cart 103 for the operator to observe and the operating trolley 204 for the auxiliary operator to observe.
  • the specific warning conditions of the warning components in the warning process are shown in the following table:
  • the fault detection unit 301 monitors the occurrence of faults.
  • the control The alarm component 300 controls the buzzer to emit a mid-frequency alarm sound
  • the interactive processing module (such as a display screen) displays graphic and text information.
  • the graphic information includes the name of the faulty component, the type of the fault, and an optional solution.
  • the controller assembly 300 controls the signal light on the corresponding actuator arm to emit slow-flashing yellow light. After receiving the restoration instruction, the controller assembly 300 clears the operating parameters of the faulty component, and restores the backed up operating parameters to the faulty component, so as to restore the component.
  • the fault detection unit 301 monitors the occurrence of faults.
  • the controller assembly The 300 control buzzer emits a mid-frequency alarm sound, the signal lights on all the actuator arms emit slow flashing yellow light, and the interactive processing module (such as the display screen) displays graphic information.
  • the graphic information includes the name of the faulty component, the type of the fault, and an optional solution.
  • the fault detection unit 301 monitors the occurrence of faults.
  • the controller component 300 controls the buzzer to emit a high-frequency alarm sound, and the interactive processing module (eg, display) to display graphic information.
  • the graphic information includes the name of the faulty component, the type of the fault, and an optional solution.
  • the controller assembly 300 will mask the first-level component 501 . As shown in FIG. 11 , if the first-level component 501 is a component of the actuator arm (for example, a joint motor, a joint driver, a joint brake, etc.
  • the The controller assembly 300 controls the signal light on the corresponding actuator arm to emit slow flashing red light. After receiving the shielding instruction, the controller assembly 300 shields the first-level component 501 in failure, that is, controls the joint corresponding to the first-level component 501 to prohibit movement. Further, since the joint for the position control of the actuator arm (hereinafter referred to as the "failure arm") where the joint is located can work normally, after the surgical instrument is removed, the joint of the control position can be manually adjusted to make the faulty arm exit the surgical space .
  • the controller assembly 300 establishes a master-slave mapping relationship between another execution arm and the master manipulation arm to resume the surgical operation. For other single-arm surgical robots, after the new actuator arm is replaced, the new actuator arm is adjusted to the surgical space, and the controller assembly 300 acquires the pose of the new actuator arm and re-controls its motion to perform the surgical operation.
  • the fault detection unit 301 monitors the occurrence of faults.
  • a second-level non-recoverable fault occurs, for example, the first-level component 501 is faulty, and the fault is judged as a second-level non-recoverable fault by the first-level fault judging unit 302, or the second-level component 502 is faulty, and the fault is determined by the first-level fault judgment unit 302.
  • the controller component 300 controls the buzzer to emit a high-frequency alarm sound, and the interactive processing module (eg, display screen) displays graphic information.
  • the graphic information includes the name of the faulty component, the type of the fault, and an optional solution.
  • the controller assembly 300 will shield the faulty component (eg, the first-level component 501 or the second-level component 502 ) or the component where the faulty component is located.
  • the faulty component is a component of the actuator arm (for example, the joint motor, joint driver, joint brake, etc. on the actuator arm used to drive the joint motion for adjusting the position of the actuator arm)
  • the control The actuator assembly 300 controls the signal light on the corresponding actuator arm to emit slow flashing red light.
  • the controller assembly 300 shields the execution arm (referred to as "faulty arm") where the faulty component is located, that is, prevents the movement of the faulty arm. Further, the faulty arm cannot be manually adjusted, and after the surgical instrument is removed, the faulty arm is adjusted to exit the surgical space. Further, for a master-slave teleoperated surgical robot, the controller assembly 300 establishes a master-slave mapping relationship between another execution arm and the master manipulation arm, so as to resume the surgical operation. For other single-arm surgical robots, after replacing a new executive arm, the controller assembly 300 will acquire the pose of the new executive arm, and then re-control its movement.
  • the fault detection unit 301 monitors the occurrence of faults.
  • the controller component The 300 control buzzer emits a high-frequency alarm sound, the signal lights on all the actuator arms emit a fast flashing red light, and the interactive processing module (such as a display screen) displays graphic information.
  • the graphic information includes the name of the faulty component, the type of the fault, and an optional solution.
  • the medical robot 10 is manually powered off and restarted to restore the medical robot 10 .
  • the application also provides a fault detection method for a medical robot, comprising the following steps:
  • Detecting each of the at least two-level components to determine whether a failure occurs wherein, the levels of the at least two-level components are set according to the influence of the medical robot's component failure on the work of the medical robot;
  • the failure is a failure of a level corresponding to the corresponding component, or a failure of a higher level than the corresponding component.
  • the number of levels includes three levels.
  • the failure when detecting a failure of any of the components at any level, it is determined that the failure is a failure at a level corresponding to the corresponding component or a failure at a level higher than the corresponding component, including at least one of the following:
  • the judged fault is the third-level unrecoverable fault
  • the power is cut off and the medical robot is restarted.
  • the medical robot includes a main manipulator arm and a plurality of actuator arms.
  • the at least two-level components include: first-level components and second-level components.
  • the fault detection method further includes: disconnecting the main operation when the first-level component with the first-level unrecoverable failure or the second-level component with the second-level unrecoverable failure is located on the execution arm on which the surgical instrument is mounted
  • the master-slave mapping relationship between the arm and the executive arm and establishes the master-slave mapping relationship with other executive arms.
  • the failure when detecting a failure of any of the components at any level, it is determined that the failure is a failure at a level corresponding to the corresponding component or a failure at a level higher than the corresponding component, including at least one of the following:
  • the first-level component 501 determines whether the failure of the first-level component 501 is a first-level fault or a second-level fault; when it is detected that the second-level component 502 is faulty When , it is judged whether the failure of the second-level component 502 is a second-level failure or a third-level failure.
  • the controller component 300 executes corresponding instructions or controls the medical robot to change the operating state.
  • the fault detection method further includes: providing a controller assembly 300, the controller assembly 300 including a fault detection unit 301, a first-level fault judging unit 302 and a second-level fault judging unit 303;
  • step S1 the fault detection unit 301 detects whether the first-level component 501, the second-level component 502 and the third-level component 503 are faulty respectively;
  • step S2 the first-level fault judging unit 302 judges whether the fault of the first-level component 501 is a first-level fault or a second-level fault; the second-level fault judging unit 303 judges the second-level component 502 Whether the fault that occurred is a secondary or tertiary fault.
  • the fault detection unit 301 includes a first-level fault detection unit 3011 , a second-level fault detection unit 3012 and a third-level fault detection unit 3013 .
  • the first-level failure detection unit 3011 detects whether the first-level component 501 fails
  • the second-level failure detection unit 3012 detects whether the second-level component 502 fails
  • the third-level failure detection unit 3012 detects whether the second-level component 502 fails.
  • the stage failure detection unit 3013 detects whether the third stage component 503 fails.
  • the first-level failure detection unit 3011 transmits the failure information of the first-level component 501 to the first-level failure judgment unit 302;
  • the second-level failure detection unit 3012 transmits the failure information of the second-level component 502 to the second-level failure judgment unit 303;
  • the third-level failure detection unit 3013 transmits the failure information of the third-level component 503 to the second-level failure judgment unit 303 .
  • the information of faults at all levels is divided into recoverable faults and non-recoverable faults according to whether the faults are recovered through soft repair (eg restart, driver, application software reset or recovery initialization, etc.) or physical repair.
  • the fault judging units at all levels have different handling measures.
  • the first-level fault includes a first-level non-recoverable fault and a first-level recoverable fault
  • the second-level fault includes a second-level non-recoverable fault and a second-level recoverable fault
  • the third Level failures include third-level unrecoverable failures and third-level recoverable failures.
  • step S2 when the failure of the first-level component is judged to be a first-level unrecoverable failure, the first-level component in failure is shielded; the failure of the first-level component or the second-level component When the fault is judged to be a second-level unrecoverable fault, shield the faulty component and its component; the failure of the first-level component, the second-level component or the third-level component is judged as the first-level component failure.
  • the third-level non-recoverable fault occurs, the power is cut off and the medical robot is restarted.
  • step S2 when the failure of the first-level component is determined to be a first-level recoverable failure, the operating parameters of the first-level component that has failed are cleared and the backup operating parameters are restored;
  • the failure of the first-level component or the failure of the second-level component is judged as the second-level recoverable failure, the operating parameters of the faulty component are cleared and the backup operating parameters are restored;
  • the failure of the first-level component, the second-level component failure When a component failure or a third-level component failure is judged as a third-level recoverable failure, the operating parameters of the failed component are cleared and the backup operating parameters are restored.
  • the The controller component 300 controls the warning component to generate warning information.
  • the medical device such as an orthopaedic robot only includes an actuator arm, and a surgical path of the actuator arm needs to be set before or during surgery.
  • the surgical path is set in the execution arm control unit, and the surgical path includes the desired postures of the execution arm and the surgical instrument/endoscope 401 at multiple time points.
  • the execution arm control unit controls the joint driver to drive the joint motor to rotate according to the surgical path, so as to move the execution arm and the surgical instrument/endoscope 401 to a desired posture.
  • the surgical path further includes the desired velocity and/or the desired acceleration of the execution arm and the surgical instrument/endoscope 401 at multiple time points.
  • Other aspects are similar to the above-mentioned teleoperated surgical robot, and will not be repeated here.
  • the present application also discloses a storage medium storing a computer program, and when the computer program is executed by a processor, the above-mentioned fault detection method for a medical robot is implemented.
  • the processor may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated Circuits) , ASIC), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the processor is the control center of the electronic device, and uses various interfaces and lines to connect various parts of the entire electronic device.
  • the storage medium of the embodiments of the present application may adopt any combination of one or more computer-readable mediums.
  • the readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in combination with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Computer program code for carrying out the operations of the present application may be written in one or more programming languages, including object-oriented programming languages - such as Java, Smalltalk, C++, but also conventional Procedural programming language - such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider to connect through the Internet) ).
  • LAN local area network
  • WAN wide area network
  • Internet service provider to connect through the Internet

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

本申请提供了一种医疗机器人,包括第一级部件、第二级部件、第三级部件和控制器组件;所述控制器组件包括故障检测单元、第一级故障判断单元和第二级故障判断单元;所述故障检测单元用于检测第一级部件、第二级部件和第三级部件是否发生故障;第一级故障判断单元与故障检测单元通信连接,用于当第一级部件发生故障时判断该故障为第一级故障还是第二级故障;第二级故障判断单元与故障检测单元通信连接,用于当第二级部件发生故障时判断该故障为第二级故障还是第三级故障,及时检测并判断医疗机器人在手术过程中的故障,以便于及时应对故障,提高手术过程的安全性和连贯性。本申请还提供了一种医疗机器人的故障检测方法及存储介质。

Description

一种医疗机器人、故障检测方法及存储介质
本申请要求于2020年12月30日提交中国专利局,申请号为202011601504.0,申请名称为“一种医疗机器人、故障检测方法及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗器械技术领域,尤其涉及一种医疗机器人、故障检测方法及存储介质。
背景技术
手术机器人其设计理念是采用微创伤方式,精准地实施复杂的外科手术。在传统的手术面临种种局限的情况下,发展出了手术机器人来替代传统手术,手术机器人突破了人眼的局限,采用立体成像技术,将内部器官更加清晰的呈现给操作者。在原来手伸不进的区域,机器手能完成360度转动、挪动、摆动、夹持,并避免抖动。创口小,出血少,恢复快,大大缩短了患者术后住院时间,术后存活率和康复率也能明显提高,受到广大医患的青睐,现在作为一种高端医疗器械,已广泛运用于各种临床手术中。
腔镜手术机器人系统是多机械臂协同控制系统,现有机器人安全软件系统一般采取统一控制方案,当机器人的单条机械臂或单个关节发生故障时,机器人整机系统都会进入故障模式,尤其是当出现单臂或单关节不可恢复故障时,手术甚至会被迫中断,严重影响机器人手术操作的连贯性和用户操作体验感。
现有技术中所公开的方法仅仅对手术机器人系统进行故障检测,而往往手术故障的具体类型并不一定能够通过直接检测得到,从而影响故障检测结果的准确性,不利于后续进行处理。
因此,有必要提供一种新型的医疗机器人、故障检测方法及存储介质以解决现有技术中存在的上述问题。
发明内容
本申请的目的在于提供一种医疗机器人、故障检测方法及存储介质,有效提高了手术过程的安全性。
为实现上述目的,本申请的所述一种医疗机器人,包括:
至少两级部件,其中,所述至少两级部件的级别是根据所述医疗机器人的零件故障对所述医疗机器人的工作影响而设置的;
控制器组件,包括故障检测单元和至少一级故障判断单元;
所述故障检测单元,用于检测各级部件是否发生故障;
其中,每一级所述故障判断单元与所述故障检测单元通信连接;所述故障判断单元用于当所述至少两级部件中的任一级部件发生故障时,判断该故障为与相应部件对应级别的故障、或高于对应部件级别的故障。
本申请的有益效果在于:故障检测单元用于检测各级部件是否发生故障,每一级故障判断单元与所述故障检测单元通信连接,用于当所述第一级部件发生故障时判断为第一级故障还是第二级故障,第二级故障判断单元与所述故障检测单元通信连接,用于当所述至少两级部件中的任一级部件发生故障时判断该故障为与相应部件对应级别的故障、或高于对应部件级别的故障,在医疗机器人出现故障时及时检测并判断故障的具体情况,以提高手术过程的安全性和连贯性。
本申请还提供了一种医疗机器人的故障检测方法,包括如下步骤:
检测至少两级部件中的每一级部件是否发生故障;其中,所述至少两级部件的级别是根据所述医疗机器人的零件故障对所述医疗机器人的工作影响而设置的;
在检测其中的任一级部件发生故障时,判断该故障为与相应部件对应级别的故障、或高于对应部件级别的故障。
本检测方法的有益效果在于:上述方法通过检测至少两级部件中的每一级部件是否发生故障,并在检测其中的任一级部件发生故障时判断该故障为与相应部件对应级别的故障、或高于对应部件级别的故障,从而快速确定故障类型,及时应对故障,提高医疗机器人在手术过程中的安全性。
本申请还提供了一种存储介质,存储有计算机程序,所述计算机程序在被处理器执行时实现上述的医疗机器人的故障检测方法。
附图说明
图1为本申请的一个实施例中医疗机器人的组成示意图;
图2为本申请的一个实施例中医疗机器人的床旁端示意图;
图3为本申请的一个实施例中医疗机器人的控制端示意图;
图4为本申请的一个实施例中医疗机器人的故障检测结构框图;
图5为本申请的一个实施例中医疗机器人的部件层级分类图;
图6为本申请的一个实施例中医疗机器人的主从控制示意图;
图7为本申请的一个实施例中医疗机器人的机械臂系统故障检测示意图;
图8为本申请的一个实施例中医疗机器人的故障类型判断处理示意图;
图9为本申请的一个实施例中医疗机器人在发生第一级可恢复故障或第二级可恢复故障时的故障处理流程示意图;
图10为本申请的一个实施例中医疗机器人在发生第三级可恢复故障时的故障处理流程示意图;
图11为本申请的一个实施例中医疗机器人在发生第一级不可恢复故障时的故障处理流程示意图;
图12为本申请的一个实施例中医疗机器人在发生第二级不可恢复故障时的故障处理流程示意图;
图13为本申请的一个实施例中医疗机器人在发生第三级不可恢复故障时的故障处理流程示意图;
图14为本申请的一个实施例中故障检测方法的整体流程图。
附图标号:
10-医疗机器人;
100-控制端;101-第一主操作臂;102-第二主操作臂;103-医生控制台车;
200-床旁端;201-第一执行臂;202-第二执行臂;203-第三执行臂;204-手术台车;
300-控制器组件;301-故障检测单元;3011-第一级故障检测单元;3012-第二级故障检测单元;3013-第三级故障检测单元;302-第一级故障判断单元;303-第二级故障判断单元;
401-内窥镜;402-图像处理器;403-第一立体显示器;404-第二立体显示器;
501-第一级部件;502-第二级部件;503-第三级部件。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。除非另外定义,此处使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。本文中使用的“包括”等类似的词语意指出现该词前面的元件或者物件涵盖出 现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
针对现有技术存在的问题,本申请提供了一种医疗机器人包括至少两级部件,控制器组件和故障检测单元,其中,至少两级部件的级别是根据医疗机器人的零件故障对所述医疗机器人的工作影响而设置的;控制器组件包括故障检测单元和至少一级故障判断单元;故障检测单元用于检测各级部件是否发生故障。
每一级故障判断单元与所述故障检测单元通信连接;故障判断单元用于当所述至少两级部件中的任一级部件发生故障时,判断该故障为与相应部件对应级别的故障、或高于对应部件级别的故障。
在一实施例中,至少一级故障判断单元包括第一级故障判断单元和第二级故障判断单元。第二级故障判断单元与第一级故障判断单元通信连接,用于当至少两级部件中的第一级部件发生的故障被第一级故障判断单元判断为第二级故障时,判断第一级部件发生的故障为第二级故障或第三级故障。
在一实施例中,至少两级部件包括:第一级部件和第二级部件。至少一级故障判断单元包括:第一级故障判断单元和第二级故障判断单元。故障检测单元包括第一级故障检测单元和第二级故障检测单元。
第一级故障检测单元与第一级部件、第一级故障判断单元通信连接,用于检测第一级部件是否发生故障,并当检测到第一级部件发生故障时,将第一级部件发生故障的信息传输给第一级故障判断单元。
第二级故障检测单元与第二级部件、第二级故障判断单元通信连接,用于检测第二级部件是否发生故障,并当检测到第二级部件发生故障时,将第二级部件发生故障的信息传输给第二级故障判断单元。
在一实施例中,至少两级部件还包括:第三级部件。故障检测单元还包括第三级故障检测单元。
第三级故障检测单元与第三级部件、第二级故障判断单元通信连接,用于检测第三级部件是否发生故障,并当检测到第三级部件发生故障时,将第三级部件发生故障的信息传输给第二级故障判断单元。
当其中的故障判断单元确定至少两级部件中的低于最高级的任一级部件的故障为不可恢复故障时,控制器组件控制发生故障的相应级部件被屏蔽。
当其中的故障判断单元确定至少两级部件中的最高级部件的故障为不可恢复故障时,医疗机器人被控制断电重新启动。
在一实施例中,医疗机器人包括主操作臂和多个执行臂;至少两级部件包括:第一级部件和第二级部件。
当发生第一级不可恢复故障的第一级部件或发生第二级不可恢复故障的第二级部件位于挂载手术器械的执行臂上时,控制器组件用于控制主操作臂与该执行臂断开主从映射关系,并与其他执行臂建立主从映射关系。
至少两级部件中的第一级部件包括位于用以控制机械臂末端位置的关节的第一机械臂关节附件。第一机械臂关节附件对应的故障为第一级故障。
至少两级部件中的第一级部件还包括位于用以控制机械臂末端姿态的关节的第二机械臂关节附件。第二机械臂关节附件对应的故障为第二级故障。
当发生第一级可恢复故障时,控制器组件控制发生故障的第一级部件清除第一级部件的运行参数并恢复备份的运行参数。
当发生第二级可恢复故障时,控制器组件控制发生故障的第一级部件或第二级部件清除运行参数并恢复备份的运行参数。
至少两级部件还包括第三级部件;当发生第三级可恢复故障时,控制器组件控制发生故障的第一级部件、第二级部件、或第三级部件清除运行参数并恢复备份的运行参数。
在一实施例中,至少两级部件包括:第一级部件、第二级部件、和第三级部件中的至少两种。
至少两级部件中第一级部件包括关节编码器,关节驱动器,关节电机,关节抱闸中的一种或多种。
至少两级部件中的第二级部件包括机械臂电路、机械臂通信件、设置于机械臂末端位姿中的一种或多种。
至少两级部件中的第三级部件包括为所述医疗机器人提供电能的系统电源和系统通信件中的一种或多种。
在一实施例中,医疗机器人还包括示警组件。示警组件与控制器组件通信连接。当第一级部件、第二级部件和第三级部件中的任意一个部件发生故障时,控制器组件用于根据判断得到的故障类别,控制示警组件发出示警信息。
至少两级部件所对应的部件级别是依据以下故障级别中的至少两级而确定的:影响零件自身正常工作的故障;影响零件所在组件或子系统正常工作的故障;以及影响医疗机器人整体正常工作的故障。
在一实施例中,如图4所示,所述医疗机器人10包括,
第一级部件501;
第二级部件502;
第三级部件503;
控制器组件300;
所述控制器组件300包括故障检测单元301,第一级故障判断单元302和第二级故障判断单元303;
所述故障检测单元301用于检测第一级部件501、第二级部件502和第三级部件503是否发生故障;
第一级故障判断单元302与所述故障检测单元301通信连接,用于当所述第一级部件501发生故障时判断为第一级故障还是第二级故障;
第二级故障判断单元303与所述故障检测单元301通信连接,用于当所述第二级部件502发生故障时判断是第二级故障还是第三级故障。
下面以遥操作手术机器人为例做解释性说明,本领域技术人员应理解本申请的医疗机器人不限于遥操作手术机器人,还可以是骨科机器人,导管机器人等其他医疗机器人。
如图1-3所示,所述医疗机器人10包括机械臂系统,内窥镜系统,手术辅助系统以及控制器组件300。
如图6所示,所述机械臂系统包括多个机械臂,用于手术操作。所述机械臂包括机械臂本体。所述机械臂本体包括多个关节、连接件,所述连接件通过关节彼此连接。本实施例中,所述连接件通过关节串联。示范性的,所述机械臂本体包括七个关节,即第一关节,第二关节,第三关节,第四关节,第五关节,第六关节和第七关节。其中,第一关节,第二关节,第三关节用于控制机械臂末端的位置,第四关节,第五关节,第六关节和第七关节用于控制机械臂末端的姿态。在其他实施例中,机械臂本体可以是并联的,或者是混联的(即部分并联,部分串联)。所述机械臂还包括关节编码器。所述关节编码器用于获取关节转动的角度。由于机械臂本体包括多个关节,而每个关节都配置有关节编码器,用于获取每个关节的状态。
进一步,所述机械臂还包括关节驱动器和关节电机。所述关节驱动器用于根据控制器组件300的驱动指令驱动关节电机转动。所述关节电机用于带动关节转动。进一步,所述 机械臂还包括关节抱闸,所述关节抱闸在所述控制器组件300控制下用于阻止所述关节转动。
进一步,每个机械臂包括有七个关节,每个关节都对应有关节驱动器、关节电机以及关节编码器。部分机械臂的关节还对应有关节抱闸。关节所对应的这些零件在本实施例中统称为机械臂关节附件。所述机械臂还包括机械臂通信件,用于将同一机械臂上的各个机械臂关节附件与控制器组件300通信连接。例如,所述机械臂通信件用于将七个关节对应的所述关节编码器的信息传输给控制器组件300。所述控制器组件300根据关节编码器反馈的角度获取所述机械臂本体在笛卡尔空间的位姿。相应的,所述机械臂通信件还用于将控制器组件300与七个关节对应的所述关节驱动器通信连接。本实施例对机械臂通信件的网络布局没有特别的限制,例如采用菊花链线性网络,星形网络,网状网络。
进一步,所述机械臂还包括机械臂电路,所述机械臂电路用于将外部电能提供给关节编码器、关节驱动器、关节电机和关节抱闸等。
在本实施例中,医疗机器人10为遥操作手术机器人,包括控制端100和床旁端200。所以,所述机械臂系统包括位于控制端100的主操作臂和位于床旁端200的执行臂,所述主操作臂和执行臂之间形成主从控制关系。所述主操作臂用于接收操作者的操作指令。执行臂的末端连接手术器械或者内窥镜401,执行臂用于驱动手术器械或内窥镜401围绕一不动点转动。所述控制器组件300包括执行臂控制单元。所述执行臂控制单元包括预设的主从映射关系,并根据所述主操作臂的姿态,获取执行臂和手术器械/内窥镜401的期望姿态,并控制所述关节驱动器驱动所述关节电机转动,以使执行臂和手术器械/内窥镜401运动至期望的姿态。如图1和图2所示,所述机械臂系统包括了三个执行臂,即第一执行臂201,第二执行臂202和第三执行臂203。如图1和图3所示,所述机械臂系统包括了两个主操作臂,即第一主操作臂101和第二主操作臂102。
所述内窥镜系统,用于从人体内部获取手术信息(例如病灶形态,以及病灶附近血管、组织形态,手术器械的位姿等)并以视频流的形式予以展示。所述内窥镜系统包括内窥镜401,图像处理器402以及立体显示器。所述内窥镜401挂载于所述第二执行臂202上,远端通过人体表面创口进入人体内部,以获取关于手术信息的视频流。所述图像处理器402用于对视频流进行例如消噪、图像增强等处理。所述立体显示器用于显示经过处理后的视频流。所述立体显示器可以为一个或多个。如图1所示,立体显示器为两个,即第一立体显示器403位于所述控制端100,供操作者观看;所述第二立体显示器404位于所述床旁端200,供辅助人员观看。
所述辅助系统用于辅助手术操作。所述辅助系统包括位于控制端100的医生控制台车103和位于旁床端200的手术台车204。所述医生控制台车103用于支撑所述机械臂系统中的主操作臂(例如第一主操作臂101和第二主操作臂102),内窥镜系统中的第一立体显示器403。所述手术台车204用于支撑所述机械臂系统中的执行臂(例如第一执行臂201,第二执行臂202和第三执行臂203),调整执行臂相对于患者的位置。辅助系统还可以包括用于控制医疗机器人10运行参数的输入输出组件。例如,所述输入输出组件包括手术台触摸屏205,所述手术台触摸屏205用于控制所述手术台车204的运动。进一步,所述辅助系统还可以包括系统电源,所述系统电源用于为医疗机器人10提供电能。所述系统电源可以包滤波电路,升压、降压电路,交直流转换电路中一个或多个,以为各个系统提供所需的电能。在另外一些实施例中,医疗机器人10采用分布式电源,所述系统电源用于为医疗机器人10核心系统提供电能,而其他系统则由其他电源提供电能。
更进一步,所述内窥镜系统、手术辅助系统与所述控制器组件300之间通过系统通信件之间通信连接。
如图4所示,所述控制器组件300还包括故障检测单元301,第一级故障判断单元302和第二级故障判断单元303。所述故障检测单元301用于检测第一级部件501、第二级部件502和第三级部件503是否发生故障。第一级故障判断单元302与所述故障检测单元301通信连接,用于当所述第一级部件501发生故障时判断为第一级故障还是第二级故障。第二级故障判断单元303与所述故障检测单元301通信连接,用于当所述第二级部件502发生故障时判断是第二级故障还是第三级故障。进一步,所述控制器组件300根据第一级故障判断单元302、第二级故障判断单元303判断出的故障类型,执行相应的指令或控制所述医疗机器人改变操作状态。优选,第二级故障判断单元303还与所述第一级故障判断单元302通信连接,用于当所述第一级部件501发生的故障被第一级故障判断单元302判断为第二级故障时,判断所述第一级部件501发生的故障是否是第三级故障。
所述第一级部件501、第二级部件502和第三级部件503的分级根据零件/组件发生故障时最小损害程度的原则来确定。例如,零件发生故障时可能导致第一级故障也有可能导致第二级故障,那么将该零件设定属于第一级部件501;如果零件发生故障时只可能导致第二级故障,那么将该零件设定为属于第二级部件502。在本实施例中,第一级故障是指只影响零件自身正常工作的故障;第二级故障是指影响零件所在组件或子系统正常工作的故障;第三级故障是指影响手术机器人整体正常工作的故障。所述第一级部件501、第二级部件502和第三级部件503既可以为实物,也可以为虚拟物。
如图5所示,作为所述第一级部件501的机械臂上的关节编码器,关节驱动器,关节电机,关节抱闸;作为所述第二级部件502的机械臂电路,设置于机械臂的机械臂通信件以及作为第三级部件503的为医疗机器人10提供电能的系统电源,设置于系统间的系统通信件均为实物。而作为第二级部件502的机械臂末端位姿则为一个虚拟物,其实质为一个校验结果。一般而言,根据关节的运动状态,运用运动学方程可以获得机械臂末端的位姿,为了防止机械臂的关节之间的累积误差所以在器械末端设置位姿传感器,并对基于关节获得机械臂末端的位姿和姿态传感器获得的末端位姿进行比较,判断是否在允许的误差范围内。
在一些实施例中,所述第一级部件501包括位于用以控制机械臂末端位置的关节的第一机械臂关节附件,当所述第一机械臂关节附件发生故障时,所述第一级故障判断单元302判断为第一级故障。所述第一级部件501包括位于用以控制机械臂末端姿态的关节的第二机械臂关节附件,当所述第二机械臂关节附件发生故障时,所述第一级故障判断单元302判断为第二级故障。这里的“位于”,不局限于物理意义上的接触,还包括耦合、连接以及逻辑上的联系或配合关系。具体而言,所述故障检测单元301检测到用于驱动所述执行臂中的第四关节,第五关节,第六关节和第七关节的关节驱动器中的一个或多个发生故障时,故障检测单元301将故障信息发送给第一级故障判断单元302。所述故障信息包括故障部件的类型,故障部件的位置等。由于驱动所述执行臂中的第四关节,第五关节,第六关节和第七关节的关节驱动器的故障只影响执行臂的姿态调整,而不影响执行臂的位置调整,所以只对第四关节,第五关节,第六关节和第七关节的关节驱动器进行屏蔽。优选,还对第四关节,第五关节,第六关节和第七关节进行屏蔽,例如用于控制执行臂末端姿态的关节被各自对应的关节抱闸抱死,而用于控制执行臂末端位置的关节则可以不需要被关节抱闸抱死,以便于将执行臂调整离开工作空间。所以,所述第一级故障判断单元302将用于驱动所述执行臂中的第四关节,第五关节,第六关节和第七关节的关节驱动器的故障判定为第一级故障。另一方面,当用于驱动所述执行臂中的第一关节,第二关节和第三关节的关节驱动器中的一个或多个发生故障时,由于该三个关节用于确定所述执行臂末端的位置,影响手术器械的作用于人体的位置。因此,所述第一级故障判断单元302将执行臂中的第一关节、第二关节和第三关节的关节驱动器的故障判定为第二级故障。所以对整个 执行臂的所有关节对应的关节驱动器进行屏蔽。优选,对整个执行臂的所有关节进行屏蔽,例如执行臂上所有的关节都被对应的关节抱闸抱死。对于与关节驱动器配合实现关节运动的关节电机,对用于测量关节运动物理量的关节编码器以及用于释放或阻止关节运动的关节抱闸等发生故障时同样如此判断。
在一些实施例中,如图6所示,所述故障检测单元301检测到用于为执行臂运动提供电能的机械臂电路发生故障时,将故障信息发送给第二级故障判断单元303。由于机械臂电路的故障将导致机械臂电源所在的机械臂无法正常工作,对于多个执行臂的遥操作手术机器人而言,可以将其他的执行臂与主操作臂建立主从映射,进而不影响手术操作,所以第二级故障判断单元303将机械臂电路的故障判断为第二级故障。另一方面,如果第二级故障判断单元303同时收到多个与执行臂相关的第二级部件502发生故障,例如两个执行臂的机械臂电路同时发生故障时,由于无法开展正常的手术操作,所以第二级故障判断单元303将该故障判断为第三级故障。对于机械臂通信件、机械臂末端位姿等发生故障时同样如此判断。
在一些实施例中,所述故障检测单元301检测到用于为医疗机器人10提供电能的系统电源发生故障时,将故障信息发送给第二级故障判断单元303。由于系统电源的故障将导致整个医疗机器人10无法正常工作,因此第二级故障判断单元303将系统电源的故障判断为第三级故障。设置于系统间的系统通信件等发生故障时同样如此判断,此处不再赘述。
进一步,如图4所示,所述故障检测单元301包括第一级故障检测单元3011,第二级故障检测单元3012和第三级故障检测单元3013。所述第一级故障检测单元3011与所述第一级部件501、所述第一级故障判断单元302通信连接,用于检测第一级部件501是否发生故障,并当检测到第一级部件501发生故障时,将第一级部件501发生故障的信息传输给所述第一级故障判断单元302;所述第二级故障检测单元3012与所述第二级部件502、所述第二级故障判断单元303通信连接,用于检测第二级部件502是否发生故障,并当检测到第二级部件502发生故障时,将第二级部件502发生故障的信息传输给所述第二级故障判断单元303;所述第三级故障检测单元3013与所述第三级部件503、所述第二级故障判断单元303通信连接,用于检测第三级部件503是否发生故障,并当检测到第三级部件503发生故障时,将第三级部件503发生故障的信息传输给所述第二级故障判断单元303。
如图7所示,每个主操作臂有七个关节,每个关节所对应的关节驱动器、关节电机以及关节编码器(统称“主操作臂关节附件”)都有对应的第一级故障检测单元3011。同样,每个执行臂也具有七个关节,每个关节所对应的关节驱动器、关节电机、关节编码器以及关节抱闸(统称“执行臂关节附件”)都有对应的第一级故障检测单元3011。在另外一个实施例中,每个主操作臂的七个关节的主操作臂关节附件对应一个第一级故障检测单元3011,每个执行臂的七个关节的执行臂关节附件对应一个第一级故障检测单元3011。如此设计,在结构简化和安全性之间获得较好的平衡。
进一步,各级故障还可以根据是否可以通过软修复(例如重新启动,驱动、应用软件重置或恢复初始化等),还是物理修复分为可恢复故障和不可恢复故障。对于可恢复故障和不可恢复故障,所述控制器组件300有不同的处理措施。
具体而言,所述第一级故障包括第一级可恢复故障和第一级不可恢复故障。所述第二级故障包括第二级可恢复故障和第二级不可恢复故障。所述第三级故障包括第三级可恢复故障和第三级不可恢复故障。
在一个实施例中,第一级故障检测单元3011/第二级故障检测单元3012判断出故障的类型后,针对不同类型的故障采取不同的处理措施。如图8所示,当所述第一级部件501的故障被判断为第一级可恢复故障时,所述控制器组件300用于控制发生故障的第一级部件501清除第一级部件501的运行参数并恢复备份的运行参数。当所述第一级部件501的故 障或者第二级部件502的故障被判断为第二级可恢复故障时,所述控制器组件300用于控制发生故障的部件(例如发生故障的第一级部件501/第二级部件502)清除发生故障的部件的运行参数并恢复备份的运行参数。当所述第一级部件501的故障、第二级部件502的故障或第三级部件503的故障被判断为第三级可恢复故障时,所述控制器组件300用于控制发生故障的部件(例如第一级部件501、第二级部件502或第三级部件503)清除发生故障部件的运行参数并恢复备份的运行参数。
当所述第一级部件501的故障被判断为第一级不可恢复故障时,所述控制器组件300用于屏蔽发生故障的第一级部件501。当所述第一级部件501的故障或者第二级部件502的故障被判断为第二级不可恢复故障时,所述控制器组件300用于屏蔽发生故障的部件(例如发生故障的第一级部件501/第二级部件502)以及其所在的组件。当所述第一级部件501的故障、第二级部件502的故障或第三级部件503的故障被判断为第三级不可恢复故障时,将所述医疗机器人10断电重新启动。
进一步,所述医疗机器人10还包括示警组件,所述示警组件与所述控制器组件300通信连接。所述示警组件包括信号灯、蜂鸣器以及交互处理模块。当第一级部件501、第二级部件502和第三级部件503中的任意一个部件发生故障时,所述控制器组件300根据判断得到的故障类别,控制信号灯、蜂鸣器以及交互处理模块发出示警信息。
优选,所述蜂鸣器用于发出不同鸣叫声音强度和鸣叫频率的声信号,以显示不同的故障类别。示范性的,根据鸣叫声音强度,可包括为声音大、声音中、声音弱三挡;根据鸣叫的频率,可包括高频率、中频率、低频率三挡。
优选,所述信号灯用于发出不同色温、频率和/或光强的光信号,以显示不同的故障类别。优选的,所述信号灯设置于所述执行臂上。示范性的,所述执行臂为四个。相应的,所述信号灯也是四个,每个信号灯设置于一个执行臂上。当特定的执行臂发生故障时,相对应的信号灯被控制发出光信号。
优选,所述交互处理模块用于显示文字信息、图像信息、图形信息、动画信息及视频信息等中的一种或多种组合,以显示不同的故障类别。示范性的,所述交互处理模块为显示屏,分别设置于所述医生控制台车103,用于供操作者观察和手术台车204,用于供辅助操作者观察。
在一个实施例中,不同级别的组件发生不同类型的故障时候,示警组件在示警过程的具体示警情况如下表格所示:
Figure PCTCN2021123229-appb-000001
Figure PCTCN2021123229-appb-000002
在一些实施例中,如图9所示,医疗机器人10开机后,故障检测单元301监控故障的发生。当第一级部件501或第二级部件502发生故障,并且故障被第一级故障判断单元302/第二级故障判断单元303判断为第一级/第二级可恢复故障时,所述控制器组件300控制蜂鸣器发出中频率报警声音,交互处理模块(例如显示屏)显示图文信息。所述图文信息包括发生故障的组件名称,发生故障的类型以及可选择的解决方案。如果发生故障的部件为执行臂的组成部分,则所述控制器组件300控制对应的执行臂上的信号灯发出慢闪的黄光。在接收到恢复的指令后,所述控制器组件300清除发生故障的部件的运行参数,并将备份的运行参数恢复到发生故障的部件,以实现该部件的恢复。
在一些实施例中,如图10所示,医疗机器人10开机后,故障检测单元301监控故障的发生。当判断第三级可恢复故障发生,例如第二级部件502/第三级部件503发生故障,并且故障被第二级故障判断单元303判断为第三级可恢复故障时,所述控制器组件300控制蜂鸣器发出中频率报警声音,所有执行臂上的信号灯发出慢闪的黄光,交互处理模块(例如显示屏)显示图文信息。所述图文信息包括发生故障的组件名称,发生故障的类型以及可选择的解决方案。在接收到恢复的指令后,所述控制器组件300清除第三级部件503的运行参数,并将备份的运行参数恢复到第三级部件503,以实现第三级部件503恢复。
在一些实施例中,医疗机器人10开机后,故障检测单元301监控故障的发生。当第一级部件501发生故障,并且故障被第一级故障判断单元302判断为第一级不可恢复故障时,所述控制器组件300控制蜂鸣器发出高频率报警声音,交互处理模块(例如显示屏)显示图文信息。所述图文信息包括发生故障的组件名称,发生故障的类型以及可选择的解决方案。在接受屏蔽指令后,所述控制器组件300将屏蔽该第一级部件501。如图11所示,如果第一级部件501为执行臂的组成部分(例如执行臂上的用于驱动调整执行臂姿态的关节运动的关节电机、关节驱动器、关节抱闸等),则所述控制器组件300控制对应的执行臂上的信号灯发出慢闪的红光。在接收到屏蔽的指令后,所述控制器组件300屏蔽发生故障的第一级部件501,即控制该第一级部件501所对应的关节禁止运动。进一步,由于该关节所在的执行臂(下称“故障臂”)用于控制位置的关节可以正常工作,所以在移除手术器械后,可以手动调整控制位置的关节,以使故障臂退出手术空间。进一步,对于主从式遥操作手术机器人,所述控制器组件300将另外一执行臂于主操作臂之间建立主从映射关系,以恢复手术操作。而对于其他单臂手术机器人,在更换新的执行臂之后,将新的执行臂调整至手术空间,所述控制器组件300获取新执行臂的位姿,并重新控制其运动以执行手术操作。
在一些实施例中,医疗机器人10开机后,故障检测单元301监控故障的发生。当判断发生第二级不可恢复故障,例如第一级部件501发生故障,并且故障被第一级故障判断单元302判断为第二级不可恢复故障,或者第二级部件502发生故障,并且故障被第二级故障判断单元303判断为第二级不可恢复故障时,所述控制器组件300控制蜂鸣器发出高频率报警声音,交互处理模块(例如显示屏)显示图文信息。所述图文信息包括发生故障的组件名称,发生故障的类型以及可选择的解决方案。在接受屏蔽指令后,所述控制器组件300将屏蔽该发生故障的部件(例如第一级部件501或者第二级部件502)或者发生故障的部件所在的组件。如图12所示,如果发生故障的部件为执行臂的组成部分(例如执行臂上的用于驱动调整执行臂位置的关节运动的关节电机、关节驱动器、关节抱闸等),则所述控制器组件300控制对应的执行臂上的信号灯发出慢闪的红光。在接收到屏蔽的指令后,所述控制器组件300屏蔽发生故障的部件所在的执行臂(简称“故障臂”),即阻止该故障臂运 动。进一步,所述故障臂不可以被手动调整,在手术器械被移除后,调整故障臂以退出手术空间。进一步,对于主从式遥操作手术机器人,所述控制器组件300将另一执行臂于主操作臂之间建立主从映射关系,以恢复手术操作。而对于其他单臂手术机器人,在更换新的执行臂之后,所述控制器组件300将获取新执行臂的位姿后,重新控制其运动。
在一些实施例中,如图13所示,医疗机器人10开机后,故障检测单元301监控故障的发生。当判断发生第三级不可恢复故障,例如第二级部件502/第三级部件503发生故障,并且故障被第二级故障判断单元303判断为第三级不可恢复故障时,所述控制器组件300控制蜂鸣器发出高频率报警声音,所有执行臂上的信号灯发出快闪的红光,交互处理模块(例如显示屏)显示图文信息。所述图文信息包括发生故障的组件名称,发生故障的类型以及可选择的解决方案。医疗机器人10被手动断电重启,以恢复医疗机器人10。
本申请还提供了一种医疗机器人的故障检测方法,包括如下步骤:
检测至少两级部件中的每一级部件以判断是否发生故障;其中,至少两级部件的级别是根据所述医疗机器人的零件故障对所述医疗机器人的工作影响而设置的;
在检测其中的任一级部件发生故障时,判断该故障为与相应部件对应级别的故障、或高于对应部件级别的故障。
在一实施例中,级别的数量包含三个级别,在判断其中的第一级部件的故障为第二级故障时,还判断第一级部件发生的故障是否为第三级故障。
在一实施例中,在检测其中的任一级部件发生故障时,判断该故障为与相应部件对应级别的故障、或高于对应部件级别的故障,包括以下至少一种:
当判断的故障为第一级不可恢复故障时,屏蔽发生故障的部件;
当判断的故障为第二级不可恢复故障时,屏蔽发生故障的部件及其所在的组件;以及
当判断的故障为第三级不可恢复故障时,断电并重新启动所述医疗机器人。
在一实施例中,医疗机器人包括主操作臂和多个执行臂。至少两级部件包括:第一级部件和第二级部件。
该故障检测方法还包括:当发生第一级不可恢复故障的第一级部件或发生第二级不可恢复故障的第二级部件位于挂载手术器械的所述执行臂上时,断开主操作臂与该执行臂的主从映射关系,并与其他执行臂建立主从映射关系。
在一实施例中,在检测其中的任一级部件发生故障时,判断该故障为与相应部件对应级别的故障、或高于对应部件级别的故障,包括以下至少一种:
当判断为第一级可恢复故障时,清除发生故障的部件的运行参数并恢复备份的运行参数;
当判断为高于第一级可恢复故障的其他级可恢复故障时,清除发生故障的部件及其所在的组件的运行参数并恢复备份的运行参数。
在一实施例中,如图14所示,包括如下步骤:
S1、检测所述第一级部件501、第二级部件502和第三级部件503是否发生故障;
S2、在检测到所述第一级部件501发生故障时,判断所述第一级部件501发生的故障是第一级故障还是第二级故障;在检测到所述第二级部件502发生故障时,判断所述第二级部件502发生的故障是第二级故障还是第三级故障。
进一步,根据第一级故障判断单元302、第二级故障判断单元303判断出的故障类型,通过所述控制器组件300执行相应的指令或控制所述医疗机器人改变操作状态。
优选的,在步骤S1之前,所述故障检测方法还包括:提供控制器组件300,所述控制器组件300包括故障检测单元301、第一级故障判断单元302和第二级故障判断单元303;
相应的,在步骤S1中,通过故障检测单元301分别检测所述第一级部件501、第二级部件502和第三级部件503是否发生故障;
在步骤S2中,通过第一级故障判断单元302判断所述第一级部件501发生的故障是第一级故障还是第二级故障;通过第二级故障判断单元303判断所述第二级部件502发生的故障是第二级故障还是第三级故障。
在一些实施例中,所述故障检测单元301包括第一级故障检测单元3011、第二级故障检测单元3012和第三级故障检测单元3013。在所述步骤S1中,通过第一级故障检测单元3011检测所述第一级部件501是否发生故障,通过第二级故障检测单元3012检测所述第二级部件502是否发生故障,通过第三级故障检测单元3013检测所述第三级部件503是否发生故障。
进一步,所述步骤S2中,在所述第一级部件501发生故障时,通过所述第一级故障检测单元3011将所述第一级部件501的故障信息传输至所述第一级故障判断单元302;
在所述第二级部件502发生故障时,通过所述第二级故障检测单元3012将所述第二级部件502的故障信息传输至所述第二级故障判断单元303;
在所述第三级部件503发生故障时,通过所述第三级故障检测单元3013将所述第三级部件503的故障信息传输至所述第二级故障判断单元303。
在一些实施例中,各级故障的信息根据是通过软修复(例如重新启动,驱动、应用软件重置或恢复初始化等),还是物理修复分为可恢复故障和不可恢复故障。对于可恢复故障和不可恢复故障,所述各级故障判断单元有不同的处理措施。示范性的,所述第一级故障包括第一级不可恢复故障和第一级可恢复故障,所述第二级故障包括第二级不可恢复故障和第二级可恢复故障,所述第三级故障包括第三级不可恢复故障和第三级可恢复故障。
一方面,所述步骤S2中,所述第一级部件的故障被判断为第一级不可恢复故障时,屏蔽发生故障的第一级部件;所述第一级部件的故障或第二级部件的故障被判断为第二级不可恢复故障时,屏蔽发生故障的部件及其所在的组件;所述第一级部件的故障、第二级部件的故障或第三级部件的故障被判断为第三级不可恢复故障时,断电并重新启动所述医疗机器人。
另一方面,所述步骤S2中,所述第一级部件的故障被判断为第一级可恢复故障时,清除发生故障的第一级部件的运行参数并恢复备份的运行参数;所述第一级部件的故障或第二级部件的故障被判断为第二级可恢复故障时,清除发生故障的部件的运行参数并恢复备份的运行参数;所述第一级部件的故障、第二级部件的故障或第三级部件的故障被判断为第三级可恢复故障时,清除发生故障的部件的运行参数并恢复备份的运行参数。
在一些实施例中,在所述步骤S1中,当所述故障检测单元301检测到所述第一级部件501、第二级部件502和第三级部件503中的至少一个发生故障时,通过所述控制器组件300控制示警组件产生示警信息。
而在其他实施例中,所述医疗器械例如骨科机器人只包括执行臂,需要在术前/术中设置执行臂的手术路径。所述手术路径设置于所述执行臂控制单元,所述手术路径包括多个时刻点所述执行臂和手术器械/内窥镜401的期望姿态。所述执行臂控制单元根据所述手术路径控制所述关节驱动器驱动所述关节电机转动,以使执行臂和手术器械/内窥镜401运动至期望的姿态。为了使执行臂和手术器械/内窥镜401运动更加平滑和精确,所述手术路径还包括多个时刻点所述执行臂和手术器械/内窥镜401的期望速度和/或期望加速度。其他方面与上述遥操作手术机器人相似,不再赘述。
本申请还公开了一种存储介质,存储有计算机程序,所述计算机程序在被处理器执行时实现上述的医疗机器人的故障检测方法。
本实施例中,所述处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable  Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器是所述电子设备的控制中心,利用各种接口和线路连接整个电子设备的各个部分。
本申请实施方式的存储介质,可以采用一个或多个计算机可读的介质的任意组合。可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机硬盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其组合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言-诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言-诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)连接到用户计算机,或者可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
虽然在上文中详细说明了本申请的实施方式,但是对于本领域的技术人员来说显而易见的是,能够对这些实施方式进行各种修改和变化。但是,应理解,这种修改和变化都属于权利要求书中所述的本申请的范围和精神之内。而且,在此说明的本申请可有其它的实施方式,并且可通过多种方式实施或实现。

Claims (21)

  1. 一种医疗机器人,包括:
    至少两级部件,其中,所述至少两级部件的级别是根据所述医疗机器人的零件故障对所述医疗机器人的工作影响而设置的;
    控制器组件,包括故障检测单元和至少一级故障判断单元;
    所述故障检测单元,用于检测各级部件是否发生故障;
    其中,每一级所述故障判断单元与所述故障检测单元通信连接;所述故障判断单元用于当所述至少两级部件中的任一级部件发生故障时,判断该故障为与相应部件对应级别的故障、或高于对应部件级别的故障。
  2. 根据权利要求1所述的医疗机器人,其中,所述至少一级故障判断单元包括第一级故障判断单元和第二级故障判断单元,其中,所述第二级故障判断单元与所述第一级故障判断单元通信连接,用于当所述至少两级部件中的第一级部件发生的故障被第一级故障判断单元判断为第二级故障时,判断所述第一级部件发生的故障为第二级故障或第三级故障。
  3. 根据权利要求1所述的医疗机器人,其中,所述至少两级部件包括:第一级部件和第二级部件;所述至少一级故障判断单元包括:第一级故障判断单元和第二级故障判断单元;所述故障检测单元包括第一级故障检测单元和第二级故障检测单元;
    所述第一级故障检测单元与所述第一级部件、所述第一级故障判断单元通信连接,用于检测所述第一级部件是否发生故障,并当检测到所述第一级部件发生故障时,将第一级部件发生故障的信息传输给所述第一级故障判断单元;
    所述第二级故障检测单元与所述第二级部件、所述第二级故障判断单元通信连接,用于检测第二级部件是否发生故障,并当检测到第二级部件发生故障时,将第二级部件发生故障的信息传输给所述第二级故障判断单元。
  4. 根据权利要求3所述的医疗机器人,其中,所述至少两级部件还包括:第三级部件;所述故障检测单元还包括第三级故障检测单元;
    所述第三级故障检测单元与所述第三级部件、所述第二级故障判断单元通信连接,用于检测第三级部件是否发生故障,并当检测到第三级部件发生故障时,将第三级部件发生故障的信息传输给所述第二级故障判断单元。
  5. 根据权利要求1所述的医疗机器人,其中,当其中的故障判断单元确定所述至少两级部件中的低于最高级的任一级部件的故障为不可恢复故障时,所述控制器组件控制发生故障的相应级部件被屏蔽。
  6. 根据权利要求1所述的医疗机器人,其中,当其中的故障判断单元确定所述至少两级部件中的最高级部件的故障为不可恢复故障时,所述医疗机器人被控制断电重新启动。
  7. 根据权利要求1所述的医疗机器人,其中,所述医疗机器人包括主操作臂和多个执行臂;所述至少两级部件包括:第一级部件和第二级部件;
    当发生第一级不可恢复故障的第一级部件或发生第二级不可恢复故障的第二级部件位于挂载手术器械的所述执行臂上时,所述控制器组件用于控制所述主操作臂与该执行臂断开主从映射关系,并与其他执行臂建立主从映射关系。
  8. 根据权利要求1所述的医疗机器人,其中,所述至少两级部件中的第一级部件包括位于用以控制机械臂末端位置的关节的第一机械臂关节附件;所述第一机械臂关节附件对应的故障为第一级故障。
  9. 根据权利要求1所述的医疗机器人,其中,所述至少两级部件中的第一级部件包括位于用以控制机械臂末端姿态的关节的第二机械臂关节附件;所述第二机械臂关节附件对应的故障为第二级故障。
  10. 根据权利要求1所述的医疗机器人,其中,所述至少两级部件包括:第一级部件和第二级部件;当发生第一级可恢复故障时,所述控制器组件控制发生故障的第一级部件清除第一级部件的运行参数并恢复备份的运行参数;
    当发生第二级可恢复故障时,所述控制器组件控制发生故障的第一级部件或第二级部件清除运行参数并恢复备份的运行参数。
  11. 根据权利要求1所述的医疗机器人,其中,所述至少两级部件包括:第一级部件、第二级部件、和第三级部件;当发生第三级可恢复故障时,所述控制器组件控制发生故障的第一级部件、第二级部件、或第三级部件清除运行参数并恢复备份的运行参数。
  12. 根据权利要求1所述的医疗机器人,其中,所述至少两级部件包括:第一级部件、第二级部件、和第三级部件中的至少两种;
    其中,所述至少两级部件中第一级部件包括关节编码器,关节驱动器,关节电机,关节抱闸中的一种或多种;
    所述至少两级部件中的第二级部件包括机械臂电路、机械臂通信件、设置于机械臂末端位姿中的一种或多种;
    所述至少两级部件中的第三级部件包括为所述医疗机器人提供电能的系统电源和系统通信件中的一种或多种。
  13. 根据权利要求1所述的医疗机器人,还包括示警组件,所述示警组件与所述控制器组件通信连接,当第一级部件、第二级部件和第三级部件中的任意一个部件发生故障时,所述控制器组件用于根据判断得到的故障类别,控制示警组件发出示警信息。
  14. 根据权利要求1所述的医疗机器人,其中,所述至少两级部件所对应的部件级别是依据以下故障级别中的至少两级而确定的:影响零件自身正常工作的故障;影响零件所在组件或子系统正常工作的故障;以及影响医疗机器人整体正常工作的故障。
  15. 一种医疗机器人的故障检测方法,包括如下步骤:
    检测至少两级部件中的每一级部件以判断是否发生故障;其中,所述至少两级部件的级别是根据所述医疗机器人的零件故障对所述医疗机器人的工作影响而设置的;
    在检测其中的任一级部件发生故障时,判断该故障为与相应部件对应级别的故障、或高于对应部件级别的故障。
  16. 根据权利要求15所述的故障检测方法,其中,所述级别的数量包含三个级别,在判断其中的第一级部件的故障为第二级故障时,还判断所述第一级部件发生的故障是否为第三级故障。
  17. 根据权利要求15所述的故障检测方法,其中,所述在检测其中的任一级部件发生故障时,判断该故障为与相应部件对应级别的故障、或高于对应部件级别的故障,包括以下至少一种:
    当判断的故障为第一级不可恢复故障时,屏蔽发生故障的部件;
    当判断的故障为第二级不可恢复故障时,屏蔽发生故障的部件及其所在的组件;以及
    当判断的故障为第三级不可恢复故障时,断电并重新启动所述医疗机器人。
  18. 根据权利要求15所述的故障检测方法,其中,所述医疗机器人包括主操作臂和多个执行臂;所述至少两级部件包括:第一级部件和第二级部件;
    所述故障检测方法还包括:当发生第一级不可恢复故障的第一级部件或发生第二级不可恢复故障的第二级部件位于挂载手术器械的所述执行臂上时,断开所述主操作臂与该执行臂的主从映射关系,并与其他执行臂建立主从映射关系。
  19. 根据权利要求15所述的故障检测方法,其中,所述在检测其中的任一级部件发生故障时,判断该故障为与相应部件对应级别的故障、或高于对应部件级别的故障,包括以下至少一种:
    当判断为第一级可恢复故障时,清除发生故障的部件的运行参数并恢复备份的运行参数;
    当判断为高于第一级可恢复故障的其他级可恢复故障时,清除发生故障的部件及其所在的组件的运行参数并恢复备份的运行参数。
  20. 根据权利要求15所述的故障检测方法,其中,在所述步骤S1中,当检测到所述任一级部件发生故障时,产生示警信息。
  21. 一种存储介质,存储有计算机程序,所述计算机程序在被处理器执行时实现如权利要求15至20中任一项所述的医疗机器人的故障检测方法。
PCT/CN2021/123229 2020-12-30 2021-10-12 一种医疗机器人、故障检测方法及存储介质 WO2022142578A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011601504.0A CN112587239B (zh) 2020-12-30 2020-12-30 一种医疗机器人、故障检测方法及存储介质
CN202011601504.0 2020-12-30

Publications (1)

Publication Number Publication Date
WO2022142578A1 true WO2022142578A1 (zh) 2022-07-07

Family

ID=75203886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123229 WO2022142578A1 (zh) 2020-12-30 2021-10-12 一种医疗机器人、故障检测方法及存储介质

Country Status (2)

Country Link
CN (1) CN112587239B (zh)
WO (1) WO2022142578A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112587239B (zh) * 2020-12-30 2022-04-26 上海微创医疗机器人(集团)股份有限公司 一种医疗机器人、故障检测方法及存储介质
CN113671930B (zh) * 2021-07-15 2022-10-11 浙江零跑科技股份有限公司 一种基于前馈补偿的行车中驱动故障误检复位系统及方法
CN114098990A (zh) * 2022-01-28 2022-03-01 极限人工智能(北京)有限公司 器械驱动方法、装置、电子设备及存储介质
CN114734438A (zh) * 2022-04-02 2022-07-12 中科新松有限公司 一种机器人关节的故障诊断方法及系统
CN115157324A (zh) * 2022-08-29 2022-10-11 湖南医科医工科技有限公司 一种手术机器人的故障保护系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105636748A (zh) * 2013-10-17 2016-06-01 直观外科手术操作公司 在机器人系统中的故障反应、故障隔离和故障弱化
CN106175936A (zh) * 2016-08-31 2016-12-07 北京术锐技术有限公司 一种手术机器人完全运行状态故障检测方法
CN107334531A (zh) * 2017-07-31 2017-11-10 成都中科博恩思医学机器人有限公司 一种机器人手术设备以及机器人手术设备安全控制方法
CN109069206A (zh) * 2016-06-30 2018-12-21 直观外科手术操作公司 用于医疗机器人系统的故障反应机制的系统和方法
CN112587239A (zh) * 2020-12-30 2021-04-02 上海微创医疗机器人(集团)股份有限公司 一种医疗机器人、故障检测方法及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10335962B1 (en) * 2017-03-01 2019-07-02 Knowledge Initiatives LLC Comprehensive fault detection and diagnosis of robots
CN109108985A (zh) * 2018-10-28 2019-01-01 傅志强 移动机器人集群节点的故障诊断方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105636748A (zh) * 2013-10-17 2016-06-01 直观外科手术操作公司 在机器人系统中的故障反应、故障隔离和故障弱化
CN109069206A (zh) * 2016-06-30 2018-12-21 直观外科手术操作公司 用于医疗机器人系统的故障反应机制的系统和方法
CN106175936A (zh) * 2016-08-31 2016-12-07 北京术锐技术有限公司 一种手术机器人完全运行状态故障检测方法
CN107334531A (zh) * 2017-07-31 2017-11-10 成都中科博恩思医学机器人有限公司 一种机器人手术设备以及机器人手术设备安全控制方法
CN112587239A (zh) * 2020-12-30 2021-04-02 上海微创医疗机器人(集团)股份有限公司 一种医疗机器人、故障检测方法及存储介质

Also Published As

Publication number Publication date
CN112587239A (zh) 2021-04-02
CN112587239B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2022142578A1 (zh) 一种医疗机器人、故障检测方法及存储介质
JP6689256B2 (ja) 反応動作中に制御点を監視するためのシステム及び方法
CN109890311B (zh) 在计算机辅助远程操作外科手术中的可重新配置的显示器
US12004833B2 (en) System and method for maintaining a tool position and orientation
EP3057742B1 (en) Fault reaction, fault isolation, and graceful degradation in a robotic system
WO2022193889A1 (zh) 手术机器人系统的控制方法、可读存储介质及机器人系统
CN107072864B (zh) 用于配准到手术台的系统及方法
US7502174B2 (en) System and method for imaging
US20060181482A1 (en) Apparatus for providing visual data during an operation
CN107280764B (zh) 颅颌面整形外科手术机器人
JP2017537751A (ja) 統合された手術台運動のためのシステム及び方法
CN107072724A (zh) 用于器械干扰补偿的系统和方法
WO2017029690A1 (ja) X線撮影システム
Kazanzides et al. Architecture of a surgical robot
JP6485899B2 (ja) 医療用立体観察装置、医療用立体観察方法、及びプログラム
US11880513B2 (en) System and method for motion mode management
WO2022127794A1 (zh) 导航手术系统及其注册方法、计算机可读存储介质及电子设备
CN113397712A (zh) 基于球窝关节及触觉反馈的手术机器人
US20230405826A1 (en) Robotic Surgical System and Method for Handling Real-Time and Non-Real-Time Traffic
US11357584B2 (en) Method for detecting faults in operating states of surgical robots
CN115279296A (zh) 冗余机器人功率和通信架构
CN208851636U (zh) 内镜手术机器人控制终端及机器人系统
US20190220097A1 (en) System and method for assisting operator engagement with input devices
Hu et al. A collaborative robotic platform for sensor-aware fibula osteotomies in mandibular reconstruction surgery
CN115429438A (zh) 支撑装置不动点随动调整系统及手术机器人系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913323

Country of ref document: EP

Kind code of ref document: A1